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Abstract

In this thesis we investigate the ability of the Runge-Kutta Discontinuous Galerkin
(RKDG) method to provide accurate and efficient solutions of the Boltzmann equa-
tion. Solutions of the Boltzmann equation are desirable in connection to small scale
science and technology because when characteristic flow length scales become of the
order of, or smaller than, the molecular mean free path, the Navier-Stokes description
fails. The prevalent Boltzmann solution method is a stochastic particle simulation
scheme known as Direct Simulation Monte Carlo (DSMC). Unfortunately, DSMC is
not very effective in low speed flows (typical of small scale devices of interest) be-
cause of the high statistical uncertainty associated with the statistical sampling of
macroscopic quantities employed by this method.

This work complements the recent development of an efficient low noise method
for calculating the collision integral of the Boltzmann equation, by providing a high-
order discretization method for the advection operator balancing the collision integral
in the Boltzmann equation. One of the most attractive features of the RKDG method
is its ability to combine high-order accuracy, both in physical space and time, with the
ability to capture discontinuous solutions. The validity of this claim is thoroughly
investigated in this thesis. It is shown that, for a model collisionless Boltzmann
equation, high-order accuracy can be achieved for continuous solutions; whereas for
discontinuous solutions, the RKDG method, with or without the application of a
slope limiter such as a viscosity limiter, displays high-order accuracy away from the
vicinity of the discontinuity.

Given these results, we developed a RKDG solution method for the Boltzmann
equation by formulating the collision integral as a source term in the advection equa-
tion. Solutions of the Boltzmann equation, in the form of mean velocity and shear
stress, are obtained for a number of characteristic flow length scales and compared
to DSMC solutions. With a small number of elements and a low order of approxi-
mation in physical space, the RKDG method achieves similar results to the DSMC
method. When the characteristic flow length scale is small compared to the mean
free path (i.e. when the effect of collisions is small), oscillations are present in the



mean velocity and shear stress profiles when a coarse velocity space discretization
is used. With a finer velocity space discretization, the oscillations are reduced, but
the method becomes approximately five times more computationally expensive. We
show that these oscillations (due to the presence of propagating discontinuities in the
distribution function) can be removed using a viscosity limiter at significantly smaller
computational cost.

Thesis Supervisor: Nicolas G. Hadjiconstantinou
Title: Associate Professor
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Chapter 1

Introduction

1.1 Motivation

In dilute gas flows the breakdown of the Navier-Stokes description can be quantified

by the Knudsen number, Kn, defined here as the ratio between the molecular mean

free path A and the characteristic flow length scale [20]. It is generally accepted that

the Navier-Stokes description fails for Kn > 0.1. Flows characterized by Kn > 0.1 are

usually modeled using a kinetic description and the Boltzmann equation (see section

1.2).

The prevalent solution method for the Boltzmann equation is a stochastic particle

simulation method known as direct simulation Monte Carlo (DSMC). Although gen-

erally very efficient, DSMC suffers from a serious disadvantage when used to simulate

low speed flows which are of interest currently. The statistical sampling employed by

DSMC for obtaining macroscopic fields from microscopic data has a slow convergence

rate which makes the cost of simulation of low-signal (low-speed) flows prohibitive.

In this thesis we evaluate an alternative solution method.



1.2 Kinetic description and the Boltzmann equa-

tion

Within kinetic theory, a dilute gas can be described using the single-particle distribu-

tion function f(r', V, t) which is proportional to the probability of a gas particle being

found at (', V) at time t. Here, ' = (x, y, z) is the physical position vector, while

= - (v, vy, v~z) is the velocity space vector. The evolution of the distribution function

is governed by the Boltzmann equation which, in the absence of external forces, is

given by [20, 1] as
+f v f f (1.1)

S[t i (1.1) o

where [] conl denotes the effect of collisions given by a collision integral. The deriva-

tion of the above Boltzmann equation can be found in [6, 18, 20] and shall not be

discussed here. In the interest of simplicity, the full form of the collision integral

will not be given here since it will be treated as a precalculated source term in our

numerical implementation.

1.3 Direct numerical method for the Boltzmann

equation

To address the deficiency associated with DSMC, a particle-like method has been

developed to evaluate the collision integral in [4] as part of a direct numerical method

for solving the Boltzmann equation. This approach has been shown to be both efficient

and accurate compared to DSMC. However, so far little attention has been paid to

the discretization of the advection operator within this formulation. In particular, in

[4] the physical space was discretized with the finite volume method and time was

discretized using a simple splitting scheme. The objective of this thesis is to evaluate

an alternative discretization approach which seems very well suited to the physics of

the Boltzmann equation.

The Runge-Kutta discontinuous Galerkin (RKDG) method [10] provides a very



promising approach for discretizing the advection operator. RKDG is a high-order

method in both physical space and time discretization, and it is effective even in

the presence of discontinuities. In this thesis, we develop and extensively test an

algorithm which adapts the discontinuous Galerkin physical space discretization and

Runge-Kutta time discretization from the RKDG method, and combines it with the

efficient collision integral evaluation method of [4] to formulate a direct numerical

scheme to solve the Boltzmann equation. As we will show, this direct numerical

algorithm is an efficient and accurate method; in particular it is significantly more

effective than DSMC for low-speed flows.

1.4 Thesis outline

In the next chapter we give some background information on the nondimensional form

of the Boltzmann equation, the Couette flow problem, the hydrodynamic fields from

the moments of the distribution function, and the collisionless Boltzmann equation.

The RKDG method is described in chapter 3 from the perspective of solving the

collisionless Boltzmann equation. Chapter 4 demonstrates the application of the

RKDG method to a test problem which admits continuous solutions. This verifies the

high-order accuracy of the RKDG method both in physical space and time. In chapter

5, the RKDG method is applied to a problem in which the initial data and boundary

conditions give rise to an analytical solution that has a discontinuity propagating in

the physical space over time. Successfully applying RKDG on this test problem shall

show that RKDG is effective in solving a discontinuous problem. Finally in chapter 6,

the Boltzmann equation with the collision integral is solved. The approach used here

is to treat the collision integral as a source term. The distribution function advances

in time with a strong stability-preserving Runge-Kutta time discretization scheme.

Conclusions drawn from this thesis and recommendations for future research in this

topic are given in chapter 7.
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Chapter

Background

2.1 Nondimensional Boltzmann equation

In this thesis we use the same nondimensional form of the Boltzmann equation as in

[3].
The nondimensional units, denoted by a superscript *, are defined by the following

relationships

t = t*

f = -fV

f= flf*
;V-f

(2.1)

(2.2)

(2.3)

(2.4)

where f is a characteristic number density, k is the Boltzmann constant, T is a char-

acteristic temperature, d is a characteristic molecular diameter, m is the molecular

mass,

2kT
Sm

(2.5)

is the most probable thermal speed,

(2.6)A =



is the molecular mean free path, and

S=' (2.7)
2 v

is the collision time.

The nondimensional form of the Boltzmann equation

af* , 4n . of* , OfI*]
+ *V (2.8)-t* - 2 r - * 2 ata* * c (2.C)

can be derived by substituting the nondimensional units into equation (1.1).

Since only the nondimensional form of the Boltzmann equation is to be solved in

this work, the superscript * is omitted in the rest of the thesis. We shall also omit

the constant - multiplying the collision integral in the interest of simplicity. This

omission is not to be interpreted as affecting the collision rate, but rather [] conl being

a shorthand for 3 [l] coll. In summary, the nondimensional Boltzmann equation

solved in this thesis is given by

Of +V . f df(2.9)+  v - = - (2.9)
Ot 2 01? dt J

2.2 Couette flow problem

Couette flow refers to the flow between two parallel infinitely large walls in the xy

plane, separated by a dimensionless distance L in the z direction, and moving relative

to one another in the x direction. This flow will serve here as one of the main test

problems of our RKDG solution method because it combines the simplicity of a one-

dimensional problem (gradients in x and y directions are zero) while retaining all

the essential physics of interest. Note in particular that the transient evaluation of

this flow from a rest state to steady state involves the propagation of discontinuities

in the distribution function across the physical space z, making this problem a very

stringent test of the RKDG method. The nondimensional Boltzmann equation for



this one-dimensional problem reads

ot+ cvlz = (2.10)t T lt wal t

The Knudsen number is given by Kn = . The left wall is moving at "uw = -0.1,

and the right wall is moving at Uxrw = 0.1. The associated boundary condition for

distribution function is

( (ve - usiw)2 + + V2
fiw = nexp (- Uw) 2 +  2 v 0

frw = exp (Vx - Urw) 2 + + V'2

frw = fexp - 2+ if vz < 0 (2.11)

where fiw and frw are the boundary conditions of the distribution function at left and

right walls respectively.

The distribution function in the gas at t = 0 is the equilibrium Maxwell-Boltzmann

( + V2 + • •

f = lexp ( + v (2.12)

In chapter 6, we shall present the numerical solutions of the Couette flow problem

using the RKDG method. The RKDG results, in the form of mean velocity and shear

stress described in the next section, shall be compared to DSMC solutions.

