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Abstract

This thesis develops a system for adaptively and automatically learning to interpret
patterns of electrical activity in neuronal populations in a real-time, on-line fashion.
The system is primarily intended to enable the long-term implantation of low-power,
microchip-based recording and decoding hardware in the brains of human patients in
order to treat neurologic disorders. The decoding system developed in the present
work interprets neural signals from the parietal cortex encoding arm movement inten-
tion, suggesting that the system could function as the decoder in a neural prosthetic
limb, potentially enabling a paralyzed person to control an artificial limb just as the
natural one was controlled, through thought alone. The same decoder is also used to
interpret the activity of a population of thalamic neurons encoding head orientation
in absolute space. The success of the decoder in that context motivates the develop-
ment of a model of generalized place cells to explain how networks of neurons adapt
the configurations of their receptive fields in response to new stimuli, learn to encode
the structure of new parameter spaces, and ultimately retrace trajectories through
such spaces in the absence of the original stimuli. Qualitative results of this model
are shown to agree with experimental observations. This combination of results sug-
gests that the neural signal decoder is applicable to a broad scope of neural systems,
and that a microchip-based implementation of the decoder based on the designs pre-
sented in this thesis could function as a useful investigational tool for experimental
neuroscience and potentially as an implantable interpreter of simple thoughts and
dreams.
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Chapter 1

Introduction

An extraordinary set of experiments performed over the past several years have

demonstrated the feasibility of constructing remarkable electronic interfaces with

primate and human brains [44, 36, 40, 4, 25, 14, 32]. Such interfaces have proven

capable of stably recording electrical signals from populations of cortical neurons in

the brains of living subjects over periods of weeks or months, decoding the thoughts

encrypted in those signals, and using the decoded information to control mechani-

cal or computer-based interfaces in real-time. This kind of electronic interface with

the brain holds great promise as a therapeutic approach to treating severe paralysis,

and a dramatic demonstration of this promise received widespread public attention

several months ago following the publication of the results of the first human trial

of such a brain-machine interface in a severely paralyzed patient, along with a set of

supplementary video clips demonstrating the system being used by its first subject

to control a computer mouse by thought alone, and to manipulate a rudimentary

robot prosthetic arm [14]. The same set of video clips, however, showed evidence of

the long-term impracticability of the system being demonstrated. In particular, the

prototype used to obtain such promising results in its first human trial required a

transcranial, transdermal port (a port passing from the brain, through the bone of

the skull, and through the overlying skin) to guide connections from an array of wire

electrodes in the motor cortex of the patient's brain to an extensive external system

for electrical signal processing. Following a one-year trial period, the implanted port



Figure 1-1: Patient Connected to a State-of-the-Art Brain-Computer Inter-
face. The first patient to use the brain-computer interface described in [14], paralyzed
from the neck down, is shown beside a robotic prosthetic hand whose fingers he was
able to open and close using his thoughts alone. The transcranial, transdermal port
used to transmit signals from neural recording electrodes to external signal process-
ing hardware, is visible as a gray object on the right side of his head. From [14],
Supplemental Information, 'Video 6: Neural Control, Prosthetic Hand.'

was removed and the system dismantled. Any implanted device physically bridging

the intracranial cavity with the external environment provides a potential route for

infectious agents to enter the brain, and in consideration of this potentially disastrous

complication such a device cannot constitute a long-term solution to the problem of

developing a therapeutic electronic interface with the brain.

Two major drawbacks are associated with state-of-the-art brain-machine inter-

faces. First, they require transcranial, transdermal links to connect electrodes im-

planted in the brain to external systems used to power and decode recorded neural

signals. Second, the schemes used to decode neural signals are computationally inten-

sive and are implemented using power-hungry digital signal processing hardware and

software. In order to elevate present-generation devices in status from fascinating re-

search tools to therapeutic interventions, the devices will have to be made sufficiently

small and power-efficient to be implanted safely and completely within the body of

a patient. Implantable electronic medical devices have been used therapeutically for

years, including some prominent examples capable of recording and analyzing elec-

tronic signals. The cardiac pacemaker and deep brain stimulator, shown in Figure



1-2 are examples of such devices. The former delivers regular electrical stimuli to

a diseased heart in order to maintain an appropriate heartbeat, and is also capa-

ble of detecting intrinsic heartbeats and changing its pacing signals in response to

changes in native cardiac performance and physiologic requirements. The deep brain

stimulator, on the other hand, has been used to deliver controlled electrical stimu-

lation to the globus pallidus, a region of the brain implicated in mediating tremors

and other abnormal, uncontrollable body movements associated with neurologic con-

ditions such as Parkinson's disease [45]. As illustrated in the figures, each device

consists of a comparatively large power supply and signal processing unit implanted

in the chest wall, where space and heat dissipation are of minimal concern. This unit

is connected to recording or stimulation electrodes implanted in the anatomic site of

interest. In light of this existing paradigm for electronic medical implants, therapeu-

tic brain-machine interfaces might be expected to develop along similar lines, with

brain-implanted recording electrodes connected to wires that exit the skull but do

not pierce the overlying skin, and connect to a power supply and signal processing

unit implanted at a remote site within the body, such as the chest wall.

The research presented in this thesis is part of a collaborative effort to build a

practical neural motor prosthesis, a brain-machine interface capable of enabling par-

alyzed patients to gain thought-based control of artificial limbs. The collaboration

is based in the Analog VLSI and Biological Systems Group of the Research Labora-

tory of Electronics at the Massachusetts Institute of Technology. The ultimate design

goal of the project is to enable a microchip-based prosthesis with brain-implanted

electrodes, neural signal detection circuitry, neural signal decoding electronics, and a

wireless transceiver to operate with power consumption low enough for the system to

run on a small, implanted 100 milliampere-hour battery with 1000 wireless recharges

for at least 10 years. Such a system will represent an important step toward making

complex, brain-implantable motor prostheses a reality for paralyzed human patients.

As indicated in the preceding paragraphs, a major impediment to developing com-

plex, miniature, and power-efficient brain-machine interfaces is the extensive digital

signal processing currently required to decode electrical recordings from populations
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(a) (b)
Figure 1-2: Cardiac Pacemaker and Deep Brain Stimulation Systems. (a) A
typical cardiac pacemaker with electrode leads implanted in the heart and a remotely
located power supply and signal processing unit in the chest wall [23]. (b) A deep brain
stimulation system with electrodes implanted in the brain and a remotely located
power supply and signal processing unit in the chest wall [24].

of neurons into signals suitable for controlling an external device such as a computer

interface or robotic artificial limb. With the high power-consumption rates of dig-

ital electronics comes ease of programmability, and so state-of-the-art neural signal

decoding systems tend to use digital platforms almost exclusively [3]. It is possible,

however, to design a neural signal decoding algorithm that can be implemented using

ultra-low-power analog electronics. Such an algorithm could obviate the need for a

remote power supply and signal processing unit, enabling a self-contained electronic

interface with the brain to be implanted and to operate entirely within the skull cavity.

A fully implantable, ultra-low-power, microchip-based brain-machine interface of this

kind would represent a valuable therapeutic advance, as it could simplify procedures

associated with implanting and maintaining the bioelectronic device, possibly reduce

device-related complications by dramatically reducing the size and power dissipation

of the device, and potentially enable the simultaneous implantation of multiple de-

vices with a variety of brain-machine interface functions not limited to prosthesis

control.
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A major component of the challenge of developing a micropower neural prosthetic

interface is designing a neural signal decoding algorithm that can be implemented

using low-power analog electronics rather than the high-power, easily programmable

digital systems in widespread use at present. Chapter Two of this thesis describes

the theoretical basis for such an algorithm and discusses its practical implementation,

providing results from simulations and performance tests using neural signal data

recorded from trained experimental animals confirming the viability of the neural

decoding technique described.

The problem of decoding the intentions of a thinking subject from electrical signals

recorded from the brain essentially amounts to 'mind reading' in that it requires

translating the patterns of electrical activity generated by populations of neurons

(patterns that might reasonably be identified with the 'thoughts' of the subject)

into signals comprehensible to others or to external devices in forms such as control

commands to computer interfaces or robotic artificial limbs. On the surface, this

problem of 'thought translation' might appear to belong to the realm of science fiction.

In fact, however, such translation can be achieved with a relatively high probability

of accurate decoding given a small amount of a priori knowledge concerning the

information content of the brain region generating the recorded signals and a limited

number of degrees of freedom specifying the intention to be decoded. The a priori

knowledge typically amounts to knowing that the region of the brain under study is

implicated in the function of interest to the decoder; for example, neural recordings

from the motor cortex have been used for neural motor prostheses designed to decode

arm reaching movements [5]. The limited number of degrees of freedom might be

values of a set of kinematic variables describing the trajectory of a mouse cursor or

artificial limb in one, two, or three-dimensional space (although the parameter space of

kinematic variables describing the three-dimensional movement of a complex robotic

limb can certainly have dimension greater than three) or discrete values corresponding

to elements in a finite set of reach targets or perhaps the keys on a thought-controlled

keyboard. In any such system the neural decoding problem amounts to optimizing

a mapping of the form W : N --+ M, where N denotes the space of neural signals,



M denotes the space of motor output parameters used to control a neural motor

prosthesis, and W transforms neural signals into sets of motor parameters. Chapter

Two derives and discusses a decoding method in which W is treated as an m x n

matrix W of convolution kernels Wij, i E {1,... m}, j E {1,... n} (where m and

n denote the dimensions of the spaces M and N, respectively). A vector of motor

parameters M(t) E M at time t is derived from a neural signal N(t') E N, t' E (0, t],

by convolving W with N(t'). In this sense, W is a matrix of active filters Wiy,

whose inputs are neural signals and outputs are motor parameters. Each of the Wij,

in turn, depends on a set of p filter parameters, W ),..., WJ)}. Optimizing the

decoding performance achieved by W corresponds to tuning the parameters that

define the 4,ij so as to achieve the most accurate results. Chapter Two derives and

demonstrates a gradient-descent least-squares-based scheme by which the active filter

W can adaptively train itself, using feedback from its performance during an initial

training phase as in supervised on-line machine learning systems.

The final section of Chapter Two discusses how the neural decoding algorithm

developed earlier in the chapter can be implemented in an ultra-low-power analog

VLSI (very large scale integrated) microchip-based system. The actual design of such

a, chip is currently being pursued in the Analog VLSI and Biological Systems Group in

the Research Laboratory of Electronics at the Massachusetts Institute of Technology

by the author and fellow student Woradorn Wattanapanitch under the supervision of

Professor Rahul Sarpeshkar.

After Chapter Two discusses a method of decoding information encrypted in sig-

nals produced by populations of neurons, Chapter Three extends the range of neural

systems to which such a decoder is applicable by demonstrating that the decoding

techniques used to interpret motor signals in Chapter Two can also be used to de-

code head direction from a population of thalamic neurons in a laboratory rat. Such

on-line decoding of place-like cell activity is not typically possible using conventional

methods of analysis. Motivated by this innovation, Chapter Three develops and in-

vestigates a theoretical model of the way in which information is encoded, internally

represented, and internally manipulated by such neuronal populations as they process



and store sensory and higher-order information in the brain. It has been known for

three decades that populations of cells within the hippocampus, now known as 'place

cells,' collectively encode spatial maps as a result of each cell tuning to sensory para-

meters associated with a particular location [28, 2]. The robustness of the resulting

neurally encoded maps have enabled experimenters to infer the time-varying posi-

tion of experimental animals in controlled environments by observing the temporal

dynamics of place cell electrical activity in real time. From the successes achieved

in decoding hippocampal place cell activity emerged the concept, of 'population vec-

tor coding,' which conceived of kinematic parameters describing spatial position as

being encoded in the collective electrical activity patterns of populations of neurons

[11]. And indeed, one successful effort to develop a neural prosthetic arm employed

a population vector-based neural decoding strategy [41]. These developments further

motivate the modeling undertaken in Chapter Three.

Using the hippocampal place cell paradigm as a starting point, Chapter Three

develops a model of a generalized place cell, in effect a 'parameter space cell,' whose

activity pattern is tuned to a point in a parameter space. In this sense the general-

ized place cell can be modeled by an activity function fi(Y), 7 E X, i E {1,..., n},

where X denotes a space of arbitrary topology and dimension d, parameterized by

(S (X),...,Sd(j()) and neurally encoded by a population of n parameter space cells

{ fi(x),..., fn,,()} (in hippocampal place cells, the parameters modeled by the si are

typically sensory inputs such as visual, olfactory, auditory, vestibular, or propriocep-

tive cues experienced in association with a particular point in parameter space, such

as the location of a laboratory rat in an experimental maze [2]). The 'tuning' of a

parameter space cell activity function fi to a point xi E X refers to the existence of

a maximum of .fi(7) at i. Chapter Three develops the concept of a parameter space

trajectory as a way of formalizing the notion of a temporal sequence of experiences

learned and stored by a population of neurons, and later recalled in the absence of

the original stimuli as a 'train of thought.' The chapter develops a model intended to

explain how a network of neurons can learn to encode information about the struc-

ture of previously unfamiliar parameter spaces through exploration of those spaces,



experience-based adaptation of the functional forms of the fi, and modification of the

topology of the neural network. Some qualitative results generated by the model are

compared with experimental observations.

Given the success in understanding the neural encoding scheme of hippocam-

pal place cells and the extension of population vector-based decoding techniques to

neuronal populations relevant to the operation of neural motor prostheses, it seems

natural to wonder whether the parameter space cell generalization might provide a

reasonable model of the neural encoding dynamics and internal representations of

information stored and processed by a variety of neuronal populations. Future expe-

rience with neural motor prostheses and other brain-machine interface systems may

provide insight into the strategies used by the brain to encode information and enable

the parameter space cell model to be further refined and compared in greater detail

with experimental observations.

Chapter Four summarizes the results presented in this thesis and discusses several

directions for further research.



Chapter 2

An Algorithm and Analog

Architecture for Decoding Neural

Signals

2.1 Overview

As discussed in the Introduction, the research described in this thesis is part of a

collaborative research project whose goal is to design, build, and test a miniature,

ultra-low-power system of analog chips, suitable for long-term implantation in the

brain, and capable of adaptive, real-time decoding of movement intention signals to

be used in the control of prosthetic limbs in animal models, and eventually applied

in the treatment of paralyzed human patients. In order to ensure that the system

is fully implantable, its overall power budget requires that the system will be able

to run on a small, implanted 100 mAh battery with 1000 wireless recharges for at

least 10 years. This low power budget is made possible in large part by the ability

of carefully designed low-power analog signal processing to perform the functions

currently implemented by high-power digital electronics in state-of-the-art systems.

This chapter discusses the development of a neural decoding and learning algorithm

optimized for implementation in customized analog electronics.



A variety of decoding techniques for neural signals have been developed and im-

plemented successfully in rodents [6], monkeys [44, 40, 36, 4, 25] and humans [17, 8].

The methods employed in these systems have been reviewed in the literature and

include two primary strategies: adaptive linear filtering and probabilistic methods

[43, 49].

Testing of such algorithms typically involves observing an experimental animal

trained to perform a motor task in a stimulus-reward behavioral paradigm. In linear

decoding algorithms, a linear projection of the neuronal firing-rate variables is mapped

to a smaller set of motor variables over a certain time window. The projection matrix

is optimized by applying linear regression techniques to training data obtained from

simultaneous recordings of neural signals and limb position in experimental animals,

or in the case of a paralyzed human patient by simultaneous recordings of neural

signals and the motor command the subject is instructed to execute mentally [14]. In

Bayesian probabilistic decoding algorithms, data of a similar form is used to generate

a database of training trials from which maximum likelihood estimates of an intended

motor behavior are estimated conditioned on observing a particular neural signal [37].

The actual signals used to decode motor intentions in most systems reported to

date have been neuronal action potential 'spikes.' In addition, local field potential

(LFP) signals have proven to contain predictive information relevant to decoding

neural motor signals, with gamma band (25-90 Hz) activity containing information

predictive of' arm-reach direction and lower-frequency spectral activity predictive of

movement onset [37]. Neural prostheses designed to decode primarily from LFP

activity rather than from intrinsically high-frequency spikes may be able to operate

at reduced power due to their lower bandwidth requirements. Furthermore, LFPs are

likely to be more robust than spike signals since they represent the aggregate activity

of a population of neurons rather than that of a single unit, and so are less sensitive

to system perturbations such as electrode movement.

In spite of dramatic preliminary successes reported in the field of neuromotor

prosthetics, all existing systems accomplish neural decoding through the use of mas-

sive amounts of signal processing hardware and digital post processing. This chapter



describes a system designed to achieve real-time neural decoding in a miniature, im-

plantable, ultra-low-power context. The scheme is based on analog circuitry that im-

plements a continuous-time, adaptive linear filtering algorithm to map neural signal

inputs onto motor command outputs. The following sections describe the mathe-

matical foundations of this method, present results from simulations of the system

described, and discuss how it can be implemented in a low power analog electronic

setting.

2.2 A Gradient-Descent Least-Squares Approach

to Decoding Neural Signals

The function of neural decoding is to map neural signals onto the motor commands

to which those signals correspond. In a neuromotor prosthetic system, the neural sig-

nals are obtained from electrode interfaces with populations of cortical neurons. The

decoding system must transform those raw data into the control signals for manipu-

lation of a prosthetic limb. Such a system typically has two modes of operation: a

training mode in which it optimizes (or 'learns') the mapping it must implement, and

an operational mode in which it uses the learned mapping to control a prosthesis.

This section presents the mathematical foundations of a modified gradient-descent

least-squares algorithm that operates in real time and automatically learns how to

perform an optimized translation of raw neural signals into motor control parameters.

The gradient-descent least-squares algorithm is a method for optimizing a linear

transformation of the form WN(t) = M(t), where N(t) is an n-dimensional vector

containing the neural signal data (neuronal firing rates, analog signal values, or lo-

cal field potentials, for example) at time t, M(t) is a corresponding m-dimensional

vector containing the motor output parameters (limb or joint positions, velocities, or

accelerations, for example) generated at time t, and W is a matrix of linear weights

(formally analogous to a matrix of synaptic weights encountered in the context of

related problems in the field of artificial neural networks) used to convert the collec-



tion of neural signals N(t) into each of the motor control parameters in M(t). The

present section first describes a traditional gradient-descent least-squares procedure

for optimizing a static weight matrix, W [48, 13]. It then explains the construction of

a modified method that enables a time-dependent weighting kernel, W(t), to optimize

itself dynanm-ically through real-time learning.

Suppose the neural signal data consist of time-dependent voltage waveforms col-

lected from n neurons. Then N(t) denotes a column vector of dimension n whose ith

component, Ni(t), corresponds to the amplitude of the voltage waveform measured

from the ith neuron at time t. Similarly, suppose that m motor control parameters are

to be extracted from the neural signal data. These parameters might include variables

corresponding to linear speeds of motion in each of the principal directions and an-

gular velocities at limb joints [31]. Then M(t) denotes a column vector of dimension

mn, whose ith element, Mi (t), corresponds to the value of the ith motor parameter at

time t. Under these circumstances, W is an m x n matrix of time-independent, linear

weights.

A solution to this static neural decoding problem is achieved by optimizing W at

time t based on all data obtained by the system since a previous time, t - T, where

T is a tunable time constant of the decoding system. (The problem is 'static' in the

sense that W the decoded motor output signal at time t is assumed to depend only on

the neural input signals received at time t.) This process of optimization takes place

during the learning mode, during which M(t) is known. In experimental systems

on animals with functioning limbs, as mentioned earlier, M(t) can be obtained by

observing the motion of the limb, while in clinical settings M(t) can be obtained by

instructing a patient to execute a prescribed set of commands mentally [8] or mentally

to mirror a sequence of actions presented in a video sequence. During the operational

mode, by contrast, the function of the system is precisely to predict M(t) using

WN(t) a M(t) and the matrix W optimized during the training mode. In words, one

can state that W is considered optimized, in a least-squares sense, when the sum of the

squares of the deviation of its predicted motor control parameters is minimized over

a given time interval. This statement can be expressed mathematically, as follows.



