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Abstract

Accurate calibration of demand and supply simulators within a Dynamic Traffic
Assignment (DTA) system is critical for the provision of consistent travel information
and efficient traffic management. Emerging traffic surveillance devices such as
Automatic Vehicle Identification (AVI) technology provide a rich source of disaggregate
traffic data. This thesis presents a methodology for calibration of demand and supply
model parameters using travel time measurements obtained from these emerging traffic
sensing technologies.

The calibration problem has been formulated in two different frameworks, viz. in a state-
space framework and in a stochastic optimization framework. Three different algorithms
are used for solving the calibration problem, a gradient approximation based path search
method (SPSA), a random search meta-heuristic (GA) and a Monte-Carlo simulation
based technique (Particle Filter). The methodology is first tested using a small synthetic
study network to illustrate its effectiveness. Later the methodology is applied to a real
traffic network in the Lower Westchester County region in New York to demonstrate its
scalability. The estimation results are tested using a calibrated Microscopic Traffic
Simulator (MITSIMLab). The results are compared to the base case of calibration using
only the conventional point sensor data. The results indicate that the utilization of AVI
data significantly improves the calibration accuracy.
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1. Introduction

In the recent years, transportation problems have been attracting a lot of attention. It is

becoming increasingly important to ensure that the available means of transportation

continue to function efficiently with minimal impact on the environment. Road

transportation is one of the most critical means of transportation today, due to its

pervasiveness as well as direct impacts on its surroundings. While the traffic load on

highway transportation system is increasing at a tremendous rate, the growth in highway

infrastructure is far slower. Construction of new highway capacity has not kept pace with

increases in population and car use and the resulting increase in demand for highway

travel. In the United States, between 1980 and 1999, the total length of highways

increased by 1.5 percent, while the total vehicle-miles traveled during the same period

increased by 76 percent (FHWA, 2006). Building new road infrastructure is becoming

increasingly difficult while the congestion costs are growing rapidly. Therefore, in the

recent years, the focus has shifted from building new infrastructure to efficient utilization

of existing infrastructure. Innovative means are sought to solve the growing congestion

problem. Intelligent transportation system is one of the technology-oriented solutions to

traffic congestion.

Intelligent Transportation System (ITS) technologies aim to make use of recent advances

in the field of communication, sensing and computation to better manage the available

roadway infrastructure. Traffic sensing devices such ds loop detectors, video cameras,

infrared sensors, Global Positioning System (GPS), radio frequency identification (RFID)

tag readers etc have made the task of traffic measurement much more tractable. Traffic

information devices such as Variable Message Signs (VMS), Highway Advisory Radio

(HAR), in-vehicle navigation systems are now being used much more widely than before.

Advances in semiconductor technology have made it possible to perform complex

computations for traffic decision support at a great speed. Optimally managed highway

traffic system, far from being a distant dream, is a foreseeable possibility today. Due to

these technological advances, the development of highly accurate traffic prediction

models and decision support systems is no longer just an academic exercise, but has the
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potential to produce significant traffic improvements. Dynamic Traffic Assignment

(DTA) systems are viewed as the solution to the problem of accurate traffic estimation

and prediction.

1.1 Dynamic traffic assignment systems

Dynamic Traffic Assignment (DTA) systems are mathematical tools that are designed to

provide decision support for traffic management and information provision. DTA

systems aim to improve traffic conditions and alleviate congestion through accurate

proactive forecasts of likely problems and future bottlenecks in the network. The traffic

estimation and forecasts can be used by the traffic managers in two major ways. ATMS

and ATIS are the tools available to traffic managers to manage traffic close to optimality.

Advanced Traffic Management Systems (ATMS) involve traffic control devices such as

ramp meters, signal timings, variable speed limit signs and lane use signs to manage the

flow of traffic through the supply side measures. On the other hand, Advanced Traveler

Information Systems (ATIS) such as variable message signs, in-vehicle guidance units,

traffic advisory through radio, television and internet can provide useful traffic

information to roadway users and guide them to make more informed travel decisions for

themselves, regarding destination, departure time, travel mode and route. Thus the ATIS

manages the demand side of roadway networks. The DTA systems form the basis of

these tools for traffic management through the management of demand and supply.

State-of-the-art DTA models have been developed in the past decade, for a variety of

traffic network design, planning and operations management situations. These models

employ sophisticated algorithms and detailed microscopic, macroscopic and mesoscopic

simulation techniques to estimate current network performance, predict future conditions

and generate traffic guidance.

Microscopic models capture the traffic dynamics through detailed representations of

individual drivers and vehicular interactions. Popular commercial microscopic software
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packages include CORSIM (FHWA, 2005), PARAMICS (Smith et al., 1995), AIMSUN2

(Barcelo and Casas, 2002), MITSIMLab (Yang and Koutsopoulos, 1996; Yang et al.,

2000), VISSIM (PTV, 2006) and Trans-Modeler (Caliper, 2006). These models, while

being highly accurate, suffer from computation-intensiveness and that obviates the

possibility of employing them for real-time traffic management purposes. At the other

end of the spectrum are the macroscopic models such as METANET (Messmer and

Papageorgiou, 2001), EMME/2 (INRO, 2006), VISUM (PTV, 2006) and the cell

transmission model (CTM, Daganzo (1994)). They model traffic flow through road

segments as fluid flow through pipes. The aggregate nature of traffic modeling makes

them inappropriate for accurate modeling of traveler behavior in congested situations.

Mesoscopic models try to strike a balance between the computational constraints for

making them useful in real-time applications, and accuracy requirements to be able to

describe the network conditions with adequate level of details. Examples of such systems

include Dynamic Network Assignment for the Management of Information to Travelers

(DynaMIT, Ben-Akiva et al. (2001, 2002)) and DYnamic Network Assignment-

Simulation Model for Advanced Road Telematics (DYNASMART, Mahmassani (2002);

UMD (2005)).

1.2 Need for DTA calibration

In order to make effective traffic management decisions, the traffic managers need to

know not only the current state of the system but also the predicted future states on a

continuous basis. The better the knowledge about current and future state, the higher is

the likelihood of effective decisions. However, in spite of the vast improvements in

traffic sensing, it is impossible to measure each and every variable related to the state of

the system at any point of time. While the sensors and historical knowledge about the

network conditions do provide useful information, a substantial effort is necessary to

estimate and predict various useful traffic performance indices which cannot be measured

directly.
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The DTA models provide a useful way to model the highway transportation system.

However, the effectiveness of DTA models depends on the ability to replicate the

network conditions accurately based on the available data. Various inputs and model

parameters within the DTA system need to be set to appropriate values. Calibration is the

process of assigning values to model parameters so as to replicate the traffic

measurements closely.

1.3 Thesis motivation and problem statement

There is an abundance of literature related to calibration of DTA models, both the

calibration of supply parameters as well as estimation of origin-destination flows.

However, most of the studies in this area treat each model's parameters separately and

focus on utilization of particular type of sensor data, most commonly link-flow counts.

The reader is referred to Balakrishna (2006) for a detailed overview of literature related

to the previous studies on calibration of specific demand or supply parameters using

specific types of sensor data.

Several new types of traffic data collection technologies are being deployed in recent

years, with a focus on disaggregate data collection. Different types of calibration

approaches are necessary to suitably incorporate such wide variety of information. Hence,

it is of value to focus on generic approaches that focus on calibration of various types of

model parameters using a variety of traffic measurement technologies. A large set of

these emerging technologies can be categorized as Automatic Vehicle Identification

(AVI) technologies, which form the basis of this study. Note that the terms point-to-point

sensor data and AVI data are sometimes used interchangeably. The two are not exactly

the same and the readers are referred to section 3.1 for a discussion of the distinction

between them. For the sake of simplicity, the term AVI data has been frequently used in

this thesis.

Optimization formulation and state-space formulation are the two alternative frameworks

that provide generalized formulation for the calibration problem and have the flexibility
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to accommodate the calibration of any type of DTA model parameters using a variety of

conventional and emerging traffic sensor measurement data. The calibration problem can

be formulated as an optimization problem with the objective function representing a

goodness-of-fit measure between observed (or apriori) values and the simulated values.

The important constraints include those which express the fitted sensor measurements as

a function of the calibration parameters and network characteristics. There may be other

constraints providing lower and upper bound on the allowable values of the demand and

supply parameters. Alternatively, the calibration problem can be formulated in a state-

space framework which is described as the problem of estimating the state-vector using

the measurement and transition equations. The calibration parameters constitute the state-

vector describing the network conditions at any time interval. The sensor measurements

provide the information necessary to estimate the state vector. The sensor measurements

are functions of the state-vector values and the two are related by the indirect

measurement equations. The apriori values are related to the state-vector by direct

measurement equation. Further, the state-vectors across time periods are related to each

other through the transition equations.

This thesis focuses on the calibration of DTA models using AVI data, under each of these

two generic frameworks. A mesoscopic DTA system called DynaMIT is used to

demonstrate the usefulness of the proposed methodology.

1.4 Implementation framework

As mentioned earlier, this thesis focuses on offline calibration of models and algorithm

parameters within DynaMIT. A comparative analysis of three different algorithms is

performed on a hypothetical network. The traffic sensor data is generated synthetically

using a microscopic traffic simulator called MITSIMLab. However, in order to justify the

usefulness of the approach, its effectiveness needs to be illustrated for calibration of a

real traffic network with complex demand-supply interactions and large set of parameters.

Therefore, a network from the Lower Westchester County (LWC) in New York State is

chosen for demonstration. The LWC network has a set of loop detectors and toll booths
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that together provide classified link flow counts. However, flow of AVI sensor data from

the New York State Department of Transportation has yet not been established due to

technical difficulties. Therefore, MITSIMLab is used as a proxy for this case study which

can generate any necessary surveillance data that can then be made available for

calibration of DynaMIT.

MITSIMLab is a microscopic traffic simulator that models traffic flow at the level of

every individual driver. It uses behavioral algorithms and discrete choice models (Ben-

Akiva and Lerman, 1985) to model decisions taken by an individual while traveling from

his/her origin to his/her destination. Upon proper calibration with a network,

MITSIMLab can effectively replicate the traffic characteristics. MITSIMLab is therefore

a good candidate to perform the role of the simulator which is to be used as proxy for

reality in the calibration of DynaMIT.

As a first requirement for this process, it is necessary for MITSIMLab, to be calibrated

effectively with the traffic network under study so that it can mimic the traffic behavior

effectively. DynaMIT calibration approach is then to be tested using MITSIM as a

platform. The models and algorithms of DynaMIT need to be calibrated with respect to

the data originating from MITSIMLab's calibrated models. MITSIMLab has been

calibrated using data from the Lower Westchester County network, and the calibration

process and results are described in the "Technical Memorandum on The Calibration of

MITSIMLab for the Lower Westchester County Network" submitted to NYSDOT

(Antoniou et al., 2006).

1.5 Thesis contribution

This thesis focuses on calibration of demand and supply parameters of DTA systems

using point-to-point sensor data. Both the demand and supply parameters of the DTA

system are calibrated using link counts data with and without the additional travel time

information available from AVI data. Three different calibration algorithms are evaluated

in terms of comparative performance. The three algorithms are Simultaneous
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Perturbation Stochastic Approximation (SPSA), Genetic Algorithm (GA) and Particle

Filter (PF). The application of this methodology is demonstrated using a mesoscopic

DTA system called DynaMIT. The three algorithms are compared for calibration of

DynaMIT using a synthetic study network. Finally, one algorithm is chosen for study of

scalability to a real, large-scale, complex traffic network in the Lower Westchester

County in New York State.

For both network, two calibration experiments are performed. In the first experiment,

only the demand parameters are calibrated while holding supply parameters constant. In

the second experiment, the demand and supply parameters are simultaneously calibrated.

The following are the main findings of this thesis:

Demand calibration, by itself, was found to improve the calibration accuracy

considerably as compared to the starting values. Simultaneous demand-supply calibration

was found to be superior compared to the demand-only calibration and further improved

the calibration accuracy. Comparison of calibration results using combination of loop

detector and AVI data with the calibration results using only loop detector data indicated

that the AVI data is useful to improve the calibration accuracy.

For the hypothetical network, the sensitivity analysis suggested that the relative weight

given to AVI measurements is critical in determination of trade-off between the link

count accuracy and travel time accuracy. While AVI data helps improve the travel time

accuracy significantly, it tends to decrease the sensor count accuracy slightly. In case of

the LWC network, the AVI data was found to improve the calibration accuracy both in

terms of matching the sensor counts as well as travel times. This can be attributed to the

fact that the sensor coverage is relatively low in large-scale network and measurement

accuracy for loop detectors is lower than the AVI sensors. Hence the loop detector data

by itself cannot provide all the necessary information to calibrate the large set of

parameters. However, the addition of accurate AVI data aids the calibration process to

move towards the true network state more efficiently, hence improving the overall

calibration performance.
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Based on the algorithm comparisons carried out with the small network, SPSA and GA

were found to be more effective than PF algorithm. GA's calibration accuracy was

comparable to SPSA. However, it came at the cost of additional computational effort.

SPSA was found to be slightly better than GA in terms of accuracy and far more efficient

in terms of computational effort. Therefore, SPSA was chosen for calibration of large-

scale network. The calibration results with the large network reinforced the usefulness of

AVI data. They also indicated that simultaneous demand supply calibration large number

of parameters could be efficiently carried out using SPSA. Validation results were found

to be consistent with the calibration results, which further reinforces the effectiveness of

the employed methodology.

1.6 Thesis outline

The remainder of this thesis is structured as follows. Chapter 2 provides a review of

previous studies related to use of AVI data in calibration as well as a review of generic

DTA calibration approaches. Chapter 3 discusses various important characteristics of the

information collected from AVI data sources and how it could be incorporated into DTA

calibration. Chapter 4 describes the two alternative problem formulations. Chapter 4

provides a detailed discussion of various alternative solution approaches. Based on the

specific characteristics of the problem and experiences from prior studies, three different

algorithms are chosen as candidate methods for the calibration problem at hand. Chapter

6 demonstrates the usefulness of proposed calibration approach with an application to a

hypothetical study network using synthetic data. Chapter 7 applies the framework to

calibrate a large scale traffic network and illustrates the scalability of the methodology

using SPSA algorithm. Chapter 8 concludes with discussion of important results and

indicates some directions for future work.
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2. Literature Review

This thesis focuses on the calibration of DTA models using AVI sensor data. AVI data is

fundamentally different from conventional point sensor data because of the disaggregate

nature and a variety of information that can be collected from it. Therefore, special

methods are necessary to incorporate the AVI data into calibration effort. The first

section of literature review focuses on previous calibration studies involving the use of

AVI data. While the overall pool of DTA calibration literature is large, a majority of it

describes methods of calibration for specific model parameters using link counts data.

They are not flexible to incorporate AVI data into calibration. Therefore, the second and

third section reviews previous studies to calibrate DTA models using generic traffic data

types. The final section provides a summary of literature discussion in this chapter.

2.1 Use of A VI data in previous studies

Since AVI technologies are relatively recent, the previous studies using AVI data are less

abundant as compared to the overall pool of DTA model calibration literature. Zietsman

and Rilett (2000) proposed a disaggregate travel time estimation approach using AVI data.

A fourteen-mile stretch of 1-90 in Houston TX is used as the test bed. Five AVI-stations

divide the freeway stretch into 4 links. The analysis period included no incidents for

simplicity of analysis. The researchers identified a set of regular commuters on this

highway stretch. A commuter-based disaggregate approach was compared with the

aggregate approach of travel time estimation. The disaggregate approach estimated travel

times and travel time variability separately for individual days and entry times. It was

found that aggregation based on historic approach without considering the effect of

individual days leads to considerable error when compared with individual travel times.

Aggregate technique was found to be 35% less accurate than the technique that considers

the effects of individual days. The authors conclude that the travel time variability should

be determined on individual basis. The link travel times were found to be more variable

than the corridor travel time. Significant amount of cancellation variability occurs

between links across the corridor. Therefore the authors conclude that it is not necessary
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to disaggregate the corridor into links if only the corridor travel times are sought. This

case study was a simplified approach to using direct travel time measurements to improve

the travel time estimation. But it incorporated no network effects as it used a stretch of

single freeway. Most important limitation is that the analysis approach is not flexible

enough to estimate any state parameters other than travel times. Nevertheless, it

emphasizes the importance of disaggregate travel time information.

Van der Zijpp (1997) has proposed a constrained optimization formulation to jointly

estimate the unknown OD-demand flows and identification rates. AVI data is

incorporated into demand estimation in the form of partial vehicle trajectory observations.

Therefore the formulation is affected by the AVI penetration rates and vehicle

identification rates. Problem formulation is general enough to allow for random errors in

traffic counts measurements as well as misrecognition or identification errors at AVI

stations. Study network includes a single highway corridor in which no route choice

alternatives exist. Case studies with synthetic data sets are performed that show a

reduction in estimation error due to the usage of AVI data.

Dixon and Rilett (2000) have incorporated AVI data into the estimation of OD flows.

Different methods are presented for utilizing AVI data in OD estimation and evaluating

their respective benefits. They were evaluated using Generalized Least Squares method

and the Kalman Filtering method. The authors evaluated sixteen different cases with the

goal of evaluating the OD split proportion estimates to determine the benefits of different

types of information. The cases were constructed through various combinations of

method of estimation i.e. GLS or Kalman Filter and type of available data i.e. link

volumes, historical OD values and AVI travel times. OD split proportions vector b(t) is

defined as the column vector of size equal to the number of ODs whose elements are b;(t)

proportions of trips departing at time t whose destination is j given that their origin is i.

These OD split proportions are estimated and their closeness to the true value is used as

the measure of effectiveness of each of the 16 cases. The procedure assumes that the

origin flows, i.e. the total number of trips beginning from each origin is known. The OD

flows are obtained by multiplying the origin flow with appropriate OD split proportion.
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The study network comprised of a 20 kilometer section of the eastbound 1-10 corridor

leading into downtown Houston, TX together with 19 on-ramps and 22 off-ramps with no

route choice involved. The results in the paper indicate that the incorporation of AVI data

with link volumes is feasible and beneficial. However, the assumption of known origin

flows and the lack of route choice in the simple freeway network limit the applicability of

these conclusions.

Asakura et al. (2000) have provided an off-line least-squares model to simultaneously

determine the OD demand and the location dependent identification rates. The AVI

identification rates determine how much part of the vehicle's trajectory is identified based

on the AVI observations. Assume that each link has an AVI reader. A vehicle, which

travels links 1, 2, 3... 10 but is identified at links 3, 5, 6, 7 and 9 only, forms part of

observed flow from link 3 to link 9. However, in reality it has its origin at the beginning

of link 1 and destination at the endpoint of link 10. The following notations are used.

YG10 = OD flow from link 1 to link 10

X3,9 = observed flow from link 3 to link 9

al, a2 ... alo = identification rates at the 10 AVI readers

A"' = Percentage contribution of the true OD flow between link 1 and 10 to the observed

flow between link 3 and 9 such that

A"1 = (1-aI) * (1-a 2) * a3 * a9 * (1-aIo)

The observed and actual OD flows are related as,
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X = YZAIY (2.1)

Thus the true OD matrix is estimated as follows,

Y=A-X

Where

X={ Xi }

Y { Yrs}

A={A }s

This least-squares model formulation was applied to Han-Shin expressway network

extending 221.2 kilometers between Osaka and Kobe. This model is estimated using

ordinary least-squares method. The estimated OD matrix was found to be consistent with

the explicit OD survey conducted via mail.

Zhou and Mahmassani (2005) have identified two classes of demand estimation problems

using vehicle identification data: 1) the estimation of tagged vehicle demand and 2) the

estimation of population demand while acknowledging the fact that several of the

previous attempts of utilizing AVI data focused on the first class of problems. A dynamic

OD estimation method has been proposed to extract split fraction information from AVI

counts without estimating the market penetration rates and identification rates of the AVI

tags. The authors used a non-linear ordinary least-squares estimation model to combine

AVI counts, link counts and historical demand information and solved this as an

optimization problem.
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If the tagged vehicles are assumed to be the representative of the whole vehicle

population, then the OD split fractions calculated from the AVI data can be used as a

direct measurement of the overall population's OD split values subject to a sampling

error. Further, the measurement equation corresponding to the link volume measurements

relates the OD flows to the link flows through link flow proportions i.e. the assignment

fractions.

(2.2)
~ - 17( ,k)SdtJ di )+

and

C(f ) = P(f),(ik)d(ik) +

Where

d(ik) =Split fraction for all vehicles, for OD pair (i, k).

d~ = Split fraction for tagged vehicles, for OD pair (i, k).

r/ k= Sampling error corresponding to split fraction for OD pair (i, j).

c = Number of vehicles on link f.

P(),(,k = Proportion of flow for OD pair (i, j) contributing to link flow for link f.

E(J) = Combined error in estimation of link flow of link f.
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These equations are formulated for each time interval to create a system of nonlinear

equations to estimate the unknown population OD flows d1 A . A DTA simulation

program called DYNASMART-P was used to first simulate the link counts and AVI

counts as the 'ground-truth' and then the same simulation program was used to test the

effectiveness of calibration methodology. A simplified Irvine test-bed network with

around 16 OD zones, 31 nodes and 80 directed links was used for OD estimation. AVI

readers were assumed to cover all entry-exit links of each OD-demand zone so that OD

AVI counts were available for each OD-pair. It was noted that it is highly advantageous

to place the AVI detectors so as to cover major O-D flows. Also sufficient market

penetration is found to be very critical for obtaining reliable information from AVI

counts.

Antoniou et al. (2004, 2006) have employed the state-space formulation for calibrating

the micro-simulation model called MITSIMLab using the loop detectors as well as probe

vehicle data. In this case, simple linear measurement equation is utilized assuming the

apriori knowledge of true assignment vector. Also the transition equation is assumed to

be linear. The estimation problem is solved using the basic Kalman filter algorithm.

