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Abstract 
The challenge of estimating the Reynolds stress in an energetic ocean environment 
derives from the turbulence process overlapping in frequency) or in wavenumber) with 
the wave process. It was surmised that they would not overlap in the combined 
wavenumber-frequency spectrum) due to each process having a different dispersion re- 
lationship. The turbulence process is thought to obey a linear dispersion relationship, 
as the turbulent flow is advected with the mean current (Taylor's frozen turbulence 
approximation). However) the Acoustic Doppler Current Profiler (ADCP) looks at 
radial wavenumbers and frequencies, and finds overlap. Another approach is to ex- 
ploit the physical differences of each process) namely that the wave induced velocities 
are correlated over much larger distances than the turbulence induced velocities. This 
method was explored for current meters by Shaw and Trowbridge. Upon adapting 
the method for the ADCP) it is found that the resulting Reynolds stress estimates are 
of the correct order of magnitude, but somewhat noisy. The work of this thesis is to 
uncover the source of that noise) and to quantify the performance limits of estimating 
the Reynolds Stress when using ADCP measurements that are contaminated with 
strong wave-induced velocities. To that end) the space-time correlations of the error, 
turbulence) and wave processes are developed and then utilized to find the extent 
to which the environmental and internal processing parameters contribute to this er- 
ror. It is found that the wave-induced velocities) even when filtered) introduce error 
variances which are of similar magnitude to that of the Reynolds stresses. 
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Woods Hole Oceanographic Institution 
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Chapter 1 

Introduction 

Many theories which attempt to model various processes in the ocean rely on the 

accurate measurement of the Reynolds Stress. However, these measurements become 

suspect when energetic surface waves are present. Previously, Shaw and Trowbridge 

[19] utilized a method of filtering out the effects of the waves by exploiting the physics 

the problem, namely the assumption that the wave induced water velocities are co- 

herent over much larger spatial scales than turbulent induced velocities. Their work 

used multiple current meters, vertically spaced off the ocean bottom. However, it 

would be desirable to obtain an entire column profile of measurements. This the- 

sis examines the possibility of using radial velocity measurements from an Acoustic 

Doppler Current Profiler ( ADCP) to estimate the Reynolds Stress. 

The main thrust of this work is to develop and then analyze the performance 

of signal processing algorithms which filter out wave influences in the radial veloc- 

ity measurements made by the ADCP. Performance will be evaluated by comparing 

results using real ocean data to results using statistical models of the data. In prepa- 

ration for future work (beyond this thesis), steps to simulate the entire process are 

developed, so that there is access to data from the turbulent process and the wave 

process independently, which is not the case in the real ocean environment. 

The theoretic groundwork of this thesis can roughly be divided into two major 

themes: the development and analysis of signal processing algorithms, and the nu- 

merical simulation of the turbulent and wave processes in space and time. 
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Figure 1-1: The two main themes of this thesis: modeling the ocean processes, and 
developing algorithms to which utilize them. 

The introduction goes into more detail about the Reynolds stress, the problem 

of energetic surface waves, and general methods that have been used to address the 

problem. Chapter 2 formulates the estimates of Reynolds stress when waves have 

not been filtered out, and determines the variance of these estimates. Chapter 3 

adapts the filter methods for the ADCP. Chapter 4 gives background specifics on 

how ADCP's work, and explains what limitations they might introduce in measuring 

the Reynolds stress. Chapters 5-7 present the theoretic work needed to determine the 

space-time correlations for the turbulence induced velocities. In addit ion, chapter 5 

presents a method for simulating a turbulent flow. Chapter 8 develops the space-time 

correlations for wave induced velocities, and presents a method for simulating the 

surface wave field. Chapter 9 performs a wavenumber-frequency analysis of the com- 

bined processes in an attempt to understand how they combine in the radial direction. 

Chapter 10 presents the predicted error of the estimates of Reynolds stress when us- 

ing the optimal linear filter, and how model parameters affect the error. Chapter 11 

presents the full ocean- ADCP simulator. Finally, the conclusion will summarize the 

findings of this thesis. 
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Figure 1-2: ADCP's have the ability to make measurements at many ranges. 
ADCP's are an integral part of ocean observing platforms. (3D Graphic by Jayne 
Doucette, WHOI) 

Not at ion Convent ions 

Not at ion 

Instantaneous (and actual) radial velocities 

Measured radial velocities from slightly misaligned sensor 

Bl..B4 denote ADCP beams 1 to 4 

ADCP beam tilt angle (from vertical) 

Speed of sound in water 

ADCP transmit signal 

ADCP received signal (including noise) 

Fourier Transform of received signal 



Waves and Turbulence Notation 

Location vectors (from an origin) will be denoted by an arrow 

Subscripts denote different points in space or time 

Boldface denotes a series of points or velocities in space or time 

Instantaneous velocities in the x,y, and z directions 

Ensemble averages will be denoted by an overbar 

Time average will be denoted by triangle brackets 

Turbulent quantities will be denoted by a prime 

Wave quantities will be denoted by a tilde 

Velocity as measured by a slightly misaligned sensor 

Wave amplitude 

Height to surface of water (from ocean floor) 

Wavelength 

Wavenumber vector 

Magnitude of wavenumber vector 

Magnitude of separation vector (distance) 

The period of a wave 

Frequency (Hz) 

Angular frequency (radians) 

Direction of propagating waves 

Random starting phase of progating wave 

Correlation tensor 

Power spectral density tensor (Fourier transform of Ra) 

Turbulent power spectral density tensor 

Pierson-Moscowitz wave height power spectral density 



Estimation Not at ion 

Random variables 

Sample values of the random variables 

Expectation of a random variable 

Estimated quantities will be denoted by a hat 

White Gaussian noise 

Filter weights 

Boldface and lowercase denotes a vector 

Boldface and capital denotes a matrix 

1.2 Motivation 

Turbulence is a very common phenomenon. Most people have encountered turbulence 

when flying on a plane, or watching smoke rise out of the chimey of an industrial 

plant, or being tumbled under water when large ocean waves break near shore. In the 

ocean, these unpredictable swirlings and tumbling occur near the sea floor as currents 

move past (such as due to the tides), and near the surface where breaking waves 

and changing winds lead to stirring and mixing motions. These motions are quite 

important in transporting momentum, heat, sediment, and other passive scalars. For 

scientists who study weather and climate, it is quite relevant to know how the ocean 

is removing and releasing heat. For geologists who study the effects of erosion, or for 

biologists who need to know how far larva will be carried when released into the water, 

the effects of turbulence near the ocean floor need to be known. Environmentalists 

worry about the impact of chemical spills, and they need to know what areas will 

be affected and to what degree. These are just a few examples which illustrate the 

importance of understanding turbulence. 

The exact mechanisims which govern the transition from laminar flow to turbulent 

flow are not well understood. In the most general sense, turbulence arises when 

inertial forces overcome viscous forces. Small disturbances, which would normally be 



damped out, become amplified. Reynolds number expresses this relationship. 1281 

inertial forces w mass x acceleration - (oL3)(U2/L) 

viscous forces shear stress x area w (p9u/ay) (L2) - ( ~ u / L ) ( L ~ )  (1.1) 

- inertial forces W 2 L 2 )  
Re - viscous forces uUL P 

Here, p is the density of water, p is the viscosity of water, U is the velocity of the 

water, and L is the length scale of the flow. Depending on boundary conditions and 

overall flow conditions, turbulence can be begin at Reynolds numbers as low as  200. 

Predicting the exact flow of a turbulent fluid is impossible a t  this time, so one 

method of studying turbulence is to look at time averaged quantities. The Reynolds- 

Averaged Navier-Stokes equation (since Reynolds is considered the first person to 

have taken this approach [2]), is 

The pressure term is part of the stress  tensor,^^. The last term, -puiui, is called 

the Reynolds stress, and is of great interest. It can be thought of as a transport 

term, where momentum is carried along at the rate of the second velocity. Many 

theories rely on this number, and having accurate empirical measurements is of utmost 

importance. 

Laboratory methods of measuring turbulence include hot-wire anemometry (HWA), 

hot-film anemometry, and laser Doppler velocimetry (LDV) , while deployable ocean 

instruments include Acoustic Doppler Velocimeters (ADV), Modular Acoustic Veloc- 

ity Sensors (MAVS), Vector Averaging Current Meters (VACM), and Vector Mesasur- 

ing Current Meters (VMCM). These instruments are able to resolve the vector mo- 

tions of the fluid at a given point in space. Other deployable ocean instruments, 

such as Acoustic Doppler Current Profilers (ADCP), send out beams of sound which 

enable sampling of the current at many locations. However, ADCP's must rely on 

statistical averaging in order to resolve the vector motions of the current, and this 

can be problematic if the statistics of the flow are changing in time. 
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Figure 1-3: Wave motions are orders of magnitude larger than turbulent motions. 

The Problem 

In the presence of surface waves, a measured velocity component can be represented 

as the sum of its mean component, a fluctuating turbulent component, and a wave 

component. 

Near the bottom boundary layer of the ocean, it can be assumed that the process re- 

sponsible for creating the turbulence is independent of the process creating the surface 

waves. When two processes are independent, the cross correlation between turbulent 

fluctuations and wave induced velocities is zero, u'u = 0. The cross-covariance of 

the twomeasured velocity components will consist of a turbulent term and a wave 

induced term. 

- 
For typical ocean bottom measurements in a coastal region, the turbulent term, uiu',, 

is on the order of 1 0 4 m 2 s 2 .  The wave correlation term, U&, is on the order 

101m2s2 .  [25] Normally, only the vertical transport of horizontal momentum is of 

interest (ie. where i=l,2 and j=3). For that case, the horizontal wave velocities are 

out of phase with vertical wave velocities, and the cross-covariance wave term is zero. 



However, when there is uncertainty between the axes of the instrument and the prin- 

ciple wave axes, the measured radial velocities have wave and turbulent components 

which are correlated. A transformation of coordinates will reveal how any uncertianty 

in aligment leads to cross contamination of the horizontal and vertical velocities. 

[t [ c o s p  -sin 6 cos s i n p ]  /3 [::I 
Ul and Us are the horizontal and vertical velocities as recorded by the slightly mis- 

aligned instrument, ul and us are horizontal and vertical velocities in their true 

directions, and /3 is the unknown misalignment. With the sensor misaligment very 

small, cos /3 is about 1, and sin f )  is approximately /?. A bias term appears when 

taking the cross correlation of the horizontal and vertical velocities. 

- 
u? and 3 are not zero, and for c1c3, to be 10% of 44, f3 needs to be on the order 

of l o 4 .  This is hardly practical, and so there needs to be a method of removing (or 

reducing) the wave velocities from the measurements. 



1.4 Previous Solutions 

1.4.1 Differencing strategies 

Trowbridge [25] utilized the well known physics of the problem to separate the wave 

and turbulent components of velocity. In general, waves are coherent over much 

larger spatial scales than turbulence. Averaging the difference in velocities obtained 

from two sensors placed further apart than turbulence correlation scales, but less 

than wave correlation scales, the wave bias should disappear. Letting AUi and AU3 

be the horizontal and vertical velocity difference between the two sensors, the cross- 

covariance of velocity differences provides a good estimate of the uiui, term. 

As will be seen, AU{AU; w 2u',ui,, and the AO1 A C / ~  term is approximately zero under 

the above assumptions. 

For the turbulent term, small sensor misalignment has neglible impact on the 

fluctuating turbulent correlation terms (since ,8(u,'2 - u',2) << uiui,)) and can be 

negelect ed. 

Remembering that the turbulent velocities between sensors are uncorrelated, the tur- 

bulent cross-covariance of velocity difference is seen to be the sum of the turbulent 

correlations from each sensor. 

Au', Aui, = (u', (xi,) - U\ (x;)) (ui, (xi,) - u x ) )  

= u[ (XI,)ui, ( X I , )  - u,' (xi,)ui, (x;) - u\ (x'a)ui, (xi,) + u', (x;)~', (x;) 
(1.9) 

= u'i(x;)ui,(XI,) + u',(xa}u',(xa} 

ss ~u\u$ (for u\{xi,)ui,(XI,) as u[(xa}u's{xa} at the same depth) 



As already noted, small sensor misalignment does have impact on the wave correlation 

terms, since they are of significant magnitude. However, the cross-covariance of wave 

velocity difference is close to zero, even with sensor misalignment. 

With typical surface wavelengths of about 50 meters, and with the sensors spaced 

within a few meters (at roughly the same depth), the assumption that the individual 

components of the wave induced velocities are approximately equal at  the two sensor 

locations is satisfactory. The final result is that cov(AUl, AU3) is just an average 

of the vertical transport of horizontal momentum between the two sensor locations. 
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Figure 1-4: Main assumption: wave velocities are coherent over a much larger spatial 
scale than turbulent velocities. 

Differencing strategies with filtering 

Shaw and Trowbridge [19] then took a different approach in reducing the wave bias. 

Instead of assuming that the wave induced velocities at the two sensors are basically 

equal, it is enough to assume they are coherent. Then it is possible to use the velocity 

at one sensor to make an estimate of the coherent parts of the velocity at the other 

sensor. 

The filter weights are those which make the best linear fit of the velocities at the 

second sensor (contained the data matrix D) , to the velocities at the first sensor (rep 

resented by the data vector u). The standard least squares solution 1201 to Dh = u, 

is h = ( D ~ D ) ' D ~ u .  Each column of the matrix D  is a data series of length M, and 

each successive column is advanced one time step, until there are as many columns 

as there filter weights desired. The vector u has the same time steps as the middle 



column in D. Taking the cross-covariance of the difference term ( between estimated 

and actual horizontal velocity) with the vertical velocity term at one sensor gives the 

desired estimate. 

pp - - 

((U[ + 01) - (U', + U~))(U$ + 03) 

In the second line, the coherent parts, Ul and U1, cancel out. In the fourth line, 

turbulent fluctuations are independent of the wave induced velocities, and cancel out. 

In addition, there is no way of estimating the turbulent fluctuation of one sensor, 

U',, from another sensor since the sensors are out of the turbulent correlation range. 

That means that the estimate of the turbulent component is essentially random, and 

uncorrelated with either the actual turbulent fluctuation or the wave induced velocity. 
- - 

Therefore, the only term left is the desired term, U f l  as uius. 

It is worth noting that this estimate effectively removes the wave influences, and 

is basically robust to small sensor misalignment. In addition, both cov(AUl, Uy) and 

cov(Ul, AU3) should give the same result, and this provides a way of error checking 

the validity of assumptions made using this method. This method also allows for a 

broader spatial arrangement of the sensors, including vertical separations, with the 

only requirement that the wave components remain coherent between the two sensors. 

Finally, an estimate can be made at each sensor independently, so averaging over the 

sensors is not required. 



Chapter 2 

Uncertainty in Estimates of 

Reynolds Stress Using an ADCP in 

an Energetic Ocean State 

One of the advantages of an ADCP is that it is able to provide a profile of radial 

velocity measurements, which are then transformed into a profile of Reynolds stress 

estimates. In section 2.1, the basic method for forming estimates of Reynolds stress 

using radial velocity measurements from the ADCP is presented. The measurements 

are unfiltered, and in section 2.2 the effect of beam tilt on the estimates is considered. 

Finally, in section 2.3, a method for calculating the variance of the estimates directly 

from the data is presented using the work of Williams and Simpson [26]. The conclu- 

sion is that the ADCP can provide approximate estimates of the Reynolds stess when 

there is minimal beam tilt, or when the wave-induced velocities are not energetic. 

2.1 Calculating Reynolds Stress using ADCP mea- 

surements 

One of the advantages of an ADCP is that it is able to provide a profile of velocity 

measurements, whereas many other measuring instruments provide vector measure- 



0 * 2  

Mean Current 

* 1  

ADCP Current Meters 

Figure 2-1: One ADCP remotely measures radial velocities at many locations, whereas 
current meters need to be physically present at each location. 

ments of the velocity at individual locations. It also has the advantage leaving the 

flow being measured undisturbed, since it only sends out beams of sound (see figure 

One of the disadvantages of the ADCP is that it only makes measurements of 

velocity in the direction of each beam. Whereas many of the single point instruments 

are able to give a velocity vector measurement, the ADCP must rely on the sta- 

tionarity of the statistics in the ocean medium in order to give mean velocity vector 

components. 

The sound beams of the ADCP are at an angle <t> from the vertical. As each sound 

beam travels through the water, it scatters off small organisms that float passively, 

and returns to the ADCP transducer. After some internal processing, the result is a 

profile of radial velocities, V, for each beam. Assuming that the mean velocity vector 

is the same at any given vertical level, then the geometry of the beams allow for the 
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Figure 2-2: The top view and side view geometries of the ADCP. 

mean current to be calculated. (See figure 2-2 for the geometry and numbers.) 

The radial velocity is a combination of its component velocities. As a convention, 

ADCPs record radial velocities toward the transducers as positive, and away from 

the transducers as negative. F'rom the previous beam geometry, the radial turbulent 

velocities at similar radial distances on two separate beams are given as follows: 

The radial variances for points at similar radial distances on at beam tilt, 4, are as 

27 



follows: 

(V~l(Xa,t))~ = 

( v~2 (%, t ) )~  = 

In order to finish 

vertical locat ion, 

vertical locat ions. 

the calculations and estimate the Reynolds Stress at a particular 

it is necessary that the Reynolds Stress be the same at similar 

This requirement of spatial homogeniety is reasonable since it is 

very unlikely that there is some disruption of the flow in the relatively short span 

between beams. 

Using the assumptions of spatial homogeneity and st ationarity of statistics, 

( VBl (Xu , t ) ) - (VB2 (Xb , t ) ) =4Ul U3 sin <t> cos <A 
(2.5) 

[(V~l(~a,t))~-(VB2(~b,t))~]/(4sin<t>cos<t>) =Ulu3 

Since each measurement of radial velocity can be decomposed into mean, turbulent, 

wave, and error component, 

- 
-pUIUs will not give the desired Reynolds stress, -pu',ui. However, subtracting the 

two radial variances will lead to an -px estimate which is close to the one desired. 

where 



The final equality results from assuming that the cross-covariance terms are zero, 

based on the assumption that the wave, turbulent, and error processes are indepen- 

dent from each other. These assumptions will be true to the extent that the processes 

are not coupled. 

The error terms, V& (3, t), from individual ADCP measurements of the radial 

velocity, are very likely random. The error is based on the measurement of the phase 

of the return signal, which is subject to irregular fluctuations due to individual scatter 

orientations and distances, in addition to any other noise factors that interfere. This 

would indicate that the error associated with each radial velocity measurement is 

independent of every other measurement in space and time. Although this does not 

rule out correlation with the wave and turbulent processes, it is unlikely that it is 

significant. 

For the wave and turbulent processes, there could be some coupling near the sur- 

face, where crashing waves will introduce their own turbulence. However, after a few 

meters, the processes that create turbulence, such as the tidal flow, are independent 

of the wave processes. Any real coupling is beyond the extent of this thesis, and is 

worthy of future research. 

Revisiting 

should cancel 

U , ,  the error terms (V& (3, t))2 

out upon subtraction. Therefore 

are independent of direction, and 

The second equality is approximately true when uncertainty in beam tilt is minimal, 
A - - 

so that UIUs as fi1fi3 as 0. Therefore, the Reynolds stress estimate is -pu[u',. The 

next section examines the effect that beam tilt has on the estimates. 



2.2 ADCP Tilt and Beam Alignment Uncertainty 

There are two factors which lead to cross contamination of component velocities. 

The first is the tilt of the ADCP resting on the ocean bottom, and the second is the 

additional individual tilt of each beam. It is very difficult to get the beams to point 

in the true direction, so at factory installation their installed tilts are measured and 

recorded for subsequent post processing. In addition, the ADCP has sensors which 

detect the overall tilt. 

First it will be instructive to see how the general tilt of the ADCP affects the 

measured radial velocities, and then if necessary, to examine the affect of each beam 

individually. 

Knowing the tilt of the ADCP (to within some given resolution) is very useful for 
-- 

finding the true mean velocity components of the current, Ul, U2, and Us. Since the 

velocity components are a linear combination of the radial velocities (see equation 

2 4 ,  corrections can be applied at any point in the process using a standard rotation 

matrix. 

where ip, 8 and 7 are small counter-clockwise rotations about the 

respectively. 

x, y, and z a: 

Unfortunately, this is not the case for the Reynolds stress estimates. Although 

it is possible to calculate ui on a per measurment basis using the known tilts of the 

ADCP and each beam, forming the estimate will not give the Reynolds stress. 

These measurements are constructed by using radial velocities on opposing beams, 

and are therefore the cross correlation measurements made at large lag (the span of 

the beams). 

There is also no hope of performing post corrections. Since the Reynolds stress 

is a nonlinear term, any tilt in a beam leads to contamination of the three main 

directions, u:, and all of their cross products, uiuj. Therefore each radial velocity is a 



combination of 6 terms, and there are only four beams with which to solve for these 

unknowns. 

The value in knowing the beam tilt is that it provides a measure of the uncertianty 

in the Reynolds stress estimate. To begin with, the inverse of the rotation matrix 

(which is just its transpose for small 7, ft, @) can be utilized to show how the true 

velocity components appear in the tilted ADCP. 