The prediction error at time t is the vector

e(t) = M(t) - WN(t), (2.1)

so the sum of the squared deviations of all of the motor parameters from their pre-

dicted values at time t is

le(t) 2 = (M(t) - WN(t)) T (M(t) - WN(t)) , (2.2)

where the superscripted T denotes the transpose operation. The optimized weight

matrix must minimize this quantity integrated over a specified time interval T, so the

actual quantity to be minimized is

E(W, t, ) - le(t) 2dt (2.3)

= (M(t) - WN(t))T (M(t) - WN(t)) dt. (2.4)

The gradient descent scheme for optimizing W operates as follows. Since E is

quadratic in W, it possesses a unique extremum E(W*) when considered as a function

of W or its elements, Wij. The m x n elements of W can be taken to lie in an m x n-

dimensional parameter space, within which the optimized W, W*, corresponds to a

single point. The negated gradient of E with respect to the Wij,

-VE(W, t,) = E(W, t, (2.5)

= 2 N(t) (M(t) - WN(t)) dt, (2.6)

is then a vector (tangent to the parameter space of the Wij) with two important



properties. First, the vector -VE(W, t, T) is directed from the present value of W

toward a better approximation of its optimum value W*. Second, the quadratic

nature of E ensures that the magnitude of -VE(W, t, T) depends linearly on the

distance in 14Ti-space between W and W*, since the quantity M(t) - WN(t) in the

integrand of Equation 2.6 can be expressed as

M(t) - WN(t) = W*(t)N(t) - WN(t) (2.7)

= (W* - W) N(t). (2.8)

These properties facilitate the construction of a decoding system in which an initially

arbitrary W can be induced to converge automatically toward the optimum weight

matrix, W*, after suitably many T have elapsed. Such a system is constructed by

permitting -VE(W, t, 7) to serve as a feedback signal to modify each Wij in W in

proportion to aOE r) on a time scale set by 7 during the training mode.

The accuracy of predictions made by the static decoding scheme just described is

likely to be limited because the predictions it makes are based only on present inputs.

The information content and predictive value of recent data are therefore lost to the

system. Effective decoding should exploit the information content of prior data in

interpreting present inputs. The performance of the decoding system just described

can be improved by relaxing the static assumption made during its construction,

but doing so adds a level of complexity to the system. Such an improvement can

be achieved by eliminating the static W in favor of a dynamically optimized time-

dependent weighting kernel, W(t). If the elements of W are permitted to vary in

time, and if data at earlier times are permitted to influence present predictions,

the decoding scheme can be modified from its original form as a matrix product,

M(t) - WN(t), to a convolution product:

M(t) = W(t - u)N(u)du, (2.9)



in which the operator W(t) is reinterpreted as a matrix of time-dependent weighting

kernels. In this system, the prediction error at time t is the vector

e(t) = M(t) - L du {W(t - u)N(u)}. (2.10)

Optimizing the kernel, in a least-squares sense, still corresponds to minimizing a

quantity of the form E =f le(t) 2dt. However, bearing in mind that the aim of

this analysis is ultimately to design an effective active filter, further insight into

the system can be obtained by applying the theorem of Parseval, which provides that

f le(t)I2dt =f e(w) 2dw, indicating that the total error evaluated in the time domain

is equal to the total error evaluated in the frequency domain. The decoding scheme

can therefore be expressed in frequency space as

e(t) = M(t) - W(t) o N(t) --+ (t) = M(w) - W(w)N(w), (2.11)

where w denotes the frequency space variable, and the overbars and open circle denote

the Fourier transform and convolution product operations, respectively.

The gradient descent scheme for optimizing the weighting kernels can then proceed

in analogy with the procedure used in the initial system, although the meaning of cer-

tain quantities must be reinterpreted in accordance with the transformation to the fre-

quency domain. The vectors N(w) and M(w) correspond to the Fourier transforms of

the time-dependent vectors N(t) and M(t), respectively, but are of no special interest

as such because the decoding system will handle only the corresponding time-domain

signals and will not be required to perform any Fourier transforms explicitly. The

matrix W(w), however, can usefully be reinterpreted as an array of frequency-domain

filters, corresponding to the time-domain convolution with the time-dependent matrix

of weighting kernels, W(t). The filters can be constructed so as to depend on a set

of n parameters for each of the m motor control variables, so that W(t) is specified

by a total of m x n parameters, Wij(t), i E {1,...,m}, j {1,...,n}, which can



therefore be thought of as lying in an m x n-dimensional parameter space.

Since E(W(t), t) remains quadratic in W(t), it still possesses a unique extremum,

W*(t), when considered as a function of the parameters Wij(t). The negated gradient

of E with respect to the Wij(t),

=4 E(W(t), t)
-E(t) = E(W(t),t) (2.12)

- 2 M(t) - N(t) (W(t) o N(t)) dt, (2.13)
t'=0

is then a vector tangent to the m x n-dimensional parameter space containing the

elements of the filter W(t) that operates on the incoming neural signals in order

to decode them into motor commands. Once again, -VE(t) is directed from the

present value of W(t) toward a better approximation of its optimum value W*(t),

and its magnitude depends linearly on the parameter space distance between W(t)

and W*(t). As indicated earlier and as discussed in the next section, by using -VE(t)

as a feedback signal to modify W(t), each of the parameters Wij can be modified in

proportion to w over a predetermined timescale, so that an initially arbitrary W(t)

can be induced to converge toward an optimized matrix of convolution kernels; or, as

seen in frequency space, an optimized set of filters for the input neural signals.

2.3 An Algorithm for Decoding Neural Signals Us-

ing a Gradient-Descent Least-Squares Approach

This section describes a practical method of using the modified gradient-descent least-

squares approach developed in the preceding section to optimize a matrix W of

convolution kernels for estimating the motor intention M(t) encoded in a neural signal

N(t) as W o N(t) w M(t). During the learning period in which this optimization

takes place, W can be considered as a function of time, W(t). The optimization

algorithm is designed to induce W(t) to converge to W*, defined by W*N(t) = M(t),



to within a suitable margin of tolerance over a timescale shorter than the duration of

the learning period. In the least-squares framework, the goal of the learning phase is

to adapt W(t) so that the least-squares error over a specified integration interval, 7T

defined as

E(W, t, 7)= e(u) 2du (2.14)

= ei(u)12du (2.15)
m

- Ei, (2.16)
i=1

is minimized. The independence of each of the m terms in 2.15 is due to the inde-

pendence of the m sets of parameters Wi, j E {1,..., n} associated with generating

each Mi (t) and implies that the error Ei associated with each motor output can be

treated independently of the others. Since

e(t) = M(t) - j W(t - u)N(u)du (2.17)

M(t) - W(t) o N(t), (2.18)

as in Equation 2.10, a given motor control output, Mi(t), is given by

Mi(t) = E Wij(t) o Nj(t), (2.19)
j=1

where each Wij (t) can be thought of as the impulse-response function corresponding to

a filter applied to Nj (t). The problem of designing a practical algorithm for optimizing

W can therefore be construed as a problem of defining appropriate functional forms

for the filters Wij. If the functional form of each Wij is taken to depend on a set

of p parameters, Wji) k E { 1,..., p}, then the gradient-descent method provides an



approach to modifying those filter parameters toward a least-squares optimum. A

practical learning strategy for optimizing the matrix of filter kernels is to modify each

of the filter parameters continuously and in parallel, on a timescale set by T, in the

direction indicated by the negated gradient of Ei(W, t, T) with respect to each WiH):

-V. E(W, t, 7) (2.20)

= - du 2 M (u) - Wij(u)o N (u) x ( W•) o Nj(u)

(2.21)

= 2 e (u)• ) o Nj (u) du. (2.22)

Expressed in words, the learning algorithm refines W in a continuous-time fashion

on a timescale set by T. At each time step, each of the parameters W.() is incremented

by a term proportional to -V(' E(W, t, T), where the proportionality constant, E,

is a suitably small numerical constant whose value can be chosen empirically. The

quantity --V()E(W, t, T) used to increment each filter parameter can be described in

words as the product of the error in the filter output and a filtered version of the filter

input, averaged over a time interval r. The error term is identical for the parameters

of all filters contributing to a given component of the motor output, M (t). The

filtered version of the filter input is generated by a convolution kernel , which

depends on the functional form of each filter and in general differs for each filter

parameter. Considered in these terms, the learning algorithm is analogous to the

'delta rule' of artificial neural network theory [13]. Figure 2-1 shows a block diagram

of a system for implementing the neural signal decoding algorithm described in this

section. As discussed more fully in Section 2.6, the averaged product is implemented

by enabling the outputs of a set of product blocks alter the voltages on capacitors

designated for storing the voltage-encoded parameter values. These stored values are

modified through exponentially weighted averaging using low-pass filters.



et II

I _______

I'Q

______I T "t -,,( •747__ I'I , ( 1

, (1)

_ ,,•) • •

ii;

N,,(I)

Figure 2-1: Block Diagram of a System for Implementing a Continuous-Time
Modified Gradient-Descent Least-Squares Neural Decoding Scheme. This
figure diagrams a system for implementing the continuous-time modified gradient-
descent, least-squares neural signal decoding algorithm described in Sections 2.2 and
2.3.
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As discussed in detail in Sections 2.4 and 2.5, this decoding system was imple-

mented and tested using a set of first-order low-pass filters having transfer functions

of the form

Hij (s) = (2.23)
1+ -ijs

where s - iw. The corresponding impulse-response kernels therefore have the form

W (t) = L e >>j, (2.24)
Tij

where Aij W W(k= 1) and Tij - W( =2), so that

aw 3j (t) 1
S-e 'i (2.25)

OWij(t) • -jA - ( t.

Intuitively, this form of impulse-response kernel is analogous to multiplication of the

neural signal N(t) by an m x n matrix with elements Aij. However, the additional

parameter Tii associated with each Aij defines a characteristic time over which previ-

ous inputs N(t'), t' < t, influence the estimation M(t) = WoN(t) with contributions

that decay exponentially in t - t' at a rate set by -ij.

Equation 2.25 indicates that the partial derivative of the low-pass kernel used to

generate the kernel for modifying the zero-frequency gain constants Aij is a scaled

version of the original impulse response. Equation 2.26, on the other hand, indicates

that the partial derivative of the low-pass kernel used to generate the kernel for

modifying the time constants Tij is a band-pass filter with a tunable pass band. The

simulated performance of the neural signal decoding system as implemented using

filters of this form is discussed in Sections 2.4 and 2.5, and a scheme for implementing



the system using a set of low-power analog circuits is discussed in Section .

2.4 Performance of Linear Decoding Algorithm on

Simulated Neural Signals

As one way of testing the neural signal decoding algorithm described in Sections

2.2 and 2.3, a system was devised for simulating neural signals of the kind recorded

in a collaborating laboratory from the primate parietal cortex during experiments

that required the animals to perform directed arm or eye movement tasks [29, 1, 25].

Such experiments have demonstrated that the signals emitted by parietal neurons

just before arm or eye movement contain information predicting the direction of the

impending movement, and that this information is encoded primarily in the 25-90

Hz spectral component of the recorded local field potential (the 25-90 Hz regime is

referred to as the y-band) [29, 1]. In particular, individual parietal neurons tend

to exhibit electrical activity predictive of arm or eye movement in a single preferred

direction. Increases in -y-band activity of such tuned parietal neurons anticipate

movement in the preferred directions of those neurons. This phenomenon is exhibited

in Figure 2-2(a). A potentially useful signal for decoding intended movement from

neural activity is therefore an envelope curve describing the modulated amplitude of

the power transmitted in the gamma pass-band. Such a curve can be constructed by

tracing the peaks of the rectified output of a band-pass filter tuned to the y-band.

A band-pass filter and envelope detector (peak-detecting rectifier) operating in low-

power analog circuitry has been developed and described by other members of the

research group in which the present work is being pursued, so the feasibility of this

signal processing step has been taken for granted [34].

In order to test the performance of the neural decoding system, a set of simulated

y-band power envelopes were generated in order to model the local field potentials

recorded by a, set of n neural recording electrodes. One simulated spectrogram is

shown together with its corresponding '-band power envelope in Parts (b) and (c)
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Figure 2-2: Spectrograms of Recorded and Simulated Local Field Potentials
from the Primate Motor Cortex During Arm Movement. (a) Spectrogram of
local field potentials recorded in the macaque intraparietal cortex during eye move-
ment. Spectral activity in the 7-band (25-90 Hz) increases during the time interval
between the dashed vertical lines, when a cue is present instructing the animal to
anticipate moving its eyes in the preferred direction associated with the local field
potential at a single site in the intraparietal cortex. Gamma-band activity is absent
at the same site when the animal is cued for eye movement in the opposite direc-
tion. Similar neural tuning and spectral behavior are found in association with arm
movement. Modified from [29]. (b) Spectrogram of simulated local field potentials
associated with arm movement over an extended interval. Alternating intervals of ac-
tivity and inactivity reflect periods in which the arm is or is not moved in a preferred
direction associated with the neural site generating the simulated local field poten-
tials. (c) Envelope curve describing the modulation of spectral power transmitted in
the y pass band of the simulated local field potential.
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of Figure 2-2. In the main set of performance tests, the y-band power envelopes

were modeled using a set of sinusoids with randomized amplitudes and phases and a

constant offset term, and the corresponding waveforms were stored in the vector N(t).

A random rn x n matrix, W*, was then generated and used to construct a set of m

motor control parameters constituting the vector M(t). The vector N(t) was used as

the input to the neural decoding algorithm, which was also permitted to observe M(t)

during a learning period of variable length. Over this learning period, the algorithm

sought to optimize an m x n-dimensional convolution kernel internal to the decoding

system, W, of the form described in Section 2.3. The parameter c was set to 0.1 during

these simulations. The neural decoding algorithm generated consistently accurate

results, reliably learning to produce an output that converged to M(t), when tested in

this manner. In this sense the neural signal decoding scheme proved to be an effective

algorithm for supervised on-line machine learning. The decoding algorithm and the

simulations just described were implemented using Mathematica running on a 1.2 GHz

Pentium processor (Intel). Qualitative results are presented in Figures 2-3, 2-4, and 2-

5. A quantitative approach to evaluating the results is then presented and associated

computations are summarized in Figure 2-6. The quantitative method facilitates

a comparison of the neural decoding system presented here to others described in

the context of neural prosthetics for limb paralysis, summarized in Table 2.1 and

highlighted in Figure 2-7.

Figure 2-3 shows gradient-descent least-squares learning of a three-dimensional

trajectory in real time, achieved by the neural decoding algorithm implemented as

discussed in Section 2.3 in a typical test simulation of the form just described. The

simulation was performed using (n, m) = (11,3) (where n = 11 corresponds to 10

sinusoids supplemented by a constant offset), so the motor control parameters are

displayed in a three-dimensional plot, with M(t) normalized so that the trajectory is

bounded by a unit cube. The input trajectory M(t) is plotted in gray over a learning

interval t E [0, 40] s, while the decoded trajectory, M(t) - W o N(t), is plotted in

color over the same interval, both for visual clarity and to parameterize time in order

to illustrate the convergence of M(t) to M(t) as t increases over the learning interval.



As t increases, M(t) evolves through red, orange, yellow, green, light blue, dark blue,

violet, and finally magenta. Figure 2-3 illustrates qualitatively that M(t) converges

toward M(t) reasonably quickly on the timescale set by full-scale variations in the

trajectory.

Figure 2-4 shows the time evolution of three typical sets of parameters {Wik) } =

{Aij, ij } corresponding to the filters associated with Wij, the ij-component of W, for

three choices of ij. The plots of Aij(t) and Tj(t) illustrate two important phenomena.

First, both Aij and Tij exhibit convergence to steady-state parameter values over

the learning interval shown, as required for stability of the decoding system and as

expected on the basis of the trajectory shown in Figure 2-3. Second, the range of

values explored by Aij(t) and ij(t) during learning is small, despite the random

initialization of all Aij(t = 0) and Tij(t = 0). The reason for these small excursions is

that the parameter space defining W has dimension m x n x p, whereas W* is only

m x n-dimensional; furthermore, n = 11 > m = 3. The decoding system is evidently

underconstrained and as a result many sets of parameters will generate accurate

decoding performances. It is important to recognize that this underconstraining is

not simply an artifact of the simplified neural encoding model used here to test the

decoding system. Rather, real neural encoding is known to be highly redundant

in the sense that populations of neurons store related information, and the time-

dependent electrical activity waveforms of individual neurons within a population

of neighboring cells convey a significant amount of mutual information [25]. This

redundancy phenomenon facilitates decoding of neural signals but does not by any

means trivialize the problem of implementing a practical system for real-time decoding

of neural signals, particularly such a system that is constrained by a power budget

that can ensure safe operation of the decoder when it is chronically implanted within

the brain.

An important caveat for the decoding system involves constraints placed on the

form of N(t) and M(t) as seen by the algorithm, and constraints on the values assumed

by the filter parameters W( ). The former constraints correspond to routine issues

involving data normalization encountered in association with many machine learning
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Figure 2-3: Gradient-Descent Least-Squares Learning of a Three-
Dimensional Trajectory in Real Time. The input trajectory M(t) is plotted in
gray over a learning interval t E [0, 40] s (divided into four segments of 10 s each for
visual clarity), while the decoded trajectory, M(t), is plotted in color over the same
interval, with time parameterized by the shifting of hue from red through orange,
green, blue, violet, and finally magenta. M(t) converges toward M(t) reasonably
quickly on the timescale set by full-scale variations in the trajectory.
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systems [30]. In the simulations described here, N(t) and M(t) are transformed using

a hyperbolic tangent function before being used as inputs to the decoding algorithm,

so that the system sees Ni(t) and Mi(t) constrained to the interval [-1, 1]. This

normalization was selected in part due to the convenience of its implementation in

analog circuitry [22].

The constraints on Aij and Tij are more particular to the present implementation.

These parameters will be constrained by physical device characteristics in an analog

circuit-based implementation of the decoder, but in numerical simulations they need

not necessarily be constrained. If they are not, however, conditions may arise in

which Tij decreases during learning to a small positive value, making the ratios 1

and A which appear in Equations 2.25 and 2.26 used to adapt Aij and -j, large

in magnitude. Small fluctuations in ij about zero will then cause the terms -_ andTij

A to oscillate rapidly between large positive and large negative values (oscillations
rij

of this form will be damped by the value of e). Such behavior can lead to a certain

degree of instability in unconstrained systems. This potential for instability can be

avoided by constraining the values of Aij and ij, for example by restricting Tij to

positive values. Empirically, however, it was found that normalization of N(t) and

M(t) was sufficient to ensure system stability and robust convergence of M(t) to

M(t).

Figure 2-5 provides a final qualitative demonstration of the neural decoding sys-

tem, comparing each MI!(t) (plotted in black) to its corresponding MA(t) waveform

(plotted in red) after a typical learning period has ended, feedback of M(t) into

the system has stopped, and the filter parameters W9k) have been fixed. The time

intervals over which these waveform tracings are plotted is equal in length to the

learning period, and the paired tracings show that the Mi2(t) continue to track the

corresponding M~i(t) in the absence of feedback. Traditional performance metrics for

machine learning systems are typically based on the quality of estimations made by

the machine learning system on unseen data after learning has ended. The qualita-

tive comparisons illustrated in Figure 2-5 therefore suggest a quantitative method of

evaluating the performance of the decoding algorithm. A scale-invariant and dimen-
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Figure 2-5: Accurate Trajectory Prediction in the Absence of Feedback Con-
firms Effective Decoding. A typical set (i E {1, 2, 3}) of trajectory components
M••(t) (plotted in black), estimated by the gradient-descent least-squares algorithm,
are superimposed on their corresponding exact waveforms Mi (t) (plotted in red). The
time interval shown begins after the learning period has ended and extends for the
same duration as the learning period. Feedback of M(t) into the system has therefore
stopped and the filter parameters Wi") have been fixed. The paired tracings show
that the -Mi(t) continue to track the corresponding JMýI(t) in the absence of feedback,
confirming the effectiveness of the decoding.



sionless figure of merit for decoding is the normalized mean squared error r1, defined

as

S- dt (t) Li (2.27)
i=1 Li

In the expression for q, Li denotes the length of the space available to the motor

parameter trajectory in the ith dimension; that is, the maximum extent of excursions

permitted to Ali(t). The time T denotes the length of the training interval. In the

simulations presented here, hyperbolic tangent normalization scales M(t) to the unit

m-cube, so Li = 2. The quantity 7r can be approximated by a sum of the form

I N m Mi (T + n T ) - 1Mi (T + nT)
77 N N Li N (2.28)

n=1 i=1 )(
where a sum over N time samples over the interval [T, 2T] is used to approximate the

integral in 2.27. Note that the average value of rl computed for any single Mi (t), i E

{1,..., m}, should be independent of i, so that 7 = mr(1), where the superscripted

(1) indicates that r7 has been computed for a single 1Mý!(t). These observations permit

rough comparisons among performances reported in the literature for neural decoding

systems operating on various scales and with different numbers of degrees of freedom,

set by Li and m, respectively. It is possible to consider other figures of merit, including

ones based on correlations between M(t) and M(t) rather than absolute error, but

other authors have agreed that 77-like figures of merit tend to reflect decoding system

performance most reasonably [47].

