
The Crane Split and Sequencing Problem
with Clearance and Yard Congestion Constraints

in Container Terminal Ports

by

Shawn Choo

B. Eng (Electrical Engineering)
National University of Singapore, 2005

Submitted to the School of Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computation for Design and Optimization

at the

Massachusetts Institute of Technology

September 2006

C 2006 Shawn Choo
All rights reserved

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document in whole or in part

in any medium now known or hereafter created.

Signature of author.. ..
Computation for Design and Optimization Program

August 11, 2006

Certified by........................
David Simchi-Levi

Professor of Civil and Environ ntal Engineering
rI) sis Supervisor

Accepted by.................................. aime
aim Peraire

Professor of Aeronautics and Astronautics
ROME_ _ Co-director, Computation for Design and Optimization Program

MASSACHUSETTS INSTITUfE'
OF TECHNOLOGY

SEP 13 2006 BAKER

LIBRARIES

-

4.

THE CRANE SPLIT AND SEQUENCING PROBLEM
WITH CLEARANCE AND YARD CONGESTION CONSTRAINTS

IN CONTAINER TERMINAL PORTS

by

SHAWN CHOO

Submitted to the School of Engineering
on August 11, 2006 in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computation for Design and Optimization

Abstract

One of the steps in stowage planning is crane split and sequencing, which determines
the order of container discharging and loading jobs quay cranes (QCs) perform so that
the completion time (or makespan) of ship operation is minimized. The vessel's load
profile, number of bays and number of allocated QCs are known to port-planners hours
before its arrival, and these are input parameters to the problem. The problem is modeled
as a large-scale linear IP where the planning horizon is discretized into time intervals and
at most one QC can be assigned to a bay at any period. We introduce clearance
constraints, which prevent adjacent QCs from being positioned too close to one another,
and yard congestion constraints, which prevent yard storage locations from being overly
accessed at any time. This makes the model relevant in an industrial setting. We examine
the case only a single ship arrives at port, and the case where multiple ships berth at
different times in the planning horizon. The berth time of each ship and number of ships
arriving is known. The problem is difficult to solve without any special technique applied.

For the single-ship problem, a heuristic approach, which produces high-quality
solutions, is developed. A branch-and-price method re-formulates the problem into a set-
covering form with huge number of variables; standard variable branching provides
optimal solutions very efficiently. For the multiple-ship problem, a solution strategy is
developed combining Lagrangian relaxation, branch-and-price and heuristics. After
relaxing the yard congestion constraints, the problem decomposes into smaller sub-
problems, each involving one ship; the sub-problems are then re-formulated into a
column generation form and solved using branch-and-price to obtain Lagrangian
solutions and lower-bound values. Lagrangian multipliers are iteratively updated using
the sub-gradient method. A primal heuristic detects and eliminates infeasibilities in the
Lagrangian solutions which then become an upper bound to the optimal objective. Once
the duality gap is sufficiently reduced, the sub-gradient routine is terminated. The
availability of efficient commercial modeling software such as OPL Studio and CPLEX
allows for larger instances of the problem to be tackled than previously possible.

Thesis Supervisor:
David Simchi-Levi,
Professor of Civil Engineering and Engineered Systems

Acknowledgements

Where is the wise man?
Where is the scholar?
Where is the philosopher of this age?
Has not God made foolish the wisdom of the world?

-- 1 Corinthians 1:20 (NIV)

I could never fathom myself one day graduating from a university as prestigious and
well-regarded as MIT. I claim no credit for myself. Instead, I am fortunate to have the
support and guidance of the following people, to whom I am ebulliently grateful--

Professor David Simchi-Levi, my advisor, for his guidance, direction, patience and
understanding, and whose forthcoming words of encouragement kept me plodding
on;

Dr Diego Klabj an, University of Illinois at Urbana-Champaign, for the many hours
afforded sharing his academic knowledge and practical experience;

Liang Ping Ku and Hein Thuan Loy, PSA Corporation Operations Planning
Department, for providing an excellent research topic and insight into real-life
industry practices;

Laura Rose and Jocelyn Sales, course administrators, who were most committed to
ensuring that our student experience in MIT was smooth and problem-free;

Singapore-MIT Alliance and the Singaporean government, for sponsoring the SMA
Graduate Fellowship;

Yimin, my wife and best friend, for your love so unconditionally given in the last 9 years
I've known you, and whom I consider the greatest blessing in my life;

And finally, my parents, Lye Heng and Susan Choo, sister, Sabrina, and brother,
Samuel, who have given me everything.

5

6

Contents

1. Introduction
1.1 Overview of Container Terminal Operations .. 11

1.1.1 C ontainers.. 13
1.1.2 V essel and Ship B ays... 14
1.1.3 Q uay C ranes... 15

1.2 Problem Motivation and Description.. 16
1.3 O PL and O PLScrip t.. 17
1.4 L iterature R eview .. 18
1.5 Thesis Objectives and Organization................................ 19

2. Single-ship Model
2.1 Exact Mathematical Formulation................................. 21

2.1.1 Problem Characteristics and Modeling Requirements....................... 21
2.1.2 N otation 22
2.1.3 T he M odel... .. 23
2.1.4 Strengthening the Model... 24
2.1.5 Difficulty of the Problem... 25

2.2 Heuristic Solution Approach... 26
2.2.1 Scheduling Principles to Achieve Optimality............................... 26
2.2.2 Description of Algorithm.. 27
2.2.3 The Model for Assigning QCs in Each Period.................................. 28

2.3 Branch-and-price Solution Approach.. 30
2.3.1 General Framework... 30
2.3.2 Column Generation and Pricing Problem.................................... 32
2.3.3 Branching and Pruning.. 37
2.3.4 C alculating x's and 9 's.. 37

2.4 Computational Results..39
2.4.1 T est Problem s... 39
2.4.2 Results and Analysis... 40

3. Multiple-ship Model
3.1 Exact Mathematical Formulation

3.1.1 Problem Characteristics and Modeling Requirements..................... 47
3.1.2 N otation 48
3.1.3 T he M odel... .. 49

3.2 Lagrangian Relaxation Framework.. 52
3.2.1 Decomposition of the Lagrangian Relaxation Form into Sub-problems. 56
3.2.2 Solving Lagrangian Sub-problems with Branch-and-price................. 58

3.2.2.1 Re-formulation of the Lagrangian Sub-problem into Column
G eneration Form .. 60

3.2.2.2 Bounds on the Optimal Solution of the Lagrangian Sub-
problem 62

3.2.2.3 Restricted Master Problem and Pricing Problem................ 65

7

3.2.2.4 Branching and Pruning... 71
3.2.3 Updating Lagrangian Multipliers using Sub-gradient Procedure........... 72

3.2.3.1 Interpreting the Values of , 's..................................... 74
3.2.3.2 Choice of the Starting Lagrangian Multiplier Vector............ 74
3.2.3.3 Detailed Description of Procedure.................................. 75

3.2.4 Heuristic for Generating Primal Feasible Solutions........................ 76
3.2.5 Convergence of Upper and Lower Bounds................................... 79

3.3 Computational Results.. 80
3.3.1 T est Problem s... 80
3.3.2 Results and Analysis.. 81

4. Summary and Future Directions... 89

W o rk s C ited 93

8

List of Figures

Figures
1-1 The two operational interfaces in a container terminal system...................... 12
1-2 A RTG yard crane placing a container on a truck for transport to the quayside..... 12
1-3 Horizontal and vertical cross-section of a typical container vessel................. 14
1-4 Drawing of quay cranes serving a vessel, with a clearance separating each adjacent

cran es... . 15
2-1 Example of an initial feasible column pool for a ship with parameters H = 6, C = 2

an d r = 1 3 3
2-2 Solutions from the exact method applied to problem instances SS1-1 and SS2-3.. 41
2-3 Solutions from the heuristic approach applied to problem instances SS 1-4 and

S S 5-1... 4 2
2-4 Solutions from the branch-and-price approach applied to problem instances

S S4-2 and S S 5-1.. 42
2-5 Solutions from the heuristic approach applied to problem instances SSP1, SSP2,

S S P 3 4 3
2-6 Solutions from the branch-and-price approach applied to problem instances SSP 1,

S S P 2 ,S S P 3 4 3
2-7 Computational time for various values of H, fix T= 125, C = 2, r = 2............ 44
2-8 Computational time for various values of T, fix H = 20, C = 2, r = 2.............. 44
2-9 Computational time for various values of C, fix T = 125, H= 25, r = 2............. 44
3-1 Overall procedure of the Lagrangian Relaxation framework........................ 55
3-2 Overall flow of the branch-and-price algorithm for solving Lagrangian sub-

problem s.. . . 59
3-3 Example of a column for t=2 and right-hand vector of the master problem in set-

partitioning form for H=3, L=2, C=3, r=0... 60
3-4 Illustration of the breakdown of costs by column in an optimal integer solution of

M SM P 63
3-5 Upper and lower bound values vs. sub-gradient iterations for the case of S=2,

H1=10, H2= 10, C1=2, C2=2, T1=32, T2=44, wz=1..................................... 80
3-6 Matlab output of problem instance MSD4 using Lagrangian framework............ 82

Tables
1-1 Top 5 container terminals globally and their throughput (in millions), 200 1-

2 0 0 3 16
2-1 Description of the first data set of test problems.. 39
2-2 Description of the second data set of practical test problems....................... 40
2-3 Output and computational performance of the exact model and proposed solution

approaches on the first data set... 40
2-4 Output and computational performance of the various methods on second data

set.................. 4 2
3-1 Description of the data set of test problems for the multiple-ship model............. 81

9

3-2 Exact solution, LP and Lagrangian cost output and computational performance of
the m ultiple-ship data set.. 84

3-3 Comparison of computational performance of 'hard' problem instances when
Lagrangian sub-problems are solved by CPLEX and branch-and-price............. 86

10

Chapter 1

Introduction

1.1 Overview of Container Terminal Operations

Today, over 60% of the world's deep-sea cargo is transported in containers onboard

ocean-going vessels, and some routes between economically strong and stable countries

are containerized up to 100% [1]. The global growth rate for container port throughput in

2002 was reported to be 9.2%, with port traffic reaching a total of 266.3 million TEUs

(twenty-foot equivalent units) [2]. Due to this increasing global demand for containerized

marine shipping, container terminals have become important components in global

logistics and transportation networks.

A container terminal serves as an interface between land and sea transportation. Its

main functions are to receive outbound (export) containers from shippers for loading onto

vessels, and to discharge (unload) inbound (import) containers from vessels for picking

up by consignees [3]. These terminals also have storage yards for the temporary storage

of containers. Container terminals are considered essential infrastructure because they

are highly capital-intensive, and specialized equipment are needed to handle and transport

containers within the port system; for example, a quay crane can cost upwards of US$10

million.

11

Quayside Landside

Stack
with RMG

Quay Crane Vehicles Vehicles Trucks, Train

Vessel

Figure 1-1. The two operational interfaces of a container terminal system

Container terminals can generally be described as having 2 main operational

interfaces, quayside and landside. Quayside activities deal with the loading and

unloading of ships, while landside involves loading and unloading of containers on or off

external trucks, trains or yard storage locations. Some of the equipment and resources put

to use in both interfaces are shown in Figure 1-1. The transportation of containers

between the yard storage locations and the quayside is done primarily by trucks

(sometimes known as prime movers) or automated guided vehicles.

The container terminal also has a storage yard which is usually divided into

rectangular regions, known as container blocks. Each container block has about six rows

for storing containers in stacks, with an additional lane for truck passing. A row may

Figure 1-2. A RTG yard crane placing a container on a truck for transport to the quayside

12

have up to 20 stacks placed end-to-end, each of which can be up to 6 levels high. These

blocks are served by yard cranes of which there are 3 types, either rail mounted gantry

cranes (RMG), rubber tired gantry cranes (RTG) or more recently, overhead bridge

cranes (OHBG). Each type of yard crane confers different advantages to port operators;

for example, the RTG cranes can be moved from block to block while the RMG and

OHBG cranes are fixed, and the use of OHBG cranes allow for increased stack heights.

Yard cranes remove and place containers from the stacks directly onto trucks which park

in the passing lane while the transfer occurs. Traffic congestion caused by high rates of

loading and unloading containers from a particular block is a concern explored in the

chapter 3.

Upon a vessel's arrival at the terminal, a container vessel is assigned to a berth for

the loading and discharging of containers. Discharged containers are placed onto trucks

by quay cranes for transportation to pre-determined storage locations in the yard,

awaiting pickup from the local consignee or trans-shipment onto another vessel. Yard

cranes lift containers from the trucks onto their assigned stacks; the trucks are then

recycled back into usage for other jobs. Similarly for vessel loading, external customers

bring their outbound containers into the port using their own trucks and are instructed to

which yard storage location their containers have been assigned. Yard cranes remove the

container from the customer's truck onto the stack for storage. When the designated

vessel arrives, the yard cranes place the export containers onto trucks for transportation to

the vessel area, where they are loaded onto the ship by quay cranes.

The operations of a major Asian container terminal are broadly described in [4,5],

while the interested reader is directed to [6] for a general overview of various attributes

of container terminal operations. This thesis focuses on quayside operations; relevant

terminologies and resources are elaborated upon in the next few sub-sections.

1.1.1 Containers

13

Containers are steel boxes of dimensions 20 x 8 x 9.5 or 40 x 8 x 9.5 feet. The unit of

measurement for the throughput of 20-ft containers is commonly known as a TEU

(twenty foot equivalent unit). Each 40-ft container is counted as 2 TEUs.

The advantage of containerized cargo is that they can be loaded and discharged with

fewer crane moves and in a shorter time compared to bulk shipment cargo. Because of

the uniformity in sizing, the time needed to handle a container is approximately constant

if the equipment used and all other factors are equal. Furthermore, the use of standard-

sized cargo streamlines the scheduling and controlling of the flow of goods. Other

advantages include the protection of cargo against weather and accidental damage. Also,

cargo contents do not have to be unpacked and repacked at each point in transfer

resulting in a more rapid handling of freight.

1.1.2 Vessels Structure and Ship bays

A vessel is divided along its length into segments known as bays. Within each bay,

the vessel is split vertically into 2 parts, the deck and the hatch, separated by a hatch

cover. A drawing of the structure of a generic vessel is shown in Figure 1-3. Each bay

can accommodate several rows of containers across and several tiers deep. It is not

uncommon for some larger-capacity vessels today to have up to 25 bays, carrying a total

of over 9,000 TEUs. These deep-sea vessels have on deck, containers stowed 8 tiers high

and 17 rows wide, and in the hatch, 9 deep and 15 rows wide.

A bay is 20-ft wide and can be loaded by 40-ft containers or 20-ft containers. 20-ft

container bays are usually odd-numbered, while 40-ft container bays, which occupy twice

the length of the former, are evenly-numbered. For example, bays numbered 5 and 7

Row

tauu I *niu *n5w mu m ' 000
~~flflflfll R 0000)Tier

- - - Asingle bay 00
F. 0i 04 H* 0 0 s of ta

Figure 1-3. Horizontal and vertical cross-section of a typical container vessel

14

maybe joined together for loading of 40-ft containers and renamed bay 6.

1.1.3 Quay Cranes

Quay cranes (QC) are, in general, relatively immobile compared to yard cranes

which can serve a large region in the storage area. QCs have 4 legs each and the space in

between each of the 2 rows of legs is divided into traffic lanes for trucks to pass under. A

trolley moves along the arm of the crane and is equipped with a spreader, which is used

to pick up containers from the vessel or truck.

QC1

Figure 1-4. Drawing of quay cranes serving a vessel, with a clearance separating each adjacent crane

The width of a typical QC is 25.8 meters, and its practical performance is in the

range of 22-30 boxes/hour. It is usual practice for up to 5 QCs to be allocated to large

vessels, and up to 2,000 TEUs to be loaded and discharged per vessel in large ports. Port

operators usually enforce a work rule that a certain distance, known as clearance,

between two adjacent working QCs must be observed for safety reasons and unobstructed

operation. QCs run on tracks parallel to the berth line; this horizontal movement is known

as gantrying. Gantrying into position is usually completed in under a minute, lesser time

than needed to handle a container.

Trucks queue up under their allocated QCs, and wait for their container to be picked

up. For most efficient operation, trucks should always be available to serve the QCs with

their next loading job such that a QC is never idle with jobs remaining. This predicates

15

that there are sufficient number of trucks serving the QCs, no traffic congestion in the

port road network and no overloading of the yard cranes at the storage blocks which may

delay the arrival of trucks at the QCs. This assumption is made in chapter 2 during

problem modeling.