Antoniou et al. (2006) have proposed a state-space formulation for incorporating the sub-

path flow information into OD estimation problem. The sub-path flows are modeled as

linear functions of the OD flows. The state vector includes the set of OD flows for each

time interval. The Measurement equations include the measurement of link sensors

counts, the measurements of sub-path flows based on the AVI data and the historical

estimates of OD flows themselves. The transition equation is described by an

autoregressive process where the state at a given interval depends on and is a linear

function of a series of states from several previous intervals. As a result, all the

measurement and transition equations are linear. Further, the measurement and estimation

errors are assumed to be identical and independently normally distributed. Therefore, the

Kalman Filtering method (Kalman, 1960) could be used for state estimation.
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In this paper, an application of the methodology is presented through a case study.

Synthetic data was generated using a microscopic traffic simulator called MITSIMLab. A

simple network having 10 links and 6 OD pairs was used to demonstrate the methodology.

The authors have reported that the additional AVI sub-path flow information improves

the ability to accurately predict the OD flows and hence the prevalent traffic conditions.

One limitation of this methodology is that it requires an assumption about the assignment

fraction i.e. the assignment matrix for the network which, in itself, is difficult to estimate

and is a function of several factors including travel times and OD flows themselves.

The next section describes some of the earlier efforts that formulate the calibration

problem in a simulation based optimization framework and/or use optimization

algorithms to solve the problem.

2.2 Stochastic optimization based studies

Mahanti (2004) has focused on the calibration of both the demand and selected supply

parameters for the MITSIMLab microscopic simulator by formulating the overall

optimization problem in a Generalized Least Squares (GLS) framework. The approach

divides the parameter set into two groups: the OD flows and the remaining parameters

(including a route choice coefficient, an acceleration/deceleration constant in the car-

following model, and the mean and variance of the distribution of drivers' desired speeds

relative to the speed limit). An iterative solution method is implemented, with the OD

flows estimated using the classical GLS estimator, and the parameters are estimated by

Box-Complex iterations. The details of the algorithm can be found in Box (1965).

Balakrishna (2002) also formulated the off-line calibration framework as a large scale

optimization problem where the final objective is to match simulated and observed

quantities.

Gupta (2005) has demonstrated the calibration of mesoscopic DTA model called

DynaMIT, wherein he uses separate methodologies to calibrate the demand and supply

parameters sequentially. The supply parameters are calibrated first using the speed
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density relationship for 5 separate groups of segments. Subsequently the OD estimation is

performed. The OD estimation problem is formulated in a generalized least squares

framework where the objective function is to minimize the sum of squares of difference

between the simulated and observed quantities. The optimization problem is solved by

iteratively estimating the assignment matrix and the OD flow estimates until convergence

is reached between the two.

Kunde (2002) reports calibration of supply models within a mesoscopic DTA system. A

three-stage approach to supply calibration is outlined, in increasing order of complexity.

At the lowest disaggregate level, the individual speed-density relationship parameters for

each segment are calculated using curve fitting using actual speed and density data. At

the middle level, calibration is performed using sub-network where the OD flows can be

accurately estimated using sensor count values, and there is little or no route choice. At

the highest level full network is used for calibration. Calibration problem is formulated as

a stochastic optimization problem at this level and is solved using the box-complex and

SPSA algorithms. Clearly, the first stage is specific to the calibration of supply

parameters in the speed-density relationship and the second stage is specific to the usage

of the sensor counts data for calibration. The thesis states that the results in the third stage

of calibration show that the SPSA algorithm provides comparable results to box-complex

algorithm using much lesser number of function evaluations and requires much lesser

run-time.

Zhou and Mahmassani (2005) used a non-linear ordinary least-squares estimation model

to combine AVI counts, link counts and historical demand information and solved this as

an optimization problem. The methodology they used was described in section 2.3 earlier.

This approach is more flexible than other rigid sensor-counts-based approaches. However,

it still incorporates AVI sub-path flows as the only additional type of traffic

measurements.

Recently, Balakrishna (2006) has developed an offline DTA model calibration

methodology for simultaneous demand and supply parameter estimation. This thesis used
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loop detector data and historical OD flow estimates. However, the approach is easily

extendable to incorporate other types of traffic sensor data. A minimization formulation

is adopted and solution algorithms suitable to solve the resulting non-linear, stochastic

optimization problem are identified and evaluated through detailed case studies. Two

algorithms are used for optimization, viz. SPSA and SNOBFIT. The effectiveness of the

approach is demonstrated using a large real traffic network. It is concluded that the two

algorithms estimate comparable parameters though SPSA does so at a fraction of the

computational requirements. Concerns are raised about the scalability of the SNOBFIT

algorithm, while SPSA is found to be much more scalable approach. The results indicate

that the simultaneous demand and supply calibration approach is much more effective

than the sequential approach.

Section 2.1 has already described some earlier studies that have formulated the

calibration problem in a state-space framework, especially in the context of AVI data.

The next section summarizes the some further calibration studies that used the state-space

formulation.

2.3 State-space formulation based studies

Ashok (1996) used the state-space formulation to model the OD estimation problem. The

significant improvement over previous approaches was the use of deviations to describe

the network state rather than the actual OD values. The deviations were calculated with

respect to the historical OD values. The use of deviations instead of actual OD flows has

two advantages. The historical estimates of OD flows subsume a wealth of information

about the spatial and temporal variation of OD flows. Therefore the usage of deviations

instead of actual OD flows as state vector indirectly takes into account all the experience

gained from prior estimation efforts. Thus the OD estimates calculated based on the

deviations retain this invaluable information. Further, the use of deviations allows the

state to be represented through symmetrical distribution, especially normal distribution,

which possesses desirable estimation properties.
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Antoniou (2004) has calibrated the problem of online calibration of DTA models as a

state-space model comprising the transition and measurement equations. Apriori values

are used as direct measurements of unknown parameter such as OD estimates,

mesoscopic supply parameters such as speed-density parameters and segment capacities.

Surveillance information such as link counts, speeds and densities is incorporated as

indirect measurement equations. A deviations based approach is used wherein the state

vector is defined as the deviation of the parameters and DTA inputs from the available

estimates. The measurement equation for the sensor counts is non-linear in the state

variables. This obviates the usage of basic Kalman filter for calibration. Therefore

extended Kalman filter, limiting extended Kalman filter and the unscented Kalman filter

algorithms are used to solve the state estimation problem. This approach is demonstrated

for the calibration of DTA model called DynaMIT for a real traffic network. The

comparison of extended Kalman filter with the limiting version of EKF shows that the

limiting EKF performed almost as effectively as the ELF but with a substantially lower

computational effort. The results also indicated that the extended Kalman filter

outperforms the unscented Kalman filter algorithm. However, this author has suggested

that a simulation-based extension of unscented Kalman filter called particle filter could

potentially provide improvement over unscented Kalman filter results.

Antoniou et al. (2004, 2006) propose a general flexible methodology for OD estimation

using the new and emerging data sources. The authors try to address the problem of

developing a general framework for incorporating the various types of emerging traffic

sensing technologies in addition to the traditional link traffic counts. Incorporating these

different technologies in estimation poses unique challenges due to their different

technical characteristics including the type of collected data, measurement accuracy,

levels of maturity, cost, feasibility and network coverage.

The authors employ the classic state-space technique for modeling of dynamic systems.

The modeling framework includes a set of measurement equations that map the state

vector on the direct or indirect measurements of the state and a set of transition equations

that capture the evaluation of the state vector over successive time intervals. The state
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vector is defined as the "minimal set of data sufficient to uniquely describe the dynamic

behavior of the system at a time interval". However, the state vector does not include the

state variable directly. This is so because often good estimates of the state variables are

available apriori based on historical data or previous analysis results that embody a large

amount of useful information about the state. So the authors resort to the usage of the

deviations of the OD flows from the best available apriori estimates of the ODs to

describe the state.

The combined measurement equation is formulated as follows,

Yh = AhXh +Uh (2.4)

Where

XH

Y y
yIY hh robe

Zh

[ j

I

AhA
Ah = 

,h

-Gh

[Uh1

UhKI
Uh

L7h

Where the variable are defined for time interval h as,

XH = vector of deviations of OD flows departing from their corresponding historical

values.

Yh = vector of deviations of average link flows from their best estimates.

Xprobe = vector of deviations of observed probe vehicle flows from their best estimates.
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Z/= vector of deviations of sub-path flows.

I = identity matrix.

A,= assignment matrix

E,= diagonal 'expansion' matrix to account for the fact that the probe vehicle constitute

only a fraction of the total number of vehicles in the network

G, = matrix that maps the sub-path flows to the OD flows

vectors of Gaussian, zero mean, uncorrelated errors

The transition equation can be represented in matrix form in terms of deviations by an

autoregressive process of degree q as follows,

(2.5)
X h-q

p=h-q
fh XP + Wh

Where,

fhP = matrix of effects of X, on Xh+Z

Xh+1 = estimate of Xh+l

Wh= vector of Gaussian zero mean uncorrelated errors
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The assignment matrix A, which maps the OD flows into the link counts, is critical for

OD estimation. It depends on a large number of factors including the travel times, route

choice model parameters, supply parameters such as speed density relationship

parameters etc.

2.4 Summary

In summary, there is a paucity of literature regarding the utilization of AVI travel time in

model calibration and the available studies mostly focus on highly simplistic models for

estimating prevalent link travel times using probe vehicle travel time data. Most studies

use AVI split fractions and a large majority of them restrict the estimation efforts only to

origin-destination flow estimation. Majority of case studies involve OD estimation in

freeway-ramp networks with very little or no route choice. Some studies have focused on

the estimation of penetration and identification rates. State space formulation has been

frequently used for formulating the OD estimation problem using predominantly linear

models and generalized least squares and Kalman filter techniques are used for estimation.

Past research suggests that calibration problem can be formulated as an optimization

problem that can incorporate a variety of traffic measurements. However, except

Balakrishna (2006), all the prior studies have involved calibration of only a specific class

of DTA model parameters under this framework. SPSA algorithm has been found to be

promising in terms of accuracy of calibration as well as computational efforts.

The calibration problem has also been modeled under the state-space formulation.

Majority of previous efforts calibration efforts have involved the usage of state-space

formulation only in the context of link counts data. The only state-space formulation that

incorporated AVI data (Antoniou et al., (2004, 2006)) made linearizing assumption for

representation of indirect measurement equation. Extended Kalman filter is found to be

an effective solution methodology. While the unscented Kalman filter did not produce
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superior performance it has been suggested that the particle filter technique could

potentially yield better results.
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3. Automatic Vehicle Identification Technology

AVI technology is ftndamentally different from the traditional loop detectors which are

the most common type of traffic measurement sensors. There are various types of

technologies that can be classified under the generic type called automatic vehicle

identification technologies. They have varying technological attributes and accuracy and

reliability characteristics. They often differ in the types of data collected. This chapter

provides an overview and classification of AVI technologies from the viewpoint of DTA

model calibration. The first section introduces the AVI technology. The subsequent

section provides an overview of the types of data that can be utilized for calibration. The

final section concludes the chapter with a summary of AVI technology characteristics.

3.1 Introduction

AVI stands for Automatic Vehicle Identification. There are several types of technologies

being deployed for traffic data collection, which could be classified under the general

term, AVI technologies. Majority of the discussion in this section has been derived from

Antoniou et al. (2004), who provide a detailed overview of various types of technologies

as well as the underlying data considerations. AVI technologies differ from other traffic

data collection methods because of the disaggregate nature of collected data. Due to the

identification of individual vehicles, AVI technologies capture vehicle trajectories at

several points in the network.

In general, the type of data collected from an AVI technology includes 3 types of

information,

a) Unique Vehicle Identifier: This is the identification code for each vehicle by

which the same vehicle can be identified at various data collection points.

Depending on the privacy issues involved, this identifier may sometimes be
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scrambled so that it cannot be traced back to any information about the original

vehicle (Antoniou et al., 2004).

b) Location: This is the location in the network e.g. link ID or road name and

distance along its length, at which the vehicle was identified.

c) Time Stamp: This is the time at which the vehicle was identified.

AVI technologies can be classified based on each of these types of information although

these classifications may often be overlapping. The unique vehicle identifier could be any

one of the following:

a) the transponder tag installed on the vehicle, which communicates with the

roadside detectors

b) license plate number, which is identified by the roadside video cameras

c) on-board GPS unit

d) cell phone of the vehicle occupant

The location of data collection could be the locations of the video cameras in case of

license plate recognition or the location of RFID readers in case of the transponder tags.

However, in case of GPS or cell phone based data collection, the data can be collected

anywhere over the entire network, because they do not require any short range

communication between the vehicle and infrastructure. For the same reason, the time of

data collection for license plate recognition or transponder tags identification is the time

at which the vehicle passes the location of the tag reader or video camera. However, for

GPS and cell phones, the data can be collected much more frequently.
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The proportion of vehicles getting identified by the AVI technology depends on the type

of technology. GPS based data collection depends on the existence of on-board GPS units.

Although, nowadays large proportion of vehicle occupants carry mobile phone devices,

the cell-phone based data collection depends on the vehicle occupants' willingness to

participate in the data collection process. Similarly, the transponder tag based data

collection depends on the fraction vehicles that have the transponder tags. The video

camera based license plate recognition should, at least in theory, capture the disaggregate

data on all the vehicles in the network. But in practice, many of these technologies have

less than 100 percent identification rates. This means that only a fraction of the vehicles,

equipped with the necessary identifiers, are actually identified due to various reasons.

There is another issue that could result in low identification rates. Asakura et al. (2000)

have reported studies where only one of the two freeway lanes was equipped with video

cameras, implying that vehicles on the other lane could not be identified.

Finally, it must be noted that the GPS and cell-phone based technologies are area-wide

whereas the transponder tags and license plate recognition are point-to-point data sources.

But because of practical limitations of high cost and requirement of driver participation,

the area-wide techniques have so far not been practically viable on a large scale. Most of

the discussion in this thesis focuses on the information collected from point-to-point data

sources which has been successfully implemented in various real roadway networks. Also

the data requirements for the analysis that follows are more modest than the data

collected by area-wide technologies. Therefore, the discussion in this thesis is still

applicable to area-wide sensors while only using a subset of the collected data.

3.2 A VI information types

Various useful measurements of traffic network performance can be derived directly

from the AVI data. These include travel times, route-choice fractions, origin-destination

flows, sub-path flows and actual paths used by the vehicles. It must be noted that any

vehicle which is identified at only one location carries no useful information. Only the

vehicles which are identified at two or more locations should be included in the analysis.
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The RFID detectors and the video detection cameras are referred to by the generic term

'sensors' in the following discussion.

a) Travel times:

For the vehicles which are identified at two or more locations, the time stamps and

sensor IDs of successive identifications provide the travel times between those two

locations in the network.

b) Route choice fraction:

Investigation of the way that vehicles detected by one sensor are distributed among

downstream sensors can provide useful information about the route choice fractions.

This is especially relevant for vehicles that are identified at minimum 3 locations. For

example, consider a set of vehicles that are identified at two fixed locations A and C.

Some of these vehicles are identified at an intermediate location B, and others at

another intermediate location B 2 . In that case, the proportion of all the vehicles

identified at A and C, which is identified at B1 (or B2), provides a direct estimate of

the corresponding route choice fractions.

c) Origin-destination flows:

Direct estimates of origin destinations flows may be obtained provided there are

sensors located sufficiently close to the origins and destinations so as to ensure that

all the vehicles identified by the sensor belong to the same origin or destination.

d) Sub-path flows:
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Even if the sensors are not located close to individual origins or destinations, the AVI

data can provide information on how many vehicles' paths contained the sub-path

between two successive sensors at which they were detected.

e) Actual paths:

AVI data can aid the generation of actual paths prior to the route choice. It gives an

indication of what paths the drivers actually took.

Each of these has different implications for DTA calibration and in particular, estimation

of origin-destination flows. The actual paths only aid the path generation process and

cannot be directly incorporated into any numerical estimation. The travel times are a

function of origin-destination flows. As the OD flows increase, the links get more and

more congested and therefore the travel times increase. However, the relationship is

highly complex and nonlinear. The direct measurements of OD flows and the sub-path

flows can be modeled as linear functions of the actual OD flows. The route choice

fractions also depend indirectly on the OD flows. However the relationship is highly

nonlinear and difficult to express analytically.

Various efforts to incorporate the AVI data into OD estimation have focused on these

different types of information extracted from the AVI data as has been described in

section 2.1. Most of these earlier efforts focus on the sub-path flows and the direct OD

measurements. But these approaches have limitations. For the direct measurement of OD

flows, we need to have the AVI sensors located sufficiently close to the origins and

destinations, which is often not feasible in reality. Also, in order to capture all OD flows

the minimum number of required AVI sensors should equal the sum of the number of

origins and the number of destinations in the network.

In case of route choice fractions, the AVI sensors need to be located in such a way that

one sensor is near the beginning and the other is close to the end of the possible sub-paths
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in the network under consideration. The other sensors (at least two) must be located on

different possible paths between the beginning and end point. This implies that the

number of sensors on each location of possible route choice necessary for the collection

of any useful information must be four. This again demands a large number of sensors.

In comparison, the sub-path flows can capture information about several OD flows. As an

illustration, consider the network in the figure. There are 3 origins and 3 destinations and

8 OD pairs in this simple network viz. 1-4, 1-5, 1-6, 2-4, 2-5, 2-6, 3-5 and 3-6. The two

AVI sensor locations are indicated by the blue ovals. The indicated AVI sensors capture

useful sub-path flow information which is a function of OD flows 1-5, 1-6, 2-5 and 2-6

but is unaffected by OD flows 1-4, 2-4, 3-5 and 3-6.

Fig 3.1: Effectiveness of AVI information

The travel time information captures the effects of an even larger set of ODs. Consider

the same example again. The travel time data that can be extracted from the indicated

AVI sensor pair are affected by each of the eight OD pairs in the network.
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There is another advantage of travel time information over the other types of information.

The usage of direct OD measurement in the estimation of population OD flow values

depends on the penetration of AVI equipped vehicles, which is called the penetration rate,

as well as on the identification rates of the sensors. In general, it is very difficult to

predict these identification and penetration rates. Besides, they may be dependent on the

origin, destination, and/or departure time intervals. Similar problem exists with the usage

of sub-path flow information. However, the travel times and the route choice fractions are

unlikely to be affected by the fraction of vehicles that are identified by the AVI sensors.

Although in case of high penetration and identification rates, the estimates will be more

reliable, the measurements of travel times and route choice fractions can be assumed to

be independent of the penetration and identification rates. Note that we have ignored the

possibility that there might be some correlation between the vehicles speed or route

choice and whether or not it is equipped with AVI tags.

3.3 Summary

Automatic Vehicle Identification technology is a broad class of technologies involving

point-to-point and area-wide technologies. Disaggregate nature of the collected data and

high degree of measurement accuracy, are important features characterizing them. The

AVI data contains various types of useful information about the network traffic flow

including travel times, route choice fractions, OD flows and sub-path flows. Out of them,

travel time is a useful and unexplored dimension of the information which is not affected

by penetration and identification rates.
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4. Problem Formulation

The previous chapters emphasized on the specific features of information collected by

AVI technology and summarized previous calibration efforts in the literature. This

chapter provides two alternative formulations of the DTA calibration problem. Each of

the formulations is described in the first two sections. The final section provides a

summary of the discussion related to problem formulation.

4.1 Optimization formulation

The general calibration problem involves estimation of OD flows as well as various

model parameters using variety of data from sensor measurements and apriori values of

OD flows and model parameters. The calibration problem can be described as an

optimization problem with the objective of minimizing the goodness-of-fit measure

comparing the observed and fitted measurement values. The next sub-section describes

the notation to be used for describing the optimization formulation and the subsequent

sub-section describes the formulation itself.

4.1.1 Notation

The following notation will be used to formulate the DTA estimation problem in the

optimization framework:

T = Number of time intervals

T = 1,2, ... T

x: OD flows; {x } Vte { 1, 2, ... T}

8: Model parameters; p = {p,} V t e {l, 2, ... T}
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M": Observed sensor measurements; M0 M V t e {1, 2, ... T

x": Apriori OD flows; x"= {x"} V t E { 1, 2, ... T

f8": Apriori model parameter values; P "i { #,"} V t e {1, 2, ... T}

G: Road network characteristics; G = {G,} V t e { 1, 2, ... T}

At: Simulated sensor measurements; At { M,' } V t e { 1, 2, ... T}

z: Function representing the goodness-of-fit between the observed or apriori values and

the measured or true values

4.1.2 Formulation

Using these notations, the general calibration problem can be expressed as minimization

of the goodness-of-fit measure z subject to constraints as follows:

Minimize z(M', x, p, M', x", pa)
x,"

Subject to the constraints:

At =ff(x, , G)

lx < x < ux

1, < 8 < U#

44



The model parameters may include the trip choice model parameters of the route, mode,

departure time and destination choice models on the demand side as well as the supply

side parameters. The supply side parameters to be calibrated depend on the type of supply

simulator. In the case of microscopic supply simulator such as MITSIMLab (Yang and

Koutsopoulos, 1996 and Yang et al., 2000), they include the parameters in microscopic

driver behavioral models such as acceleration-deceleration, lane changing, gap

acceptance, merging models etc. In the case of a mesoscopic supply simulator such as the

one in DynaMIT (Ben-Akiva et al., 2001), the supply parameters include the parameters

of the speed-density curves of each segment in the network as well as segment capacities.