Figure 2-6 presents the results of a set of computations of rl(l) for the performance

of the neural decoding system in simulations of the form described earlier in this

section. The system was trained for intervals of varying length up to one minute,

T e [0, 60 s], and the value of r(1) was computed for each of 50 trials at each value of

T. In a fraction f of trials at each value of T, the decoding performance as reflected
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Figure 2-6: Mean Squared Trajectory Prediction Error as a Function of
Training Time for the Gradient-Descent Least-Squares Decoding Algo-
rithm. The gradient-descent least-squares decoding system was trained for intervals
T of varying length up to one minute, and the value of l(i), the normalized mean
squared error, was computed for each of 50 trials at each value of T. The plot shows
the mean value of q(1) as a function of the learning interval T, with error bars in-
dicating one standard deviation. As expected, q(1) decreases rapidly as the training
interval increases. (The data used to generate this plot exclude an outlying 10% of
cases at each T in which the system could be randomly reinitialized and retrained to
generate markedly improved decoding results.)

by (1)(T) was significantly worse than in the remaining fraction, 1 - f, of cases. In

such cases markedly improved decoding, comparable to that achieved in the (1 - f)-

majority of cases, could be achieved simply by randomly reinitializing the parameters

Wi) and decoding again. The data presented in Figure 2-6 were obtained by setting

f = 0.1. Figure 2-6 plots the mean value of ]l(1) as a function of the learning interval T,

with error bars indicating one standard deviation. As expected, q(l') decreases rapidly

as the training interval increases. At T = 30 s, for example, ('(1l)) = 0.0080 + 0.0077,

as compared with a baseline value of (r(1)) = 0.118 0.106 computed for an untrained

system (T = 0) over 1000 trials.

These computations permit the simulated performance of the neural signal decoding

system described here to be compared with the decoding ability of state-of-the-art de-

coding systems reported in the literature. One such system, described by Donoghue

and colleagues, uses Kalman filtering and a Bayesian inference approach to neural

signal decoding. This system has been tested using neural data previously recorded

from the arm area of the primary motor cortices of macaque monkeys engaged in



Decoding Method 7(1)
Population Vector 0.011
Linear Regression 0.0038
Kalman Filter 0.0037
Gradient-Descent Least-Squares 0.0013

Table 2.1: Comparing the Decoding Performance of the Gradient Descent
Least Squares Technique to Results Obtained from Other Techniques. The
one-dimensional normalized mean squared prediction error, q(l), defined in Equation
2.27, can be used as a figure of merit to make rough comparisons among the decoding
performances of various neural signal decoding systems. This table compares the
results obtained using the gradient-descent least-squares algorithm in simulations
described in this chapter, to three other decoding techniques described in [47].

two-dimensional arm movement tasks [47]. The experimental system described by

Donoghue and colleagues has mn = 2 and L, = L, 25 cm 1. The Kalman filter

decoding technique obtains an unnormalized mean squared error of 4.66 cm 2 , corre-

sponding to 7/(1) . 0.0037, after a training interval of T = 150 s. The same study

also evaluated the performance of a, linear-regression-based decoding technique and

a population-vector-based technique in decoding the same experimental data and re-

ported unnormalized mean squared errors of 4.74 cm 2 and 13.2 cm 2, respectively, for

the two techniques, corresponding to q7(1) . 0.0038 for the linear regression method.

and r7/(1 0.011 for the population vector method. By contrast, the neural decoding

system described here yielded (77(1)) - 0.0013 for T = 150 in the simulations described

in this section. These comparisons are summarized in Table 2.1.

Direct comparisons between the results reported by groups such as Donoghue and

colleagues and those described here may not be entirely appropriate, as Donoghue and

colleagues have tested their decoding methods in numerical experiments using real

neural data, whereas the gradient-descent least-squares decoding technique described

here has as yet only been used to track model trajectories encoded by simulated neural

signals. However, the performance parameters listed in Table 2.1 can be thought of as

'While [47] states that the neural data used in the decoding experiments was obtained from
macaques engaged in moving a manipulandum within a 25 cm x25 cm workspace, the results
presented in that study indicate that as much as 40-50% of the space available to the manipulandum
in each direction is rarely if ever used during the trajectory-tracking trials. Normalizing r to the
smaller values that might appear appropriate on the basis of these reported results, however, could
generate values of qr(1) up to fourfold larger than the one reported here.



rough benchmark indicators of decoding performance, and in that sense they indicate

that the gradient-descent least-squares decoding technique developed in this chapter

compares favorably to state-of-the-art decoding techniques.

Despite the usefulness of figures of merit such as 7(1) as performance summary,

any single-valued performance parameter is likely to fall short of encapsulating the

effectiveness of a particular decoding system. Figure 2-7 is therefore provided in order

to facilitate a qualitative comparison of the gradient-descent least-squares technique

against the state of the art as embodied by the Bayesian-inference-based Kalman-

filter neural signal decoder of Donoghue and colleagues. Figure 2-7(a) reproduces the

results published by that group [47]. In the terminology of this chapter, it super-

imposes M(t) (dashed lines) on M(t) (solid lines) as estimated by the Kalman filter

over time intervals of 3.5 s. By contrast, Figure 2-7(b) shows a three-dimensional

trajectory decoded by the gradient-descent least-squares neural decoding system de-

scribed in this chapter, as modeled in the simulations discussed in this section. The

gray trajectory indicates M(t) while the colored trajectory represents M(t). The

shifting color of M(t) from red to green indicates time evolving from T = 40 s to

2T = 80 s. The successful performance of the gradient-descent least-squares neural

signal decoding system is apparent from the faithfulness with which M(t) reconstructs

M(t).

2.5 Performance of Linear Decoding Algorithm on

Data Obtained from Neural Recordings Dur-

ing Animal Behavior Trials

This section discusses a set of experimental tests of the neural signal decoder described

and simulated in the previous sections, using data recorded from the parietal cortex

of a live macaque monkey 2. Arrays of recording electrodes had been surgically im-
2The experimental data used to perform the tests described in this section were very graciously

provided by Professor Richard Andersen and Dr. Sam Musallam of the Division of Biology at the
California Institute of Technology.
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planted at several cortical sites in this monkey, and the monkey had also been trained

to perform a standard stimulus-response task involving arm-reaches to specific points

in a plane. Neurons in the parietal cortex have been implicated in encoding motor

function at the 'planning' or 'intention' stages [38], and so the purpose of these exper-

iments was to explore the possibility of predicting arm movements before they were

made, by learning to decode arm-movement intentions from the electrical activity of

neurons in the parietal cortex. One can imagine many potential uses for a system

capable of making such 'thought-reading' predictions, including 'neural prosthetic'

devices that would enable paralyzed people to gain thought-based control of robotic

artificial limbs. The results of these experiments have been published [25], and along

with other related studies, some of which are cited in other sections, they indicate

that accurate real-time decoding of neural signals is possible. However, all neural

decoding systems reported to date, including the one used by the investigators in this

experiment, have been implemented in software and are consequently unsuitable for

practical use in a biologically implantable device. The results of this section, encapsu-

lated in Figures 2-10, 2-12, and 2-13, indicate that the gradient-descent approach to

adaptive-filter decoding can match the performance of state-of-the-art, software-based

neural decoding systems; as discussed in Section 2.6, this approach has the advan-

tage of being implementable in miniature, micropower electronic circuits suitable for

long-term implantation in the brain. The present section is devoted to characterizing

the performance of the neural signal decoding algorithm in experiments involving real

neural data.

The behavioral task performed by the experimental monkey was structured as

follows [25]. The monkey initiated each iteration of the task by touching a central

cue point and looking at a nearby visual fixation point at t = -800 ms (its gaze was

tracked using an eye-tracking device, and cues were presented on a touch-sensitive

computer monitor). After a delay of 500 ms a peripheral cue was flashed from t =

-300 to t = 0 ms at one of four target locations toward the top, right, bottom,

or left edge of the screen. The monkey was rewarded if it reached to the indicated

target at the end of a memory period of 1500 + 300 ms (the reward consisted of



a calibrated sip of juice). The electrical activity of neurons in the parietal cortex

of this monkey was monitored over the course of each trial, and action potentials

('spikes') were recorded from each of 54 isolated neurons. The resulting 'spike train'

waveforms were converted to mean firing rates over the segment of the memory period

from t = 200 to t = 1100 ms by counting the number of spikes produced by each

neuron during that interval. These mean firing rates were used as the inputs to the

neural decoder: N(t) in the notation of this chapter. (The beginning and end of each

memory interval were omitted because these intervals sometimes contain residual

neuronal activity corresponding to actual arm movement, whereas the object of the

study was to determine how effectively intention-related neuronal activity could be

used to predict future arm movements.) The motor output M(t) was defined as the

two-dimensional position of the target to which the monkey reached at the end of a

corresponding memory period.

The precise constructions used for N(t) and M(t) in the tests described in this

section are as follow. Each iteration of the reach task has a single associated N,

where TN is an (n = 54 + 1)-dimensional vector, each of whose first n - 1 components

Nii, i E {1, ... , n - 1 = 54} is the average firing rate of the ith neuron over the

t = 200 to t = 1100 ms interval of that reach iteration. The final component, Nn = 1,

contains a constant offset provided by the system. The actual N used as the input to

the decoder was a transformed version N1, with each component rescaled according

to

Ni = - (2.29)
max INi

where the mean indicated by the angled brackets and the maximum appearing in the

denominator of Equation 2.29 are computed from the first 4so samples of 1N used

during the training period of the decoder (so was typically fixed between 2 and 10).

The means and maxima were computed in this way to facilitate simulations, but in

principle they could be updated dynamically through the use of a moving window, and



such a scheme might be more convenient to implement in analog circuitry as it would

not require long-term storage of any individual values of (Ni) and max Ni. Neural

recordings were made separately for each reach, and reaches in various directions

were performed in a random sequence. So since the sample of N corresponding to a

particular reach lasts for w - At = 1100 - 200 = 900 ms, piecewise-constant input

waveforms N(t) can be constructed by choosing a random subset {Rjj,..., Rj48, },

4so < 4sl < r, of reaches from the complete set {Rj}, j E {1,..., r} of r reaches

made by the monkey over the entire course of the experiment. (The meaning of the

double subscript indices is as follows: The first subscript j E {1,..., r} indexes the

full set of experimental reaches, while ji,..., j, 1 indicate a subset of sl choices of the

value of the index j). N(Rj) then refers to the average firing rates of the observed

neurons during the 200-1100 interval of the memory period corresponding to reach

Rj. The waveform fN(t) is then defined to be constant on intervals of length At = w,

with

) - )(kw - 1) < t < kw, k G 1... (2.30)

and Ni(t) is obtained from Ni(t) according to Equation 2.29. In other words, each

component NI(t) of N(t) is piecewise-constant over time windows of length w, with

the value of Ni over each window defined by the rescaled average firing rate of the ith

neuron during the memory period preceding a particular reach. The values of M(t)

indicate the direction of the reach corresponding to N(t). In this experiment, M is a

two-dimensional vector assuming one of four discrete values, encoded as follows:

Direction M1  M2

Up +1 +1

Right -1 +1

Down +1 -1

Left -1 -1

where analog outputs generated by the decoder were thresholded according to



A - sgnA'I, (2.31)

so that positive and negative outputs were interpreted as +1 and -1, respectively.

The piecewise-constant form of the input signals for the neural decoder reflects

a qualitative difference between the decoding problem in this experiment, which re-

quires the decoding system to make a series of decisions from among a finite set of

options, and the decoding problem framed in Section 2.2 and simulated in Section

2.4, which requires the neural decoder to estimate a smooth trajectory as a func-

tion of time. While the gradient-descent least-squares approach is applicable to both

kinds of problem, the convolution kernel chosen to implement the neural decoder,
Ai t

Wij = e ', is designed to exploit the predictive value of past input signals. The

degree to which past inputs N(t' < t) have predictive value is reflected by the value of

the time constant Tij, and as Tij -- 0 the time interval over which N(t' < t) contribute

significantly to the present-time output M(t) correspondingly vanishes. In this exper-

iment the signal to be decoded corresponds to a time series of discrete, uncorrelated

decisions made every At = w. Consequently, N(t') is completely uncorrelated from

N(t) and M(t) for It - t'I > w. (In concrete terms, since successive reaches are

independent, neural activity preceding one reach contains no predictive information

concerning the direction of the next reach.) As a result, effective decoding requires

Tij < w. More precisely, if the decoder is to predict an accurate value of M(t) by

the end of the memory period of length w, that value must be independent of in-

puts from the preceding memory period, and so the convolution kernel must suppress

inputs from the preceding memory period sufficiently to ensure that



Wij(t + w) < Wii(t)
A - +- Aj t

e ij< - e 'rij
7ij Tij

w

e ~i <K 1.

(2.32)

(2.33)

(2.34)

In the limit as Tij -* 0, the system becomes an 'instantaneous linear decoder' in

the sense that the convolution performed on the input signals becomes a matrix

multiplication:

lim Mi (t)
Tij -•O Vj

n

= lim
Tij -0 Vj

j=1
n

= lim
Tij--O Vj j

= lim
Tij -- 0 Vj j=1

=lim E

= lim
-ij-0 Vj

j=1
n=E Aij NJ

j=1

wj(t) o Nj(t)

t A o

Tij

A.Ai N (t)J e •*Tij x)-wiJ Nj(t)Tij (1 - e i0ij

t).

Here the parameter 6 is the time constant of a single decoder module and represents

a characteristic timescale over which the filter parameters are updated, which must

satisfy ij < 6 < w so that the filter parameters can adapt within each time window.

The physical significance of 6 is indicated in Equation 2.54 of Section 2.6, which

discusses the circuit implementation of the decoding system. Removal of Nj(t) from

the integral in Equation 2.37 is justified in this experiment because Nj (t) is piecewise-

constant and does not change on the time interval [t - 6, t] considered in the integral.

-u=6}

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)



More generally, however, that algebraic step is justified because values of Nj(u # t)

are exponentially suppressed by the convolution kernel in the rij -- 0 limit.

Because the decoding task in this experiment involved a time series of uncorrelated

inputs, the time constants 7ij were initialized to zero and not modified during the

training interval. Therefore, in the sense of Equation 2.40, the decoding scheme as

applied to the reach-intention neural data reduces to an instantaneous linear decoder,

analogous to a single-layer perceptron implemented with continuous-time feedback.

The neural data used in the experiments reported here were obtained by Andersen

and colleagues, who have described the performance of their own method of decoding

the recorded signals [25]. This technique, implemented entirely in software, involved

an analysis of variance to preselect a subset of the identified neurons having optimal

directional tuning, followed by Bayesian inference on the mean firing rates and first

several Haar wavelet coefficients of the signals obtained from the selected neurons.

The opportunity to test the gradient-descent least-squares approach to adaptive-filter

decoding on the same neural data used by Andersen and colleagues legitimizes a more

direct comparison with state-of-the-art neural decoding systems than was possible in

the discussion of Section 2.4, in which simulations of continuous-trajectory decoding

were compared with related results obtained by Donoghue and colleagues. The princi-

pal performance measure reported by Andersen and colleagues is a 64.4% success rate

in predicting the correct one of four allowed reach directions. Under corresponding

training conditions the neural decoding system described in the present work gen-

erated accurate predictions in 65 + 9% of trials (the uncertainty preceded by the +

indicates the magnitude of one standard deviation). As discussed in the remainder

of this section, decoding performance depends on a number of modifiable parameters

and can be improved over the initially quoted success rates. These benchmark figures

are provided at the outset in support of the idea that circuit-based adaptive-filter de-

coding can match the performance of even elaborate, software-based neural decoding

algorithms.

Figures 2-8 (a) and (b) display the performance of the decoder during and after

training, respectively. Figure 2-8 (a) plots the direct output of the decoder as a



black line for each component Ml!i(t), i E {1, 2}, and the thresholded value of M_!i (t)

indicated in Equation 2.31 is plotted as a filled blue square at time intervals equal to

the system update constant 6 (the zero-crossing threshold is indicated by a horizontal

line across each plot). The correct value, Mi (t), is plotted at each time point as an

open red square, so that correct predictions appear at each time point as blue boxes

with red borders, whereas empty red boxes indicate incorrect predictions. A correct

prediction of M(t) requires 1Mý1 (t) = M (t) and 1M 2 (t) = M2 (t), a condition indicated

graphically by vertically aligned pairs of red-ringed blue boxes; the ratio of ringed

to unringed blue boxes increases as the training period progresses, indicating (along

with the changing shape of the black waveform) the adaptation occurring during

that interval. The jagged shape of the waveform is a consequence of 6 < w, as

required for feedback to enable adaptation during the memory interval preceding

each reach movement (in the simulation shown w = 46). Figure 2-8 (b) consists of

a similar pair of plots showing M•i (t) over an interval of equal length immediately

following another training period. In the absence of feedback, the waveforms M/!(t)

are piecewise-constant because the Ni(t) signals they decode are piecewise constant.

In the Tij --+ 0 limit of the instantaneous linear decoder, the two-valued predictions

(+1 in each direction after thresholding) for each Mi facilitate the use of a geometric

construction to visualize the function and performance of the decoding system. Sup-

pose N(t) is interpreted as the position of a point in the (n - 1 = 54)-dimensional

space of transformed mean firing rates. Then the decoding system can be understood

in geometric terms as adaptively learning to draw one (n - 1 = 54)-dimensional hy-

perplane in Nj-space for each Mi that partitions the set of N(t) into a set of spatial

regions, each of which contains points corresponding to a single decision. In this ex-

periment there are four such regions, corresponding to arm movement in each of the

allowed directions ('Up,' 'Down,' 'Right,' or 'Left'). The information presented to the

decoder during training can be interpreted as consisting of a sequence of points N(t)

and corresponding statements for each component i as to whether N(t) lies above

or below the ith hyperplane. Learning can be understood geometrically as a process

of adjusting the position of the hyperplanes to accommodate this information as it
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Figure 2-8: Output Waveforms from the Neural Decoder During and After
Training on Experimental Neural Recordings from the Parietal Cortex
of a Macaque Engaged in an Arm-Movement Task. The direct output of
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the adaptation occurring during that interval. (b) Output After Training.
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is presented. Since the decision threshold for the decoder output M(t) = AijN(t) is

zero, the ith hyperplane is defined by the equation

n-1

0 = E Aijxj + Ain, (2.41)
j=1

where the xj correspond to coordinates in the firing-rate space occupied by the values

of N(t), and j E {1,..., n - 1} indexes the observed neurons. In this geometric

interpretation, the role of the extra degree of freedom, the constant offset having

index j = n, is to free the hyperplane decision boundaries from having to pass through

the origin. Figure 2-9 illustrates the performance of the decoding system using this

geometric construction. The figure shows a three-dimensional subspace of the full

54-dimensional N(t)-space, defined by the firing rates of the three neurons (j = 15,

j = 34, and j = 40) with the largest values of E• A?., the Aij having been set through

the standard learning period used in the tests reported here and by Andersen and

colleagues, which contained 30 reaches in each direction. Values of N(t) are plotted

in this subspace and color-coded according to their corresponding reach directions.