Generally, i j } ,  f3, and 7 are on the order of a few degrees, 3*pi/180 ?s 1/20. A safe 

estimate would be 1/10. Keeping the first order </', ft, and 7 terms (since their products 

cause a reduction of 1/100), the Reynolds Stress estimates are given by 

! u;u; + *(Z - fit) 

The final equality follows from the fact that ii&& = 0 (i # j), and >> 2. 
To determine the magnitude of the error terms, (3 - 3) (i # j ) ,  the approxima- 

tion Ã 2 can be used since the principal wave component dominates all other 

terms, including any terms that result from beam tilt. Using data from the Martha's 
-- 

Vineyard Coastal Observatory, (u?, ui) >> 21 (about 5-15 times greater), so that 
- - -  
u! - u j  SB u: (z = 1,2). From the ocean floor to a depth of about 8 meters above, 

-- 
some typical u?, uk values are 0.005-0.020 ( ~ I S ) ~ .  From 8 meters until the surface, 

-- 
there is a quick increase in the u?, ui values, with a range from about 0.1-0.6 ( ~ I S ) ~ .  

The ADCP used in the Martha's Vineyard Coastal Observatory has one axes tilted 



at 0.5 degrees, and another at 6 degrees. The error in the Reynolds stress estimate 

due to each of the beam tilts, respectively, ranges from w (0.05,o.s) N m 2  near the 

ocean floor to = (0.2, 2 ) N m 2  near the 8 meter range, to ?s ( 4 , 5 0 ) ~ m ~  near the 

ocean surface. Figure 2-3 shows a typical mean velocity profile and the corresponding 

profile of Reynolds stress estimates. In the high shear region, between 10 and 12 

meters above the ocean floor, the error in the -pww estimates is between 0.5-3.5 N 

m 2  and the error in the -pw estimates is between 6-40 N m 2 .  This means that 

the -p estimate of Reynolds stress can be trusted, whereas the -F estimate of 

Reynolds stress cannot be trusted. 

Mean Velocities Estimates of Reynolds stress 
14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  r 14 . , . , , . , ., , , . . . . . . ,. . . . . . . . , . . . . . . . .. . . . . . . . . , r : 

Velocity (mls) Reynolds Stress ( ~ l m * )  

Figure 2-3: The first graph shows the mean velocity profile above the ADCP at 
Martha's Vineyard Coastal Observatory, on yearday 153, 2005, at 10pm. The second 
graph shows the corresponding Reynolds stress estimates. The uw axis tips up at 
about 0.5 degrees, and the vw axis dips down at about 6 degrees. 



Figure 3.3 shows Reynolds stress estimates from the same velocity profile as figure 

3.3, in the range of 1 to 10 meters. The error in the -m estimates is between 0.05- 

0.13 N m 2  and the error in the -m estimates is between 0.6-2.5 N m 2 .  Again, 

this indicates that the -F estimate of Reynolds stress can be trusted, whereas the 

-pvw estimate of Reynolds stress cannot be trusted. 

In addition to introducing an error term in the estimates of Reynolds stress, the 

radial wave-induced velocities lead to larger variances of the estimate. Sect ion 2.3 

will discuss the uncertainty of the estimates. 

Estimates of Reynolds stress 

Reynolds Stress ( ~ l m ~ )  

Figure 2-4: A zoomed in view of the Reynolds stress estimates in the range from 1 to 
10 meters above the ocean floor. The ADCP data used is from the Martha's Vineyard 
Coastal Observatory, on yearday 153, 2005, at 10pm. The uw axis dips at about 0.5 
degrees, and the vw axis dips at about 6 degrees. 



2.3 Variance of the estimates of Reynolds stress 

In addition to the errors introduced from a tilted ADCP, there is also error due to 

the variance of the data itself. The uncertainty in the estimate of Reynolds stress is 

given as -pan, where 

- - 1 var [h  if=^ VB2(%, m)2 - E Z ~  vBi(%, 
16 sin2 (t> cos2 <f> 

and VBi(S, m) is the radial velocity with the mean removed, with m indexing individ- 

ual samples in time. Williams and Simpson [26] then expand this to give 

The last term in equation 2.14 is significantly less in magnitude than the first two 

terms. The second term represents the correlation of squared fluctuations at one 

point on a beam between successive measurements, and can be simplified as 

Using the condition of stationarity, so that xE=i var [(VBi(S, m)2] = Mvar [(VBi (2, t)2], 

a correction term, can be defined as 

so that the uncertainty can be written as 



If the distribution of the fluctuations, VB,{X, t)  , is Gaussian, then the fourth moment 

is equal to 3 times the second moment ( / ~ l  = 3p2), making 

var [( VB~ (5, t ) 2] = 2 ((vB@, t ) ) 2.  (2.18) 

Finally, using the fact that sin cos 4 = 2 sin 24, the uncertainty in the estimate of 

Reynolds stress is -pa& where 

This is the very practical result put forth by Williams and Simpson. Returning to 

the data taken from the ADCP at the Martha's Vineyard Coastal Observatory, the 

correction factor is found to vary from about 7~ ss 1 near the extremes of the beam, 

to around 7~ 3.5 near the middle of the beams. In addition, the distribution for 

this particular data set is found to be close to Gaussian, with p 4 / 4  ss 3.10 - 3.15 (a 

perfect Gaussian distrubtion has pt/iS = 3). Other data sets have distributions even 

closer to being Gaussian. Figure 2-5 shows the profile of Reynolds stress estimates 

with the uncertainty as given by the data and using equation 2.19. 

Looking at the plots, it appears that precise measurements of the Reynolds stress 

is not possible when wave-induced velocities are present. The overall conclusion 

for both the error and the uncertainty in the estimates of Reynolds stress using an 

ADCP is that approximate estimates are possible when the beam tilt is minimal 

and the wave-induced velocities are minimal. As the wave-induced velocities increase 

in amplitude, or as the beam tilt increases, the estimates become far less reliable. 

For more precise estimates, the wave-induced velocities must be removed. The next 

chapter will explore this possiblit ity. 
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Figure 2-5: The first graph shows the profile of Reynolds stress estimates above an 
ADCP at the Martha's Vineyard Coastal Observatory, with data taken on yearday 
153, 2005, at 10pm. The second graph shows the same profile, but in the range from 
1 to 10 meters above the ocean floor. The error bars give the uncertainty in the 
estimates due to the variance in the data itself. 



Chapter 3 

Error and Uncertainty in 

Estimates of Reynolds Stress Using 

Spatially and Temporally Filtered 

Data from an ADCP in an 

Energetic Ocean State 

In this chapter, the technique used by Shaw and Trowbridge is adapted for use with 

an Acoustic Doppler Current Profiler (ADCP). The important step is to come up 

with estimates of the turbulent radial velocities. This is done by making estimates of 

the coherent wave-induced velocities first, and then subtracting them from the actual 

radial velocities to arrive at incoherent estimates. Linear least squares estimation 

will be used, and in section 3.1, basic estimation theory is presented to show explicity 

that linear least squares estimation is formulated by making the error in the estimate 

orthogonal to the data used to form the estimate. The estimate is of the coherent 

wave-induced radial velocities between various locations along the beams, and the 

incoherent part, or error, contains the turbulence induced velocities. Section 3.2 forms 
A 

the estimate of the variance of the radial turbulent velocities, V& (5, t )  Vh  (5, t )  , and 



section 3.3 applies the technique to ADCP data from the Martha's Vineyard Coastal 

Observatory. In section, 3.4, the temporal pararnaters of the filter are determined, 

and two estimates of the variance of the radial turbulent velocities are compared. In 

addition, the variance of the estimates of Reynolds stress is calculated directly from 

the filtered data. Finally, in section 3.5 the usefulness of developing first and second 

order statistical models in order to help predict estimate error is discussed. 

3.1 Basic Estimation Theory 

The Shaw and Ttowbridge technique exploits the physics of the situation, namely 

that wave-induced velocities remain coherent over larger distances than turbulence- 

induced velocities. Basic estimation theory is presented to develop the mechanics of 

how the coherent portions between locations can be estimated, and then removed. 

When full statistical information is available, the optimal estimators are nonlinear. 

When only first and second order statistics are available, the linear least squares 

estimator is optimal. Section 3.1.5 looks specifically at  which first and second order 

st at istics are necessary to form the estimates of the radial turbulent velocities. 

3.1.1 Estimation of a random variable 

There are a number of different ways to estimate a random variable (X) based on 

information gathered from another random variable (Y) or a series of random variables 

(y = [Yi Ya ... YNIT). [23] In general there is a cost assosicated with making the 

estimation, and the goal is to minimize the expected value of the cost. 

min E[c(x,x)] 

Often, this cost will only depend on the error between the estimator and the random 

variable. 

X( = X - x ( ~ )  (3.2) 



With this type of cost, the estimator is calculated in such a way as to  minimize either 

the mean-square error, X:, the absolute error, lXE 1 ,  or the uniform cost, C(XE)=l for 

1x4 > A/2, and 0 otherwise. 

The total risk is the sum over all the error, 

where (x) is a value of (X) whose occurance is given by the joint probability density 

function fx,y (x, y)  , each realization of data (Yl =yl ,Y2=y2,. . . ,Yn=yn) leads to one 

estimate ~ ( y ) ,  and the corresponding error is (x - ~ ( y ) ) .  

When C(x - ~ ( y ) )  is Xz, the estimator that minimizes the mean-square error is 

the conditional mean. 

When C(x - ~ ( y ) )  is lXcl, the estimate that minimizes the absolute error is just the 

median of the a posteriori density, fxl (x, y ) . 

When C(x - ~ ( y ) )  is C(Xe)=l, the estimate that minimizes the uniform cost function 

is the maximum a posteriori estimate. It is commonly found by finding the maximum 

of the logarithm of the a posteriori probability, since the logarithm is just a monotone 

function. 

In all three cases, the risk is E[x(~)] ,  or the average of the conditional variance over 

all y. 

It is not always clear which type of error should be minimized, and sometimes the 

determination is whatever type of error is most tractable in solving. In the case of 

estimating turbulence, the mean-square error will be minimized since it has the effect 

of reducing larger errors. 



3.1.2 Estimation of a Random Vector 

This theory naturally extends to multiple random variable estimation. The error is 

now an error vector, 

and the 

the cost 

3.1.3 

cost function is just a sum of the squares of the errors. Since each term of 

function is positive, each can be minimized individually, 

Linear Least Squares Estimation 

When there is full statistical information of the processes involved, using the con- 

ditional mean as the estimate provides a lower bound on the mean-square error. 

However, when there is only partial statistical information, in particular, first and 

second order statistics, then the linear least squares estimate provides the reachable 

lower bound. 1271 

In the scalar case, (and assuming that the random variable being estimated is 

zero mean, or that the mean has been removed), the linear estimator is = hTy, 

where h is a vector of weights. To determine h, a system of equations must be solved, 

where for each equation the error is made orthogonal to the data of each Yi. 

In vector notation, and using E for expectation, the equation becomes 

Replacing hTy for and pulling hT outside of the expectation (since it is non- 



random), the equation becomes 

The weighting vector is then 

and the linear least squares estimator is 

Extending this to the estimation of multiple random variables, the linear estimate is 

2(y) = HTy, where H is a matrix of weights given by 

and the linear least squares estimate is 

These equations are also known as the Normal Equations. First order statistical in- 

formation is required initially to remove the mean components. Joint second-moment 

statistical information is required in order to make the estimate. 



3.1.4 Predicted Error Variances 

The predicted error covariances can be calculated as follows: 

Predicted Error = E[(%(y) - x)(%(y) - x ) ~ ]  

= E [ ( ~ ( Y )  - ~ ) ( % ( Y ) ) ~ I  + E [ ( ~ ( Y )  - ~ ) ( - x ) ~ l  

= E K W  - x ) ( - x ) ~ I  

= E[xxT] - E[?(y)xT] 

= E [nT] - E [xyT] (E[~Y^]) - l E [yxT] . 

In the second line, the error is orthongal to the data (or any linear estimate based 

on the data), and so the first expression is zero. The individual error variances lie on 

the diagonal, and the covariances lie on the off-diagonals. 

3.1.5 Estimation To Remove Coherent Wave Components 

The ADCP measures radial velocities, which can be decomposed into mean, turbulent, 

wave, and error components. 

The coherent estimate ~ ( y )  = E[xyT] (E[yyT])ly can be examined component- 

wise. 

E[XyT] = E[(X1 + X + Xe)(y' + y + ye)T] 
I IT = E[XY ] + E [ X ~ T ]  

E[wT1 = E [ ( ~ I + y + y ~ ) ( y ' + y + y ~ ) ~ ]  
I lT 

= E[Y Y I +E[YYT] + E[yeyeT] 

As discussed in section 2.1, the cross-correlation terms are zero based on the assump- 

tion that the wave, turbulent, and error processes are truly independent from each 

other, and the error is only correlated with itself. 

The incoherent estimate, which contains the desired turbulent term, is obtained by 



subtracting the coherent estimate, ~ ( y ) ,  from the actual velocities being estimated, 

The next section will look explicity at what terms contribute to the error in the 

estimate of the variance of the radial turbulent velocities. 

3.2 Forming the estimate of the variance of the 
A 

radial turbulent velocities, V& (a?, t )  V;, (2, t )  

To arrive at any statistics using the data, ergodicity must be invoked so that the 

average in time is equal to the ensemble average. Letting vx be the radial velocity 

time series at one location (with the mean removed), 

VX = [VBl(^a,tl) *VBl(^a, tN)IT 

the variance is calculated as 

1 
var(vx) = -vTvx = V~l(i?~, t )V~i(^a,  t) .  

N 

To achieve a different statistic (nonzero radial or time lag), vx is combined with a 

different radial velocity times series. For example, let 

vv = [v~l(^t, ti) v~l(^t ,  t ~ ) ] ~ ,  (3.22) 

then the estimate with a spatial lag of 7' = b - S is given by 

COV(V,, v ~ )  = .yVx Vy = VBl(^a,t)VBl(&t)- 

43 



When forming a statistic involving a nonzero time lag, both series must be shortened 

by the amount equal to the lag. 

To use formulate a space-time linear filter, let Vy be a matrix of radial velocity 

time series, 

The linear least squares estimate of the coherent components of of vx is 

V̂ vy (~yv~)-~vyv,, 

where 



and 

The incoherent estimate is 

Finally, the estimate for the variance of the radial turbulent velocities at one 

location on a beam is cov(vx, Avx) , (or equivalently cov(Avx, Avx) when the beam 

tilt is minimal) 

where 

vxTvx =(vk + Gx + v;)~(v; + Gx + v;) 
I T  I - T -  eT e = vx vx + vx vx + vx vx 

and similarly 

As a reminder, all covariances between turbulence and waves, turbulence and 

error, and waves and error are zero. In addition, the error will be shown to be only 

correlated with itself (for the most part), so that $vzTv; = 0 as well. 

The error in the estimate for one location on the beam is 



Estimates of the covariances of the radial turbulent velocities at spatial and tempo- 

ral lags have the error variance term removed. Lag estimates are formed by including a 

velocity time series with spatial and temporal lag, vxb = [V& (Zb, tT+l) VBl (Zb, tN)IT, 

in the covariance estimate. 

where 

and similarly 

1 T I T  -T - vXbTvy (v?vY)-  vy vX = (vXb vb+vXbvy) ( v ~ * v ~ + ~ ; ~ ~ + v G ~ v G ) - ~  ( V ~ ~ V ; + ~ ? C ~ ) .  

(3.36) 

The next section examines the results of using linear least squares estimation on 

data from an ADCP at  the Martha's Vineyard Coastal Observatory. 



3.3 Use of linear least squares estimation in de- 

termining estimates of Reynolds stress using 

ADCP data from the Martha's Vineyard Coastal 

Observatory 

In the previous section, the error in the estimate of the variance of the radial tur- 

bulent velocities was shown to consist of a measurement error term, ( l / ~ ) v ~ * v ~ ,  

and whatever portion of the wave-induced component which did not cancel out, 

A V ~  = (l/N)[C:Cx - v ~ ~ + ' ~ ] .  Secondly, for estimates at spatial and temporal lag, 

the error covariance term is zero. 

The first graph of figure 3-1 shows the estimate of the variance of radial turbulent 

velocities at height of 5.6m along beam 1 for spatial lags of r = Om, 0.5m, and -0.5m. 

x lo4 Convergence of the radial covariance estimates 
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Figure 3-1: The convergence of the radial cross covariance estimates, cov( VBl(z+r = 
5.6m + r, t), AVB1(z = 5.6m, t)), for spatial lags of r = Om,+0.5m, and -0.5m. The 
r = Om lag estimate includes the error variance term, whereas the r = k0.5m lag 
cross covariance estimates are free of the error covariance terms. 



The r = 0 lag estimate converges at about 15 10-~(rn/s)~,  whereas the expected 

variance of the process is about 4 10-*(rn/s)~. The estimates at nonzero spatial 

lags, r = *0.5, take advantage of the fact that the measurement error, Ve ,  is likely 

only correlated with itself at approximately zero time and spatial lags. Therefore, if 

the difference measurement AV is instead multiplied with the time series of the next 

nearest location (spatial lag), or with a delayed time series of the same location (time 

lag), or both, then the error variance term should disappear in the cross covariance 

estimate. 

Figure 3-1 shows that the r = *0.5rn lag cross covariance estimates converge to 

about 3.4 ( m / ~ ) ~ ,  and 3 ( m / ~ ) ~ ,  indicating that the error covariance terms 

have been removed. In addition, decay due to spatial separation is also present, since 

their d u e s  are less than the zero lag value of 4 10-~(rn/s)~. The two lag estimates 

are close in value, but not equal. This is to be expected, for in shear currents different 

vertical locations have different variances. When the lag estimates converge to the 

same value (as seen in other data sets), it indicates that this particular portion of the 

water column is likely to be homogeneous and isotropic. 

The cross covariance estimates at any lag other than zero will not give us the radial 

turbulent variance needed to eventually form the Reynolds stress estimate. However, 

they may be quite useful in providing an indirect means of arriving at the desired 

zero lag estimate. Both the spatial lag and temporal lag curves must converge to the 

same point, as seen in figure 3-2. Using appropriate resolution (spatial and temporal 

lags which are larger than the decay rate of the error process, but small enough to 

reveal the structure of turbulent decay in proximately of the zero lag estimate), the 

desired radial turublent variance can be extrapolated. In the case that the appropriate 

resolution is not obtainable or available, as is the case for the data obtained from the 

Martha's Vineyard Coastal Observatory, then modeling is required in order to do a 

curve fit. This will be explored in subsequent chapters, but the estimate obtained in 

this manner is only as good as how well the model actually matches what is physically 

occuring in the ocean. 

Figure 3-3 presents the full spacetime radid cross covaxiance estimates, and will 



Figure 3-2: M i a 1  cross covariance estimates at spatial and temporal lags. The zero 
tag values include the error variance term, whereas the non-zero lags are fiee of the 
error variance term. By proper extrapolation, the error free radial turbulent variance 
term can be estimated. 

be of significant help in the modeling process. 

If the statistics of the ADCP measurement error variance are beam independent, 

stationary and ergodic, then a sac ien t  number of data points used in forming the 

estimate should lead to convergence of the estimate (which is what seems to be the 

case from the results presented in figure 3-1). The Reynolds stress estimate is formed 

by subtracting the two radial cross covariance estimates, and due to stationarity of 

the process and covergence in the estimates, the error variance terms in each beam 

should be equal, and should cancel out. However, the wave error terms should still 



Beam 1 space-time contour of the radial cross covariance estimate centered at z=5.6 m 
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Figure 3-3: The combined space-time radial cross covariance estimates for z=5.6 m 
location on beam 1 of the ADCP. This will aid in the modeling process. 

be present, as is seen in the last set of terms of equation 3.37. 

Figure 3-4 shows a few Reynolds stress profiles for data taken from a 1200 kHz 

ADCP located in about 12 meters of water. This 12 meter node from the Martha's 

Vineyard Coastal Observatory is set to ping at 2 Hz, and is set to obtain radial velocity 

estimates at  about 50 cm intervals. Comparing these results to that of figure (where 
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Figure 3-4: Current profiles from MVCO ADCP data of yearday 153, 2005, at  9:20, 
9:40, 10:OO p.m. The day and start time was randomly chosen, but the subsequent 
data sets were chosen close enough in time that their mean current profiles would 
hopefully be similar. 

no filtering has occured), it appears that the Reynold stress estimates are reduced in 

magnitude, but have similar profiles and similar noise characteristics. As previously 

explored for estimates obtained without filtering, there is bias and variance due to 

the wave-induced velocities and due to the beam tilt. In these new filtered estimates, 

the large wave influences have been effectively removed, but it appears that the wave 

error terms introduced (see last terms of equation 3.37) are of equal magnitude to 

that of the Reynolds stress. Chapter 10 will examine what affects the wave error 

terms in more detail. The next section will examine choosing the appropriate time 

intervals of the data series used in the linear least squares estimation. 



3.4 Determining the temporal parameters of the 

estimation algorithm 

Of immediate importance is determining the length of the time series used in the linear 

least squares estimation. This should not be much of an issue for the turbulence 

process, since it should be stationary over a long period of time (10-20 minutes). 

However, waves have periods on the order of seconds, and the linear least squares 

estimation should adapt to changing conditions. 

For the linear least squares filter to work properly, the length of the data series 

(number of rows) should be about 3 times the length of the temporal and spatial 

depth (number of columns). 