The abovementioned general objective function can be split into three parts. The

goodness-of-fit is often calculated separately for each of the three entities i.e. the apriori

model parameters, apriori OD flows and the observed sensor measurements and the

overall goodness-of-fit measure is expressed as an additive function of individual fit

values as follows:

Minimize z1(M 0 , M') + Z2 (X,X")+ Z( Z ,P")

The functions z 1, z2 and z3 represent the goodness-of-fit. The goodness-of-fit is often

described by a sum of squared deviations for sensor measurements, OD flows and model

parameters respectively. Note that the first part in this additive objective function can

include any type of sensor measurement without any restriction. The relationship of the

simulated (or fitted) sensor measurements to the calibration parameters and OD flows is

highly non-linear and often closed form expressions are not available. This presents a

major hurdle in solving the optimization problem described above.

4.2 State-space formulation

State-space modeling is a classic technique to handle dynamic systems. Traffic network

is also a dynamic system which can be described with a set of variables that evolve over
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time. The next sub-section provides background discussion about state-space formulation

for dynamic systems and the subsequent sub-section illustrates how the same discussion

is applicable in the specific case of a dynamic traffic network.

4.2.1 State estimation for dynamic systems

Many real-world data analysis tasks involve estimation of unknown quantities from given

set of observations. These unknown quantities are usually difficult or impossible to

observe directly. However, they are fundamental to the understanding and description of

the system being studied. So their estimation is critical. These unknown quantities are

together called as the 'State' and an array or vector containing the values of these entities

is called the 'State Vector'. The state of a system evolves with time and hence each state

vector is associated with a particular instance of time. Time may be discretized into

several intervals of fixed length for ease of analysis. In general, the state vector at time

t+1 depends on state vector at time 0, 1, 2... t, along with possibly some other factors.

Thus an estimate of state at previous time interval adds valuable information to the

estimation of state in next interval.

The observations are measurements of entities that we can directly observe. So they are

called the measurements or the indirect manifestations of the state vector. In most of

these situations, some prior knowledge about the phenomenon being modeled is available.

Often the observations arise sequentially in time and it is necessary to update our apriori

knowledge of the unknown quantities based on the observations. These observations are

dependent on the underlying unknown quantities in some way. So they provide useful

information about the quantities to be estimated. However, these observations are often

ridden with random noise or other factors out of our control.
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4.2.2 State-space formulation for the traffic network

The problem of estimation of origin-destination flows in a traffic network can be

represented as a special case of a general state-space formulation. Under the assumption

that the network traffic supply parameters (such as segment capacities, speed-density

curve parameters) and the route choice model parameters can be considered to be fixed,

the network performance depends on the origin-destination flows. Observing the origin-

destination flows is difficult because it involves either detailed OD surveys or highly

sophisticated vehicle tracking technologies for observing the path of each vehicle in the

network. On the other hand, what is easier to observe is a set of sensor measurements of

segment flow, average speed, density and limited measurements of point-to-point flows.

These measurements depend on the underlying origin-destination flows and are subject to

measurement errors due to different levels of reliability of different sensor technologies.

The estimation problem involves estimating the unknown OD flows from the sensor

measurements. Historical OD flow information is available that serves as the apriori

estimates of the state. Thus the traffic network state can be considered as a special case of

the state-space formulation described above.

This framework can be extended by relaxing the assumption of fixed supply parameters

and route choice parameters. The network state can be generalized to include not only the

OD flows but also the speed-density relationship parameters, segments capacities and

route choice parameters. In this way, a general DTA model calibration problem can be

described by the state-space formulation.

The state-vector is the minimal set of data that is sufficient to uniquely describe the

dynamic behavior of a discrete, stochastic, dynamic system during a time interval.

Antoniou (2004) has used a state-vector comprising of origin-destination flows (X,),

parameters of the speed-density relationship model (p,) and segment capacities (c,) during

interval t.
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(4.1)-T, = fx, p, c, _/ = [xY, Y, I'

The evolution of state is captured by the transition equation as which relates the state

vector at interval t+1 to the state vectors of previous q intervals as:

(4.2)r, =F(r,, ;T,-,, ;.T )+ ,'

Where,

r, : state vector at interval t

y, : the combined vector of supply parameters; y, =[p, c]T

q,' : the vector of random error in respective state variables

The direct measurement equation relates the sensor measurements Mt to the state-vector

r, through the function S, which is represented by the simulator.

M, = S(7r, ) + U, (4.3)

Where,

u, is the vector of random errors

Finally, the apriori estimates (r,") of state variables can be included in the formulation as

direct measurement equations:
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U2 ±1'T)7 / I 1
(4.4)

v, is the vector of random errors

The general form of a state-space formulation is described concisely as follows,

X+1 =J;AX,) + w, (4.5)

Yt= h,(X) + u, (4.6)

Where,

X is the state-vector and Yt is the measurement vector at time t,ft and h, are the transition

and measurement functions while w, and u, are the random error components.

4.3 Summary

Calibration problem can be modeled under two alternative formulations. Optimization

formulation is flexible enough to incorporate any type of traffic measurements as well as

apriori estimates of model parameters and inputs, without any extra efforts. The main

challenges in solving the optimization problem are the non-analytical, simulation based

nature of the calibration problem as well as large size of parameter set. Alternatively, the

problem could be modeled under state-space framework where the OD flows and model

parameters constitute the network state at any time, to be estimated. While this approach

can incorporate any type of model parameters and any type of traffic data, the complexity,

and non-analytical nature of measurement equation necessitates application non-linear

solution techniques.
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5. Solution Algorithms

The previous chapter described each of the two general frameworks for formulation of

the calibration problem. This chapter provides and overview of important solution

algorithms useful for solving the calibration problem using either of these two

frameworks. The first half of the chapter focuses on solution algorithms under

optimization formulation. The next section begins with a description of the stochastic

nature of the simulation based optimization problem at hand. Then the types of most

important solution approaches are explained. The three subsequent sub-sections describe

each type of solution approaches in details.

The second part of this chapter describes various solution approaches to solve the

calibration problem under state-space formulation. The first section in this part focuses

on the basic Kalman filter algorithm for estimation of state under the linear and Gaussian

assumptions. Subsequent section describes several extensions of the basic Kalman filter

that can be implemented even when the assumptions about linearity and/or Gaussian

distribution are relaxed. Final section provides a summary of the discussion in this

chapter and discusses the chosen approaches in more details.

5.1 Stochastic optimization approaches for simulation based systems

Any optimization problem can be represented as a minimization of an objective function

subject to a set of constraints. Well-established methods and algorithms are available for

solving linear optimization problems to optimality including simplex algorithm (Dantzig,

1963) and interior point methods (Karmarkar, 1984). Most of the algorithms that solve

nonlinear optimization problems such as Newton's Method (Ypma, 1995), Steepest

Descent Method (Arfken, 1985), Conjugate Gradient Method (Hestenes and Stiefel,

1952) make use of gradient vector of objective function with respect to the decision

variables as the gradient provides useful information about the direction of cost reduction.

These algorithms make simplifying assumptions about the problem structure including
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analytical representation of objective function, ability to calculate the gradient vector of

objective function and a deterministic setting.

Most real life problems involve a degree of uncertainty where the objective function and

constraints can be represented by probabilistic distribution rather than as a single set of

deterministic equations. The stochasticity exists due to stochastic models of human

choice behavior, randomness in movement of stock prices, probabilistic nature of demand

for a product in market etc. In many cases, the objective function to be optimized cannot

be represented as an analytical closed-form function of the decision variable, e.g.

dynamic traffic assignment models. Even if it is possible to express objective function

analytically, it may not be possible to calculate the exact gradient vector. Stochastic

optimization refers to the optimization of systems that produce output with inherent

system noise. A simulation optimization problem is where the objective function and/or

the constraints are implicit stochastic functions of decision variables and hence can only

be evaluated by computer simulation.

This non-analytical nature of the problem precludes the possibility of differentiation or

exact computation of local gradients of objective functions or constraint expressions,

rendering most common optimization algorithm inadequate for solving these problems.

Each evaluation of the simulation function involves considerable computational burden.

Further, the best point in the solution space cannot be decided by evaluating the objective

function only once at that point making the evaluation of objective function

computationally very demanding. This makes the solution of stochastic optimization

problems involving simulation systems a highly challenging task.

5.2 Classification of optimization algorithms

Some of these difficulties in applying the algorithms based on direct gradient

measurements can be solved by using the algorithms based on gradient approximation

using multiple evaluations of objective function (Spall, 1998b). Finite Difference

Stochastic Approximation and Simultaneous Perturbation Stochastic Approximation are
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two notable gradient approximation based optimization algorithms that search the

problem space by recursively calculating the descent direction based on gradient

approximation. Another class of global optimization techniques try to replicate natural

processes to reach a very good although not necessarily the optimal solution, and

therefore are called meta-heuristics. These techniques include Genetic Algorithms,

Simulated Annealing and Ant Colony Optimization etc. Many of these meta-heuristics

have been summarized in Spall (1999). Apart from these there are some methods that

require neither gradient estimates nor randomization procedures. Instead they use some

characteristics or pattern of the function evaluations at different points in the search space

to obtain an improved point. The next three sections summarize some of the important

candidate algorithms belonging to each of these types.

5.3 Path search methods

All the path search methods need an initial point in the search space to begin the search.

The algorithm keeps moving the current point in a certain direction with the aim of

improving the value of the objective function. Usually the gradient of the function is used

directly or indirectly to determine the direction of movement. Response Surface

Methodology (RSM) and Stochastic Approximation (SA) are two important families of

path search methods.

5.3.1 Response surface methodology

Response surface methodology (RSM) (Kleijnen, 1987) begins at a starting point and

keeps moving from point to point in the search space. It involves a polynomial

approximation of the optimization surface at the current point in each iteration. The

objective function is approximated by a local polynomial evaluated in the vicinity of the

current parameter vector. The direction of the gradient of resulting function is calculated.

The algorithm moves along this direction by some step size. The points at which the

function must be evaluated are determined systematically, such as through an

experimental design. Typically, a linear or quadratic response surface is chosen.
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RSM is applied to the problem of simulation optimization in either in the form of meta-

models or sequential procedures.

Sequential approach:

Sequential approach involves two phases. The first phase involves fitting a linear

regression model around a given point, defining a linear response surface using ordinary

least squares method. Then the algorithm keeps moving the point in the direction of

gradient until the surface stops improving the response function value. Second phase is

then implemented by fitting a quadratic model to the response. Again the algorithm keeps

moving the point in the direction of gradient until the magnitude of gradient becomes

sufficiently close to zero. If required, even higher order polynomials can then be utilized

in analogous manner.

Meta-models:

Another implementation of RSM involves meta-models. First the set of observation

points around the current solution have been identified. Then the function values at these

points are used to fit a response curve or meta-model. Deterministic optimization

methods are then employed to generate the meta-model's gradient and update the

parameter. The reader is referred to Kleijnen (1987) for more details about the algorithm.

SNOBFIT (Huyer and Neumaier, 2004) algorithm is a recently developed extension of

the RSM type algorithms. The algorithm begins with a population of several points in the

search space instead of a strict path search from one starting point. The starting

population is chosen based on the lower and upper bounds on decision variable values

and hence it is unlikely to be affected by the choice of starting point(s) too much. This is

also useful for avoiding the problem of getting stuck at a local optimum, which several of

the path based algorithms may face. However, convergence rate results about SNOBFIT

algorithm are currently unavailable. Balakrishna (2006) has recently used the SNOBFIT
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algorithm for calibration of DTA model parameters. The reader is referred to this thesis

for exact implementation details of this algorithm. The author used SNOBFIT and SPSA

algorithm, which we discuss in the next section, for calibration. This thesis concludes that

the two algorithms estimate comparable parameters though SPSA does so at a fraction of

the computational requirements.

5.3.2 Stochastic approximation

Stochastic Approximation (SA) is another family of path search algorithms. These

algorithms trace a sequence of points in the search space that ultimately converges to the

point of zero gradient of the objective function. The general expression for the solution

vector 0,+ at the beginning of i+ 1 th iteration of the algorithm is given by the following:

01+1 = 0 - a(0 1 ) (5.1)

Where,

O, = the solution vector at the beginning of ith iteration.

(Oi ) = the approximation of gradient at the ith iteration.

ai = Step size parameter at the ith iteration. The sequence of ai values is also known as the

gain sequence. It is non-negative sequence of real numbers.

Robbins-Monro Stochastic Approximation:

The original core stochastic approximation technique that is based on direct measurement

of gradient vector is known as the Robbins-Monro Stochastic Approximation (RMSA). It
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is the direct analogue of the deterministic gradient based algorithms applicable for the

stochastic objective functions case.

01 - aY(O, ) (5.2)

Here, the function Y is an instance of the stochastic gradient of objective function f So

the expected value of this function corresponds to the function gradient in deterministic

sense.

Ef( ) af (5.3)
ao

This method, as stated above, does not incorporate the constraints in the optimization

problem. In other words, there is no guarantee that the new point O, will lie in the

feasible space. The Kushner and Yin (1998) discuss about the projection operator H, that

maps the solutions outside the constraint set C back to the nearest point inside the

constraint set.

Oi+ = H, [ O - aiY(Oi) (5.4)

Spall (1999) has discussed the theoretical conditions for convergence of RMSA

algorithm and practical implementation details of faster convergence.

There are other techniques that do not require gradient measurements and are

computationally much less burdensome. They are the Finite Difference Stochastic

Approximation (FDSA) and Simultaneous Perturbation Stochastic Approximation

(SPSA).

Finite Difference Stochastic Approximation (FDSA):

56



It involves perturbation of each component of the parameter vector separately and

calculating the corresponding component of gradient using finite difference method. Each

component of gradient vector is calculated by differencing the f values and then dividing

by the corresponding difference in the Oi values. Typically a two-sided gradient

approximation is employed. This approach is motivated by the interpretation of gradient

vector as the vector of partial derivatives of the function. Indeed, the limiting value of

this gradient vector as the difference in 0i values tends to zero equals the true gradient in

the deterministic case. The jth component of the gradient approximation vector is given

by,

f(5+ ci.ej)-f (5 - ci.e,) (5.5)

g1(O,) 2.c,

Where ej is the vector having jth component equal to I and every other component equal

to 0.

Clearly, the calculation of each component of gradient approximation vector requires the

function evaluation at 2 points. Hence the total gradient vector approximation process

requires 2n functional evaluations, where n is the dimension of parameter vector. Each

objective function evaluation can be highly expensive especially in case of simulation

based stochastic optimization problems. Upon evaluation of function gradient, the new

estimate of solution vector is computed using the equation (5.6), which is the same as

equation (5.4). This requires another function evaluation.

,1 = 1, -aY(0, )] (5.6)

Thus, each iteration of FDSA requires 2n+l function evaluations.

Simultaneous Perturbation Stochastic Approximation (SPSA):
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As opposed to FDSA, SPSA involves all elements of the parameters vector being

perturbed simultaneously to obtain two measurements of objective function. Then each

component of the gradient approximation vector is calculated as the ratio of the

difference between the two function measurements and each individual component of the

perturbation vector.

/'(0.+ ci.A )-f(,- ci.A ) (5.7)

2.c1 .A,,

Where A, is the perturbation vector at the ith iteration.

Again the new estimate of parameter vector is computed as before:

O+ = I [Oi -aiY(O,)] (5.8)

Thus SPSA and FDSA differ only in the procedure of calculation of gradient. The iterate

update procedure is the same. However, the gradient calculation for SPSA requires only 2

function evaluations as against 2n for the FDSA. But, as a result, the gradient

approximation in SPSA is not as accurate as that in FDSA requiring additional iterations

for convergence (Balakrishna 2006). However, the great computational saving in each

iteration means that SPSA is computationally far more efficient. In fact, under minor

conditions, Spall (1999) has shown that the overall convergence rate of SPSA tends to n

times that of FDSA, for large number of iterations.

Spall (1988, 1992) has discussed the conditions for convergence of SPSA algorithm

extensively. Spall (1 998a) states the three important convergence conditions as follows,

1) The step sizes for both the gradient calculation and successive iterate calculations

must go to zero at rates neither too fast nor too slow.
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2) The objective function should be sufficiently smooth i.e. differentiable several

times close to the optimal solution.

3) The components of the perturbation vector are independent and symmetrically

distributed around zero with finite inverse moments.

Under these conditions Spall (1999) has proved that the best case convergence rate i-1/3

can be obtained for SPSA.

In summary, FDSA and SPSA are the two possible candidate algorithms for solution of

calibration problem using gradient approximation technique and they differ only in terms

of the way the gradient is calculated. FDSA requires n times the computational effort

required for SPSA per iteration (where n is the parameter vector size), which more than

compensates for additional iterations required for SPSA convergence. Therefore, SPSA

reaches convergence with much lower computational effort.

5.4 Pattern search methods

Pattern Search Methods do not require any gradient calculations. Hence they are termed

as direct search methods. Since they do not require derivatives, they are also suitable for

discrete optimization to certain extent. Some characteristic or pattern is used to obtain an

improved solution at each iteration.

5.4.1 Hooke and Jeeves method

This method starts from a point in the search space and keeps moving in the direction that

produces a favorable change in the objective function value. Each iteration of Hooke and

Jeeves algorithm involves several sub-steps whose number equals the dimension of the

parameter vector. One component of the parameter vector is perturbed in either direction

by some predefined amount and the function is evaluated by holding all the other

parameters constant. If a sufficient improvement is not obtained in either direction, then
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the step-size is reduced and the process is repeated until a local descent direction is

identified. Then the sub-step moves the current solution to this new location. This process

is repeated until a search direction is identified for each component of the parameter

vector. The final search direction at each iteration is a combination of each of these

intermediate sub-steps.

The reader is referred to Kolda et al. (2003) for extensive description of this method.

Main advantage of this method is that it does not make use of the gradient values and

hence is suitable for simulation optimization problems. But there is a strong possibility of

the algorithm not being able to reach the global optimum as it always looks for the local

descent direction. Its strong focus on finding a pattern that reduces the objective function

value at each iteration may render it susceptible to getting stuck in local optima separated

by ridges. Besides, empirical evidence shows that the method performs poorly even when

applied to small- or medium-sized simulation optimization problems (Kolda et al., 2003).

5.4.2 Downhill simplex method

The Nelder and Mead's Downhill Simplex Method (Nelder and Mead, 1965) is another

pattern search method. A non-degenerate simplex is a geometrical figure consisting of

N+1 vertices in N dimensions, where the N+1 vertices span a N-dimensional vector space.

The diagram shows a two-dimensional space with a 3 dimensional simplex. The initial

simplex is generated by randomly selecting N+l points in the feasible space. The

algorithm maintains a set of N+1 points at every iteration. The first step is to evaluate the

objective function at each of these N+l points. The new simplex is calculated by

replacing the worst point with a new point using either reflection extension or contraction

operation.
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Fig 5.1: An iteration of the downhill simplex method

Consider the two-dimensional case shown in the figure. Points B, NB and W represent
the best, next best and the worst point in the simplex. Let XB XNB' x' C x E and

nex 'N 'W 'CEN' XR'

ic be the position vectors of the points B NB, W, CEN, R, E and C respectively. Each

iteration includes the following steps,

1. The position of midpoint of line segment B - NB (point CEN in the midway between

points B and NB) is calculated as:

61



- H + XVB (5.9)
B2

2. A reflection of the worst-response point W with respect to CEN is performed and the

objective ftnction is evaluated at the reflected point R. The position of the reflected point

R is given by:

R 2KCE +W (5.10)

3. If R is within the bounds of acceptable range of parameters and its function value is

better than that of W but worse than that of B, then a new simplex is formed by replacing

W with R and the iteration ends here.

4. If the value of objective function at R is even better, i.e. better than that of B, then this

is an indication that simplex is moving in the correct direction, therefore an extension to

point E is tried where point E is twice as far from CEN as R is in the same direction.

E 2XR CEN (5.11)

5. If E is within the acceptable parameter limits and its response is better than that of R

then W is replaced with E, otherwise W is replaced with R. And that particular iteration

ends here.

6. If the initial reflection fails, i.e. function value at R is worse than that of W or R is not

within the acceptable limits of parameters, then a contraction is performed. The

contracted point C is the midpoint of line segment joining W and CEN. In this case the

point C replaces W in the simplex and that iteration ends.
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K + XCE\ (5.12)

2

In this way, at the end of every iteration, a new simplex, i.e. a set of (n+l) points (which

in this case is a triangle) is generated and the process repeats as this set successively

approaches the optimum value. The iterations are terminated when no more significant

improvement of the response is observed on moving from one simplex to the other or the

displacements are insignificant between successive iterations.

However, there is a dearth of strong convergence results for the downhill simplex method

especially for higher dimensional cases. Proving the algorithm convergence is very

difficult analytically. Besides, empirical evidence suggests that the algorithm is likely to

terminate at a sub-optimal point especially in case of noisy objective function (Lagarias

et al.,1998).

Box (1965) has proposed an extended version of the Nelder-Mead downhill Simplex

algorithm which also maintains a set of points in N dimensional space at every iteration.

However, it includes at least N+2 points in the set instead of exactly N+1 points as in the

case of downhill simplex method. The use of a larger set can potentially increase the

speed and accuracy of the search, and also guard against the possibilities of numerical

instabilities with the Nelder-Mead approach. The reader is referred to Balakrishna (2006)

for detailed exposition of the numerical problems associated with the Nelder-Mead

approach. Mahanti (2004) provides a detailed description implementation details of Box-

Complex algorithm for the calibration of DTA models.

However, the Box-Complex approach itself may run into some problems while dealing

with simulation optimization problems. Model stochasticity may result in an apparently

worst point being eliminated from the complex, when it should have been retained.

Another potential drawback is related to its focus on the worst point in the complex.

While the algorithm repeatedly expends effort to improve the points with the highest

objective function value, an improvement to the best point is not guaranteed at every
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iteration. Also, in the case where the worst point repeats itself, multiple function

evaluations may be required per iteration. Hence the algorithm tends to display extremely

slow convergence rates as the optimization proceeds. Therefore it is not very suitable for

the purpose of simulation optimization.