1.2 Problem Motivation and Description

In an increasingly competitive industry, ports have to ensure efficiency in their

management of yard resources. Table 1-1 shows the throughput of the top five container

ports in 2001-2003 [2]. Efficient port management involves making a variety of inter-

related operational decisions to achieve a range of goals, some of which include the

minimization of berthing time of vessels, resources needed for handling the work-load,

congestion on the roads, and the maximization the use of limited yard storage space.

Objective methods involving optimization techniques are necessary to support these

decisions to allow for further improvements in efficiency, which benefits the terminals by

allowing them to handle a higher volume of containers a day.

Table 1-1. Top 5 container terminals globally and their throughput (in millions), 2001-2003
Port TEUs 2003 TEUs 2002 TEUs 2001

Hong Kong 20.82 19.14 17.80
Singapore 18.41 16.94 15.57
Shanghai 11.37 8.81 6.33
Shenzhen 10.70 7.61 5.08

Busan 10.37 9.45 8.07

One of the main goals is to minimize the length of time the ship is berthed in port, or

makespan. An industry estimate puts the cost of a ship being berthed at port to US$1,000

an hour [7]. An important quayside factor which directly impacts the vessel makespan is

the way cranes are scheduled to load and discharge containers from the vessels, which is

a step in stowage planning.

The objective of stowage planning is to achieve an efficient and smooth discharge, re-

stowage and loading of containers on vessels to obtain an expeditious on-time turnaround

of vessels. It is carried out hours or days before the vessel's arrival and is a fundamental

part of terminal management. The steps in stowage planning differ from port to port, but

16

for most it covers import and export planning, input of stowage instructions, crane split

and sequencing, yard slotting and vessel stability checks (See [4]).

The main objective of the crane split and sequencing problem is to partition all the

loading and discharging jobs among the allocated QCs, and decide the order at which the

jobs are to be executed. Before the berthing of the vessel, the shipping company usually

provides a work instruction, called the loadprofile, which details the precise location on

the ship and exact identity of the containers which are to be loaded or discharged. Crane

split and sequencing usually occurs immediately after a ship is assigned a berthing space,

a fixed number of QCs are allocated to work on the vessel and the load profile and

storage location of each import or export container in the yard is known.

1.3 OPL and OPLScript

OPL, or Optimization Programming Language, is a high-level modeling language for

combinatorial optimization that simplifies these optimization problems substantially.

OPL is part of a larger system that also includes OPLScript, the OPL component library

and a development environment known as OPL Studio. It provides support for modeling

linear and integer programs and provides access to state-of-the-art linear programming

algorithms [8]. In addition, OPL supports the powerful CPLEX algorithm for mixed

integer programming in combinatorial optimization problems, which are known to be np-

hard in general.

OPLScript is a script language for composing and controlling optimization

models which combines high-level data modeling facilities of modeling languages with

novel abstractions to simplify the implementation of complex optimization applications

[9]. OPLScript treats models like first-class objects, which allows modelers to exercise a

degree of control over a model and state concisely many applications that require the

solving several instances of the same model.

The version number of OPL Studio used in the implementation of the crane split and

sequencing problem is 3.7; it has an built-in CPLEX version of 9.1. The author has found

17

useful the close similarity of OPLScript syntax with C/C++, the user-friendly graphical

interface of OPL Studio for creating and modifying model and script files, the use of the

open array whose size can be dynamically increased or decreased at runtime, and the

ability to solve several repetitive, interacting instances of an optimization model in a

particular sequence.

1.4 Literature Review

The QC scheduling program was first highlighted by Daganzo [10], who proposed an

exact linear IP formulation for loading a few ships, and a principle-based heuristic

approach for loading a larger number of ships. Available QCs are assigned to ship bays at

discretized time periods. The problem, with minimization of makespan as its objective, is

solved using enumerative techniques for up to 3 ships. Both the static case, where no

other ships arrive in the planning horizon, and dynamic case are considered. Peterkofsky

and Daganzo [11] discuss a branch-and-bound algorithm based on the same formulation

in [10] to give exact solutions in reduced time. Both papers assume that only a single QC

can work at a bay at any time.

Kim and Park [12] similarly discuss the QC scheduling problem, but include crane

interference and precedence constraints in the study and a fixed departure time for the

vessel. Their study further assumes that there may be multiple tasks or container clusters

within a single bay, as opposed to [10] where a bay is considered the smallest positional

unit. A branch-and-bound and heuristic search algorithm is proposed to obtain the

optimal solution to the problem. The same authors discuss in another study [13] an IP

model for scheduling berths and QCs, considering both problems to be dependant of each

other. A two-phase solution procedure is suggested for solving the model in which the 1st

phase determines the berthing position/time and number of QCs assigned to each vessel,

while the 2nd phase produces a schedule for each QC. The detailed assignment of

allocated QCs to individual ship bays, however, is not covered in the paper.

Bish [14] develops a heuristic algorithm based on formulating the problem as a

three-fold trans-shipment problem - determining a storage location for each unloaded

18

container, dispatching vehicles to containers and scheduling the loading and unloading

operation in cranes.

1.5 Thesis Objectives and Organization

This thesis extends the work done by Daganzo [10] incorporating industry-practice

constraints into the model. This is critical for practical application in an industrial setting.

The additional constraints were formulated based on the operational practices of a mega-

container terminal and they include QC clearance, ordering (QCs cannot 'cross' one

another) and yard congestion constraints. Details of these constraints will be discussed in

later chapters. Both the single-ship case and the multiple-ship case, where up to 10 ships

can berth at different times throughout the planning horizon, are tackled.

The main objective of the thesis is to utilize today's optimization applications to

push the boundaries of problem size and account for modem vessel capacities. It has been

reported that there was a 2,360 fold speed-up of CPLEX LP code from 1988 to 2002, and

within the same period, an additional 800 fold speed-up is obtained due to advances in

hardware [15]. Problem-specific methods such as column generation and Lagrangian

relaxation, applied to large-scale IPs, should improve on computational performance

delivered by CPLEX's default enumerative- and/or polyhedral-based algorithms.

In chapter 2, we discuss the mathematical formulation for the single-ship model, and

present a branch-and-price algorithm to solve the problem to optimality. A heuristic is

also proposed and is shown to produce effective solutions. Computational results of

various techniques are shown and compared against CPLEX's performance. In chapter 3,

the multiple-ship model is presented incorporating yard congestion constraints. These

constraints are relaxed using Lagrangian multipliers and the problem decomposes by

vessel into smaller and easier sub-problems. The sub-gradient optimization technique is

used to obtain optimal multipliers. A branch-and-price method is proposed to resolve the

Lagrangian sub-problem, while a primal heuristic is developed to obtain feasible upper

bound solutions. Lastly, computational results of the Lagrangian relaxation approach are

19

presented. In chapter 4, we outline possible future work directions and summarize the

findings of this thesis.

20

Chapter 2

Single-ship Model

2.1 Exact Mathematical Formulation

In this chapter, we propose a mathematical formulation of the crane split and

sequencing problem for a single vessel that has a specific number of bays and container

work-load. No other vessels are assumed to berth during the planning horizon. The

number of QCs allocated to work on the vessel has been pre-determined in the planning

process.

2.1.1 Problem Characteristics and Modeling Requirements

To model the problem, the entire planning horizon (i.e. maximum time in which all

crane work has to be completed) is divided into small time units such that all time-related

variables have integer time units. The length of each time period is the amount of time

needed for a QC to load or discharge a standard 20-ft container. QCs can only move and

be assigned to another (or the same) bay at discrete intervals.

The input data to the problem are - (1) number of QCs allocated to work on the

vessel, (2) the number of bays in the ship and (3) the detailed distribution of work in all

ship bays. The scheduling constraints for the single-ship model are described below:

21

1. A QC can only be positioned and/or work at a single bay at any time.

2. A QC must be positioned at least r bays away from any adjacent QCs on the left

and right.

3. QCs cannot 'cross' each other and must be positionally ordered at all times.

The following assumptions are made:

(a) QC gantrying time is negligible, compared to the time it takes to move a container,

and it can be ignored in the calculation of makespan.

(b) QCs cannot be added to or removed from vessel operation during the entire

planning horizon

(c) All QCs are identical and have similar work rates

(d) There is no delay in trucks delivering containers to the QCs at the allocated time

period.

(e) There is no distinction between the time required to move a 20-ft and 40-ft

container.

2.1.2 Notation

The following notations are used for the mathematical formulation.

Indices:
j Bay number, in increasing order of their relative location on the vessel (i.e. left to

right)
k Crane number, in increasing order of their relative position (i.e. left to right)
t Time period index, denoting the interval of time from t- 1 to t

Parameters.
C Number of QCs allocated
H Number of bays in the vessel
fj Number of containers to be loaded or discharged in bayj

H

T Total number of time periods in the planning horizon: set at Lfi , or the
j=1

makespan of the vessel if only one QC was allocated
r QC clearance value, in terms of number of bays

22

Decision variables.
xjk(t) 1, if QC k is positioned at bayj at time period t; 0, otherwise

]k (t) 1, if QC k is loading or discharging a container at bayj at time period t; 0,
otherwise

y(t) Completion flag: 0, if all container jobs are completed after time period t; 1,
otherwise

2.1.3 The Model

The single-ship model for the crane split and sequencing problem is as follow:

Minimize 7 - (1)

Subject to

xk (t)=1, k ...T
J=1

xj (W 1 Vj, t =1... T

M 1-xk(t)LX,
k=1 f =max{,j-r} m=1

H

x xIj (t), j=.H -I
/=j+l

IZX~k W = 0,

k==

k=1 t=I

C t

Z: (5k (')
7(t) < k=1 1=1

fi

e'' C:{0,1}

j=2..H,t=1..T

vi

Constraint (2.2) ensures that each QC must be positioned at a bay at any time, while

(2.3) denotes that only one QC can be positioned at any bay at any time. Constraint (2.4)

enforces the QC clearance condition, stating that if any QC is positioned at a particular

bay, all other QCs are restricted from being positioned r bays to the left, unless the bay in

question is less that r bays from 1st bay. Constraints (2.5) and (2.6) describe the QC

23

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

,k =.C L -, It =..T

'ordering' condition. It states all 'higher-numbered' QCs must be positioned to the right

of a respective QC, and that only QC C is allowed to work on the right-most bay.

Constraint (2.7) ensures that all required container jobs are completed within the planning

horizon. Constraint (2.8) states that a QC cannot be working at a bay if it is not

positioned there. Constraint (2.9) defines the work completion flag for bay j. The

objective function ensures that when the value on the right-hand-side of (2.9) sums to '1'

for all H bays at time period t, y(t) will take the value of '1' as well. (2.10) states that all

the decision variables are binary. For P 's, it means that each QC can only work on 1

container in each bay at any time.

T

The objective function evaluates the value of the makespan (i.e. T - y*(t)). The
1=1

feasible region is defined by all possible ways of assigning each QC's position (x's) and

work-status (5's) to a particular bay for all periods in the planning horizon.

2.1.4 Strengthening of the Model

It is well-known that disaggregating or introducing additional constraints may help to

speed up the solving of the problem [16]. These additional relations improve the optimal

solution of the LP relaxation by excluding some fractional solutions.

The QC clearance constraint (2.4) is reformulated as follows:

j-1
1--x (t)> ! I X,,(01, j =2..H, Vk, m=1..C, t=1..T (2.4a)

l=max{,j-r}

min{j+r, I}

Xj- x > I x, (t), j= ..H - 1, Vk, m =1..C, t =1..T (2.4b)
1=j+l

The disaggregation of (2.4) in the k index on the right-hand-side removes large-

integer M from the constraint, which is known to cause problems in CPLEX. (2.4b) has

the 'mirror' effect of (2.4a) - if any QC is positioned at a particular bay, no other QCs

can be positioned r bays on the right.

The QC ordering constraints (2.5) and (2.6) are also reformulated as follow:

24

H

xy,(t)! L X""(0), =.H- -I, k =..C -Lt = ..T (2.5a)
1=j+1
j-

x, (t) x _ (t), j =2..H ,k = 2..C,t =1..T (2.5b)

xjk(t)= 0, {VkIk # 1}, j=L..k -1,, j=1..k -1, t=1..T (2.6a)

Xj(t) 0, {Vk I k # C}, j= H -(C -k)+L..H, t =1..T (2.6b)

Constraint (2.5b) has the 'mirror' effect of (2.5b) - all 'lower-numbered' QCs must be

positioned to the left of a given QC. Constraints (2.6a) and (2.6b) further restrict

positioning some QCs at bays at the extreme ends of the vessels so that clearance is

maintained.

While these additional constraints are indeed redundant in terms of IP feasibility, they

significantly prune the LP feasible space. We observe in §2.4 that the enlarged model,

while having about 1.5 times the number of constraints, has shorter computational times.

2.1.5 Difficulty of the Problem

Solving combinatorial optimization problem to optimality can be a difficult task and

many have been proven to be np-hard [17]. The difficulty arises from the fact that the

feasible region of the IP may not be a convex set and one must search a lattice of feasible

points to find an optimal solution. Most commercial software, including CPLEX, employ

enumerative approaches such as branch-and-bound to intelligently search the feasible

space around the relaxed-problem solution. The running times of these algorithms,

however, are not bounded by a polynomial in the size of the input.

We expect the single-ship model to be applied to vessel sizes in the order of 30 to 40

bays and a total container work-load of several hundred to a thousand TEUs. The number

of decision variables x, 5 and y are H x C x T, H x C x T and T respectively, and they

may be in the range of hundred thousands, hence the (1) number of bays, (2) number of

QCs allocated and (3) total workload determine the size of the problem and can affect its

computational speed. We refer the reader to §2.4 for the tabulation of computation results,

which show that attempting to solve the exact model in CPLEX leads to excessive

25

solution times (even with strengthening). This leads us to the next two sections, which

propose a heuristic and branch-and-price method to solve the large-scale problem in

economically-feasible computational times.

2.2 Heuristic Solution Approach

Heuristic are employed to obtain good but not necessarily optimal solutions in IPs.

Typically, they come with no solution-bounds guarantee, but are justified by their

performance in practice, i.e. they may be the only way to quickly provide a usable

solution to very difficult optimization problems.

2.2.1 Scheduling Principles to Achieve Optimality

A logical approach for the heuristic would be to decide on 'good' bay assignments

one period at a time, instead of optimizing across the entire planning horizon. It is

observed that the minimum time needed to clear the remaining work load at each period,

the remaining makespan, is independent of QC assignment decisions made in earlier

periods.

It is clear that if the clearance constraints and the constraint that each bay cannot be

worked on by more than 1 QC are ignored, the remaining makespan at period t, RM(t),

Y, j(t)
would be simply be j , where l;(t) is the work load remaining in bayj at period t.

However since only 1 QC can work on a bay at any time, a possible value for RM(t)

would be max {l, (t) I Vj} . The bay with the maximum remaining work-load is labeled the

maximal bay.

Therefore, a lower bound can be established for RM(t):

I vrl(t)~
max< max~l (j) IVj},J C s;RM(t) (2.11)

26

(2.11) states that either the remaining workload in the maximal bay or the average QC

work rate will be the minimum possible RM(t), whichever is greater. To illustrate each

case, consider the following example. A ship has 5 bays and is handled by 2 QCs. If bays

1 to 4 each have 1 container left while bay 5 has 4 containers left, the remaining

makespan would be at least 4 periods (i.e. max {l (t) Vj}). Alternatively if bays 1 to 5

ij (t)
all have 1 container left each, the remaining makespan will instead be 2 (i.e. C

In each period, we want to make assignment decisions so that the lower bound on

RM(t+J) is reduced. To do this, we attempt to reduce the values of both

[j (t + 1)
max {l (t+1) Vj} and C by observing 2 broad scheduling principles in each

time period:

1. The maximal bay for each time period must always be handled.

2. Remaining QCs should not be idle. They are assigned to work on other bays with

heavy work-loads.

However, the lower bound on RM(t) may ultimately not be reached because clearance

constraints can force some QCs to remain idle while there is still work to be done. This

may occur especially in the last few periods of work and will result in sub-optimal

makespan results. However, computational tests demonstrate that the degradation from

the optimal solution is minimal.

2.2.2 Description of the Algorithm

The following describes the overall heuristic procedure:

Step 1: Initialize the value for 1;(t) for the 1st time period, i.e. Let ly(1) =f] for all j. Set

t=1.

27

Step 2: Rank all bays in terms of remaining work-load for current period, t.