Effects of filter length and span on cov(VAV) estimates .. and on cov(AV,AV) estimates 

-puw Reynolds stress (Nlm2) -puw Reynolds stress (N1m2) 

Figure 3-5: The first graph shows the results of varying the temporal filter size when 
using the cov(vx, Avx) estimates of the variance of the radial turbulent fluctuations. 
The second graph shows the effects of using the same temporal filter dimensions with 
the cov( Avx, Avx) estimates. 



Figure 3-5 shows the results of varying the temporal dimensions of the filter when 

using either the cov(vx, Avx) estimates or the cov(Avx, Avx) estimates of the vari- 

ance of the radial turbulent fluctuations. It appears that the cov(vx, Avx) estimates 

are much more sensitive to changes in filter dimensions, and that error dominates the 

estimates. This can be concluded because when the filter dimensions are close in size, 

the estimates should be fairly overlapping. That is the case for the cov(Avx, Avx) 

estimates, which are much more robust to changes in the filter dimensions. 

However, as figure 3-6 shows, both types of estimates converge in the limit of large 

filter dimensions (as the theory would predict). 

Convergence of the cov(VAV) (squares) and cov(AV,AV) (stars) estimates for long filter lengths 
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Figure 3-6: These plots show that in the limit of long filter lengths, there is conver- 
gence of both the cov(vx, Avx) and cov(Avx, Avx) estimates of the variance of the 
radial turbulent fluctuations. Error bars are included to show the uncertainty in the 
Reynold stress estimates. 



The uncertainty in the estimates was calculated using the method presented in 

section 2.3, and the error bars of the standard deviation were included. Even with 

wave influences removed from the estimates, the error is still of the same order of 

magnitude as the estimates. The next section explores how the error can better 

be predicted, and what steps might be able to be taken to reduce the error and 

uncertainty further. 

3.5 Predicting the error in the estimate of the 

Reynolds stress 

In the previous sections, actual data was used to form the estimates of the Reynolds 

stress and to estimate the uncertainty in these estimates. However, when the wave- 

induced velocities cannot be fully removed, the error and the variance of the estimate 

of Reynolds stress are both affected. Without full knowledge of the ocean state, it 

is difficult to know what data to use in order to perform optimal coherent estimates 

of wave-induced velocities while minimizing correlation of the turbulence-induced 

velocities. 

It will be possible to gain some reasonable insights into how to select the appro- 

priate data for estimating other data by introducing various statistical models. For 

example, using general sea state models, wave induced velocities and their correlations 

can be calculated. Likewise, various models for turbulent fluctuations and their cor- 

relations can be used, such as assuming the turbulence is homogeneous and isotropic, 

advected by a mean current, or assuming that the turbulence is non-homogeneous 

and non-isotropic being advected in a shear current. Exploring how the error in the 

ADCP measurements is introduced will help to determine if the error variance terms 

will indeed cancel out, or if they are even significant. 

Optimal linear estimation requires knowledge of only second order statistics. From 

the second graph of figure 3-5, it appears that it will be possible to use long filter 

lengths in the estimation process. That means models which use second order statis- 



tics should approximate actual results fairly well. 

Using the models, it will be possible to determine directly the effect that beam 

tilt has on the error of the estimate. In addition, they can be used to help determine 

whether the reduction in magnitude of the filtered estimates of Reynolds stress accu- 

rately predicts the true values, since the wave-induced velocities have been removed, 

or if there is additional reduction due to the algorithm used. 

Therefore, the rest of this thesis will be the development and modeling of the 

space- time correlations of each of these processes. In addit ion, simulating the process 

will allow for the optimal estimation algorithms to be tested. 





Chapter 4 

ADCP Measurement Error and 

Theory 

Determining the ADCP measurement error is perhaps the most significant aspect of 

this thesis (and perhaps the most involved). The reason for this is that the error is 

in part determined by the choices made by the user, in part by the algorithms used 

to estimate the velocity, and in part by the ocean environment itself. 

This chapter will address a number of critical issues: 

- User defined goals (spatial and temporal resolution for example) 

- The use of the Doppler shift to obtain velocity measurements 

- Methods for estimating the Doppler shift 

- Signal transmission and it's effect on spatial and temporal resolution 

- Limited space-time characterizations of the error variance 

There are two main results of this chapter. The first is that the error variance 

is asymptotically unbiased. Therefore, its effect on the random Suctions seen in the 

Reynolds stress estimates can be mitigated by chosing a long enough averaging period. 

The second is that the error in each radial velocity estimate can be approximated 

as independent and uncorrelated with all other measurement errors as long as spatial 

and temporal resolution is not finer than the decorrelation limits of the error process. 



4.1 Chapter Overview 

The chapter will begin with the basics of how an ADCP works, introduce measurement 

goals, and provide a derivation of the fundamental equation used to determine radial 

velocities. Then each aspect of the ADCP will be examined in greater detail in 

order to find potential problems in meeting the stated goals. This examination will 

be divided into three main areas: estimating the mean Doppler shift and the error 

variance; understanding the effects of signal transmission; and finding the limits of 

spatial and temporal resolution based on user defined goals, signal transmission, and 

the resulting error process. 

First, methods used to estimate the mean Doppler shift and the variance of the 

ocean process will be presented. This includes the basic equations of signal transmis- 

sion and reception, followed by theoretical derivations for the spectral and covariance 

approaches. Practical methods for calculating the Doppler shift and velocity esti- 

mates are explained, and a theoretical lower bound on the variance is given. 

Second, the effects of pulse transmission are explored. The ADCP is named 

according to the method of transmission used. The Narrowband ADCP transmits 

a single pulse, and waits for the return signal before transmitting its next pulse. 

This leads to a velocity resolution * spatial resolution trade-off. The Pulse-to- 

Pulse Coherent ADCP transmits short pulses and measures the phase change between 

pings. This leads to a maximum range * maximum velocity trade-off. Finally, the 

Broadband ADCP transmits it's second pulse before receiving back it's first, and 

introduces pulse coding to solve transmission energy issues. 

It is only the Broadband ADCP which is found to meet most of the stated mea- 

surement goals. Therefore, the final section of this chapter will explore the trade-offs 

of minimizing error variance while meeting the stated goals. The effect of user choices 

will be used to formulate the space-time correlations of the error variance. 



4.2 Why Choose an ADCP? 

The goal of this thesis is to examine the possibility of obtaining an entire vertical 

profile of Reynolds stress estimates. Whereas many measuring instruments provide 

vector measurements of the velocity at individual points, the Acoustic Doppler Cur- 

rent Profiler (ADCP) is able to provide a profile of measurements. It also has the 

advantage of leaving the flow being measured undisturbed, since it only sends out 

beams of sound. 

ADCP Current Meters 

The Workhorse Sentinal ADCP from RD Instruments is able to remotely measure 

radial velocities at many ranges. The picture is used with permission from RDI. [8] 

Basic Configuration and Operation 

RD Instruments has a primer for the broadband ADCP which provides an excel- 

lent introduction into the workings of an ADCP. [9] The ADCP has four ceramic 

transducers arranged in a Janus configuration (beams lie along perpendular bisecting 

planes). Each transducer, tilted between 20-30 degrees from the vertical, emits a 

directed sound beam. As the sound travels through the water, it encounters small 

organisms which are assumed to be floating passively with the water. Though most 

of the sound is transmitted, some of the scattered sound is directed back towards 

the transducer. The return signal is Doppler shifted in frequency due to the motion 

of the scatterers. The return signal is time-gated and averaged, and the result is a 
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profile of radial velocities at specific points along each beam. 

If the flow was perfectly uniform and unchanging, then beams in opposing direc- 

tions could be used to transform instantaneous radial velocities, V B ~ ,  into instanta- 

neous ui, u3 velocities in the x and z directions, or 1.42, u3 in the y and z directions. 

The two independent calculations of u3 provide a way to error check. Since the error 

for any individual ping is generally quite large, a number of pings must be averaged. 

When the statistics are stationary, or unchanging in time, then averaging will indeed 

reduce the error, and the mean UI, 242, and u3 velocity components can be calculated. 

x 

i c a l .  



4.3 Measurement Goals 

1 Spatial Resolution 1 10 cm 1 1 c m  1 
REQUIREMENTS 

1 Temporal Resolution 1 0.1 s 0 . 1 s  1 
1 Max. Vertical Range 

HOR./VER. RADIAL 

Inst ant aneous Velocity Resolution 

1 Max. Averaging Period 1 20 min 1 20 min 1 

- 
U ~ U ;  Resolution 

Max. Horizontal Velocity 

Max. Vertical Velocity 

Listed in the table above are the user defined goals (first column), the desired 

n/a 

resolutions and environmental constraints (second column), and the corresponding 

radial requirements that the ADCP will need to meet (column three). The geometry 

of the ADCP will largely determine the resulting radial measurement goals. 

n/a 

10 % of true 

2 m/s 

1 m/s 

A typical nearshore deployment will have an ADCP in about 15 meters of water, 

see below 

1.6 m/s 

with max current speeds of about 1 m/s, and max wave velocities of about 1 m/s. 

The spatial and temporal resolutions were chosen small enough to resolve the higher 

wavenumbers and frequencies of turbulence, and to aid in the accurate modeling of the 

turbulent space-time correlations. The averaging time needs to be as long as possible 

for estimations to converge to their steady values and to reduce error variances, but 

short enough that the statistics remain stationary. Typically, the averaging time is 

about 20 minutes. 

Instantaneous velocity resolution in the horizontal and vertical directions is not 

obtainable from the ADCP, as previously discussed, because the ADCP needs to 

average a number of pings in order to resolve radial velocities into their respective 
-- 
Ui , Us, and Us velocities. 



ADCP 

Figure 4-2: Only the radial component of the scatterer's velocity is measured. 

Except for averaging period and velocity resolution, all other radial requirements 

were calculated based on the beam geometry, assuming a 20 degree tilt from the 

vertical. Averaging time is independent of beam geometry, so those numbers are the 

same in both columns. 

Beam geometry will have an effect on spatial resolution, because the combination 

of the natural beam spreading and the tilt of the beam creates radial slices that are 

not exactly horizontal. The vertical spatial resolution is the difference between the 

top corner of the ensonified volume to the opposite bottom corner, projected onto 

the vertical axis. This will become more pronounced the further the radial distance. 

For instance, for a typical 2 degree beam spread for a Broadband ADCP, with beams 

tilted at 20 degrees, and with the radial bin size set to 10.6 cm, the vertical spacing 

deviates from the desired 10 cm spacings. (Values in the table are in meters.) 

bin center top corner hot corner difference 

In addition, adjacent bin centers will have some common overlap of ensonified 

volume. If the beams are tilted more than 20 degrees, these vertical spacings will only 

increase, even when the radial slices remain thin (10.6 cm thickness for example). 



The most important criteria, the uiu3 resolution necessary to  obtain an accurate 

Reynolds stress estimate, -puiui,, will depend on the radial variance. 

To determine the error variance resolution, the formula for Ufi (see equation 

3.37) can be rewritten as, 

- - 
- - V''? - V ' '  + AVeVe 

u',u~ + Auiui = U[U$ = 
4 sin (i cos (i 

With A U ~ U ~  required to be 10 % of uiuk as l ( c m / ~ ) ~ ,  the radial velocity error variance 

difference for the two beams is (4 sin 20 cos 20) (0.1) (1) ss 0.13 ( c m / ~ ) ~ .  This requires 

that the bias in the radial error variance for each beam be ss 0.07 ( c m / ~ ) ~ .  This will 

be a challenge to overcome. 

The next section will introduce how it is the ADCP is able to measure radial 

velocities. The fundamental principle in using sound propagation to measure velocity 

is that any changes in motion by the source or receiver result in a time dialation, 

or comparably, a shift in frequency, of the received signal. The Doppler shift in 

frequency is linearly related to the velocity of the scatterer. The next few sections 

look at this fundamental relationship, and later sections show how to make estimates 

of the Doppler shift based on the received signal. 

4.4 Using the Doppler Shift to Determine Velocity 

When small marine organisms carried by the water move towards or away from the 

sound source,t he frequency they encounter will be increased or decreased respectively. 

This occurs because the time it takes for one wavelength of the sound source to pass 

the scatterers is either decreased or increased respectively. This change in frequency 

due to motion is called the Doppler shift, and it is similar to what one hears when 

a whistling train passes by. Only the motion in line with the direction of sound 

propagation is measured, and is given by 



where V B ~  is the velocity of the scatterer in the direction opposite of sound propa- 

gation, c is the speed of sound in water, f is the transmit frequency, and fd is the 

Doppler shift frequency. The factor of (112) is the result of the scatterer acting as 

both receiver and source, basically due to the scat terer 's motion being accounted for 

twice. This is more easily seen by looking at the overall change in frequency that 

occurs from source, f ,  to receiver, fl ,  and back to source again, f ": 

for V B ~  << c. The next few sections track the changes in frequency from source, to 

receiver, and back to source again. 

4.4.1 Stationary Source and Moving Receiver 

If the period, T,  is the time for one wavelength to pass a stationary point, then T 

- AT is the time for one wavelength to pass the moving scatterers. (Note: AT is 

positive when the relative motion of the source and receiver is towards one another.) 

Frequency for the source, f ,  and for the scatterers, f ', can be written: 

As the scatterers drift with the current, v is their component of velocity that is in the 

direction of the sound propagation. The distance they move while one wavelength of 

sound passes them is 

where again, v and d are positive when the relative motion of the source and receiver 

are towards one another. The AT it takes for the propagating sound source wave- 

length to pass the drifting scatterers depends on how far they have moved, Ad. The 



speed of sound, c, can be considered approximately 

Ad 
c = d/t + At = - + 

c 

Solving for AT in terms of T: 

constant for illustration purposes. 

Plugging AT into f ', and solving f ' in terms of f (with T= l /  f ) : 

There is also an effect on the Doppler shift due to the motion of the source, which 

will be considered next. 

4.4.2 Moving Source and Stationary Receiver 

A moving source emits a wavelength that is either lengthened or shortened when 

the source is moving away from or in the direction of sound propagation. The time 

dilation or contraction, AT', is related to the distance moved by the source while 

emitting the sound for one period, T. 

The frequency that the stationary receiver hears, f" , written in terms of the emitted 

frequency, f ' , is 

4.4.3 Scatterers as both Moving Reciever and Moving Source 

As discussed, the scatterers experience sound at frequency f while moving either 

away from or towards the source of sound at frequency f .  However, the echo they 



reflect back towards the sound source makes them a moving source. The original 

source now becomes the stationary receiver, and the return echo is frequency f'. 

Plugging f ' into f" , and noting v'=v: 

4.4.4 Doppler Shift frequency of received echo off scatterers 

The Doppler shifted frequency is just the difference between the original frequency of 

the source, f ,  and the received echo freqency, f". 

c + v  c + v  c - v  2v 
^(^-f = (^ -^=(=) f  

Finally, since c > v in the water, 

This indicates that a moving scatterer causes a double shift in frequency. If the 

scatterers are moving away from the source (v < O), then there is an overall decrease 

in the received freqency. If the scatterers are moving toward the source (v > O), 

then there is an overall increase in the received frequency. The key to estimating the 

radial velocity is to estimate the Doppler shift, and the next few sections will examine 

methods for obtaining this estimate. 



4.5 Methods for Estimating the Doppler Shift 

The Doppler shift frequency can be estimated in either the frequency domain or 

the time domain, and both methods will be explored. The estimate of the Doppler 

shift frequency using frequency domain information is unbiased, but requires that the 

full spectrum of the return signal be calculated. The estimate of the Doppler shift 

frequency using time domain information is biased, but needs only pairs of points to 

make the estimate and therefore saves on calculation time. [13] 

The next few sections will provide basic equations for the transmitted and received 

signal, and explain how both the spectral method (frequency domain) and covariance 

method (time domain) can be used to make an estimate of the Doppler Shift. 

4.5.1 Basic Representations of the Transmitted and Received 

Signal 

The transmitted signal stx ( t )  can be represented as the real part of a complex signal, 

with carrier frequency, f ,  amplitude, A, and pulse duration T ~ .  

Since the transmitted signal has a pulse of duration rP, at any instant of time, the 

front of the pulse will be at a farther distance from the ADCP than the back of the 

pulse. When the front of the transmitted pulse encounters a scatterer and begins 

its return trip, it can be joined by the tail end of the pulse which happens to hit a 

different scatterer just as the front of the return pulse passes by. In this manner, the 

signal that returns to the ADCP is actually a superposition of a range of scatterer 

echos. The maximum range covered is then half of the pulse duration times the speed 

of sound in water, crp. In addition to covering a radial range, there is slight beam 

spreading. This means that a volume of scatterers is ensonified. 
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Figure 43: The return signal at any time instant is a superposition of a small range 
of scatterer echos. The graphic is used with permission from RDI. [9] 

Letting R, be the centroid of the volume of scatterers ensonified, and fin be 

the differential change in distance in the direction of sound propagation to reach a 

particular scatterer, the location of a particular scatterer relative to the ADCP is 

Since actual scattering off any ocean organism is quite complicated (depending on 

composition, shape, orientation, etc.), it is reasonable to treat really small organisms 

as point scatterers with a random amplitude. 

The amplitude term, An, includes the attenuation of the plane wave transmission 

signal of amplitude A as it travels to reach the scatterer, and the spherical spreading 

loss of a point scatterer on the return trip. The return signal for an individual scatter 

is 
- an&2r((2rn/c)-t)f; s n  (rn , t ) - 



where c is the speed of sound in water and f',' is the adjusted frequency due to the 

moving scatterer acting as both receiver and source (see 4.12). Representing the 

velocity of each scatter as some small deviation from the mean velocity of ensonified 

scatterers, the individual adjusted frequency of a scatterer can be represented as 

When accounting for the volume V of ensonified scatterers, the return signal at one 

instant of time is 

The G(t)e^ term is the polar form of a complex Gaussian random variable. This 

Gaussian nature of the distribution can be understood in light of the Central Limit 

Theorem, which says that the sum of many independent, identically distributed ran- 

dom variables has an overall probability distribution which is Normal. 

The return signal is then mixed to baseband by multiplying it by the carrier 

where fd is the Doppler shift frequency. This equation is very similar to one proposed 

by Theriault, 1221 

sret (t) = stX ( t ) ~ ~  ( t ) F t  (4.23) 



where stx is the transmitted signal and Gqx is the complex Gaussian variable (= 

~ ( t )  e j a ) .  Combining the rapidly fluctuating phase terms, 

the received signal mixed to baseband can be written as 

The @(t) term leads to phase jitter. It is a highly fluctuating term, and is the result 

of all of the small scale motions within the ensonified volume. Small scale turbulence 

and beam divergence cause these motions. Beam divergence (spreading) captures 

the changes in internal wave-induced velocities and surface wave-induced velocities 

throughout the ensonified volume. 

4.5.2 The Spectral Approach 

Aysmptotically unbiased estimates of the mean and variance exist, but the disadvan- 

tage is that the time series needs to be of considerable length for the estimates to 

be unbiased, and the entire spectrum must be calculated first in order to make the 

estimates. 

Assuming that there is an additional noise component, n(t),  due to background 

sounds in the environment and due to random fluctuations introduced by the equip 

ment itself, the total received signal, q(t) , is 

Since q(t) has probabilistic components (G(t) , n(t)) , it is a random process. Defining 

qn(t) as an independent sample of 

<?n(f) = 

q(t), an estimate of the sample spectrum is [13] 



where T is much less than the time interval indexed by n. Taking an average of a 

number of independent spectral estimates, Qn(f) ,  the overall estimate of the true 

spectrum, Q(f), is 
1 N  

The mean value of the spectrum is found by normalizing a weighted average of the 

estimate spectrum. When the random noise, n(t), is small compared to  the received 

signal, this estimate is the needed Doppler shift frequency, and the radial velocity of 

the scatterers can be calculated. 

The variance of the estimated spectrum is just the normalized second moment minus 

the mean squared. 

The variance captures the effects of the phase jitter, providing insight into the strength 

of the small scale (and unresolvable) turbulence and the changing wave field. 

Miller and Rochwarger [ll] went further and assumed that signal power spec- 

tral density, the noise power spectral density, and pulse duration functions were all 

Gassian-shaped functions. Their work was not for ADCP's in particular, but for a 

broad class of applications. They found that the estimate of the mean of the signal 

spectrum was unbiased, and that the variance of that estimate fit the following curve: 

where SNR is the signal to noise ratio. They also found that the estimate of the 

variance was biased, and found the following curves fit the mean and variance of the 

estimate of the standard deviation: 

3 5.8 
mean(ed) = od - - (I + - + ̂ 8-) + o(N-~)  

32Nr. S N R  SNR2 



var(kd) = - 1.9 
30d (1 + - 23 

l6NrP SNR + -) SNR2 + o(N-~) 

4.5.3 The Covariance Approach 

The autocovariance function is related to the power spectral density of a wide sense 

stationary process through its inverse Fourier transform. It is possible to use the 

autocovariance to obtain the first and second moments of the spectrum. This means 

that estimating the entire spectrum is not needed, and a great savings in calculations 

occurs. 

The disadvantage of this method is that the mean and variance of the estimated 

spectrum are biased due to the fact that the slope of the autocovariance function at 

a lag of h = 0 is approximated. 1131 

The Fourier transform relationships for the autocorrelation and power spectral 

density are given as follows: 

Differentiating the second expression will aid in the derivation of the mean and vari- 

ance of the power spectral densities. 