2.3 Hydrodynamic fields

In order to assess the RKDG method against the more prevalent DSMC method, we

compare the hydrodynamic fields like the mean velocity and shear stress obtained from

the moments of the distribution functions evaluated by RKDG. The nondimensional

mean velocity for the one-dimensional Couette flow problem is

u(zt) = f vxf(z, · , t)d3 #

f f(z, 5, t)d3i

f v, f (z, v-, t) d Vu(z, t) = fvf(zt)d 0
ff (z, 1, t)d3v

21



u (z, t) f f Vzf(z , , t)d3  (2.13)
UZf(zz, , d - 0 (2.13)f f(z, I, t)d3i

The nondimensional Pxz component of the shear stress is given by

pX (z, t) = f(v - u(z, t)) (vz - uz(z, t)) f(z, I, t)d 3

f Vz (vX - uX(z, t)) f(z, if, t)d a (2.14)

2.4 Collisionless Boltzmann equation

One particularly interesting limit of the Boltzmann equation is obtained when Kn -+

o00, in which the contribution of the collision integral goes to zero, leading to the

collisionless Boltzmann equation given below

Of 8/ Of
S + -vz = 0 (2.15)at 2 az

This equation will be the focus of our investigation in chapters 4 and 5, where the

convergence of the RKDG method is investigated for continuous and discontinuous

solution fields respectively. The collisionless approximation allows one to reduce the

considerable computational cost associated with evaluating the collision integral while

retaining (and, in fact, enhancing 1) the presence of propagating discontinuities that

are central to our investigation.

'The collision integral is generally seen to have a smoothing effect on f.



Chapter 3

Runge-Kutta discontinuous

Galerkin method (RKDG)

The Runge-Kutta discontinuous Galerkin method (RKDG) is a numerical method

very suitable for convection-dominated problems like the advection operator of the

Boltzmann equation, a first-order hyperbolic system in which discontinuities can arise.

The RKDG method has high-order accuracy in both physical space and time. The

discontinuous Galerkin physical space discretization of RKDG allows high-order ap-

proximation even in the presence of discontinuities in the physical space. For time

discretization, Runge-Kutta integration schemes, some of which have been specially

developed for the RKDG method, ensure both stability and high-order accuracy in

time.

When a discontinuous problem is involved in the hyperbolic system, oscillations

can appear around the discontinuities. These oscillations can cause stability problems

to the RKDG method and slope limiters need to be applied to rectify this. In section

3.3, more about slope limiters for the RKDG method shall be discussed.

In this chapter, to illustrate the RKDG method and the usage of slope limiters,

the Couette flow problem is investigated for a single velocity node of i' = (0, 0, v').

The distribution function is governed by the nondimensional collisionless Boltzmann



equation
Of v Of+ V = 0 (3.1)at 2 az

3.1 Discontinuous Galerkin discretization

In this section we describe the discretization of the nondimensional collisionless Boltz-

mann equation using the discontinuous Galerkin method. The addition of collisions

will be described in chapter 6.

3.1.1 Physical space elements

The physical space z is uniformly discretized into n elements of Ij E (zji, zj+),

j = 1, 2,..., n. Each element has length Az = zj+½ - zj and has its mid-point at

zj. Every element is mapped onto a reference element, which has ( = -1 as the left

boundary, and I = 1 as the right boundary, using the following linear transformation

2y(zAz - zj)

z = zj+ý A (3.2)

The derivatives of the linear transformation can be calculated

d< 2
dz Az
dz Az (3.3)d< 2

A distribution function that is restricted at discrete points is denoted by a sub-

script h. The discrete distribution function fh in each element Ij can be mapped onto

a reference element

fh(z) = fhj(J) (3.4)

where z and ( are related by equation (3.2).

The advantage of mapping to the reference element is that many useful numerical



tools like Gaussian quadrature and Legendre polynomials are defined for the reference

element of ( E [-1, 1].

3.1.2 Modal basis

Each element Ij has a local space F(Ij) of polynomials, which can be mapped onto a

local space F(() of a reference element with the linear transformation in the previous

section. In a reverse manner, F(ý) can also be mapped onto F(Ij). The local space

of the reference element is formed by modal basis functions.

The modal basis functions used in the reference element are Legendre polynomials

/ e F(s). Using Legendre polynomials of order 0 to p approximates the distribution

function in the physical dimension z to the order of p [13]. The following are the

Legendre polyonomials of order up to p = 6 for the reference element of C E [-1, 1]

S(()= 1

2 = (32 - 1)
2

3(3) = 1(563 - 3()
2

04(6) = 1(35(4 - 30(2+3)
8

5( ) = -(636_ - 70ý + 156)
8

( ) = 1(23166 - 3156 4 + 105(2 - 5) (3.5)16

Note that the Legendre polynomials always take the following values at the bound-

aries

Skk(-1) = (-1)k

bk(1) = 1 (3.6)



The Legendre polynomials have the orthogonality property [13]

1licjd = bij (3.7)
1 2i + 1

where 6ij is a delta function such that

1, i = j

0, otherwise

Due to the orthogonality of the Legendre polynomials, the following summation

of integrals, where ak is a constant corresponding to Ck, can also be derived for each

order I < p

f1 ak~k () dc = d 2am (3.8)
k=0 m

where m= 1-1, I - 3,...,1 if I is even
1-1, 1-3,...,0 if 1 isodd

The discrete distribution function fhj (ý) mapped from each element Ij can be

approximated by the modal basis functions and their modal coefficients fk up to

order p in the physical dimension using

p

fhAj() = E fVk (k) + O(!Azp ) (3.9)
k=O

where the subscript j and superscript k denote that the modal coefficient is for element

Ij and modal basis function of order k respectively.

Equation (3.9) with the discrete distribution function restricted at Gauss points

g can be projected onto the local space F(6) of modal basis functions for each order

1 1 p
Sfhj(6g) i'(ýg)cd = / 5 j 1 (6g)/'(ýg)d< (3.10)

After simplifying by orthogonality in equation (3.7), the modal coefficients fl for

each I < p can be evaluated from the discrete distribution function using Gaussian



quadrature 1
_21+1f = 2 Wg fhj(ýg)l0'(g) (3.11)

3.1.3 Initialization of distribution function

To initialize the distribution function, the initial distribution function of the Couette

flow from equations (2.11) and (2.12) is restricted at all the Gauss points in the

physical space. The number of Gauss points to be taken in each element is p + 1,

where p is the order of approximation in the physical dimension. Taking p + 1 points

ensures that the discrete distribution function fh is approximated at least to the order

of p, and using Gauss points enables integration with high-order Gaussian quadrature.

By transforming z to ý, the value of the initial distribution function at a Gauss point

(g in a reference element ( E [-1, 1] mapped from an element Ij,

fhj(,o 0) = f zj + , 2 A 0 (3.12)

The initial distribution function that is restricted at the Gauss points can be

converted to modal coefficients with equation (3.11).

3.1.4 Discretized collisionless Boltzmann equation

The weak form of the nondimensional collisionless Boltzmann equation is constructed

by weighted residual in each element, for all q E F(Ij),

(z) + --f-v-z· ) dz = 0 (3.13)

[/ jc +f Off (z) dz + -- vz O(z) -dz = 0 (3.14)I, at 2 f 8z

'The Gauss points 9g, the corresponding Gauss weights wg, and the Gaussian quadrature algo-
rithm are presented in appendix A



Integrate the second integral by parts

f (z) dz + vz - f(z)±dz + (z)h(f-, f+)z+) = 0 (3.15)

where

* superscripts - and + of f denotes if it is to the left or right of the element

boundary respectively

* h(., -) is a function that calculates the flux at the element boundary given the

discontinuous distribution functions to the left and right of the boundary

Since lfvz in the nondimensional collisionless Boltzmann equation is a constant

in z, the flux function is an upwind flux

{f- if vZ

h(f->) (3.16)
"-if vz < 0

The weak form in equation (3.15), defined for each element Ij with dimension z,

can be transformed to the reference element with dimension ( for each order 1 < p of

Legendre polynomial 4"
V) W f W< dz + / (( &n dz
1 at d + 2 - d2 dZf (0)d( + '(ý)h (f -, f ) =

(3.17)
This can be simplified and expressed in terms of modal coefficients f) for each

order 1 < p with equation (3.11). The f+ and f- in the flux term can also be

simplified by the boundary values of Legendre polynomials of equation (3.6)

S[1I(J)d~dz + 1 (1 1 (6
k=0 -1 -1

+h f,(-1)k7 ( k+ 1  (-1)h(/(-1)kf )) = 0 (3.18)

The above equation can be simplified further because of the orthogonality of the

Legendre polynomials from equations (3.7) and (3.8), and derivatives from equation



(3.3). For each order 1,

Az afj' V r(k,(l·f
21 ± 1 + a 2vz (h j ()kk)

(k= )

-( 1)h fj_z,(1 )f j 2f, = 0
m

(3.19)

where m= 1-1,1-3,...,1 if is even
1-1,1-3,...,0 if 1 is odd

With equation (3.19), the time derivative of the modal coefficients can be formed

f TV7) 21+1
at 2 Az m2jm + E ((-_1)h (_1)k•k h j k Ik+)m k=0

(3.20)

This equation is the nondimensional collisionless Boltzmann equation discretized

in the physical space by the discontinuous Galerkin method in terms of modal co-

efficients of Legendre polynomials which act as modal basis functions. The same

equation applies for all elements Ij in the physical space except for the boundary

elements. The left boundary element has the following equation

afj -V 21+1 W7Eil fat 2 z• z 2 mf + (-1)h fiw, (-1)k~
St r k=0 k=0

while the right boundary element has the following equation

af V 2+1 [I L)'h
at 2 Az

-m

(3.21)

(f, (-(1)k jk+.]

(3.22)

Instead of using different equations (3.21) and (3.22) for the boundary elements,

special "wall" elements can be added to the physical space so that the same equation

(3.20) applies for all elements in the physical space. The modal coefficients of the

"wall" elements do not change according to the discretized equation, but they only

change according to the boundary conditions of the distribution function. This greatly

fk=0 k=fw h
k=0 k=0



simplifies the implementation. The modal coefficients of the "wall" elements are

ft = 0 Vl>0
(3.23)

rw = frw
frw = 0 VI>0

From equation (3.20), the time derivative of the modal coefficients of all orders

0 < 1 < p for each element Ij can be expressed as a linear function Lj of modal

coefficients

-= Lj (fif) (3.24)

where fi denotes all the modal coefficients in element Ii, i = j - 1, j and j + 1.