In summary, a useful feature of pattern search methods such as downhill simplex method

and Hooke and Jeeves method is that they do not require an evaluation or even an

approximation of gradient of objective function. There is a lack of strong convergence

results in case of downhill simplex while the Hooke and Jeeves method is likely to suffer

from the problem of getting stuck in local optima. Besides, the danger of unintentional

elimination of the best point due to stochasticity. For these reasons, the aforementioned

pattern search methods may not be particularly suitable for simulation based optimization

problems.

5.5 Random search methods

Random search methods do not follow a single search path. They typically maintain a

large set of points at each iteration and often do not utilize all the information from

previous iterations. Instead these methods adopt probabilistic mechanisms to randomly

select updated parameter vectors with the hope of improving towards optimality. We

review two important random search methods i.e. simulated annealing and genetic

algorithms. Both are meta-heuristics which mans that they try to imitate some natural

process in its search for a good solution and are not theoretically guaranteed to reach the

global optimum.

5.5.1 Simulated annealing

Simulated Annealing (SA) (Metropolis et al., 1953; Corana et al., 1987) is a meta-

heuristic that tries to mimic the natural process of cooling of metals. The name comes

from the annealing process in metallurgy, a technique which involves heating and

controlled cooling of a material to increase the size of its crystals and reduce their defects.
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The heat causes the atoms to get released from their initial positions which correspond to

a local minimum of the internal energy and wander randomly through states of higher

energy. A slower rate of cooling gives them more chances of finding configurations with

lower internal energy than the initial one. By analogy with this physical process, each

step of the SA algorithm replaces the current solution by a random nearby solution,

chosen with a probability that depends on the difference between the corresponding

function values and on a global parameter T (called the temperature). The temperature

parameter is gradually decreased during the process. The dependency is such that the

current solution changes almost randomly when T is large, but goes increasingly downhill

as T goes to zero. The early iterations therefore allow for random jumps to escape from

local optima. The allowance for uphill moves saves the method from getting stuck at

local minima.

Each iteration of Simulated Annealing algorithm involves the following steps:

* Starting at x, select a random neighbor x in the neighborhood structure with

probability qxy: q, >1; q,, = 1
yeN(x)

* Move to y if c(y) < c(x).

* If c(y) > c(x), move to y with probability e~(c(y)-c(x))/T; else stay at x only.

The abovementioned procedure is one specific way of implementing the SA algorithm.

Specific details of the implementation of simulated annealing methods vary widely in the

literature. However, the need for the pre-selection of a large number of tuning parameters

implies that significant effort may be required in identifying their optimal values for each

application. These parameters include (a) the initial temperature, (b) the distribution of

the perturbation applied to randomly generate updates, (c) the cooling schedule that

determines the sequence of temperatures, and (d) the criteria for lowering the temperature
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(typically tied to the number of function evaluations of randomly perturbed parameter

vectors allowed at each temperature setting).

The main advantage of simulated annealing is the ability to reach a global optimum due

to high energy initial movements that increase the probability of reaching better solution

by chance. The method is found to be effective for combinatorial optimization with

discrete variables. However there are scalability issues. Goffe et al. (1994) have shown

that the convergence in case of very small continuous optimization problem was found to

be very slow and a very high number of function evaluations are required to achieve the

optimum. Thus the performance of simulated annealing with continuous variables is not

encouraging. Besides it has also been found problematic to deal with noisy measurements

in the implementation of the simulated annealing algorithm.

5.5.2 Genetic algorithms

Genetic algorithms are categorized as global search heuristics. Genetic algorithms belong

to a class of evolutionary algorithms that uses techniques inspired by evolutionary

biology such as inheritance, mutation, selection, and crossover. A population of abstract

representations (called chromosomes or the genotype or the genome) of candidate

solutions to an optimization problem evolves toward better solutions. Traditionally,

solutions are represented in binary as strings of Os and Is, but other encodings are also

possible. The evolution usually starts from a population of randomly generated

individuals and happens in generations. In each generation, the fitness of every individual

in the population is evaluated, multiple individuals are stochastically selected from the

current population (based on their fitness), and modified (recombined and possibly

mutated) to form a new population. The new population is then used in the next iteration

of the algorithm. Commonly, the algorithm terminates when either a maximum number

of generations has been produced, or a satisfactory fitness level has been reached for the

population.
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The chromosomes in a GA population typically take the form of bit strings i.e. sequences

of 0 and 1. Each chromosome can be thought of as a point in the search space of

candidate solutions. The GA processes populations of chromosomes, successively

replacing one such population with another. The GA uses the objective function of the

optimization problem as the fitness function that assigns a score (fitness) to each

chromosome in the current population. The fitness of a chromosome depends on how

well that chromosome solves the problem at hand.

GA operators

The simplest form of genetic algorithm involves three types of operators: selection,

crossover, and mutation.

Selection: During each successive generation, a proportion of the existing population is

selected to breed a new generation. This operator selects chromosomes in the population

for reproduction. The fitter the chromosome, the more times it is likely to be selected to

reproduce. Most functions are stochastic and designed so that a small proportion of less

fit solutions are selected. This helps keep the diversity of the population large, preventing

premature convergence on poor solutions. Popular and well-studied selection methods

include roulette wheel selection and tournament selection.

Crossover: This operator randomly chooses two chromosomes and exchanges the

subsequences of bit strings between two chromosomes to create two offspring. For

example, the strings 10000100 and 11111111 could be crossed over after the third bit in

each to produce the two offspring 10011111 and 11100100. The crossover operator

roughly mimics biological recombination between two single-chromosome organisms.

There are several crossover techniques that are used for different applications. Apart from

the one-point crossover technique indicated by the above example, there are other

popular techniques including two-point crossover and "cut and splice" crossover. Two-

point crossover calls for two points to be selected on the parent organism strings.

Everything between the two points is swapped between the parent organisms, rendering
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two child organisms. The "cut and splice" approach, results in a change in length of the

children strings. The reason for this difference is that each parent string has a separate

choice of crossover point.

Crossover Point

Fig 5.2: Single point crossover

- I - I -
- I - I -

Crossover Points

- I - I -
- I - I -

Fig 5.3: Two point crossover

68

Parents:

Children:

Parents:

Children:



Parents:

Children:

Fig 5.4: Cut and splice crossover

Mutation: This operator randomly flips some of the bits in a chromosome. For example,

the string 00000100 might be mutated in its second position to yield 01000100. Mutation

can occur at each bit position in a string with some probability, usually very small (e.g.,

0.001). The purpose of mutation in GAs is to allow the algorithm to avoid local minima

by preventing the population of chromosomes from becoming too similar to each other,

thus slowing or even stopping evolution.

Apart from these three operators, there exist some other operators such as inversion

which are not common in practice. For detailed exposition of various types of genetic

algorithm methods, implementation details and convergence issues, the reader is referred

to Mitchell (1996).

The main strength of genetic algorithms is that they can easily avoid getting stuck in a

local optimum. They are naturally suitable for integer optimization, especially when there

are a large number of variables with small range of possible values for each. Previous

studies on use of GA for transportation problems (Abdulhai et al., 1999; Lee et al., 2001;

Kim, 2002; Kim and Rilett, 2003) report successful implementation of GA for calibration

of various microscopic traffic simulation tools. Kim and Rilett (2004) used have

employed GA for the calibration of driver behavior parameters in microscopic models

CORSIM and TRANSIMS. However, the number of parameters to be calibrated was not

large. Previous studies involving the usage of genetic algorithms for solving small
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transportation problems (Kim and Rilett, 2004; and Henderson and Fu, 2004) indicate

that a major difficulty arises from the requirement of coding the continuous variables into

discrete strings. While it is difficult to code the speed-density curve parameters and

segment capacities into discrete variables, the origin destination flows can be easily

treated to be integers. However, this does not solve the problem completely since the

number of possible integer values that each of the origin-destination flow can take is very

large.

Scalability is another important issue especially when function evaluations are expensive.

Henderson and Fu (2004) reviewed an application of GA for maximum likelihood

estimation and explored the effect of population size and the number of generations

indicating that the two quantities varied greatly depending on the search space and the

nature of the objective function, and that large populations are necessary if high levels of

accuracy are desired.

An important issue is the choice of suitable parameters for the genetic operators such as

selection, crossover and mutation. De Jong (1975) performed an early systematic study of

how varying parameters affected the GA's performance. De Jong's experiments indicated

that the best population size was 50-100 individuals, the best single-point crossover rate

was ~0.6 per pair of parents, and the best mutation rate was 0.001 per bit. Thierens

(1999) has shown that as the problem dimension increases, the required population size to

maintain similar convergence properties is found to increase at exponentially. The paper

emphasizes on the fact that the choice of GA operators and the corresponding parameters

is highly critical for GA's success.

In summary, simulated annealing and genetic algorithm both have the ability to reach the

global optimum efficiently. Simulated annealing is noted to suffer from slow

convergence even for small scale problems especially in case of noisy function

measurements. Previous literature indicates instances of successful implementation of

Genetic Algorithms for calibration problems in the context of transportation, where

stochasticity is inherent in the problem structure. It must be acknowledged that there is no
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sufficient evidence that either of these algorithms can perform efficiently for large scale

problems.

5.6 Solution algorithms for state-space formulation

The solution of calibration problem modeled as a state-space formulation involves

estimation of state vector. The dimension of the state vector is an important attribute of

the model, largely governing the computational properties of any solution approach. The

dimension of the state vector is the sum of the number of OD pairs, the total number of

speed-density relationship parameters and the number of segment capacities. Most of the

solution techniques for the state-space models belong to the family of Kalman Filtering

Techniques. Therefore, before we proceed ahead, it would be useful to review the most

basic Kalman Filtering Algorithm.

5.7 Kalman filtering algorithm

Kalman filters are based on linear dynamical systems discretized in the time domain.

They are modeled on a Hidden Markov chain built on linear operators perturbed by

Gaussian noise. Thus Kalman Filtering technique can be used only to solve a special case

of equation (4.5) and (4.6), where the function f and h, are linear given by the

multiplicative matrices F, and H,. Also the components of the error vectors w, and u,

follow normal distributions with zero mean and are uncorrelated to each other.

X = F, Xt + wt (5.13)

Yt= Ht. X + ut (5.14)

Let Q, and Rt be the covariance matrices of w, and ut respectively.
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The Kalman filter has two distinct phases: prediction and update. The prediction phase

uses the estimate from the previous time step to produce an estimate of the current state.

In the update phase, measurement information from the current time step is used to refine

this prediction to arrive at a new, more accurate estimate.

Each time interval in the estimation process corresponds to one iteration. Each iteration

begins with the final estimate from the previous time interval, denoted by the subscript

t-1 t-]. The first step in each iteration consists of prediction phase where the first estimate

of the state vector and its covariance matrix for the current interval is obtained only using

the data state vector and covariance matrix information from previous interval. The

resulting estimates are denoted by the subscript tit-].

The second step in the iteration involves the update phase where the intermediate

estimates from the prediction phase are updated using the measurement data and the final

estimates for the particular time interval are calculated. These are denoted by the

subscript tit. The matrix K, is called the Kalman Gain Matrix.

The algorithm is

denoted by Xo and

initialed with the apriori estimates of the state and its covariance,

Po respectively.

Initialization:

X010 = X0

Polo = Po

Iterations:

Prediction Phase

72

(5.14)

(5.16)



X =FX,_l, (5.17)

;I, = 1F-It FI + , (5.18)

Update Phase

K, 1  _IH[ (H t f,_HI +Rl)- (5.19)

X,, = X _ + K, (Y - HX,, ) (5.20)

Pl= tl - KHFtll_, (5.21)

Further information on the Kalman Filter can be found in several texts, such as Gelb

(1974), Sorenson (1985), and Chui and Chen (1999).

5.8 Extensions of Kalman filtering technique

The basic Kalman filtering algorithm makes two critical assumptions about the problem

formulation. First, it assumes a linear state-space model wherein both the transition and

the measurement equations are linear. Second, it assumes that the error terms are

uncorrelated, zero mean and normally distributed. However, many real world systems

cannot be modeled under these restrictive assumptions. The linearity assumption

especially hinders the generalization of Kalman filtering technique to solving a variety of

problems. Hence several extensions of the original filtering technique have been

proposed that handle non-linear state-space formulations. Some of the important

algorithms belonging to this class are briefly reviewed in the this section. The important

feature of state-space formulation of DTA calibration problem is that the measurement
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equation is often non-linear. The transition equation can still be assumed to be linear.

Therefore we will examine the case where the measurement equation can be represented

by any general ftnction h,(X,) of the state vector X, at time interval t. The transition

equation will be still represented by a multiplication matrix F,. We will use the same

notations as in the basic Kalman case explained earlier. Only those aspects of these

algorithms, which differ from the basic Kalman filter, will be described in details.

5.8.1 Extended Kalman filter

In extended Kalman filter (EKF) the state transition and observation models need not be

linear functions of the state but may instead be any differentiable functions. It is the most

straight-forward extension in which optimal quantities are approximated by linearization

of the nonlinear functions in the measurement and transition equations through first order

Taylor series expansion.

The algorithm is initialized in the same way as the basic Kalman filter. In case of a linear

transition equation, the first phase of each iteration remains the same. The change occurs

before the update phase in each of the iterations. The H matrix is not directly available

for non-linear case. Therefore, H is calculated as the derivative of the function h,.

HI = 8h(x) (5.22)

'ax

Then the update phase is proceeded as before using this new H matrix. Thus the H,

matrix is calculated at each iteration. This can be computationally burdensome. Plus, in

case of DTA calibration problem, the measurement function h,(x,) is calculated through a

simulation run. Hence no analytical closed form expression of the derivative is possible.

Therefore the derivative has to be estimated numerically. This itself requires several

function evaluations. Using central derivatives, each gradient calculation requires 2n
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function evaluations. Hence the extended Kalman filter technique is computationally

much more expensive than the basic Kalman filter.

5.8.2 Iterated extended Kalman filter

In the update phase of the extended Kalman filter, the linearization of the measurement

equation has to be performed about the present best estimate of the state vector X, i.e.,

X,-. However, once this step is completed, a new and presumably superior estimate Xti,

is available which could then be used to linearize the measurement equation and repeat

the update step. Several such repetitions can be performed to improve the accuracy of

extended Kalman filter and the resulting filter is often called the iterated extended

Kalman filter. Note that each iteration of the iterated extended Kalman filter involves the

linearization step which requires at expensive function evaluations for the calculation of

numerical derivatives of the function ht(x,). Hence, the iterated extended Kalman filter

algorithm is computationally several times more burdensome than the extended Kalman

filter algorithm.

5.8.3 Limiting extended Kalman filter

This is not an independent estimation method by itself but rather is an approximation of

extended Kalman filter algorithm. The most computationally expensive step in the

extended Kalman filter is the linearization of the measurement equation. Second most

expensive step is the matrix inversion involved in the calculation of the Kalman gain

matrix Kt. Most of the computation time can be saved if the Kalman gain matrix K and

the linearization matrix H is made available based on offline calculations. The limiting

extended Kalman filter eliminates these major calculations and instead uses limiting

values of K and H matrices in the update phase of each iteration. There are several ways

of calculating the limiting values of K and H. One common way is just to take arithmetic

average of all the available K and H matrices as the limiting K and H matrices

respectively. This can improve the computational efficiency of EKF significantly.
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5.8.4 Unscented Kalman filter

The Unscented Kalman Filter (ULF) (Julier et al., 1995) uses a deterministic sampling

approach known as Unscented Transformation (UT) to represent a random variable using

a number of deterministically selected sample points around the mean. These points are

called sigma points. These points capture the mean and covariance of the random variable

and, when propagated through the true nonlinear system, capture the posterior mean and

covariance. In addition, this technique removes the requirement of analytical calculation

of derivatives, which for complex functions can be a difficult task.

The normal distribution is approximated by generating a discrete distribution having the

same first and second moments. In case of an n-dimensional Gaussian distribution, 2n+1

discrete sigma points are generated and appropriate weights are assigned to each of these

to ensure the same first and second moments. However, because of the symmetry

property of both the Gaussian distribution and this approximating discrete distribution,

the two have the same third moments, which are equal to zero, as well. Initialization

phase involves the generation of these sigma points as well as their weights.

In the prediction phase, each of the Sigma-points is propagated independently using the

transition equation and a prior estimate of the state vector is calculated using a weighted

average of these 2n+l points. A prior estimate of the covariance of the state vector is

calculated using the actual propagated sigma point values. Each of the sigma points is

transformed using the measurement function into respective measurements and the

measurement equation is computed as a weighted average of each of these individual

measurement equations.

The update phase involves calculations of the covariance matrix of the measurements and

the covariance between the state vector and measurements. These two are used

subsequently to calculate the Kalman gain matrix which is eventually used to update the

state vector and the covariance of state vector.
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For details of implementation of unscented Kalman filter, the reader is referred to

Antoniou et al. (2006). Since the unscented Kalman filter requires the function evaluation

at 2n+1 points, it is computationally intensive. The computational performance extended

Kalman filter and the unscented Kalman filter are comparable.

5.8.5 Particle filter

Particle filters (Gordon, 2003; Arulampalam et al., 2002; Pitt and Shephard, 1999) belong

to the class of Monte-Carlo methods based on discrete particle representations of

continuous probability density functions. These techniques require no simplifying

assumptions about the state-space model. Neither linearity nor normal distribution of

error terms is required for applying these methods. They can be applied to any state-

space model, and generalize the traditional Kalman filtering methods.

Particle filter techniques are useful for solving the dynamic systems formulated as

Hidden Markov Models (HMM). A Markov chain is a sequence of random variables in1 ,

7E2, 7r3 , ... with the Markov property, which states that given the present state, the future

and past states are independent of each other.

Pr(H1, = 71c|Hf = Hc1 ..., HI = )= Pr(H = 7C1H, = r) (5.23)

A hidden Markov model is a statistical model in which the system being modeled is

assumed to be a Markov process with unknown parameters, and the challenge is to

determine the hidden parameters from the values of the observables. A hidden Markov

model can be considered as the simplest dynamic Bayesian network.

In a hidden Markov model, the hidden state vector {x,; t C N}, x, C X, is modeled as a

Markov Process of initial distribution p(xo) and transition distribution p(x,jx,_j). The

observations, (y,; t C N}, yt C Y, are assumed to be conditionally independent given the
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process Ix,; t C N} and the marginal distribution p(y,|x). These probabilities are assumed

to be known apriori for all t > 1.

The aim is to estimate the a posteriori distribution of state vector given the measurement

vector i.e. p(xot yit). At any time, the a posteriori distribution is given by the Bayes'

Rule as follows:

, p(oy, |I X: 1 ).P(X 0 ) (5.24)

fp(yln,|Ixo,, ).p(xo.,,)dxot

The left hand side of the above equation describes the a posteriori distribution of state

vector xO t. The right hand side numerator has two terms. The first term describes the

measurement distribution given the state vector. The second term is the apriori

distribution of state vector. The denominator is constant for all state vector values and is

essential for normalization purposes. This equation is valid for any general distributions

p(y,.,Ixo,,) and p(xo,). However it is, in general, extremely difficult to calculate the

right hand side analytically. Especially the integral in the denominator is highly

intractable even if the individual terms are known. Therefore, the particle filter uses

Monte Carlo simulation techniques to evaluate the right hand side. In theory, if every

possible value of state vector is considered, then the entire posteriori distribution can be

described by this equation. But for a continuous distribution of state vector, the number

of possible values that can be taken by even a single dimensional state vector is infinite.

Hence, the particle filter simplifies the calculation by using a finite number of discrete

values of state vector.

The particle filter approximates the apriori distribution of xo, by a finite number of points.

Each of these points is called as a 'particle', hence the name particle filter. These

particles are propagated in time and updated using the measurement values at each

interval. The resulting distribution approaches the true posterior distribution of state in
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the limit as the number of particles tends to infinity. The algorithm is described as

follows:

Initialization:

The initial distribution of state at time zero is sampled from the apriori distribution of

state at time zero

i.e.

n particles are sampled for t = 0 from xo ~-p(xo).

Iterations: for time t = 1 ... T

1. Propagate the particles from interval t-l to interval t. i.e. Sample n points from

Xt - p(tjxt,-).

2. Importance weight of each particle is evaluated at time t.

(5.25)

3. Importance weights are normalized by dividing each by the sum of all the

weights.

wi, (5.26)
W, = ' for i= ... n

4. Resample n particles with replacement according to importance weights
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x ~ ,

The fourth step in each iteration involves the resampling with replacement from the

existing particles. This technique is called bootstrapping. It ensures that the particle

population at the beginning of every iteration will have equal weights. Hence this

particular particle filter is also called 'bootstrap filter'. At the end of N"' iteration, the

final particle population is representative of the entire posterior distribution of state

vector. Thus a simple arithmetic mean of the state vectors of each particle provides the

final estimate of state vector. Other required entities can be calculated similarly form this

distribution estimate. This discrete estimate of a posteriori distribution of state vector

approaches the true distribution with increasing number of particles.

The particle filter requires tremendous calculation effort. However, these calculations

may be performed independently for each particle in every iteration. Hence this technique

is found to be suitable for parallel computing. Another problem is the repetition of

particles. Several particles might be repeated due to repeated resampling with

replacement after each iteration. The technique calculates the posterior estimate of state

vector by averaging the individual particles. This can present problems when estimating

the traffic network state since the relationship between the traffic state variables such as

OD flows, speed-density curve parameters etc with the measurements e.g. sensor counts,

travel time measurements etc. can be highly non-linear. So even if some of the particle

themselves are good estimates for the true state vector, the average of all particles may

drive it away from the true values. Besides, there is no clear way of calculating the

probability of realization of a measurement vector given a particular state vector p(y,| xi t).