The mean and variance of the Doppler shift frequency spectrum can now be obtained 

using only time domain functions, evaluated at lag 3 = 0. 



First Moment (Mean) : 

Second Moment: 

This is the approach put forward by Miller and Rochwarger. [12] They go further 

Variance = 2nd Moment - ( ~ e a n ) ~ :  

to show how k q ( 0 )  and &(0) can be solved in terms of Rqq(f)) and Rqq(0). With 

magnitude A(f)), phase 27rd>(0), and where * denotes the complex conjugate, the one 

ping estimate of Rq&) in polar form is 

2 
S f ) )  = ,- - (-) (4.38) a ( qq( (J-24 fiqq (0) (J24&,(0) 

Taking the first derivative of Rqv ( f ) )  : 

Because the autocorrelation function is an even function, both the phase and the 

slope of the magnitude evaluated at f )  = 0 are zero. That will remove the first term. 

Then dividing through by (j27r)A(0) e!2'̂ *(o) leaves <^(0). 

For small f ) :  

Phase = 27rW) = arctan 



Remembering that sbb(t), the desired signal, is really the received signal with the 

noise removed, 

sbb(t) = q(t) - 4% (4.45) 

and by linearity of the autocorrelation operation, 

then the Doppler shift frequency can be found from the time domain information of 

the received signal and knowledge of the noise background. 

The ideal time lag, /3, depends on the shape of the spectral density function in 

question. Miller and Rochwarger [12] found that for a signal with a Gaussian spectral 

density distribution corrupted by noise with Guassian wide-band distribuion, the ideal 

lag 0 should be long enough that the noise becomes uncorrelated. If that lag is not 

obtainable, then it should be as long as possible, such as the length of the transmitted 

signal, rp. Hansen [7] found that for oceanic reverberation without a corrupting noise 

signal, the ideal time lage /3 should actually be as short as possible, in this case 

the sampling frequency, 11 fs. This is because the volume of water compared at two 

different times is at two different ranges, and by keeping the lag as small as possible, 

the information used to calculate the velocity (echos from scatterers) is basically the 

same. 



Applying the same process to find the variance of the process: 

Evaluating this expression at 9 = 0 removes the second term (as previously ar- 

gued for ~ ( 0 ) ) .  Assuming that the phase 2n(f>(13) is approximately linear, then the 

first derivitive (just previously solved) is a constant, and the second derivitive would 

be zero. That removes the fourth term. Then dividing through by ( j 2 ~ ) ~ R ~ ~ ~ ( / 3 )  

evaluated at 13 = 0, which is just ( j 2 ~ ) ~ ~ ( 0 ) e j ~ m ,  leaves only two terms: 

The second moment = ^w(o) - A (0) 
( jW2Rqq(0) - (j1^A(O) 

+ (m2 
The second term is just the mean squared, so the variance then becomes: 

For small 0, a second difference can be calulated as follows: 

Since correlation functions are even, A(Q) = A(+). Dividing by A(0) the equation 

becomes: 

Remembering that A(@ = 1 Rssn (0) 1 ,  the variance becomes: 



Miller and Rochwarger [12] found that the estimates of the mean and variance 

were biased due to estimating the slope of the phase at small lag. They give the 

following equations for the mean and variance of the Doppler shift estimate: 

where 4, and As are the phase and amplitude of the autocovariance of the return 

signal, s ~ .  Even if there was no noise, so that 4,(13) = 4(13), the mean of the Doppler 

estimate would only be unbiased if the Doppler shift spectrum was symmetric so that 

<t>s(p) would be a liner function. 

The error variance can be reduced by averaging, and by increasing the lag, 13. 
However, increasing the lag will be shown to affect spatial resolution. 

4.5.4 Calculating the Doppler Shift and Velocity Estimates 

An estimate of the covariance at small lag is needed in order to make an estimate of the 

Doppler shift, and there are various ways of obtaining it. This section will present 

practical ways to obtain the estimates of the covariance using different averaging 

strategies. 

In calculating the covariance, both time averaging within a pulse (or ping) and 

ensemble averaging (between pings) can be employed. Both types of averaging are 

interchangeable when a process is ergodic, as is assumed to be the case with the ocean 

environment (over proper time intervals). For a given lag, 13, the covariance within 

a ping can be calculated using time averaging. Alternately, picking the same point 

in time after the start of each ping, and the same second point at an added time 

of 0, the covariance for those two points in time can be calculated using ensemble 

averaging. Once either time averaging or ensemble averaging has been employed, the 

other method may be employed for further averaging. 

The velocity is calculated using an estimate of the Doppler shift, which in turn 



depends on the estimate of the covariance. Therefore, the order in which time av- 

eraging, ensemble averaging, and velocity calculations are done can lead to slightly 

different estimates of the velocity. Hansen [7] presents three iterations of this process 

for calculating the covariance and velocity. 

The following notation will be used with the next few equations: 

& = the estimate of the covariance from the ith ping 

tm = the time that places the echo response at  the center of the chosen bin 

,8 = the time lag 

L = the bin size 

k = index that spans the length of one bin 

fs = sampling frequency 

q. = the received signal from the ith ping 

I&IJ = the velocity estimate after averaging over N pings 

N = number of pings to average over 

c = speed of sound in water 

feu = estimate of the Doppler shift frequency from the ith ping 

/ = the transmit frequency 

In one method, the covariance is calculated by averaging within a bin, then com- 

puting the Doppler estimate, and finally averaging over pings. 

Using another method, the Doppler estimate is calculated after averaging both 

within a bin and over pings, and then the velocity estimate is computed. 
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Figure 4-4: Time averaging leads to a triangle weighting function. The graphic is 
used with permission from RDI. [9] 

In the final method, the covariance is calculated after averaging over pings, then 

the Doppler estimate is computed, and then averaged within a bin to form the velocity 

estimate. 

By averaging over a portion of the received signal, echos from a certain range get 

a larger weighting than echos from nearby ranges. This center location defines the 

center of a range bin. The size of the bin itself depends on the averaging time, which 

is typically equal to the pulse duration, rp. When the segments of the signal that are 

being averaged are sequential in time, a portion of each time averaged signal overlaps 

in range with the two adjacent segments. The bin length is then L = (l/2)crp. 

Since velocity is determined by the covariance function, a small overlap in space will 

contribute to the correlation of velocity estimates between range bins. 



4.5.5 Lower Bound on the Variance of the Doppler Shift Es- 

timate 

Theriaut [22] uses a common estimation theory tool to estimate the lowest possible 

value of the variance of the Doppler shift estimate. The Cramer-Rao Lower bound 

can be used for any unbiased estimation algorithm, and is calculated from the Fisher 

Information Matrix. Theriault found the variance proportional to 1 / ~ -  and therefore 

the velocity resolution (or standard deviation) proportional to 1 IT.. This makes sense, 

for longer pulse durations allow for reduction of noise through averaging. However, 

there is a trade-off between reducing the velocity variance with longer pulse durations, 

and losing range resolution due to larger volumes of ensonified water. It will be shown 

in section 4.7, that the range resolution- velocity resolution product is approximately 

constant for a given system, and so a trade-off will exist. Equivalently, the time- 

bandwidth product of a system is fixed, so decreasing one increases the other, leading 

to losses in resolution. 

4.6 ADCP Pulse Transmission 

The same ADCP can be designed to transmit signals in a number of different ways 

(see figure 4-5), and each method has strengths and weaknesses based on its intended 

purpose. Some important factors to consider are the range, spatial resolution, max- 

imum water velocities, and velocity resolution. The ADCP is named based on its 

chosen style of pulse transmission. In the next half of this chapter, each type of 

ADCP will be examined to see the broadband ADCP will work and the Incoherent 

and Pulse-Coherent ADCP's will fail to meet the stated measurement goals. 
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Figure 45: Operation modes of an ADCP are based on signal transmission. 
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The Incoherent ADCP sends out a sound pulse of duration rP from four transducers 

arranged in a Janus configuration. The transducers are usually slanted about 20-30 

degrees from the vertical, and the sound emmited is in the form of a narrow beam. 

As the sound travels through the water, scatterers reflect it back to the transducers, 

which then become receivers. As scatterers are pretty much uniformly distributed, 

there is an almost instant continuous receiving of echoed sound. Before recording the 

received signal, there needs to be a gap in time after the transmitted pulse leaves to 

allow the instrument to stop ringing (from high intensity sound immediately reflected 

right around the transducer). Before the next ping of sound can be sent, the first 

ping needs to reach the surface and have returned. The pings are incoherent from 

one to the next, and hence its name. 

- u  



Narrowband ADCP Problem: 
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Figure 4-6: The NBADCP can't resolve both range and velocity at the same time. 

As discussed earlier, the longer the transmit pulse, the more accurate the spectral 

resolution. However, this leads to a trade off in spatial resolution. Averaging over rP 

covers a distance of crp, which is defined as twice the bin size. Individual velocities 

within this range are lost to the mean velocity in that range. 

The standard deviation of the velocity is proportional to the standard deviation 

of the Doppler shift frequency. Using the terminology previously described: 

The Doppler shift variance lower bound, coupled with the bin size range, imposes the 

Range-Resolution - Velocity Error trade off, or equivalently, the Time- Bandwidt h 

trade-off. Figure 4-8 includes a plot. iUh*r&hg$pt. trade-off. 
c . . 

- \ I  



Range Resolution - Variance Lower bound (4.61) 

La., - - r - z l  
Brumley et. al. [4] report a commonly used constant of proportionality as follows: 

Pinkel and Smith [18] present a functional form of Theriault's [22] lower bound on 

the velocity variance estimate that has a dependency on the number of pings. 

Averaging over a 1 

7 -  - ($1 

arge number of pings has the advantage of lowering the velocity 

variance, but decreasing temporal resolution. The following tables illustrate the trade- 

offs. (Ping rate is 2 Hz) 

Temporal Resolution Problem Range Resolution Problem 

N Pings Experiment Duration Pulse Duration Bin Length (L) 

1 0.5 sec 0.2 ms 15 cm 

100 50 sec 2 ms 1.5 m 

1000 8 min 20 sec 10 ms 7.5 m 

10,000 1 hr 23 min 20 sec 20 ms 15 m 



The velocity variance problem is illustrated in these tables of standard deviation of 

velocity. N is number of pings, and L is bin length. 

f = 300 kHz, ov(crn/s) f = 1200 kHz, ov(m/s)  

It is clear from the tables that increasing frequency improves the velocity variance. 

However, in the ocean, the intensity of sound decreases with range and frequency be- 

cause of spherical spreading and absorption. The transmission loss due to absorption 

(a) and range (r-) is usually limited to 10 decibels. 

Very high frequency can severly limit the effective range of the NBADCP. For a 300 

kHz frequency, a ss 0.07, giving an effective two-way range of about 140 meters. For 

a 1200 kHz frequency, a ss 0.5, giving an effective two-way range of about 20 meters. 

PI 

In conlcusion, the velocity resolution-range resolution trade off is a significant 

limitation for this type of signal transmission and processing. It takes averaging over 

a great number of pings to improve the velocity resolution while keeping a reason- 

able range resolution, but then the sacrifice is temporal resolution. Finally, trying 

to increase the frequency to improve resolution limits the ultimate range of sound 

transmission. A different method is needed to meet the stated goals, and the next 

operating mode of the ADCP to is the pulse-to-pulse coherent mode. 
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Figure 47: The PPC ADCP can't handle high velocities and long range at the same 
time, causing those particular goals to be missed. 

4.8 Pulse-to-Pulse Coherent ADCP's 

An alternative to measuring the Doppler shift frequency from one ping over the range 

of one bin is to measure the shift between two pings at the exact same location. The 

phase change from one pulse to the next is linearly related to the velocity of the 

scat terer . 
40 v=- 
4m' 

To see how this arises, examine the covariance of those two points. 



Considering the highly fluctuating portion of the phase, Aa, to be a zero mean 

Gaussian random variable, then 

The change in location of the centroid, AR, is due to the average motion of the 

scatterers, and can be written 

AR = vo, (4.72) 

where v is the average velocity of the scatterers and /? is the time between pings. The 

covariance between pings is 

Setting the phase change, <f>(p), equal to the phase of the covariance, noting that 

f w f It in the denominator, and solving for v, equation 4.69 is obtained. 

The spatial resolution is vastly improved since the covariance will be independent 

of range. The time lag /? is forced to be the ping rate. This leads to the problem of 

aliasing. Before there was a continuous range to choose /? to assure propper resolution, 

but in this case it is possible for the velocity of the scatterers to be faster than the 

pulse rate is able to resolve. To avoid aliasing, [^(/?)I < w .  

Remembering that 0 = 1/ fs (sampling frequency) : 

Plugging in the Doppler shift frequency relationship: 

This is the Nyquist sampling rate. Rearranging slightly: 



The following table looks at sampling frequencies needed to measure some poten- 

tial current (scatterer) velocities. High transmit frequencies have short wavelengths, 

and therefore need very fast sampling rates. 

The second major limitation is the range dependency on f,. One pulse must go 

out and return before the second pulse is emmited, so the range is limited. 

The following table illustrates this Range - Velocity trade-off (and figure 4-7 

illustrates it graphically). 



Brumley et al. [4] relate Zrnic's (1977) finding of the standard deviation of the 

velocity estimate: 

Here B is the Doppler bandwidth, determined solely by the ocean enviroment 

and scatterer effects, not the pulse length rP. N/? is called the observation time, 

and 1/(2irB) is called the decorrelation time. The above equation is true for large 

Signal to Noise ratios and decorrelation time > /?. Therefore, the decorrelation time 

sets a limit to how large /? can be, which in turn limits the ultimate range of the 

transmission. However, it is clear that increased observation time is possible, leading 

to greatly reduced velocity variances. 

In conclusion, the PPC ADCP offers greatly improved spatial resolution because 

pulses can be kept short, since estimates are not formed within a pulse but between 

coherent pulses. The lag time is increased, reducing the velocity variance, so the over- 

all time-bandwidth product is decreased. Measuring phase changes between coherent 

pings is has the drawback of sampling the process in time, and to avoid aliasing of 

velocity measurements, the Nyquist rate must be met. Therefore maximum velocity 

measurements determine how short the ping interval must be, but this can severely 

limit the range of the beam (since ping to ping interference must be avoided). Again, 

the PPC ADCP faults on some of the stated goals, and so the final option is to 

consider the Broadband ADCP. 



Overlapping Coherent Pulses 
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Figure 4-8: The Broadband ADCP sends two overlapping pulses. 

Broadband Acoustic Doppler Current Profil- 

ers 

To gain the range while avoiding aliasing, the BBADCP's send two pulses within a 

very short time of each other. Since fS is small (or f, is large), aliasing does not occur. 

The two pulses travel any desired range (within acceptable transmission losses), and 

the spatial resolution is extremely accurate because the same location is compared at 

each pulse (see figure 4-8). The drawback is that the received signal is a combination 

of both pulses, and the phase still needs to be recovered. This is solved by taking the 

autocovariance of the received signal. Since the two transmitted pulses are identical 

but separated by a time lag, then looking at the autocovariance at that time lag 

should reveal any phase change. The phase change at /? is linearly proportional to 

the scat terer 's velocity. 



Pulse Coding - to handle energy issues 

p d u a l  code elements 
1 act as short pulses 1 

The combined codes make 
the overall pulse of long duration 

Barker Codes are designed to have au tocorrelation 
side-lobes at set time lags and to be zero elsewhere. 

Figure 49: Phase coding can reduce the variance of the velocity estimate. 

Brumely et al. [4] relate how BBADCP's are peak power limited do to cavitation 

and shock. If the pulse length is too short, the intensity will not be large enough 

to provide information over the desired range. This is solved by using Bi-Phase 

coding. It is as  if many independent pulses are joined together to create one long 

pulse. The combined pulse length is increased enough in order to acheive sufficient 

transmission energy, yet the bandwidth is almost as wide as that produced by one of 

the independent pulses. 

Phase Coding 

Pinkel and Smith [18], and 'Irevorrow and Farmer [24], worked on coding the 

transmitted signal in a manner which could reduce the variance of the velocity esti- 

mates upon decoding. The Barker Codes are dmigned to minimize the covariance, 

except at desired time lags (see figure 11-2). This is accomplished by selecting special 

sequences of 1's and O's, or 1's and -1's, and then repeating the sequence until the 

code duration is equal to the pulse length. These sequences change the phase on the 



To construct the complete coded pulse, the basic signal (see equation 4.16) is 

multiplied by a series of subcodes, zm. The pulse duration of that individual subcode, 

rC, is shortened to reach the desired bandwidth. Letting bm represent the complex 

return signal for one subcode, sret(Rc, t )  (equation 4.21), at a particular instant of 

time, t,  the complete pulse will be a sum of these subcoded pulses. 

where Nc is the number of subcode elements in a combined sequence, and Nr is the 

number of times the sequence is repeated. The total transmission time is then rcNcNr. 

The return coded signal at some time later, t +n$, has an additional phase shift based 

on the extra travel time, 

The autocovariance of the return coded signal is 

When the return signals are spatially homogeneous (due to an even distribution of 

scatterers and their similar types of scatterering returns), the average intensity of the 

return signal is fairly uniform, b =< \ bm\ >. The expected value of the autocovariance 

is basically zero at any lag other than nrc Nc, 

1 O , otherwise 

Equations (4.80),(4.81),(4.82),and (4.83) are equations (3a),(3b),(4) and (5) from 

Pinkel and Smith [18], with notation changed for this thesis. The variance for a 

single estimate is larger than the signal itself, but the variance can be significantly 



reduced by range averaging. This occurs because the error in nearby estimates are 

uncorrelated due to the coding, and averaging over a range (up to that specified by 

the transmission length) gives Nc independent estimates. They give the following 

equation for the variance on the velocity estimate: [18] 

where Tmi = (Nr - I)T&N<: is the portion of the range that overlaps in the covariance 

function, and Tavg is the time length of averaging, generally up to the duration of the 

transmitted pulse, rC Nc Nr . 
Brumley et id [4] present the standard deviation of the velocity estimate in a form 

which explicity shows how various parameters may be adjusted to reach the desired 

velocity resolution. 

where Ã 1.5 is a constant which accounts for nonideal aspects of the code and signal 

processing, M is the number of code elements incorporated in the averaging, N is the 

number of pings, o'~ is the standard deviation of the phase estimate, and where Vmax 

is set to avoid the unambiguous velocity, 

A is the wavelength of the transmitted signal (A = c/ f ) , and To is the pulse separation 

lag, generally equal to rcNc. RD Instruments [lo] give the variance of the phase 

estimate as 

where R is the correlation at lag To. 

The larger the number of code elements, the greater the velocity resolution, but 

the smaller the maximum velocity it can measure. Averaging over a number of pings 

improves velocity resolution, but decreases temporal resolution. 



4.10 Error variance management 

For the pulse coherent ADCP and for the broadband ADCP, the Doppler bandwidth is 

no longer dependent on the pulse duration, as was the case for the narrowband ADCP. 

Instead, it is determined by a number of physical processes in the ocean environment, 

and causes the transmit wavelength - Doppler Bandwidth (AB) product to stay within 

a small range of values. [4] 

One source of noise results from the accelerations of the fluid. The estimate of 

the Doppler shift is approximated as a linear function, and deviations from this will 

be noise. 

Brumley et al. [4] say that the two most dominant sources of noise are the tur- 

bulent velocity fluctuations and the effects of beam divergence. In general, AB is 

proportional to the larger of either the rms turbulent velocity fluctuations or the 

cross-beam velocity component multiplied by the beam width in radians. For a 

current of 2 m/s, and a beam spread of 2 degrees (0.035 rad), that would lead to 

AB w 7 cm/s, whereas the turbulent velocity fluctuations are about 2 cm/s. For a 

broadband ADCP, transmitting at 1200 kHz carrier frequency, that would indicate 

that B = (AB)/(c/ f )  = 0.067 * 1200000/1500 w 54 Hz, and the decorrelation time 

1/(27rB) as 3.0 ms. Slower cross beam velocities will increase the decorrelation time, 

setting the lower bound on error independence. For cross beam velocities of only 10 

cm/s (typical velocities seen closer to the ocean floor), the decorrelation time will be 

20 times larger, w 60 ms. This is still under the desired 10 Hz sampling frequency, 

and indicates that the error variance for typical flows will be independent in time. 

Another source of noise is from the change of scatterers in the volume of water 

being measured. Scatterers near the boundaries of the fluid volume move out and 

new ones move in, adding to the phase jitter. Physically, in order to make an accurate 

estimate of the velocity, the scatters need to be present at  both measuring times. 

To determine the lower bound on spatial resolution, it is necessary to find the 

spatial decorrelation length. Since the broadband transmission signal consists of a 

series of repeated codes, each of which is a sequence of subcodes, their respective 



ensonified volumes of water are grouped accordingly. The codes are designed to 

suppress the covariance of the return signal at any time lag other than a multiple 

of the duration of one complete sequence. This allows range averaging to provide a 

series of independent estimates of the covariance. 

The covariance estimate, even at the proper time lag, is still affected by noise. In 

addition to the physical sources of noise just mentioned, there is the added noise of 

unwanted volumes of water. This occurs because comparing the signal to itself at a 

time lag will automatically cause certain volumes of water to fall out of the overlapped 

region. This is essentially the same problem as scatterers moving out of the volume, 

and new ones moving in, except now it is entire volumes of water that change during 

the comparrison. It is these volumes of water which will be correlated with the error 

of other estimates. 