This equation (3.24) also means that the time derivative of modal coefficients for

the whole physical space z can be written as a linear function

-= L () (3.25)
at

The time derivative of the modal coefficients of each element in equation (3.24)

is a linear function with a stencil that only includes the element itself and its left or

right neighbor. By combining equations (3.20) and (3.24), two constant matrices Lf

and L-, each of size (p + 1) x 2(p + 1), can be formed for every element Ij. The same

matrices L+ and L- can be used for any element, for any node in velocity space, and

at any time instant.

SL+ if v -10
2Az z32

a Lf 2 Lj( fJ= i (3.26)

v2 AZ L i v) < 0
f if+ I1)



For example, for p = 3,

LTf+

1000

0300

0050

0007

Lt.

1000

0300

0050

0007

+

±

0

2

0

2

1

--1

1

--1

1

--1

1

--1

0

0

0

2

-1

1

-1

1

1

--1

1

--1

0

2
0

0

2

1 1

-1 -1

1 1

-1 -1

0

-1 -1 1 -1 1

1 -1 1 -1 1

-1 -1 1 -1 1

1 -1 1 -1 1

1.

-1

--1

0

0

0

0

-1

-1

-1

-1

-1 -1 -1

-1 -1 -1

-1 -1 -1

-1 -1 -1

3.2 Runge-Kutta time discretization

Two classes of Runge-Kutta time discretization schemes are used in this work. One

is the strong stability preserving (SSP) Runge-Kutta method [11]. This class of time

31

f3

fl
f2

jj~

fi

(3.27)

fi ;n

f2

j-11

fl

f•\ J.2)
(3.28)

°



Table 3.1: CFL numbers for RK3ssp for polynomials of order p
p 0 1 2 3 4 5 6
c 1.256 0.409 0.209 0.130 0.089 0.066 0.051

discretization schemes is specially developed to ensure stability for high-order time

discretization provided the Courant-Friedrichs-Levy (CFL) condition is satisfied

At < cAz (3.29)

where c is the CFL number, and the first-order forward Euler time discretization must

be stable

I + AtL(f)I: f (3.30)

The CFL numbers are different for various orders of polynomials and time dis-

cretization scheme orders, as shown in [10]. The CFL numbers for the third-order

SSP Runge-Kutta (RK3ssp) method used here are shown in table 3.1.

The following is the algorithm of RK3ssp for advancing one time step Atk from

tk to tk+±

f(P) = f(tk) + AtkL((tk))
3 1

4 4
1 2 (f(2) tkL((2)) (3.31)f(tk+±) = -f(tk) + + at (3.31)

The other time discretization scheme is the commonly used classical fourth-order

Runge-Kutta (RK4std) scheme [8]. Although it is not specially developed for the

RKDG method, this scheme is well-known for its stability and robustness for non-

linear problems. The following is the RK4std algorithm

(2) ((tk)+ ()
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f(3) (i(w + Atk f( 2)

f(4) f (tk) + A (3)

f(tk+1) f (tk) + (f(1) + 2f( 2) + 2f(3 ) + f(4) (3.32)

The RK3ssp algorithm is accurate to O(At3 ), while the RK4std algorithm is

accurate to O(At 4).

3.3 Slope limiter

A problem with numerical methods for hyperbolic systems is the occurrence of oscil-

lations near discontinuities. As the order p of polynomial approximation increases,

the magnitudes and wavelengths of the oscillations increase and decrease respectively.

When the oscillations get large in magnitude, the numerical scheme can become un-

stable. For the RKDG method on discontinuous problems, slope limiters are often

applied at every intermediate Runge-Kutta stage to ensure stability. Slope limiters

are a group of numerical schemes that restrict the variations in the solution after

advancing in time to ensure stability.

One slope limiter scheme that retains high-order accuracy in physical space is the

Total Variational Bounded (TVB) limiter developed in [19]. The TVB limiter for

approximation order p = 2 has also been briefly described in [10]. The advantage of

the TVB limiter is that there is a rigorous proof of its total variational boundedness,

thus proving the stability of the scheme

fj+1- fi± - Itk, • ft+Z- fj t + BAt (3.33)
J i

where B is a constant.

The problem with the TVB limiter is that the stencil expands with p. If the

high-order accuracy is to be retained, the stencil has to extend from Ijp+1 to Ij+p-1,

containing a total of 2p - 1 elements.



Another slope limiter that works well is the moment limiter developed in [7].

It keeps the kth moment monotone by keeping the order k modal coefficients j

monotone on neighboring elements. To keep £f monotone, we limit +l using

fk+1 = minmod (fk+1 I 1 ii j -1 (3.34)]• mfil 2k+1 2k+1

where

sign(a) min (jal, Ibl, Ic!) if sign(a) = sign(b) = sign(c)
minmod (a, b, c) = (3.35)

0 otherwise

One problem with the moment limiter is that when a discontinuity is close in

distance (of the order of element size Az) to a local extrema, the high-order accuracy

in physical space is often lost around the local extrema and this effect of losing

accuracy spreads far from both the discontinuity and local extrema. More about this

problem is illustrated in section 5.6. The generalized moment limiter described in the

next section does not have this problem of losing accuracy.

3.3.1 Generalized moment limiter

In this thesis, a slope limiter scheme called the generalized moment limiter has been

developed. The generalized moment limiter has the flexibility of retaining the high-

order in physical space up to the desired order k, depending on the maximum dzk

which can be specified as a parameter. It also has a stencil that is limited to its closest

neighbors, to elements Ij-1, Ij and Ij+l. The generalized moment limiter is based

on the idea of keeping the moments monotone, as given in the moment limiter [7],

with modifications to relax the restrictions for high-order smooth solutions, inspired

by the generalized minmod function in the TVB limiter [19].

The generalized moment limiter restricts the oscillations to within the limits of

the specified parameters M(k). The problem with the generalized moment limiter

now, just like the moment limiter, is that there is no mathematical proof to show the



stability of the scheme.

The generalized slope limiter scheme is shown in the following

for all Ij

for k= p-I,...,0

if I~ < M(k + 1)

break

else

m = minmod ((2k + 1)f•+ , f• 1+
if m = (2k + 1)f, +', break

else (2k + 1)f k +1 = m end

end

end

end

Now, we specify the parameter M(k) for each order k <

d(k) is the maximum kth derivative of f.

dsin(k)

cients

= maxz d'f(z)

p. Let d(k) = maxz dkf

For example, for f(z) = -0.2 sin(27rz),

= 0.2(2 7r)k. We convert d(k) to be in terms of modal coeffi-

d(k) dkf(z)
= max

z dz

= max Zfk=
k=O

= max iS,allj

max f
ý,allj

dk
<kl"(s) C•

d(k)

dk 2 'k

( ,k

dz

2)k

lz3

(3.36)

The maximum modal coefficient of order k is fixed as the parameter M(k)

M(k) = d(k)

dk 2 )k;)
(3.37)

f -a f-



The parameter M(k) endows the generalized moment limiter user the flexibility

to control the degree of oscillation limiting. The smaller the M(k), the larger the

degree of oscillation limiting. To remove all oscillations, one can set M(k) = 0 for all

orders k < p; this is equivalent to the moment limiter scheme. On the other hand,

if no limiting is required, one can set M(k) -+ oo to effectively switch the oscillation

limiting off.

The generalized moment limiter is more efficient than the moment limiter because

it stops checking element Ij once a modal coefficient .f satisfies I fJI < M(k), starting

from highest order k = p to lowest order 1. It also retains the high-order accuracy in

the smooth regions of the expected solution when the parameter M(k) is set correctly.

3.3.2 Viscosity limiter

A different approach to slope limiting is to add a viscosity to discontinuous regions

as developed in [16, 15], inspired by early methods described in [14]. The idea behind

the viscosity approach is to add a dissipative model term to the original equation

which, in our case, is the collisionless Boltzmann equation

O)+ -E vz  -; a- = - (3.38)1t 2 8z az2

where v controls the amount of viscosity added.

In order to solve the above equation, the local discontinuous Galerkin (LDG)

method described in [9] is used. The LDG method is only used in elements with non-

zero viscosity, in other words, in elements in which there are significant oscillations.

The amount of oscillations in an element Ij in physical space is estimated by the

following smoothness indicator

wfh 1e (fhj( ) )2  d( 
(3.39)

where fhj is the approximate solution in element Ij determined by equation (3.9),



and fhj is a truncated expansion of the same solution

p-1

fhj(() = fkV)k(ý) + O(Azp) (3.40)
k=O0

The amount of viscosity vj added to each element is then determined by the

following function

0 if sj <
vi = Z if sj > S (3.41)

where 9 is the mean of sj over the whole physical space, and v0o is the viscosity

parameter chosen empirically to sufficiently limit oscillations without degrading the

solution.

The smoothness indicator can be efficiently evaluated by Gaussian quadrature.

Since the more expensive LDG is only done in a few "non-smooth" elements near the

discontinuities, the viscosity limiter is computationally inexpensive.

3.4 Implementation

The RKDG method has been implemented in both Matlab and C. The implemen-

tations are similar. In the C version, several linear algebraic functions have been

written with the help of [17]. The C version is mainly for:

* Testing the program for arbitrary precisions, which is given in a C++ library

Arprec [2]. This is to eliminate the effect of precision errors on the convergence

tests.

* Integration with the collision integral evaluator, which has been coded in C++

[4].

The following is the RKDG algorithm for the collisionless Boltzmann equation for

one node in the velocity space:

1. Initialize by evaluating the discrete distribution function fh at all Gauss points
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in physical space with equations (2.11), (2.12) and (3.12). For order p approxi-

mation in the physical dimension, each element requires p + 1 Gauss points.

2. Generate the matrices L+ and L- according to equations (3.20) and (3.26).

3. Convert the distribution function at the Gauss points to modal coefficients f

for all orders 1 = 0 to p in every element I, using equation (3.11).