Step 3: Assign QCs to bays for current period t based on the scheduling principles

described in §2.2.1. (The exact QC assignment model executed for each period is

described in §2.2.3.)

Step 4: Obtain the value of l;(t+l) by subtracting away the work done in each bay from

l;(t+1).

Step 5: If 1 i(t +1) = 0, there is no remaining work and algorithm terminates with t as

the makespan. Otherwise, increment t by 1 and repeat from Step 2.

2.2.3 The Model for assigning QCs in each period

This section describes the OPL model that is repeatedly called in each period until

there are no more jobs left. The remaining work-load in each bay, l;(t), and the mapping

of the work-load rankings to bay numbers, r(j'), are imported into the model. The model

assigns QCs to bays based on the two scheduling principles described in §2.2.1, and is

represented as follows:

28

H C

Maximize (H- i')(r,{j,
j'=2 k=1

Subject to

j=1

~XJk 1
k=1

j-1

/=max{1,j-r}
min{j+r,H}

1=j+l

Xjk L XI,k+I,
I=j+l
j-1

Xjk <IXI,k-
1=1

Xik = 0,

x1i = 0,

~x , 1,
L<xjk'

k=1'

L 9k =1,

x, 6 e {0,1}

Vk

IV]

j=2..H,Vk,m=1..C

j=1. .H -1, Vk, m =1 ..C

j=1. .H -1, k =1. .C -1

'=2..H,k = 2..C

{Vk Ik 1}, j=1. .k -1,, j=1. .k -1

Vk I k C}, j= H - (C - k) +1. .H

j ema /, IVj}

Vj, k
Vj, k

j emax I Vj}

The decision variables are x and 6, and they have the same definition as in the

single-ship model. (2.13) to (2.16) and (2.18) are identical to QC position constraints in

the single-ship model. Constraints (2.17) and (2.20) ensure that a QC is positioned at and

working on the maximal bay. Constraint (2.19) states that no work can be done in a bay if

there are no remaining containers to handle.

The objective function adds a 'weight' to all 6 's relative to their work-load rankings.

Since bays with higher rankings are given heavier weightage, the maximization function

29

(2.12)

(2.13)

(2.14)

(2.15a)

(2.15b)

(2.16a)

(2.16b)

(2.16c)

(2.16d)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

will attempt to allocate remaining QCs to work on bays with heavier work-loads,

ensuring that no QC remains idle while there is work remaining.

This model is smaller that the exact formulation because decision variables are not

indexed by t. Hence, we can expect that overall solution time will be faster despite it

being repeatedly run.

2.3 Branch-and-price Solution Approach

2.3.1 General Framework

The main motivation behind the use of the method is the possibility of tightening the

existing LP relaxation by reformulating it into a problem which involves a huge number

of variables. Columns are left out of the LP relaxation because there are too many to

handle efficiently and most of them will have their associated variable equal to zero in

the optimal solution anyway. The hope is that such a scheme will converge faster than

CPLEX's LP-based branch-and-bound algorithm. Barnhart et. al. [18] provide a good

exposition of the branch-and-price methodology.

The existing, compact single-ship model is re-written into a '0-1' set-covering

problem. This is motivated by the pioneering work of Gilmore and Gomory [19] on the

cutting stock problem. Each row represents a ship bay and each column, QC position-bay

assignments for a single time period. A column has H (number of ship bays) rows, each

having a value of '1' if a QC is positioned at that particular bay.

This synthesis of column generation and branch-and-bound is known as branch-and-

price. The proposed branch-and-price procedure is an adaptation of the basic branch-and-

bound procedure based on LP relaxation, which is reviewed in [20]; the branch-and-

bound methodology per se is well-established in literature and will not be discussed in

this thesis. Branch-and-price solves to optimality the problem involving QC position-

assignments (x's); later obtaining the QC work-assignments (6 's) from x* 's is trivial

(§2.3.4).

30

The following details the procedure to solve the single-ship model:

Step 1. Initialize a problem set pool, {IPPset}. Place the root problem node into

{IPPset} and initialize an empty constraint pool for it. Set bestUB = oo and

Zbest 0.

Step 2: Generate an initial column pool for the restricted master problem (RMP) that can

produce a feasible solution.

Step 3: If {IPPset} = 0 , terminate the algorithm with Zbest as the optimal column-

variable integer solution with Ybes, as the optimal makespan.

Step 4: Choose and delete the latest problem node, IPPset(k), away from {IPPset}.

Step 5: Solve the RMP using the column and constraint (branching rules) pools

associated with the current problem node, IPPset(k).

Step 6: If RMP is infeasible, go to step 3. Otherwise, extract the optimal dual variables

from the RMP, insert into the PP and solve.

Step 7: If the column with the minimum reduced cost is less than 0, insert that into the

RMP column pool and repeat from Step 5. Otherwise, let yk be the RMP objective

value and zk be the column-variable solution.

Step 8: If yk >_ y,,,, -1, go to Step 3. If zk's are all integer, set Ybest = yk and Zbest = zk and go

to Step 3.

Step 9: Find the 1s' fractional variable in z7 . Insert 2 new problem nodes to {IPPset} and

add z, = z,] and z, = [zk 1 respectively to the constraint pools of each. Go to

Step 3.

Step 10: Take the non-zero column-variables in Zbest and set x's. Reset some 3 's to zero

so that work completion constraints are met.

The constraint pool of each problem node consists of the accumulation of all

branching constraints from the root to the current node of the branch-and-bound tree. At

step 4, we must consider which problem node to explore in the next branch-and-bound

iteration. Because feasible solutions are found deep inside the search tree, a depth-first

search is adopted where the most recently created problem node is chosen. Steps 2-9

31

describe a standard branch-and-bound algorithm. Steps 5-7 explain the column

generation and pricing route that is executed at every node of the tree (§2.3.2). Step 8

describes a pruning method, while step 9 refers to standard variable branching of

fractional column-variables (§2.3.3).

2.3.2 Column Generation and Pricing Problem

There is an exponential number of feasible QC position-assignment 'patterns',

therefore the column generation form of the problem (the master problem) contains a

huge number of columns. Hence, it is necessary to work with an LP relaxation involving

only a small subset of the columns, known as the restricted master problem (RMP). New

columns are generated as needed when their reduced costs are negative and are

candidates to improve the objective function. The pricing problem (PP) uses dual

variables from the RMP to look for non-basic columns, with feasible QC position-

assignments, which have the minimum reduced cost. If the minimum reduced cost is less

than or equal to 0, we have proven that the current solution to the RMP is also optimal for

the master problem.

The algorithm moves repeatedly between solving the RMP and the PP until no more

columns with negative reduced costs can be found. RMP and PP are solved with CPLEX.

The solution of the final run of the RMP becomes the lower bound value of a node in the

branch-and-bound tree.

An initial column pool which gives a feasible LP solution

To start the column generation scheme, an initial RMP has to be provided which has a

feasible LP to ensure that proper dual multipliers are passed into the PP. A pool of

columns is generated for the initial RMP such that it has a feasible (but most likely non-

optimal) LP solution.

Any set of columns which 'covers' all bays with non-zero work-loads will suffice.

Figure 2-1 shows columns of the initial basis used for a ship with 2 bays, 2 QCs allocated

32

1 0 0 0 3

0 1 0 0 z 2

1 0 1 0 z2 2

0 1 0 1 z3 4

0 0 1 0 [z 4 _ 6

0 0 0 1 8

fi

Figure 2-1. Example of an initial feasible column pool for a ship with parameters H= 6, C= 2 and r= 1

and clearance of 1. Note the feasibility of the columns in terms of the clearance

constraints, i.e. at least 1 'empty' row always separates 2 active rows.

The pseudo-code of the procedure for generating the initial column pool is as follows:

set craneposition = 1
set numCols = -1
set config[numCols,1..H] = 0
repeat

numCols = numCols + 1
Increase size of config by 1 column
Re-set rows of new column to '0'

fork= 1..C-1 do
config[numCols,craneposition+k(r+1)] = 1

end for

if craneposition + k (r + 1) = H then
break out of repeat loop

end if
end repeat

config is an open array which can be dynamically re-sized at runtime. It stores the '0-

1' set-covering matrix of the RMP which has numCols number of columns. The index

craneposition marks the bay position of the first QC in the current column, while the

expression craneposition + k (r + 1) indicates the bay position of the last QC.

The pseudo-code for the column generation and pricing routine is as follows:

33

repeat
Solve the RMP model

if RMP is feasible then
bc = Basis information from RMP
dual[j] = Dual variable associated with rowj of set-covering constraint in RMP
Import dual[j] into PP
Solve PP model

if objective value of PP < 10-5 then
xU] = Feasible QC position 'pattern' with minimum reduced cost
numCol = numCols + 1
Increase size of config by 1 column
configlnumColj] = xU]

Reset RMP model.
Set initial basis of RMP with bc
Import new column pool, config

else
break out of repeat loop

end if
else

break out of repeat loop
end if

end repeat

A simplex-based algorithm is used to solve the RMP LP. To reduce the computational

work of repeatedly solving the RMP, the basis from the optimal set of columns from

previous iterations of the RMP is used as the initial basis for solving the RMP in the next

iteration. The basis information is stored as bc in the pseudo-code.

Restricted Master Problem (RMP)

The purpose of the RMP is to (1) provide dual variables for the PP, and to (2)

determine if the current set of QC position-assignment 'patterns' provide an optimal LP

solution or not.

34

(RMP):

Minimize z, (2.22)
jElI

Subject to

I z, f4, Vj (2.23)
iel jEi

z 0, Vi (2.24)

z,, U, Vi' e {P I Ceiling constraints} (2.25)

z < L, Vi' e {P I Floor constraints} (2.26)

The following is a description of notations in the RMP:

I Set of feasible QC position-assignment 'patterns' in the column pool
P Set of branching constraints in the constraint pool of this problem node
zi Number of times QC position-assignment 'pattern' i is used
fi Work-load in bayj

The cost of including each column is '1' since the makespan is incremented by 1

when a column is used. The objective function (2.22) minimizes the total number of

columns needed to meet work-load requirements. (2.23) depicts the set-covering

constraints. Constraint (2.24) enforces only the non-negativity of zi, but allows columns

to be used multiple times. (2.25) and (2.26) are all the branching constraints associated

with the current problem node, and its effect is to discard regions of the feasible space

that included fractional variables obtained in previous nodes of the search tree.

Pricing Problem (PP)

The role of PP is to provide a column that prices out profitably or to prove that none

exist. The optimal dual variables associated with constraint (2.23), p, from the RMP are

imported into PP.

35

(PP):
H

MinimizeX 1- L p x (2.27)
j=I

Subject to
H

Lx, =C (2.28)
j=1

min{j+r,H}

C (I-x Xj I x,, j=1.H - I (2.29a)
I=j+l

C (I- xj) j I x,, j= 2..H (2.29b)
l=max{1,J-r}

x e{0,l} (2.30)

The decision variable, xj, is '1' if a QC is positioned at bay j and '0' otherwise. All

other notations have similar meanings as the single-ship model. The objective function

(2.27) arises from the calculation of the reduced cost of a non-basic column, indexed by i,

in an LP: c, - (c B-1)A,, where ci is the cost of a non-basic column i ('1' in this case),

(c B-') is equivalent to p (the optimal dual variables associated with constraint (2.23) in

the RMP), and Ai is the non-basic column vector in i represented by xj's in the PP.

Constraint (2.28) states that all QCs must be positioned at a particular bay, therefore

there are a total of C 'active' rows. (2.29) enforces QC clearance constraints similar to

that of the single-ship model. QC ordering constraints (such as in (2.5) and (2.6)) are not

necessary since QCs will be assigned in order of their numbering (in the k index) from

the top to bottom of the column.

Column Generation at every node of branch-and-bound-tree

The LP relaxation solved by the column generation technique does not necessarily

produce integer solutions, and applying a standard branch-and-bound procedure to the

RMP with its existing columns does not guarantee optimality. There may be columns

outside the current pool which may have negative reduced cost after branching in

subsequent nodes occurs. Therefore, the branch-and-bound procedure must be modified

36

so that the column generation procedure is used at every node of the search tree to

generate a lower bound.

2.3.3 Branching and Pruning

Branching

A valid branching scheme partitions the solution space in such a way that the current

fractional optimal solution of a node is excluded, integer solutions remain intact, and

finiteness of the algorithm is ensured [21]. The use of standard variable branching often

creates problems along a branch where a particular variable has been set to '0'; in future

iterations of PP, columns that were previously excluded may be re-generated causing

cycling in the branch-and-bound algorithm. However in this case it would occur

infrequently because the decision variables of the RMP, z's, are not binary. The standard

variable branching rules will not force the fractional column out of the basis, hence the

branched variables will have a reduced cost of zero (being basic in the LP) and

automatically be excluded from being inserted into future column pools (refer to Step 7 in

§2.3.1).

It is common to make important branching decisions at the top of the branch-and-

bound tree. Because all columns have equal cost, in deciding on which fractional column-

variable in the LP solution to branch on for every node in the tree, it suffices to select the

first fractional column found.

Pruning

Since the costs of all the columns are integral, it is possible to discard nodes which

have optimal LP values that are greater than an integer away from the upper bound, i.e.

Y > Yb,,t -1 instead of yk > Ybe, . This allows us to more easily disregard previously

partitioned regions of feasible space in searching for the optimal solution, thus

significantly speeding up the branch-and-bound procedure.

2.3.4 Calculating x's and 9 's

37

The output of a successful run of the branch-and-price algorithm is Zbes,, the number

of times each feasible QC position-assignment 'pattern' is used. From Zbes,, we can use

RMP column pool data to form up values of x's, a decision variable of the original single-

ship model, for each time period. Next, QCs are assumed to be working where they are

positioned at all time periods. This is allowed through (2.8). We then arbitrarily re-set

some 5's back to '0' so that the work requirement constraint (2.7) is met exactly (as

opposed to being exceeded).

The following is the pseudo-code for the re-arrangement of data from Zbes, to x's:

for i = 1..numCols do
set c = 1
if Zbes,' = 1 then

forj= 1..H
if config[numColsj]= 1 then

xj,(i) = 1
c=c+ 1

end if
end for

end if
end for

The following is the pseudo-code for the extraction of S 's from x's:

forall j, k, t do

8k(t) = Xjk(t)

end for

Initialize wastage[1..H]
forj= 1..H do

Calculate amount that exceeded work requirement constraints for bayj
Store amount in wastagelj]

for p = L..wastage[j], k = L..C do

if 3 1 k(P)= 1 then J(p)= 0 end if

end for
end for

38

2.4 Computational Results

2.4.1 Test Problems

A data set with 12 different problem instances was created. The problem instances are

arranged in order of increasing ship bay numbers, each with varying work-loads, number

of QCs allocated and clearance requirements. The main objective of using this data set is

to validate the accuracy of the exact model and the proposed algorithms in producing QC

position- and work-assignments that adhere to all the constraints. The secondary purpose

is to compare the computational performance and quality of solution of the heuristic and

branch-and-price methods against that of the exact model solved with CPLEX. Table 2-1

summarizes the various parameters of each problem instance, and provides the total

number of constraints and decisions variables of the aggregated and 'disaggregated'

forms of the exact model.

Table 2-1. Description of the first data set of test problems

Problem No. of No. of Aggregated Aggregated

No. H C r T constraints* variables* fo st N o .
No of const. No. of var.

SSl-1 10 2 1 61 8184 2501 5378 2501
SSl-2 10 3 1 61 15687 3721 9343 3721
SSI-3 10 4 1 61 25508 4941 14406 4941
SSI-4 10 5 1 61 37647 6161 20567 6161
SS1-5 10 2 3 61 8184 2501 5378 2501
SS2-1 20 3 3 106 55882 12826 33198 12826
SS2-2 20 4 4 106 90968 17066 51536 17066
SS2-3 20 3 5 106 55882 12826 33198 12826
SS3-1 30 3 8 143 114001 25883 67669 25883
SS4-1 40 2 8 198 109732 31878 0 0
SS4-2 40 3 8 198 211306 47718 0 0
SS5-1 50 3 8 249 0 0 0 0

* Disaggregated form of the single-ship model
0 Unknown - takes too long to execute model

A second data set is also created which contains problem instances with vessel sizes,

work-loads and other parameters that are typically encountered in the operations of any

major container terminal. The main purpose is of using this data set is to ensure that the

proposed solution approaches can handle realistic industry conditions. Table 2-2

describes the parameters of this practical data set.