Pinkel and Smith [18] provide a relationship for the correlated part of the sampling 

error in one estimate of the covariance. 

where &(0) is the estimate of the covariance (see equations 4.57, 4.58, 4.59). This is 

what leads to the variance in the phase estimate. They do not provide a relationship 

for correlating the error between estimates. Therefore, it will be useful to appeal to 

the physical situation for guidance. 

As shown in figure 4-4, range averaging leads to the center volumes of water 

being weighted more heavily than volumes near the end of the bin range. The error 

contribution from these edge volumes have a limited effect on the total error in the 

covariance estimate. 

To be safe in setting the upper bound of the error correlation length, it will be 

assumed that there is perfect correlation of the error in volumes that overlap from 

one covariance estimate to the next. However, they should be weighted in proportion 

to each of their contributions to the total error of their respective estimates. Then 



one potential relationship for error correlation is 

- overlap area (of triangular weight function 
l e r  - non-overlap area (of triangular weight function) 

where r is the spatial lag, c is the speed of sound in water, and T. is the duration of 

the transmitted pulse. This is valid for r $ crp, and Re^(r) = 0 for r > crp. If the 

volumes of water used to formulate each covariance estimate are completely different, 

there can be no error correlation. Therefore, for r > crP the resulting error variances 

are independent. 

The working model of the space-time correlations for the error variance will be 

(1-- '-)6ij  W P  r < m p , r > ( 2 r B ) - l  

undetermined r crp, 0 < T $ (27rB)-l 

where r = Id, and the <Sy is the chronecker delta function, which is appropriate for 

error which is isotropic in nature. 

Now it is possible to recast the formulas for error variance in terms of the user 

chosen parameters of frequency, f ,  and bin length, Ar. It will be assumed that 

the ADCP will then maximize the other parameters, such as the number of code 

elements, M, the unambiguous velocity, vmm , and the wavelength- bandwidt h product. 

The decorrelation time ( 2 7 r ~ ) '  Ã /3 can be used to set an upper limit on ft. 



The unambiguous velocity becomes 

The bin length can be used to maximize the number of code elements, 

where RDI sets Tc = 4/ j for their ADCPs. M will be a bit generous, but it can be 

compensated for by setting the phase variance a bit high. With correlation R=0.5 at 

lag L, the 0-2 = 1.5. 

Combining the above, the single ping standard deviation is 

(Tv = (10) 
(1.5)~/~(\B)fi  

VSrJ 

The standard deviation of the error varinace can be reduced through averaging 

in time in proportion to iV1^.  Therefore, using the estimates in figure 4-10, when 

the the \ B  ss 6 cm/s, the standard deviation is 12 crn/s, and the error variance at 

the 10cm bin interval can be reduced to 0.07 ( c r n / ~ ) ~  after 2400 pings (20 minutes at 

2 Hz). However, as figure 410 also shows, an increased \B product (due to a more 

energetic ocean environment) leads to an increase in the standard deviation, and so 

for \B > 6 cm/s, a greater number of samples are needed to reduce it to acceptable 

levels. Sampling at 10 Hz, a 20 minute period would allow for 12000 samples, causing 

the error variance for the \B  = 12 cm/s to be reduced to 0.05 ( c m / ~ ) ~ .  Again, the 

stated goals should be acheived. 



Lowerbound single ping velocity resolution, based on the ADCP wavelength-Doppler bandwidth @B) product 
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Figure 4-10: The single ping standard deviation based on the user choices of bin 
length, the ocean evironment wavelength-Doppler bandwidth product AB, and as- 
suming a transmit frequency of 1200 kHz. 



Chapter 5 

Simulating a Spatially 

Homogeneous, Isotropic, Turbulent 

Field 

Many applications require the simulation of an idealized environment in order to 

set preliminary bounds on the performance of the system of interest. Traditional 

numerical schemes which propagate the numerical solution of the governing equations 

of fluid can require large amounts of memory and processing time. 

An alternative is to utilize the average quantities of the flow, meaning a statistical 

characterization of the flow is considered appropriate. In this case, methods in signal 

processing may be employed to take advantage of the statistical properties, and to 

generate flows which are governed by the statistics. 

To reduce computational requirements, the flow will be simulated in two steps. 

The first step will be to freeze time and create a spatial turbulent field. This can 

be accomplished by passing white noise through a set of filters which are designed 

match the 2nd order statistics of the output to those of the turbulent process. The 

3-D least squares filters can be designed using an analytic expression for the spectrum 

of homogenous, isotropic turbulence. The second step will be to simulate the time 

evolution of the flow. This will be explored in the next chapter, and will make use of 

Taylor's frozen turbulence hypothesis. 



5.1 Chapter Overview 

In the second section, the analytic expression for the turbulent spectrum will be 

derived from first principles. In the third section, basic theory for generating processes 

of particular statistics will be given. In addition, there will be discussion on sampling 

in space and wavenumber domain, the use of Cholesky decomposition for numerical 

stability, and the choice of least squares for the construction of a 3-D spatial filter. In 

the fourth section, results from a statistically generated flow will be presented, along 

with methods for verifying the statistics. Finally, the space-time correlations will be 

developed for turbulence induced velocities being advect ed by the mean current. 

5.2 Analytic Expression for the Spectrum of Ho- 

mogeneous, Isotropic Turbulence 

The derivation of an analytic expression for the spectrum of homogeneous, isotropic, 

turbulence is borrowed from Batchelor [I], and is presented here in skeleton form for 

completeness. 

5.2.1 Homogeneous, Isotropic, Turbulence 

As a starting point, the fluid flow must be constrained a bit in order to make the 

problem of simulation tractable. The flow we will be considering is one in which the 

fluid is of infinite dimension, with density p, and viscosity p. By requiring the flow 

to be homogeneous, the average properties of the flow are independent of location. 

This kind of flow does not really exist, although in some situations, such as a uniform 

stream passing through a mesh grid, the downstream motions can be approximately 

homogeneous. [I] Secondly, the flow will be isotropic, which means it is independent 

of the direction of the axes of reference. 



5.2.2 Governing Equations 

In an incompressible fluid, the conservation of mass leads to 

au, - = o  
ax, 

where repeated indices imply summation, and the velocity component ui is the instan- 

taneous velocity at time t and location 3. The mean component has been removed, 

and by definition, the mean of the fluctuations is also zero, 

The fluid flow also satisfies the Reynolds Averaged Navier Stokes equation 

Given an initial statistical state, the future state is governed by the above equa- 

tions, and therefore its outcome is determined. However, in the complexity of coupled 

interactions, the final state will basically be independent of the intial conditions, but 

its statistics should still reflect the underlying probability laws of the system. 

5.2.3 Velocity Correlations and the Spectrum Tensor 

The main effect of a probability law is to give a relative likelihood of values that could 

be observed for the variables being measured. If the velocity at a point in space were 

measured many times over independent trials, the range and relative occurance of the 

values would match the probability density function for that point. This is true for 

every point in space- time, and every combination of points in space- time. 

The mean (average) value 

time, is given by 

for a single component of turbulent velocity in space- 

where fu,(a) is the probability density function for the ith component of velocity at 
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that single point in space and time, and where a is in the set of possible values that 

ui(C t) can take. For the vector u, the mean is handled componentwise, so 

The mean of a function of components at any space-time locations requires a joint 

probability density function, and is taken over all the possible combinations, a ,  ..., 0, 
that the individual components can take. 

When the spatial field is homogeneous, the statistics depend only on the relative 

configuration (separation) between points, and are independent of absolute location. 

Letting 3 be any starting position, and r" = i& -6, and dropping the time dependence 

(assuming that both points are measured at the same time), then the correlation 

between these two points can be expressed as 

The correlation of velocity fluctuations between two points in space is represented by 

the tensor R (3 ,  and its components are Rj ( 3 .  

Using Fourier transform relations, the components of the spectral tensor @(fc)  can 

be defined as 



where k is the wavenumber vector with components (kl, k2, k3), and d f  = drldr2dr3 

is over the spatial directions. Batchelor uses the convention of assigning the l / ( ~ 7 r ) ~  

to the transform, rather than to its inverse transform. The inverse Fourier transform 

is defined as, 

Rjp')= 

where dk = dkldk2dk3. Also, the 'j' in the exponential is not indexing, but is defined 

5.2.4 Isotropic Constraints on the Spectrum Tensor 

When considering an isotropic system, certain constraints are placed on any second 

order tensor. Since the correlation tensor (and its transform, the spectral tensor) are 

considered second order tensors, they too must conform to the general constraints. 

The resulting structure will provide a wealth of information about the nature and 

physical relationships of homogeneous, isotropic, turbulence, and will subsequently 

provide guidelines for what a simulated process should look like. The next set of steps 

will show the analytical formulation of the spectrum tensor, which will be used in the 

simulation process. 

Batchelor shows that an isotropic second-order two-point tensor has the form 

where ki, kj are the components of k, A($) and B(c) are scalar functions, and c2 = 

k? + k$ + k g  Using 9 u j / h j  = 0, then 

which in spectral terms means that 



B can be solved in terms of A by applying this spectral relation to the constrained 

tensor form. 
k j@i j (Z)=k j [A(<)k ik j+B( f iS i , }  = 0 

B(l-) = -A( t )P  

A(Â£ is then defined in relation to a new function, E($), which is the total energy 

contributed from spheres of radii 6 and $ + df in wavenumber space. 

To see that really is a valid measure of energy distributed among the wavenum- 

bers, look at the autocorrelation at a lag of 0 meters: 

Solving for A($) in terms of E ($) , and plugging back into the spectrum tensor equation 

gives the analytic spectral expression for homogeneous, isotropic turbulence. 

Finality, Tennekes and Lumley [21] have worked out an expression for E ($) : 



where a = 1.5 is an empirically determined constant, 0 = 0.3 is a constant that 

assures E(<) integrates to ^U~U,, I is the eddy size (3 meters can be considered rea- 

sonable), and e = p3/l, where p is the size of turbulent fluctuations (0.02 m/s can be 

considered reasonable). 

5.3 Designing the Least Squares 3-D Spatial Filter 

The basic way to create the spatial field will be to convolve a specially designed filter 

with a velocity field whose individual components are white Gaussian noise. 

It is important to remember that 3 and ii are vectors, so Â £  is En1 En2 En3. 

One of the important properties of an independent and identically distributed white 

Gaussian noise process is that it is only correlated with itself at zero lag, with variance 

2 + a,,, x = y k  i=j 

0, Z ^ y o r i # j  

The correlation of the new process is then 



Putting this into a more familiar form, 

Taking the Fourier transform componentwise leads to 

which reveals what the filter needs to be. Since u(5) is real, h(Z) and w(3) are real, 

and that means that for ~ ( f e )  the real parts are even and the imaginary parts are 

odd. Looking more closely at 4>(fe), it is clear that it is symmetric, real, and even. 

That means that H(Z) must be real, and so 

9 (k) = ~ % ( k ) W k ) ~ .  (5.24) 

This is a square root factorization at every k. There are various methods for finding 

~ ( f e ) ,  such as using an eigenvalue decomposition, or using the Cholesky decomposi- 

tion. However, because must be sampled, it turns out that some methods are 

far more robust numerically. 

5.3.1 Eigenvalue vs. Cholesky Decomposition 

One possible way to find ~ ( f c )  is through eigenvalue decomposition. This works 

because 4>(fc) is symmetric, and can be diagonalized by unitary matrices. 

However, it turns out that this decomposition is numerically sensitive, and it is dif- 

ficult to recover the orginal a($) matrix if any kind of resampling occurs (such as 

when doing a tranform of the spatially convolved filters). 



A more robust method is to carry out the Cholesky decomposition, [3] which 

factors a positive definite matrix into a lower triangular matrix and its transpose, 

LLT. However, 9(k} is in general not positive definite, and so a zero pivot is often 

encountered. There are algorithms (such as the Incomplete Cholesky decomposition) 

which can handle the zero pivot. Once 9(k) is factored into L ( ~ ) L ( ~ ) T ,  the six 

individual spatial filters are found from doing a componentwise multidimensional 

inverse Fourier transform (IFTn) of L (k) . 

H(r) = I IFTn{L21 ( fc)} I F T ~ { L ~ ~  ( fc)} 0 

I F T ~ { L ~ ~  (fc)} I F T ~ { L ~ ~  (fc)} 1 ~ T n { ~ s 3  ( fc) } I 
5.3.2 Sampling rates in the spatial and wavenumber domains 

There are important decisions to be made about the sampling rates in the spatial and 

wavenumber domains. To avoid the aliasing of high frequencies onto low frequencies, 

the sampling frequency must exceed the Nyquist rate. 

27r 2 2 x highest wavenumber (radianslmeter) (5.27) 
sampling interval 

Examining @(fc), a conservative boundary for when it drops below 1% of its maximum 

value is f > 4lmeter. Using the above formula, this corresponds to sampling in the 

spatial domain at a radial distance of 0.78 meters or less, which translates to sampling 

at less than 0.45 meters in each of the three cardinal directions. There is a dual 

expression for sampling in the wavenumber domain. 

2 2 x longest correlation 
sampling rate 

A conservative choice for maximum correlation length in the radial direction is 10 

meters, leading to a radial wavenumber sampling rate that is roughly 0.61meter or 

less, and 0.351meter or less in each of the cardinal wavenumber directions. 

Memory and computational issues have to be considered as well. For example, 



sampling in a 10 cm grid pattern in the spatial domain sets the limits of integration 

in the wavenumber domain from -31.4lmeter to 31.4lmeter in each of the cardinal 

wavenumber directions. Then sampling in the wavenumber domain in a 0.25lmeter 

grid will give 252x252~252 points, which is 122 MB of memory (per filter, using 8 

bits per point). Once sampling rates have been decided on, each of the six filters is 

found using the inverse multidimensional discrete Fourier transform: [5] 

where each filter Ly is size Nl x N2 x N3. It can be difficult for programs such as 

Matlab to handle transforms of this size. As an alternative, hy may be computed 

through three stages of single dimensional transforms. First, iterate through two 

dimensions (kl, ka) while doing a transform of the third dimension (k3). Second, using 

the partially transformed matrix, iterate through two different dimensions (kl , k3) 

while tranforming a different dimension (k2). Finally, take that matrix and iterate 

through (k2, b) while tranforming the (kl) dimension. This was method used in this 

thesis. 

5.3.3 Scaling issues 

It must be remembered that sampling in the spatial domain will cause a scaling of 

the true wavenumber spectrum by a factor of l/(sample length). [14] 

- @ (Q cont inuous 
^discrete - spatial sample length 

(5.30) 

Secondly, it is important to remember the 27r convention that Batchelor uses in defin- 

ing the Fourier transforms is the opposite of current convention. After doing the 

inverse multidimensional discrete Fourier transform, the quantity must be multiplied 

by (2x13. 

There is one final scaling issue that is a result of sampling. The inverse Fourier 

transorm is defined from -w to oo, but sampling in the spatial domain reduces the 



limits of integration in the wavenumber domain. With the limits of integration set 

from sampling a 10 cm grid, the results of the inverse Fourier transform must be 

multiplied by 1.03 in order to arrive at the proper variance of the process. 

5.3.4 Least Squares Filter 

A filter that is 252x252~252, though accurate, is quite large. It is desirable to reduce 

its size while minimizing the mean squared error in the wavenumber domain. 

Denoting the region of the least squares filter, the equation becomes [5] 

The error is minimized by setting hi, ( 3  = hij (r) ,  r" 6 R. Using the previously stated 

values for the constants and sampling rates, a block of the first 127x127~127 points 

centered around ?=0 accurately reproduces the desired spectrum. The following 

table compares the variance recovered by filters of a particular size to that of the 

true variance of the system. Each of the filters is created from what is considered to 

be the true filter, 255x255~255. It must be remembered that since sampling in the 

spatial domain has occured, wavenumbers have a finite limit, and this accounts for the 

maximum of 94.8 % of the true variance in each direction. Also, the Â£13 component 

has the greatest effect on performance because it is approximately an impulse in the 

wavenumber domain, causing it to be uniformly distributed in the spatial domain. 

Then, any reducing of filter size has immediate impact on L33. 



Least Squares filter size 

31x31~31 

63x63~63 

' 127x127~127 

25512551255 (true) 

5.3.5 Block Convolution 

As stated previously, by convolving h(Z) with the white Gaussian noise field w(3), 

the turbulent flow at one time instant is produced. With a filter of significant size, 

convolution is time consuming. It is recommended that this process be completed in 

the wavenumber domain, where the operation of convolution becomes multiplication. 

Then programs which excel at matrix multiplication can be used (such as Matlab). 

The follow will explain the common overlapsave method of block convolution. 

The turbulent process may be created in blocks of computationally reasonable 

size. Before taking Fourier transforms of the filters and of the current block of white 

noise, the six filters must be zero padded to match the size of the block of white noise. 

Then multiplication is carried out at each k. 

After taking inverse Fourier transforms of U componentwise, the convolution process 

is complete but the edge points which did not fully overlap with the filter must be 

discarded. By matching the filter size to the white noise block size, the trailing 

edge points are automatically discarded, so only the leading edge points are affected. 

Therefore, the kernal of good points would be the block represented by the matrix 

(127:end,127:end, 127:end). 

Seeing that the leading edge points are always discarded, these points in the next 



block of white noise must overlap with the previous block. That way, though they 

are discarded in the second group of block convolution, they were the good points 

kept in the first group. The process continues until the whole turbulent flow has been 

generated. 

5.4 Results 

Figures are presented at the end of this chapter. There is good agreement between the 

ideal correlation functions and the correlations that result from using the 127x127~127 

least squares filters, with the exception of the predicted decrease in magnitude in the 

R33 correlation. 

To obtain the statistics of the generated data, ergodic theory can be invoked. 

Since regions of space are considered to be statistically similar, ergodic theory says 

that averaging over a large spatial volume will be equivalent to averaging at one point 

over many trials. The idea is that the values that are likely to be found at that one 

point over many realizations will likely be found at other locations throughout the 

region. 

Using a 258x258~258 block of data, the correlations were found to be slightly less 

in magnitude than what the least square correlations predict. Extending the data 

block size to 516x516~516 lead to much better agreement in correlations. 



5.5 Space-time correlations for turbulence induced 

velocities advected by the mean current 

Batchelor gives the following spatial correlation tensor: 

where r" is the vector separation between the two points being compared, 

r is the magnitude of the displacement between the two points being compared, 

u is the root mean square of the velocity components, 

and f(r) and g(r) are the longitudinal and lateral velocity correlations, 

Longitudinal correlations are of velocities which are parallel with the separation vec- 

tor, f, and lateral correlations are of velocities which are perpendicular to it. 

The turbulent statistics have been solved for spatial correlations, but not for 

time correlations. However, using Taylor's Frozen Turbulence Hypothesis, it can be 

assumed that the turbulent field is advected along by the main current. One point in 

space will see the spatial correlations as time correlations. As a simple approximation, 



the conversion between the time and space coordinates is 

where T is the time separation, r is the space separation, and v is the mean velocity 

of the current. If the mean current has some angle if>, then the conversion along the 

coordinate axes is 

AxT = (v cos y) r ,  AyT = (v sin y)r .  (5.41) 

Then r is modified as follows, 

=  AX + VT cos y)2 + (Ay + VT sin y)2 + ( A z ) ~  

Finally, the space-time correlations for turbulence induced velocities advected by 

mean current with velocity v is given by 

<. (f, r) = E [u@, t)ui (2  + f, t + r)] 
= E[ui(x)u',(S + fT)] 

This will accurately predict correlations for the simulated flow when the flow is 

advected by the mean current. 

I l l  



Comparison of Correlations: (1) ideal, (2) using least squares filters (127x127~127), (3) data 
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Figure 5-1: Correlation of R l l  using a 258x258~258 data block 

Comparison of Correlations: (1) ideal, (2) using least squares filters (127x127~127),(3) data 
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Figure 5-2: Correlation of R l l  using a 516x516~516 data block 



Comparison ol Correlations: (1) ideal, (2) using least squares filters (127x127~127), (3) data 
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Figure 5-3: Correlation of R33 using a 258x258~258 data block 
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Figure 5-4: Correlation of R33 using a 516x516~516 data block 
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Figure 5-5: Correlation of R32 using a 258x258~258 data block 
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Figure 5-6: Correlation of R32 using a 516x516~516 data block 







Chapter 6 

Simulating a Time-Evolving, 

Homogeneous, Isotropic Turbulent 

Flow 

The previous chapter was concerned with simulating a statistically correct, spatially 

homogeneous, isotropic turbulent field. The basic idea was to design filters that 

matched the 2nd order statistics of the output to those of the turbulent process, and 

then convolve these filters with a white noise field. It would be possible to  add the 

dimension of time to the filters, but that means that spatial fields that are already 

large in size (say 516x516~516= 1 gigabyte per component u,v,w) are multiplied by 

the number of time steps (say 20 min for an ocean process at  10 Hz = 12000). These 

computational demands will be to great, and potentially not necessary. 

Adding the dimension of time to the simulation of the turbulent flow would more 

likely be necessary for studying the mechanisms of turbulence itself, rather than em- 

ploying the statistics of turbulence. For studying the mechanisms of turbulence, it 

makes more sense to use the traditional schemes which seek the numerical solution 

of the governing Navier-Stokes equations. However, when only the statistics of tur- 

bulence are necessary, there may be other ways to simulate time evolving statistics. 