The sections of the i = 1 and i = 2 hyperplanes corresponding to the (j = 15, 34, 40)

subspace is shown as well, and the figure demonstrates the manner in which these

hyperplanes function as decision boundaries for the decoder. The observed values of

N(t) form diffuse clouds of points, with each cloud predominantly containing points

associated with arm movement in one of the allowed directions. The i = 1 and

i = 2 hyperplanes partition these clouds into different regions of space. A remarkable

property of the decoding algorithm is its ability to learn effective placement for the

decision boundaries when the data are presented as time series in on-line learning

experiments. That is, the system only receives information about one point at a time,

and must reposition randomly initialized hyperplanes by feedback-guided iterative

perturbation.

Interestingly, in almost any chosen low-dimensional subspace, the i = 2 hyperplane

separating 'Up' and 'Right' (plotted as red and blue points, respectively) from 'Down'
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and 'Left' decisions (plotted as black and green points, respectively) provides a more

robust classification than does the hyperplane for i = 2 (which distinguishes). This

phenomenon is illustrated in Figure 2-9, of which Part (a) shows the M2 = +1 ('Up'

and 'Right') side and Part (b) shows the Mi!2 = -1 ('Down' and 'Left') side of the

i = 2 hyperplane. It is difficult to find a low-dimensional subspace in which the

decoder robustly classifies the AM-components. If this is a meaningful observation,

its significance is more likely to be biological than algorithmic, perhaps reflecting

an asymmetry in neural coding, or alternatively suggesting a bias (possibly due to

neuroanatonmic location) within the population of neurons isolated by the implanted

recording electrodes. Apart from illustrating the greater accuracy with which M2-

values can be predicted by depicting the learned positions of the M1 and M 2 decision

boundaries, Figure 2-9 suggests that the clouds of N(t)-points, which are not plane-

separable in the subspace shown, may also not be hyperplane-separable. While some

of the ambiguity indicated by the cluster overlap shown in Figure 2-9 is resolved by

separation along axes not shown in the figure, perfect hyperplane-separation of the

data does not generally seem possible. These two observations can be illustrated

more quantitatively by examining the confusion matrix, shown in Table 2.2, for the

training set of N(t)-points plotted in 2-9 along with the decision boundaries fixed by

the Aij learned during their corresponding training period. The diagonal elements

in the confusion matrix of Table 2.2 indicate correct predictions. An examination

of the off-diagonal elements, corresponding to incorrect predictions, reveals increased

uncertainty in MN1 relative to 111M2. In the experiment illustrated in Figure 2-9 and Table

2.2, the increase is 9.2-fold. Averaging over randomized initial conditions and different

selections of the training set revealed that after learning, errors in NM1 (confusing Up

with Right or Down with Left) are 5.3 times more likely than errors in M2: this ratio

is less than 1 at a significance level of p < 10- 7, and the 99% confidence interval forKp(KCs(t)0MI()o)/ is (3.8, 7.3).

Figure 2-10 shows the dependence of decoding performance on the size of the train-

ing set used by the adaptive filters to optimize their Aij. Each data point represents

an average over random initializations of Aij and different subsets {Rj,..., Rj4s }



M= (+1, +1) Up
M= (-1, +1) Right
M = (+1, -1) Down

M = (-1, -1) Left

M=Up M=Right M=Down M= Left
112 3 1 3
5 117 0 0
1 0 113 8
1 0 7 109

Table 2.2: Confusion Matrix. This confusion matrix permits a more quantitative
assessment of the accuracy of the classification shown graphically in Figure 2-9. Diag-
onal elements correspond to correct decisions, while off-diagonal elements correspond
to incorrect decisions by the decoder. Statistical analysis of the elements of such
matrices obtained from repeated trials permits a comparison of the different kinds
of errors made by the decoder, such as the increased tendency to confuse err in M1
relative to l2.

with indices j E {1,..., r} and constructed so that each training subset contained sl

trials, and each trial consisted of a reach in one of the four possible directions, with

the directions ordered randomly. Signals from all 54 isolated neurons were decoded

to make the corresponding predictions of reach direction. As expected, decoding per-

formance improves with increased training. The plot also illustrates several subtler

points concerning decoding system performance. First, only a small amount of train-

ing is required to generate predictions significantly more reliable than chance. (The

horizontal line across the plot indicates the 0.25 threshold corresponding to unbiased

guessing.) In particular, after only five trials (18 seconds of training), the mean pre-

diction accuracy is 37 ± 11%, which is greater than chance at a statistical significance

level of p < 0.14. The statistical significance of greater-than-chance decoding perfor-

mance improves rapidly with increased training, falling to p < 0.06 after 10 trials (36

seconds of training) and p < 0.04 after 20 trials, as decoding performance increases

to 58 ± 21% and 59 + 19%, respectively. Second, the marginal benefit of additional

training declines rapidly, and the mean prediction accuracy after 30 trials is within

6% of the accuracy achieved after 60 trials. Third, prediction accuracy is highly vari-

able, particularly for short learning intervals. One source of this variability is the

random initialization of the parameters Aij. When the random initialization places

the Aij far from their collective optimum in parameter space, the convergence rate

of the learning algorithm may not be sufficiently fast to ensure complete convergence



in less than the time set by the learning interval. A second source of variability may

be intrinsic to the neural system. Andersen and colleagues also conducted smaller

sets of trials in which their experimental monkeys were permitted to reach to one

of six or eight targets. In these experiments, just as in the four-target trials, their

typical decoding success rate was 65 + 2%. These equivalent performances shown

in three decoding problems of graded difficulty suggest that a factor other than the

decoding algorithm itself is limiting the accuracy of decoding. That two different

decoding approaches, the one used by Andersen and colleagues and the one describe

here, yield similarly imperfect results further supports this possibility. In particular,

if the decoding algorithm is not the principal factor limiting decoding performance,

the neural signal itself might be. It seems reasonable to expect that even neural

signals associated with low-frequency events (including the discrete arm movements

studied in this experiment) encode information in signal attributes of higher order

than the mean firing rates used to construct N(t) in this set of tests. This expectation

is supported by the ability of Andersen and colleagues improve decoding performance

by considering Haar wavelet coefficients of order greater than zero (the zeroth-order

coefficient corresponds to the mean firing rate for the analyzed time interval). In

particular, they reported a success rate of 87% in off-line decoding experiments us-

ing large training sets [26]; the ability to implement such signal analysis in real time

using analog circuitry may therefore represent an important challenge. As might be

expected, Andersen and colleagues found that the zeroth-order wavelet coefficient

contained the most predictive information, with higher-order coefficients having de-

creasing predictive value. A further point to consider is that the parietal cortex may

encode incomplete information concerning intended limb movement, so that optimal

prediction might require neural signals from additional regions of the cortex.

The neural decoding scheme used by Andersen and colleagues is based in part

on the known tendency of direction-sensitive neurons to 'tune' to a single preferred

direction in the sense that only movement in a narrow range of directions centered

on the preferred direction induce the neuron to modulate its firing rate away from

a baseline rate [7, 2]. Figure 2-11 illustrates this phenomenon for a single neuron
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Figure 2-10: Decoding Performance as a Function of Training Set Size
(Training Time). This plot shows the dependence of decoding performance on
the size of the training set used by the adaptive filters to optimize their parameters
Aij (5 training trials entailed 18 seconds of training time). Each data point represents
an average over random initializations of Aij and different training subsets. Signals
from all 54 isolated neurons were decoded to make the corresponding predictions of
reach direction. Decoding performance is better than chance even for short train-
ing intervals, and improves with increased training, while the marginal benefit of
additional training declines rapidly.



(j = 10) by plotting neuronal spike rate waveforms over a memory period of 900 ms

for a trial involving one reach in each direction; the j = 10 neuron is evidently tuned

to direction (-1, +1) ('Down'). After observing a training set of reach trials, Ander-

sen and colleagues performed an off-line analysis of variance on the observed set of

spike trains (corresponding to arm reaches in each direction for each isolated neuron)

to rank the isolated neurons by degree of directional sensitivity. The computational

intensity of their decoding scheme was sufficiently high that inputs from only a sub-

set of isolated neurons were used in decoding after the learning period ended, and

this ranking provided a means of prioritizing neurons for use as decoder inputs. By

contrast, the gradient-descent adaptive-filter decoder described here easily handles

all 54 neuronal inputs in computer simulations of real-time decoding. Moreover, and

the analog-circuit-based implementation of that decoder described in 2.6 processes

all neuronal inputs in parallel, so the computational intensity of the decoding task

does not constrain the number of neuronal inputs the system can handle.

In the interest of considering the relative computational intensities of Bayesian

versus adaptive-filter decoding in a somewhat more quantitative fashion, the following

observations can be made. The number of operations required to handle a single input

to the decoder after training scales as n x m x p for an adaptive filter, where n, m,

and p denote the number of input channels, the number of output channels, and

the number of parameters per kernel, respectively. (The number of operations per

input during training scales in the same way.) The total memory requirements of the

system also scale as n x m x p because this is the total number of filter parameters in

the system. In spite of this scaling, however, the parallel architecture of the adaptive

filter ensures that computation time does not scale as a function of n, m, or p since

all of the convolution kernels operate in parallel and all filter parameters are updated

in parallel. By contrast, the number of operations required by a Bayesian decoder

to handle a single input after training scales approximately as n x m x d x log q,

where d denotes the number of possible discrete output values per output channel,

and q denotes the number of quantization levels into which the input signal is divided

when the prior probability distributions are computed during training; the logarithm



reflects the requirement that the decoder look up the prior probability associated

with a given input in a stored table containing q elements. The series architecture of

a typical digital processor ensures that the computation time per input scales in the

same way, so that the maximum sampling frequency f for inputs to the decoder is

limited approximately by

S
f < (2.42)nmd log q'

where s denotes the speed of the digital processor and has dimensions number of

operations per time. Furthermore, when the desired decoder output is continuous, as

in continuous-motion decoding rather than tasks involving movement in one of a dis-

crete number of allowed directions, the value of d required to approximate continuous

performance can grow large. Finally, the total memory requirements of a Bayesian

decoder scale as n x m x d x q.

The foregoing analysis indicates that the gradient-descent adaptive-filter approach

to decoding scales favorably with the number of neuronal inputs to the system as

compared with a Bayesian method. This is an important virtue of adaptive-filter

decoding, as there is consensus among investigators that decoding accuracy improves

and more complex decoding tasks can be performed without sacrificing accuracy as

more neuronal inputs are used [5], and improvements in multielectrode neural record-

ing methodologies and technologies continue to facilitate recording from increasing

numbers of neurons [27, 39, 46, 12].

The differences between the Andersen and adaptive-filter decoders with regard to

choosing neuronal inputs motivate the question of whether gradient-descent optimiza-

tion of the adaptive-filter implicitly organizes neuronal inputs according to relative

degree of direction selectivity, effectively accomplishing in an on-line fashion the in-

put selection task explicitly performed off-line in the Andersen decoding system. This

question can be partially addressed by comparing the direction sensitivity of neuronal

firing rates with the magnitude of the coefficients Aij. The magnitudes of the Aij re-
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Figure 2-11: Directional Tuning in a Single Neuron Persists Over Many
Trials. Each row of plots displays neural recording data from a single set of reach
trials in which the macaque monkey being studied made one arm reach in each of
the allowed directions. The intervals shown correspond to the memory period after
the monkey was cued regarding the direction to which it should reach, but before it
was permitted to perform the reach. Average neuronal spike rates were estimated
over these intervals by counting the number of spikes in each 100 ms subinterval and
dividing by interval length. The plots indicate that the neuron under study is tuned
to the 'Down' direction, and its spike rate averaged over the entire memory interval
is consistently highest in association with reaches in that direction.
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flect the weights assigned to the corresponding inputs Nj in predicting the output M1i,

and might therefore be expected to correlate with the directional information content

of the Nj signals. An indicator of the directional information content of the Nj can

be obtained from the function

(k(d) (z(d) 2

D(Nj) = d) (2.43)

where the index d specifies a reach direction for which the raw firing rates Nj of

neuron j are considered, and Kjkd)) denotes the mean value of the raw firing rate

of neuron j associated with a reach in direction d. Figure 2-12 shows a set of plots

that compare the parameters Aij with the directional sensitivity of the corresponding

neuronal inputs Nj as measured by D(INj). Figure 2-12 (a) shows the values of

D(Nj) for all j, with the indices j sorted in order of decreasing D(Nj). The plot

suggests that a subset of neurons contain markedly higher amounts of direction-

specific information than the remaining neurons. Similarly, Figure 2-12 (b) shows the

values of i=1,2 (Aij for all neurons j, with the indices sorted in order of decreasing

-i=1,2 (A7j) (the average values of Aij were obtained by averaging over values of

Aij learned under different sets of randomized initial conditions and different sets of

30 training trials). As is the case with the degree of directional tuning, the largest

magnitudes of the coefficients Aij are associated with a subset of all isolated neurons,

although the threshold between high and low values of 1i=1,2 (Ai) is less clearly

demarcated than in the case of the D(Nj). Figure 2-12 (c) is a scatterplot of the set of

points (D(Aj), V -i=,2 (AL)), j c {1,... ,54}. The threshold separating high and

low values of i=1 ,2 (Aij), corresponding to the vertical line across Figure 2-12, was

drawn to correspond with the sharp drop in that parameter between its ninth- and

tenth-highest observed values. The threshold distinguishing high from low values of

D(Nj) was drawn so that half of all observed values would fall above and half would

fall below the threshold. The scatterplot can be used to compare the numbers of points

63.



in the four regions distinguished by the thresholds just defined, and it indicates that

neurons assigned large regression coefficients Aij are on average approximately twice

as likely to exhibit strong directional tuning as are neurons assigned small regression

coefficients. Together these three plots suggest that gradient-descent optimization of

adaptive-filter parameters can function as an on-line method of prioritizing neuronal

inputs according to degree of directional tuning, implicitly and at low computational

cost performing a function analogous to the computationally intensive off-line analysis

used by Andersen and colleagues.

The ability of the adaptive-filter decoder to handle large numbers of neurons pro-

vides an opportunity to explore a decoding regime not accessible to Andersen and

colleagues. Figure 2-13 plots decoder performance as a function of the number of

neuronal inputs used by the decoder. While Andersen and colleagues only compute

these performance curves for up to sixteen neurons [25], the computational efficiency

of the adaptive filter enables performance to be evaluated for much larger numbers

of neuronal inputs. The computation illustrated in Figure 2-13 is therefore limited

only by the total number of neuronal inputs available. The computation was per-

formed under the standard training condition of 30 trials, and the error bars indicate

the magnitude of a standard deviation after averaging over sets of randomized initial

conditions and training inputs. As expected, decoder performance increases from

just above the 25% chance threshold to the maximum of approximately 65% reported

earlier in this section. The lower curve corresponds to random selections of the input

neurons, while the upper curve corresponds to preselection of neurons in order of

decreasing D(INj). The latter curve suggests, as might be anticipated from the analy-

sis presented in Figure 2-12, that decoding input signals from the subset of neurons

transmitting the greatest amount of directional information results in performance

nearly equivalent to that obtained from using the full set of available signals.

The experiments discussed in this section demonstrate that the gradient-descent

least-squares adaptive-filter approach can be used to decode neural signals predicting

intended limb movement with a degree of accuracy comparable to that achieved by

state-of-the art systems. A major advantage to the decoding approach presented here
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Figure 2-12: The Adaptive Filter Implicitly Screens for Neurons with Strong
Directional Tuning in an On-Line Fashion. (a) Degree of directional tuning
D(Nj) for all neurons j, with the indices j sorted in order of decreasing D(INj). The
plot suggests that a subset of neurons contain markedly higher amounts of direction-
specific information than the remaining neurons. (b) Root-mean-squared regression
coefficients V -i=1,2 (A) for all neurons j, with the indices sorted in order of de-

creasing J i1,2 (A). The largest magnitudes of the coefficients Aij are associated
with a subset of all isolated neurons, although the threshold between high and low
values of V i=1,2 (Aij) is less clearly demarcated than in the case of the D(Nj). (c)

Scatterplot of the set of points (D(A), i=1,2 (A)), j E {1,... ,54}. The verti-

cal line corresponds to the threshold separating high and low values of i=1, 2 (A ),
while the horizontal line corresponds to the median value of D(Nj). Relative numbers
of points in the four regions distinguished by the indicated thresholds suggest that
neurons assigned large regression coefficients Aij are on average approximately twice
as likely to exhibit strong directional tuning as are neurons assigned small regression
coefficients. Evidently the adaptive filter implicitly learns to screen for neurons with
relatively strong directional tuning, a function implemented at high computational
cost in other neural decoding systems.
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Figure 2-13: Decoding Performance as a Function of Neuron Number for
Randomly Selected Neurons and Neurons with Strong Directional Tun-
ing. Decoding performance is plotted as a function of the number of neuronal inputs
used by the decoder. Blue points correspond to experiments in which neurons were
selected at random for use by the decoder, while red points correspond to experi-
ments in which neurons were selected for use in decreasing order of their degree of
directional tuning (as measured by D(Nj)). While both curves tend toward the same
maximal performance when all neurons are used, decoding input signals from the
subset of neurons transmitting the greatest amount of directional information results
in performance nearly equivalent to that obtained from using the full set of available
signals.



is its low computational complexity and speed of operation relative to the state of

the art. As discussed in Section 2.6, these features enable the adaptive-filter decoding

system to be implemented in a micropower device suitable for long-term implanta-

tion in the brain. The ability to decode intended limb movement from neural signals

suggests that such a device could be used as a neural prosthesis for patients suffering

from paralysis, enabling them to regain natural, thought-based control of artificial

limbs----or perhaps eventually their own paralyzed limbs. By contrast, state-of-the-

art neural decoding systems depend on computationally intensive techniques and

algorithms implemented off-line using software. Such systems are necessarily power-

hungry and therefore unsuitable for safe implantation in delicate neural tissue. A

further advantage to the decoding system described here is that its learning occurs

on-line, so that; the decoder is operational immediately following training, and train-

ing can be continued until a preestablished error threshold is met. By contrast, the

Bayesian decoding technique used by Andersen and colleagues requires off-line analy-

sis of data obtained and stored during the training session. A delay between training

and operability is inevitable in such systems. Furthermore, it is not possible to de-

termine the error rate of such a system until the off-line analysis is complete, so the

possibility of having to iterate training and analysis in the event that performance

is not sufficiently good represents a certain inherent inefficiency relative to on-line

learning.

The 65% success rate of the decoding system, while comparable to that achieved

by more computationally intensive systems including those of Nicolelis and colleagues,

Schwartz and colleagues [41], and Andersen and colleagues [25], indicates that there

is considerable room for improvement. An outstanding question in the field of neural

prosthetics concerns the degree to which intelligent users can compensate for imper-

fect decoding through biofeedback. Marked improvements in performance along these

lines have been observed over time in both monkeys and humans [40, 4, 25, 14], but

such contributions from biological learning are evidently insufficient. As indicated

earlier in this section, improved performance can likely be achieved by considering

the temporal structure of the input neural signals at higher than zeroth order, which



might be achieved by changing the form of the filter kernels Wij. The results achieved

by Andersen and colleagues using Haar wavelets suggest that adaptive-filter imple-

mentation of wavelet-like decoding might be possible by incorporating variable delay

parameters into the form of Wij to translate rescaled versions of the filter kernel. The

question of whether a particular form of Wij is generally optimal for neural decoding

is an interesting subject for further experimentation, especially since other forms of

Wij can be tested using the techniques and procedures described in this chapter.