4. Evaluate the time derivative of the modal coefficients -.. L for every element Ij

and order 1 < p with equation (3.26).

5. Advance in time and update the modal coefficients with the chosen Runge-Kutta

time discretization scheme. The time derivative of the modal coefficients must

be re-evaluated for each intermediate stage. If necessary, limit the change in the

modal coefficients with a slope limiter from section 3.3 for every intermediate

stage.

6. Convert the updated modal coefficients in each element at the desired time

instant to approximate solutions at the desired physical space positions with

equation (3.9).

7. Repeat steps 4 to 6 if an approximate solution at a new time instant is desired.

3.5 Error measurement

The numerical error is measured in two ways. The first way is an L1 norm of the

difference between the numerical solution and the analytical solution at N discrete

points in the domain,

E1 = Ifnumeric - fanalyticl (3.42)
N

The second way is an L-infinity norm of the difference between the numerical

solution and analytical solution at the same N discrete points in the domain

Ielloo = max Ifnumeric - fanalyticl (3.43)
N



Chapter 4

A test problem with continuous

solutions

In this section we investigate the ability of the RKDG method to provide high-order

accuracy to problems with continuous solutions. Our objective is to verify that the

theoretically predicted convergence rates both for physical space and time discretiza-

tions can be obtained. For these tests a simple test problem is used; this is described

in the next section. Convergence behavior for discontinuous solutions is discussed in

the next chapter.

4.1 The test problem

Consider a simple system z c [0, 1] where f = f(z, t) with v, = leading to a

simple "Boltzmann equation"
Of OfS+ ~= 0 (4.1)it 1z

and a time dependent boundary condition

fiw = f(0, t) = 0.2 sin(27rt) (4.2)



The analytical solution is given by

f(z,t) = 0.2 sin(27r(t - z)) (4.3)

which is continuous for all z, provided sufficient time is allowed for the solution to

reach steady state, or the initial distribution is chosen as

f (z, 0) = -0.2 sin(27rz) (4.4)

Below, we describe the RKDG solution method of this problem and extensive

investigation of the convergence rate of this method to the analytical solution given

above.

4.2 Discontinuous Galerkin discretization

The physical space discretization of the continuous problem with the discontinuous

Galerkin method is similar to that shown in section 3.1. The same physical space

elements Ij, reference elements and Legendre polynomials 'b1(') as modal basis func-

tions, like those given in sections 3.1.1 and 3.1.2, are used.

The initialization of the sine function is also similar to the procedure shown in

section 3.1.3. The initial distribution function f(z, 0) is restricted in every element

Ij and mapped to discrete Gauss points in the reference element to give the discrete

distribution function fhj(ý, 0) by equation (3.12). If p is the order of approximation

in the physical dimension, the number of Gauss points in each element is p + 1. The

discrete distribution function fhj ((, 0) is expressed in terms of modal coefficients fj

of the modal basis functions with equation (3.11).

From the simple governing PDE of this problem in equation (4.1), the distribution

function translates only in the positive z direction. The flux function of equation

(3.16) only takes the left value

h(f-, f+) = f- (4.5)



The derivation of the discretized nondimensional collisionless Boltzmann equation

has been given in section 3.1.4. The discretized nondimensional collisionless Boltz-

mann equation for this continuous problem is

-f = 2 2f --+ E ( (-1)g -
1 -- (4.6)

at A z m k=

where m= 1-1,1-3,...,1 if 1 liseven

S1-1,1-3,...,0 if lisodd

Since the distribution function translates only in the positive z direction, only the

left "wall" element needs to be added. The left boundary distribution changes with

time as in equation (4.2), so the order 0 modal coefficient of the left "wall" element

also changes with time

flo,(t) = 0.2 sin(27rt)

f:1 = 0 V l>0

The modal coefficients of non-zero order of the left "wall" element are always zeros.

The updating of the left "wall" element modal coefficients has to be done manu-

ally since the discretized nondimensional collisionless Boltzmann equation (4.6) does

not change the "wall" element at all. The manual updating depends on the time

discretization scheme chosen and shall be described further in section 4.3.1.

4.3 Runge-Kutta time discretization

From equation (4.6), the time derivative of the modal coefficients for each order 1 < p

and each element Ij can be expressed as a linear function L of modal coefficients,

t Lj(i) (4.8)

and fi denotes all the modal coefficients in element Ii, i = j - 1, j.



The time derivative of the modal coefficients of each element in equation (4.8) is a

linear function with a stencil that only includes the element itself and its left neighbor.

By combining equations (4.6) and (4.8), a constant matrix L+ of size (p+ 1) x 2(p+ 1)

can be formed for every element Ij. The same matrix L+ can be used for all elements

and at different time instants.

Of-

+ fj- (4.9)

Equation (3.28) has shown an example of Lt for p = 3.

The two Runge-Kutta time discretization schemes tested in the continuous prob-

lem are RK3ssp and RK4std. The RK3ssp and RK4std algorithms are given in

equations (3.31) and (3.32) respectively.

The time steps chosen for both RK3ssp and RK4std schemes satisfy the CFL

condition

At < cAz (4.10)

with the CFL numbers c given in table 3.1. Even though this list of CFL numbers

is meant for the SSP schemes, the CFL numbers have been tested in this work to be

applicable to the RK4std scheme too, as long as the time steps are not too tightly

bounded by the CFL condition. This means that the RK4std scheme is stable if

At < cAz (4.11)

The RK3ssp scheme is accurate to O(At3 ) while the RK4std algorithm is accurate

to O(At4).

4.3.1 Left "wall" element

Since the order 0 modal coefficient of the left "wall" element changes with time and

the left "wall" element is not altered by the discretized equation (4.6), the modal co-



efficients of the left "wall" element need to be updated manually at each intermediate

Runge-Kutta stage.

For the RK3ssp scheme,

ffw(tk) = 0.2sin (27rtk)

°,w(1) = 0.2 sin (27r(tk + tk))

(2) = 0.2 sin (27r (tk + (4.12)

For the RK4std scheme,

w (1) = 0.2 sin (27rtk)

w(2) = 0.2 sin (27r (tk + Atk))

O(3) = 0.2 sin (2r(tk + Atk))

w(4) = 0.2 sin (27r(tk + Atk)) (4.13)

4.4 Implementation

This test problem has been implemented in Matlab and C with similar algorithms.

The C version makes use of the C++ library Arprec [2]. Arprec allows the program

to run with arbitrary precision to eliminate the effect of finite precision errors on the

convergence tests.

The algorithm can be summarized as follows:

1. Initialize by evaluating the discrete sine function fh at all the Gauss points in the

physical space with equations (4.2), (4.4) and (3.12). For order p approximation

in the physical dimension, each element requires p + 1 Gauss points.

2. Generate the matrix L+ according to equations (4.6) and (4.9).

3. Convert the discrete sine function at the Gauss points to modal coefficients p

for all orders 1 = 0 to p in every element Ij using equation (3.11).



4. Evaluate the time derivative of the modal coefficients 4 for every element Ij

and order 1 < p with equation (4.9).

5. Advance in time and update the modal coefficients with the chosen Runge-

Kutta time discretization scheme. The time derivative of the modal coefficients

and the left "wall" element modal coefficients must be re-evaluated for each

intermediate stage as shown in section 4.3.1.

6. Convert the updated modal coefficients in each element at the desired time

instant to approximate solutions at the desired physical space positions with

equation (3.9).

7. Repeat steps 4 to 6 if an approximate solution at a new time instant is desired.

4.5 Error convergence

The analytical solution of this problem is given by equation (4.3). The numerical error

is measured at t = 1 against the analytical solution in the L1 and L-infinity norm at

9 equispaced nodes per element (N = 9n). The range of n (number of elements in

the physical space z, and n = 1/Az) tested in all cases is n = 10, 20,40,80 and 160.

The L1 and L-infinity norms are defined in section 3.5.

In the first case, using RK3ssp, the parameters are:

* Time step At = 10-4

* Integrating in time from t = 0 to 1 with RK3ssp

* Order of approximation p varies from 1 to 6

The numerical errors are shown in table 4.1 and figure 4-1. The numerical solution

exhibits a convergence rate of approximately O(AzP+l) before the errors saturate at

smaller Az values. The error saturation at small Az values is due to time discretiza-

tion as we show below.

In the second case, the RK4std method is used. The parameters are:



* Time step At = 10- 4

* Integrating in time from t = 0 to 1 with RK4std

* Order of approximation p varies from 1 to 6

The numerical errors are shown in table 4.2 figure 4-2. The numerical solution con-

verges with a rate of O(AzP+1) before saturating at smaller Az values.

The first two cases have demonstrated that the RKDG method is accurate to

O(AzP+1), provided the timestep is sufficiently small for time discretization error to

be negligible. Investigation of the convergence rate is complicated by the fact that

numerical precision introduces a limit on the smallest error that can be detected. For

this reason, we use an arbitrary precision routine for this test, as explained in the

next section.

4.5.1 Arbitrary precision calculations

By default, MATLAB represents floating-point numbers in double-precision [12]. The

C++ library Arprec can be utilized to increase the precision of the floating-point num-

bers and hence decrease the effect of precision error. Thus, for the time discretization

convergence test we have used this library in conjunction with the C version of the

RKDG code.

Since the L1 and L-infinity norms have been shown to be equivalent above, only

one of the norms (L1) will be used here. The solution parameters are:

* Varying time step t = 10- 3, 10- 4 and 10- 5 .

* Integrating in time from t = 0 to 1 with RK3ssp and RK4std

* Order of approximation p = 5

* In Arprec, number of precision digits is 100

The resulting numerical errors are shown in figure 4-3 and the error saturation

levels are listed in table 4.3.