Taylor's hypothesis, or Taylor's frozen turbulence approximation, says that a 

probe traversing the spatial field at high enough velocity U will see a spatial tur- 



bulent field which has changed very little in that short period of time. The probe 

will have a time series of velocity fluctuations, which correspond to locations in space 

related by x = Ut. This approximation holds as long as probe speed U is much larger 

than the turbulent fluctuations, u. Analogously, the probe can remain still and the 

turbulent field adverted by it at velocity U. 

This would indicate that if U >> u, the frozen spatial field (as described in the 

previous chapter) would be sufficient for creating the type of statistics that the ADCP 

might observe in the ocean. However, U in the ocean may be on the order of 10-50 

cm/s, and u on the order of 2 cm/s, so only at the high speeds is this approximation 

valid. Therefore, in general, some sort of time evolution of the statistics is still needed. 

To approximate time evolution, one spatial direction (+z) will be forfeited for 

a time direction by adverting the frozen spatial field in that direction. Looking at 

correlations in any direction other than the one chosen for time will appear as time 

evolution of the statistics. 

6.1 Chapter Overview 

In the second section, the Kovasznay-Corrsin conjecture will be explored as the basis 

for developing space- time correlations. [16] In the third section, the equations for 

the space-time correlations will be formulated. In the final section, the validity of 

substituting a spatial direction for time evolution will be evaluated using simulated 

data. 

6.2 The Kovasznay-Corrsin conjecture 

Phillips [16] presents the basic idea of the Kovasznay-Corrsin conjecture - that space- 

time correlations can be written as spatial correlations which have diminished in time. 

Kovasznay reasoned that any diminuation in correlation over time from its initial value 

at r"= 0, T = 0 is due to turbulent diffusion. With slight change of notation (to match 



that of this thesis), Phillip's equation (2.1) is as follows: 

< uiuj > Rij(l; 7, t)  = I < ui( l ,  t ) u j ( l  + f ,  t ) e ( l +  $- f, t + T) > df, (6.1) 

where 0(ij', r )  is a scalar function which relates how the spatial correlation will diminish 

in time. Corrsin reasoned that after a long enough time, the distribution of random 

displacements F from Z must behave as a random walk process. In essence, local 

values of velocity will not have memory of their initial location. Phillip's equation 

(2.2) is as follows: 

where ff(q,T) is the probability that a fluid particle travels tj' in time T. Allowing for 

advection by mean current V = (Vi, V2, Vs}, and assigning a Normal distribution for 

the diminuation in time, 0 is as follows (basically Phillip's equation (2.3)) : 

1 ( r j - p j - 5 ~ ) ~  
( 2 ~ ) ~ ' ~  (< y? > < y; > < y: >) 1/2Zj($-F, T) = exp - 2 1  < y ] >  

, j = 1,2,3  

(6.3) 

where < y: > is the mean square displacement of a fluid particle in time T, and where 

repeated indices indicates a summation. Given an equation for R,j (3, O), all that is 

required is to carry out the integrations. 

6.3 Space-time correlations for homogeneous, isotropic 

turbulence advected by a uniform current 

Batchelor [I] presents the spatial correlations as follows: 



where f(r) and g(r) are the longitudinal and lateral velocity correlations, with 

where f is the vector separation between the two points being compared, 

4 r = rli  + roj + r& = AX; + ~ y j  + A& (6.6) 

r is the magnitude of the displacement between the two points being compared, 

and u is the root mean square of the velocity components, 

To carry out integrations, an equation for f (r) is required. Batchelor notes that 

in the region close to r = 0, f (r) is not Gaussian, but becomes so for r > ro, 

where f (ro) Ã 0.6. This can be explained from the physics of the situation. Any 

one point is subject to a large number of eddies of various sizes being swept by, and 

according to the Central Limit Theorem, should have a distribution of velocities which 

is normal. However, two points in space are intimately related through the Navier- 

Stokes equations. In close proximity the velocities may be under the influence of one 

particular eddy, whereas at larger separations, there is more likely the change of being 

a part of different eddies, and that will introduce the appearance of randomness. [I] 

(sections 8.1,8.2). 

In simulating the spatial turbulent field (in the previous chapter), the structure 

of f (r) was imposed upon it by the analytical formulation of the spectrum tensor 

for homogeneous, isotropic turbulence, QÃ£(<;) which included an empirical energy 

function. In fact, based on the inverse Fourier Transform of Qij(fe) (as presented in 



the previous chapter) , 

where a was found to be Ã ll(2.34). Figure 6-1 compares possible functions for f(r). 

The empirical model agrees closely with Batchelor's figure (7.8) [I], where it is plotted 

against r /M with M a 2 times the size of the energy containing eddies. 

Longitudinal Correlation f(r) at R=ul/v=60000 

Figure 6-1: Empirical, Gaussian, and Exponential functions as possibilities for the 
longitudinal correlation function f(r). These functions were formed using energy con- 
taining eddies of 1=3 meters, and turbulent fluctuations of u=2 cmls. 

However, for tractability in solving the space-time equations, it may be appropri- 

ate to approximate f (r) as Gaussian, as has been done in previous studies with fairly 

successful results. [6] [16] Letting 



where L is a length scale to be determined, then 

First solving 6.2 for the case when z # j, 

This equation is separable, and integrating the j terms: 

where (in using the general form of Phillip's notation), [16] 

The term in brackets was just the first moment of a Gaussian distribution, which is the 

mean. This will be the same for integration of the i terms, and the final terms which 

are neither z nor j are just the integration of a Gaussian distribution. Combining all 



terms, the space-time correlation function for i # j is given by 

where 

When considering the case of i = j, the terms multiplied by the delta function now 

need to be included. However, looking back at 6.11, notice that the only real change 

is that instead of finding the first moment of a Gaussian function, now the second 

moment will be found (since p2 = p2 + p; + ~ 2 ) ) .  The second moment is the squared 

mean added to the variance: 

where in keeping with Phillip's notation, 

Adding the extra integrated terms terms which came from 6.11, the space-time cor- 

relation function for i = j is given by 



where i(i) indicates no summation over indices, and in keeping with Phillip's notation 

Finally, combining both cases, z # j and i = j, the result is 

Although the notation is Phillip's, these equations for Aj do not exactly match 

his equations for homogeneous isotropic turbulence convected by a mean current. 

The reason is that these equations are the complete general equations, whereas his 

equations reflect the special case of V = (V, 0, O), and = (xi, 0,0, r) .  In addition, 

these equations have the additional (u ' )~  term in keeping with Batchelor's notation. 

PI 

6.4 Experiment a1 Validat ion 

Favre performed experiments on turbulence generated from an air flow passing through 

a mesh grid. From measurements, he verified that the turbulent field is adverted with 

the mean velocity. He did this by measuring space-time correlations with points down- 

stream. Peaks occured at optimum delay, when T, = X f l ,  where Xi are the chosen 

points of correlation downstream, and V is the mean velocity of the air flow. 

Using the ideas of Kovasnay and Corrsin, Favre formulated the longitudinal space- 

time correlation, [6] 

with j ( r )  and g(r) being determined empirically. Favre's computed results matched 

his experimental results for homogeneous, isotropic, turbulence. Figure 6-2 displays 

results similar in spirit to Favre's work. The time axis is normalized against A, which 



is the correlation over space at optimum delay, tyn6 

The two envelope curves are of the decay at optimal delay. Compared are the ex- 

ponential curves (which are close approximations to Favre's empirical relations), and 

the Gaussian curves as just developed. Figure 6-2 illustrates that peak correlations of 

downstream locations occur at the optimal delay time. Using the Gaussian approxi- 

mation for f (r) results in higher correlation for shorter times, and lower correlation 

in the tails (as compared to results using an exponential f (r)). In addition, the Gaus- 

sian prediction for optimal delay required that the ratio < y2 > / L2 be three times 

larger than the equivalent ratio of the exponential approximation of f (r)  . 

Space-Time calculation comparing Gaussian f(r) to Exponential f(r) 

Non-dimensionalized time (TtDelta) 

Figure 6-2: Results that are similar in spirit to Favre's figure 5 [6], where the space- 
time correlations for Rll(rl,  0'0, r )  are postdicted. r is the independent variable for 
three selected r 1 locations. 



6.5 Experiment a1 Extension and Application 

Favre's work validated using the diminuation in time of spatial correlations for the 

longitudinal case, fin. The extension would be to use the full fl,, in the ocean setting. 

In order to do that, both correlation length, L, and the ratio of mean-square distance 

traveled to correlation length, < y; > /L2, need to be extracted from the data. ADCP 

data from the Martha's Vineyard Coastal Observatory will serve as a starting point. 

This data is sampled at 2 Hz and measured at 50 cm vertical spacings. This is less 

than the desired 10 Hz sampling rate and 10 cm vertical spacings, but will at least 

allow for rough approximations of the space-time correlations. Figure 6-3 shows the 

mean horizontal currents, the space-time countour centered at height of 5.6 m from 

the ocean bottom, and the mean radial spatial and temporal correlations over all 

beam 1 locations. What is missing from the plots is the radial velocity correlation, 

Mean horizontal currents 
. . . . . . . . . . . . . . . . . . . . . . .  
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Figure 6-3: Various aspects of ADCP beam 1 data from the Martha's Vineyard 
Coastal Observatory, yearday 260, 2005, at 8:40 am 



E[vt(O, O), v'(0, O)]. That correlation is central to obtaining the Reynolds stress, which 

is the goal of this thesis. One method of estimating that point is to do a fit with 

the theoretical models just presented. With low resolution data, this is a balancing 

act. The correlation length, L, is simultaneously varied along with E [vt(O, 0) , vt(O, O)] . 
Fortunately, there is only a small range of values that will lead to an approximate fit 

of given spatial correlations. Empirically, E[v' (0,O) , d (0, O)] fs  4 . 4 ~  l o 4  (cm/s) 2, and 

L as 1.5m. Then, following Favre's lead that the diffusion is quadratic in time, the 

mean square distance for the random walk of small fluid elements moving with the 

mean flow is 
2 2 < y2 >= (4.4 10-~(m/s) )r . (6.24) 
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Figure 6-4: Radial spatial, temporal, and space-time correlations for data at loca- 
tions along beam l of the ADCP. The correlation length is determined by fitting an 
exponential function to the radial spatial correlation. 

What we see in figure 6-4 is that this prediction is too slow. In Favre's work, 

the turbulence was adverted with steady mean flow, and the fluid elements moved 

according to their fluctuations. In the ocean, interaction with the waves is clearly 



affecting the diffusion rate. Secondly, the exponential function for f ( r )  fits the data 

better for the spatial correlation, and the Gaussian approximation for / ( r )  doesn't 

decay fast enough at the small lags. Finally, we see that the space-time correlations 

have some similar structure to that given by the data, but that this first approximation 

is a poor one. 

The next step is to allow < 92 > /L2 to be determined empirically, indirectly 

leading to estimates of the mean square path of the fluid elements, 
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Figure 6-5: Radial spatial, temporal, and space-time correlations for data at  locations 
along beam 1 of the ADCP. The temporal decay rate is found by adjusting < > /L2 
until the model matches the radial temporal correlations. 

Looking at figure 6-5, the agreement between model and data is much improved. 

Now in addition to individual agreement with spatial and temporal correlations, the 

space-time correlations show remarkable similarities with the data. Though the ex- 

ponential approximation for f ( T )  more closely matches the spatial and temporal cor- 



relations on the axes, the Gaussian approximation for f ( r )  more closely matches the 

off-axes space-time correlations. 

6.6 Simulated flow results 

Chapter 3 presented techniques to simulate turbulent data for a spatially homoge- 

neous, isotropic field that is not evolving in time. To illustrate the process of diffusion, 

consider a random walk of the fluid elements (which carry the velocity fluctuations). 

As time progresses, neighbors move further apart, and the overall effect on the cor- 

relation is towards homogeniety of fluctuations. 

Speiiel - of Rll(rd.tw4) Spatial Concentrations of Rll(r=O,tau>l00) 

50 100 150 200 250 SO 100 150 200 250 
Distance in 10 crn intervals Distance in 10 cm intervals 

Figure 6-6: Diffusion illustrated by a random walk of fluid elements. Decorrelation 
occurs with time as the spatial field tends toward uniformity. 

The random walk example works for temporal correlations, but not for simulating 

an evolving flow which is always in the present time (T = 0) .  In addition, evoking 

a random walk from time step to time step will destroy the homogeneous, isotropic 

nature of the spatial field at T = 0. Instead, it was postulated that one of the 

directions can be sacrificed in order to create the illusion of time evolution. Since the 

flow already will advect in the horizontal plane with the mean current, it is natural 



to consider a vertical direction for time evolution. This can work for the situation 

where time series in small selected regions are needed (radial beam locations). 

The main goal is that locations on the beams will arrive at correlations that are 

based on an evolving flow. This will fail if any beam locations receive the exact 

same data from some other beam locations. For example, looking at the distances 

between points on beam 1 and points on the opposite beam 2, figure 6-7 shows that 

only locations close to the ADCP will see the same data over a 15 second period of 

consideration. 

Distances between beams Time between beams for O.Ms flow 

50 100 1 
A locations - 10 ern radial spac A locations - 10 em radial spacing 

Figure 6-7: Distances between beam 1 locations and beam 2 locations, and the cor- 
responding locations were data overlaps within 15 seconds of time for a flow moving 
at 0.2 m/s. 



6.7 Boundary Issues 

This chapter presented the derivations for the full space-time correlations for homo- 

geneous, isotropic, turbulence. In the ocean setting, this approximation should work 

where the shear is not significant, and in fact, could help confirm whether the flow 

is homogeneous and isotropic in those regions. But what about near the boundaries, 

or in significant shear? Figure 6-8 shows the radial space-time correlations for the 

flow near the ocean bottom. Notice that the presence of the boundary significantly 

changes things. The next chapter presents a model for space-time correlations in 

non-homogeneous, non-isotropic shear flows. 

Beam 1 soace-time contour centered at z=2.1 m 

Figure 6-8: Space-time correlations for beam 1 ADCP data, from the Martha's Vine- 
yard Coastal Observatory, yearday 260,2005, at 8:40 am. The space-time correlations 
around the center point of 2.1m become distorted near the ocean bottom. 







method will be presented. In addition, predictions using the complete space-time 

cross-correlation equation will be compared with data from Fawe 161. 

7.2 Basic 

The basic theory 

Boundary Layer Structure 

for boundary layer flows has been well established, and what is 

presented here is from [2]. 

A turbulent boundary layer flow consists of a small viscous layer influenced by 

viscosity, a large intermediate region where similarity models are used to predict 

velocities, and the outer region where the turbulence blends in with the free-stream 

flow. The viscous layer is further divided into a very thin viscous sublayer and a 

buffer layer. The buffer layer is the transition from the thin vicscous layer to the 

intermediate layer, and is where much of the turbulence is generated. 

Near the edge of the free stream region, the boundary fluctuates between turbulent 

regions and laminar regions, which are changing in time. This is called intermittancy, 

and is found to occur between 0.5 5 z/S < 1.3. Therefore, any measure of the 

boundary layer thickness must be a statistical one. One possible measure of the 

thickness, S(x), is to assign it the distance from the boundary when the mean flow 

is 99 % of the free stream flow. Another common definition is that of displacement 

thickness, 

which transforms the mass flux deficit into an equivalent thickness of the free stream 

layer. In the near coastal zone of ocean, the boundary layer thickness could vary well 

be the whole layer itself. 

Boundary layer varaibles are often scaled by terms which are characteristic of the 

flow in that region. This leads to flows of very disparate sizes having similar behaviour 

when scaled by these terms. 



The friction velocity is defined as 

where p is the density and rW is the shear stress at the wall, 

Distances are scaled by a corresponding length scale, v/Ur, so that wall units are 

represented as 

Finally, the Reynolds number for boundary layer flows is given as 

The mean flow near the boundary depends on z, rW, v, and p. These parameters 

combine to form the friction velocity, Ur, and the length scale, v/Ur. Therefore 

a/Ur = f (z+). The velocity at the boundary is zero (by the no slip condition), and 

very close to the boundary (up to z+ Ã 5), the mean velocity is found to vary linearly. 

This is called the Law of the Wall. 

In the intermediate region,von Karrnan developed a Log Law, which has recently 

been challenged by some who think a Power Law is more appropriate. 

The Log Law is developed from matching the buffer region to the intermediate 

region. In the buffer region, the main stress is no longer due to viscous effects, but 

is now dominated by the Reynolds stress, and so the parameters of interest are 2, Tw, 

and p. Instead of using 5 (which has the no slip boundary constraints), &/dz is used, 

leading to &/dz - Ur/z Introducing the von Karman constant, n, and integrating, 



gives 

The Power 

retical work is 

Law is currently based on an empirical fit to the data (although theo- 

begin developed to justify it). 

0 and a are found to be Reynolds number dependent. 

In the outer region, the mean flow depends on Ur, z, and 6. This leads to the 

Velocity Defect Law: 

This law deviates from the Log Law in the region 0.1 < f < 1, though modifications 

such as Cole's law of the wake remedy that. It is also possible to fit a second power law 

to this region. Perhaps the simplist empirical relationship was developed by Hana, 

which says 

f (f) = 9.6(1 - f 2 ) .  (7.10) 

In addition to characterizing the mean flow, it is possible to formulate the structure 

of the mean square turbulent fluctuations in an ideal shear flow (without wave effects). 

Phillips [15,17] has worked out the asymptotic expressions for the turbulent intensities 

at high Reynolds number for the wall, intermediate, and outer regions. 

From the wall region into the intermediate region, the approximate solutions are 



These are Phillips' equations (32-36) [IS], with notation changed to be consistent 

with this thesis, and the results are plotted in figure 7-1. K is von Karman's constant, 

0.41. At high z+, the asymptotic expressions are given by 

Turbulence Intensities in the Wall and Intermediate Regions 
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Figure 7- 1 : Turbulent intensities in the wall and intermediate regions. 

From the intermediate region through the outer region, Phillips joins the asymp- 

totic expressions developed for the wall and intermediate region to a velocity defect 

law in the outer region. 1171 He develops a turbulence law of the wake in the spirit 

of Cole's law of the wake. Figure 7-2 shows the turbulence intensities throughout the 

entire boundary layer for Res Ã 17000. 



10' 102 
z (wall units) 

Figure 7-2: Turbulent intensities throughout the entire boundary layer at Res = 
17000. 

7.3 Phillip's Model for Rij(?, r )  

Phillips' overall methodology is to begin with the longitudinal, f (r), and lateral, 

g(r), correlations at optimal delay, and to introduce componentwise modifications 

consistent with shear flow data. The first modification is to introduce directionality 

into the correlation length. 

< y; > < y? > L Ã‘ L,, + 
L2 L f 

Then the longitudinal correlation, Rll (ri ,0,0, r )  , and lateral correlations, R22 (rl ,0,0, r )  , 
Ras (rl ,0,0, r )  , in the mean flow i.7 = (vl ,0,0) are given by (Phillips equation 2.12), 

where i = 1,2,3, repeated indices do not indicate summation, and A,, = Sa + 623. 

Phillips then defines Li as that optimal distance rl = vlr where the correlation is 

112. Figure 7-3 presents the longitudinal and lateral correlations at optimal delay. 



Rii at optimal delay (Reproduction of Phillips' figure 1 at z+=18) 

Figure 7-3: Correlations at optimal delay (Reproduction of Phillips figure 1) 

When they are plotted against the nondimensional variable, q, (Phillips equation 3.1) 

the plots collapse to a single line. Since at optimal delay (at a given height, z+), 

R,̂  (z+ ; vfr+, 0,0, T+) = 11 D3 collapse to a single line, a new correlation function at 

optimal delay is proposed by Phillips: (equation 3.4) 

Phillips finds a good fit to the data given by (equation 3.2) 



where A = 7" - 1, 7 ss 1.7024 to insure that the correlations are 112 at  q = 1, and 

n = 2. The relationship is independent of height, and is given by 

In the absence of a convection velocity, the mean square path is just due to the 

diffusion of the fluctuating turbulent velocities, < y? >=< uKz) > r2. Therefore, 

Phillips replaces vl with v+ < u: >, where v close to the boundary layer will be 

determined by the basic boundary layer theory. 

In addition, it is known that for short times that < y: > / L: varies quadratically in 

r, but that for longer times it varies linearly. The time which governs this transition 

is called the Lagrangian time scale, T,. Introducing these changes, the final form is 

(Phillips equation 3.3) 
< Y ? >  - - (v+ < u: >1/2)2r2 

L; [1 + ($n] lIn 

Comparing the two equations, an equation for the Lagrangian time scale is given as 

(Phillips equation 3.6) 

At this point, Phillips develops an empirical expression for Ti, normalized by it's free 

stream value for broader application. (Phillips equation 3.7) 

where a, = (8.5,9.9,2.0), z/zoo Ã 0.4, /3 Ã 0.1, and m=5/2. All that is needed is 

information about < u2 > and v. Phillips uses the theoretical values for < u? > 

developed in the preceding section, and constructs an empirical expression for the 



convection velocity, v. (Phillips equation 3.8) 

Figure 7-4 presents Phillips' results. 