39

Table 2-2. Description of a second data set of practical test problems
Problem H C T No. of No. of

No. constraints* variables*
SSP-1 25 2 8 519 178561 52419
SSP-2 30 3 8 839 0 0
SSP-3 40 4 8 1385 0 0

* Disaggregated form of the single-ship model
0 Unknown - takes too long to execute model

2.4.2 Results and Analysis

First data set

All computational tests performed for this thesis were carried out using a Pentium-IV

1.6 GHz PC running OPL Studio in the UNIX environment. 4 different experiments were

carried out on all problem instances in the first data set; the aggregated and disaggregated

form of the exact model, the heuristic and branch-and-price solution approaches were run.

The optimized makespan and computation time results of tests are tabulated in Table 2-3.

Table 2-3. Output and computational performance of the exact model and proposed solution approaches on first data set

Exact Exact Heuristic Br-n-Pr.
Problem Exact Heuristic Br-n-Pr. runtime runtime runtime runtime (s)

No. makespan makespan makespan (s) (s) (s) / No. BnB
iterations

SS1-1 31 31 31 0.8769 1.118 0.091 0.062/13
SS1-2 21 21 21 0.9829 1.251 0.083 0.111 /9
SS1-3 16 16 16 1.103 1.416 0.084 0.062/7
SS1-4 14 14 14 1.029 1.516 0.096 0.000/1
SS1-5 31 31 31 1.134 1.157 0.011 0.016/3
SS2-1 36 36 36 0.843 21.21 0.318 0.780/15
SS2-2 38 40 38 11.58 16.47 0.504 0.000/1
SS2-3 36 36 36 9.677 19.23 0.367 0.281 /4
SS3-1 56 56 56 6.542 ~ 120 1.047 0.000/1
SS4-1 99 99 99 25.89 0 1.838 2.706/9
SS4-2 66 70 66 368.7 0 1.826 18.84/43
SS5-1 0 86 83 0 0 2.998 102.3 / 99

0 Unknown - takes too long to execute model

CPLEX is able to solve the exact model within a reasonable time for problem

instances up to 40 bays which has over 200,000 constraints and 50,000 decision variables.

In contrast, for the aggregated form of the exact model, a solution was obtained in

reasonable time only for problem instances of up to 30 bays. This validates the 'LP-

tightness' of the strengthened model. Tests with the heuristic approach show that

computational time does not exceed 3 seconds for all problem instances, a drastic

40

improvement over CPLEX's performance on the exact model. The makespan solution

differs from the optimal makespan of the exact model and branch-and-price approach in

several problem instances (i.e. sub-optimal solutions in SS2-2, SS4-2). The overall

quality of the heuristic solutions, however, remains high. The branch-and-price algorithm

runs the most rapidly on average among the 4 experiments conducted. In problem

instances SSl-4, SS2-2 and SS3-1, integer solutions were obtained at the root node and

no branching was necessary; computation time is almost negligible in these cases.

Performance, in the branch-and-price approach, is also affected by the number of branch-

and-bound iterations required.

Output from OPLScript is exported to Matlab, where the data is re-organized and a

graphical, intuitive form of the solution is presented. Figures 2-2 to 2-4 shows solutions

of the exact method, heuristic and branch-and-price approaches applied to several

problem instances. The lines in the figures indicate the position of the QCs (x-axis) at

each time period (y-axis), while the crosses show when they are at work; crosses at bay

number 0 indicate that the QC is not working at that time period. Different colored lines

represent the different QCs.

F
2

2

Crane split and sequence for C-2, H-10 T-61, r-1 Crane split and sequence for C-3, H-2

0 - -- 35 - -

5 --

-10

- -

T5 2 5 -..--.-.--.-.-

2 0
0 1 2 3 4 5 6 7 5 S 10 0 2 4 a e 10 12

Hold number Huld number

Figure 2-2. Solutions from the exact method applied to problem instances SS1-1

0, T-106, r-5

14 18 18

and SS2-3

41

Crane split and sequence for C-5, H-1 0, T-61, rWl

1

0 1 2 3 4 5 6

H

7 8 9 10

Crane split and sequence for C-3, H-50, T-323, r-8

0 15.20 2 .0 30.40.40

0 -------

0-

0 5 10 15 20 25 30 35 40 45 so
Hold number Hold number

Figure 2-3. Solutions from the heuristic approach applied to problem instances SS 1-4 and SS5-1

Crane split and sequence for C=3, H=40, T=198, r=8 (Col. Gen.)

- - - - - --- ----

i

- ..--- -

0 5

s0

70

60

50

40
E

30

20

10

0
10 15 20 25 30 35 40

Hold number

Crane spit and sequence for C=3. H=50. T=249 r-8 (Col. Gen.

---- -- --------------- ----- -- -- -- --- ---

-- --- ------ ------ -- ---------- ----- --- --- -- .. - -- -..

-------------- ------ ----------- ---- -- --... -.

- -- --- ---- - -- ----- --- ----- ------- -- --------

10 15 20 25 30 35 40 45 50
Hold number

Figure 2-4. Solutions from the branch-and-price approach applied to problem instances SS4-2 and SS5-1

Second data set

The abovementioned methods are applied to realistic problems in the second data set.

Their output makespan and computational performance are shown in Table 2-4.

Table 2-4. Output and computational performance of the various methods on second data set

Exact Heuristic Br-n-Pr.
Problem Exact Heuristic Br-n-Pr. . . runtime (s) /

No. makespan makespan makespan (No. BnB
iterations

SSP1 260 260 260 808.09 2.877 0.967 /20
SSP2 0 317 317 0 6.997 1.039/12
SSP3 0 412 412 0 18.42 5.693/6

0 Unknown - takes too long to execute model

Figures 2-5 and 2-6 shows the graphical solutions. The exact method gave 'out of

memory' error for SSP2 and SSP3. The heuristic approach provided optimal makespan

solutions. Branch-and-price algorithm performance was again shown to be the best

42

14

12

10

H

60

70

50

401

30

201

10

E

-..

....-

.- ..-

8

6

4

4

5

among the 3 approaches. For SSP3, the problem instance with the largest size,

computation time did not exceed beyond 20 seconds. We can conclude that the heuristic

and branch-and-price approaches are effective in producing high-quality solutions on

realistic data very efficiently.

Figure 2-5. Solutions from the heuristic approach applied to problem instances SSPl, SSP2, SSP3

L L.

Figure 2-6. Solutions from the branch-and-price approach applied to problem instances SSP1, SSP2, SSP3

Effect of input parameters on runtime

The objective this sub-section is to analyze how values of H, C and T affect the

computational time of the abovementioned methods. Figures 2-7, 2-8 and 2-9

respectively show the effect of increasing H, T and C on computational time, while

keeping other parameters constant.

43

- H- Exact
-l- Heuristic'
-A-Br-n-Pr

35 -

30 -

25 -

20 -

15 -

10 -

5-

0
10 15 20 25 30 35 40

H

Figure 2-7. Computational time for various values of H, fix T= 125, C = 2, r = 2

--- Exact
-U- Heuristic
-A- Br-n-Pr

4 O U2 0 10

T

Figure 2-8. Computational time for various values of T, fix H = 20, C = 2, r = 2

*rI.

3 4 5

Exac
-U-Heur

A- Br-n-
C

istic

pr

Figure 2-9. Computational time for various values of C, fix T= 125, H= 25, r = 2

44

E

-

1000 -

100 -

4)
E 10 -

1 -

0.1

0.01 -

E

1000 -

100 -

10 -

1

0.1 -

0.01 -

0.001 -

I

For the exact model, there is an approximate linear increase in runtime with a

corresponding increase in H, and an exponential increase in runtime with an increase in C

and T. Figure 2-9 shows a jump in runtime when C = 5 because of the difficulty of

'squeezing' 5 QCs into a space of 25 bays with a clearance of 2; it becomes harder to find

feasible integer solutions. This shows that computation time is affected by the difficulty

of the problem and not just problem size alone. The branch-and-price runtime shows no

definite trend. When C = 1, only 1 branch-and-bound iteration and required and runtime

is negligible. In Figure 2-8, we observe that for certain combinations of H and T,

computation time is almost zero even when C is greater than 1. The heuristic approach

shows a relative linear relationship between runtime and H, C and T.

45

46

Chapter 3

Multiple-ship Model

3.1 Exact Mathematical Formulation

In this chapter, we develop a mathematical formulation which models ships berthing

at specific, pre-planned times throughout the master planning horizon for loading and

discharging operations. The objective remains to minimize the makespan of each vessel,

while ensuring that the necessary clearance constraints for each vessel's QCs and a new

set of yard congestion constraints are adhered to.

3.1.1 Problem Characteristics and Modeling Requirements

The same modeling assumptions and scheduling constraints made in the single-ship

model, described in §2.1.1, are also applied to QC bay assignments for each vessel in the

multiple-ship model. Hence, the constraint structure of the multiple-ship model is largely

similar to that of the single-ship model.

In the multiple-ship model, QC scheduling of each vessel would be independent of

other vessels if not for the additional yard congestion constraints imposed. The

constraints prevent the number of QCs (from any vessel) handling containers that are

47

slated for a particular yard storage location at any time from exceeding a given quantity,

known as the yard activity threshold. The aim is to keep to a minimum the level of yard

crane and truck activity in the container storage blocks and hence prevent congestion and

other operational inefficiencies. Thus, QC activity in each vessel interacts with activity in

other vessels in the yard; if the yard activity thresholds are breached, QC jobs in the

various vessels have to be re-scheduled.

Since berth planning has been completed in the pre-planning stages, we are given as

an additional input parameter the berth time of each vessel, or the time at which QC

operations for each vessel may commence. Instead of knowing only the number of

containers to be discharged in each bay, we are now also provided with the yard storage

destination for each container. Other new input parameters are the yard activity threshold

for each storage location and the total number of ships berthing in the master planning

horizon.

For simplicity, it is assumed that the time expended in moving containers from any

storage block to any vessel at the quayside is the same. Realistically, the amount of time

needed for transportation is affected by the distance between the vessel and storage

locations, and also if there is congestion in the port road network. A second simplifying

assumption is made such that only discharging jobs are conducted and storage locations

will always be accessed after the QC move, as opposed to loading export containers

which have a reverse operational flow.

3.1.2 Notation

The following notations are used for the multiple-ship mathematical formulation.

Indices:
i Ship number, in no particular berthing order
j Bay number, in increasing order of their relative location on the vessel (i.e. left to

right)
k Crane number, in increasing order of their relative position (i.e. left to right)
z Yard storage location number
t Time period index, denoting the interval of time from t- 1 to t

48

Parameters:
S Number of ships berthing during the master planning horizon
Ci Number of QCs allocated to ship i
Hi Number of bays in ship i
L Number of container storage locations in the yard
fiz Number of containers to be discharged from bayj of ship i headed for storage

location z
di Berth time of ship i; the vessel cannot be handled before this time
Ti Number of time periods in the individual planning horizon of ship i; set

at Z f1 , or the makespan of the vessel if only one QC was allocated
j=I z=I

Tmax Total number of time periods in the master planning horizon, i.e. max, {d, +T - 1}
r QC clearance value for all vessels, in terms of number of bays
wz Yard activity threshold, maximum number of QCs allowed to work on containers

headed for storage location z at any time

Decision variables:

XUk () 1, if QC k is positioned at bayj of ship i at time period t; 0, otherwise

85k(t) 1, if QC k is discharging a container headed for storage location z, at bayj of ship
i at time period t; 0, otherwise

y,(t) Completion flag: 0, if all container jobs in ship i are completed after time period t;
1, otherwise

3.1.3 The Model

The multiple-ship model for the crane split and sequencing problem is described as

follow:

49

Minimize 6 1

Subject to
Hi

C,Zxk(t) = 1,

X i) W 1

S da+Ti-1

- L,()
i=i t=d,

i=1..S,k = ..C,,t =d,...di+I -1

i =L.S, j=1..H,, t =i d... di + T -I

j-I C

Ci (1 -x Xi (0) > E E xi,,,(t), i = 1..S, j =2..Hi,,k =..Ci,,t = di ... di+ T - I
I=max{Ij-r) m=1

min{j+r,Hi} C

Ci (1 - xij ()> E ExIM(t), i = ..S, j=.Hi --1, k = i..C,, t = d,... d, + T - I
I=j+l M=I

H

xk Lt) xil (1, L=1.S, j=.Hi- 1, k =1..C - 1, t= d... d, + T -I
/=j+l
i-I

xii Wt) <Yxik (05, L=.S, j =2..H,, k = 2..Ci ,t = di ... di+ T - I

x()=Z0, i=.S,{Vk I k 1}, j =. k -b1, t =d,...d, + T -1

xyk(t)= 0, =1..S,{Vk Ik #C,,j= H, -(C,-k) +1..Hi,,t= d,...d, + T-- I
Ci di+7i-

g, a(t) = fi , i..S, j=1..H,, z = .L
k= t=di

15. (L ,(ti=.S, j=1..H,,5k =1..C,, z = 1..L, t = d,..d, + T

'5A (t) L1 =.S, j =..Hi,,k =1..Ci, t = d,..d, + T - I

Hi Ci

Z I I (t) s w,, s E {Ships berthed at t}, z = 1..L, t =1..Tmax
s j=1 k=1

Ci

ZZ(ia(l)

, k=1 =di , =S, j = ..H,, z ={.L,}t = di...di+ T -I

x, , e{41}

(3.1)

(3.2)

(3.3)

(3.4a)

(3.4b)

(3.5a)

(3.5b)

(3.5c)

(3.5d)

(3.6)

1(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

The individual planning horizon of a vessel i ranges from di to di + Ti - 1, and for each

vessel the QC position and work constraints are applied in every time period within this

range. All of the QC position constraints, labeled (3.2)-(3.5), are identical to the single-

ship model's position constraints described in §2.1.3, and they are applied to each vessel,

indexed by i, in the multiple-ship model. QC work constraints are almost similar except

50

(MSP):

for the additional index for storage location. The added work constraint is (3.8), which

complements (3.11) in ensuring that a QC cannot discharge more than one container from

a bay at any time. (3.6) is the work completion constraints; here, we have to ensure

containers headed for all storage locations in each bay are handled. A similar observation

is made in (3.10) for the definition of the work completion flag; containers in all storage

locations in each bay must be handled for it to go to '1'.

Constraint (3.9) sums up the total amount of QC work done on containers headed for

a particular storage location, z, for all 'active' vessels at a particular time period, t, and

ensures that it does not exceed the yard activity threshold for that location, w. The value

of w, may be dissimilar among the different storage locations depending on, for example,

the type of yard crane used or the size of the traffic lanes. Each of the yard congestion

constraints restricts the yard activity for location z at time t, and is given a coordinate,

(z,t), for easy reference.

The objective function evaluates the sum of the makespan for each vessel; the
di +Ti+ I

makespan for vessel i is T - Z ,* (t) +1. We consider that each vessel is given equal
t=di

priority for work completion, however by affixing differentiated cost co-efficient values
S d;+7;-l

for each vessel, i.e. -Z I ciy,(t), we can easily penalize waiting times for higher-
i=1 i=dj

priority ships.

The multiple-ship model is programmed with OPLScript and computational

experiments performed with CPLEX show that the computational time is excessive even

for smaller-sized problems. This leads us to develop an approach which utilizes the

efficient solution strategies for minimizing the makespan of a single vessel, presented in

chapter 2, to speed up the solution of the multiple-ship problem. The Lagrangian

relaxation technique is one such method and it is described in §3.2.

51

3.2 Lagrangian Relaxation Framework

Lagrangian Relaxation (LR) is a powerful tool for the approximate solving of large-

scale IP problems. It was first introduced by Held and Karp [22] and applied to the

traveling salesman problem. The main motivation for using LR is that it provides stronger

lower bounds compared to LP relaxation for problems that do not possess the Integrality

Property. Solutions to LR problems, or Lagrangian solutions, can also be used as good

starting points for a heuristic search of a primal feasible, upper bound solution. These

bounds provide us with brackets around the optimal integer value which are usually

tighter than brackets coming from a standard LP-based branch-and-bound algorithm.

Geoffrion [23] and Fisher [24] provide a thorough overview of the technique and show

proof of the superior bounds of generated by Lagrangian solutions.

In the LR approach, a set of 'complicating' constraints are relaxed and dualized by

adding them to the objective function with penalty coefficients, known as Lagrangian

multipliers. The LR problem must be much simpler to solve compared to the original

problem for it to yield any computational advantage. Guignard [25] lists out the many

ways in which a given problem can be relaxed in a Lagrangian fashion. In particular, we

can select a set of 'coupling' constraints to relax so that the LR problem decomposes into

multiple sub-problems. One clear advantage is the reduction in computational complexity

for the Lagrangian sub-problems; for instance, it is generally easier to solve 50 problems

with 100 binary variables each than a single problem with 5000 (50 x 100) binary

variables.