2.6 A Low-Power Analog Electronic Architecture

to Implement Linear Decoding of Neural Sig-

nals

This section outlines a method for implementing the gradient-descent least-squares

neural signal decoder in a system of low-power analog electronic circuits, using a cus-

tom 0.18 lpm CMOS process. The circuit design work described here represents an

ongoing collaboration with Woradorn Wattanapanitch, Graduate Student in the MIT

Department of Electrical Engineering and Computer Science. Several components of

the system design discussed in this section represent innovations, and the designs of

those components are described in detail. Other system components rely on standard

analog circuit building blocks or on the previous work of members of the Analog VLSI

and Biological Systems Group in the MIT Research Laboratory of Electronics; such

components are discussed in less detail and references to the relevant literature are

provided. Many of the ideas contained in this section are also included in an unpub-

lished manuscript written jointly with Woradorn Wattanapanitch and other members

of the Analog VLSI and Biological Systems Group [42], as well as a recently accepted

conference paper that discusses the implementation of the analog-circuit-based neural

signal decoder in the context of a full neural prosthetic system [35].

This section has several subdivisions. Section 2.6.1 considers the two primary

classes of input signals to be used by the decoder and how to preprocess them in an



analog context before passing them to the system used to implement the gradient-

descent least-squares algorithm. Decoding based on action potentials ('spikes') would

require a means of converting spike waveforms into time-averaged mean firing rates.

Decoding based on local field potentials (LFPs) would require band-pass filtering and

preliminary analysis of the spectral bands known to convey information relevant to

motor intentions. Analog signal preprocessing appropriate to each mode of opera-

tion is addressed in Section 2.6.1. Section 2.6.2 describes the circuit building blocks

required to implement the gradient-descent least-squares neural decoding algorithm.

As described in Section 2.3 and summarized in Figure 2-1, implementation of this al-

gorithm requires five main block types: (1) Adaptive filters corresponding to the Wij;

(2) Parameter-learning filters to adapt the {Wi ) } = {Aij, rij}; (3) Biasing circuits

to support the operation of the parameter-learning filters; (4) Multipliers; and (5)

Adders and subtracters 3. Figure 2-14 shows a single module from the mathematical

block diagram of Figure 2-1 alongside a block diagram indicating the circuit building

b)locks required to implement the functions of that module. The design of each block

is outlined in Section 2.6.2.

2.6.1 Input Signals for the Neural Decoder

Spike-Based Decoding

Neuronal action potential voltage spikes typically have a width on the order of 10- 3 s,

corresponding to frequencies in the kilohertz range. Spikes are therefore intrinsically

high-frequency events, and consequently unsuitable for direct use as input signals for

a low-power signal decoder. Spike-based inputs can be used, however, if they are first

transformed to lower-frequency signals (of order 1 Hz) through time-averaging. Such

3A complete implementation would also include memory blocks for storing parameter values
after the learning phase ends. Such blocks could consist of analog memory elements operating in a
switched sample-and-hold scheme to permit memoryless adaptation during the learning phase and
parameter storage as soon as learning terminates. Output from the memory and biasing circuits
could be multiplexed onto the adaptive filter nodes whose voltages correspond to the adaptive filter
parameters using a CMOS transmission gate. This scheme is indicated in Figure 2-14. But even
using digital memory elements might not increase total power consumption significantly, since the
termination of a learning phase is a rare event and so writing to memory, with its associated power
cost, occurs only infrequently.
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Figure 2-15: Interpolation Filter to Extract Mean Firing Rate Inputs for
Spike-Based Neural Signal Decoding. A third-order GmC interpolation filter
formed by cascading three first-order filters. The filter extracts a low-frequency mean
spiking rate from intrinsically high-frequency neuronal action potentials. This sig-
nal processing step is necessary for the decoding algorithm to operate at the low
frequencies required for a small power budget.

time-averaging can be implemented by low-pass 'interpolation' filters. The simplest

such filter is a first-order low-pass filter with transfer function Hi(s - i) - 1

and cutoff frequency fc = designed to 1 Hz. Smoother interpolation can be

obtained from a higher-order filter such as the third-order filter with transfer function

H3 (s) = 1, obtained by cascading three first-order filters as indicated in Figure

2-15, each having f, = 1 Hz. The analog implementation of such filters can be

achieved using a GC design: Gm, refers to the transconductance of the operational

transconductance amplifier (OTA) component, while C denotes the filter capacitance.

In such a filter f= _- , so a low cutoff frequency requires C to be large or Gm to
27r C

be small. Circuit layout area restrictions will constrain the maximum value of C to

approximately 4 pF, so a low f, requires Gm to be small. Since the transconductance

Gm is proportional to the bias current of its associated OTA, small values of Gm

require small bias currents. At f, = 1 Hz, transconductance amplifier bias currents

on the order of 10-14-10 - 13 A. Such small bias currents are not easily controlled

due to noise effects and transistor leakage currents, but suitable wide-linear-range

transconductance amplifiers have been developed and described in the analog circuits

literature [33].



Local-Field-Potential-Based Decoding

As discussed in Section 2.4, local field potentials recorded from the parietal cortex

encode information concerning limb trajectories in the -y-band of the power spectrum

(25-90) Hz. As modeled in Section 2.4, an envelope waveform proportional to the

gamma-band content of the local field potential is therefore a suitable input to the

neural signal decoder. Such an input waveform can be generated by passing the raw

local field potential signals through a band-pass amplifier tuned to the -y-band, rectify-

ing the output of the band-pass filter, and passing the result through a peak-detector

circuit to generate the envelope. Combined band-pass amplifier and envelope detector

circuits suitable for these purposes have previously been developed by members of the

Analog VLSI and Biological Systems Group in the context of a bionic ear processor

[34]. While the circuit architecture for extracting a 7-band envelope waveform will

be analogous to that used in the bionic ear processor, lower-frequency operation due

to the low frequency range of local field potentials would reduce power consumption

to approximately 1 pW in the case of a neural signal amplifier.

2.6.2 Analog Circuit Building Blocks for Implementing Gradient-

Descent Least Squares Neural Signal Decoding

Adaptive Filters

Each of the m x n adaptive filters used to implement the gradient-descent least-squares

algorithm must be designed to have a transfer function of the form

Hw,j (s) = , (2.44)
1 + Tij

as discussed in previous sections. Such a transfer function can be obtained from a

filter having the topology shown in Figure 2-16, which contains three standard, nine-

transistor wide-range operational transconductance amplifiers of the form described

by Mead [22]; the associated transconductances are denoted G (Aij, G(j), and G(Ri



Low-power performance can be assured by operating the adaptive filter circuit with

every transistor in its subthreshold regime. The transconductance G(A ij) is

where , denotes the gate-coupling coefficient of the MOS transistors in the filter,

which in this analysis are assumed to match well and have n, M 0.7; and VT = kT

where k denotes the Boltzmann constant, q denotes the electron charge, and T denotes

the Kelvin temperature. The transconductance G(Rih ) is and the associated

OTA is connected in a unity-gain-follower feedback configuration, with capacitor

Cd providing dominant-pole compensation; this circuit element provides reference

values for the filter parameters. Finally, the transconductance G(j) is , andUM VT

the associated OTA is also connected in a unity-gain-follower feedback configuration.

This configuration functions to set the time constant of the adaptive filter, Tij of

the transfer function in Equation 2.6.2. The approximate transfer function of the

adaptive filter is therefore

Vt(s) I(Ai) (2.45)
Vi(s) I(Rij) 1 + S rij

S(Rij )
G

M

which has the form required by Equation , with Aij = . and ii = (R TheSI(Rij ) GAI "

gain Aij of each adaptive filter can therefore be tuned by adjusting the current ratio

R(,A) while each time constant rij can be tuned by modifying the ratio - through

adjusting the bias current I(Tj).

Parameter-Learning Filters

As discussed mathematically in Section 2.3, the gradient-descent least-squares decoder

realized here implements the convolution kernels Wij with adaptive filters having im-

pulse response functions Wij (t) = -e 'i , corresponding to frequency-domain trans-
Tij

fer functions of the form given in Equation 2.6.2. The central idea behind gradient-

descent decoding is that optimization of the convolution kernels WYij can be achieved

through tuning of the filter parameters {Wi )} = {Aij, Tij} in proportion to -Vii E.
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Figure 2-16: Adaptive Filter with Tunable Parameters for Learning the
Optimal Convolution Kernels for Neural Signal Decoding. This adap-
tive filter features three standard nine-transistor wide-range operational transcon-
ductance amplifiers operated in their subthreshold regimes in order to ensure low
power consumption. This filter implements the transfer function Hw, (s) A as
Vout(_S) __IA__ 1
Vin (s) = 1 1+ -, so the gain Aij of each adaptive filter can be tuned by adjust-

n(s) (i (R +s j)
GAI

ing the current I(Aii) I(Rij) is a reference current), while each time constant Tij can

be tuned by modifying the ratio C'L through adjusting the bias current I(7 -).
G((ij)



As indicated in 2.22, such tuning can be accomplished in real time using signals pro-

portional to -vi ) E, whose construction requires convolution kernels proportional to

w• .(t) These convolution kernels can be implemented by 'parameter-learning filters'

with corresponding frequency-domain transfer functions of the following forms:

aw t) aw(2.46)aW (k>) aW (k)
8 A-

W + s(2.47)

8Wj(s )  1) 1 
(2.48)

AiiA 1 + STij

OWij (s) Aij s(
=. (2.49)aij (1 + s8ij)2

Figure 2-17 shows the designs for a pair of paramter-learning filters. Figure 2-17 (a)wA-
shows a first-order low-pass GmC filter with transfer function Wij' '(s) = to be

used as a 'gain-learning filter.' Figure 2-17 (b) shows a second-order band-pass GmC

filter with transfer function Wi,"(s) = to be used as a 'time-constant-learning

filter.' The time constant 7j = - for the two parameter-learning filters is identicalG •(rij)

to that of the adaptive filter, as described in Section 2.6.2. Correspondingly, the bias

currents and therefore the transconductances G(]j) in all three types of filter are

identical, so the time constants of all filters in the learning architecture are updated

simultaneously. Note that the actual transfer function of the time-constant-learning

filter need only be proportional to W i (s), so the factor-of- - difference between the

transfer function of Equation 2.49 and the filter shown in Figure 2-17 (b) is acceptable.

Implementation of the negation required by Equation 2.49 will be addressed in Section

2.6.2.

Multipliers

The multipliers that perform the operations ei(t) x ow(t) required by the gradient

descent algorithm, denoted by the symbol x in Figures 2-1 and 2-14, can be imple-
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Figure 2-17: Parameter-Learning Filters for Tuning Adaptive Filter Para-
meters Based on Error-Signal Feedback. The parameters of the adaptive filters
can be tuned in real time through error-signal feedback, using signals proportional
to -- -E. Construction of such signals requires convolution kernels proportional to

aw~i(t) These convolution kernels can be implemented by 'parameter-learning filters'

with corresponding frequency-domain transfer functions; appropriate transfer func-
tions are implemented by the filters shown. (a) A first-order low-pass GmC filter
with transfer function Wij () 1 to be used as a 'gain-learning filter.' (b) Ajl+srij

second-order band-pass GmC filter with transfer function WT (s) = Jj to be
used as a 'time-constant-learning filter.'



mented using wide-range four-quadrant Gilbert multipliers of the kind described by

Mead, which take four voltage inputs Vi, i E {1, 2, 3, 4} and a bias current Ib, and

generate an output current [22]. Each multiplication operation required by the system

must be implemented by a distinct Gilbert multiplier, but in the interest of notational

clarity multiplier circuit parameters and state variables are not indexed; circuit quan-

tities referenced will be understood to correspond to the particular multiplier under

discussion. As in previous sections, Wi(k1) stands for the 'gain' parameter Aij and

W(k=2) stands for the 'time constant' parameter T-j. Low-power performance can be

obtained by operating the multiplier circuit with all transistors in the subthreshold

regime. The input-output characteristic for the Gilbert multiplier is

Stan (V1 - V2 ) Ktanh (V3 - V4) (2.50)
lout = Ib tanh tanh (2.50)2VT 2VT

(V1 - V2 ) (V3 - V4), (2.51)2VT (.1)

where the approximation of Equation 2.51 is valid in the intended operating region,

where V,1 e- V2 and V3 - V4. Noninverting multiplication, as required in Equation

2.48 for adapting the Aij, can be implemented by feeding ei into V1, oww'(t) into V3,

and setting V2 and V4 to a constant reference voltage. On the other hand, inverting

multiplication, as required by the negation in Equation 2.49 for adapting the -ij, can

be implemented by interchanging the role of V3 and V4, feeding aw'j(t) into V4 , and
aw!•j)

setting V3 to a constant reference voltage.

The output of each multiplier is a current, lout, so the integrations required in

Equation 2.22 for updating the parameters Aij and Tij are conveniently implemented

by linear capacitors, as indicated in Figure 2-14. The voltages VAt3) and V on

the capacitors C(Aij) and C('j) used in adapting the parameter values Aij and 7ij,

respectively, are therefore given by



VAij _) ) T ' oi(uU o N(u) du (2.52)C (Aij) TW Jij

Vcjr i2j 0i(u) O o Nj(u) du, (2.53)

which have the form required by Equation 2.22. The filter parameters therefore vary

continuously in time according to the following equations:

A Aim I o fNt(

AV lm e(u) ( o Nj(u) du (2.54)6--0o C(Aij) 2VT U=t-6 Aij

AVC) C() 2VT ( W (t-u) o Nj (u) du, (2.55)

where 6 is the time constant of a single decoder module and represents a characteristic

timescale over which the filter parameters are updated.

Biasing Circuits

As discussed in Section 2.6.2, the filter parameters Aij and -ij defining the transfer

function of adaptive filter Wij are stored on the capacitors C(A i and C (r i , respectively.

Furthermore, as indicated in Section 2.6.2, the values of the filter parameters can be

tuned by adjusting the bias currents that determine G (Aj) and G(j). Since the
M "•Mgain Aij depends on c I(A j), while the time constant Tij depends on •-•. c

1 real-time adaptive parameter tuning requires a scheme for modifying I(Aij) in
I( ri j '

proportion to VCA
, 

) and I(,,) in inverse proportion to Vc(j)

Tuning I(Ai,) in proportion to variations in the capacitor voltage V(A%3) can be

accomplished by converting V(A,') into a current proportional to VC(A Z
j ) and then using

a current mirror to generate a copy of that current that is in turn used to set the

transconductance GM(Ai) of the adaptive filter. The conversion of VC(Aj ) into a current

proportional to VcA j ) can be performed by a wide-linear-range transconductance

amplifier (WLR) of the form described by Sarpeshkar and colleagues [33]. To ensure



that the current flowing into the NMOS side of the current mirror is always positive,

an offset current 10 is added to the output current of the WLR. Figure 2-18 (a) shows

a schematic of the gain-biasing circuit used to generate I(Aiy) c VCA).

Tuning I(), ) in inverse proportion to variations in the capacitor voltage Vcij) can

be accomplished using the circuit shown in Figure 2-18 (b), which operates as follows.

First, Vcj) is converted into a proportional current IP . as in the gain-biasing circuit.

A translinear circuit, formed by the four well matched MOS transistors M1 -M 4 , is
S12

then used to invert IP• j) , producing I() = -, where I, is a current reference that
(Tjj)

'scales' the inversion. A mirror copy of 1(,,) is then used as the bias current that sets

transconductance Gj) .

Adders and Subtracters

Each adder, denoted by the symbol E in Figures 2-1 and 2-14, sums the n outputs

of each set {WVij}, j E {1, ... , n} of adaptive filters contributing to (W(t) o N(t)) i =

M•i(t). The adders can be implemented using a follower-aggregation circuit of the

kind described by Mead [22]. The corresponding error signal, ei(t), is generated by

performing the subtraction MhN(t) - MIiý(t). This operation can be implemented by

another adder, with a unity-gain inverting amplifier negating the adder input from

Mi (t).

2.6.3 Estimated Power Consumed by the Gradient-Descent

Least-Squares Decoder Implemented in Analog Cir-

cuitry

Using the circuit designs presented in the preceding sections, a single decoding mod-

ule (corresponding to a single Wij and the circuitry required to optimize its parameter

values) can be implemented in approximately 3000 pm2 and should consume approx-

imately 0.3 /IW of power from a 1V supply in a 0.18 pm technology. This low power

consumption is due to the use of subthreshold bias currents for the transistors in

the analog filters and other components described in Section 2.6.2. A full-scale sys-
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Figure 2-18: Circuits for Setting the Bias Currents and Transconductances
that Determine the Adaptive Filter Parameters. The filter parameters Aij and
Tij defining the transfer function of adaptive filter Wij are stored on the capacitors

C(Aij) and C0 TJ), respectively. Since the gain Aij depends on cx I(Ai3), while
I(Rij )

the time constant Tij depends on oc 1 ,real-time adaptive parameter tuning
( ij ) I(rij)

requires a scheme for modifying I(Aij) in proportion to V(AIj) and 1(,,) in inverse

proportion to Vc>•). (a) The gain-biasing circuit, which uses a wide-linear-range

transconductance amplifier (WLR) to generate I(Aij) ox VCAcj ). The offset current Io
added to the WLR output keeps the NMOS input current positive. (b) The time-
constant biasing circuit, which tunes I(,,j) in inverse proportion to variations in the

capacitor voltage V (ii) using a WLR, a translinear circuit, and a current mirror, as
explained in the text.
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tem with n = 100 (100 neuronal inputs Nj(t) comprising N(t)) and m = 3 (three

motor control parameters Mi(t) comprising M(t)) would require m x n = 300 de-

coding modules, occupying a total area of approximately 1 mm2 and consuming only

approximately 90 pIW of total power.





Chapter 3

Decoding and Modeling Neural

Parameter Space Trajectories

During Thinking and Dreaming

3.1 Overview

The present chapter explores the use of adaptive-filter-based neural signal decoding

to analyze the activity of neuronal populations in contexts other than those intended

for the control of limb movement or external devices. In particular, Section 3.3

demonstrates how the decoding method developed in Chapter 2 can be used to predict

the head direction of a laboratory rat in real time on the basis of neuronal spike train

data recorded from a small population of thalamic neurons. One way of viewing this

result is as a new approach to real-time decoding of the thoughts of a live behaving

experimental animal. The successful decoding demonstrated in 3.3 then motivates

the development of a model intended to explain how networks of neurons learn to

encode information about the structure of previously unfamiliar parameter spaces

(such as the manifold of head orientations as experienced in a new environment) by

exploring those spaces.



3.2 Broadening the Definition of a Receptive Field

to Decode and Model Cognitive Maps of Gen-

eral Parameter Spaces

In analyzing the ability of an adaptive-filter to decode arm movement intentions from

the activity patterns of parietal neurons, Section 2.5 alluded to the concept of a neu-

ronal receptive field. The statement that a particular neuron demonstrates 'receptive

field' behavior refers to the tendency of that neuron to exhibit an activity pattern

that differs from baseline activity when certain stimuli are present. In Section 2.5

and as illustrated in Figure 2-11, parietal neurons were observed to exhibit direction-

dependent activity. Similar phenomena are observed in the context of continuous

parameter spaces such as those involved in selecting from a continuous range of pos-

sible directions as opposed to the discrete set available in the experiments discussed

in Section 2.5. Receptive field behavior, and in particular the tendency of individual

neurons to exhibit a sharp increase or decrease in activity specifically in the presence

of a well defined set of input conditions, is observed in a wide variety of neural sys-

tems [16, 2]. One classic example of such a system involves the hippocampal place

cell, which exhibits location-specific tuning. The decoding presented in Section 3.3

is based on recordings from a similar population of thalamic cells, whose receptive

fields tune to head direction. Place cell receptive fields form the basis of the cognitive

map hypothesis of O'Keefe and Nadel, which contends that place cells form the ba-

sis of neuronal encoding of physical environments [28]. Section 3.4 proposes a more

general conjecture: Receptive-field behavior in populations of neurons can form the

basis of neuronal representations of more general parameter spaces. It has been es-

tablished that the stimuli to which place cells respond, rather than physical locations

themselves, are in fact a variety of sensory stimuli associated with those physical lo-

cations [2]. Learned associations between combinations of those stimuli and physical

locations are responsible for the observation of location-specific receptive fields. If

such associations form the basis of the cognitive ability to form representations of



experienced interactions with the physical environment, one wonders how the associ-

ations can be learned by populations of neurons. Section 3.4 explores this question.