Shear Velocity Profile, u, and Empirical Velocity P rofile,v 
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Figure 7-4: Plots of the empirically developed T,/Z_ and v. 

These equations provide all that is needed to determine R,, at optimal delay. To 

determine how R,, will behave at non-optimal delay, Phillips again turns to the data 

and modifies N, and Bj to incorporate the additional vertical dependencies. 

with a, = (1,1.8,1.8). The final modification for Bj is to change < y? > to < u: > 
in the term that represents changes reletive to the convected component. Otherwise 



that term is dominated by the mean velocity, v. 

The final equation for the cross-correlations in a shear flow is (Phillips equation 5.1) 

Phillips compared R&rl, 0, r3, r )  with Favre's data at z/S = 0.135, and found 

that it predicted the results quite well. 

Contours of R31 at z/&=0.135 

Figure 7-5: Phillips' R31 (rl ,0, r3, r )  as a prediction of Favre's data at z/S = 0.135. 

When comparing Rn(rl, 0, r3, r )  with Favre's data at z/S = 0.03,0.135,0.77, the 

form is essentially correct but exhibiting faster decay. This decay rates will not be an 

issue when being used with ocean data because they will be determined empirically. 
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Figure 7-6: Phillips' Rll(rl, 0, r3, r) as a prediction of Favre's data at z / 6  = 

0.03,O. l35,0.77. 





Chapter 8 

Space-time correlations for Wave 

Induced Velocities 

This chapter will develop the space-time correlations for the wave induced velocities. 

It will begin with monochromatic waves, and build in complexity as needed. This 

will include formulations for a random sea state, a multi-directional sea state, and 

multi-events. Not all of this is necessary, but it makes the model more adaptable. 

8.1 Monochromatic Waves 

As a starting point, the surface waves will originate from one direction, 9, be of one 

wavelenth, A, and have random phase, 6. Horizontal wave velocities at  a given point, 

2, along beam 1, are given by 

cosh (kz) 
fi@) = Aw(cos 9) cos(kcos9x + ksin9y - w t  + Q), 

sinh(kh) 

cosh (fez) 
; ( 2 )  = Au(sin 0) cos(k cos Ox + k sin Oy - wt + Q), 

sinh (kh) 

where A is the amplitude of the wave, u is the frequency, k = 2v/\ is the wavenumber, 

2 is the height above the ocean floor, and h is the depth of the water. The dispersion 



relationship is given by 

where g is the accleration of gravity (9.81ms2). The vertical wave velocities at the 

same point along beam 1 are given by 

sinh(kz) 
fi3(X) = Aw cos(k cos OX + k sin Oy - u t  + Q), 

sinh (k A) 

The space-time wave correlations for two points along beam 1 are then, 

= A2u2 (cos2 O) cOsh?&J~~~(kzb) E [cos (k cos Oxa + k sin O ya - wta + Q) 

cos(k cos Oxb + k sin Oyb - utb + Q)] 

C O S ~  kza sinh(kzb) 
= A2u2(c0s O) <nÃ£>(kh E [ C O S ( ~  cos exa + k sin Oya - uta + Q) 

sinh kza cosh(kzb) = (cos ') (sinÃ (kh)  E[sin(k cos Oxa + k sin Oya - wta + Q) 

~os (kcos8x~  + ksinOyb - wtb + Q)] 

sinh k ~ a  cosh(kzb) = - A2u2 (COS 0) (sin22 (kh)  (i sin(k cos 0(xb - xa) + w(tb - ta)) 

(8.7) 

fi33(Sa,ta,&,ta) = E[us{3a,ta)fi3(?b,tb)] 
- - ~2~ 2 sinh(kza) sinh(kzb) 

sinh2(kh) E[sin(k cos Oxa + k sin Oya - wta + Q) 

- sin(k cos exb + k sin ffyb - utb + Q)] 

The final line of equation equation was obtained by evaluating the expectation. 

This was done using standard trigonometric identities such as cos A cos B = i((cos(A+ 



B) + cos(A - B)). The cos(A + B) term has a random phase of 2Q, which integrates 

to zero (since Q has a uniform probability distribution). In the cos(A - B) term, the 

Ay terms disappear along beam 1 (just as the x terms would disappear along beam 

2)- 

Generalizing then, 

where 
D&) = {cos(~),sin(-),l}, i =  {1,2,3} 

F.( - )  = {cosh(.),sinh(*)},t={(l,2),3} 

k = (k cos 9, k sin 6) 

A t  =(Ax,Ay) 

T = At 

8.2 Random Sea State 

To create a random sea surface state, various canonical spectrums may be used de- 

pending on which best reflects the region where work is being done. The Pierson- 

Moskowitz Spectrum represents a fully devloped sea state, and will suffice for the 

purpose of this thesis work. 

The construction of a random sea state is straight forward. The amplitude at each 

frequency is just the square root of the spectrum at each frequency multiplied by the 

sampling interval. In addition, random phases are assigned. 

w2 -ftg*I4 P-M Spectrum = A(wJ = ~ 5 - e  
'4 

where a, 6, and w, are constants determined by wind speed and other factors, and g 
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Figure 8-1: The Jonswap and Pierson-Moskowitz spectrums compared against the 
wave spectral density of data taken from the Martha's Vineyard Coastal Observatory 
array setup. The Jonswap spectrum is unable to match the data a t  low frequencies, 
whereas the Pierson-Moskowitz spectrum is unable to accurate represent the higher 
frequencies. 

is gravity. 

Amp = Am = /* 
where dw = 27~df, and l/\/Tiv is a normalizing factor that arises for discrete sampling 

of the spectrum. 

(2) = xm A ~ W ~ ( C O S  0) smh(fcm/i) C O S ( ~ ~  cos OX + km sin Oy - wmt + e m )  
"(2) = -wm(sin 8) a cos(km cos ex + km sin 8y - wmt + e m )  (8-13) 

c0s(km cos OX + km sin 89 - wmt + e m )  "(2)  = ' L m ^ m ~ m  .rnUkrnh} 

When looking to find the wave correlations, it is important to remember that 
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Figure 8-2: The Bretsneider and Ochi spectrums are shown to be comparable to the 
Pierson-Moskowitz spectrums. 

two sets of waves at different frequencies and different phases are uncorrelated. The 

result is that the correlation structure is now the sum of many small correlated sets 

of waves. 

Looking along beam 1, 

= E [(xm Amwm(c0s 6) c0s(km cos 6~~ + km sin 6ga - ~ m t  + em)) 

(zn A ~ ~ ~ ( C O S  6) cOs(kn cos ex, + kn sin &yo - WJ + en))]  
2 2 cash kmza cofih kmzb) 

4 

= Em=n AÃ£(^, (c0s2 6) ( (5 C O S ( ~ ~  A? + UT) .  

(8.14) 
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Figure 8-3: Power spectral densities of the simulated random sea and multidirectional 
sea. The data was generated by using random phases and setting the amplitude equal 
to the square root of the prescribed spectrums. 

Generalizing then, 

A i u i  
Rj(afa, ta, 2 b ,  ta) = Y, 

sinh2(kmh) 
~i (e)Dj ( e ) ~ . ( k m ~ ~ )  ~ j ( k d b ) ~ ~  (km Aaf + UT) 

8.3 Waves originating from many directions 

A more realistic sea state will have waves originating from many directions. At each 

frequency, the random amplitude can be smeared over a wide range of angles by 

multiplying it by a Gaussian distribution which is peaked in one direction, and has 

a standard deviation of any chosen directional spread. Adding a second distribution 

peaked in a different direction will make it is possible to simulate waves coming from 

two different sources. The amplitude must be normalized over the spread so that the 

integrated amplitude will have the same characteristics as the original spectrum that 

represents the sea state. 

Letting be the first main direction of incoming waves, and O2 be the second 



main direction of incoming waves, the directional spread will be 

1 1 
NormConst [Jse 

where NormConst is the constant that causes the distribution to integrate to 1. The 

variances, a; and cri, control the influence of waves near the main directions. 

Re-examining the correlation equations, all that changes is that the amplitude and 

phase are both a function of frequency and direction, A(w, 0), and 0(w, 8). Waves at 

different frequencies and different phases are uncorrelated, so the result is that the 

correlation structure is now the sum of many small correlated sets of waves. Given 

the horizontal and vertical velocities, 

cosh(km Z )  

h (5) = E 6 E m  Am,@m ( ~ O S  8) sinh(km C O S ( ~ ~  cos OX + km sin 89 - wmt + erne) 

"(5) = E 0 Em A ~ , ~ w ~ ( s ~ ~  8) a cos(km cos to + km sin 83 - ~t + em,(i) 
cos(km cos OX + km sin 8y - wmt + fi3 (5) = E ̂  E m  A m , ~ n  h)  

(8.17) 

Looking along beam 1, 

& ( ~ a ,  (a, Xb, tb) =E[fil(za, ta)G(?b, tb)] 

= E [(Eel Em A ~ , ~ , W ~ ( C O S  8 ' ) w  C O S ( ~ ~  cos 8'xa + km sin O1ya - wmt + @m,ol)) 

I ^ cOs(kn cos 8"xa + kn sin 8"ya - ~ n t  + ~ n , e l l ) ) ]  ( ~ ~ l l E n A n , ~ ^ n ( c ~ ~ e  ) 
-# 

- ~2 w2 (cos2 0) c0sh(km2a) CW^~) 1 cos(fcm . ~5 + wr) - Ee=e~=e~~ Em=n m , ~  m sinh2 (km h)  ( 2  

(8.18) 

Generalizing then, 



8.4 Multiple Events 

Sometimes there are multiple sources of waves. For example, a storm in a far away 

location can send in waves, which then combine with the waves generated by the local 

conditions. When this occurs, each source is given its own spectrum, and the overall 

effect is the linear combination of them both. In the equations already presented, the 

amplitude can be modified as follows: 

This then gives a lot of flexibility in designing the ocean state. 

JONSWAP wave spectrum 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 0.2 0.4 0.6 0.8 1 
Frequency (Hz) 

Pierson-Moskowitz Spectrum (Wind Speed) 
. . . . . . . . . . . . . . . . . . . . . . . . .  ; .  . . . . . . . . . . . . . . . . .  

u 
0 0.2 0.4 0.6 0.8 1 

Frequency (Hz) 

JONSWAP wave spectrum 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-50 1 , 
0 0.2 0.4 0.6 0.8 1 

Frequency (Hz) 

Pierson-Moskowitz Spectrum (Wind Speed) 
0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-50 1 8 

0 0.2 0.4 0.6 0.8 1 
Frequency (Hz) 

Figure 8-4: Independent events can be represented by individual spectrums. In gen- 
eral, the Pierson-Moskowitz spectrums can be determined by wind speed or by sig- 
nificant wave height. 



Chapter 9 

Wavenumber-Frequency Spectrum 

Analysis of Radial Velocities 

It is difficult to separate the wave induced velocities from the turbulent fluctua- 

tions, since they share common frequencies and wavenumbers. However, as the two 

processes are different, it might be possible to exploit a differences in their joint 

wavenumber-frequency spaces. The basic idea is that the wave induced velocities are 

subject to the dispersion relationship, given by 

while the turbuelent fluctuations are adverted by the current and should follow a 

linear dispersion relationship (which is Taylor's R-ozen Turbulence theorem). 

However, it's their radial wavenumber-frequency spectrums which are of concern, 

since the ADCP only detects radial motions. In addition to the effects of combining 

horizontal and vertical velocities to form the radial velocities, natural filtering of wave 

induced velocities occurs with increasing depth in the water column, and ADCP signal 

transmission and subsequent processing introduce filtering effects. 



Dispersion Relationship vs. Taylor's frozen turbulence relationship 
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Figure 9-1: The expected separation of wave induced velocities from turbulent fluc- 
tuations in the wavenumber-frequency domain, using w2 = gktanh(kh) and w=vk 
respectively. 

9.1 Natural filtering of wave-induced velocities 

When solving the linearized wave equations, one of the general assumptions is that 

very far from the disturbance of the surface waves the water is still. In physical terms, 

that means there is a natural damping effect which attenuates both horizontal and 

vertical velocities. 

In addition, the boundaries of the air-sea interface and the ocean bottom impose 

restrictions on the motions of the water. At the air-sea interface water motions follow 

the surface waves, but the ocean bottom suppresses vertical motion entirely. This is 

because it is a solid interface, and water does not penetrate through. Therefore, there 

is attenuation with increasing depth. Horizont a1 velocities do not attenuate as quickly 
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Figure 9-2: The water column acts like a low pass filter in both frequency and 
wavenumber. The attenuation in velocities is given in dB relative to waves having an 
amplitude of 1m on a surface that is 13 meters above the ocean bottom. 

as vertical velocities, for there are no horizontal boundaries to impose constraints. 

horizontal velocity attenuation: 
sinh(kz) vertical velocity attenuation: sinhdfch) 

(9.3) 

What makes water depth act like a natural low pass filter is that higher frequencies 

and wavenumbers attenuate much more quickly than lower ones. In addition, for very 

low wavenumbers and frequencies, where kh << 1, the water is considered shallow 

and interaction with the bottom causes attenuation. The various types of attenuation 

can be seen in the above figure. 



9.2 Transforming the radial wave-induced veloci- 

ties 

The radial velocity can be written in polar coordinates, 

using the following transformation of coordinates: 

where <^> is the tilt of the ADCP beam from the vertical, -y is the counter clockwise 

angle of rotation about the z-axis, r is the radial distance, and z, is the height of the 

ADCP above the ocean bottom. The wavenumber-frequency spectrum is found by 

taking the mult i-dimensional Fourier Transform. 

Since the radial velocity is a linear combination of horizontal and vertical velocities, 

the Fourier transforms may be handled componentwise. 



where 

A , W o  = Ai (wo,4, 0) 

Bus = ko cos(+) ( 9 4  

Cwo = ko sin(+) (cos (6)  cos (7) + sin (0) sin (7)) 

and ko is related to wo by the dispersion relationship. The Fourier transforms are as 

follows: 

= -m [ejew + e- je-w 1 k' cosh(kWzs)- j Bw ~ i n h ( k ~ z ~ ) - e - ' j ~ ' ~ [ k '  cÂ¡8h(k zs+ B&)- B~ sinh(kw zs+Bw R)l 
9 I'*/ (k'I2+B2 

R o o  & =so [J?~ ̂>,wO sinh(Bwor + kozJ sin(Cwor - wet + ~ ^ ) d w ~ ]  e-^-^dtdr 
R o o  

=so Lon Â  sinh(Bwo r + ko%) 

. [- jd (cwor+e~o)<$(~  - + jwe-j(cwo~+ewo'><$(w + Ae- jk rh0d r  

=sf A3,,. sinh(Bwr + kwzs) j m - e ' 6 w  + e-je-w ]e-jkr dr 

where k' = k - C, and the transformed component fl, = ii@, w, 4,7,0,zs). It is 

worthwhile to pick a specific case, such as when beam 1 of the ADCP points along 

the the x-axis (7 = 0). This lessons the need for using all nine components of the 

transformation tensor. In this case, only four components are needed, and the radial 

wavenumber-frequency spectrum for beam 1 is calculated as follows: 

The expectation is over the random starting phase 6, which is independent and 

identically distributed, with a uniform distribution from -TT to TT. As a reminder, 



Ow + O-,.,. The various iterations of the expectation portion of the four transformar 

tion tensor components are as follows: 

for E[tiltif]: E[($'w + e-jg-w) (e-j9w + g g - w  )I =E[2 + 2 COS(@~ + Q-w)]=2 

for E[ci&';]: E[(~J'@- +e-3e-w)(-e-jew +&-w )] =E[0 + 23 sin(@w + e-w)]=O 

for E[ti3fiT]: E[(-$'- + e-je-w) (e-jg-' + &-w )] =E[0 - 2 j sin(Ow + (iXW)] =0 

for E[ii3fi;]: E[(-ejgw +e-jg-w \(-e-je~ + $9-w )] =E[2 - 2 cos(OW + Q-w)]=2 
(9.11) 

Finally, the transformed transformation tensor components are as follows: 

Holding frequency w fixed and setting the derivative of E[lCBl (k, w ,+, 7,9,zs) 12] with 

respect to k equal to zero, the maxima can be found. The derivative is zero when 

k' = 0, and this is certainly a maxima because the denominator is minimized. Then 

examining k - Cw = 0 provides insight into how the dispersion relationship is affected 

by looking radially through the water. 

kpr = kw sin(+) [cos(O) cos (7) + sin(9) sin (711, (9.13) 

where kpr is the peak radial wavenumber and kw is the wavenumber given by the 

dispersion relationship. The term in braces is a unit vector dot product of the wave 

direction (0) with the beam direction (7), and determines whether wavenumbers 

can be seen by this component. For example, pointing the beam orthogonal to the 



Figure 9-3: The wave dispersion relationship collapses to the frequency axis as the 
beam leaves the horizontal and approaches the vertical. 

direction of the waves will cause km. = 0, meaning no wavenumbers will be seen (and 

only frequencies will be detected). Likewise, pointing the beam in the direction of the 

waves will potentially allow all frequencies and wavenumbers to be seen. Likewise, 

the full dispersion relationship is seen when the beam is horizontal (6 = 90 degrees), 

and it collapses to km. = 0 when it is pointed directly overhead. 

The other critical factor is that of radial range, R. Time is basically unlimited 

(or at least as long as stationarity of statistics holds), but the range is limited by the 

location of the ADCP, the tilt of the beams, and the frequency of transmission. Point- 

ing the beams of the ADCP toward the ocean surface or bottom sets the geometrical 

limits R to (surface height)/ (cos 4), while amplitude attenuation sets the absolute 

limits of R should the sound beam not be limited geometrically. The main effect 

of limiting the range is to cause a window effect, which causes spectral averaging or 

smearing. This results because limiting range is equivalent to multiplication with a 



Horizontal beam at surface with 15 meter range Horizontal beam at surface with 30 meter range 

Horizontal beam at surface with 50 meter range Horizontal beam at surface with 100 meter range 

Figure 9-4: Shortening the length of the radial beam causes reduced resolution and 
smearing in the radial wavenumber domain. 

square window function in the spatial domain, which translates to convolution with 

a sine function in the wavenumber domain. However, the combination of components 

are not quite that simple, as figure 9-4 illustrates. 

9.3 Averaging Effects of the ADCP 

In addition to the natural filtering that occurs with depth, the ADCP adds it's own 

source of filtering due to signal transmission. When the ADCP sends out a pulse of 

sound, it ensonifies a volume of water at any given instant. As sound scatters back 

towards the ADCP, the front of the pulse has a chance to overlap with the tail end 

of the pulse. This causes the receieved signal to be a summation of all the echos 

in whatever volume of water is ensonified. This averaging has the effect of acting 

like a low pass filter, so that higher wavenumbers are removed. Now it is not a 



Bottom sitting. UPWARD looking ADCP, 20 deg beam tilt 

RD looking A m ,  20 deg beam tilt 

Figure 9-5: The positive quadrant of the predicted wavenumber-frequency spectrum 
for and ADCP with beam tilt of 20 degrees. Both upward (ADCP sitting on ocean 
floor) and downward (ADCP on ship at surface) perspectives are provided. 

simple averaging, in that the volume has a conic shape, and the various wavenumber 

components are averaged differently. 

Secondly, the ADCP performs range cell averaging (spatial) and ping averaging 

(temporal) in an attempt to reduce the velocity estimate error. This also has the 

exact effect of acting like a low pass filter in both wavenumber and frequency space. 

The end result is that higher wavenumbers and frequencies should not be aliased on 

the return signal. 



I., 

Figure 9-6: A simulated radial wavenumber-frequency spectrum (top) for 20 realiza- 
tions of data (top left) and 1 realization (top right). Beneath are the true spectrums 
from data taken from the Martha's Vineyard Coastal Observatory. Intensities are in 
( m / ~ ) ~ *  

Comparison of Real and Simulated Data 

Figure 9-6 shows both simulated and real ocean radial wavenumber-frequency spec- 

trums. All four quadrants are shown (whereas in previous figures only the positive 

quadrant was shown). It is clear that the waves dominate a localized region, whereas 

the turbulence is more evenly distributed. It is also satisfying that the simulated data 

has spectral characteristics similar to the real data. 



Figure 9-7: The radial wavenumber-frequency spectrum for a simulated turbulence. 
When the ADCP is pointed near horizontal (top), the wavenumber-frequency dis- 
tribution of the turbulence falls on the predicted slope due to it's advection with 
the mean current. As the beam angle points more to the vertical (bottom), the 
wavenumber-frequency spectrum is diffused as the beam seems to see random eddies 
passing through. 

Radial turbulent velocities 

Figure 9-7 demonstrates the advection of turbulence with the mean current. The 

slope is predicted by w = vk, which is what Taylor's frozen turbulence approximation 

would predict. As the ADCP beam angle points more toward the vertical, it sees 

more random fluctuations passing through, and the wavenumber-frequency spectrum 

is diffused. 

It is apparent that there is overlap with the wave spectrum in the central region of 

the spectrum. That is what makes this problem of separating the wave and turbulence 

processes so difficult. The theoretical space-time correlations should help in solving 

this problem. 