In our case, a logical set of constraints to relax are the yard congestion constraints

(3.9). They link the decision variables associated with different vessels together and if

relaxed, the problem would decompose by vessel. The corresponding objective function

of the relaxed problem is defined as follow:

S d+TI-l L T m(H C;

L(x, 7, y,k)= - ,(t)+ ZiA(t)- wz (3.12)
i=i i=di z=1 1=1 s j=1 k=1

52

A Lagrangian multiplier, A., , is attached to each yard congestion constraint with

coordinate (z,t). We can further define the minimization objective function with

relaxation for a given values of A,,:

L* (k) = min,,
S di+TI L T.

-1 Z y(t)+± Y
i=1 t=di z=1 =1

Alt

Hi Ci

s Z k =, (t)
s j~l=

The primal problem is the original multiple-ship model described in §3.1.3, or MSP.

The LR approach involves solving the (3.13), for given values of A., 's, over the primal

problem polytope excluding the 'complicating' yard congestion constraints; this problem

is labeled as MSLR (described in §3.2.1). For any non-negative values of A,, 's, the

following bounds are valid, where 5* and y* are the optimal primal solutions:

s d,+T 1

i=1 t=di

L T.

Z=1 ±=1

HC

(s j= k=1 i
wz >

S di+T I

-Z Z v*(t)
i=1 t=di

(3.14)

Since the value
Hi Ci

of zz >s*,(t)
s j=I k=

- w. is negative by definition, the optimal cost of

MSLR, for any given value of A.,, is always less than or equal to the optimal primal cost.

The ultimate goal is to find optimal dual variables, A, , such that complementary

slackness conditions occur; the perturbation

L T.

z= t=1

i HC

IZ IS*()
s j=I k=1

to the original cost objective,

-.) , is equal to 0. The following describes the problem

which produces the 'tightest' lower bounds for MSLR possible:

(MSLD): L* (X*) = MaximizeOL* (k) (3.15)

MSLD is known as the Lagrangian dual of MSP relative to the yard congestion

constraints. The difference between MSLD and MSLR is that MSLD is a problem in the

dual space of A, 's, while MSLR is a problem in the primal variables x, 9 and y. A

53

- w,) (3.13)

L*(k):! -

systemic approach to searching the dual space for AL 's that maximize L*() is the sub-

gradient method, which is further described in §3.2.3.

In the process of evaluating A, in MSLD, Lagrangian solutions are also generated. In

the sub-gradient procedure, MSLR is repetitively solved and Lagrangian solutions

produced for different values of A, The primal-dual optimal saddle-point which invokes

complementary slackness is not always found in integer programming. In general, the

optimal cost of the dual problem, MSLD, is not equal to the optimal cost of the primal

problem, MSP. This means that the latter is unknown to us; an upper bracket has to be

found.

It is usually rare in practice that Lagrangian solutions are primal feasible in the

original problem, MSP. However, it is not uncommon that Lagrangian solutions are only

mildly affected by infeasibility and can be made feasible with minor adjustments. In our

case, the Lagrangian solutions, obtained in every iteration of the sub-gradient procedure,

may violate yard congestion constraints and a primal heuristic is developed (described in

§3.2.4) to remove these violations. The resulting feasible solutions then become upper

bounds to the optimal primal solution. The eventual proximity of the primal (or the upper

bound to it) and dual optimal objective values would indicate that the polytope formed by

the non-relaxed constraints approximates the convex hull of the same region ([26]

provides a rigorous proof) and that we have been provided with solutions of high quality.

The main objective of the LR framework is to reduce the difference between the

upper bounds and lower bounds to the optimal cost of MSP to a satisfactorily small value.

The stopping criterion of the sub-gradient routine is discussed in §3.2.5. The following

describes the overall flow of the LR framework:

54

Initialization
Set X'

Solve Lagrangian
decomposed
sub-problem

using branch-and-
price algorithm

Obtain Lower Bound
from Lagrangian
solutions in)k

Run Primal Heuristic
to generate an upper
bound from current

Lagrangian solutions

Update best upper
and best lower bound

values

Check Duality Gap
by comparing

percentage difference
between best upper

and lower bound

ISr

Gap
Tolerance

< Gap
Tolerance

Sub-gradient procedure terminated with
best uDner bound value as final solution

Figure 3-1. Overall procedure of the Lagrangian Relaxation framework

55

Start sub-gradient
iteration k

Update Lagrangian
multipliers

Using sub-gradient
vectors

L

3.2.1 Decomposition of the Lagrangian Relaxation Form into Sub-problems

The objective function of MSLR, shown in (3.12), can be re-written as follows:

L(x, , y, k)
s d,+7-1 L THi C

=-E I y(t)+Z L , IZ ZSS 9"t)-wj
i=1 t=di Z=1 t=1 s J=1 k=1

S d,+7>-1 T.. H, Ci L L Tm.

=-Z Z y,(t)+Z IEE Z ZtSA (t)-(AZ
i=1 t=d s t=1 j=I k=1 z=1 Z=1 t=1

S d,+Ti-l Hi Ci L L T..

=E I E E Y AztgS, (t)-yVi(t) -Z YA,,WZ
i=1 t=d j=I1 k= z=1 z=1 t=1

L T.. S di+Ti-l Hi Ci L

=-I IAW+L { EZZA.,9, (t)-y(t) (3.16)
Z=1 t=1 i=1 i=d, j=I k=1 z=1

L' (k)

Without the 'coupling' yard congestion constraints, the objective function and all the

non-relaxed constraints of MSP can be separated into S independent minimization sub-

problems, one for each vessel and with objective function L' (). To solve L* () given

values of A, 's, the Lagrangian sub-problems for each vessel, MSLR', are solved

individually and the results summed together; finally a constant term (1st term in (3.16))

is added to the summation. The Lagrangian sub-problem for each vessel is defined as

follows:

56

(MSLR'):
Minimize,yL!(X) (3.17)

Subject to

Constraints (2.2), (2.3), (2.4a), (2.4b), (2.5a), (2.5b), (2.6a), (2.6b), (2.10) and

di+T--l

I 9,(W)= fy,, j = ..H,, z = ..L (3.18)
i=di

45t W :! xik (01) j = ..Hi, k = I..C,, z = 1..L,t = d,..d, + T - 1 (3.19)
L

I j, Qt) < 1, j =1..Hi ,k = ..Ci,,t = d,..di + T - 1 (3.20)

Y(t : & k=I I=d j =..Hi,,z =1..L, t = d,... d, + T -1 (3.21)
fil

Constraints appearing in MSLR' are almost identical to the single-ship model

(described in §2.1.3), except that the variables (5 's and the input parameter f 's are

additionally indexed by z for yard storage locations. The input parameters for each

Lagrangian sub-problem are its associated vessel's load profile, berth time and vessel size.

The objective function (3.17) differs from the single-ship objective by a single penalty

di+T -l Hi Ci L

term Y, IA,,,,(t), which defines the summation of a factor of the total QC
i=di j=I k=1 z=1

usage in each (z,t). This extra term causes an inflation in cost from the single-ship

objective.

The basic idea of the MSLR' is to re-schedule the QC jobs to (z,t) coordinates with

small A, values without compromising the vessel makespan. Although the MSLR' is

easier to solve compared to MSP, it is still very difficult for large-scale problems. We can

infer the best-case computational performance of MSLR' by a comparison with the single-

ship model's performance found in Table 2-4; the latter, without the complicating penalty

term in the objective, cannot be efficiently solved by CPLEX for realistic-sized problems.

However, due to the relative similarity between MSLR' and the single-ship model, we are

able to take advantage of the efficient branch-and-price solution strategy developed for

the single-ship model; the branch-and-price method will be adjusted to take into account

57

the penalty term in the objective. The following sub-sections detail the application of this

approach for solving MSLR'.

3.2.2 Solving Lagrangian Sub-problems with Branch-and-price

The general framework for the branch-and-price algorithm applied to the Lagrangian

sub-problems is similar to that used to solve the single-ship model to optimality.

However, because of the additional index, z, for yard storage locations, there will be L

times the number of rows in each column. The presence of a time-indexed term, A , in

the cost function for each column, arising from the left term in L () (3.16), means that

the cost scheme differs according to time period and a separate pricing problem has to be

solved for each period.

The expected increase in the problem size of the RMP and number of RMP/PP

iterations needed for LP optimality suggest that certain problem-specific measures (i.e.

column management), not used in solving the single-ship model, have to be developed to

reduce the computational complexity of the branch-and-price algorithm. The overall flow

of the branch-and-price algorithm, within a single sub-gradient iterate, is described in the

following chart:

58

Initialization

Given Ak 's in k-th sub-

gradient iteration

Solve single-ship model
without yard

congestion constraints
Obtain optimized

makespan. Set as 1 "
makespan test value

Set Initial Column Pool
based on single-ship
model optimal results

Start branch-and-price
with current makespan

test value

Solve RMP
for current node in

branch-and-bound tree

Column Management
Remove from pool

columns which
consistently have

nositive reduced cost

Solve Pricing Problem
for periods within the
makespan test value

Check for fractionality

Increase makespan test
value by 1

Y

Check that
reduced cost of

non-basic
columns for all

periods are
non-negative

N

Add
new

nodes

Branching

Y on the fractional column
with the minimum cost

N
--- -- Compare against Noe

best solution Nds
remaining

No more nodes

N
-- Check if increased test

makespan is greater Ythan best solution

Figure 3-2. Overall flow of the branch-and-price algorithm for solving Lagrangian sub-problems

59

Pruning
Check if final RMP

solution is better than
best upper bound

Algorithm
terminatedI

3.2.2.1 Re-formulation of the Lagrangian Sub-problem into Column Generation Form

The goal of re-formulating the original compact formulation of MSLR' is to tighten

the LP relaxation so that less branching is required to obtain integer solutions during

branch-and-bound. In the column generation form of the single-ship model, each column

represents a particular QC position-assignment, as described in §2.3.2. Here, because the

cost of QC activity in each period is affected by P's, each column instead represents a

particular QC work-assignment designated for a period.

The column generation form of MSLR' is called the master problem. Each column in

the master problem consists of H x L rows, one for each (/,z) coordinate. For example, an

'active' (jz) row of a column designated to period t means that 3j (t) = 1. Because the

work completion constraints (3.18) have to be satisfied, the master problem has a '0-1'

set-partitioning structure with the right-hand vector, f being the load profile for each (j,z)

coordinate. Identical columns may differ in cost if designated to different periods because

of the effect of A, 's. Figure 3-3 shows a pattern, r, which depicts work-assignments for

period 2 specifically:

0 3

1 2

1 -- 5 -

Yr,2 = f =

1 3

0 0

9,1,2(2)= 1g2(2)= 133 (2) = 1, All other 5 's are '0'.

41 = 3, f,2 = 2,f = 5 2,2 1, f,1 =3,f, = 0

Figure 3-3. Example of a column for t=2 and right-hand vector of the master problem in set-

partitioning form for H=3, L=2, C=3, r=O

The master problem includes an exponential number of columns, designated to

different periods, each representing a feasible 'pattern':

60

(MSMP):

d+T(-1

Minimize, I 1+E A.,z Yr,, (3.22)
£-d, reR, zeR,

Subject to
d, +T-1

Z: Z Y,, =fz , Vj, z (3.23)
=d, reRR,:(iz)eR,

1:y r, 1, t =d,..dl + T - 1 (3.24)
rE R,

1 Yr,+1 -Yr,, 0, t =d,..d,+T - 2 (3.25)
reR, re R,

The following is a description of notations in MSMP:

Rt Set of all feasible QC work-assignment 'patterns' designated to period t
(huge set)

Yrt Number of times QC work-assignment 'pattern' r, designated to period t, is used

fJz Number of containers in ship bayj headed for storage location z

The columns in MSMP' can be designated to any time period within the planning

horizon for the vessel. The integrality of column-variables is relaxed in MSMP' and it is

solved as an LP. An explicit search of all possible feasible 'patterns' in MSMP' is

computationally impossible since JRI is huge. The LP relaxation of the problem with a

reasonably smaller subset of columns is solved in the RMP, as described in §3.2.2.3.

The objective function (3.22) sums up the costs associated with 'active' columns. The

cost of each column is split into 2 parts, contribution to the makespan ('1' for all

columns) and the penalty term associated with QC activity in the designated period (as

discussed in §3.2.1). Since 1 's are either '1' or '0', for each column designated to t, we

sum up only 2, values which correspond the z-coordinate of an active row . If values

for A., 's are large, there may be a trade-off between minimizing the cost of the 2

competing components. Take for example a vessel with an optimized makespan of 16.

We have values of A, 's for t 16 significantly larger than values of A,, 's for t > 16.

When considering both cost components, it may be worthwhile to let the makespan

61

deteriorate by a small amount so that the smaller A, 's for t > 16 are added to the overall

cost instead of the larger A., 's for t 16. This is elaborated further in the discussion of

solution bounds for MSMP in §3.2.2.2.

(3.23) show the work-completion constraints in set-partitioning form. Constraint

(3.24) states that for each period in the planning horizon, only one column designated to

it from R, can be included in the solution. All columns designated to periods later than

the optimal makespan are set to 0. Constraint (3.25) imposes that columns designated to

earlier periods must be in the solution if later periods are, ensuring the vessel makespan is

evaluated correctly. Without (3.25), columns will simply be picked from periods which

have the smallest 12, 's, and these periods may be non-consecutive. An example is given

for a vessel that requires 5 periods to complete QC work and has a planning horizon of 12

periods. If 2, 's are smallest (i.e. '0') during 8 t < 12, columns designated to the last 5

periods will be selected with a cost of 5. This masks the fact that the vessel has actually

been in port for 12 periods in total, although QCs are only active for the last 5.

The branch-and-price approach is especially useful when the resulting master

problem has a structure, such as set-partitioning, that is well known to have a tight LP

objective function value and whose polyhedral structure has been well-studied [27].

Constraints (3.25) can cause many fractional solutions to appear. Strengthening of the

MSMP' through disaggregation of (3.25) causes 'messiness' in the algorithm when

passing dual variables into the pricing problem. It is worthwhile to examine if an

alternative approach, which utilizes a formulation that excludes (3.25), can be developed,

and this is discussed in §3.2.2.3.

3.2.2.2 Bounds on the Optimal Solution of the Lagrangian Sub-problem

Before attempting to solve MSMP' directly, it may be pertinent to examine if we can

obtain an upper and lower bound bracket around the optimal integer solution cost. The

knowledge of a range of values around the optimal cost will allow us to take certain

62

computational 'short-cuts' in the branch-and-price procedure because certain column

combinations can immediately be disregarded.

A lower bound

The main component that contributes to overall costs is the makespan value. Ignoring

the penalty term cost component, , 2 y, for a moment, the problem of minimizing the
zeR,

makespan, while adhering to clearance, work-completion and other constraints, is almost

similar the single-ship model described in §2.1.3, with the exception of additional z

indices for the J variables. In chapter 2, we presented two quick solution strategies for

the single-ship model. We treat the process of solving the modified single-ship model as

a 'black box', and refer to it as the single-ship oracle. Since A, 's are non-negative by

definition, the optimal makespan of the single-ship oracle becomes a lower bound to the

actual integer solution cost of MSMP'.

In the example shown in Figure 3-4, if a vessel has an optimized makespan of 6, since

the term I A, is strictly non-negative, the actual cost cannot be less than 6 without
zcR,

violating work-completion constraints (3.23). Note that for each time period, only a

single column designated to it is selected (3.24), and that 'active' periods are consecutive

starting from the berth time (3.25).

Optimized Makespan = 6

1+0.87 1+0.23 11+0.01 11+0.54 11+0.12 1 1+0.45 0 0 0 0 0 0

t=1 t=2 t--3 t-4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12

d,= I
T=122

6 5 Integer solution cost of MSMP' 1+Z2 , y,,, = 8.22
,=1 reR,(zER,

Figure 3-4. Illustration of the breakdown of costs by column in an optimal integer solution of MSMP

63

Generating an initial feasible column pool

To start off the RMP, it is necessary to initialize it with a small set of columns which

provide a feasible basis. The outputs of the single-ship oracle are designated as 1sso,

which can be mapped into '0-1' columns. The initial column pool will have the same

number of columns as the optimal makespan derived from the single-ship oracle;

columns designated to periods later than the makespan are excluded.