This entity can be approximated by some kind of closeness measure of the simulated

measurements using the state vector xJ:, and the actually measured value y,. However, the

effectiveness of the technique may depend on this choice.
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5.9 Choice of candidate algorithms

The above discussion suggests that path search, pattern search and random search are

three important classes of algorithms for calibration of simulation based systems under

optimization framework. Since RMSA is not directly applicable for constrained

optimization problems, FDSA and SPSA are the two candidate gradient approximation

algorithms. Theoretical results indicate that SPSA reaches convergence with much lower

computational effort. Besides, SPSA has been found to be highly successful in solving

for large scale DTA calibration problems (Balakrishna 2006; Antoniou et al., 2007).

Previous research (Balakrishna 2006) has shown that SPSA outperformed SNOBFIT,

which is an RSM based approach, when applied to DTA calibration problem. Pattern

search methods such as downhill simplex method and Hooke and Jeeves method do not

require an approximation of objective function gradient. But the poor convergence to the

global optimum and difficulties in handling stochasticity reduces their attractiveness for

application to the DTA calibration problem. Simulated annealing and genetic algorithm

both have the ability to reach the global optimum efficiently. However, SA may suffer

from slow convergence even for small scale problems especially in case of noisy function

measurements. GA, on the other hand, has been successfully applied to microscopic

model calibration in the context of transportation. Therefore, SPSA and GA have been

chosen as the candidate algorithms for evaluation for calibration on the test network.

For solution to state estimation problem, the basic Kalman filter is inappropriate for the

non-linear problems. However, extended Kalman filter and the limiting extended Kalman

filter are found to be useful for state estimation in the context of DTA calibration.

Unscented Kalman filter is computationally intensive method. Previous studies indicate

that while the unscented Kalman filter did not perform on par with extended Kalman

filter, some of its limitations may be overcome by the simulation based extension called

particle filter. Hence particle filter is chosen as the candidate algorithm for evaluation in

case for calibration on test network.
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5.10 Summary

The DTA calibration problem can be modeled as a large scale stochastic optimization

problem. The objective function of this optimization is calculated through Monte-Carlo

simulation making it extremely expensive to evaluate at each point. Several optimization

algorithms have been previously used in previous studies to solve the calibration problem

that can be classified into three main categories viz. path search methods, pattern search

methods and random search methods. Based on the discussion in this chapter we choose

the simultaneous perturbation stochastic approximation and genetic algorithms as the two

most promising approaches for the calibration efforts in this study. SPSA is a path search

method that has been proven to be extremely useful tools for solving simulation

optimization problems. Genetic algorithm, which belongs to the category of random

search methods, is also likely to be effective for the problem at hand. However, one has

to be careful in choosing and fine-tuning the algorithm parameters that can be critical to

the performance of these methods.

Alternatively, network state estimation problem can be modeled in the state-space

framework. Most previous studies to model network as state-space formulation have

attempted to solve the problem using variants of the Kalman filter algorithms. However,

since the basic Kalman filter algorithm makes several restricting assumptions, various

methods have been developed that extend the basic algorithm. Extended Kalman filter,

iterated extended Kalman filter, limiting extended Kalman filter and unscented Kalman

filter are some of the methods that have been utilized so far. Previous studies suggest that

although the unscented Kalman filter algorithm has been found to perform poorly, an

extension called particle filters is likely to be much more effective. The particle filter

algorithm has been chosen as the solution methodology for this study. It is a sufficiently

general algorithm that is not restricted to modeling only the normally distributed

relationships and can incorporate any continuous probability distributions.
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6. Comparative Assessment of Algorithms on Synthetic
Network

So far we have described the general DTA calibration problem using traffic sensor data

and apriori values. The problem has been formulated as a stochastic optimization

problem as well as in the state-space framework. Previous chapter described some of the

advantages and disadvantages of various potential solution techniques. Based on these

and experience of other researchers in previous studies, three algorithms have been

chosen for evaluation viz. Simultaneous Perturbation Stochastic Approximation (SPSA)

and Genetic Algorithm (GA) for solving the optimization problem while Particle Filter

(PF) for solving the state estimation problem.

This chapter demonstrates the relative performance of each of these algorithms especially

for solving the calibration problem with combination of loop detector data and the AVI

sensor data. A small study network has been used for this purpose. The true sensor values

are generated by means of a microscopic traffic simulator called MITSIMLab.

MITSIMLab is assumed to perform as a proxy for real world. Noise is added to the true

sensor count values to represent reality more closely. A mesoscopic DTA model called

DynaMIT has been calibrated using the sensor values generated by MITSIMLab. The

results are compared with the base case where only link counts are available for

calibration.

6.1 Objectives

The main objectives of this case study are as follows:

* To demonstrate the feasibility and effectiveness of the proposed DTA calibration

approach involving utilization of AVI data.

* To evaluate the relative effectiveness of simultaneous demand-supply calibration

compared with demand-only calibration.
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* To compare the numerical accuracy and computational performance of the SPSA,

Genetic Algorithm and Particle Filter algorithm and to decide the most suitable

algorithm for the large case study.

. To analyze the sensitivity of calibration results to relative weights for the travel

time and link count measurements; and to seek the optimum trade-off between the

two.

6.2 Simulation of A VI sensors

DynaMIT is a state-of-the-art DTA system that includes mesoscopic demand and supply

simulators. Modeling of the iterations between the demand and supply simulators results

in the state estimation and prediction of future state for real time traffic management

purposes. The demand simulator is microscopic where demand choices such as departure

time, destination, mode and route choice are performed for every vehicle separately

through microscopic Monte-Carlo simulation. On the other hand, the supply simulator is

mesoscopic and it explicitly captures the traffic dynamics related to the development and

dissipation of queues, spillbacks and congestion. The reader is referred to the description

of DynaMIT simulator provided in appendix A of this thesis for more details.

DynaMIT can generate sensor counts based on the number of vehicles that cross the point

sensor locations in the network in every time interval. The current version of DynaMIT

does not support sensor measurements using point-to-point sensors. Therefore DynaMIT

had to be modified to record the vehicles crossing each AVI sensor. The following

methodology is used for this purpose.

6.2.1 DynaMIT modifications

A random vehicle ID is assigned to each vehicle at the time of its generation in the

microscopic demand simulator. Each vehicle is associated with a Monte-Carlo simulated

binary Bernoulli variable indicating whether it is AVI equipped or not. The expected
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value of this Bernoulli variable equals the AVI penetration rate in the network. AVI

penetration rate has been specified to be 30%. It should be noted that the penetration rate

does not affect the calibration accuracy too much, because only the travel times are used

for calibration. AVI sensor locations across the network are specified as one of the inputs

to the supply simulator. Whenever a vehicle crosses an AVI sensor equipped segment in

the network, the supply simulator first checks whether the vehicle is equipped with the

AVI tag. If it is not, then no action is taken. If it is, then the following three things are

recorded: Sensor ID, Vehicle ID and Time Stamp when the vehicle crossed the sensor. At

the end of simulation, each of these records is printed in an output file, which is then used

for post processing.

6.2.2 Post processing

The AVI sensor output file is used to perform post processing. All the vehicle-IDs which

are recorded by only one AVI sensor are discarded. For the remaining vehicles, which are

have passed by at least 2 AVI sensors in the network, all the records are arranged by

increasing time-stamp of detection for each vehicle separately. Travel time between each

successive pair of sensors is calculated for each vehicle. Subsequently, the average travel

time between each pair of AVI sensors is computed for each estimation interval.

MITSIMLab already has the capability to simulate the point-to-point sensors. Therefore,

it did not require any modification. A similar post processing is performed for

MITSIMLab to calculate the true travel time between the same sensor locations in the

network.

6.3 Experimental design

This case study was performed on a small study network. The modified version of

DynaMIT was used for calibration. This section explains the experimental details such as

the study network structure, calibration parameters and measurement sensors.
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6.3.1 Study network

A study network consisting of 10 nodes and 10 links is used for this case study. All the

links are directed links and each link contains only one segment, i.e. the cross sectional

characteristics remain constant across the entire length of the link. Out of 10 nodes, 4

nodes are intersections and remaining 6 denote the origins and destinations of drivers in

this network. There are totally six origin destination pairs. Two out of these six involve a

route choice. The simulation period is one hour, from 4:00 am to 5:00 am. It has been

divided into four intervals of fifteen minutes each. Aggregated sensor data is available for

these 15 minute intervals. Also the origin-destination flows are estimated for these same

15 minute intervals. Figure provides detailed description of the network.

3 5 4

2 0 7
06 80

9 10

Fig 6.1: Small network topology

6.3.2 Calibration parameters

The six OD pairs are between nodes 1-4, 1-7, 1-10, 2-4, 2-7 and 9-7. The number of

estimation intervals is four. Therefore, the number of parameters to be calibrated for

demand-only estimation includes the 6 OD pairs for 4 intervals i.e. a total of 24

parameters. On the other hand, the simultaneous calibration of demand and supply

parameters includes the additional speed-density curve parameter as well as the segment

capacities. In this simple network, there are 10 segments and all of them have the same
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set of supply parameters and capacities. Therefore, the number of supply parameters to be

calibrated equals 7. They are as follow:

" Free flow speed (Vmx in miles/hour)

" Jam density (Kjam in vehicles/meter)

" Alpha (dimensionless exponent)

* Beta (dimensionless exponent)

" Segment capacity (C in vehicles/second)

* Minimum speed (Vmin in miles/hour) and

" Minimum density (Kmin in vehicles/meter)

The vehicles in DynaMIT move according to the speed-density relationship given by,

va ................................... k & k . (6.6)

v Y 1 I- '"k'" ...... k >k
jam

6.3.3 Sensors

The network contains 10 links out of which 3 are equipped with loop detectors whose

measurements are aggregated into 15 minutes intervals. These are located at the center of

the links numbered 2, 3 and 4. Hence they provide 3 sets of link flow counts for each

interval. Thus together they provide 12 sensor measurements. Further, there are 3 AVI
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sensors located at the same three locations i.e. at the center of links 2, 3 and 4. As can be

seen in the fig 6. 1, link 2 begins at node 2 and each vehicle that passes link 2 has to travel

through either link 3 or link 4. Therefore, these 3 AVI sensors provide 2 sets of travel

time measurements per time interval viz. between center of link 2 and center of link 3 and

between center of link 2 and center of link 4. Thus the total number of AVI travel time

measurements equals 8. Note that several AVI readings at the AVI sensor on link 3 and 4

have to be discarded as those vehicles are not recorded at link 2. They are the vehicles

which originate either at node 1 or at node 9.

The data is generated using MITSIMLab Microscopic Traffic Simulator. MITSIMLab

uses microscopic driver behavior models to simulate the network supply and hence the

models and parameter fundamentally differ from those in DynaMIT. An overview of and

MITSIMLab has been provided in the Appendix B of this thesis. MITSIMLab output is

stochastic and each run of MITSIMLab produces a slightly different set of sensor

measurements even if all the inputs and model parameters are exactly the same.

Therefore, 10 runs of MITSIMLab simulator are performed and average sensor values are

used for calibration. However, these values are not used directly. The counts data

collected from the loop detectors is usually noisy and hence inaccurate. The true

(average) sensor counts collected from MITSIMLab are therefore modified by a

symmetrical randomly distributed additive noise ranging from -20% to +20% of the true

values. These perturbed sensor values are then used for calibration. Since the AVI

sensors use technology far more accurate and reliable than the loop detectors, the true

counts are directly used for calibration purpose.

6.3.4 Starting parameter values

Because this case involves synthetic data, the true values of origin-destination flows are

input to MITSIMLab simulator to generate the sensor measurements. To begin each

algorithm, the true OD flows are perturbed randomly between -80% to +100% and used

as the starting or seed values for calibration. However, the true supply parameter values

are not available because the supply simulator in DynaMIT is mesoscopic and hence
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differs from MITSIMLab's microscopic simulator. Hence no true values of supply

parameters are available. Therefore, before the beginning of calibration, the supply

parameters are calibrated using the speed density curves obtained from MITSIMLab. The

optimum set of supply parameters is chosen so as to minimize the sum of squared

difference between the observed (MITSIMLab) and the simulated (DynaMIT) values of

vehicle speed at the same density value. This procedure is exactly the same as the first

step of the three step calibration approach described in Kunde (2002). These supply

parameter values, calibrated at segment level are used as the starting values of supply

parameters for each of the algorithms.

6.3.5 Measures of goodness-of-fit

Five different statistics have been used to calculate the goodness of fit of the results

(Toledo, 2003; Toledo and Koutsopoulos, 2004):

" Normalized root mean square error (RMSN) (Toledo and Koutsopoulos, 2004,

Ashok and Ben-Akiva, 2002)

* Root mean square percent error (RMSPE) (Pindyck and Rubinfeld, 1997)

" Root mean square error (RMSE) (Pindyck and Rubinfeld, 1997)

* Normalized mean error (MEN)

" Mean percent error (MPE) (Pindyck and Rubinfeld, 1997)

The purpose of using multiple statistics is that they can capture different aspects of the

obtained results. The normalized root mean square error (RMSN) and root mean square

percent error (RMSPE) quantify the overall error of the simulator. These measures
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penalize large errors at a higher rate than small errors. The formula for calculating the

RMSN value is:

N

R MSN = "N

Y,"17

(6.1)

where N is the number of observations, Y,0 is an observation and YS is a simulated value

at time n.

RMSPE is calculated based on the following formula:

(6.2)
R N s 2

RMSPE = -(
NW,1 Y

The Root Mean-Square Error (RMSE) is a measure of the deviation of simulated variable

from its actual path. RMSE is calculated based on the following formula:

S 1 2 
(6.3)

RMSE = - Y_,-Y

The Normalized Mean Error (MEN) measures the mean normalized difference between

simulated and average values. MEN is calculated based on the following formula:

(6.4)
N

MIEN = "=I N

n=Y
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The mean percent error (MPE) statistic indicates the existence of systematic under- or

over-prediction in the simulated measurements and is calculated by:

I N s y (6.5)
MPE =-Y "

N n [

Percent error measures are often preferred to their absolute error counterparts because

they provide information on the magnitude of the errors relative to the average

measurement.

6.4 Implementation details

The calibration is carried out in two experiments. In the first experiment, only the

demand parameters are calibrated while the supply parameters are held constant. Three

different algorithms are compared in terms of calibration accuracy and computational

requirements. In the second experiment, both demand and supply are calibrated

simultaneously. In each case, the performance is compared with the base case where only

the link counts data is used for calibration.

SPSA, GA and Particle Filter are the three algorithms that were used for calibration. For

each of these algorithms, several parameters need to be decided on a case-by-case basis.

6.4.1 SPSA implementation

In case of the SPSA algorithm, the jth component of gradient of objective function at the

ith iteration is calculated as follows:

f(5+ ci.A ) - f (5, -c,.A,) (6.7)

2.c..A.,
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Then the next estimate of parameter vector is calculated as follows:

O =I, [Oi, -aY(O )] (6.8)

The feasible region for optimization is defined by the lower and upper bounds on each of

the parameter values. A simple implementation of the projection operator II, is used such

that whenever any component of the parameter vector is higher than the upper bound or

lower than the lower bound then the projedtion operators sets it to the upper bound and

lower bound values respectively.

Here, the values of a, c, alpha and gamma are critical for good convergence. Also the

distribution of perturbation vector needs to be determined.

" Alpha and gamma are critical parameters since they determine the gain sequence.

The recommended values for alpha and gamma are around 0.602 and 0.101 as per

the theoretical convergence conditions provided in Spall (1998b). These values

were also found to be good in practice from convergence point of view.

" Various different values for parameters a and c are tried. Ultimately, c = 1.9 and a

= 20 are found to be the best values.

* Spall (1998a) provides convergence conditions for the probability distribution of

components of the perturbation vector. He states that they should be independent

and symmetrically distributed around zero with finite inverse moments. These

conditions are satisfied by a ±1 Bernoulli distribution. ±1 Bernoulli distributed

variable take either the value 1 or the value -l with certain probability. The

components of perturbation vector can take values 1 and -1 with equal probability.

Thus an appropriately scaled multiple of the basic ±1 Bernoulli distribution is

used to describe the components of perturbation vector.
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The implementation of SPSA algorithm involved computational effort equivalent to 3300

evaluations of the objective function.

6.4.2 GA implementation

In case of Genetic Algorithm, there are more complex implementation decisions to be

made than just fixing the best parameter values. The choice of selection operator,

crossover operators and the mutation operator need to be made apart from the decision

about best parameter values. The number of particles (chromosomes) to be used is also an

important decision. These decisions can affect the computational performance and

convergence rate of GA tremendously. Therefore, various operators were explored before

deciding upon the most suitable ones for final calibration effort.

* For the selection step, Roulette Wheel selection was found to be the best operator.

In Roulette Wheel selection operator, each chromosome has probability of getting

selected proportional to its fitness value. In this case the fitness value is decided to

be the inverse of the objective function value obtained at that point.

* The single point crossover operator was chosen because of its simplicity and

keeping in mind the fact that the problem at hand has a small number of variables

which can each take a large number of values. So it was deemed unnecessary to

use complicated crossover operators such as two-point crossover etc. Further,

some of the operators such as cut-and-splice cannot be used at all, since they

change the dimension of the decision vector which does not make sense in this

case.

* Various crossover parameter values were explored. In the end 0.7 was found to be

the most suitable value.

* Choice of mutation operator is one of the critical decisions since there is no direct

equivalent of bit mutation in case of integer or continuous variables. A novel
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approach was used for mutation where if a variable is to be mutated its value is

drawn from a uniform random distribution with mean equal to the current value

and the range from 0 to current value multiplied by 2.

* The value of mutation parameter is chosen to be 0.002.

* Finally, 100 particles (i.e. chromosomes) were used.

Most of the values mentioned above are close to the empirically proven values suggested

by Jong (1975). He has recommended usage of 50 to 100 particles, crossover rate of 0.6

and mutation rate of 0.001 per bit.

* Chrom -ome 1
U Chro osomn 2
0 Chr msome 3
O Chr rnosame 4

Fig 6.2: Roulette wheel selection operator
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Fig 6.3: Single point crossover operator

10011110

Mutated Bit

10011010

Fig 6.4: Mutation operator

The implementation of GA algorithm involved computational effort equivalent to 4500

evaluations of the objective function.

6.4.3 Particle filter implementation

In case of particle filter, the number of particles is extremely critical parameter. Because

it is a simulation based estimation method, the greater the number of particles better it is.

After some initial trials, 1000 particles were found to be a suitable tradeoff between the

accuracy and computational effort. Initial set of particles are generated as random draws

from a uniform distribution with mean centered at the apriori values of parameters. The

apriori probability density function for the jth component of ih particle at beginning time

interval is given by,
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I X (6.9)
2X..... x 2*X

0................ otherwise

Here, the mean value of the j'h component of it" particle at Ist time interval, X' is taken

to be equal to the apriori value (X', ) of the same. i.e. X =

In the absence of strong apriori estimates of the conditional distribution p(xIx,_i), a first

order auto-regressive process is assumed with and the parameters of this autoregressive

process are estimated using the apriori values as shown in equation 6.12. It may be noted

that each component of parameter vector at any time interval k is assumed to be

dependent only the value of the same component at the previous interval (k-1) through a

linear relationship.

Xik = akX,(k_) + Ek (6.10)

Here, ak is a coefficient of the autoregressive process while e6 k is the random error term.

The particles are propagated in such as way that values at next interval are drawn from a

uniform distribution with a mean equal to the product of value of the same component in

the previous interval and the corresponding ratio of apriori estimates.

F 1 .0 x 2 * X ' (6.11)

f (x )= * X * ik

0................otherwise

Where, the mean value of the j component of parameter vector at kth time interval X' is

given by,
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X" (6.12)

I( k-1)

The fitness or weight of any particle is taken to be the inverse of its objective function

value. This weight is used in the bootstrapping procedure at the end of each iteration in

order to generate a new set of particles using random draws from the original population

with replacement. This objective function value z(X,k) is evaluated as the goodness-of-fit

through simulation upto current time interval.

Wgi) 1 (6.13)
w~)z( X, )

The implementation of particle filter algorithm involved computational effort equivalent

to 6000 evaluations of the objective function.

6.5 Habitual link travel times

Habitual link travel times constitute one of the most important inputs to the DTA model.

The individual drivers in the DTA demand simulator base their travel demand decisions

on the travel times they have historically experienced. Therefore, the habitual link time

table needs to be a part of the calibration process. The habitual link travel time table

stores the travel times on each link by every time interval. The experienced link times are

function of origin-destination flows and the supply parameters. However, they are also

dependent on the habitual link times used in the simulation. Over a period of several days

the habitual and experienced link times should converge such that barring the special

events and minor random daily perturbations the experienced travel time should be close

to the habitual travel time. In order to achieve this equilibrium, the implementation of

calibration algorithms in this thesis has included a smoothing procedure wherein the

habitual travel times are brought to an equilibrium with the network state vector by

performing repeated simulations and taking weighted average of the experienced travel
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times with the previous habitual travel times to calculate new travel time after each

iteration. This process is described mathematically as follows:

.or.: i =1 : n

TT = .TT , +(I- A).TT_ (6.14)

end

Where,

TT,,= Experienced travel time in ith iteration

TT = Habitual travel time in ith iteration

A = Smoothing coefficient

Too high a value of A may lead to oscillations while too low a value may cause slow

convergence. Hence the most suitable value of the smoothing coefficient (A) has been

chosen experimentally to be 0.5. The value of n is selected to be 3. Too high a value of n

can cause tremendous computational burden since each iteration involves one simulation

run and too low a value may lead to imbalance between habitual and experienced travel

times.

In the beginning, free-flow travel times are used in the absence of better travel time

estimates. Five iterations of travel time smoothing are performed in the beginning. Note

that for each calibration iteration, the state vector changes. Therefore, this travel time

smoothing procedure should be ideally repeated after each calibration iteration. However,
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the state vector changes are not so significant after each iteration. Hence, in practice the

travel time smoothing procedure is performed only once after 5 calibration iterations.