Moreover, regarding sensory stimuli as input parameters in a model neuronal system

raises the possibility that not only physical place but also coordinates in more gen-

eral parameter spaces can be learned and encoded by populations of neurons. The

model developed in Section 3.4 gives results that are in qualitative agreement with

experimental observations discussed in Section 3.3, and suggests possible means by

which biological neural networks form representations of the parameter space trajec-

tories that define their interactions with the environment. It is possible that such

representations form the basis of neuronal activity when environmental feedback is

absent, such as during thinking and dreaming.

3.3 Continuous Real-Time Decoding of Head Di-

rection from Thalamic Neuronal Activity

'Head direction' cells of the rat thalamus are neurons known to exhibit receptive

fields tuned to specific orientations of the head relative to the environment [18].

The tuning properties and temporal firing patterns of these and other place-cell-like

neurons are typically determined off-line after recording from populations of such cells

during behavioral experiments, through statistical analysis of recorded spike trains

[20, 19, 21]. This section demonstrates a new technique for on-line interpretation of

the tuning properties and temporal firing patterns of head direction cells, based on

the neural signal decoding technique developed in Chapter 2.

The experiment used to generate the neuronal firing data whose decoding is de-

scribed in this section involved a laboratory rat roaming freely in a circular maze for

a 30-minute period, during which its position, head direction, and neuronal activity

were monitored and recorded 1. The position and head direction of the animal were

1The experimental data used to perform the tests described in this section were very graciously
provided by Hector Penagos of the Wilson Laboratory in the Department of Brain and Cognitive
Sciences at the Massachusetts Institute of Technology.



tracked using a pair of light-emitting diode arrays mounted on the head, which was

imaged at a sampling frequency of 30 Hz using a 300 x 300-pixel charge-coupled device

(CCD) arrayy. Data from the imager were time-stamped for subsequent synchroniza-

tion with neural recording data. The neural recordings whose analysis is presented in

this section were made by a single tetrode placed in the thalamus of the experimental

animal. Spike sorting analysis of the recorded data isolated six neurons, and spike

trains from these neurons were used as inputs to the neural signal decoder.

Figures 3-2 and 3-1 illustrate the receptive field tuning properties of the thalamic

neurons used as inputs to the decoder. In Figure 3-2, spiking activity in the isolated

neurons is plotted as a function of position and head direction. Each of the six

plots shown in Subfigures 3-2 (a)-(f) represents spike activity in one of the six cells,

and each point represents a single spike. The position of each point corresponds to

the location of the rat when the spike was detected, while point color indicates the

direction in which the head of the rat was oriented (relative to the positive horizontal

position axis) when the corresponding spike was detected. The spatial distribution

of points is similar in all six plots, indicating that the thalamic neurons under study

have relatively little positional selectivity. By contrast, the points of each subfigure are

dominated by a different hue or set of hues, illustrating the relatively high sensitivity

of the corresponding cells to particular orientations of the head in absolute space.

Figure 3-1 displays plots of spiking activity and head direction as functions of time,

both in order to illustrate the receptive field behavior of the isolated neurons and to

show that the receptive fields of those cells are distributed over the encoded parameter

space (the 0-360' range of possible head direction angles). Figure 3-1 (a) shows the

normalized spike rate of each isolated thalamic neuron as a function of time over a

40-second interval during which the rat moved through its maze. A peak in the spike

rate of each neuron reflects the location in head-direction space of the receptive field

of that neuron. Figure 3-1 (b) plots the head direction of the experimental animal

as a function of time over the same interval shown in (a), showing that individual

neurons are consistently activated and deactivated as head direction enters or exits

the corresponding receptive fields.
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Figure 3-1: Spike Activity Plotted as a Function of Position and Head Direc-
tion Illustrates the Directional Tuning of Six Neurons in the Rat Thalamus.
Images (a) through (e) plot spikes recorded by a single tetrode from six thalamic neu-
rons in a laboratory rat. The rat roamed freely in a circular maze for a 30-minute
period, during which its position, head direction, and neuronal activity. Each plot
represents spike activity in one of the six cells, and each point represents a single
spike. The position of each point corresponds to the location of the rat when the
spike was detected, while point color indicates the direction in which the head of the
rat was oriented (relative to the positive horizontal position axis) when the corre-
sponding spike was detected. The correspondence between head direction and point
color is indicated by the legend beside (f). The spatial distribution of points is simi-
lar in all six plots, indicating that the thalamic neurons under study have relatively
little positional selectivity. By contrast, the points of each plot are dominated by a
different hue, illustrating the relatively high sensitivity of the corresponding cells to
particular orientations of the head in absolute space.
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Figure 3-2: Spiking Activity and Head Direction Plotted as Functions of
Time Illustrate Neuronal Receptive Fields and the Distribution of their
Peaks Over All Possible Angles. The two plots shown in this figure correspond
to data obtained from a single maze-roaming laboratory rat over the same 40-second
time interval. In (a) the normalized spike rate of each isolated thalamic neuron is
plotted as a function of time. The tracing for each of cells 1 through 6 has been
plotted in a different color, and the correspondence is yellow (1), green (2), light blue
(3), dark blue (4), magenta (5), red (6). Plot (b) displays head direction angle as a
function of time over the same temporal interval, and its time axis is vertically aligned
with that of (a). The pair of plots illustrates the receptive field of each of the isolated
neurons, showing that the spiking activity of each cell increases sharply as the rat
turns its head toward a particular direction. Moreover, the receptive fields of the
six isolated neurons are distributed over the range of possible angles, with preferred
orientations (as reflected by peak spiking rates) displaced from one another over the
range of possible head direction angles.



Head direction was decoded from the activity of the n = 6 isolated thalamic neu-

rons according to the method described in Chapter 2. Using the notation developed

in that chapter, the recorded spike train for each of the six neurons was used to

construct a single component Nj (t), j e {1,..., 6} of the raw input waveform N1(t).

The signal Ni (t) was defined as the number of spikes detected from neuron i in the

interval [t - At, t], At = is. The actual waveform used as input to the decoder, N(t),

was a transformed version of N(t), normalized by component according to Equation

2.29, which is reproduced as Equation 3.1:

Nj = j -(j) (3.1)
max (.j

The mean indicated by the angled brackets and the maximum appearing in the de-

nominator of Equation 3.1 were computed over an initial recording period of 200s,

although as indicated in Section 2.5 it may be convenient in future applications to

use continuously updated values for (Nj) and max Ni, computed over moving time

windows. The convolution kernels Wij(t), i = 1, j E {1,..., 6} were again given the
t

form A1e described in Chapter 2. The decoder output was defined as

n=6

M =il(t) = EWj(t)o Nj(t) mod 360, (3.2)
j=1

where M1 (t) is intended to estimate the head direction Ml (t) E [0, 360) computed

from the time-stamped CCD data. The adaptive filter parameters Wi ) E { Aij, Tij

were optimized through gradient descent over training intervals during which the

decoder error,

ei=(t) = (Mi(t) - Mi(t) mod 360) - 180 (3.3)

was made available to the adaptive filter in the feedback configuration described in



Chapter 2. Following these training intervals feedback was discontinued and the

performance of the decoder was assessed by comparing the decoder output Mi (t) as

defined in Equation 3.2 with M1 (t) for t outside the training interval.

Figure 3-3 compares the output M1 (t) of the decoder to the measured head di-

rection nM1 (t) over a pair of consecutive 200s intervals. During the first interval,

corresponding to Figure 3-3 (a), the filter parameters W.(') were adapted through

gradient descent on the square of the error function given in Equation 3.3. Figure

3-3 (a) shows M1 (t) (black) tracking M1 (t) (blue) with increasing accuracy as train-

ing progresses, illustrating that while initial predictions are poor, they improve with

feedback over the course of the training interval. Figure 3-3 (b) shows M l(t) (red)

and MA (t) (blue) over the 200s time interval immediately following training, after

feedback has ceased. Qualitatively, the figure illustrates that the output of the neural

decoder closely reproduces the shape of the correct waveform, predicting head direc-

tion on the basis of neuronal spike rates to within a variable offset and with a slight

time delay.

The performance of the decoder in predicting head direction was assessed quanti-

tatively using the normalized mean-squared error measure lq(1) derived in Section 2.4.

In the present system, r(1) is defined as

)= 1  ft 2- dt ) 2  (3.4)
t2 - t \ Li

N el (tl + n )t2-tl (3.5)

n=l Li 
(35)

where Li = 180', tl denotes the end of the training interval, and t2 denotes the end

of the testing interval over which the performance of the decoder was evaluated. In

the error computations described here, decoder error was assessed over an interval

of constant length t 2 - tl = 200s, with decoder error sampled at a rate of t2 =

1 Hz. In order to quantify the accuracy of head direction decoding as a function

of training time, rl() was computed for a set of training and decoding trials with
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Figure 3-3: Continuous Decoding of Head Direction from Neuronal Spiking
Activity. The gradient-descent least-squares method of Chapter 2 was used to train
an adaptive filter to decode the head direction of a maze-roaming laboratory rat from
spike trains recorded from six isolated thalamic neurons. Both training and testing
of the adaptive filter were conducted in simulated real-time. Subfigure (a) shows
filter output (black, predicted head direction angle) and measured head direction
(blue) over 1the 200s time interval during which the filter parameters were adapted
through gradient descent as described in Chapter 2. The black tracing tracks the blue
one with increasing accuracy as training progresses, illustrating that while initial
predictions are poor, they improve with feedback over the course of the training
interval. Subfigure (b) shows filter output (red) and measured head direction (blue)
over the 200s time interval immediately following training, after feedback has ceased.
The output of the neural decoder predicts head direction on the basis of neuronal spike
rates to within a variable offset and with a slight time delay, closely reproducing the
shape of the correct waveform.



increasing lengths of the training period, at each training period length averaging over

randomized initial settings of the filter parameters and different choices of training

interval. The results of this computation are displayed in Figure 3-4, which shows

improving accuracy of head direction decoding with increased training.

The values of q(1) obtained in head direction decoding are considerably larger than

those observed in the systems discussed in Section 2.4. Two principal limitations on

decoder accuracy are likely responsible for a considerable portion of this difference in

performance. First, the small number of neurons used to provide inputs to the decoder

limits decoding resolution due to the size and distribution of neuronal receptive fields

over head-direction space. Only n = 6 neurons were used in this study, whereas n > 50

neurons were available to the decoder in Section 2.5. The larger number is much

more typical of systems reported in the literature on neural prosthetics [40, 4, 25, 14].

Furthermore, as discussed in Section 2.5 and verified through simulations reported in

that section, decoder performance improves as a function of the number of neuronal

inputs. A second limitation on head-direction decoding performance is the intrinsic

noisiness and grainy quantization of the head direction tracking system, data from

which were used both to generate the feedback signal used to train the decoder and

to compute ,q(). The neural signal decoder smoothens some of this noisiness in a way

that is consistent with typical speeds of rat head movement, but at the expense of

increasing values of the normalized mean-squared error. Insofar as the adaptive filter

was required to optimize its parameters on the basis of a noisy feedback signal, it

might be regarded as having to solve a problem analogous to that of 'learning from a

noisy teacher,' which has been investigated in the machine learning literature and is

known to be more difficult than the case of noiseless feedback [10]. The slow rate of

improvement in decoder accuracy with increasing training may also be due in part to

the noisiness of the available head direction waveform, though the speed of effective

training is certainly limited by the physical speed with which the experimental animal

moves its head, exposing the decoder to different correct associations of input and

output signals.

An approximate physical meaning can be attributed to the parameters Tlj and Alj
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Figure 3-4: Accuracy of Head Direction Decoding Improves with Increasing
Training. This plot shows the improving accuracy of head direction decoding with
increased training as indicated by decreasing values of the normalized mean-squared
error, 7(1) associated with longer training periods. The mean squared error was
computed as described in Section 2.4 (but the prediction error was estimated over a
200s interval following training rather than an interval equal in length to the training
interval) for a set of training and decoding trials with increasing lengths of the training
period, averaging over randomized initial settings of the filter parameters and different
choices of training interval. It seems likely that higher values obtained for 'q(l) relative
to those observed in the systems discussed in Section 2.4 are due at least in part
to the intrinsic noisiness of the head direction tracking system, data from which
were used both to generate the feedback signal used to train the decoder and to
compute 7(). The neural signal decoder smoothens some of this noisiness in a way
that is consistent with typical speeds of rat head movement, but at the expense of
increasing values of the normalized mean-squared error. The slow rate of improvement
in decoder accuracy with increasing training may also be due in part to the noisiness
of the available head direction waveform, though the speed of effective training is also
limited by the physical speed with which the rat moves its head, exposing the decoder
to different correct associations of input and output signals.



learned by the adaptive filter. Since head movement describes a continuous trajectory

in the periodic one-dimensional parameter space of head direction angles, neuronal

inputs from times t - At will convey information regarding head direction at time t,

where At «< - and v denotes a typical angular velocity of head movement. For

the jth neuron, Tlj reflects an approximate value for At over which past firing rates

of neuron j contain information about present head direction. Since Ni(t) can only

contribute to M1 when Ni(t) = 0, the time constant Trj reflects the width AOj of the

receptive field of neuron j in head-direction space and should scale approximately as

V , where Oj denotes the head direction angle at which neuron j is maximally active

(the center of its receptive field) and AOj denotes the full width at half maximum of

its spike rate as a function of head direction angle, Nj(0). The regression coefficients

A 3I can be used to estimate the values of Oj in the approximation of nonoverlapping

receptive fields and Tlj < O

= - Aljmax N-(N) (3.6)
max Nj

= Alj max (Nj(0)) , (3.7)

where (Nij) and max Nj are defined as in Equation 3.1. Equation 3.7 states that

in the indicated approximation, the central tuning angle Oj of the receptive field

of neuron j can be estimated as the product of Alj and the maximum normalized

firing rate of that neuron. This approximation holds because when Tlj are small the

system approximates an instantaneous linear decoder as discussed in Section 2.5, and

when receptive fields do not overlap, maximal activity of neuron j indicates M1 (t) =

Oj. Figure 3-5 illustrates the viability of this interpretation of A y. The histograms

in Subfigures 3-5 (a)-(f) show the probability densities for neurons 1 through 6,

respectively, to spike as a function of the head direction angle of the experimental

animal. They were computed from neuronal recording data obtained over a 30-minute

period during which the rat roamed freely through its maze. The grey vertical bar

in the histogram for the jth cell is centered on the head direction angle computed



using Equation 3.7 from a value of Alj obtained after averaging over randomized

initial settings of the filter parameters and different choices of training interval. The

width of the jth grey bar spans one standard deviation in either direction from the

predicted value of preferred head direction. These estimates identify the preferred

head direction of three of the six observed neurons, and the standard deviation of the

estimation error

Alj max (Nj(0)) - Oj (3.8)

for the set of six observed neurons is 510.

3.4 A Model for Learning and Neural Encoding of

Parameter Space Structures

The ability of the adaptive filter decoding technique to learn to interpret the activity

patterns of a population of place-like-neurons in real time, as demonstrated in Section

3.3, suggests that this method of neural signal decoding might be generally applicable

to studying the ways in which experience-related parameters are encoded in biological

neural networks. Section 2.5 demonstrated that this decoding method can interpret

motor parameters encoding the directions of intended arm movements, while Section

3.3 demonstrated that the decoder can interpret the activity of head direction cells,

whose activity reflects the presence of combinations of sensory parameters. Analysis

of the adaptive filter parameters learned by the decoder applied to both systems

revealed that those parameters reflect the tuning properties of the receptive fields of

the neurons whose activity patterns were used as input signals for the decoder. The

derivation of the decoding system, presented in Section 2.2, indicates that successful

decoding would be possible for input signals encoding information in ways other than

through receptive-field-style tuning. However, the prevalence of receptive fields as

an encoding scheme in biological neural networks suggests that a model of receptive-
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Figure 3-5: Learned Filter Parameter Values Correlate with Receptive Field
Tuning of Neurons Used for Decoder Input. The adaptive filter parameters
AIj, j E {1,..., 6} learned by the decoder can be interpreted as approximations
of the preferred head direction angle of the corresponding neurons. The accuracy
of this approximation is limited by the widths and degree of overlap among the
receptive fields of the neurons providing the decoder inputs, as well as by the degree
to which decoder output depends on past inputs (reflected by the nonzero values of
T7j, j E- {1 ..... 6}). The histograms in (a) through (f) show the probability densities
for neurons 1 through 6, respectively, to spike as a function of the head direction
angle of the rat. They were computed from neuronal recording data obtained over
a 30-minute period during which the rat roamed freely through its maze. The grey
vertical bar in the histogram for the jth cell is centered on the head direction angle
computed from a value of Alj obtained after averaging over randomized initial settings
of the filter parameters and different choices of training interval. The width of the
ith grey bar spans one standard deviation in either direction from the predicted value
of preferred head direction. These estimates identify the preferred head direction of
three of the six observed neurons.
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field-based encoding of general parameter spaces by neural networks could be a useful

counterpart to the decoding system capable of interpreting the activity patterns of

such systems. This section begins the development of such a model.

How do biological neural networks make sense out of new experiences in unfamil-

iar environments? Regarding unfamiliar environments as regions of parameter space

coordinatized by values of sensory stimuli, and modeling experiences as trajectories

in those parameter spaces, the question just posed can be reinterpreted as asking how

neural networks learn the topological structure of new parameter spaces. Parameter

space trajectories experienced through exploration of a new environment convey topo-

logical information about parameter space structure by indicating continuous paths

through the space. The model presented in the following subsections seeks to address

two questions. First, Subsection 3.4.1 addresses the question of how neural networks

can learn to represent position in unfamiliar parameter spaces by adapting the dis-

tribution of neuronal receptive fields in response to new stimuli. Second, Subsection

3.4.2 addresses the question of how a neural network can learn allowed parameter

space trajectories. Subsection 3.4.3 indicates investigational lines along which this

model could be refined and extended.

3.4.1 Adaptation of Receptive Fields to a New Parameter

Space

In order to motivate the model of the present subsection through continuity with the

decoding problem of Section 3.3, consider the problem faced by a, population of head

direction cells in the rat thalamus when the rat is introduced into an unfamiliar maze.

The range of sensory parameter values corresponding to what the animal sees, hears,

and feels with its head oriented in various directions in this new environment might

be entirely different from the range of sensory stimuli it has experienced in other

environments. How does the population learn the range of values and combinations

of sensory stimuli that correspond to the possible head orientations in this new envi-

ronment? A plausible hypothesis, grounded in experimental observations concerning



receptive field encoding, is that the neuronal population adapts the configuration of

its receptive fields, in response to experience, toward a distribution whose activity as

a function of sensory-parameter-space position conveys a maximal amount of infor-

mation regarding head direction. The model presented in this subsection proposes

one scheme for such an adaptive reconfiguration of receptive fields.

Let a network of n neurons sensitive to stimuli {sl,..., Sd} defining a d-dimensional

parameter space exhibit parameter-space-position-dependent activity (analogous to

normalized spike rate) functions {fi,...,f,}. Each functions fi is characterized

by a preferred point xi in parameter space and a set of d distribution half-widths

{w j)}, j {1,..., d} in each parameter-space direction. The preferred point xi rep-

resents the center of the receptive field of neuron i and is coordinatized by (s1 (xi),..., Sd(,i)).

A convenient family of bell-shaped functions with these properties can be obtained

from quartic polynomials restricted to domains defined by the half-widths w):

k=d

fi(S S. = . Sd) k(Sk) (3.9)
k=1

0 Sk - Sk() i wk)

k(Sk.) k kk) 2  k ki) + k) 2  k Ski k)

(3.10)

The definitions of Equations 3.9 and 3.10 construct the fi so that each fi is maximized

at xi, with f (xi) = 1; fi(£) = 0 for £ outside the d dimensional hyperprism centered

at 'i and having edges of length 2w in each of the d parameter space directions j E

{ 1,..., d}; and f (£) decreasing monotonically with distance from xi to the boundaries

of the indicated hyperprism. Suppose further that the neurons are mutually connected

so that each neuron receives a signal F(t) = (fi(t),..., fn(t)) describing the activity

of all other neurons as a function of time.