The pseudo-code of the procedure for generating the initial column pool is as follows:

set makespanLB = Optimized makespan from single-ship oracle
set numCols = -1
initialize config[numCols,1..Hx L]
for t = di.. d, + makespanLB - 1

numCols = numCols + 1
Increase size of config by 1 column
Re-set rows of new column to '0'

forall (j,z) do
config[numCols,(j,z) row number] = ,(t)

end for

config[numCols, HxL+1] = t
end for

config stores all the feasible columns in the column pool. makespanLB holds the

optimized makespan value from the single-ship oracle. The (Hx L+1)-th row in each

column stores the designated period number. The following details the mapping between

the j and z index for 8 sso 's, and the row number of columns in config:

+ (3.26)

z =((l -1)mod L)+1 (3.27)

Generating an upper bound

An available upper bound to the optimal integer cost of MSMP' will allow us to

discard solutions with makespan values that are greater than its rounded-up value. The

64

problem size is reduced because columns designated to periods above the rounded-up

upper bound value can be ignored; in addition these columns need not be priced out

(§3.2.2.3) when solving the LP. For example, if a given upper bound is 17.9, the

makespan of the vessel cannot exceed 18 because the minimum cost of the columns

designated to periods 1 to 18 is '1' for each.

An initial upper bound value can be obtained from Ssso 's. The penalty cost

component, YA, , of each column in the initial column pool can be added to the lower
zER,

di+7'-1 Hi Ci L

bound value obtained earlier; the total value added is A ,, 5s (t) (refer to
t=di j=1 k=1 z=1

(3.16)).

In Figure 3-4, the brackets around the optimal cost of MSMP' in the example

dji1

presented is 6 ! E E I+2A,) Yr,t 8.22. Possible values for vessel makespan in
t=d, rER, zeR,

the optimal solution are 6, 7 or 8. In §3.2.2.1, we mentioned that increasing the vessel

makespan may allow a lowering of overall costs. This leads us a formulation of the RMP

such that each possible value of makespan is tested one at a time; this is discussed in

§3.2.2.3.

3.2.2.3 Restricted Master Problem and Pricing Problem

Restricted Master Problem

The RMP is commonly identical in structure to the master problem except that only a

small subset of all possible columns/variables is accounted for. In our master problem,

MSMP', we previously discussed problems arising from constraint (3.25); it causes a high

degree of fractionality in the LP. However, if the problem involves minimizing costs over

a fixed makespan value (derived from solution bounds discussed in §3.2.2.2), (3.25) can

be discarded and the problem more closely approximates a 'tight' set-partitioning form.

65

The modified RMP now specifies the exact number of time periods that are expended

to meet work-load requirements. Intuitively, the problem difficulty decreases as we no

longer have the dual objectives of minimizing the sum of both the makespan and penalty

term costs; instead, only minimization of the latter is required. The modified RMP model

reads as follows:

(MSRMP'):

d +TMs -1

Minimize, I I E vYr,y (3.28)
t=di reR, zeR

Subject to
di+T -1

Z Z Yr,t f1iz Vj 9Z (3.29)
t=di rE R;:(j,z)eR

My,1 t = d S..di + Tms -1 (3.30)
re R,

Yr,t =1, V(r, t) E {P I Branch-up constraints} (3.31)

y, =0, V(r, t) e {P Branch-down constraints} (3.32)

Tms refers to the makespan test value, one of the possible makespan values arising

from the solution bounds of MSMP'. R, refers to a subset of columns of R, for each

period. The objective function (3.28) only includes penalty term costs since the makespan

cost is known (fixed at Tms). (3.30) now becomes an equality constraint because columns

designated to all periods up to Tms must be represented in the solution. P denotes the set

of all branching rules in the constraint pool; (3.31) and (3.32) are branching constraints

discussed in §3.2.2.4.

Pricing Problem

The pricing problem to MSRMP' has a similar function and structure to that for the

single-ship model discussed in §2.3.1. Dual variables associated with new constraints

(3.30), p, from the RMP are imported into the PP. In addition, work-assignment decision

variables, 8 's, are included, which are used to define a new feasible column. The PP is

shown as follows:

66

(MSP,):

Hi L

Minimize , ,6 , - uj, -pt (3.33)
j=l z=1 (I,z)E{8i =1}

Subject to constraint (2.28), (2.29a), (2.29b) and

d., <x,, Vj, z (3.34)

E8 iz1, V] (3.35)
z

x,8 e {0,l} (3.36)

The objective function (3.33) searches for the minimum reduced cost of a non-basic

column. (2.28) and (2.29a-b) enforce QC position constraints, while constraints (3.34)

and (3.35) dictate where the QCs are allowed to work, or which combinations of rows

may be 'active'. (3.36) defines MSPP'as an IP.

MSPP' has a different cost vector for pricing out columns designated to each t. The

RMP and PP are solved repetitively for each time period in the range d, < t <d + Ta -1.

A full run of RMP and PP in this range is called an RMP/PP cycle. At least 1 RMP/PP

cycle must be completed, where the PP produces non-negative objective values for all

periods in the range, before LP optimality is satisfied. When solving the LP in the

example presented in Figure 3-4, in each RMP/PP cycle, the RMP and PP are run

repetitively to find good columns for each period in 1 t < 6 . Taken that for the first 10

RMP/PP cycles, columns with negative reduced cost are found for all periods in the

stated range. During the 1 th cycle, the PP adds columns to the RMP only at t- and t=2;

when PP is run from t-3 to t=6, a non-negative objective is found. A 12th RMP/PP cycle,

where no new columns are added for any period in the range, must be run before the LP

algorithm can terminate.

For non-root nodes in the branch-and-bound tree, branching has occurred on some

column-variables. When solving the LP, the MSPPI' need not be solved for 's where

columns designated to them have been branched to '', since each period can only be

represented by at most one 'active' column (i.e. constraint (3.30)). Computational savings

67

are made especially when solving the LP for nodes deep in the branch-and-bound tree.

Branching on column-variables is further discussed in §3.2.2.4.

Equivalence of Set-Covering and Set-Partitioning Forms

Barnhart [18] asserts that when there is a choice, a set-covering formulation is

preferred over a set-partitioning formulation because its LP relaxation is numerically far

more stable and thus easier to solve. In general, the set-covering and set-partitioning

solutions are the same if changing any 1 in a column into a 0 gives a valid and no more

expensive column; non-negative A, 's and P's in the objective of the Lagrangian sub-

problem ensure this is the case.

Returning to the original multiple-ship model, MSP, in §3.1.3, assuming we replace

the equality sign in work-completion constraints (3.6) with the greater-than-or-equal sign;

in other words, allow more work to be done than necessary. The modified MSP is solved

with the same optimal makespan, since doing more work with the same work-load can

never reduce completion time. Assuming that constraints (3.6) are exceeded by K, we can

arbitrarily reset K number of S 's that are '1' back to '0'. QC position constraints (3.1)-

(3.5) are not violated by the resetting action because constraint (3.7) allows values of x's

to be independent of 1 's. Neither are the QC work constraints and yard congestion

constraints violated since less work done makes them 'less violated' in general. We can

conclude that since constraint (3.6) can be changed as abovementioned in MSP without

affecting cost or feasibility, constraint (3.29) in MSRMP can be converted to the set-

covering form:

di+ TMS -1

S Z Yr,t t 'fjz, V], Z (3.37)
t=di rER;:(j,z)rER

Column Management

After many RMP/PP cycles, the column pool will grow to a large size and cause a

reduction in the speed of solving the MSRMP. Column management involves removing

columns that are no longer active in the LP solution from the RMP column pool. Only

68

non-basic columns which are consistently inactive should be deleted, otherwise it may be

re-generated by the PP in future iterations.

The column management algorithm is run immediately after the RMP. It scans the

entire pool for columns with positive reduced cost and increments an inactivity counter

for each column. Once the inactivity counter value exceeds a threshold, set at 5 planning-

horizon lengths, the column is discarded from the pool.

The following pseudo-code describes the column management algorithm:

forall k = active columns in column pool
if k-th column has not been fixed to '0' then

if Reduced cost ofYk > 10-5 then
Increment config[k, Hx L+2] by 1
if config[k, Hx L+2] = 5T then

config[k, HxL+2] = -1
end if

end if
end if

end for

For non-root nodes in the branch-and-bound tree, some column-variables may have

been fixed permanently to '0'. However, we are not free to discard these previously

branched columns as they are needed in the RMP (3.32) to fix column values. The

column counter is stored in config[k, HxL+2], a hidden row within the column.

Testing each possible makespan value

Bounds to the optimal solution of MSMP' provide us with several possible makespan

values, the integer points within the bounds, as discussed in §3.2.2.2. The entire branch-

and-price procedure must run several times, once for each makespan test value, TMs,

using MSRMP and MSPPI., to see which produces the smallest cost objective. This

would be advantageous only if the combined computational time is smaller compared to

running branch-and-price procedure once on MSMP'; computational experiments

performed show this is indeed the case.

69

An initial upper bound value is created from the output of the single-ship oracle.

When branch-and-price is carried out on each Tms value, improved upper bounds may be

generated which narrow the bounds bracket and eliminate the need to test larger

TMs values. Using the example in Figure 3-4 where the initial bounds bracket was 6 and

8.22, the first TMs value tested is 6 and we take that the solution produced by branch-and-

price is 7.05. A narrower solution bounds of 6 and 7.05 is created and we can eliminate

testing for TMs = 8, saving some computational effort. If we get a solution of 7.8 for

when TMs = 7, then the final minimum cost is 7.05 with a makespan value of 6.

Computational time can be further shaved if we examine the LP solution produced at

the root node of the search tree. We are aware that the LP-relaxed cost is a lower bound

to the optimal IP cost. Therefore, if the LP objective from the root-node RMP (when

testing for any TMs), is larger than the best upper bound known for MSMP', we can

immediately stop the searching for an integer solution and proceed to test for TMs +1 or

terminate testing.

The following describes the pseudo-code of the procedure used to test different

makespan values within the solution bounds bracket:

set makespanLB = Optimal makespan from single-ship oracle
d,+T7-l II, Ci L

set makespanUB = makespanLB + Z H ZZZs o L)
t=di j=1 k=1 z=1

set Tms = makespanLB

repeat
Run branch-and-price procedure with current Tms value
if optimal LP objective of RMP in root node + Tms > makespanUB then

break out of repeat loop
end if

BBbestUB = Optimal integer solution from branch-and-price

if Tms + BBbestUB < makespanUB then
makespanUB = Tms + BBbestUB

70

Store x*, d' and y* values for this ship

end if

if Tms + 1 t>_ makespan UB then
break out of repeat loop

else
Tms = Tms + 1

end if
end repeat

makespanLB and makespanUB store the lower bound and upper bound values to

MSMP'. They are initially set to values obtained from the output of the single-ship oracle.

BBbestUB holds the value of the best integer solution from the search tree; it consists of

the penalty term cost component only (refer to §3.2.2.3 for RMP formulation).

3.2.2.4 Branching and Pruning

Branching

In branch-and-bound, if the goal is to find a good feasible solution, it makes sense to

choose a branching decision that divides the solution space in such a way that we are

more likely to find a good solution in one of the two nodes created and then choose this

node for evaluation first [18]. Standard variable branching is used as it provides a deep

cut of the LP feasible space in the '1' branch. Together with a depth-first-search strategy

of the tree, it ensures that integer solutions are found quickly. This avails us the option of

terminating the branch-and-bound early even when the optimal solution has not been

found. In each sub-gradient iteration, multiple Lagrangian sub-problems must be solved;

hence some loss of accuracy is traded-off for computational efficiency although for most

of the time, the optimal solution is found since the set-covering form is known to have a

sharp LP relaxation. More discussion on balancing optimality and the need for

computational speed is found in §3.2.3.

The '1' branch is always followed first because it is more likely to yield an integer

feasible solution. However, the question of which fractional column-variable to branch

on still remains. Here, we greedily search all non-zero columns for the one that has the

71

least cost, regardless of period designation. Thus, there is a higher chance of a search tree

upper bound solution close to the optimum being found.

Once a branching decision has been made, constraints which fix the value of the

branched column-variable are added to MSRMP in subsequent nodes (refer to constraints

(3.3l)-(3.32)). Constraints which prevent the re-generation of column-variables fixed to

'0' are added to the MSPP'. Since column-variables fixed to '0' are not in the basis of the

RMP, they could possibly have a negative reduced cost and be priced into RMP column

pool. Therefore MSPP' differs slightly for each node in the search tree through the

following constraint:

I z < E , VP e {P I Branch-down constraints} (3.38)
(j,Z)E z =1 (j,z)ESj =1

5B 's refer to the values of S mapped from columns that have been fixed to '0'.

Pruning

There are instances where there is great differentiation between column costs, for

example when A, 's are spread out over a wide and distinct range of values. This is

common in the early stages of the sub-gradient routine when a randomly generated

starting vector is used.

In such cases, exploring every part of the feasible space, just to make mild

improvements in the objective, is counter-productive and computationally intensive; we

do not expect high-quality integer solutions to appear in the first few sub-gradient

iterations anyway. Hence, nodes that have LP solutions that are greater than 95% of the

value of the best upper bound solution are discarded. We can be assured that branch-and-

price will produce solutions that are at most 5% away from the optimal cost of MSMP'.

3.2.3 Updating Lagrangian Multipliers using Sub-gradient Procedure

The aim of the sub-gradient procedure is to intelligently search the dual space of the

LR relaxation for the optimal Lagrangian multiplier values, A,*. The procedure solves the

72

dual problem, MSLD (3.15), which maximizes L* () over all non-negative A, 's to

obtain an objective cost that is as close to the optimal primal objective as possible.

L*() has been shown to be concave and continuous. However, L*() is non-

differentiable at any % where there are multiple optimal Lagrangian solutions. It is at non-

differentiable points that a general hill-climbing, calculus-based method would fail. The

function, at these) values, does not have a gradient, but it always has sub-gradients. [24,

25] describe the nature of the LR function and defines what a sub-gradient vector is.

Sub-gradient optimization is an iterative method was proposed by Held and Karp [22]

in 1971. An initial Lagrangian multiplier vector is chosen, k4, and a sequence of k is

determined by updating, at each iteration, the current value of) with a step in the

direction of the sub-gradient at the point. If necessary, the resulting point is projected

back into the non-negative orthant. In our case, the sub-gradient vector for the (j,z)

coordinate and the rule for updating k in the k-th iteration are respectively defined:

Hi C,

G (kk) - S (- W" (3.39)
s j=1 k=1

,k* = max to, .,+tG ,, (3.40)

(3.39) utilizes the Lagrangian solutions obtained using current value of k. In (3.40)

tk is a positive step size; the step-size rule is discussed later. The sub-gradient procedure

can be run indefinitely because only lower bounds to the primal solution are generated

and there is no way to prove optimality. Ideally, the procedure terminates only when

L T...' Hi Ci

JL J g(t)-W_ =0, Vz,t, which indicates that both the primal and dual
Z=1 1=1 s j=1 k=1

optimal solutions are found. However, this is unlikely to occur because MSLR is

sometimes solved approximately (§3.2.2.4) and a duality gap may exist. In §3.2.4, we

discuss a heuristic for generating upper bound values which are used in the terminating

criteria for the sub-gradient procedure.

73

3.2.3.1 Interpreting the Values of A, 's

From the definition of the sub-gradient (3.39), it is observed that the way A,, is

updated is based on the degree of violation or adherence of the Lagrangian solutions to

the relaxed yard congestion constraints at each (j,z) coordinate. If
Hi Ci

EEL Z Z (t) - wi >0, yard congestion constraints are violated for the current iterate
s j=1 k=1

and A, is increased, and vice versa.

When solving the Lagrangian sub-problems, MSLR', an increase in A,, penalizes QC

activity in the (z,t) coordinate, and in the next iteration it costs more for a QC to work on

containers headed from storage location z at period t. When 2, decreases, QC activity in

the (z,t) coordinate costs less, and QCs are 'encouraged' to work at (z,t) to fulfill work-

requirement constraints. If yard congestion constraints for (z,t) are persistently adhered to

over many sub-gradient iterations, A., will eventually be reduced to '0'; this is in effect

discarding that particular yard congestion constraint from the LR problem.

The values of A, give an indication of the likelihood of yard congestion constraints

being breached at that (z,t) coordinate. Higher AZ, values are expected at time periods

where vessel planning horizons overlap and QCs from different vessels are working at

the same time. On the other hand, in time periods where the total number of QCs from

berthed ships is smaller than the yard activity threshold, it is impossible for the threshold

to be breached even if the constraint is omitted. Hence, low or zero values of 2, are

expected.