6.6 Calibration results

Two separate experiments are performed. First only the demand is calibrated while

holding supply constant. In the second experiment, demand and supply are both

calibrated simultaneously. Results of the first experiment are used for the design of the

second experiment.

6.6.1 Demand-only calibration

The calibration result statistics are summarized in table 6.1. The RMSN values for

calibration using all three algorithms are summarized in the figures 6.6, 6.7 and 6.8. In

each of the cases the results were compared with the base case in which the calibration is

performed with only the link counts being used as measurements.

It should be noted that the calibration results are going to be stochastic due to inherent

stochasticity at two levels. First of all, there are several discrete choice and other models

within DynaMIT that model the traffic demand and supply stochastically through Monte-

Carlo simulation. So the DynaMIT output is noisy. In addition, all the calibration

algorithms SPSA, GA and PF involve some random draws and hence they introduce

additional stochasticity into the calibration process. Therefore, each run of the calibration

algorithms will result in a different final solution. Hence multiple runs need to be

performed in order to obtain stable calibration results. For this reason, each of the

algorithm runs are performed 3 times and the results presented here are the averaged

values of the three runs. These three runs start with 3 different seeds input to the

randomizer in MATLAB to ensure that they result in different solutions. These three

randomizer seeds themselves are generated randomly beforehand.
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" From the results, it can be seen that the SPSA and GA have calibration accuracy

comparable to each other while the particle filter algorithm has been found to

perform significantly worse than both SPSA and GA (Fig 6.8). This is found to be

the case in the base case calibration as well as the final calibration using AVI data.

* Table 6.1 summarizes various goodness-of-fit measures. TT denotes travel times.

Error values are found to be comparable for GA and SPSA while all the error

values for PF are in general much higher. RMSE for counts and travel times is

directly proportional to the two parts of objective function in case of optimization

algorithms. The last two measures, i.e. MEN and MPE denote the bias in the final

calibrated values. The bias is also reduced after calibration significantly as

compared to the starting values.

* Although GA has slightly better accuracy, it required considerably more function

evaluations. This was not a major issue in this case due to small amount of time

required for each evaluation. This could be a major issue regarding the scalability

of the algorithms, especially when it come to real life traffic networks such as the

one used in the next case study in this thesis.

" AVI data is found to increase the calibration accuracy, as expressed in RMSN, for

all the cases as seen in figures 6.6, 6.7 and 6.8.
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Table 6.1: Accuracy of demand-only calibration

3aa/o~

1 2 3 4

Satkovakes

(I 0

1 2 3 4

Fig 6.5: RMSN of starting parameter values
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Starting SPSA SPSA GA GA PF PF
Values Base AVI Base AVI Base AVI

RMSN 32.49% 8.98% 10.35% 8.49% 9.15% 16.78% 18.08%
Counts
RMSN 11.29% 9.52% 4.51% 10.04% 4.60% 6.73% 5.54%

TT
RMSPE 48.68% 15.77% 17.86% 15.51% 16.48% 19.40% 20.64%
Counts
RMSPE 7.82% 6.59% 3.84% 6.98% 3.89% 5.15% 4.39%

TT
RMSE 144.32 39.88 45.98 37.69 40.62 74.52 80.32
Counts
RMSE 1.09 0.92 0.43 0.97 0.44 0.65 0.53

TT I_________

MEN 25.97% 3.85% 1.47% 1.63% 0.32% 1.99% -3.58%
Counts
MEN 5.49% 2.86% 1.51% 1.33% 1.69% 5.13% 1.80%
TT______________

MPE 37.30% 7.79% 5.34% 5.51% 1.38% -3.53% -7.50%
Counts
MPE 3.51% 1.96% 1.31% 1.10% 1.39% 3.33% 1.54%
TT _______________ _____________ ____
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Fig 6.6: Calibration results: Demand-only calibration
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S GA PFStarting Values
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Fig 6.7: Comparison of algorithms: Demand-only calibration without AVI data
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Fig 6.8: Comparison of algorithms: Demand-only calibration with AVI data

103

z
U)

z

---------------------

I

I SPSA

Starting Values
----

I SPSA



6.6.2 Simultaneous demand-supply calibration

For simultaneous calibration of both demand and supply parameters only SPSA and GA

are used as candidate algorithms. The previous results from demand-only calibration

suggest that particle filters perform considerably worse than the other two algorithms.

Therefore they are eliminated from further analysis. Again the results of both algorithms

are compared to the base case of calibration using only loop detector data.

* The results indicate that the calibration accuracy improves due to the usage of

AVI data as compared to the base case (figures 6.10 and 6.11).

* Various error statistics are compared for the two algorithms with the starting

values in table 6.2, for the case of simultaneous demand-supply calibration. GA

and SPSA are both found to yield comparable calibration accuracy.

" Also it is noted from the comparison of fig 6.8 and 6.11 that the joint calibration

of demand and supply is found to yield greater benefits than the demand-only

calibration.

" Comparison between genetic algorithm and SPSA (figures 6.9, 6.10 and 6.11)

shows that their performances are found to be comparable to each other both for

the base case as well as for the final calibration using AVI data.

" Further, the 450 degree plots in figures 6.12 through 6.17 indicate that the

positions of the observed and simulated entities are found to be a lot closer to the

450 line through origin after calibration than before calibration.
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Table 6.2: Accuracy of simultaneous demand-supply calibration

105

Starting SPSA Base SPSA AVI GA Base GA AVIValues
RMSN
Counts 32.49% 8.30% 6.87% l0.77% 1.05%

RMSN 11.29% 9.09% 5.68% 6.97% 4.05%TTP
RMSPE 48.68% 15.20% 14.15% 14.86% 18.84%Counts
RMSPE 7.82% 6.18% 4.72% 5.03% 3.44%TT
RMSE
Counts 144.32 36.87 30.50 47.82 49.08

RMSE 1.09 0.88 0.55 0.67 0.39TT
MEN
Counts 25.97% 5.23% 2.66% -0.86% -4.13%

MEN 5.49% -1.01% 0.89% 0.88% -0.15%TT

MPECt 37.30% 9.08% 5.44% 1.17% -6.92%
MPE 3.51% -0.70% 1.14% 0.78% -0.01%
TT I__ _ _ _ I___ _I_
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Fig 6.9: Calibration results: Simultaneous demand-supply calibration
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Fig 6.10: Comparison of algorithms: Demand-supply calibration without AVI data

AVI

40% -

30% -
z

20% -

10% -

0%
Starting Values SPSA GA

m Counts 32.49% 6.87% 11.05%

TT 11.29% 5.68% 4.05%

Method

F Counts TT

Fig 6.11: Comparison of algorithms: Demand-supply calibration with AVI data
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Fig 6.12: Starting values of sensor counts
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Fig 6.13: Sensor counts after demand-only calibration
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Fig 6.14: Sensor counts after demand-supply calibration
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Fig 6.16: Travel times after demand-only calibration
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6.7 Sensitivity analysis

The calibration accuracy involves two measures, the fit between observed and simulated

sensor counts, and the fit between the observed and simulated travel times. The final

results depend on and are sensitive to how the two aspects of accuracy are relatively

weighed in the objective function of the stochastic optimization problem. Therefore, a

sensitivity analysis was performed to test the sensitivity of the calibration accuracy to the

relative weights given to sensor counts deviations and travel time deviations in the

objective function. The general expression for the objective function is as shown below.

Note that we have ignored the third part of the objective function that includes the

squared deviation of estimated OD flows from the historical values.

Minimize (C - C,)2 + (w* (TT' - T ))2

Where,

w = relative weight of travel time,

TTS = ith simulated travel times measurement (in seconds),

TT", = ith observed travel times measurement (in seconds),

Cs = ith simulated link counts measurement (in veh/interval),

C, = ith observed link counts measurement (in veh/interval).

Sensitivity analysis was carried out using SPSA algorithm. Different weight values were

considered for w, the relative weight for travel time in the objective function. It was

111



observed that as w increases, the travel time calibration accuracy also increases but the

corresponding sensor counts calibration accuracy decreases slightly. However, the best

linear fit line shows that the rate of decrease in sensor count accuracy is lower than the

rate of improvement in travel time accuracy. Thus there is a tradeoff between the

objective of minimization of sensor count accuracy and the minimization of travel time

accuracy. The total RMSN value, i.e. the sum of the two RMSN values of sensor counts

and travel times was used as the criteria to select the best tradeoff.

The total Normalized Root Mean Square (RMSN) error is found to be the minimum at w

= 50. For weights w=20 and w=25, the total RMSN value was found to be comparable to

that at w=50. From a traffic management viewpoint, the travel times are extremely useful

and direct measure of link performance. Link counts are important to estimate the

network state accurately. But the traffic routing decisions are based on reducing the travel

times for drivers and the traffic information systems often provide travel time information.

Therefore, accurate estimation of travel times is more critical than accurate estimation of

sensor counts. Hence in making the choice between weights of 20, 25 and 50, 50 is

chosen as the best tradeoff since out of these three, w=50 gives minimum error in travel

time estimation.

Weight (w) RMSN for Sensor Counts RMSN for Travel Times Total RMSN

0 9.01% 9.52% 18.53%

10 9.31% 7.41% 16.72%

20 8.11% 6.49% 14.60%

25 8.07% 6.69% 14.76%

30 12.09% 4.43% 16.52%

50 10.02% 4.51% 14.52%

60 12.47% 4.14% 16.61%

Table 6.3: Sensitivity analysis
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Fig 6.18: Sensitivity analysis

6.8 Validation

After the calibration exercise, the resulting calibrated parameter values are validated

against a new set of data. This is essential to avoid over-fitting of the model parameters to

a specific data set. For calibration, the sensor measurements were obtained as the average

of 10 runs of MITSIMLab and the average values were used for performing the

calibration. Now, in order to validate the calibrated DynaMIT, a single additional run of

MITSIMLab is performed. The link count sensor data is perturbed between -20% to

+20% of the true measurement in order to reflect the low level of accuracy of link counts.

This perturbed sensor output from MITSIM is provided as input to the real-time

estimation procedure within DynaMIT. The DynaMIT parameters and OD flows that

were calibrated using the AVI data are used for this purpose. The resulting simulated

sensor measurements are compared and the error statistics are calculated. Table 6.4 lists

these error statistics. Validation results show improvements in terms of travel times over

the calibration results, confirming the ability of DynaMIT to exploit available

surveillance data to tweak the starting parameters so that the simulation output better

reflects the prevailing traffic conditions. The validation error statistics values for the link

counts are also found to be comparable to the calibration errors. The final RMSN values
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for validation indicate that the RMSN error for link counts is 7.3 1 % while that for travel

times is 5.22%. These values are comparable and close to the calibration RMSN.

Therefore, this validation ensures that the calibration has not led to over-fitting of

parameters to a particular data set.

Table 6.4: Validation results for synthetic network

6.9 Summary

In this chapter, a small hypothetical study network was used to demonstrate the

effectiveness of the calibration methodology and test various algorithms. The individual

parameters had to be fine tuned through trial and error to find the set of parameters which

are most suitable from the viewpoint of convergence and accuracy. AVI data was in

general found to improve the calibration accuracy in case of all the algorithms as

compared to the base case. The simultaneous calibration of demand and supply was

found to improve the accuracy of calibration as compared to the demand only calibration.

Validation results are found to be comparable to calibration results ensuring that there is

no data over-fitting. The genetic algorithm and simultaneous perturbation stochastic
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Starting Calibration Validation
Values

RMSN 32.49% 6.87% 7.31%
Counts

RMSN 11.29% 5.68% 5.22%
TT

RMSPE 48.68% 14.15% 15.87%
Counts

RMSPE 7.82% 4.72% 4.30%
TT ____

RMSE 144.32 30.50 32.54
Counts
RMSE 1.09 0.55 0.50

TT ____

MEN 25.97% 2.66% 2.38%
Counts 2.7 .6 .8

MEN 5.49% 0.89% 0.63%
TT ____

MPE 37.30% 5.44% 5.85%
Counts

MPE 3.51% 1.14% 0.91%
TT I___ _ I___ _ I___



approximation algorithm are found to be much more effective than the particle filter

algorithm. SPSA resulted in slightly better calibration accuracy at a significantly lower

computational effort than the genetic algorithm. Therefore, SPSA is chosen as the

algorithm that will be used to perform the next case study with the large scale traffic

network.
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7. Case Study: Lower Westchester County

The previous chapter demonstrated the usefulness of the proposed calibration approach

for calibrating the demand as well as supply parameters of a DTA system. It also

established the importance of having AVI data in addition to the link counts data for

improved calibration accuracy. SPSA algorithm was found to be the most effective in

terms of calibration accuracy and computational effort. This chapter demonstrates the

effectiveness of the calibration methodology for the case of a real network with highly

complicated traffic flow patterns involving multiple vehicle classes and link use

restrictions based on these classes. The number of parameters to be calibrated is much

higher than the previous small network. The Lower Westchester County network in New

York State USA has been used for calibration purpose. MITSIMLab microscopic traffic

simulator is used for simulating the truth. This MITSIMLab network has been already

calibrated based on real traffic data collected from field. However, the AVI data has been

simulated in MITSIMLab since the AVI data from field could not be made available for

this study.

7.1 Objectives

The main objectives of this case study are as follows:

* Test the scalability of the SPSA algorithm on a complex network with multiple

vehicle classes and different link use restrictions for different classes.

* Illustrate the effectiveness of simultaneous calibration of demand and supply

parameters as compared to the demand-only calibration.

" Evaluate the importance of AVI data for the calibration of DTA models for a real

network.
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7.2 Experimental design

The case study was performed for the real traffic network from the Lower Westchester

County (LWC) in New York State in the US. The modified version of DynaMIT was

used for calibration. This section explains the experimental details such as the study

network structure, vehicle classes and entry restrictions, calibration parameters and

measurement sensors.

7.2.1 Study network

The study network is from the Lower Westchester County (LWC) in the New York State

in the US. The network is situated just to the north of New York City. It includes the

most important highway corridors that connect up-state New York and Connecticut

regions to New York City. A majority of commuters, who live in this region and

commute daily to New York City, travel southwards in the morning and northwards in

the evening along these corridors. The main north-south corridors include the New

England Thruway (1-95) corridor on the eastern end and the New York State Thruway (I-

87) corridor towards the western part of this network as well as the Hutchinson River

Parkway between these two. The Cross Westchester Expressway (1-287) is the main east-

west corridor in the region. The detailed map of the highway network in this region is

presented in the fig 7.1.

The study network consists of 1767 links and 825 nodes. All the links are directed links

and each link is further sub-divided into possibly multiple segments. The division of links

into segments is based on the cross sectional characteristics such as geometry as well as

traffic control characteristics such as speed limit of the road stretch. A link may contain

only one segment if the cross sectional and traffic control characteristics remain constant

across the entire length of the link. There are 482 origin-destination pairs and all of them
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Fig 7.1: Network description
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have more than one possible routes. The simulation period is chosen to be the morning

peak hour from 6:00 am to 8:00 am. This period has been divided into eight intervals of

fifteen minutes each. Aggregated sensor data is available for these 15 minute intervals.

Also the origin-destination flows are estimated for these same 15 minute intervals. Figure

7.2 provides detailed description of the network.

7.2.2 Vehicle mix

The study network contains freeways, parkways as well as some arterials. There are entry

restrictions on the parkways in this region. No heavy commercial vehicles such as trucks

or trailers are allowed to enter the parkways. So the parkways can have only passenger

cars traveling on them. In order to model the traffic belonging to multiple vehicle classes

the percentage of commercial vehicles within each OD flow must be known. However it

is difficult to collect the proportions of commercial vehicles between every OD pair for

every time interval. Instead an approximation is used. The network contains three toll

plazas. These are the only places in the network where classified vehicle counts are

available for every time interval. The proportion of commercial vehicles in all the OD

flows for each time interval is approximated based on the average proportion of

commercial vehicle observed during that time interval at each of these three toll plazas.
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Fig 7.3: Proportion of commercial vehicles during the morning period

Fig 7.3 shows the classified vehicle counts that illustrate the mix of vehicles in the

network throughout the morning period. It can be seen that the number of passenger cars

varies based on the peak and off-peak hours while the commercial traffic stays more or

less constant. Therefore, the proportion of commercial vehicles in the total traffic varies

considerably with time.

7.2.3 Calibration parameters

There are 482 OD pairs in the network and the number of estimation intervals is eight.

Therefore, the number of parameters to be calibrated for demand-only calibration

includes the 482 OD pairs for 8 intervals i.e. a total of 3856 parameters. On the other

hand, the simultaneous calibration of demand and supply parameters includes the

additional speed-density curve parameter as well as the segment capacities. In this

complex network it is highly burdensome to calibrate each of the 7 supply parameters for
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each of the 2564 segments. Therefore, the segments are divided into 10 groups each

having the same speed density curve parameters. However, the capacity of each segment

is likely to be different. Therefore, the number of supply parameters to be calibrated

equals 6 for each group in addition to 1 (capacity) for each individual segment. Therefore

there are totally 2564*1 + 6*10 = 2624 parameters. Therefore, the total number of

parameters for the simultaneous demand-supply calibration equals 3856+2624 = 6480.

7.2.4 Sensors

The study network is highly complex. However, economic constraints restrict detailed

installation of surveillance devices. The network contains 1767 links out of which only

58 are equipped with loop detectors whose measurements are aggregated into 15 minutes

intervals. Hence they provide 58 sets of link flow counts for each interval. Over all the

time intervals, they provide 464 sensor measurements. To explore the effectiveness of

AVI information on calibration accuracy, there are AVI sensors are installed in the study

network at 10 locations on two-way roads. Thus they cover the links in either direction.

Thus effectively, the network contains 20 directed links that are under AVI surveillance.

All these sensors are indicated in the map shown in the fig 7.2. The sensor locations are

chosen so that 5 of them are near the north end of the network while the other 5 are near

the south end of the network. Zhou and Mahmassani (2005) have shown that the

installation of AVI sensor so as to cover all the major ODs can be highly beneficial to

improve the calibration accuracy. Therefore, the AVI sensor locations are chosen so as to

maximize the coverage of major ODs in the network. Most of the traffic during the

morning peak hours flows in the north-south directions. Therefore, these 20 AVI sensors

provide 5*5 = 25 sets of travel time measurements for northbound traffic and another 25

measurements for the southbound traffic per time interval. Thus the total number of AVI

travel time measurements equals 50*8 = 400. However, on certain occasions some

additional measurements may be available due to vehicles that traverse two southern

sensors or two northern sensors etc. Note that the AVI readings for all those vehicles,

which are recorded at only one AVI sensor, are discarded, since they are not useful for

travel time measurements.
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MITSIMLab, which has been calibrated against field data, is used as a proxy for reality to

generate the sensor counts and AVI readings for calibration of DYnaMIT. In order to

minimize the random variations on sensor measurements due to stochastic nature of

MITSIMLab simulator, 10 runs of MITSIMLab are performed and the average values of

sensor measurements are used. Again, because the counts data collected from the loop

detectors is usually noisy and inaccurate, the true sensor counts collected from

MITSIMLab are modified by a symmetrical randomly distributed additive noise ranging

from -2 0% to +20% of the true values. These perturbed sensor values are then used for

calibration. Because the AVI sensors use technology far more accurate and reliable than

the loop detectors, the true measurements are directly used for calibration purpose.

7.2.5 Starting parameter values

Some of the earlier studies to calibrate this network involved the estimation of demand

and supply parameters for this network. These studies did not involve any usage of AVI

data. The best available estimates of the parameters from the previous studies are

perturbed randomly between -40% to +40% of the previous value and then used as the

starting values for the demand and supply parameters for each of the algorithm run.

7.3 Implementation details

Similar to the previous case study, the calibration is carried out in two experiments. In the

first experiment, only the demand parameters are calibrated while the supply parameters

are held constant. The performance is compared with the base case where only the loop

detector data is used for calibration. In the demand-only calibration, the supply parameter

values obtained as a result of previous calibration studies were used. In the second

experiment, both demand and supply are calibrated simultaneously.

SPSA algorithm, which performed most effectively in case of the small network case

study, is used to calibrate this large network. It must be noted that the proportion of
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commercial vehicles was not included as part of the decision variables. The commercial

vehicle percentages obtained from the classification counts at the toll plazas for each time

interval were taken as the estimates of true values.

Again substantial effort was necessary to fine tune the individual algorithm parameters

for the large study network calibration. However, due to the experience from previous

synthetic case study, reasonable starting values for most algorithm parameters were

available. Those were further adjusted based on the empirical results to improve the

algorithm convergence. For the SPSA algorithm, alpha = 0.602, gamma = 0.101, c = 1.9

and a = 15 were used for final calibration. Also a scaled +1 Bernoulli distribution was

used for the components of the perturbation vector. The reader is referred to section 6.5.1

for implementation details of the SPSA algorithm.

7.4 Habitual link travel times

The same procedure was used for updating the habitual travel time table using the

simulated travel times.( ref: equation 6.7) However, it was found that the habitual travel

times play a far more critical role in determination of the objective function value in the

case of large network than the small network. Therefore, larger number of travel time

smoothing iterations had to be performed to ensure that the objective function values are

close to the equilibrium value. The most suitable value of the smoothing parameter /I was

found to be 0.3 in this case. Five iterations of the travel time smoothing procedure are

performed in the beginning while, after every 5 iterations of calibration algorithm 5

additional iterations of the smoothing process are performed.

7.5 Calibration results

Calibration involved two separate experiments. In first experiment, demand is calibrated

using the fixed supply parameters while in the second experiment demand and supply are

calibrated simultaneously using only the SPSA algorithm. Various error statistics
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described by the equations 6.1 through 6.5 in the previous chapter are used as a measure

of accuracy of calibration.