The RK3ssp method is able to maintain stability for a finer physical space dis-

cretization Az than the RK4std method. At At = 10- 3, RK3ssp is still stable for

Az = 1/80 while RK4std is no longer stable for Az < 1/40. Being able to use a

smaller Az for the same timestep At is advantageous for RK3ssp because it means

that higher-order accuracy in physical space can be achieved without decreasing At.

Using smaller At means taking more iterations before reaching the required time

instant.

The error saturation levels with varying At show a convergence of O(At3 ) for the

RK3ssp time discretization scheme. The error saturation levels with varying At show

a convergence of O(At 4) for the RK4std method. This convergence behavior verifies

that the RKDG method exhibits the expected order of accuracy in time.



(b) IEIeico

Figure 4-1: IIE&H against Az for At = 10-4 using RK3ssp

(a) Ilelli (b) I1eloo

Figure 4-2: 11e1l against Az for At = 10- 4 using RK4std

(a) RK3ssp (b) RK4std

Figure 4-3: Ie|ll1 against At for p = 5, with Arprec 100 precision digits

(a) 11-lli



Table 4.1: Convergence with respect
HEIII

1010 ~
1 10

20
40
80

160
2 10

20
40
80

160
3 10

20
40
80

160
4 10

20
40
80

160
5 10

20
40
80

160
6 10

20
40
80

160

orde

2.1
2.0
2.0
2.0

3.0
3.0
3.0
3.0

4.0
4.0
4.0
4.0

30607341.94
6867810.03
1629806.55

398193.88
98421.33

1221446.86
152337.80
18931.96

2363.03
295.27

47716.46
2948.66

183.76
11.47
0.71

1171.55
37.12

1.16
0.07
0.06

37.40
0.58
0.06
0.06
0.06
0.87
0.06
0.06
0.06
0.06

to Az for At = 10- 4 using RK3ssp
Icl 00

101'01 e order
- 91342810.76 -

6 24593003.02 1.89
8 6306877.18 1.96
3 1597301.47 1.98
2 401936.97 1.99
- 4402228.55 -

0 567249.93 2.96
0 71398.77 2.99
)0 8939.32 3.00
'0 1117.80 3.00
- 127141.34 -

2 7864.23 4.01
0 496.15 3.99
0 31.06 4.00
)1 1.91 4.02
- 4587.98 -

8 147.94 4.95
0 4.57 5.02
8 0.20 4.48
0 0.13 0.67
- 97.56 -

0 1.50 6.02
6 0.14 3.41
2 0.13 0.14
0 0.13 0.00
- 3.06 -

6 0.14 4.41
2 0.13 0.18
0 0.13 0.00
0 0.13 0.00

1P Az

4.9
5.0
3.9
0.2

6.0
3.1
0.0
0.0

3.7
0.0
0.0
0.0



Table 4.2: Convergence with respect to Az
jejji

order

2.16
2.08
2.03
2.02

for At = 10- 4 using RK4std

p I
1 10

20
40
80

160
2 10

20
40
80

160
3 10

20
40
80

160
4 10

20
40
80

160
5 10

20
40
80

160
6 10

20
40
80

160

Convergence with respect to At for p = 5, with Arprec 100 preci
RK3ssp RK4std

At _1 1014 11i order A 10z14 li order
10- 3  80 647027.46 - 40 1374.35 -
10-4 160 636.05 3.01 160 0.11 4.08
10- 5  160 0.64 3.00 no saturation for L < 160A z

1013 11E
30607341911.68

6867810004.22
1629806537.32

398193864.83
98421315.91

1221446851.08
152337794.57

18931957.74
2363028.68

295266.98
47716456.72

2948662.72
183767.52
11477.27

717.20
1171553.11

37119.66
1152.90

35.96
1.12

37397.59
578.50

9.02
0.14
0.01

871.63
7.00
0.06
0.02
0.01

order

1.89
1.96
1.98
1.99

11j11jj
1013 1e1

91342810777.46
24593003030.28
6306877206.66
1597301499.72
401937006.91
4402228630.61
567245001.65
71398841.08
8939381.63
1117861.13

127141353.71
7864240.42
496168.89
31083.30
1943.85

4587949.49
148030.22

4653.49
145.25

4.54
97576.21
1508.84

23.82
0.73
1.46

2946.09
23.91

0.23
0.45
1.06

Table 4.3: sion digits

2.96
2.99
3.00
3.00

4.01
3.99
4.00
4.00

4.95
4.99
5.00
5.00

6.02
5.99
5.04

-1.01

6.95
6.68

-0.94
-1.24

3.00
3.01
3.00
3.00

4.02
4.00
4.00
4.00

4.98
5.01
5.00
5.00

6.01
6.00
5.97
3.35

6.96
6.98
1.77
0.22
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Chapter 5

A test problem with discontinuous

solutions

In chapter 4 we have verified the high-order accuracy of the RKDG method for con-

tinuous solutions. In this chapter we investigate the behavior of this scheme in the

presence of discontinuities. We are particularly interested in verifying the claim [10]

that the RKDG method continues to exhibit high-order accuracy in both physical

space and time away from discontinuities. In this chapter we also investigate the

performance of slope limiters used to minimize oscillations in the vicinity of disconti-

nuities. For this investigation we use the test problem of chapter 4, suitably modified

such that a propagating discontinuity is present.

5.1 The test problem

Consider the test problem described in section 4.1, in which a sinusoidal oscillation

at z = 0 is advected into the domain (z > 0) for t > 0. In contrast to section 4.1,

however, the initial distribution is a constant function

f(z, 0) = -0.2 (5.1)

Analytically, the distribution function translates in the positive z direction at the



speed of one unit per unit time. The analytical solution for the above problem is

f (z t) 0.2sin(27r(t- z)) z < t (5.2)f(z, t) = (5.2)
-0.2 z > t

which can readily be seen to be discontinuous at z = t.

5.2 Discontinuous Galerkin discretization

The physical space discretization of this problem is similar to that shown in section

3.1. The same physical space elements Ij, reference elements and Legendre polyno-

mials 'I(ý) as modal basis functions, like those given in sections 3.1.1 and 3.1.2, are

used.

The initialization of the initial constant function is very simple. The discrete

distribution function is fhj (ý, 0) = -0.2 at Gauss points in every element Ij. If p is

the order of approximation in the physical dimension, the number of Gauss points in

each element is p + 1. The initial modal coefficients in each element Ij are

f9(0) = -0.2
(5.3)

fp(0) = 0 1<l<p

Similarly, the flux function of equation (3.16) only takes the left value,

h(f-, f+) = f- (5.4)

The derivation of the discretized nondimensional collisionless Boltzmann equation

has been given in section 3.1.4. The discretized nondimensional collisionless Boltz-

mann equation for this problem is the same as equation (4.6)

=t - z 2fE + ((-1)1f - (5.5)t AZ m k=O )]



wherem= 1-1, 1-3,...,1 ifliseven

S- 1, - 3,...,0 iflisodd

Similar to section 4.2, the left boundary distribution changes with time as in

equation (4.2) and the order 0 modal coefficient of the left "wall" element also changes

with time,

f 0_(t) = 0.2 sin(27rt)11W -(5.6)
lw = 0 V 1>0

The modal coefficients of non-zero order of the left "wall" element are always zeros.

The time derivative of the modal coefficients for each order 1 < p and each element

Ij can be expressed as a linear function L of modal coefficients and the matrix Lf

can be constructed by equations (5.5) and (4.9). The matrix Lt is the same as in the

problem with continuous solution.

5.3 Runge-Kutta time discretization schemes

The Runge-Kutta time discretization schemes and the time steps are described in

detail in section 4.3. We will use the time discretization scheme of RK3ssp since it

has been shown to maintain stability for smaller physical space element Az at the

same time step At than RK4std. The RK3ssp algorithm is given in equation (3.31).

The left "wall" element is also the same as in the continuous case, and the manual

updating of the modal coefficients is the same as described in section 4.3.1.

5.4 Slope limiter

In this problem, a propagating discontinuity at z = t is present. Oscillations can

appear in the vicinity of the discontinuity and affect the stability of the RKDG

method. To ensure stability, slope limiters can be applied. The effectiveness of the

moment limiter, generalized moment limiter and viscosity limiter described in section

3.3 will be tested in this problem. The limiting shall be done after every intermediate

Runge-Kutta stage.



For the generalized moment limiter, the parameter M(k) used is as described

in section 3.3.1. For the sine function in our smooth region f(z) = -0.2sin(2rz),

dsin(k) = max, dkz) = 0.2 (2 r)k and the parameter M(k) is to be calculated ac-

cording to equation (3.37).

For the viscosity limiter described in 3.3.2, we fix the viscosity parameter to be

vo = 0.1, which has been found to be sufficiently large to limit the oscillations in this

problem.

5.5 Implementation

This test problem has been implemented in Matlab and C with similar algorithms:

1. Initialize the modal coefficients f for all orders I = 0 to p in every element Ij

with equation (5.3).

2. Generate the matrix L+ according to equations (5.5) and (4.9).

3. Evaluate the time derivative of the modal coefficients L for every element Ij

and order 1 < p with equation (4.9).

4. Advance in time and update the modal coefficients with the chosen Runge-

Kutta time discretization scheme. The time derivative of the modal coefficients

and the left "wall" element modal coefficients must be re-evaluated for each

intermediate stage. If desired, limit the change in the modal coefficients with a

slope limiter for every intermediate step.

5. Convert the updated modal coefficients in each element at the desired time

instant to approximate solutions at the desired physical space positions with

equation (3.9).