3.2.3.2 Choice of Lagrangian Multiplier Starting Vector

For most problem instances, the majority of the optimal A*, 's are equal to zero. This

occurs when vessel berthing times are well spread out, and a high yard activity threshold,

74

wz, is given. Hence, setting k' =0 is an obvious choice, so fewer sub-gradient iterations

are required to reach the optimal dual point.

However, when the problem involves many vessels docked at overlapping time

intervals and small w,'s, setting ko to a small non-negative value is better as there is

more 'space' for updating A,, 's as the starting vector is not a corner point. k' is fixed to -

0.5 or set to a uniformly random value in the range [0, 0.5]. The perturbation lets the sub-

gradient procedure converge to a different Lagrangian multiplier vector each time it is

run, and therefore producing different, and hopefully better, primal solutions.

3.2.3.3 Detailed Description of Procedure

The following describes the entire sub-gradient optimization procedure:

Step I: Initialization:

k= , A ,=0 VZtkm = 200 , Z =+ ZLB - N = 5 =1.5

ZUB and ZL are the best upper and lower bounds to the primal solution, while

N and (k are parameters related to the step-size rule.

Step 2: Start k-th sub-gradient iteration. Using current values of A' 's, solve S Lagrangian

sub-problems by branch-and-price (§3.2.2). Calculate the value of:

S d,+7-1 L T.(Hi C

L*(Xk)--l Z LS(t)+jZ sk

i=1 t=di Z=1 t= s j=1 k=1

I f L*(Xk)> ZLB, then set ZLB L*Qk)

Step 3: Based on the Lagrangian solutions obtained in step 2, construct a feasible solution

to the original problem, MSP, using primal heuristic presented in §3.2.4. The cost

of the primal heuristic solution is Zk. If Zk < ZUB, then set ZUB = Z.

Step 4: Update the Lagrangian multiplier values for the (k+l)-th iteration using rule

(3.40). The following step-size rule is used [22]:

75

t - (ZUB L*(Xk))
Hi Ci 2

(z,t) s j=1 k=1

Justification of this formula is given in [28]. k is a parameter used in the

calculation of step-size for changing A, 's. The sequence ;k is determined by

setting ; = 1 and halving -k whenever L* (Xk) has failed to increase after N

consecutive number of iterations.

Step 5: If any one of the following conditions is satisfied, then stop; otherwise set

k=k+l and go to step 2.

(1) k = km

(2) Step-size parameter 4 k _ 0.005

N(3) No improvement L* (lk) after - iterations
4

(4) Duality gap UB LB < , where q is user-specified
ZUB

The duality gap, 77, is the percentage gap between the best lower bound and the best

upper bound value to the optimal cost of original problem, MSP. Once it is small enough,
the sub-gradient routine can stop. The convergence of these bounds is discussed in §3.2.5.

3.2.4 Heuristic for Generating Primal Feasible Solutions

The iterative procedure for solving the Lagrangian sub-problems and updating the

Lagrangian multipliers may fail to obtain a primal feasible solution, even when the

duality gap becomes very small. Lagrangian solutions are generally infeasible in the

original problem, MSP, and result from the violation of the yard congestion constraints.

It often happens that Lagrangian solutions are nearly feasible in the primal problem

because the LR objective function penalizes large constraint violations; they can be made

feasible with some judicious tinkering. Such a method is developed here and known as a

primal heuristic. The primal heuristic attempts to correct infeasibilities while keeping

objective function deterioration small, i.e. avoid increasing vessel makespans excessively.

76

The primal heuristic provides upper bound values, ZuB, to optimal cost of MSP which are

used in the sub-gradient procedure terminating conditions and in calculating step-sizes

for updating ., 's (§3.2.3.3).

This primal heuristic detects (z,t) coordinates where infeasibility occurs and attempts

to swap QC work with any other QCs working on the same bay at other periods. The

makespan is not increased, and no re-positioning of QCs is required. However, if this is

not possible and as a last resort, the QC work is postponed to the end and makespan is

increased. The heuristic is randomized at various points in the algorithm; for example, at

each run of the heuristic, a different search for infeasible (z,t) coordinates is conducted,

and QCs may swap work with different QCs. For each sub-gradient iterate, the primal

heuristic is run five times and the best upper bound output, Z , is stored. Once no more

infeasibility is detected, then the primal heuristic stops.

The following details the primal heuristic algorithm:

Step 1: Initialization:
BEST VBEST BEST

xj.k() 0 A , ,t kz() 0 ijk z, t,7 (t)= , A t,

J-BEST = + ,Iteration p = 1

The variables with superscript BEST store the best feasible solution generated

during multiple runs of the primal heuristic. pFEST stores the best makespan value.

Step 2: If p = 5, then terminate algorithm. Otherwise, start the p-th try of the primal

heuristic. Set:

xjk(t)= xk(t), Vi,j,k,t , 34e(t)= ik(t), Vi,j,k,z,t , Yj(t)= YLs(t), Vi,t ,

d, +T,-

P7 Z 1 LS,(t)
i=dj

The decision variables for the p-th primal heuristic iterate are initialized to the

Lagrangian solution values. The relationship 17 < pBEST, Vi, p applies as the

makespan may be compromised when correcting infeasibilities.

77

Step 3: Scan all [z,t] coordinates for yard congestion constraint violation. If there is

infeasibility, randomly pick one infeasible point, [z',t'], and go to step 4.

Otherwise, if PF < FBEST then set:

xBEST BEST (kz YBEST(t) = Yi(t), Vi,

IBEST _ Zk d, +T-1

REST = Ff , Primal heuristic output cost Z I - BEST

t=d

Set p =p + 1 and go to step 2.

Step 4: Check the degree of infeasibility in [z',t']. If no more infeasibility detected, go to

step 3. Otherwise, go to step 5.

Step 5: Search for ships and bays ([ij] coordinates) that have QCs working at [z ',t'].

Randomly pick a ship and bay, [i',j']. The QC working at [i'j',z',t'] will be

considered for swapping. If none are found, then go to step 10; otherwise, go to

step 6.

Step 6: Search for QCs positioned in ship i' bayj' at other time periods. If found at time

period t", go to step 7; otherwise, go to step 5.

Step 7: Check if yard congestion constraints will be breached at time t" if swapping of

work is done between QCs positioned in ship i' bay ' at times t' and t". If they

are breached, go to step 6. Otherwise, go to step 8.

Step 8: Check if the QC positioned at ship i' bay j' at time t " is working. If working, go

to step 9. Otherwise, identify the which z-coordinate it is working on, z ", and

swap the QC work between coordinates [i'j',z ",t "] and [i'j',z',t']; set:

0,,,,,,(t')=0 ,, (t')=1, 4iJ,k,Z(t)")=0, 5i,k,,(t)=1

Then, go to step 4.

Step 9: Check if yard congestion constraints will be breached at time t' if swapping of

work is done between QCs positioned in ship i' bay ' at times t' and t". If they

are breached, go to step 6. Otherwise swap the QC work between coordinates

[i'j',z ",t "] and [i'J',z',t']. Then, go to step 4.

Step 10:Search for any ship and bay with a QC working at [z',t']. The coordinate at this

point is [1,),z',t']. QC work done here is re-scheduled to the back, causing the

78

makespan to increase by 1; set FF = F? +1. The QC position-assignments at t' are

replicated at the new F' to maintain clearance. Then set:

((') 0, 15z (pLR) = 1

Go to step 4.

3.2.5 Convergence of Upper and Lower Bounds

The Lagrangian solutions provide a lower bound, ZLB, to the optimal primal cost,

while feasible solutions generated by the primal heuristic provides an upper bound, ZUB.

Computational experience shows that almost equivalent near-optimal Lagrangian

multipliers can result in primal solutions of substantially different quality. Therefore, it is

worthwhile applying the primal heuristic to Lagrangian solutions in every sub-gradient

iterate to improve chances of obtaining a good ZUB value.

The sub-gradient procedure terminates once the duality gap, r7, falls below a user-

specified value. In our case, convergence of L* (kk) is quick and fairly reliable. At the

optimal *, 's, the lower bound values closely approximate the optimal primal objective,

providing bounds tighter than the LP relaxation (see §3.2.6 for comparison between LP-

relaxed and LR bounds). Figure 3-5 shows the lower bound value (blue line) compared to

the corresponding upper bound value (red line) generated in each sub-gradient iterate,

when a starting vector of k' = 0.5 is used. In this example, the optimal primal solution

obtained from CPLEX is -40, while the best upper bound value found after 100

iterations is -39. The lower bound converges at iteration 32 to within 1% of the best

solution to MSLD (3.15). The best value of f(k) found is -40.019, resulting in a final

duality gap of 2.61%. Although there is no strict correlation between the value f (k) and

the quality of the primal solutions found, it is observed that there is a greater tendency for

high-quality solutions to be produced by the primal heuristic when the duality gap is

small.

79

Subgradient optimization
-20-

-30

-40 -

-50 -

-60 -
0

2 -70 -

-80 -

-90 -

-100 -

-110

120 L j
0 10 20 30 40 50 60 70 80 90 100

Iteration Number

Figure 3-5. Upper and lower bound values vs. sub-gradient iterations for the case of S=2, H= 10,
H 2=10, C1=2, C2=2, T1=32, T2=44, w,=l

Because the problem is np-hard, some degradation from optimal vessel makespan

values is expected and accepted; it is more important to ensure that yard congestion

constraints are not violated and a guarantee on the quality of the generated solutions is

provided. The interested reader is reader is referred to [29] for a description of the

theoretical convergence of the sub-gradient procedure when there is a duality gap.

3.3 Computational Results

3.3.1 Test Problems

A data set with 7 different problem instances was created, arranged in order of

increasing number of vessels from 2 to 8. The number of bays, number of QCs allocated,

load profile and berth time for each vessel is provided together with the QC clearance

requirements, as shown in Table 3-1. Vessels with 20 or more bays are used in some

problem instances for simulate realistic conditions. The problem instances are generated

such that there is considerable overlap in the berthing periods of the vessels (i.e. di's are

close to one another), thus we can test fully the effectiveness of the primal heuristic in

80

removing yard congestion constraint violations. The number of constraints and variables

in the original primal problem for each problem instance is also given.

Computational experiments on this data set will validate the accuracy of the exact

multiple-ship model formulation. It will also determine the quality of lower bound values

produced by the Lagrangian framework and sub-gradient procedure, compared to the LP

relaxation, and the computational performance of branch-and-price approach in solving

the Lagrangian sub-problems.

Table 3-1. Description of the data set of test problems for the multiple-ship model
Data S Hi C- r di T- No. of No. of
code 'rconstraints variables

MSD2 2 10,10 2,2 2 1,4 32,44 18423 9196
MSD3 3 10,10,15 2,2,3 3 1, 5, 10 32, 44, 73 76161 43394
MSD4 4 10,10,15,15 2,2,3,3 3 1,1,8,14 32,44,73,50 110715 63694

MSD5 5 10,10,15,15, 2,2,3,3, 3 1,8, 20, 40, 32, 44, 73, 50, 204757 12065320 4 65 79

MSD6 6 10,10,15,15, 1,1,2,2 5 1 8, 20, 40, 32, 44, 73, 50' 231990 12893220,25 2,3 65, 65 79, 89

MSD7 7 10,10,15,15, 1,1,2,2 6 1, 8, 20,40, 32,44,73,50, 359729 20396820,25,25 2,3,3 65, 65, 41 79, 89, 111

10,10,15,15, 1,1,2,2 1,8,20,40, 32,44,73,50,MSD8 8 20,25,25,25 2,3,3,3' 6 65,65,41' 79, 89, 111, 80 451849 258048
10

3.3.2 Results and Analysis

3 sets of computational experiments are performed on the abovementioned data set,
labeled as the 'easy', 'moderate' and 'hard' runs. The level of difficulty of each run of the

problem set is determined by the value of the yard activity threshold, wz; for difficult

problems, w, is small and yard congestion constraints are easily violated, and vice versa.

An example of the output generated from applying the entire Lagrangian framework and

primal heuristics on the 'hard' problem instance with 4 vessels is shown in Figure 3-6. In

this case, the Lagrangian sub-problems are solved directly by CPLEX.

81

Crane split and sequence for S-1, C-2, H-1 0, d.1, T-32, r.3

..~~ ~

-.

0 1 2 3 4 5 6
Hold number

45

40

35

30

25

20

is

1is

0

Vc

7 0 9 10

3-6(a) Vessel I QC schedule

Crane split and sequence for S-3, C-3, H-15, d-8, T-73, r-3

- -- .---.-. ------- -

....--. .--.-. ...

-.-. --. .- -. .- ..- ...- ...- ..- ..-

--.---.-.--.-. *-.-.-.

Ec

Hold number

3-6(c) Vessel 3 QC schedule

34

32

30

20

26

24

22

20

16

14

015

2 - -... . -

in-
1.4 - - --- .-

0i.0

0.

0 2 --..- ..-- -. -

0 10 20 30 40 s0 60 70 80
Time period

3-6(e) Yard activity for 8 storage locations

30

25

20

15

is

0 1 2 3 4 b 6
Hold number

7 8 9 i0

3-6(b) Vessel 2 QC schedule

Crane split and sequence for S-4, C-3, H-1 5, d-1 4, T-50, r-3

-. . -. -----. . --. .-

-. -.--.-.-.- -. ---- -. ---.-.-. -
....-

--- ~ -.-A- - - - -

--.. ----.. -.-.-.--.---.

- - --. ... *. .- .. -. . -.-. .-

---... ------ -.-- - -- - .- ..- .-. . - -.-

- --- -- ------- -- -- - - - .. -

Hold number

-60
-70

-0

-90

-100

-110

-120

-130

-140

-150

in 15

3-6(d) Vessel 4 QC schedule

Subgradient optimization-.-..--. ...- ..- .----..-- ..-- ..-- .-

..... ~ ~ ~ ~ ~ ~ - ----... -......

-........ ** - .-.--.--

--.. -.. .. --.. . ------ -..- ..- ..-

- - - --.- --.---
-.................... -. ---

*.- --.---. ..-. .-. .-. .-.- ..-

-1G0
0 10 20 30 40 50 60 70 s0 90 100

Iteration Number

3-6(f) Upper and lower bound convergence of sub-
gradient routine

Figure 3-6. Matlab output of problem instance MSD4 using Lagrangian framework

82

Ic

Ic

Crane split and sequence for S-2, C-2, H-1 0, d-1, T-44, r-3

-.... - .. - .-..-.-.- --.

-........ - -...-.

..-

-.-- - .- - .- . ---.- -.- ---.

-.. -. .. .-. .. .- --..

Figures 3-6(a)-3.6(d) show feasible QC schedules for each of the 4 vessels. We

observe that QCs remain idle for relatively more time periods (shown by crosses at H=0

in the x-axis) as compared to QC schedules of the single-ship model, to avoid breaching

the yard congestion constraints. For 'hard' problem instances, wz is set to '1' for all z's.

In this example, the amount of yard activity per period for each of the 8 storage locations

is shown in Figure 3-6(e), verifying that total yard activity in each period for all z's never

exceeds 1. The crosses represent the individual planning horizons (with length T) for

each vessel, and give an overall view of how compact the berthing schedule is and

therefore, the corresponding difficulty of the problem. In this case, the primal heuristic

has re-scheduled QC work to beyond the master planning horizon, which ends at period

47. Figure 3-6(f) shows the upper and lower bound values for each iterate in the sub-

gradient route. The lower bound values plateau from iterate 5 to 22 because CPLEX was

terminated (based on 500-second time limit) before optimal values for MSLR are found.

Subsequently, optimality for MSLR' is reached and convergence continues unaffected

toward the eventual dual solution of -105.37. It can be observed from Figure 3-6(f) that

better upper bound values are provided as the duality gap is reduced. Eventual values of

ZUB = -90 and duality gap of 17% are produced after 100 iterations.

Computational results for the 'easy', 'moderate' and 'hard' runs are shown in Table

3-2. For the 'easy' runs, wz is set to a very low value and as a result, the yard congestion

constraints do not restrict the feasible space. The primal heuristics perform no work at all

as no infeasibilities are detected from the Lagrangian solutions. For 'moderate' and

'hard' runs, much lower values of wz are used. Furthermore, the exact mathematical

model of the multiple-ship formulation and its LP relaxation are solved with CPLEX to

compare the quality of the lower bound values.