Chapter 10 

Estimate Error Prediction and 

Analysis 

With statistical models now developed for the turbulence, wave, and error processes, 

it is now possible to see how model parameters effect the error in the estimates of 

Reynolds stress. Section 10.1 matches the turbulence models to the data obtained 

from an ADCP located at the Martha's Vineyard Coastal Observatory. Section 10.2 

talks about the specific parameters that are used in the turbulence, wave, and error 

processes, and the sections that follow explore how specific parameters affect the 

error. Section 10.9 explores how using mean squared error estimates of the turbulent 

fluctuations can aid in analysis. In addition, specific equations for analyzing the effect 

of changing parameters on a tilted ADCP are presented for further investigation. The 

conclusion is that these statistical models work well in representing the features of 

the real profile estimates of Reynolds stress, and unfortunately reveal the profile to 

be dominated by error. 



Beam 1 space-time contour centered at zd.61 m 
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Figure 10-1:  Radial space-time correlations for the data (first plot) and the turbulent 
shear model prediction (second plot) at locations along beam 1 of the ADCP. 

Beam 1 space-time contour centered at z=2.5rn 
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10.1 Matching turbulence models to the data 
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Each of the different turbulence models works best to represent the space-time cor- 

relations of the data at different ranges. The turbulent shear model works best up to 

about 3 meters from the bottom, and can be seen in figure 10-1. The time-evoloving, 

homogeneous, isotropic turbulence model with the exponential approximation for f(r) 

(see section 6.4) works best in the range from 3-5 meters above the ocean floor, as 

seen in figure 10-2. Finally, the t ime-evoloving , homogeneous, isotropic turbulence 

model with the Gaussian approximation for f(r) (see section 6.4) works best above 5 

meters from the ocean floor, as seen in figure 10-3. 
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Beam 1 space-time contour centered at z=3.61 m Beam 1 space-time contour centered at z=3.5m 
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Figure 10-2: Radial space-time correlations for the data (first plot) and the time- 
evolving, homogeneous, isotropic model prediction using the exponential approxima- 
tion for f(r) (second plot) at locations along beam 1 of the ADCP. 

10.2 Matching model parameters to the ADCP 

data 

The parameters that determine the model characteristics for the turbulence, wave, 

error, and estimation processes are listed in this section, and have been set to match 

conditions of the ADCP that is stationed at the Martha's Vineyard Coastal Obser- 

vatory. The sections that follow examine how changing these parameters will effect 

the error in the filtered Reynolds stress estimate. 

Turbulence Parameters 

MVCO-profiles current profile (shear) 

v, vaxphi current speed and direction 
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Figure 10-3: Radial space-time correlations for the data (first plot) and the time- 
evolving, homogeneous, isotropic model prediction using the Gaussian approximation 
for f(r) (second plot) at locations along beam 1 of the ADCP. 

Wave Par meters 

wave-directions= [l7O 230 ] ; 

multidirectional= true; 

water depth (m) 

Significant amplitude (m) 

Alternate to sig amp (m/s) 

Spectrum: Pierson-Moskcowitz 

(geo) direction, waves coming FROM each event 

directional spread of waves 



ADCP Error Parameters 

ADCP general parameters 

Estimation Parameters 

Wavelength-Bandwidth product (m/s) 

Transmit frequency (Hz) 

Speed of sound in water (m/s) 

Bin size (m) 

Radial spacing (m) 

Sampling rate (Hz) 

Averaging period (s) 

beam3 heading (geographical) 

beam3 higher than beam4 (pos) 

beam2 higher than beam1 (pos) 

beamangle (degrees from vertical) 

height off bottom (m) 

distance where attenuation dominates (m) 

upward looking 

max time lag (s) 

time lag spacing (s) 

selected beam locat ions 



10.3 Fixed parameters 

There are a number of parameters which are fixed by virtue of the fact that the 

ADCP at the Martha's Vineyard Coastal Observatory has a fixed set of parameters. 

It operates at  1200 kHz, pings at 2 Hz, has a bin size of about 0.5 m, and collects 

data for intervals of 20 minutes. In addition, its heading is 289 degrees (which is the 

direction beam 3 points in), and has a pitch of -6.3 degrees (beam 3 dips below beam 

4), and a roll of 0.5 degrees (beam 1 dips below beam 2). The ADCP is seated on 

the ocean floor, under about 13 m of water, and its beam tilt has been factory set to 

20 degrees from the vertical. 

10.4 Typical parameters 

There are a number of parameters which represent well the general conditions of 

the ocean environment where the ADCP is located. The ADCP is located on the 

south shore of Martha's Vineyard, and so the waves typically come from the south, 

south-east, and south-west. The Pierson-Moskocowitz spectrum represents the data 

well, with the addition that there can be multiple sources (multiple events), and that 

the waves can have a directional spread around the main incoming direction. The 

wavelength-bandwidth product for typical conditions in which the data is evaluated 

is about 5 cm/s, and the significant amplitude of the wave process is about 1.4 m. 

Current speeds vary from about 0.1 m/s near the bottom, to about 0.3-0.4 m/s in 

some upper regions of the water column. 

As discussed previously (see section 4.10), the error variance given the fixed pa- 

rameters of this ADCP (frequency, bin size, averaging time, and wavelenth-bandwidth 

product) is very small. In fact, only when decreasing the averaging time to under 2 

minutes does the error variance have an overall effect on the estimate error. 

When using locations on the same beam to make the estimate, the time lag does 

not need to be any longer than 2 seconds, but when using additional locations on 

other beams, the time lag needs to be longer for to account for the beam separation. 



Effect of varying w i d s p e d  on the estimate error 
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Figure 10-4: Surface wind speed variations from 1 to 30 m/s, and the resulting effect 
on the estimate error. 

10.5 Effect of varying the wind speed on the esti- 

mate error 

Parameter changes: wave-directions= [I 70 1, multidirectional=false 

tau=l5, windspeed= 1:30 

Figure 10-4 shows that increasing wind speed at the ocean surface has minimal effect 

below about 4 meters, but has significant effect in the midrange. When wind speeds 

are less than 13 m/s (just slightly less than the typical 15 m/s for this data set), the 

error in the Reynolds stress estimate is less than 0.05 N me2, indicating wind speed 

(or equivalently significant amplitude) will not be significant. However, above 13 m/s, 

the error increases rapidly, and the error in the estimates is of the same magnitude 

as the estimates. 





Effect of changing the incoming wave direction on the estimate error 

Figure 10-6: Varying the direction of the incoming waves from 230 degrees to 140 
degrees, while increasing the number (to 3) of beam locations used to make the 
coherent estimate, and the resulting effect on the estimate error. 

10.7 Effect of using three beam locations in the 

estimation process, on the estimate error 

Parameter changes: multidirectional= false, t au=5, wave-direct ions=240:-5: 140 

Figure 10-6 shows that using multiple beam locations in the estimation process 

greatly minimizes the effects of other parameters. However, above 4 meters for esti- 

mates on the roll axis, and above 6 meters for estimates on the pitch axis, the error 

in the estimates is still too large. Near the surface the error appears to decrease. 

This is actually the result of the estimation process correctly removing wave induced 

velocities from each beam, but also (unwantingly) removing turbulent induced ve- 

locites from each beam (see section 10.9, 'Additional Analysis Tools', for further 

explanation). 



Effect of changing the source direction of multidirectional waves on the estimate error 
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Figure 10-7: Varying the source direction of multidirectional waves, from 230 degrees 
to 140 degrees, and the resulting effect on the estimate error. These error profiles 
generated from the models have features similar to that of the Reynolds stress profiles 
generated using real ADCP data, as seen in figure 3-6. 

10.8 Effect of varying the source direction of mul- 

tidirectional waves on the estimate error 

Parameter changes: tau=5, wave-directions=2 10:-20: 140 

Figure 10-7 shows that changing the source direction of incoming ways has little 

effect when the waves already have directional spread. Secondly, the profile has 

features similar to that of the actual estimated Reynold stresses using the filtered 

ADCP data (see figure 3-6), indicating that the multidirectional wave spread model 

is quite good at representing the real process. Since the error profile is similar to the 

profile of the estimates of Reynolds stress, that would mean the profile of Reynold 

stress estimates is equivalently an error profile, and there its estimates are suspect. 



10.9 Additional Analysis Tools 

As was seen in figures 10-4, 10-5, 10-6, and 10-7, the error of the estimate of the 

Reynolds stress is close to zero near the ocean surface. This results when both wave 

induced velocities and turbulence induced velocities are removed when forming the 

estimates of the variance of radial turbulent velocities in each beam individually. 

Wave induced velocities near the surface have additional (higher) frequencies than do 

wave induced velocities deeper in the water column (which have been filtered out - 

see chapter 9). To successfully remove these wave induced velocities, other locations 

with similar space-time content must be used, restricting spatial and temporal lags to 

be small. However, that violates the need for spatial and temporal lags to be large so 

that turbulence induced velocities are independent at separate beam locations. Near 

the surface, it is very difficult to strike the balance of removing as much as possible 

of the wave induced velocities, while removing as little as possible of the turbulence 

induced velocities. The fact that the plots show near zero error in the Reynolds 

stress estimates is a clue that this balance was not successfully met, and can further 

be verified by looking at the error in each beam individually. 

For example, figure 10-8 shows the decomposition of the error in the estimate 

of the Reynolds stress, from the first plot of figure 10-6, into individual covariance 

estimates of the variance of radial turbulent velocities for opposing beams 1 and 2. 

The covariance estimates becomes negative when both wave induced velocities and 

turbulence induced velocites are being removed. The variance of the turbulent process 

is approximately 4.4 l o 4  ( m / ~ ) ~ ,  so that when the negative of this value is reached, 

all of the turbulence induced velocities have been removed. Figure 10-8 reveals that 

this occurs in beam 1 after about 8 meters from the bottom, and in beam 2 closer to 

the surface. 

Another issue is that covariances have the potential to be positive or negative, 

and when the final term in equation 3.33 is larger than the first two terms, the 

error is negative. That means that there is the possibility that the overall error of the 

estimate will be zero, even when the turbulent fluctuations are not perfectly predicted. 



Cov(AVAV) error estimates of the variance of radial turbulent velocities 
for two opposing beams, with a change in di 
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Figure 10-8: Covariance error estimates of the variance of radial turbulent velocities 
for two opposing beams, with a change in direction of oncoming waves. The variance 
of the turbulence process is approximately 4.4 l o 4  ( r n / ~ ) ~ ,  and its negative value 
gives the minimum d u e  of the covariance estimates. 

To know when the error is zero because the turbulent process is well predicted rather 

than when the different terms all sum to zero, the mean squared error of the turbulent 

fluctuations can be used as a point of comparison. 

From the models, it is also possible to determine directly the effect that beam tilt 

has on the error of the estimate. In this case, the actual statistics of the tilted ADCP 



will be denoted by Ryy and Ryx, whereas the supposed statistics will be denoted 

by Ryy and Ryx. Now, the two estimates of the Reynolds stress, cov(vx, Avx) and 

cov(Avx, Avx), will be different. The optimal linear least squares estimate of the 

coherent components of of vx is (see equation 3.26) 

and the incoherent estimate is given by equation 3.29, so that 

whereas 

A 

Vi,, (fa, t)Vgl (fa, t )  = COV(AV~, Avx) 

= + A V ~ ~ A V ~  
1 = Â¥iv(v - Vx)'(vx - Vx) 
1 T T A  T A  = Tv [vx vx - 2vx vx + vx vx] 

=Rxx(O) - 2RXy(Ryy)-lRyx + ~ x y ( ~ y y ) - l ~ y y ( ~ y y ) - l ~ y x .  

0 

(10.4) 

When there is no beam tilt, Ryy = Ryy, Ryx = hx, and then once again cov(vx, Avx) = 

cov(Avx, Avx). Finally, when considering the mean square error of the estimate of 

the turbulent fluctuations (expanding the 4t h equality in equation 10.1) , 



Whereas section 2.2 dealt with the error due to beam tilt in a general sense, equa- 

tions 10.3, 10.4, and 10.5, allow for the effects that beam tilt has on the error to be 

determined as the model parameters are changed. 

10.10 Conclusions 

The three models of turbulence, shear, exponential, and Gaussian, together do a 

reasonable job of approximating what is likely the actual turbulent process. The 

wave process is best represented by a multidirectional wave spread, and when used 

with the turbulence models, the predicted profiles of the error of Reynolds stress 

estimates has similar features to the profiles estimated from real ADCP data. This 

also indicates that the profiles resulting from the use of real data are revealing inner 

error mechanisms. Wind speed (or equivalenty, significant amplitude) is a significant 

part of the error when a certain threshold is crossed. Using multiple beams locations 

in the estimation does reduce the overall error, but knowing which locations to choose 

is challenging. When improperly chosen, both the wave induced velocities and some 

of the turbulence induced velocities are removed, lessoning the overall magnitude of 

the estimates of Reynolds stress (as seen in the near surface estimates). 

One of the issues of using covariance estimates is that they can be positive or 

negative, and the zero crossing point may not reflect perfect estimation. Looking at 

the mean squared error of the turbulence estimates helps to determine when the low 

error in the estimates of Reynolds stress is a result of good estimation. 

Finally, it is possible to determine how changing the model parameters on a tilted 

ADCP effect the error of the estimates of Reynolds stress by taking into account the 

statistics that represent the tilted ADCP. 



Chapter 11 

Ocean Simulator and ADCP Signal 

Generator 

As the previous chapters have given methods on how to simulate various turbulent 

flows and a variety of ocean states, this chapter will present signal transmission and 

reception of the ADCP. Then the full simulation process is complete. Flows can 

be generated, sonar signals received, and then algorithms for estimation applied for 

evaluation. The significance of having simulated the whole process is that there is full 

knowledge of each of the processes, whereas in the ocean all processes are combined. 

On the other hand, the models presented in this thesis do not represent the more 

complex nonlinear or coupled processes within the ocean. It is a start. 

11.1 ADCP - Ocean Signal Generator 

The velocity field for both the waves and turbulence can now be simulated, and what 

is needed is to simulate the ADCP signal transmission. The basic idea is to simulate 

transmission, interaction with scatterers, and reception. 

A coded signal will be used for transmission, which can be equally well represented 

by it's spectrum. 

The ocean will be randomly seeded with ocean scatterers, which will be given 

velocities based on their location and the current sea state. 



ADCP - Ocean Signal Generator 

I .  Create transmit signal 
(600 kHz, Barker Codes, 40 ms) 

2. Look at frequency spectrum that 
scatterer receives to weight frequencies 

3. Determine angle between ACDP 
and each scatterer 

4. Apply scatter field equation for each 
weighted frequency, for each instant, 
for each scatterer 

5. Received signal for that time 
instant is superposition of all 
scatterer echo returns 

6. Repeat for next time step 

Figure 11-1: The received signal is a result of the scatterer location and velocity, ran- 
dom phase, and a range of frequencies due to the broadband nature of the transmitted 
pulse* 

An analytic equation will be used to apply the appropriate Doppler shift for each 

frequency of the broadband signal that a scatterer encounters, and will account for 

signal attenuation based on travel distance. 

The scatterers location will then be changed based on it's velocity and the timestep 

used, and the process repeated. 

The final received signal will be a supposition of all received scatterer returns, 

with variable arrival times accounted for. 



Transmitted Signal & Frequency Equivalence 
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Figure 11-2: The coded pulse and short duration lead to a range of frequencies being 
transmitted. 

Frequency Generator 

Figure 11-2 shows the effect of transmitting a limited duration pulse. For example, 

a standard Barker Code is repeated twice on a 600 kHz carrier signal, leading to a 

range of frequencies. To simulate this effect, the sound must be transmitted at each 

of the peak frequencies, so that the scatter response off the small ocean organisms 

will be accurate. 



b - 
s Scatterer Model 

1 crn " 

Euphasiid Pteropod 

Distribution: Randomly scattered with set density 

Orientation: Random 

Scattering important: 
Transmission wavelength on order of size of scatterer 

Approximation: 
Point scatterer with random complex amplitude 

Location Updater: (using very small time steps) 

i&,t + At) = ̂ ( f i , t )  + !T(fi,t) - A t  

Figure 11-3: The size of the ocean organisms can be on the same scale as the trans- 
mitted wavelenths, which means their scatter patterns are changing and complex. In 
the simulator, organisms will be assigned random locations, and then their locations 
tracked with the surrounding flow. The generated signals will interact with them at 
whatever is ther current location. The graphics are used with permission from RDI. 
PI 

11.3 Ocean Scatterers 

The ADCP works on the assumption that small ocean organisms, in particular cope- 

pods, euphasiids, and pteropods, float passively with the currents. A 150 kHz ADCP 

sends pulses with wavelength of 1 cm, while a 1200 kHz ADCP sends pulses with 

wavelength 1.25 mm. These wavelengths are on the order of the size of the organ- 

isms, and therefore scattering is important. However, in this thesis the scatterers 

were approximated as point sources with random complex ampltitudes, and in gen- 

era! the superposition of the echo response of many scatterers can be characterized 

by a complex Gaussian random variable. [22] 



Velocity Field Simulator for Scatterer Motions 

Surface Wave meld 

u(F, t )  = Aw mh(k(z + A)) 
sinh(kh) 

c w ( k x  - w t )  

Turbulent field 

u( f ,  t ) = Urn- + fluctuations 

v(?, t )  = w(?, t )  = fluctuations 

Figure 11-4: Motions highlighted for a few selected scatterers within one beam path 
of the ADCP in monochromatic waves. 

Scatterer Motions in the ADCP Beam Paths 

The general area around the ADCP is seeded with scatterers, and their locations 

recorded. Those scatterers that fall within the beam path will then be selected to 

interact with the transmitted signal. Their velocities are the combination of both the 

wave field and the turbulent field. 

At each time step the scatter locations are updated. Certain scatterers will leave 

the beam path while others enter in. 



Scattering Model with Doppler Shift 

Ocean organism (< lcm) 
moves with water motions 

Scatterer 
velocity 

Doppler-shifted 1 & ( ( r / c )  -0 

scatter field: w ^'Â¥~"=l-i.cos -r c W )  

Doppler-shi fted 
frequency: 

Figure 11-5: The scatterer can be modeled as a point source with random phase. 

Analytic Expression for Scattering Model 

The Doppler-shifted scatter field can be represented by an expression which contains 

an amplt it ude adjustment term, an attenuation term, a Doppler-shif t frequency term, 

and a scatter function term. 

The amplitude adustment term can be ommitted, as scatterer motion has little 

affect on it. 

The attenuation term, zr ,  is based on the distance and frequency of the signal. The 

phase term, expb((rlc)-t), is based on the distance the signal travels to interact with 

the scatterer, though it is essentially offset by the scatter function term, S(9), which 

The Doppler-shifted frequency, w, is for a stationary source and a moving receiver. 

source. 

, 1 ;  - 8 8 

. - 
- - -  8 



Figure 11-6: The received signal is a result of the scatterer location and velocity, ran- 
dom phase, and a range of frequencies due to the broadband nature of the transmitted 
pulse* 

Results 

The covariance technique can be applied to the return signal in order to estimate 

the Doppler shift and therefore the average scatterer velocities per range bin. These 

velocity estimates represent the ADCP measurements, and is what is assumed to be 

the true value of both wave and turbulent velocities combined. The signal processing 

algorithms will then work with this generated data to sort out the signals. When the 

ADCP simulator is unable to accurately represent the true velocities, the algorithms 

will be unable to recover the true velocities. 





Chapter 12 

Conclusion 

The goal of this thesis was to determine if an ADCP could be used to obtain a vertical 

profile of Reynolds stress estimates in the presence of energetic surface waves. The 

main issue at hand is that any sort of beam tilt causes the wave-induced velocities 

to masquerade as Reynold stresses. Even without beam tilt, the variance of the esti- 

mates of Reynolds stress are greatly affected by the wave-induced velocities. Without 

filtering out wave-induced velocities, the best that the ADCP can do is give rough 

approximations of the Reynolds stress. 

Linear least squares filtering was explored as a means of removing the wave- 

induced velocities. Applying this to real ocean data, the resulting estimates of 

Reynolds stress were still noisy. Even in the filtered estimate, an error term ap- 

peared. The vast bulk of this thesis was trying to determine the source of this error. 

The sound transmission process by the ADCP and subsequent velocity estimation 

was examined as one source of error. Many different parameters effect the outcome of 

ADCP measurement error, but upon averaging over many samples, the variance the 

error becomes insignificant when compared with other competing sources of error. 

The main source of error, even in the filtered estimates, is a result of wave-induced 

velocities. The estimates of the variance of the radial turbulent fluctuations are 

influenced by the strength and direction of the surface waves, and the error terms 

in each depend on which way the beams are pointing. Upon forming the estimates 

of Reynolds stress, the error in oposing beams does not cancel out, and therefore 



introduces a bias which can be of the same order of magnitude as the Reynold stresses. 

A great deal of work was done to characterize the turbulence, wave, and error 

processes, so that prediction and analysis of this error could take place. Each of 

these models provide a wealth of information about the space-time structure of these 

processes, and were found to represent the real ocean processes quite well. When used 

for diagnosis, these models produced an error profile that was found to have similar 

features to the profile of estimates of the Reynolds stress using filtered ADCP data. 

The conclusion is that the models worked all to well to reveal that the estimates of 

Reynolds stress from the filtered data are dominated by error. 

With further effort, it may be possible to use the models to find ways of reducing 

or eliminating the error. However, the error profile reveals a complex relationship 

among the model parameters, that may be difficult to unravel. Should this process 

be attempted, the simulation techniques put forth in this thesis should allow for 

validat ion of any estimation algorithm tested. 
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