When the network is first exposed to an unfamiliar region X of parameter space

corresponding to a new environment, the receptive fields modeled by the fi are



assumed to be randomly tuned, with the xi and (j ) uncorrelated with one an-

other and with the structure of X. Criteria for an optimal configuration of the

receptive fields might require that there be minimal overlap among the receptive

fields fi but that every point XF E X correspond to a nonzero activity pattern

F(£) = (fi(t),... , f,(t)) - (0,...,0). One approach to optimizing the configura-

tion of receptive fields in this sense is to adapt the parameters Fi and w(j ) in response

to the activity patterns F (£(t)) experienced as X is explored along parameter space

trajectories F(t), as follows. At every time step t all pairs of neurons are considered

in turn. The half-width parameters w- are modified according to

wj)(t + At) = w (t) J (1 + ) e- (fi((t))fk( (t))) (3.11)
kri

where r is a small parameter that sets the threshold for receptive field overlap. The

iterative modification of half-widths defined in Equation 3.11 narrows the widths of

receptive fields that are coactive at a given point x(t) in parameter space, sharpening

receptive fields around their maxima. But in order to ensure nonzero activity in

the population at all Z E X, receptive field half-widths are incremented if the level

of coactivity of neurons i and k, as measured by the product fi (Y(t)) fk (Z(t)) of

their activity functions, is less than the overlap threshold - In ( 1) - e. Receptive

field centers are modified at t in a repulsive or attractive manner depending on the

magnitude of receptive field coactivity:

?i(t + At) = i(t) + Y (ii - k) (fZ (7(t)) fk (M(t)) - 0), (3.12)

k•i

so that receptive field centers interact repulsively or attractively when the coactivity

of their fields is greater or less than e, respectively.

Figure 3-6 presents the results of a simulation of the adaptive scheme outlined

in this subsection for modifying the receptive field configuration of a neural network



with n = 6 exploring a (d = 1)-dimensional periodic parameter space, for the purpose

of comparison with experimental data observed in Section 3.3 in the context of head

direction cell receptive fields. Subfigures 3-6 (a) (f) illustrate the adaptation of the

receptive fields as the system explores the 360 degrees of periodic parameter space

along a trajectory of the form Y(t) = t mod 360. Initially the receptive fields are

broadly and randomly tuned to inputs from the new parameter space, and the series

of subfigures illustrates slow convergence toward a stable equilibrium configuration

in which receptive fields distribute over the new parameter space in a way that op-

timizes the information content conveyed by their joint firing functions with respect

to parameter space position. The displayed results also bear a qualitative similarity

to the experimental observations illustrated in Figure 3-2, which shows real activity

in a population of n = 6 thalamic neurons as a function of the head direction of a

laboratory rat exploring a circular maze. This resemblance supports the possibility

that a similar adaptive mechanism may be at work in biological neural networks for

learning the structure of unfamiliar parameter spaces.

3.4.2 Neural Network Learning of Parameter Space Trajec-

tories

After the receptive fields of a neural network have assumed a suitable distribution

over the parameter space region of interest, the network faces the problem of having

to learn the structure of that region. When external stimuli are present, the temporal

sequence of sensory parameter stimuli experienced by the network defines a trajectory

in parameter space, X(t), as described in Subsection 3.4.1, that determines the state

F(A(t)) = h(fl (7(t)),. . ., f,n (Y(t))) of the network as a function of time. Periods when

stimuli are present can be understood as training intervals for the network. Impor-

tantly, however, place cells also exhibit activity in the absence of external stimuli. In

particular, a, fascinating set of experiments has shown that firing patterns observed

in populations of place cells observed during exploratory behavior in awake animals

are recapitulated during sleep, in the absence of the original environmental stimuli
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Figure 3-6: Adaptive Sharpening of Receptive Field Tuning in Model Neu-
rons Exposed to Inputs from a New Parameter Space. Subfigures (a) through
(f) show the timecourse of adaptive sharpening of the receptive fields of six model
neurons exposed to inputs from a new parameter space. For concreteness, the pa-
rameter space coordinates are associated with head direction. Initially the receptive
fields are broadly and randomly tuned to inputs from the new parameter space. In the
simulation that generated these plots, the system explored the new parameter space
along a trajectory corresponding to constant-direction cycles through head direction
angles. Adaptive sharpening involved coactive neurons reducing their receptive field
widths and shifting their field centers in an activity-dependent fashion. The series
of figures illustrates that this scheme for modifying neuronal receptive fields enables
a population of neurons to spread over a new parameter space in a way that raises
the information content conveyed by their joint firing functions with respect to para-
meter space position. These results are also qualitatively similar to the experimental
observations illustrated in Figure 3-2.
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[20, 19]. These observations suggest that networks of place-like cells are capable of

learning parameter space trajectories and in that sense forming representations of

parameter space structure internal to the network. This subsection proposes a model

for how neural networks can learn paramter space trajectories and reproduce them in

the absence of feedback.

Suppose that after an initial period of adaptation the receptive field distribution

of an n-neuron network has stabilized so that every point X in a new region X of

parameter space is associated with a unique network state F(£) = (fi(t),..., fn(t)).

Suppose further, as in Subsection 3.4.1, that the n neurons are mutually intercon-

nected. In the presence of a parameter space input £(t) at time t, the state of the

network is determined by X and is F(£(t)) = (fi (A(t)) ,..., fn (£(t))). In the absence

of an input Y.(t) C X, however, the state of the network at time t is a function of

its state F(t' < t) at earlier times, and of the strengths of the mutual synaptic con-

nections among the networked neurons. As a spatially and temporally discretized

analogy to the neural decoder used in previous sections, consider time to proceed in

steps of size At and let the neural network state at F(t+ At) at t+ At be a function of

its state at the two previous time steps, F(t) and F(t - At). The ability to distinguish

among several trajectories passing through a point £ E X requires more information

than simply F(t), and so allowing F(t + At) to depend on F(t - At) is analogous

to providing velocity information at time t and as an additional initial condition,

enabling the network to resolve such ambiguities. Further let the parameter space

region X consist of a lattice of f discrete points {f(o), ... , £(e-1)}. Then each point

X(i) corresponds to a unique network state 1i), defined as

Ii) -- F ((i)) . (3.13)

Using this notation, the network state at time t + At can be expressed as
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Is(t + At)) = Tls(t - At)) 0 Is(t)),

where s(t') c {0, ... ,- 1} and the transition operator T reflects the synaptic weights

defining the directed, asymmetric connections among the n neurons. Since s(t + At))

is a function of Is(t)) and Is(t - At)), it is convenient to represent T as an £2 x2

matrix operating on the product space having elements of the form Is(t - At)) Is(t))

and generating time-translated product states Is(t)) Is(t + At)):

Tls(t - At)) 0 Is(t)) = Is(t)) 0 Is(t + At)). (3.15)

In this description, the problem of enabling the neural network to learn parameter

space trajectories consistent with the structure of X on the basis of trajectories Y(t)

presented through sensory experience can be framed as a problem of adapting the

transition matrix T. Trajectories can be embedded in T through learning according

to a modified Hebbian adaptation scheme. At each time step t along a presented tra-

jectory 7(t), the matrix element (s (7:(t)) 0(s ((t ±+ At)) ITs (A(t - At)))®ls (7(t)))

corresponding to the correct forward-time transition along the trajectory, is incre-

mented; the matrix element (s ((t - At)) 0 9 (s (A(t)) ITIs (7(t))) 0 Is ((t + At))),

corresponding to the backward-time transition along the trajectory, is decremented;

and matrix elements corresponding to all other possible transitions are decayed by a

small amount. This learning scheme can be implemented by restricting all elements

of T to [0, 1] and choosing a small parameter e < 1 to set the rate of matrix element

adaptation. Matrix element incrementing can be accomplished by the transformation

(s (A(t)) 1 9 (s (7(t + At)) TIs (7(t - At))) 0 |s (re(t)))

- ((s (A(t)) 0 (s (A(t + At))I Ts (A(t - At))) 0 Is (A(t)))) 1 (3.16)
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while matrix element decrementing can be accomplished using the inverse transfor-

mation

(s (•(t - At))1 (9 (s (•(t))ITIls (Z(t))) s (X'(t + At)))
1

((s (I£(t - At)) 0 (s (((t)) ITIs (£(t))) 9 Is ((t + At))))'. (3.17)

The matrix element decay transformation must be chosen so that if the mean recur-

rence time for a trajectory is rAt, r - 1 decays followed by one increment result in

an overall increment. If the decay transformation is to have a form Tij - Tid similar

to that of the incrementing and decrementing functions, then the decay exponent is

therefore bounded from above by the condition

(T(n-)d) Ti (3.18)

(n - 1)dE < 1 (3.19)

1
d < 1 (3.20)(n - 1)E'

The decay exponent is also bounded from below by 1 < d, since 0 < Tij < 1 and
decay implies Td Ti Choosing 1 < d = + 1 < 1 therefore completes

2s 2(n-1)E (n-1)E

the learning rule.

Figure 3-7 graphically depicts the process of learning the matrix T of state tran-

sitions corresponding to the set of allowed parameter space trajectories when X is a

one-dimensional periodic lattice containing e = 6 sites. This parameter space struc-

ture only admits state transitions of the form Ii) -i i+1 mod £) between neighboring

lattice sites, so learning the structure of this parameter space amounts to learning

to transform product states of the form Is(t - At)) 0 Is(t)) into corresponding states

|s(t)) 0 Is(t + At)) such that s(t) = s(t - At) ± 1 mod e and s(t + At) = s(t) ± 1

mod f, where the ± designates the sense of the trajectory around the lattice. For

f = 6, T is an (£2 x E2 = 36)-dimensional matrix, represented in each of Subfigures
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3-7 (a) (f) by an array of shaded squares. Each matrix element is represented by a

square whose shade is a function of matrix element value, with 0 and 1 represented

by black and white, respectively, and intermediate values represented by interpolated

shades of gray.

In the example presented here, the neural network learned the allowed transitions

by exploring the parameter space in both possible directions along a trajectory that

periodically reversed direction, with synaptic weights evolving according to the mod-

ified Hebbian scheme described earlier. The result of this learning scheme is that

a randomly initialized synaptic weight matrix T(t = 0), depicted in Subfigure 3-7

(a), evolves over time as depicted in Subfigures 3-7 (b)-(e) into one that encodes

the trajectories permitted by the structure of the parameter space, as the system ex-

plores that space. The perfect transition matrix, shown in Subfigure 3-7 (f), is nearly

identical to the matrix obtained at the end of the learning interval, shown in 3-7 (e).

Figure 3--8 illustrates the ability of the trained neural network to reproduce allowed

parameter space trajectories after learning, in the absence of external stimuli. Matrix

elements Ti can be interpreted as transition probability amplitudes, and when T has

been learned perfectly its matrix values assume only values of 1 or 0 so that a coherent

state Js(t-1))•0 |s(t)) is transformed into the next state in the trajectory as a coherent

state, s(t))cis(t+l1)). A sequence of such transformations, constituting replication of

a learned parameter space trajectory, is illustrated in Subfigure 3-8 (a), which shows

the time evolution of the neural network encoding the one-dimensional periodic lattice

with f = 6 sites described earlier. The transition matrix was learned almost perfectly,

so that after presentation with an initial condition the system cycles through the

lattice sites, occupying each in turn with nearly unit probability. Subfigure 3-8 (b),

by contrast, illustrates the result of learning and subsequent performance under noisy

conditions in which the system occasionally experienced disallowed transitions during

learning, so that the learned matrix T permits transitions of the form i) -- IJ i ± 1

mod f) with small probability. The result following learning is decaying occupation

probability of the correct-trajectory state over time, with leakage of probability flux

to multiple states so that coherent initial states are observed to decohere over time.
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Figure 3-7: Learning the Matrix of State Transitions Corresponding to a Set
of Parameter Space Trajectories. The synaptic weight matrix T that translates
neural network states forward in time, defining the parameter space trajectories the
network can store and reproduce. The parameter space considered is a 1-dimensional
periodic lattice of f = 6 sites, so T is (36 x 36). The only permissible state transitions
are of the form ji) -~ Ii + 1 mod f), so the correct form (f) of T has 12 elements
equal to 1 and all others zero. The network learns allowed transitions by exploring
parameter space in both directions, with Tij evolving according to an asymmetric
modified Hebbian scheme augmented by a decay rule. Learning enables a randomly
initialized T(t = 0), depicted in (a), to evolve through exploration of parameter
space as depicted in (b)-(e), to encode the trajectories permitted by the structure of
the space. Matrix elements are represented by squares shaded according to element
value. Black and white represent 0 and 1, respectively, and interpolated shades of
gray represent intermediate values.
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As the noise is also present after learning, it can present new initial conditions to the

network at random, resulting in apparent reversals of trajectory direction (compare

the trajectory from t = 10 to t = 20 with that from t = 30 to t = 40) as well

as suI)erposition states of both the forward and reverse trajectories (observed here

starting at t := 0 and again at t = 70).

If dreaming is identified with post-learning (feedback-free or external-stimulus-free)

activity in biological neural networks, the system properties illustrated in Subfigure

3-8 (b) suggest a model for some phenomena alluded to earlier in this section. In

particular, the observations presented in Subfigure 3-8 (b) suggest an explanation for

the observation that rat place cells exhibit activity patterns during dreaming similar

to those observed during maze-roaming (parameter space exploration). The model

presented here suggests that transitions between learned parameter space trajectories

(analogous to 'trains of thought') that occur during dreaming may be due to the de-

cay of one recurrent neural activity pattern followed by the noise-induced initiation of

another, where noise sources could include sensory stimuli present during sleep. The

trajectory superposition phenomenon illustrated in Subfigure 3-8 (b) might explain

in part the appearance of never-experienced associations common in human dreams.

3.4.3 Refining and Extending the Model of Neural Network

Learning of Parameter Space Trajectories

The model for neural network learning of parameter space structure presented in Sec-

tion 3.4 raises a number of questions that indicate interesting directions for continued

investigation. In particular, the model was illustrated for a simple, one-dimensional

topology, explored in discretized space and time. It is logical to ask whether the

model can be extended to more complicated topologies, higher-dimensional para-

meter spaces., and continuous space and time. Furthermore, the notion of learning

parameter space structure through exploring allowed paths and then reproducing

them in the absence of input parameters suggests that the principal structural infor-

mation derived from exploratory learning is topological. However, since movement
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Figure 3-8: Presence or Absence of Noise During and After Learning Deter-
mines Whether Trajectories are Followed Indefinitely and Whether Trajec-
tory Switching Can Occur. Subfigures (a) and (b) illustrate how state occupation
probabilities evolve over time after the synaptic weight matrix T has been learned
and the system initialized in state 10) 9 It - 1). Subfigure (a) illustrates the result
of learning under noiseless conditions. Following learning and the presentation of the
initial condition the system evolves indefinitely according to 1i) -| i - 1 mod f).
By contrast, (b) illustrates the result of learning under noisy conditions in which the
system occasionally experienced disallowed transitions during learning, so that the
learned matrix T permitted transitions of the form 1i) -- Ij | i ± 1 mod f) with
small probability. The result following learning is decaying occupation probability of
the correct-trajectory state over time, with leakage of probability flux to incorrect
states. As the noise is also present after learning, it can present new initial condi-
tions to the network at random, resulting in apparent reversals of trajectory direction
(compare the trajectory from t = 10 to t = 20 with that from t = 30 to t = 40)
and possible superposition states of the forward and reverse trajectories (observed
starting at t = 0 and t = 70). As discussed in the text, these properties suggest a
model for some phenomena associated with dreaming.
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through parameter space has a temporal component, it seems possible that a refined

model, particularly one capable of operating in continuous space and time, might be

able to inquire whether neural networks can encode metric information about para-

meter spaces in addition to topological information. This question has experimental

correlates, as the place cell activity patterns recapitulated in the rat hippocampus

during sleep are observed at varying speeds relative to their occurrence during awake

exploration [20, 19].

Considering the results of this chapter with a view toward technical applications

leads to two sets of observations. First, the ability of the neural signal decoder to

interpret neural signals other than those intended for motor control indicates that

in contrast with current practice [6, 40, 4, 25, 14], algorithms and electronic circuits

intended for future use in neural prosthetic devices might be tested effectively and

extensively in rodents rather than highly trained primates or humans. Second, and

perhaps more interestingly, the head direction cell decoding results of Section 3.3

suggest that the neural decoding system described and simulated in Chapter 2 may

be broadly applicable to interpreting information encoded in neuronal population

activity patterns across a variety of brain regions. A microchip-based implementation

of the decoder, based on the circuit designs presented in Section 2.6, could therefore be

a useful investigational tool for experimental neuroscience. In particular, the results of

this chapter suggest that such a system could be used as an implantable interpreter of

simple thoughts and dreams in laboratory animals. The author hopes that through

continued collaborations with the Wilson Laboratory of the Department of Brain

and Cognitive Sciences at the Massachusetts Institute of Technology this proposal

will come to fruition.

109



110



Chapter 4

Future Directions and Conclusions

This thesis develops a system for adaptively and automatically learning to interpret

patterns of electrical activity in neuronal populations in a real-time, on-line fashion.

The system is primarily intended to enable the long-term implantation of low-power,

microchip-based recording and decoding hardware in the brains of human subjects in

order to treat debilitating neurologic disorders. In particular, the decoding system

developed in the present work is shown to be capable of interpreting neural signals

encoding arm movement intention, suggesting that the system could function as the

decoder in a, neural prosthetic limb, potentially enabling a paralyzed human subject

to control an artificial limb just as the natural one was controlled, through thought

alone. The same neural signal decoder is also used successfully to interpret the ac-

tivity patterns of a population of neurons in the thalamus of a laboratory rat that

encode head orientation in absolute space. The success of the decoder in this context

motivates the development of a model to explain how networks of neurons adapt the

configurations of their receptive fields in response to new stimuli, subsequently learn

to encode the structure of new parameter spaces, and ultimately retrace trajectories

through such spaces in the absence of the original stimuli. This combination of re-

sults suggests that the neural signal decoder is applicable to a broader scope of neural

systems than those involved in the control of neural prosthetic devices, and that a

microchip-based implementation of the decoder based on the designs presented in this

thesis could function as a useful investigational tool for experimental neuroscience.
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In particular, results presented in this work in the context of head direction activity

decoding suggest that such a system could be used as an implantable interpreter of

simple thoughts and dreams-at least in laboratory animals.

The present chapter summarizes the principal results presented in this thesis and

discusses avenues for further research that seem potentially fruitful on the basis of

the findings described in this work.

4.1 Future Directions for Low-Power Decoding Ar-

chitecture Development

Chapter Two begins by developing the mathematical structure of an adaptive filter to

be used to decode electrical signals derived from populations of neurons into observed

behaviors or intended control signals. The filter consists of banks of convolution

kernels, each defined by a set of tunable parameters, which transform signals from

many input channels into a set of output waveforms. An algorithm is then presented

for tuning the filter parameters in response to a feedback signal derived from the

difference between filter outputs and a correct reference signal; tuning is optimized

through gradient descent on the square of the error signal. A particular functional

form is selected for the convolution kernels, and the resulting system is shown to

be capable of decoding simulated local field potentials into three-dimensional limb

trajectories in real time, with an accuracy rivaling the state-of-the-art. A modified

version of the same decoder is then used to interpret real neural data recorded from

the parietal cortex of a trained macaque monkey, which the system uses to predict

intended arm movements by the experimental animal with an accuracy equivalent

to that of a state-of-the-art system but at a dramatically lower computational cost.

The final section of Chapter Two describes a collaboratively designed set of circuits

capable of implementing the decoding system in the context of a micropower analog

electronic chip suitable for long-term implantation in the human brain.

The results presented in Chapter Two indicate two principal directions for further
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research. One direction involves developing techniques to improve decoding accuracy.