83

Table 3-2. Exact solution, LP and Lagrangian cost output and computational performance of the multiple-ship data set

Level of Data L Duality CPU Time (Zip) CPU
Makespan (IP) Makespan (Lag.) ZIP ZLB* / ZuR** ZLP ga C (Z Time (Lag.) (s) /

No. sub-grad. iterations
MSD2 5 (8) 16,22 16,22 -40 -40 / -40 -66.00 0 3.202 2.377 / 1
MSD3 8(8) 17,26,35 17,26,35 -74 -74/ -74 -133.00 0 15.78 11.62/1
MSD4 8(8) 17, 26, 35, 19 17, 26, 35, 19 -106 -106/-106 -180.00 0 25.86 17.71 /1
MSD5 8 (8) 17, 26, 35, 19, 24 17, 26, 35, 19, 24 -162 -162 / -162 -254.86 0 60.96 39.20/1

'Easy' MSD6 8(8) 32,44,49,29,40' 32,44,49,29,40,33 -146 -146/-146 -316.72 0 171.28 121.32/133

MSD7 8(8) 32,44 52, 32, 40, 32, 44, 52, 32,40, 34, -210 -210/-210 -418.22 0 473.90 242.46/134,41 41

MSD8 8(8) - 32, 44, 52, 32, 40, 34, 0 -262 / -262 -493.22 0 Out of memory 295.16 / 141,29
MSD2 5(2) 16,22 16,22 -40 -40/-40 -66.00 0 8.460 4.817/2
MSD3 8(2) 17,26,35 17,26,35 -74 -74/-74 -132.68 0 17.41 24.08/2
MSD4 8 (2) 17, 27,6, 35, 19 17, 27, 35, 19 -106 -106 / -105 -179.27 0.97 53.20 71.54 / 4
MSD5 8(2) 17, 26, 35, 19,24 17, 26, 35, 19,24 -162 -162 / -162 -254.70 0 71.11 39.16 / 2

'Moderate' MSD6 8(2) 32,44,49,29,40' 32,44,49,29,40,33 -146 -146/-146 -313.49 0 242.76 121.23/233

MSD7 8(2) - 32,44,53,32,41, 34' -208/-210 -414.99 0.96 Out of memory 240.76/1

MSD8 8(2) - 32,44, 52, 32, 41, 34' -262 / -260 -489.99 0.77 Out of memory 294.20 / 141,30
MSD2 5 (1) 16,22 17,23 -40 -40.078 / -38 -62.65 5.46 13.63 270.63 / 100
MSD3 8(1) - 18,28,35 -730 -74.040 / -71 -119.62 4.28 Toolong 733.34/87
MSD4 8(1) - 21,30,40,22 -1050 -105.37 / -90 -151.56 17.08 Toolong 3043/100
MSD5 8 (1) - 17, 27, 35, 19,24 0 -161.77 / -161 -242.74 0.47 Out of memory 1271 / 94

'Hard' MSD6 8(1) - 32,44,52,33,47,37 n -185.82/ -130 -292.24 42.94 Out of memory 1736/26

MSD7 8(1) - 32,49,66,48,59,48, 0 -268.32/ -150 -414.99 78.89 Out of memory 3965 / 245

MSD8 8(1) - 38, 53, 63, 39, 57, 45, 0 -328.60 /-192 t -440 71.14 Out of memory 2182 / 2A49,30
*Lagrangian sub-problems solved using CPLEX
**ZUB obtained from applying primal heuristic on Lagrangian solutions
0 Best sub-optimal primal integer solution
o Best sub-optimal primal LP solution
bUnable to generate any primal feasible solution
A Sub-gradient procedure stopped before terminating criteria is met

84

ZI, and ZLP refer to the optimal primal cost and optimal LP solution respectively,

while ZLB and ZUB respectively denote the optimal dual solution and best primal feasible

solution generated by the Lagrangian framework. A brief inspection of ZLP and ZLB

values shows that the Lagrangian framework produces superior bounds compared to the

LP relaxation; in some cases for the 'easy' and 'moderate' runs, the ideal result of

ZLB= ZIP is obtained. When tackling the exact model for larger problem instances, they

become too large for CPLEX to even initialize the solving process because of the total

memory size required to solve the LP relaxation (i.e. 'Easy': MSD8). The poor bounds

for LP relaxation also suggest that CPLEX will perform poorly in its LP-based branch-

and-bound algorithm even for smaller instances; this is seen when running 'hard'

problem instances (i.e. 'Hard': MSD3, MSD4).

The Lagrangian framework is applied on all 3 runs of the data set. CPLEX is used to

solve Lagrangian sub-problems, subject to a cut-off time of 500 seconds and using a best-

bound search strategy. For the 'easy' run, a starting Lagrangian multiplier vector of all

zeros is used. Since yard congestion constraints are extremely lax and are also absent in

the LR cost objective (because of X0 = 0), QC activity between vessels do not interact in

the yard and it is akin to solving S independent single-ship problems. The sub-gradient

procedure halts after a single iteration with a zero duality gap and is more efficient

compared solving to the original problem.

For the 'moderate' run, a starting vector of ko = 0 is used as well, because we do not

expect many of the optimal A* 's to be non-zero. A maximum of 4 sub-gradient iterations

among all the problem instances is required to reduce the duality gap to below 1%. Mild

infeasibilities in the Lagrangian solutions are easily corrected by the primal heuristic to

produce high quality upper bound values. Again, it appears to be advantageous to use the

LR framework over a directly application of CPLEX to the original problem.

For the 'hard' run, almost none of the problem sets are solved to optimality. A

starting vector of X0 = 0.1 is used and the sub-gradient procedure is terminated once

85

7 <0.05 or 100 iterations are reached. A maximum duality gap of 17.08% is found for

smaller problems MSD2 to MSD5. As for problems MSD6 to MSD8, the sub-gradient

procedure is artificially terminated because of excessive times needed by CPLEX to solve

the Lagrangian sub-problems. Hence, low-quality upper bound values are obtained

because primal heuristics are applied to Lagrangian solutions derived from non-optimal

Azt S

Table 3-3 shows the computational performance and bounds generated when the

Lagrangian sub-problem is solved using branch-and-price for the 'hard' runs; the best

lower bound value obtained is denoted by ZLB-CG . The final duality gap obtained for the

branch-and-price approach is comparable to the CPLEX approach for smaller instances

Table 3-3. Comparison of computational performance of 'hard' problem instances when Lagrangian sub-
problems are solved by CPLEX and branch-and-price

CPU CPU

ZLB* ZLB-** Time Time

Data code L / w ZI / ZUB / BG (ZLB) (s) / (ZLB-CG) (S)

(%Gp (a) No. No.
(% Gap) (% Gap) subgrad. subgrad.

Iterations Iterations
-40.08/ -40.019/

MSD2 5(1) -40 -38 -39 270.63/ 100 2743/85
(5.46) (2.68)

-74.04/ -74.85/
MSD3 8(1) -73' -71 -71 733.34/ 100 3003/100

(4.28) (5.42)
-105.37/ -105.62/

MSD4 8(1) -105' -90 -91 3043/100 3543/100
(17.08) (16.07)

-161.77/ -161.20/
MSD5 8(1) n -161 -158 1271/94 3295/69

(0.47) (2.02)
-185.82/ -146.45/

MSD6 8(1) n -130 -141 17 3 6 / 2 5976/97
(42.94) (3.86)

-268.32/ -215.54/
MSD7 8(1) n -150 -192 3 9 6 5 / 2 3342/20A

(78.89) (12.26)
-328.60 / -283.93 /

MSD8 8(1) n -192 -246 2 18 2 / 2 4332 / 20 A
(71.14) (15.41)

*Lagrangian sub-problems solved using CPLEX
** Lagrangian sub-problems solved using branch-and-price
nUnable to generate any primal feasible solution
A Sub-gradient procedure stopped before terminating criteria is met

86

MSD2 to MSD5. For MSD6 to MSD8, significantly smaller duality gaps are obtained

because the sub-gradient procedure is allowed to run for an increased number of

iterations, resulting in a better convergence of upper and lower bounds. This arises

because the specialized branch-and-price algorithm solves larger instances of MSLR'

faster than CPLEX does and more sub-gradient iterations can be carried out in the same

time. However, for smaller problem instances it appears that using CPLEX confers a

greater computational advantage.

Summarizing the computational results, we find that in cases where the yard

congestion constraints are 'lax' and a zero starting vector is used, the LR framework

(with sub-problems solved by CPLEX) is the preferred approach and solves 100% of

problem instances at computation times up to half that where the original problem is

tackled directly. The number of sub-gradient iterations required to obtain duality gaps of

less than 1% is extremely small. However, when we 'tighten' the yard congestion

constraints, LR appears to be the only practical approach as CPLEX fails to initialize

when attempting to solve the original problem even for relatively smaller instances. The

use of branch-and-price to solve MSLR' appears to be less efficient compared to

CPLEX's performance for sub-problems of smaller vessels comprising up to 20 bays, but

was superior for the larger sub-problems of 20 bays or more.

87

88

Chapter 4

Summary and Future Directions

In this thesis, we have incorporated the QC clearance and yard activity restriction

requirements, required by a major container terminal port, as new constraints in the

original linear IP model proposed by Daganzo in his 1989 paper. The model is further

strengthened by disaggregating the new constraints so that sharper LP relaxation bounds

are obtained. During computational experiments, the performance of the state-of-the-art

CPLEX IP solver was used as a baseline standard for evaluating the computational

efficiency of our proposed solution approaches.

We have articulated formal mathematical definitions of the single-ship and multiple-

ship model, with the latter taking into account the occurrence of many ships docking at

close intervals with each other and the possibility of congestion forming in the yard from

high loading and discharging activity. For the single-ship model, a heuristic approach,

adapted from Daganzo's scheduling principles, is proposed which has no optimality

guarantee but produces high-quality solutions in practice. A novel branch-and-price

approach, with an internal column generation routine influenced by Gilmore's cutting

stock problem (proposed in 1961), is developed which solves the single-ship model to

optimality. Both methods may be used in-lieu of a direct tackling of a problem, whose

size may be in the order of 100,000 variables; they can be applied in less than 1% of the

time CPLEX requires to solve the original problem.

89

The solution approach to the multiple-ship model was developed based on the

successful methods of efficiently tackling the single-ship problem. We proposed a

method based on a combination of Lagrangian relaxation, a sub-gradient iterative

procedure and primal heuristics. The basic scheme and various enhancements were

discussed. Conveniently, we noted that relaxing the yard congestion constraints would

allow for the separation of the original primal problem into independent sub-problems

which have the same structure as the single-ship model. This created the opportunity to

develop a modified branch-and-price method, originally proposed for the single-ship

model, to solve the Lagrangian sub-problem. Good primal solutions were achieved by

effectively utilizing information generated by the dual, sub-gradient procedure; namely,
applying the primal heuristic to Lagrangian solutions. Computational results were

affected considerably by the value of the yard activity threshold. When this value was

high, zero duality gap outputs could be obtained, however for lower threshold values, we

would have to tolerate varying levels of sub-optimality. Nevertheless, in all cases, our

proposed Lagrangian relaxation technique is the recommended approach, in terms of

computational efficiently, for solving the multiple-ship problem.

In the future, we can consider altering the model to better represent real-world

conditions and to improve on port operational efficiencies. For example, a good objective

would be to reduce the amount of gantrying done by the QCs when working. Either a cost

term associated with the magnitude of QC movement from period-to-period may be

added to the objective, or additional constraints can be added to restrict the total amount

of gantrying within a specified period. The solution methodologies would have to be

modified accordingly.

Most of the computational effort is spent in solving the Lagrangian sub-problems. As

such, an efficient algorithm for tackling the sub-problems is critical to solving large-scale

multiple-ship problems. However, for the few problem instances tested, the proposed

branch-and-price approach appears to confer little computational advantage over CPLEX.

Although branch-and-price performs better for larger problems, the overall algorithm still

requires a significant amount of time for convergence, especially when there are more

90

than 6 vessels. More extensive testing is required to achieve clear conclusions on the

applicability of branch-and-price within Lagrangian relaxation. When we attempted

solving problem instances with 10 or more vessels, the entire algorithm slowed down

considerably even when the each of the vessels had only 10 bays or less. This suggest a

possible limitation of the OPL Studio platform in handling large codes with multiple

nested loops and numerous optimization models instantiated in memory, rather than

reflecting the effectiveness of the method or the level of difficulty of the Lagrangian sub-

problems. Migration of the code to C++ and the use of the associated compiler could

demonstrate the full potential of the proposed approach and would be the next logical

step; nonetheless, this preliminary study suggests that this approach is promising.

91

92

Works Cited

[1] Muller, G. (1999), Intermodel Freight Transportation, Eno Transportation

Foundation, Inc.

[2] United Nations Conference on Trade and Development (2004), Geneva, Review of

Maritime Transport. Chapter 5, Port Development

[3] K.G. Murty, J.Liu, Y. Wan, R. Linn (2005), A decision support system for

operations in a container terminal. Decision Support Systems, 39, No. 3: 309-332

[4] C.Y. Zhang (2002), A Heuristic for Real-time Container Load Sequencing.

Master's Thesis, HPCES, Singapore-MIT Alliance

[5] H.D. Duong (2002), Automatic Crane Sequencing, Master's Thesis, HPCES,

Singapore-MIT Alliance

[6] D. Steenken, S.Vob, R. Stahlbock (2004), Container terminal operations and

operations research - a classification and literature review. OR Spectrum, 26: 3-49

[7] Peterkofsky, R.I., C.F. Daganzo (1990), A Branch and Bound Solution Method

for the Crane Scheduling Problem, Transportation Research, Part B, Vol. 3,

24:159-172

[8] P. van Hentenryck (1999), The Optimization Programming Language, MIT Press

[9] P van Hentenryck, L. Michel (2000), OPL Script: Composing and Controlling

Models, New Trends in Constraints, Lecture Notes in Artificial Intelligence

(LNAI 18), Springer Verlag

[10] C.F. Daganzo (1989), The crane scheduling problem. Transportation Research,

Part B, 23: 159-175

[11] R.I. Peterkofsky, C.F. Daganzo (1990), A branch and bound solution method for

the crane scheduling problem, Transportation Research, Vol.3, 24B: 159-172

[12] K.H. Kim, Y.M. Park (2004), A crane scheduling method for port container

terminals, European Journal of Operational Research, 156: 752-768

[13] Y.M Park, K.H. Kim (2002), Berth scheduling for container terminals by using a

sub-gradient optimization technique, Journal of Operational Research Society,

53: 1054-1062

93

[14] E.K. Bish (2003), A multiple crane constrained scheduling problem in a container

terminal. European Journal of Operational Research, 144: 83-107

[15] Bixby et. al (2002), Mixed-integer programming. A progress report.

[16] Wosley, L (1998), Integer Programming. John Wiley, New York

[17] C. H. Papadimitriou (1981), On the complexity of Integer Programming. Journal

of the ACM, 28, Issue 4: 765-768 ,

[18] C. Barnhart, et al. (1998), Branch-and-price: Column generation for solving huge

integer problems, Oper. Res., 46 (3): 316-329

[19] P.C. Gilmore, R.E. Gomory (1961), A Linear Programming Approach to the

Cutting Stock Problem. Operations Research, 9: 849-859

[20] A. Atamturk, M. Savelsberg (2005), Integer-Programming Software Systems.

Annals of Operations Research, 140: 67-124

[21] M. Lubbecke, J. Descrosiers (2005), Selected Topics in Column Generation, Oper.

Res., 53 (6): 1007-1023

[22] M. Held, R. Karp (1970), The Travelling Salesman Problem and Minimum

Spanning Trees, Operations Research, 18: 1138-1162

[23] A.M. Geoffrion (1974), Lagrangean Relaxation for Integer Programming,

Mathematical Study, 2: 82-1 14

[24] M.L. Fisher (1981), The Lagrangian Relaxation Method for Solving Integer

Programming Problems, Management Science, 27 (1): 1-18

[25] M. Guignard (2003), Lagrangean Relaxation. Top, 11 (2): 151-228

[26] D. Bertsimas, J. Tsitsiklis (1997), Introduction to Linear Optimization. Athena

Scientific

[27] K. Hoffman, Combinatorial Optimization: Current Successes and Directions for

the Future. Working Paper, http://iris.gmu.edu/~khoffman

[28] P. Wolfe, H.D Crowder (1974), Validation of Subgradient Optimization,
Mathematical Programming, 6: 62-88

[29] Allen, E, et. al (1987), A generalization of Polyak's convergence result for

subgradient optimization, Math. Programming, 37: 309-317

94/