6. Repeat steps 3 to 5 if an approximate solution at a new time instant is desired.



5.6 Error convergence

The analytical solution of this problem is given by equation (5.2). We integrate in

time from t = 0 to t = 0.7 so that a discontinuity is present at z = t = 0.7. To

verify the claim that high-order accuracy is maintained away from the discontinuity,

we measure the numerical error against the analytical solution in the L1 norm at 9

equispaced nodes per element within the range 0 < z < 0.2 (N is the total number

of equispaced nodes in the range 0 < z < 0.2)

[eIEi1 Ifnumeric - fanalytic (5.7)
N,0<z<0.2

The range of n (number of elements in the physical space z, and n = 1/Az) tested

in all cases is n = 10, 20, 40, 80 and 160.

In the first case, the Matlab version has been tested with the following parameters:

* Time step At = 10- 4

* Integrating in time from t = 0 to 0.7 using RK3ssp

* Order of approximation p varies from 1 to 6

* Using no limiter, moment limiter, generalized moment limiter and viscosity

limiter

The numerical solutions with no limiter, moment limiter, generalized limiter and

viscosity limiter are shown in figure 5-1.

Without slope limiter, oscillations are present around the discontinuity. The os-

cillations propagate to three elements in front of and two elements behind the dis-

continuity. With the moment limiter, the oscillations have been removed from the

numerical solution. However, the gradient at the discontinuity is much less steep,

spreading the discontinuity over three elements. The local maximum of the sine

filnction in the smooth region has also been flattened by the moment limiter. High-

order accuracy in physical space is obviously lost at..the local maximum. With the



generalized moment limiter, the magnitude of the oscillations is much smaller than

without slope limiter. The oscillations still propagate to three elements in front of

and two elements behind the discontinuity, but they have much lower frequencies and

magnitudes. The viscosity limiter shows the best performance in terms of oscillation

limiting - no oscillation is observed around the discontinuity. The gradient at the

discontinuity is also steep, spreading the discontinuity over just two elements. This

also shows that the viscosity limiter is computationally inexpensive, as mentioned in

section 3.3.2, since there are only two "non-smooth" elements which will have added

viscosity and need to be solved by the local discontinuous Galerkin (LDG) method.

The numerical errors are shown in table 5.1, 5.2 and figure 5-2.

Without slope limiter, the numerical solution away from the discontinuity exhibits

a convergence rate of approximately O(AzP+l). With the moment limiter, the nu-

merical solution shows a convergence of O(AzP+I ) for p < 2, but for larger p, the

convergence rate stagnates at O(Az 3). This is because the moment limiter, while

keeping the moments monotone, has put all the modal coefficients of order k > 2 of

the sine distribution to zero. With generalized moment limiter and viscosity limiter,

the convergence rate is O(AzP+I). This verifies the high-order accuracy in physical

space of the RKDG method with no slope limiter, generalized moment limiter and

viscosity limiter.

The error saturation at small Az values is due to time discretization as we show

below.

5.6.1 Arbitrary precision calculations

The C version of the RKDG code is used with the Arprec library to remove the effect

of finite precision, as in section 4.5.1. The solution parameters are:

* Varying time step t = 10- 3, 10- 4 and 10- 5 .

* Integrating in time from t = 0 to 0.7 with RK3ssp

* Order of approximation p = 5



* In Arprec, number of precision digits is 100

* Using no limiter, generalized moment limiter and viscosity limiter

The resulting numerical errors are shown in figure 5-3 and the error saturation

levels are listed in table 5.3.

With the generalized moment limiter, stability is maintained for a finer physical

space discretization Az than without limiter. At At = 10- 3, it is still stable for

Az = 1/160 with the generalized moment limiter while it is no longer stable for

Az < 1/40 without limiter. The stability is only maintained for a coarser physical

space discretization with viscosity limiter, as it becomes unstable for Az < 1/20.

The error saturation levels with varying At show a convergence of O(At3 ) for

the RK3ssp time discretization scheme when no slope limiter, generalized moment

limiter or viscosity limiter is applied. This convergence behavior verifies that the

RKDG method exhibits the expected order of accuracy in time for a discontinuous

solution. Therefore, we have verified that with no slope limiter, generalized moment

limiter or viscosity limiter, high-order accuracy in physical space and time for smooth

regions away from the discontinuity is retained.

Among the slope limiters, the viscosity limiter shows the most promise for limiting

oscillations (no oscillations visible around the discontinuity), keeping the discontinuity

over a small length (two elements), and retaining high-order accuracy in both physical

space and time away from discontinuities.



(a) No limiter

(c) Generalized moment limiter

(b) Moment limiter

(d) Viscosity limiter

Figure 5-1: Numerical solutions for At = 10- 4, n = 10 and p = 5 with no limiter,
moment limiter, generalized moment limiter and viscosity limiter using RK3ssp



(a) No limiter (b) Moment limiter

(c) Generalized moment limiter (d) Viscosity limiter

Figure 5-2: II~E I against Az for At - 10- 4 with no limiter, moment limiter, general-
ized moment limiter and viscosity limiter using RK3ssp



(a) No limiter (b) Generalized moment limiter

(c) Viscosity limiter

Figure 5-3: J&IIlE against At for p = 5 with no limiter, generalized slope limiter and
viscosity limiter using RK3ssp, with Arprec 100 precision digits



Table 5.1: Convergence with respect to Az for At
limiter using RK3ssp

No limiter

= 10 - 4 with no limiter and moment

1 10
20
40
80

160
2 10

20
40
80

160
3 10

20
40
80

160
4 10

20
40
80

160
5 10

20
40
80

160
6 10

20
40
80

160

101e1 6ii
2049541.01
522694.98
132273.11
33322.24

8366.04
150654.75

18318.29
2265.73

281.93
35.17

3839.79
245.61

15.58
0.98
0.07

146.54
4.45
0.14
0.02
0.02
3.14
0.05
0.01
0.02
0.02
0.10
0.01
0.01
0.02
0.02

order

1.97
1.98
1.99
1.99

3.04
3.02
3.01
3.00

3.97
3.98
4.00
3.88

5.04
4.96
3.22
0.01

6.01
1.72

-0.07
-0.11

2.90
-0.07
-0.08
-0.13

Moment limiter
10091jel1 order

2364123.56 -
520897.14 2.18
132272.51 1.98

33322.24 1.99
8366.04 1.99

973467.62
93302.63 3.38
10325.26 3.18

1145.13 3.17
126.23 3.18

860773.47 -
94802.37 3.18
10091.97 3.23

1053.26 3.26
105.26 3.32

860765.89
94665.11 3.18

9936.82 3.25
1041.41 3.25

102.94 3.34
860769.22 -
94620.77 3.19

9931.49 3.25
1040.04 3.26

103.81 3.32
860765.07 -
94674.15 3.18

9935.76 3.25
1036.02 3.26

102.85 3.33



Table 5.2: Convergence with respect to Az for
limiter and viscosity limiter using RK3ssp

At = 10-4 with generalized moment

Gen. moment

109 11El&1
1 10

20
40
80

160
2 10

20
40
80

160
3 10

20
40
80

160
4 10

20
40
80

160
5 10

20
40
80

160
6 10

20
40
80

160

limiter
order

2049303.44
522694.83
132273.11

33322.24
8366.04

150717.27
18318.29

2265.73
281.93

35.17
3846.36
245.61

15.58
0.98
0.07

147.95
4.45
0.14
0.02
0.01
4.58
0.05
0.01
0.01
0.01
1.03
0.01
0.01
0.01
0.01

Viscosity limiter
109 ElI order

1.97
1.98
1.99
1.99

3.04
3.02
3.01
3.00

3.97
3.98
4.00
3.88

--

5.05
4.97
3.22
0.42

--

6.55
1.72
0.08
0.30

6.21
-0.08
0.06
0.30

1
P Az

2049541.01
522694.98 1.97
132273.11 1.98
33322.24 1.99

8366.04 1.99
150654.75 -

18318.29 3.04
2265.73 3.02

281.93 3.01
35.17 3.00

3839.79
245.61 3.97

15.58 3.98
0.98 4.00
0.07 3.88

146.54
4.45 5.04
0.14 4.97
0.02 3.22
0.02 0.01
3.14 -
0.05 6.01
0.01 1.72
0.02 -0.07
0.02 -0.11
0.10
0.01 2.90
0.01 -0.07
0.02 -0.08
0.02 -0.13



Table 5.3: Convergence with respect to At for p = 5 with no slope limiter, generalized
moment limiter and viscosity limiter using RK3ssp, with Arprec 100 precision digits

No limiter Gen. moment limiter Viscosity limiter
At 1 1012 11611 order 1021el order 1012 11j1 order

10-  40 19316.90 - 160 37733.82 - 20 15743.84 -
10- 4 160 16.73 3.06 160 11.37 3.52 160 16.73 2.97
10-5 160 0.01 3.05 160 0.01 2.92 160 0.01 3.05



THIS PAGE INTENTIONALLY LEFT BLANK



Chapter 6

Runge-Kutta discontinuous

Galerkin method for the

Boltzmann equation

The Runge-Kutta discontinuous Galerkin method (RKDG) has been successfully ap-

plied to the nondimensional collisionless Boltzmann equation for one node in velocity

space for both continuous and discontinuous distribution function in chapters 4 and

5 respectively. High-order accuracy in physical space and time has been observed for

both the continuous and discontinuous problem.

In this chapter, a procedure to adapt the RKDG method to the Boltzmann equa-

tion is described in detail. The physical space is discretized with the discontinu-

ous Galerkin method. The time discretization is achieved using a strong stability-

preserving (SSP) Runge-Kutta scheme to ensure stability. The collision integral

[A]coll is evaluated using the particle-like method developed in [4].

6.1 Discretization of velocity space

The distribution function is defined over a velocity space that extends from -oo to

oo in all three dimensions. However, in the interest of computational efficiency, only

a finite number of discrete values of V' are considered in the range -4 < vX, vy, vz < 4.



This truncation is justified in low speed flows where the distribution function is known

to decay to zero very fast with increasing iv'. Each velocity dimension is discretized

into n, nodes, giving a total of n3v nodes in the three-dimensional truncated velocity

space.