7.5.1 Demand-only calibration

The results of the demand-only calibration are summarized in the figures 7.5 and 7.6. In

each of the cases the results were compared with the base case in which the calibration is

performed with only the sensor counts being used as measurements. Root Mean Square

Normalized (RMSN) is used as the measure of accuracy. Other error statistics for the

starting parameter values, demand-only calibration and simultaneous demand-supply

calibration with and without AVI information are listed in table 7.1.

Figures 7.4, 7.5 and 7.6 indicate that AVI data increases the calibration accuracy, as

expressed in RMSN, for all the cases. The results show that the inclusion of AVI data

into calibration improves accuracy not only in terms of lower travel time error but also

lowers the sensor count error. In the previous case study, it was observed that the travel

time accuracy improved due to usage of AVI data. But the corresponding sensor counts

accuracy diminished slightly. However, in this case study the results indicate that the

addition of AVI data helps the calibration algorithms to move in the right direction on the

optimization surface more efficiently.
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Table 7.1: Accuracy of calibration for LWC network
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Demand- Demand- Demand- Demand-
Starting Only Only Supply Supply
Values Calibration Calibration Calibration Calibration

Base Case AVI Case Base Case AVI Case
RMSN
Counts 25.19% 20.09% 18.24% 20.69% 17.94%
RMSN

TT 29.04% 22.23% 21.24% 19.46% 18.92%
RMSPE
Counts 28.54% 26.84% 30.32% 26.78% 28.92%
RMSPE

TT 30.46% 22.43% 22.29% 23.89% 20.98%
RMSE
Counts 151.68 120.94 109.83 124.56 108.04
RMSE

TT 219.17 167.79 160.30 151.07 147.10
MEN

Counts -12.15% -9.05% -6.61% -8.50% -3.87%
MEN

TT 3.28% -7.59% -5.54% -9.00% -6.06%
MPE

Counts -7.43% -3.06% -0.37% -3.90% 0.16%
MPE
TT 5.82% -2.74% -1.23% -3.49% -4.84%
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7.5.2 Simultaneous demand-supply calibration

SPSA algorithm was also selected for the simultaneous demand-supply calibration

because of its superior performance in the previous case study. Again the results are

compared to the base case of calibration using only link count data.

* From the final RMSN values it is observed that the calibration accuracy improved

due to the addition of AVI data in the calibration process as it did in the previous

experiment.

* Also it is found (figures 7.6 and 7.9) that the simultaneous calibration of demand

and supply parameters has considerably better accuracy as compared to the

demand-only calibration. Figures 7.10 to 7.15 show the 450 plots which compare

the simulated and the observed values of sensor counts and travel times in all the

cases, with the line through origin having slope equal to 1. The successive

calibration improvements can be observed especially significantly for the travel

times.

* Table 7.1 describes various error statistics for the starting values and the four

calibration cases. Apart from the RMSN values, it is interesting to note that the

starting MEN and MPE values for the sensor counts indicate that there was a

significant negative bias in the starting values. This bias was decreased due to the

process of calibration and the final calibrated parameters under the simultaneous

demand-supply calibration case using AVI data show that the MEN values

reduced from -12.15% to -3.87% and the MPE values reduced from -7.43% to

+0.16%.
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Fig 7.8: Final demand-supply calibration without AVI data

Fig 7.9: Final demand-supply calibration with AVI data
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7.6 Validation

Similar to the previous case study, another set of MITSIMLab output was generated in

order to validate the calibrated parameters. A single run of MITSIMLab was performed

to generate a new day's sensor data. The sensor data was perturbed between -2 0 % to

+20% of the true values. The real time estimation procedure within DynaMIT was used

and sensor output obtained from DynaMIT was compared to the perturbed sensor

measurements given by MITSIMLab. Table 7.2 lists various error statistics for the final

calibration and validation results. The statistics for starting values are provided for the

purpose of comparison.

Table 7.2: Validation results for LWC network

The results indicate that the validation RMSN for sensor counts is 17.63% and for travel

times it is 18.55%, both of which are both slightly lower than the corresponding values

for calibration. This gives indications that over-fitting issue has been avoided in this

calibration effort.
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Starting Calibration Validation
Values

Coun 25.19% 17.94% 17.63%

RMSN 29.04% 18.92% 18.55%
TT

RMSPE 28.54% 28.92% 27.60%
Counts
RMSPE 30.46% 20.98% 21.06%

TT

Cons 151.68 108.04 106.27

RMSE 219.17 147.10 148.67
TT _________

Counts -12.15% -3.87% -3.98%

MEN 3.28% -10.06% -9.88%
TT

Cout -7.43% 0.16% -0.39%

MPE 5.82% -4.84% -5.15%
TT ____ ____ ____



7.7 Summary

In this chapter, a real traffic network was used as a case study to demonstrate the

feasibility of the proposed approach for real networks and to illustrate its scalability for

extremely large set of calibration parameters. The individual parameters were fine-tuned

through trial and error to find the most suitable combination of algorithm parameters. The

simultaneous perturbation stochastic approximation algorithm is found to perform

effectively even for the large size problem. AVI data was found to improve the

calibration accuracy as compared to the base case in both demand-only calibration as

well as simultaneous demand-supply calibration. The simultaneous calibration of demand

and supply improved the accuracy of calibration as compared to the demand-only

calibration. Validation of final calibrated parameter suggests that over-fitting is unlikely

to be a major concern. Overall, the proposed approach was found to be scalable and could

be extended to calibrate large scale real traffic networks with multiple vehicle classes.
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8. Conclusion

This thesis focused on the calibration of Dynamic Traffic Assignments models using

automatic vehicle identification data. A mesoscopic DTA system called DynaMIT was

used to demonstrate the usefulness of the proposed methodology. Both the demand and

supply parameters of the DTA system were calibrated with and without the additional

travel time information available from AVI data. Three different calibration algorithms

were evaluated in terms of comparative performance. The first section summarizes the

major findings and research contribution of the thesis. The final section focuses on

directions for future research.

8.1 Major findings and research contribution

Review of previous studies emphasized the following findings:

" Majority of the earlier calibration efforts have relied on the separate calibration of

individual models within the DTA systems.

* Most previous efforts have focused on the loop detector data available at

aggregate level.

" All the previous studies that have tried to incorporate disaggregate AVI data into

rigorous calibration studies have only been restricted to OD estimation. Although

some researchers have provided a generalized framework that can incorporate

various traffic data types, there are no calibration results for real traffic networks

using AVI data, to the best of author's knowledge.

* A variety of information about the state of traffic network can be extracted from

AVI data. Although travel time information collected from AVI data can be

extremely useful for calibration of variety of DTA components models, previous
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studies have ignored travel time information in favor of other information types

that are only appropriate for calibration of specific models within DTA.

In this study, DTA calibration problem was formulated as a state estimation problem and

as a simulation based optimization problem. Calibration of DTA models was performed

using three different algorithms, viz. Simultaneous Perturbation Stochastic

Approximation (SPSA), Genetic Algorithm (GA) and Particle Filter (PF). In each of the

cases, the calibration performance was compared with the case where only loop detector

data is available. The feasibility and effectiveness of the proposed approaches was tested

using a small synthetic network. Afterwards, a real traffic network with multiple vehicle

classes was used to illustrate the scalability of selected approach. For each network, two

experiments were performed. In the first experiment, only the demand parameters were

calibrated while holding supply parameters constant at the apriori value. In the second

experiment, the demand and supply parameters were simultaneously calibrated. The

following were the main findings and conclusions:

" Demand calibration was found to improve the calibration accuracy considerably

as compared to the accuracy of the apriori estimates.

* Simultaneous demand-supply calibration was found to be superior compared to

the demand-only calibration and it increased the calibration accuracy substantially.

* Comparison between calibration results using combined loop detector and AVI

data with the calibration results using only loop detector data indicated that the

AVI data is useful in improving the calibration accuracy in all the experiments.

* For the small scale network, the sensitivity analysis suggested that the relative

weights given to AVI measurements is critical in determination of trade-off

between the sensor counts accuracy and travel time accuracy. While AVI data
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helps improve the travel time accuracy significantly, it tends to decrease the

sensor count accuracy slightly.

" However, in case of the large network, the AVI data was found to improve the

calibration accuracy both in terms of sensor count error as well as travel time

error. A possible reason for this phenomenon is that the number of loop detectors

is small in real large scale networks. Also the measurement accuracy and

reliability of loop detectors is low. Hence the loop detector data by itself cannot

provide all the necessary information to calibrate the enormous set of parameters.

However, the addition of accurate AVI data aids the calibration process to move

towards the true network state more efficiently, hence improving the overall

calibration performance.

" For the small network, SPSA was found to be the most effective algorithm

followed closely by GA. However, the GA's performance required additional

computational effort due to greater number of function evaluations. Particle filter

algorithm did not perform as well as the other two algorithms in this particular

study. A likely reason could be considerably poor starting values of the

calibration parameters.

. The empirical results from the validation tests are found to be consistent with the

calibration results and thus validate the feasibility and accuracy of the methods

used for calibration in this research.

* The SPSA algorithm was also found to be scalable. A large set of parameters

(6480 parameters) could be calibrated using SPSA.
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8.2 Directions for future research

This thesis focused on a generalized framework for calibration and explored the

usefulness of incorporating AVI data with a special focus on travel times. Two different

frameworks were used for formulating the problem and three algorithms were considered

for calibration. Some of the directions for future research are as follows:

" Travel times were considered in calibration efforts and were shown to improve

the accuracy. It would be of interest to explore the effectiveness of a combination

of travel times and other types of AVI information such as sub-path flows and

split-fractions in addition to link flow counts in terms of further improvements in

calibration performance.

* A fixed set of locations were used for the AVI sensors. In large scale networks,

there exist multiple suitable locations for placement of these sensors. The relative

usefulness of different sensor locations in terms of calibration accuracy could be

evaluated. Multiple sensor placements may be compared to evaluate the optimum

placement that provides the most useful calibration data.

* This study showed that the particle filter algorithm did not perform on par with

the other two algorithms. However, some recent studies (such as Doucet et al.,

2001) have proposed extensions of the basic particle filter algorithm that could

potentially improve the accuracy of calibration using Monte-Carlo simulation

based methods. This could be another natural extension of this work.

* While preliminary validation results indicate low error values, the calibrated

parameters need to be validated through further real time applications and actual

field data.
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Appendix A: Overview of DynaMIT

DynaMIT (Ben-Akiva et al., 1997) is a state-of-the-art DTA system with both real-time

and planning applications. This appendix provides an overview of DynaMIT-R, a DTA-

based real-time mesoscopic traffic simulation model. The features and functionalities of

the DynaMIT-R system are presented, along with an overview of its model components.

The system's unknown quantities (both model inputs and parameters) are enumerated,

both in order to illustrate the dimensionality of the problem, and provide an introduction

to the case studies presented in this thesis. Most of the material in this appendix is

derived from Balakrishna (2006).

Apart from its real-time applications, DTA has the potential to significantly improve the

transportation planning process for networks with congested facilities. DynaMIT-P is a

DTA-based planning tool developed at MIT that is designed to assist planners in making

decisions regarding proposed investments and operational changes in local and regional

transportation networks. DynaMIT-P adapts the modules contained in the real-time

DynaMIT system for off-line planning applications.

The models in a DTA system can be broadly categorized into two classes. The demand

simulator captures aggregate flows of vehicles between points on the network, and

models individual drivers' route choice decisions at various stages of their trips. In

addition, the demand models play a key role in the prediction of future network flows.

The supply simulator models vehicle movements on the links of the network. The outputs

of the supply simulator include link, path and sub-path travel times, link flows, speeds

and densities, and queue lengths upstream of bottlenecks.

A.1 Introduction

DynaMIT (Dynamic Network Assignment for the Management of Information to

Travelers) is a state-of-the-art traffic simulation system based on the principle of dynamic

traffic assignment. Its real-time version (DynaMIT-R) is designed for traffic estimation
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and prediction, and the generation of traveler information and consistent anticipatory

route guidance. DynaMIT-R supports the operation of Advanced Traveler Information

Systems (ATIS) and Advanced Traffic Management Systems (ATMS) at Traffic

Management Centers (TMC). A planning version of DynaMIT, codenamed DynaMIT-P,

employs DTA for short-term planning scenarios such as work zones, optimal VMS

locations and OD estimation. Sponsored by the Federal Highway Administration

(FHWA), DynaMIT was designed and developed at the Intelligent Transportation

Systems Program at the Massachusetts Institute of Technology.

A.2 Features and functionality

The key to DynaMIT's functionality is its detailed network representation, coupled with

models of traveler behavior. Through an effective integration of historical databases with

real-time inputs from field installations (surveillance data and control logic of traffic

signals, ramp meters and toll booths), DynaMIT is designed to efficiently achieve:

* Real time estimation of network conditions.

* Rolling horizon predictions of network conditions in response to alternative traffic

control measures and information dissemination strategies.

" Generation of traffic information and route guidance to steer drivers towards

optimal decisions.

To sustain users' acceptance and achieve reliable predictions and credible guidance,

DynaMIT incorporates unbiasedness and consistency into its core operations.

Unbiasedness guarantees that the information provided to travelers is based on the best

available knowledge of current and anticipated network conditions. Consistency ensures

that DynaMIT's predictions of expected network conditions match what drivers would

experience on the network. DynaMIT has the ability to trade-off level of detail (or

144



resolution) and computational practicability, without compromising the integrity of its

output.

A.3 Overallframework

DynaMIT is composed of several detailed models and algorithms to achieve two main

functionalities:

. Estimation of current network state using both historical and real-time

information.

. Generation of prediction-based information for a given time horizon.

The estimation and prediction phases operate over a rolling horizon. This concept is

illustrated with a simple example in Fig A. 1.

Incident
(8:03:45)

At 8:00

7:55 8:00 8:05 9:00

+Estimation . Prediction

Running
time

At 8:03:45

7:55 7:58:45 8:03:45

I I
+Estimation " Prediction

Running
time

Fig A. 1: The rolling horizon
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It is now 8:00am. DynaMIT starts an execution cycle, and performs a state estimation

using data collected during the last 5 minutes. When the state of the network at 8:00 is

available, DynaMIT starts predicting for a given horizon, say one hour, and computes a

guidance strategy which is consistent with that prediction. At 8:07, DynaMIT has

finished the computation, and is ready to implement the guidance strategy on the real

network. This strategy will be in effect until a new strategy is generated. Immediately

following that, DynaMIT starts a new execution cycle. Now, the state estimation is

performed for the last 7 minutes. Indeed, while DynaMIT was busy computing and

implementing the new guidance strategy, the surveillance system continued to collect

real-time information, and DynaMIT will update its knowledge of the current network

conditions using that information. The new network estimate is used as a basis for a new

prediction and guidance strategy. The process continues rolling in a similar fashion

during the whole day.

The overall structure with interactions among the various elements of DynaMIT is

illustrated in Fig A.2. DynaMIT utilizes both off-line and real-time information.

The most important off-line information, in addition to the detailed description of the

network, is a database containing historical network conditions. This database might

combine directly observed data and the results of o®-line models. The historical database

contains time-dependent data, including origin-destination matrices, link travel times and

other model parameters. Clearly, the richer the historical database, the better the results.

Such a rich historical database requires substantial data collection and careful calibration.
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Fig A.2: The DynaMIT framework

Real-time information is provided by the surveillance system and the control system.

DynaMIT is designed to operate with a wide range of surveillance and control systems.

The minimum real-time information required by DynaMIT is time dependent link flows,

incident characteristics (location, starting time, duration and severity), and traffic control

strategies.

State Estimation

The state estimation module provides estimates of the current state of the network in

terms of OD flows, link flows, queues, speeds and densities. This step represents an

important function of DTA systems, since information obtained from the traffic sensors

can vary depending on the type of surveillance system employed. In an ideal system
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where there is two-way communication between the traffic control center and every

vehicle in the network, perfect information about the vehicle location and possibly its

origin and destination can be obtained. While such perfect systems are possible in the

future, most existing surveillance systems are limited to vehicle detectors located at

critical points in the network. The information provided by these traffic sensors therefore

must be used to infer traffic flows, densities and queue lengths in the entire network.

The main models used by the State Estimation module are:

" A demand simulator that combines real-time OD estimation with user behavior

models for route and departure time choice.

* A network state estimator (also known as the supply simulator) that simulates

driver decisions and collects information about the resulting traffic conditions.

The demand and supply simulators interact with each other in order to provide the

demand and the network state estimates that are congruent and utilize the most recent

information available from the surveillance system (Fig A.3).

Demand Simulation

Demand estimation in DynaMIT is sensitive to the guidance generated and information

provided to the users, and is accomplished through an explicit simulation of pre-trip

departure time, mode and route choice decisions that ultimately produce the OD flows

used by the OD estimation model. The pre-trip demand simulator updates
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Fig A.3: State estimation in DynaMIT

the historical OD matrices by modeling the reaction of each individual to guidance

information. The consequent changes are then aggregated to obtain updated historical OD

matrices. However, these updated historical OD flows require further adjustments to

reflect the actual travel demand in the network. Reasons for the divergence of actual OD

flows from historical estimates include capacity changes on the network (such as the

closure of roads or lanes), special events that temporarily attract a large number of trips to

a destination, and other day-to-day fluctuations. Consequently, one of the requirements

for dynamic traffic modeling is the capability to estimate (and predict) OD flows in real

time. The OD model uses updated historical OD flows, real-time measurements of actual

link flows on the network, and estimates of assignment fractions (the mapping from OD
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flows to link flows based on route choice fractions and travel times) to estimate the OD

flows for the current estimation interval.

OD Smoothing

The fixed point nature of the OD estimation procedure, coupled with the real-time

requirements of a prediction-based DTA system, necessitates the use of an efficient

solution scheme that will converge quickly. The OD estimation module within DynaMIT

utilizes an algorithm similar to the Method of Successive Averages with Decreasing Re-

initializations (MSADR) to compute the target OD flows for successive iterations.

Supply Simulation

The network state estimator utilizes a traffic simulation model that simulates the actual

traffic conditions in the network during the current estimation interval. The inputs to this

model include the travel demand (as estimated by the demand simulator), updated

capacities and traffic dynamics parameters, the control strategies implemented and the

traffic information and guidance actually disseminated. The driver behavior model

captures the responses to ATIS in the form of en route choices.

Demand-Supply Interactions

One of the inputs to the OD estimation model is a set of assignment matrices. These

matrices map the OD flows from current and past intervals to link flows in the current

interval. The assignment fractions therefore depend on the time interval, and also on the

route choice decisions made by individual drivers. The flows measured on the network

are a result of the interaction between the demand and supply components.

It may be necessary to iterate between the network state estimation and the OD

estimation models until convergence is achieved. The output of this process is an estimate
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of the actual traffic conditions on the network, and information about origin destination

flows, link flows, queues, speeds and densities.

A. 4 Prediction and guidance generation

The prediction-based guidance module described in Fig A.4

interacting steps:

* Pre-trip demand simulation

* OD flow prediction

* Network state prediction

* Guidance generation

consists of several
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Network State Prediction
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Demand Simulation
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Yes

Fig A.4: Prediction-based information generation

The OD prediction model uses the aggregate historical demand adjusted by the pre-trip

demand simulator as input to account for departure time, mode and route choices in

response to guidance, and provides the required estimates of future OD flows. The

network state prediction function undertakes the important task of traffic prediction for a

given control and guidance strategy and predicted set of OD flows, using the current

network conditions estimated by the state estimation module as a starting point. The

performance of the network over the prediction horizon is evaluated using a traffic

simulation model and en-route behavioral models. The traffic information and guidance

generation function uses the predicted traffic conditions to generate information and

guidance according to the various ATIS in place. Traffic control is loosely coupled with
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DynaMIT in the current version of the system. Control strategies are assumed to be

generated outside the DTA system, using the predictions as an input.

The generated traffic information and guidance must be consistent and unbiased. Under

such conditions, there would be no better path that a driver could have taken based on the

provided information. An iterative process is employed in order to obtain guidance that

satisfies these requirements. Each iteration consists of a trial strategy, the state prediction

(comprising both demand prediction and network state prediction) under the trial strategy,

and the evaluation of the predicted state for consistency.

Since, in general, the updated historical OD flows depend on future guidance and

information, the update of the historical OD flows (using the departure time and mode

choice models) and the OD prediction models are included in the iteration.

This general case represents the situation where pre-trip guidance is available to the

drivers. In the special case where only en-route guidance is available, the pre-trip demand

simulator is bypassed in the iterations. The initial strategy could then be generated from

the prediction and guidance generation of the previous period.
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Appendix B: Overview of MITSIMLab

MITSIMLab is a simulation-based laboratory developed for evaluating the impacts of

alternative traffic management system designs at the operational level and assisting in

subsequent refinement. Examples of systems that can be evaluated with MITSIMLab

include advanced traffic management systems (ATMS) and route guidance systems.

MITSIMLab is a synthesis of a number of different models and represents a wide range

of traffic management system designs. It has the ability to model the response of drivers

to real-time traffic information and controls and can incorporate the dynamic interaction

between the traffic management system and the drivers on the network.

The various components of MITSIMLab are organized in three modules:

1. Microscopic Traffic Simulator (MITSIMLab)

2. Traffic Management Simulator (TMS)

3. Graphical User Interface (GUI)

A microscopic simulation approach, in which movements of individual vehicles are

represented, is adopted for modeling traffic flow in the traffic flow simulator

MITSIMLab. The traffic and network elements are represented in detail in order to

capture the sensitivity of traffic flows to the control and routing strategies. The road

network is represented by nodes, links, segments (links are divided into segments with

uniform geometric characteristics) and lanes. Traffic controls and surveillance devices

are represented at the microscopic level.