A promising approach in this regard, as suggested in Section 2.5, involves the use of

increasingly complex input signals. In particular, each normalized mean spiking rate

constituting a single input channel to the decoder could be replaced with a set of sub-

channels, each transmitting the value of a wavelet coefficient of a particular order in

the decomposition of the spike train input to the original channel. The architecture of

the decoder could accommodate such an expansion in the number of input channels;

the primary challenge amounts to selecting or designing a wavelet basis suitable for

real-time implementation in the context of low-power analog circuitry. The second

and most important direction for further research into the neural decoding system

presented in Chapter Two is to construct and test the analog implementation de-

scribed in the final section of that chapter. The actual design process is likely to

raise further questions about details of implementation and optimization, but more

importantly, as the results from Chapter Three indicate, once a prototype is built the

decoder may find a variety of applications in unforeseen contexts.

4.2 Future Directions in Decoding and Modeling

Neural Parameter Space Trajectories During

Thinking and Dreaming

Chapter Three begins by demonstrating that the adaptive-filter approach to decoding

neural signals can be used to predict the head direction of a laboratory rat in real time

on the basis of neuronal spike train data recorded from a small population of thalamic

neurons. Such on-line, real-time analysis of place-like cell activity appears to represent

an innovation in the analysis of activity in such neuronal populations, and one way

of viewing the result is as a new approach to real-time decoding of the thoughts

of a live, behaving experimental animal. The successful extension of adaptive-filter

decoding to a population of place-like neurons motivates the development of a model

intended to investigate the way in which such populations learn to encode information.
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The model first broadens the notion of a receptive field to apply to inputs from

generalized parameters, reconceptualizing receptive fields more abstractly as functions

of parameter space position. A subsequent section then demonstrates a mechanism

by which generalized 'parameter-place' cells can adaptively reconfigure and optimize

the distribution of their receptive fields in response to experience while exploring

an unfamiliar region of parameter space. Finally, the model demonstrates how a

neural network of 'parameter-place' cells can encode the structure of an unfamiliar

region of parameter space by learning allowed trajectories through parameter space

exploration. Once such trajectories have been learned by the network they can be

regenerated in the absence of external stimuli, a phenomenon reminiscent of the ability

to think and dream, and consistent with experimental observations of populations of

hippocampal place cells.

A final section of Chapter Three suggests potentially interesting ways of extend-

ing and refining the generalized place cell model developed in that chapter. It also

proposes that a microchip-based implementation of the neural signal decoder could

not only be broadly applicable to interpreting information encoded in neuronal pop-

ulation activity patterns across a variety of brain regions, but might also be used as

an implantable interpreter of simple thoughts and dreams in laboratory animals.

The model developed in Chapter Three raises an additional question for future

investigation not addressed in that chapter, a problem that is in some ways a natural

extension of the question asked in Chapter Three--that of how networks of biologi-

cal neurons learn to encode the structure of unfamiliar parameter places-but which

also has implications for fields other than neuroscience. The parameter space cell

construct developed in Chapter Three models the activity functions of networked

neurons and provides insight into how populations of neurons can learn to model

generic parameter spaces and, by learning allowed trajectories in those spaces, also

model relationships among pieces of information embedded in such spaces. An inverse

question might be posed along the following lines: Given a set of observed signals

produced by a set of networked elements, what can be inferred about the structures

of the relationships among those elements, and about the parameter space in which
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they are embedded? In the case of a population of neurons or an artificial neural

network, these questions correspond to asking what structural information concern-

ing the synaptic connections among neurons within the population (and possibly also

postulated neurons outside the population and hence not observable except through

their effects on neurons within the population whose signals can be directly recorded)

can be inferred from observing the electrical activity patterns of those neurons, and

with what degree of certainty? Since the microscopic structures of neuronal intercon-

nectivity in three dimensions are extremely intricate, such structures are difficult to

determine by direct observation 1. As elusive as these structures are, their topology

is of great interest to theorists and experimentalists alike, as many models of memory

and neural computation attribute paramount functional significance to the topology

of synaptic connections in a population of neurons. The case of synaptic connections

in a population of neurons, however, is only one example of a more general problem

applicable to a variety of systems across several intellectual disciplines, particularly

those in which large sets of data-producing elements can be directly observed but the

relationships among those elements, while of interest, cannot.

A specific example serves to illustrate the kind of system in which the inverse

problem of inferring topology from observed activity patterns is of particular inter-

est. Consider the tree graph shown in Figure 4-1. Termed a 'dendrogram,' it was

constructed to represent postulated functional relationships among genes expressed

in cultured human fibroblasts exposed to serum for time intervals of varying duration.

In the terminology used in the preceding paragraph, the data-producing elements in

'In a conversation in September 2006 with Professor Sebastian Seung of the Massachusetts In-
stitute of Technology Departments of Physics and Brain and Cognitive Science, the author learned
that the Seung Laboratory is preparing experiments in which it will be possible to serially section
samples of brain tissue and image them using high-resolution electron microscopy. Subsequent com-
puter analysis of the resulting images will then reconstruct neuronal interconnectivity. Professor
Seung was of the opinion that such experiments would yield more reliable reconstructions of in vivo
neural network topologies than the approach proposed here. Nevertheless, it might be informative
to compare the predictions of an indirect inferential approach with the direct one being developed in
the Seung Laboratory. In addition, an inferential analysis might demonstrate how certain knowledge
of the network topology may enable other information, such as the rules governing communication
among network elements, to be inferred with quantifiable levels of uncertainty. Furthermore, while
direct observation of neural network topology may become possible using the Seung approach, the
inferential methods proposed here might reasonably be applied to systems outside the field of neu-
roscience.
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Figure 4-1: Dendrogram Displaying Relationships Among Human Fibrob-
last Gene Expression Profiles. The graph stretched vertically along the left side
of the image is a dendrogram displaying relationships among gene expression profiles
measured in human fibroblasts exposed to serum for time intervals of varying dura-
tion. The expression profile associated with a particular gene is displayed as a row
of boxes colored according to the extent of the increase or decrease in its expression
level relative to control (serum-free) conditions. Each row is labeled with the name
of its corresponding gene. Columns of boxes correspond to different exposure time
intervals. The dendrogram groups genes into classes, visualized as groups of branches
sharing common high-order nodes, and permits informed speculation concerning the
functions of those genes whose roles are not known, on the basis of their positions
in the dendrogram relative to genes of known function. Excerpted from [15], Supple-
mental Information.
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this genetic system are the genes themselves, while the observable signals they gener-

ate are their activity levels under a variety of experimental conditions, as measured

by levels of mRNA detected by hybridization of radiolabeled cDNA in a microarray

assay. The existence of correlations in 'expression profiles' of various genes permits

the construction of a dendrogram tree graph. An 'expression profile' refers to a set

{agi} of activity levels agi, g E {1,...,G}, i E {1,..., N} of one of G genes across

a given set of N experimental conditions, often represented as a vector of N real

components, with agi equal to the ratio of the activity level of gene g under the ith

experimental condition to its activity level under the control condition. Terminal

nodes of the graph correspond to observed genes, higher-order nodes connect lower-

order nodes with the greatest degree of correlation (where the correlation between two

expression profiles {ag, } and {ag2 j} is typically defined as a form of correlation coeffi-

cient: C ({agi}, {a 2 ) 1 1 1 ( i))(ag2 ia 2 i)) ; angled brackets

denote the mean of the enclosed quantities taken over their free index), and each

such higher-order node is subsequently treated as a 'gene' with an 'expression profile'

given by a weighted average of expression profiles of genes below it in the dendro-

gram hierarchy [9]. The resulting dendrogram groups genes into classes, visualized

as groups of branches sharing common high-order nodes. Such an analysis, in the

case of a set of genes, permits informed speculation concerning the functions of those

genes whose roles are not known, on the basis of their positions in the dendrogram

relative to genes of known function.

The problem of constructing a dendrogram from a set of gene expression profiles

raises four key questions relevant to analyzing analogous problems of inferring topo-

logical structures relating data-generating elements. First, what is the appropriate

correlation function for the observed signals generated by different elements? Second,

what is the general form of the graph (corresponding to the tree graph in the dendro-

gram example) anticipated to describe the relationships among the signal-generating

elements? Selection of a graph type is in some ways analogous to the selection of the

functional form for a regression model in applying classical methods of descriptive

statistics to numerical data sets. Third, what is an appropriate algorithm to use to
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infer structural information concerning the relationships among the data-generating

elements from their observed signals, and does that topological structure change in

time or as a function of other system parameters? Finally, how can the topological

model constructed be assigned a level of confidence to quantify its probable accuracy

in a well defined way? This approach to structuring the analysis casts the general

problem in terms reminiscent of statistical regression analysis, and so the overall

problem, suggested as an inverse problem relative to the question of how individual

neurons form networks capable of encoding structured information, might be regarded

as a problem of developing methods and models for a kind of 'topological regression

analysis.' The availability of increasing volumes of data in a variety of fields suggests

that these questions might find applications outside neuroscience and genetics.

4.3 Conclusion

The principal goal of the work described in this thesis was to develop a decoding

system for neural signals that would be suitable for implementation in micropower

analog circuitry and long-term implantation in the human brain for use in neural

prostheses and other therapeutic systems for patients with neurologic disorders. As

summarized in this chapter, the research presented here expanded beyond its intended

scope. In addition to developing the sought-after decoder design and demonstrating

its viability, the work presented here demonstrates the applicability of such a decoder

to more general neural signal decoding problems and indicates ways in which it could

generate both experimental and theoretical insights into how information is encoded

in biological neural networks.

118



References

[1] R. A. Andersen, S. Musallam, and B. Pesaran. Selecting the signals for a brain-machine
interface. Current Opinion in Neurobiology, 14:1-7, 2004.

[2] P. J. Best, A. M. White, and A. Minai. Spatial processing in the brain: The activity
of hippocampal place cells. Annual Review of Neuroscience, 24:459-86, 2001.

[3] E. N. Brown, R. E. Kass, and P. P. Mitra. Multiple neural spike train data analysis:
state-of-the-art and future challenges. Nature Neuroscience, 7(5):456-461, May 2004.

[4] J. M. Carmena, M. A. Lebedev, R. E. Crist, J. E. ODoherty, D. M. Santucci, D. F.
Dimitrov, P. G. Patil, C. S. Henriquez, and M. A. L. Nicolelis. Learning to control
a brain-machine interface for reaching and grasping by primates. Public Library of
Science Biology, 1(2):1-16, October 2003.

[5] J. K. Chapin. Using multi-neuron population recordings for neural prosthetics. Nature
Neuroscience, 7(5):452-455, May 2004.

[6] J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M. L. Nicolelis. Real-time control
of a robot arm using simultaneously recorded neurons in the motor cortex. Nature
Neuroscience, 2:664-670, 1999.

[7] Y. E. Cohen and R. A. Andersen. A Common Reference Frame for Movement Plans
in the Posterior Parietal Cortex. Nature Reviews Neuroscience, 3:553-562, July 2002.

[8] J. P. Donoghue. Mind over movement: Development of the braingate neuromotor
prosthesis, June 2005. Public Presentation at the Veterans Affairs Medical Center.

[9] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and
display of genome-wide expression patterns. Proceedings of the National Academy of
Sciences of the United States of America, 95:14863-14868, December 1998.

[10] A. Engel and C. van den Broeck. Statistical Mechanics of Learning. Cambridge Uni-
versity Press, Cambridge, 2001.

[11] A. P. Georgopoulos, A. B. Schwartz, and R. E. Kettner. Neuronal population coding
of movement direction. Reviews in the Neurosciences, 233:1416-1419, September 1986.

[12] R. R. Harrison, P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black, B. Greger, and
F. Solzbacher. A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural
Recording System. IEEE Journal of Solid-State Circuits, 42(1):123-133, January 2007.

[13] S. Haykin. Neural Networks: A Comprehensive Foundation. Prendice Hall, Upper
Saddle River, New Jersey, 1999.

119



[14] L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh, A. H. Caplan,
A. Branner, D. Chen, R. D. Penn, and J. P. Donoghue. Neuronal ensemble control of
prosthetic devices by a human with tetraplegia. Nature, 442:164-171, July 2006.

[15] V. R. Iyer. M. B. Eisen, D. T. Ross, G. Schuler, T. Moore, J. C. Lee, J. M. Trent,
L. M. Staudt, J. Hudson, M. S. Boguski, D. Lashkari, D. Shalon, D. Botstein, and P. O.
Brown. The transcriptional program in the response of human fibroblasts to serum.
Science, 283:83-87, 1999. On-Line Supplemental Data Accessed at http://genome-
www.stanford.edu/serum/fig2cluster.html.

[16] E. R. Kandel, J. H. Schwartz, and T. M. Jessell. Principles of Neural Science. McGraw-
Hill Medical, New York, fourth edition, 2000.

[17] P. R. Kennedy, M. T. Kirby, M. M. Moore, B. King, and A. Mallory. Computer control
using human intracortical local field potentials. IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 12(3):339-334, September 2004.

[18] J. J. Knierim. Neural representations of location outside the hippocampus. Learning
and Memory, 13(4):405-415, July-August 2006.

[19] A. K. Lee and M. A. Wilson. Memory of Sequential Experience in the Hippocampus
during Slow Wave Sleep. Neuron, 36:1183-1194, December 2002.

[20] K. Louie and M. A. Wilson. Temporally Structured Replay of Awake Hippocampal
Ensemble Activity during Rapid Eye Movement Sleep. Neuron, 29:145-156, January
2001.

[21] B. L. McNaughton, F. P. Battaglia, O. Jensen, F. I. Moser, and M. B. Moser. Path
integration and the neural basis of the 'cognitive map'. Nature Reviews Neuroscience,
7(8):663-678, August 2006.

[22] C. Mead. Analog VLSI and Neural Signals. Addison Wesley, 1989.

[23] Pacemaker. MedlinePlus, U.S. National Library of Medicine, Il-
lustration by A.D.A.M. Accessed On-Line 26 December 2006:
http://www.nlm.nih.gov/medlineplus/ency/imagepages/19566.htm.

[24] Medtronic. Activa Parkinson's Control Therapy. Accessed On-Line 25 December 2006:
http://www.medtronic.com/physician/activa/parkinsons.html.

[25] S. Musallam, B. D. Corneil, B. Greger, H. Scherberger, and R. A. Andersen. Cognitive
control signals for neural prosthetics. Science, 305:258-262, July 2004.

[26] S. Musallam, B. D. Corneil, B. Greger, H. Scherberger, and R. A. Andersen. Supple-
mentary Material. Science, 305, July 2004. Published on-line with 'Cognitive Control
Signals for Neural Prosthetics'.

[27] M. A. L. Nicolelis, D. Dimitrov, J. M. Carmena, R. Crist, G. Lehew, J. D. Kralik,
and S. P. Wise. Chronic, multisite, multielectrode recordings in macaque monkeys.
Proceedings of the National Academy of Sciences of the United States of America,
100(19):11041-11046, September 2003.

120



[28] J. O'Keefe and L. Nadel. The Hippocampus as a Cognitive Map. Clarendon Press,
Oxford, England, 1978.

[29] B. pesaran, J. S. Pezaris, M. Sahani, P. P. Mitra, and R. A. Andersen. Temporal
structure in neuronal activity during working memory in macaque parietal cortex.
Nature Neuroscience, 5(8):805-811, August 2002.

[30] K. L. Priddy and P. E. Keller. Artificial Neural Networks: An Introduction. Tutorial
Texts in Optical Engineering. SPIE Press, Bellingham, Washington, 2005.

[31] G. A. Reina, D. W. Moran, and A. B. Schwartz. On the relationship between joint
angular velocity and motor cortical discharge during reaching. Journal of Neurophys-
iology, 85(6):2576-2589, June 2001.

[32] G. Santhanam, S. I. Ryu, B. M. Yu, A. Afshar, and K. V. Shenoy. A high-performance
brain-computer interface. Nature, 442:195-198, July 2006.

[33] R. Sarpeshkar, R. F. Lyon, and C. Mead. A low-power wide-linear-range transcon-
ductance amplifier. Analog Integrated Circuits and Signal Processing, 13(1-2):123-151,
1997.

[34] R. Sarpeshkar, C. Salthouse, J.-J. Sit, M. W. Baker, S. M. Zhak, T. K.-T. Lu, L. Turic-
chia, and S. Balster. An ultra-low-power programmable analog bionic ear processor.
IEEE Transactions on Biomedical Engineering, 52(4):711-727, April 2005.

[35] R. Sarpeshkar, W. Wattanapanitch, B. I. Rapoport, S. K. Arfin, M. W. Baker, S. Man-
dal, M. S. Fee, S. Musallam, and R. A. Andersen. Low-Power Circuits for Brain-
Machine Interfaces. Proceedings of the IEEE International Symposium on Circuits and
Systems, May 2007.

[36] M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue.
Instant neural control of a movement signal. Nature, 416:141-142, March 2002.

[37] K. V. Shenoy, D. Meeker, S. Y. Cao, S. A. Kureshi, B. Pesaran, C. A. Buneo, A. R.
Batista, P. P. Mitra, J. W. Burdick, and R. A. Andersen. Neural prosthetic control
signals from plan activity. Neuroreport, 14(4):591-596, March 2003.

[38] L. H. Snyder, A. P. Batista, and R. A. Andersen. Coding of intention in the posterior
parietal cortex. Nature, 386:167-170, March 1997.

[39] S. Suner, M. R. Fellows, C. Vargas-Irwin, G. K. Nakata, and J. P. Donoghue. Reliability
of signals from a chronically implanted, silicon-based electrode array in non-human pri-
mate primary motor cortex. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 13(4):524-541, December 2005.

[40] D. M. Taylor, S. I. H. Tillery, and A. B. Schwartz. Direct cortical control of 3d
neuroprosthetic devices. Science, 296:1829-1832, June 2002.

[41] S. I. H. Tillery, D. M. Taylor, and A. B. Schwartz. Training in cortical control of neuro-
prosthetic devices improves signal extraction from small neuronal ensembles. Reviews
in the Neurosciences, 14(1-2):107-119, 2003.

121



[42] W. Wattanapanitch, B. Rapoport, S. Arfin, S. Musallam, R. Andersen, and
R. Sarpeshkar. An Analog Architecture and Circuits for Linear Decoding and Learning
in Neuromotor Prosthetics. Unpublished manuscript, July 2006.

[43] J. Wessberg and M. A. L. Nicolelis. Optimizing a linear algorithm for real-time robotic
control using chronic cortical ensemble recordings in monkeys. Journal of Cognitive
Neuroscience, 16(6):1022-1035, 2004.

[44] J. Wessberg, C. R. Stambaugh, J. D. Kralik, P. D. Beck, M. Laubach, J. K. Chapin,
J. Kim, S. J. Biggs, M. A. Srinivasan, and M. A. L. Nicolelis. Real-time prediction
of hand trajectory by ensembles of cortical neurons in primates. Nature, 408:361-365,
November 2000.

[45] T. Wichmann and M. R. DeLong. Deep brain stimulation for neurologic and neuropsy-
chiatric disorders. Neuron, 52:197-204, October 2006.

[46] K. D. Wise, D. J. Anderson, J. F. Hetke, D. R. Kipke, and K. Najafi. Wireless
implantýtable microsystems: High-density electronic interfaces to the nervous system.
Proceedings of the IEEE, 92(1):76 97, January 2004.

[47] W. Wu, Y. Gao, E. Bienenstock, J. P. Donoghue, and M. J. Black. Bayesian population
decoding of motor cortical activity using a kalman filter. Neural Computation, 18:80-
118, 2006.

[48] J. Wyatt. Analog VLSI and Neural Systems, chapter Least-Squares Methods and
Gradient-Descent Solutions. Addison Wesley, 1989.

[49] K. Zhang, I. Ginzburg, B. L. McNaughton, and T. J. Sejnowski. Interpreting neu-
ronal population activity by reconstruction: Unified framework with application to
hippocampal place cells. Journal of Neurophysiology, 79:1017 1044, February 1998.

122