6.2 Discontinuous Galerkin discretization

The nondimensional collisionless Boltzmann equation is discretized in the physical

space by the discontinuous Galerkin method as given in section 3.1. The same physi-

cal space elements, modal basis functions of Legendre polynomials and initialization of

distribution function are used. The nondimensional Boltzmann equation discretized

in the physical space by the discontinuous Galerkin method in terms of modal coef-

ficients is also similar, with an addition of the collision integral term,

ixT 2+1 ZI + (
at = 2 - A Z- - k=O

+ d(6.1)
dt

J coll

where []d' is the collision integral expressed in terms of modal coefficients.dt coll

As in the case of equation (3.24) for the collisionless case, equation (6.1) can be

expressed as

af d
t oll

1t dt
-= [d 0 colless oll (6.2)

where [ oe J = Lj (1i) is the time derivative of the modal coefficients of all orders

1 < p for each element Ij for the nondimensional collisionless Boltzmann equation.

This time derivative ]coess shall be called simply the collisionless time derivative

of modal coefficients. The method to solve the collisionless time derivative of modal



coefficients has been given in detail in chapter 3.

6.3 Collision integral

The collision integral is computed by the particle-like method developed in [4]. It

results in significantly lower statistical uncertainty compared to DSMC. Despite this,

some statistical uncertainty is present and controlled by K, the number of simulated

collisions per cell in velocity space. Throughout this thesis, we will set KA to the

smallest value which results in essentially negligible statistical uncertainty.

The above particle-like method computes the collision integral for all nodes in

velocity space and one node in physical space in one run. It takes in the discrete dis-

tribution function fh at one node zi in physical space over all nodes in the truncated

velocity space i, and generates the collision integral [A ] coil for the discrete distribu-

tion function at the same node zi for all V. This means that to compute the collision

integral for all the nz nodes in the physical space and n3 nodes in the truncated

velocity space, the routine for computing collision integral has to be called nz times

(once for each node in physical space). More about the value of nz and the positions

of the nodes zi to be taken for the discrete distribution function are discussed in the

next section.

Note that this method of computing collision integral takes in discrete distribution

function fh and not the modal coefficients f as input. Therefore, the collision integral

cannot be expressed in terms of modal coefficients as discussed in section 6.2.

6.4 Runge-Kutta time discretization

The nondimensional Boltzmann equation has been discretized in physical space by

the discontinuous Galerkin method and expressed as a function of modal coefficients

in equation (6.2). However, as stated above, we cannot compute the collision integral

for distribution functions in terms of modal coefficients.

In order to use the method in section 6.3 to compute the collision integral, equation



(6.2) should be converted to be in terms of the discrete distribution function fh

evaluated at p + 1 Gauss points in each element. The Gauss points in each element

are the positions of the nodes zi, which can be related to the Gauss points (g with

linear transformation of equation (3.2). The total number of nodes in the physical

space is

nz = n(p + 1) (6.3)

where n is the total number of elements Ij in the physical space.

The collisionless time derivative of modal coefficients, coes, should be ex-

pressed as a time derivative of the discrete distribution function evaluated at the n,

nodes. Putting the collisionless time derivative of modal coefficients into equation

(3.9), the following equation is derived

[Dfh(s) 1 kafj1S colless ()[ (6.4)
colless k=0 Otcolless

This collisionless time derivative can be mapped from dimension ( to z with

equation (3.2). The collisionless time derivative [f coess has to be computed for

all nz nodes in the physical space z and for all n' nodes in the truncated velocity

space v.

Before updating the discrete distribution function, the collision integral [dfh(z)]ol

for all nz nodes in the physical space and nr nodes in the truncated velocity space

has to be computed by the particle-like method nz times.

The discrete distribution function fh can then be updated with the following time

derivative, for all nodes in physical space and truncated velocity space,

fh [fh 1 dfh (6.5)
at colless I coil

The RK3ssp scheme has been proven to be stable and third-order accurate in

time. The RK3ssp method shall be used for time discretization in this chapter. The

algorithm of the RK3ssp method for advancing one time step Atk from tk to tk+l is

given in equation (3.31).



6.5 Slope limiter

Discontinuities are present in the distribution function for each node in the truncated

velocity space. For the test problem of chapter 5, despite the presence of oscillations

around the discontinuities, the results in section 5.6 have shown that slope limiters

are not necessary to ensure stability provided the time steps are small enough to

satisfy the Courant-Friedrichs-Levy (CFL) condition given in equation (3.29).

However, the presence of oscillations also means that the solution is not accurate

near the discontinuities. Section 5.6 has shown that the viscosity limiter is the most

effective in limiting the oscillations while maintaining high-order accuracy in physical

space and time for the smooth regions away from the discontinuities. Therefore, in

this chapter, we shall compare the solutions with and without the viscosity limiter.

The viscosity limiter is applied as described in section 3.3.2. The viscosity param-

eter is set to vo = 0.1.

6.6 Implementation

The RKDG method for the nondimensional Boltzmann equation has been imple-

mented in C++. The high computational cost of evaluating the distribution function

for all n, nodes in the physical space z and for all n3 nodes in the truncated velocity

space prohibits efficient implementation in Matlab.

The following is the RKDG algorithm for the nondimensional Boltzmann equation

for one physical dimension z and three dimensions in the truncated velocity space:

1. Initialize by evaluating the discrete distribution function fh at all the nz Gauss

points in the physical space with equations (2.11), (2.12) and (3.12). Repeat

the initialization of the discrete distribution function for each of the n3 nodes

in the truncated velocity space -4 < v,, vv, vy < 4.

2. Generate the matrices L+ and L- according to equations (3.20) and (3.26).

Note that the same matrices can be used for all nodes in the truncated velocity

space.



3. Compute the collision integral [dfiL] l for all the n, Gauss points in the
dt J coll

physical space using the particle-like method nz times. Do not update the

distribution function.

4. Convert the distribution function at the n, Gauss points to modal coefficients

fj for all orders 1 = 0 to p in every element Ij from equation (3.11) for each of

the n' nodes.

5. Evaluate the collisionless time derivative of the modal coefficients [t]I
colless

Lj(fi) for every element Ij with equation (3.26) for each of the n3 nodes in the

velocity space i. If desired, limit the change in modal coefficients due to the

collisionless time derivative with the viscosity limiter.

6. Convert the collisionless time derivative to be in terms of discrete distribution

functions [fto~] r at the nz Gauss points with equations (6.4) and (3.2) for

each of the n3 nodes.

7. Compute the time derivative , with equation (6.5).at

8. Update the intermediate discrete distribution function fhi) for one intermediate

stage of RK3ssp according to equation (3.31).

9. Repeat steps 3 to 8 for each intermediate Runge-Kutta stage till one RK3ssp

time step is completed. Update the discrete distribution function with the

intermediate discrete distribution functions fh(i) according to equation (3.31).

10. Repeat step 9 for each time step.

6.7 Comparison with direct simulation Monte Carlo

(DSMC)

The Couette flow problem described in section 2.2 for Knudsen numbers Kn = 0.1, 1

and 10 are to be solved using the RKDG method for the nondimensional Boltzmann



equation. The number of elements and the order of approximation in the physical

space are set to n = 10 and p = 2 respectively, and integrated in time from t = 0

using RK3ssp. The mean velocity u., and shear stress Pz,, shall be calculated with

equations (2.13) and (2.14) respectively at the various time instants shown in table

6.1.

The mean velocity and shear stress at the same time instants are also obtained by

averaging 60 ensembles of the direct simulation Monte Carlo (DSMC) method using

100 elements in physical space and 2 x 105 particles per element. The results from

the DSMC method are compared with those from the RKDG method.

We first test the RKDG solution method without slope limiters. The number of

nodes used in the truncated velocity space are n = 303 and 50'. The test arameters

for each characteristic flow length scale, Kn = 0.1, 1 and 10, are described in table

6.1, and the resulting mean velocity and shear stress are shown in figures 6-1, 6-2 and

6-3. Note that for Kn = 0.1 with n = 303, a value of A = 0.1 results in observable

statistical uncertainty; for this reason, KV is set to 1.0 for this calculation.

The mean velocity and shear stress profiles agree well with DSMC results, but

oscillations are present in some cases. For the coarse velocity space discretization of

n3 = 30, oscillations are present in the shear stress for Kn = 1 and 10. Oscillations

can also be seen in the mean velocity for Kn = 10 with n3 = 303. Moreover, a

small discrepancy in the steady state shear stress can be observed for Kn = 0.1 with

3 = 303.

With a finer velocity space discretization of n 3 50, the steady state shear

stress of the RKDG method for Kn = 0.1 is closer to that of DSMC. Furthermore,

the oscillations have been effectively removed for all cases. However, using more nodes

in the velocity space greatly increases the computational cost. The computational

cost with n3 = 503 is about (Q)3 4.63 times of that with n3 = 30. We seek more

efficient ways of eliminating the oscillations.



6.7.1 Viscosity limiter

When the characteristic flow length scale is relatively small (Kn = 1 and 10), oscil-

lations around discontinuities in the distribution function contribute to most of the

oscillations in the RKDG solutions. These oscillations can be removed by applying

the viscosity limiter as we show in figure 6-4. The test parameters with the viscosity

limiter are listed in table 6.2.

The viscosity limiter has effectively removed the oscillations in both the mean

velocity and shear stress profiles. However, the transient shear stress evaluated by

RKDG are slightly more negative than the shear stress evaluated by DSMC, while the

steady state solutions of RKDG are very close to the DSMC solutions. Compared to

the computationally expensive way of making the velocity space discretization finer,

the viscosity limiter is much more efficient and provides good steady state solutions,

but it has the trade-off of giving slightly more negative transient shear stress.