The traffic simulator accepts time-dependent origin to destination trip tables as inputs.

The OD tables represent either expected conditions or are defined as part of a scenario for

evaluation. A probabilistic route choice model is used to capture drivers' route choice

decisions. The origin/destination flows are translated into individual vehicles wishing to
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enter the network at a specific time. Behavior parameters (e.g., desired speed,

aggressiveness) and vehicle characteristics are assigned to each vehicle/driver

combination. MITSIMLab moves vehicles according to car-following and lane-changing

models. The car-following model captures the response of a driver to conditions ahead as

a function of relative speed, headway and other traffic measures. The lane changing

model distinguishes between mandatory and discretionary lane changes and simulates

driver action as an output of a complex decision-making framework. Merging, drivers'

responses to traffic signals, speed limits, incidents, and toll booths are also captured.

The traffic management simulator (TMS) mimics the traffic control system under

evaluation. A wide range of traffic control and route guidance systems can be evaluated.

These include regular traffic signals, ramp control, freeway mainline control, lane control

signs, variable speed limit signs, portal signals at tunnel entrances, intersection control,

variable Message Signs and in-vehicle route guidance. TMS has a generic structure that

can represent different designs of such systems with logic at varying levels of

sophistication (pre-timed, actuated or adaptive). An extensive graphical user interface is

used for both debugging purposes and demonstration of traffic impacts through vehicle

animation. A detailed description of MITSIMLab appears in Yang and Koutsopoulos

(1996) and Yang et al (2000).
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Appendix C: MATLAB Code for SPSA Algorithm

clear all
global noODs % # OD pairs
global no intervals % # Time intervals
global nosegments % # Segments (spddsy)
global no groups cap % # Segments (capacities)
global nogroups % # Segment groups
global nootherparams % # other parameters
global demandfactor % scaling factor for demand
global paramsPerDay % # parameters to be calibrated per day of data
global starttime % starting time of estimation interval
global maindir
global ns % Sensors
global odinit % Initial ODs

% Filenames
initial_ fnvaluefile = 'spsa-output/fntheta_0.dat';
deltafile = 'spsa-output/delta.dat';
scaleddeltafile = 'spsaoutput/deltascaled.dat';
gradient logfile = 'spsa output/grad log.dat';
final-objfn file ='spsa output/final_fn.dat';
finalthetafile ='spsa-output/xfinal.dat';
iterthetafile = 'spsa-output/x-values.dat';
iter objfn-file ='spsa-output/fnvalues.dat';
fnpath file ='spsaoutput/fnpath.dat';
rmsnfile = 'spsa output/best/rmsnbest.dat';
bestthetafile ='spsa output/best/bestod.dat'
ResetLinktimes EXEC ='./ccfiles/resetLinktimes'
main dir = '/home/vikrantv/thesis/costasnetwork/AVI/';
noODs= 6;
starttime = input('enter the start time in hours: ');
starttime = starttime * 3600;
nointervals = input('enter number of intervals: ');
demandfactor = 4.0;
no-otherparams = 1;
ns = 3
cd(main dir)
paramsPerDay = no ODs*nointervals;
mitsimsensor = load('mitsim/Output/sensorperturbed.out');
time=start _time+900;%at end of the first interval
cd spsa-output/;
for i=l:no intervals

nam=['counts',int2str(i),'.dat'];
system(['rm ', nam]);
f=fopen(nam,'at');
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countmnatrix=mitsimsensor(mitsim sensor(:, 1)==time,4);
for j=1 :ns

fprintf(f,'%d\n',countmatrix(j));
end
fclose(f);
timeztime+900;

end
cd ..;
for i=1:no intervals

eval(['load mitsim/seed/odseed', int2str(i), '.dat;']);
end % for loop
odseed = [];
for i=l:no intervals

eval (['od seed = [od-seed; odseed', int2str(i), '(l:noODs)];']);
end % for loop
od init = odseed;
theta_0 = od-seed(l:nointervals*no_ODs);
[p q] = size(theta_0); % Set p, the dimension of the parameter vector

n=1000 %total no. of loss measurements
cases=1;
grad reps = 1; % no. of reps for averaging the gradient approximation
alpha =.602;
gamma =. 101;
a = 15.0;
c = 1.9 % used to be 1.9 before %chosen by standard guidelines
A = 100;
magscale = 0.15 % we scale delta by this percent of parameter magnitude
lossfinalsq=O; %variable for cum.(over 'cases')squared loss values
lossfinal=0; %variable for cum. loss values
thetalo = 0.5*theta_0;
thetahi = 2.0*theta_0;
rand('seed', 47);
rmsn = [];
cd mfiles;
initial fn value = snobfunctt(theta_0);
cd ..;
best snob = initial fn value;
besttheta = theta_0;
cd mfiles/;
rmsntemp = rmsn-functiono;
cd ..;
rmsn = [rmsn; rmsn temp];
eval(['save ', rmsnfile,' rmsn -ascii']);
system(['cp -p DynaMIT/demand.dat DynaMIT/demand iter_0.dat']);
tmp-x = theta_0';

158



tmpfn = initial fn_value;
eval(['save ',initial fn value file, ' tmp_fn -ascii;']);
x_values
fnvalues
fn path = initial fn value; % fiipath = [fn path; initial fn value];
grad log = [];
theta=theta_0; % Start at seed parameter values

for k=0:n-1
if (k/10.0 == round(k/10.0))
cd DynaMIT/;
system('rm __equilibriumUnfinished.dat');
system('rm _estimatedUnfinished.dat');
system(['./DynaMITP ./dtaparamP.dat']);
ed ..;
system([ResetLinktimes EXEC,

'./DynaMIT/linktime.dat ./DynaMIT/equilibriumlinktime.out ./DynaMIT/linktime 1.dat']

system(['mv ./DynaMIT/linktime l.dat ./DynaMIT/linktime.dat']);
end % if
al =theta.^2;
ak = a/(k+1+A)Aalpha;
ak =ak*al;
ck = c/(k+)Agamma;
ghat = 0; % store sum of gradient reps for averaging
tmpfngrad-reps = []; % Store the fn values for averaging
for xx = 1:grad reps,
delta = 2*round(rand(p,1))-1;
eval(['save ', deltafile, ' delta -ascii;']);
delta = magscale*delta.*theta; % scale delta by percentage of parameter magnitude
eval(['save', scaleddeltafile, ' delta -ascii;']);
thetaplus = theta + ck*delta;
thetaminus = theta - ck*delta;
% These four lines below invoke component-wise constraints
thetaplus=min(thetaplusthetahi);
thetaplus=max(thetaplus,theta lo);
thetaminus=min(thetaminus,theta hi);
thetaminus=max(thetaminus,theta lo);
x_values = [xvalues; thetaminus' tmp-x thetaplus'];
tmp x = theta'; % reset to theta for next grad rep
cd mfiles/;
yplus=snobfunc-tt(thetaplus);
yminus=snobfunctt(thetaminus);
cd ..;
tmpfn-grad-reps = [tmpfn grad reps; yminus yplus];
ghat = ghat + ((yplus - yminus)./(2*ck*delta));
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end % end of reps for grad averaging

aa =mean(tmpfngradreps(:,1)); % aa mean(tmpfngradreps(:, 1:1));
bb mean(tmpfngradreps(:,2)); % bb =mea(tmp fngradreps(:,2:2));
fn_values = [fn values; aa bb];
ghat = ghat/grad reps;
gradjlog = [gradlog; ghat'];
eval(['save', gradient log file, 'grad_log -ascii;']);
theta=theta-ak.*ghat;
theta=min(theta,theta_hi);
theta=max(theta,thetalo);
cd mfiles/;
pathy = snobfunctt(theta);
cd ..;
if pathy < best snob
besttheta = theta;
bestsnob = pathy;

end % if

cd mfiles/;
rmsntemp = rmsn-functiono;
cd ..;
rmsn = [rmsn; rmsntemp];
eval(['save ', rmsnfile,'rmsn -ascii']);
system(['cp -p DynaMIT/demand.dat DynaMIT/demand iter_', int2str(k+1), '.dat']);
fnpath = [fnpath; pathy];
eval(['save', fnpathfile, 'fnpath -ascii;']);
tmpx = theta';
eval(['save iterthetafile, ' x_values -ascii;']);
eval(['save iterobjfn file, ' fn_values -ascii;']);

end % iterations (k = 0:n-l)

eval(['save ', final__thetafile, ' theta -ascii;']);
lossvalue = pathy; %% lossvalue=snobfunc-tt(theta);
lossfinalsq=lossfinalsq+lossvalueA2;
lossfinal=lossfinal+lossvalue;
disp(['mean loss value over ', int2str(cases), 'runs']);
finalfn = lossfinal/cases;
eval(['save final_objfn file, ' finalfn -ascii;']);
eval(['save bestthetafile, 'besttheta -ascii;']);
cd mfiles/;
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Appendix D: MATLAB Code for Genetic Algorithm

global noODs
global nointervals
global start time
global od init
global maindir
starttime = input('enter the start time: ');

nointervals = input('enter the number of intervals: ');

ResetLinktimesEXEC ='./ccfiles/resetLinktimes'
starttime = starttime * 3600;
main dir = '/home/vikrantv/thesis/costasnetwork/ga/AVI/'
noODs = 6;
nointerval = 4;
noparticles = 100;
nogenerations 30;
ns = 3;
crossoverpara 0.7;
mutationpara 0.002;
rand('seed', 66);

cd(main dir);
mitsimsensor = load('mitsim/Output/sensorperturbed.out');
time=start time+900;%at end of the first interval
cd output/;
for i=l:no intervals

nam=['counts',int2str(i),'.dat'];
system(['rm ', nam]);
f=fopen(nam,'at');
countmatrix=mitsim sensor(mitsim sensor(:, 1)==time,4);
for j=l:ns

fprintf(f,'%d\n',countmatrix(j));
end
fclose(f);
time=time+900;

end
cd ..;

for i=1:no intervals
eval(['load ./mitsim/seed/odseed', int2str(i), '.dat;']);

end % for loop
od seed = [];
for i=l:no intervals

eval (['od seed = [od seed; odseed', int2str(i), '(1:noODs)];']);
end % for loop
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od init = odseed;
particles = [];
fn pathbest
cd DynaMIT/;
system('rm __equilibriumUnfinished.dat');
system('rm __estimatedUnfinished.dat);
system(['cp ./linktimeff.dat ./linktime.dat']);
cd ../mfiles/;
y = snob func tt(od_seed);
fnpath best [fn_pathbest; y];
cd .. ;

for i=l:noparticles
random = rand(1,no_ODs*nointervals)*2;
part = od seed(l:noODs*nointervals)'.*random;
particles = [particles; part;];
cd mfiles/;
CHANGEPARAMETERS(part);
cd .. ;
system(['cp ./DynaMIT/linktime ff.dat ./DynaMIT/linktime.dat']);
for j=1:3

cd DynaMIT/;
system('rm __equilibriumUnfinished.dat');
system('rm __estimatedUnfinished.dat');
system(['./DynaMITP ./dtaparamP.dat']);
cd ..;
system([ResetLinktimes EXEC,

'./DynaMIT/linktime.dat ./DynaMIT/equilibrium-linktime.out ./DynaMIT/linktime tem
p.dat']);

system(['mv ./DynaMIT/linktimetemp.dat ./DynaMIT/linktime.dat']);
end % for loop : 3
system(['mv ./DynaMIT/linktime.dat ./DynaMIT/linktime', int2str(i), '.dat']);

end % for loop : noparticles

fnpathffull
fnpath best
overallbestfn 10000;
overallbest od [];

for i = I:nogenerations
%Evaluate each particle

fn_best = 10000;
fnpath =
wts=[];
for j=l:noparticles
part = (particles(j,:))';
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cd mfiles/;
system(['cp ../DynaMIT/linktime', int2str(j), '.dat ../DynaMIT/linktime.dat']);
fit = snobfunc-tt(part);
if (fit < fn best)

fn best = fit;
if (fit < overallbest fn)
overallbestod part;
overallbestfn fit;
system(['cp ../DynaMIT/linktime.dat ../DynaMIT/linktime-best.dat']);

end % if
end % if
cd .. ;
fnpath = [fnpath fit];
wts = [wts; 1.0/fit];

end % for loop : particles
wts = wts/sum(wts);
fn path best = [fnpathbest; fnbest;];

%Generate new population 2 at a time
newparticles
newindices
%Selection
for 1=1:noparticles/2
pair= [];
pair-indices
for j=1:2

random = rand(1,1);
total = 0;
for k=1:noparticles

total = total + wts(k);
if ((random <= total) k == noparticles)
pair = [pair; particles(k,:)];
newindices [newindices; k];
pair indices = [pairindices; k];
break;

end % if
end % for loop paricles

end % for loop : 2
%Crossover: 1 Point Crossover with 0.6 probability per pair
randI = random(1,1);
if (rand 1 <=crossoverpara)

rand2 = floor(random(1,1)*noODs*no-intervals)+1;
newpair = [pair(1,1:rand2) pair(2,rand2+1:no ODs*no intervals);
pair(2,1:rand2) pair(l,rand2+1:noODs*no intervals)];

else
newpair = pair;
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end % if
%Mutation with 0.001 probability
for m=1:2

for n=:noODs
rand3 = rand(l,1);
if (rand3<=mutationpara)
rand4= rand(1,1)*2;
newpair(m,n) = newpair(m,n)*rand4;

end % if
end % for loop no_ODs

end % for loop 2
newparticles:= [newparticles; newpair];

end % for loop : noparticles/2

fnpathfull = [fnpathfull; fn path];
particles = new-particles;
clear newparticles;
for 1=l:noparticles
system(['mv ./DynaMIT/linktime', int2str(l), '.dat ./DynaMIT/linktime_', int2str(l),

'.dat']);
end % for loop : noparticles
for 1=i:noparticles

system(['cp ./DynaMIT/linktime_', int2str(newindices(l)), '.dat ./DynaMIT/linktime',
int2str(l), '.dat']);
end % for loop : noparticles
newindices
clear new-indices;
save 'fnpath full.dat' fnpath_full -ascii;
save 'overallbest_ fn.dat' overallbestfn -ascii;
save 'overall best od.dat' overall best od -ascii;
save 'fnpath best.dat' fn-pathbest -ascii;

for m=1:noparticles
random = rand(1,no_ODs*nointervals)*2;
part = od seed(1:noODs*no intervals)'.*random;
particles = [particles; part;];
cd mfiles/;
CHANGEPARAMETERS(part);
cd .;

system(['cp ./DynaMIT/linktime', int2str(m), '.dat ./DynaMIT/linktime.dat']);
for n= 1:1

cd DynaMIT/;
system('rm __equilibriumUnfinished.dat');
system('rm _estimatedUnfinished.dat');
system(['./DynaMIT_P ./dtaparamP.dat']);
cd ..;
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system([ResetLinktirmes EXEC,
./DynaMIT/linktime.dat ./DynaMIT/equilibriumlinktime.out ./DynaMIT/linktime tem

p.dat']);
system(['mv ./DynaMIT/linktime temp.dat ./DynaMIT/linktime.dat']);

end % for loop : 3
system(['mv ./DynaMIT/linktime.dat ./DynaMIT/linktime', int2str(m), '.dat']);

end % for loop : noparticles
end % for loop : generations
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Appendix E: MATLAB Code for Particle Filter Method

global noODs
global starttime
global odinit
global main dir
start time = input(enter the start time: ');
nointervals = input('enter the number of intervals: ');
ResetLinktimesEXEC ='./ccfiles/resetLinktimes'
starttime = start-time * 3600;
main dir ='/home/vikrantv/thesis/costasnetwork/bootstrap/AVI/
noODs = 6;
nointerval = 4;
noparticles = 1000;
ns = 3;
rand('seed', 91);

cd(main dir);
mitsimsensor = load('mitsim/Output/sensorperturbed.out');
time=starttime+900;
cd output/;
for i=l:no intervals

nam= ['counts', int2 str(i),'. dat'];
system(['rm ', nam]);
f=fopen(nam,'at');
countmatrix=mitsimsensor(mitsimsensor(:, 1)==time,4);
for j=1:ns

fprintf(f,'%d\n',countmatrix(j));
end
fclose(f);
time=time+900;

end
cd ..;

for i=:no intervals
eval(['load ./mitsim/seed/odseed', int2str(i), '.dat;']);

end % for loop
od seed = [];
for i=l:no intervals

eval (['od seed = [od-seed; od_seed', int2str(i), '(1:no_ODs)];']);
end % for loop
od init = od seed;
ar = [];
for i=2:no intervals
ar = [ar; od seed((i-1)*noODs+l:i*noODs)./od seed((i-2)*noODs+l:(i-

1)*noODs)]
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end % for loop

particles = [];
fnpathbest
cd DynaMIT/;
system('rm __equilibriumUnfinished.dat');
system('rm __estimatedUnfinished.dat');
system(['cp ./linktimeff.dat ./linktime.dat']);
cd ../mfiles/;
y = snob fune tt(od_seed,no intervals);
cd .;

for n=1:3
cd DynaMIT/;
system('rm __equilibriumUnfinished.dat');
system('rm __estimatedUnfinished.dat');
system(['./DynaMITP ./dtaparamP', int2str(nointervals), '.dat']);
cd ..;
system([ResetLinktimes EXEC,

'./DynaMIT/linktime.dat ./DynaMIT/equilibrium linktime.out ./DynaMIT/linktime tem
p.dat']);

system(['mv ./DynaMIT/linktime_temp.dat ./DynaMIT/linktime.dat']);
end % for loop : 3

cd DynaMIT/;
for i=1:noparticles

system(['cp linktime.dat linktime', int2str(i), '.dat']);
end % for loop
cd .;

fnpath best = [fnpath best; y];
fnpath_full [];
overallbest fn 10000;
overallbest od [];

for t=1:nointervals
old_particles = particles;
particles =

if (t==1)
for i=1:noparticles

random = rand(1,no_ODs)*2;
particles = [particles; odseed(1:noODs)'.*random;];

end % for loop
else % if t>1

for i=1:noparticles
random = rand(l,noODs)*2;
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temp = (oldparticles(i,(t-2)*no_ODs+1:(t-1 )*noODs).*ar((t-2)*noODs+1:(t-
1)*noODs)');

temp = temp.*random;
particles = [particles; old-particles(i,:) temp;];

end % for loop
end % if

fnbest = 10000;
fnpath =
wts
for j= 1:noparticles
part = (particles(j,:))';
cd mfiles/;
system(['cp ../DynaMIT/linktime', int2str(j), '.dat ../DynaMIT/linktime.dat']);
fit = snobfunc-tt(part,t);
if (fit < fn best)

fn_best = fit;
if (fit < overallbest fn)
overallbestod part;
overallbestfn fit;
system(['cp ../DynaMIT/linktime.dat ../DynaMIT/linktime-best.dat']);

end % if
end % if
cd .. ;
fnpath = [fnpath fit];
wts = [wts; 1.0/fit];

end % for loop : particles
wts = wts/sum(wts);
fn_pathfull = [fn_path_full; fnpath];
fnpath best [fnpathbest; fn_best;];
new_particles =

newindices =

for 1=1:noparticles
part= [];
index = [];
random = rand(1,1);
total =0;
for k=1:noparticles

total = total + wts(k);
if ((random <= total) k noparticles)
part = particles(k,:);
new indices = [new-indices; k];
index = k;
break;

end % if
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end % for loop : particles
new particles = [newparticles; part];
end % for loop : particles

particles = newparticles;
clear newparticles;
for 1=1:noparticles
system(['mv ./DynaMIT/linktime', int2str(l), '.dat ./DynaMIT/linktime_', int2str(l),

'.dat']);
end % for loop noparticles
for =1:noparticles

system(['cp ./DynaMIT/linktime_', int2str(new indices(l)), '.dat ./DynaMIT/linktime',
int2str(l), '.dat']);
end % for loop : noparticles
newindices
clear new-indices;
save 'fnpathfull.dat' fn pathfull -ascii;
save 'overall best fn.dat' overall best fn -ascii;
save 'overallbestod.dat' overallbestod -ascii;
save 'fnpath best.dat' fn pathbest -ascii;

for m= 1:noparticles
part = particles(m,:);
cd mfiles/;
CHANGEPARAMETERS(part,t);
cd .. ;
system(['cp ./DynaMIT/linktime', int2str(m), '.dat ./DynaMIT/linktime.dat']);
for n= 1:1

cd DynaMIT/;
system('rm _equilibriumUnfinished.dat');
system('rm __estimatedUnfinished.dat');
system(['./DynaMITP ./dtaparamP', int2str(t), '.dat']);
cd ..;
system([ResetLinktimesEXEC,

'./DynaMIT/linktime.dat ./DynaMIT/equilibrium-linktime.out ./DynaMIT/linktime tem
p.dat']);

system(['mv ./DynaMIT/linktime_temp.dat ./DynaMIT/linktime.dat']);
end % for loop : 3
system(['mv ./DynaMIT/linktime.dat ./DynaMIT/linktime', int2str(m), '.dat']);

end % for loop : noparticles
end % for loop : intervals

wts=[];
for j=l:no_particles
part = (particles(j,:))';
cd mfiles/;
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system(['cp ../DynaMIT/linktime', int2str(j), '.dat ../DynaMIT/linktime.dat']);

fit snob func tt(part,no_intervals);
cd ..;

wts = [wts; 1.0/fit];
end % for loop : particles
wts = wts/sum(wts);

finalOD = [];
for j=l:no ODs*nointervals

temp = sum(wts.*particles(:,j));
finalOD = [final_OD; temp];

end % for loop
cd mfiles/;
final fn = snobfunc_tt(finalOD, nointervals);
cd ../;
save finalOD.dat finalOD -ascii;
save finalfn.dat finalfn -ascii;
save final-particles.dat particles -ascii;
cd mfiles/;
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