Table 6.1: Test parameters for Kn = 0.1, 1 and 10
Time instants

Kn n3 At to tl t2 t3 t4
0.1 303 1.0 0.002 0 2.04 4.96 11.96 32.04

503 0.1
1 303 or 503 0.1 0.0002 0 0.204 0.496 1.016 4.016

10 303 or 503 0.1 0.00002 0 0.0204 0.0496 0.1602 0.5640

Table 6.2: Test parameters for Kn = 1 and 10 with viscosity limiter
Time instants

Kn n 3 o At to t1  t2 3 4

1 303 0.1 0.1 0.0002 0 0.204 0.496 1.016 4.016
10 303 0.1 0.1 0.00002 0 0.0204 0.0496 0.1602 0.5640



(a) n3 = 303

(b) n3 = 503

Figure 6-1: Mean velocity and shear stress in Couette flow for Kn = 0.1 and Uwa,,
±-0.1 at t = 0, 2.04, 4.96, 11.96 and 30.02. Comparison of RKDG with n = 10 and

p = 2 against DSMC



(a) n = 303

(b) n3, = 503

Figure 6-2: Mlean velocity and shear stress in Couette flow for Kn = 1 and Uwal = ±0.1
at t = 0, 0.204, 0.496, 1.016 and 4.016. Comparison of RKDG with n = 10 and p = 2
against DSMC



(a) n3 = 303=

(b) n 3 = 503

Figure 6-3: Mean velocity and shear stress in Couette flow for Kn = 10 and Uwall =

+0.1 at t = 0, 0.0204, 0.0496, 0.1602 and 0.5640. Comparison of RKDG with n = 10
and p = 2 against DSMC



(a) Kn = 1 at t = 0, 0.204, 0.496, 1.016 and 4.016

(b) Kn = 10 at t = 0, 0.0204, 0.0496, 0.1602 and 0.5640

Figure 6-4: Mean velocity and shear stress in Couette flow for Kn = 1 and 10 and
Uwall = ±0.1. Comparison of RKDG with n = 10, p = 2 and viscosity limiter against
DSMC
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Chapter 7

Conclusion

Using analytical solutions of simple continuous and discontinuous problems, the high-

order convergence of the RKDG method has been verified. For the test problem with

discontinuous solutions, the RKDG method is stable even without the use of slope

limiters; additionally, in the presence of discontinuities, it exhibits high-order accuracy

in both physical space and time (away from the discontinuities). With a viscosity

limiter, the oscillations are eliminated while the high-order accuracy is retained.

For the Boltzmann equation, an RKDG solution method has been developed by

formulating the collision integral as a source term to the advection equation. For the

Couette flow problem of characteristic flow length scales of Kn = 0.1, 1 and 10, the

mean velocity and shear stress computed by the RKDG method are close to those

obtained with DSMC. A finer velocity space discretization of n3 = 503 gives very good

results, while with a coarser discretization of n3 = 303, oscillations are observed in

the mean velocity and especially in the shear stress for Kn > 1. The viscosity limiter

is effective in removing these oscillations.

The RKDG solution method developed in this thesis has shown good agreement

with DSMC results even with a coarse physical space discretization, proving that this

is a viable direct numerical method for the Boltzmann equation.



7.1 Future work

7.1.1 High-order physical space discretization

The high-order accuracy in physical space of RKDG has been verified with the test

problems with nondimensional collisionless Boltzmann equation in chapters 4 and 5.

Higher-order physical space discretization has not been used for the nondimensional

Boltzmann equation in chapter 6 because of the good results that are already obtained

with a coarse physical space discretization.

The viscosity limiter has been shown to work well for high-order physical space

discretization (p > 2) in the test problem with discontinuous solution of chapter 5.

Theoretically, with the appropriate viscosity, the viscosity limiter should continue to

be effective in eliminating oscillations for higher-order physical space discretization

for the nondimensional Boltzmann equation. More tests can be done for the RKDG

solution method with higher-order physical space discretization.

7.1.2 Viscosity in the viscosity limiter

Equation (3.41) for the computation of viscosity v is a simplified form. A more

computationally intensive form that gives a smooth viscosity profile is described in

[16], but for our Boltzmann equation problems, it does not give significantly different

results compared to the simplified form used here. Another method of computing

viscosity, by relating the viscosity to the real physical dissipation for an ideal gas

problem, has also been developed in [16, 15]. Further work can be carried out to

relate the viscosity to the Boltzmann equation.

7.1.3 High-order velocity space discretization

Currently, the velocity space is discretized with an effective order of p = 0, which

means that the method is only accurate to O(n,), where n, is the number of nodes

in one dimension of the truncated velocity space. The importance of velocity space

discretization is highlighted by the results in section 6.7, where the oscillations in the



mean velocity and shear stress are very much reduced by using more nodes in the

truncated velocity space. The velocity space can be discretized with some interpola-

tion methods, for example the Galerkin method, to give higher-order accuracy in the

velocity space. Having higher-order accuracy in the velocity space can lead to similar

accuracy using less nodes in the velocity space, leading to lower computational cost.
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Appendix A

Gaussian quadrature

Gaussian quadrature, also known as Gauss-Legendre quadrature, is a commonly used

numerical integration technique for integrals over a finite interval. In this thesis,

integration is always done over the reference element of ý E [-1, 1]. This means that

the integral can be evaluated numerically using Gaussian quadrature without variable

transformation

f (<)d d - w f (g) (A.1)
n9

where ng is the number of Gauss points used, (g are the Gauss points, and wg are

the corresponding Gauss weights. The number of Gauss points to be used depends

on the accuracy desired. The Gaussian quadrature with n, Gauss points is able to

integrate a polynomial up to order k = 2n, - 1 exactly.

Table A.1 shows the Gauss points and weights for up to n, = 7. Gauss points and

weight for larger n, can be found in [5].
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2 3

3 5

3

5

4 7 - 35

35135

5 9

21

/525- 70/30
V525 + 7030

v/245-14/70

V/245 + 14i7

6 11

7 13

±0.577350

0
S0.774597

S0.339981

S0.861136
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0
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(18+
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3/0)

1
900
1

900
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225

13 V70)
13 /70)

(322 +
(322 -

0.888889
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0.652145

0.347855

0.568889

0.468729

0.236927

0.467914
0.360762
0.171324

0.417959
0.381830
0.279705
0.129485

Table A.1: Gauss points and weights for n < 7



Bibliography

[1] V. V. Aristov. Direct Methods for Solving the Boltzmann Equation and Study

of Nonequilibrium Flows. Kluwer Academic Publishers, Dordrecht, Netherlands,

2001.

[2] D. H. Bailey, Y. Hida, K. Jeyabalan, X. S. Li, and B. Thompson. Arbitrary

precision computation package (ARPREC). World Wide Web, http://crd.

ibl.gov/-dhbailey/mpdist/, June 2006.

[3] L. Baker. Efficient numerical methods for solving the Boltzmann equation for

low-speed flows. Master's thesis, Massachusetts Institute of Technology, February

2004.

[4] L. L. Baker and N. G. Hadjiconstantinou. Variance reduction for Monte Carlo

solutions of the Boltzmann equation. Physics of Fluids, 17(051703), 2005.

[5] W. H. Beyer. CRC Handbook of Mathematical Sciences. CRC Press, West Palm

Beach, Florida, 6th edition, 1987.

[6] G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows.

Clarendon Press, Oxford, 1994.

[7] R. Biswas, K. D. Devine, and J. E. Flaherty. Parallel, adaptive finite element

methods for conservation laws. Applied Numerical Mathematics, 14:255-283,

1994.



[8] J. C. Butcher. The Numerical Analysis of Ordinary Differential Equations:

Runge-Kutta and General Linear Methods. John Wiley & Sons, Chichester,

1987.

[9] B. Cockburn and C.-W. Shu. The local discontinuous Galerkin method for time-

dependent convection-diffusion systems. SIAM Journal on Numerical Analysis,

35(6):2440-2463, 1998.

[10] B. Cockburn and C.-W. Shu. Runge-Kutta discontinuous Galerkin methods for

convection-dominated problems. Journal of Scientific Computing, 16(3):174-261,

September 2001.

[11] S. Gottlieb, C.-W. Shu, and E. Tadmor. Strong stability-preserving high-order

time discretization methods. SIAM Review, 43(1):89-112, 2001.

[12] The MathWorks Inc. MATLAB programming: Floating-point numbers. World

Wide Web, http://www.mathworks.com/access/helpdesk/help/techdoc/

matlab_prog/f2-98645 .html, 2006.

[13] G. E. Karniadakis and S. J. Sherwin. Spectral/hp Element Methods for Com-

putational Fluid Dynamics. Oxford University Press, New York, 2nd edition,

2005.

[14] J. Von Neumann and R. D. Richtmyer. A method for the numerical calculation

of hydrodynamic shocks. Journal of Applied Physics, 21, 1950.

[15] V. T. Nguyen, B. C. Khoo, J. Peraire, and P.-O. Persson. Shock capturing scheme

in high order discontinuous Galerkin method. In 7th WCCM, Los Angeles, CA,

July 2006.

[16] P.-O. Persson and J. Peraire. Sub-cell shock capturing for discontinuous Galerkin

methods. In AIAA-2006-0112, 44th Aerospace Sciences Meeting, Reno, NV,

2006.



[17] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical

Recipes in C : The Art of Scientific Computing. Cambridge University Press,

Cambridge, 2nd edition, 1992.

[18] F. Reif. Fundamentals of Statistical and Thermal Physics. McGraw-Hill, Boston,

1965.

[19] C.-W. Shu. TVB uniformly high-order schemes for conservation laws. Mathe-

matics of Computation, 49(179):105-121, July 1987.

[20] W. G. Vincenti and C. H. Kruger. Introduction to Physical Gas Dynamics.

Krieger, Florida, 1965.


