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Abstract

Analysis of HETE-II data is discussed with the aim of understanding the intrinsic proper-
ties of gamma-ray bursts (GRBs). A technique is developed that allows the simultaneous
estimation of source and background counts during a burst with coded aperture instruments
such as the Wide-field X-ray Monitor (WXM) on HETE-II. A closely related photon-by-
photon statistical bootstrap analysis is then described that can be used to compute the
non-Gaussian error distribution of GRB temporal statistics. This is applied to the T90

and To.45 duration measures. The distribution of T90 has been extensively studied since
the availability of the BATSE gamma-ray burst catalogs and is widely believed to be log-
normally distributed. It is shown that intrinsically, GRBs may in fact have a much narrower
distribution, and the wide log-normal may primarily be due to measurement artifacts.

Computation of the T0. 45 parameter enables the inference of redshifts through the re-
cently discovered Liso-Epk-TO.45 relation. This in turn allows the compilation of a flux-
limited sample of bursts with redshifts that is free of the observational selection effects
inherent in spectroscopic catalogs. This analysis is performed for 31 WXM bursts and
redshift-corrected distributions of T90 and T0.45 are computed. It is shown for the first time
that the distribution of T0.45 can be modeled by an exponential distribution.

The redshifts calculated through the Liso-Epk-TO.45 relation are also used to calculate
the implied isotropic luminosities. The normalized luminosity function and redshift distri-
bution of gamma-ray bursts are derived using the non-parametric methods of Lynden-Bell
and Efron & Petrosian. The results imply strong evidence for luminosity evolution with
redshift and are consistent with prior studies based on BATSE bursts. Concordance cos-

mology (A -- 0.7, QM = 0.3, Ho=70 km s- 1 Mpc - 1) is assumed throughout the analysis.
Effects of log-normal errors in the redshifts are estimated using Monte-Carlo methods. Re-
sults indicate that a fraction close to 10% of GRBs are to be expected at high redshifts
(> 5) in consonance with theoretical predictions of high-redshift Swift detections.
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Chapter 1

Introduction

Gamma-ray bursts (GRBs) were detected first in 1969 by military satellites devel-

oped by the United States of America in a mission to enforce the Nuclear Test Ban

Treaty prohibiting above-ground tests of nuclear weapons. It was soon realized that

the source of 7-radiation was extra-terrestrial and the results were reported in 1973

(Klebesadel et al. 1973).

Following their discovery, GRBs were detected by a number of space instruments,

in both X-ray and 7-ray bands. Hundreds of theories were advanced regarding their

origin, but without knowledge of the distance scale to these events, progress was lim-

ited. The Burst and Transient Source Experiment (BATSE) (Fishman et al. 1989)

on the Compton Gamma-Ray Observatory (CGRO) mission represents a milestone

in the understanding of GRBs. Over its nine year mission (1991-2000), BATSE cat-

aloged 2704 bursts, and established their distribution to be isotropic on the sky.

Together with the peak flux distribution, which pointed toward a non-Euclidean

or non-homogeneous source distribution, cosmological rather than galactic distances

were strongly favored (Paczyniski 1995; Lamb 1995). BATSE was also able to provide

spectral information and high time resolution, but had large (degree scale) localization

uncertainty. The initial High Energy Transient Explorer (HETE) was designed with

the capability of providing more accurate and timely locations, but was lost on launch

in November 1996. On 28 February 1997, the Dutch-Italian satellite, BeppoSAX

(1996-2002), was the first to accurately localize and image a fading X-ray transient



at the position of a GRB (Costa et al. 1997). The detection of this "afterglow" was a

watershed event and eventually led to the detection of fast fading optical afterglows

and GRB redshift determinations through optical spectroscopy. We now know GRBs

to be cosmologically distant events, and the HETE-HI mission, launched in October

2000 and still operating as of this writing, has been a key mission in exploring their

mysteries. HETE-II was the only mission dedicated to GRB science until the launch

of Swift in 2004.

In this thesis we present analysis of HETE-II data. We begin with an overview

of gamma-ray burst observational properties and the HETE-II satellite. In chapter 2

we present a new method of subtracting background rates from GRB observations

that can be applied to coded mask instruments like the WXM. Chapter 3 discusses

the estimation of temporal characteristics of gamma-ray bursts by means of a photon-

by-photon statistical bootstrap method. In chapter 4 we investigate what the HETE-

II data imply about the luminosity distribution function and redshift distribution

of GRBs using a very recent result to estimate redshifts and a novel technique for

calculating the statistical errors of the analysis. Partial results of chapters 3 and 4 are

combined in the analysis of the duration distributions of GRBs in chapter 5 and our

conclusions are summarized in chapter 6. Tables in Appendix A list characteristics

of the bursts of our sample the we used for the analysis in chapter 4. The Appendix

also shows lightcurves and the results of the methods of chapter 3 for these bursts.

1.1 Observational Properties of GRBs

1.1.1 Temporal Properties

The observed instrument count rates as a function of time are referred to as time his-

tories, or lightcurves. GRB lightcurves are often discussed in "morphological" terms,

but in general are quite diverse, even unique. Some have single peaks with a fast

rise and exponential decay (FRED) while others have multiple peaks. Early papers

discuss some of these morphologies in conjunction with the duration of the bursts and



point out that "short" bursts may form a separate class (Mazets & Golenetskii 1981).

The different morphologies have led to various incompatible definitions of burst dura-

tions (for instance, how to include decay times of "tails", etc). In the BATSE era, the

T90 (and To50) duration measures were introduced as the time it takes the cumulative

background subtracted burst counts to advance from 5% to 95% (25% to 75%) of the

time-integrated burst flux (often called "fluence"). Bimodality of the GRB duration

distribution was suspected based on the first twenty years of observations (Hurley

1992), and then firmly established with the observed BATSE distributions of T90 and

T50 (Kouveliotou et al. 1993). Figure 1-1 shows the bimodality of the T50 parameter

in the fourth BATSE catalog (Paciesas et al. 1999), and figure 5-2 shows the same

for T9 0.

Two distinct classes of bursts, "short" and "long", were identified, with T90 < 2s

for the former and T90 > 2s for the latter. The bimodality of the duration distribution

is important since it points to different progenitor classes of bursts. The short bursts

are believed to be coalescing compact object binaries (neutron star-neutron star or

neutron star-black hole binaries) (Eichler et al. 1989; Paczyniski 1991), and the long

bursts are thought to be associated with the end stages of massive rotating stars in

the "collapsar" model (Woosley 1993). This classification is still an open question,

and the existence of an intermediate class has been indicated principally based on du-

ration statistics (Horvith 1998, 2002) and on multivariate and clustering methods on

duration and other parameters such as spectral hardness and fluence (e.g. Mukherjee

et al. 1998; Horvath et al. 2006).

Another measure of duration is the "emission time", or "high-signal time" of the

burst. This quantity is the length of time that a specified fraction of the burst fluence

lasts when considering only the brightest parts of the burst. This parameter was

introduced by Mitrofanov et al. (1999) and Reichart et al. (2001) and is discussed

further in sections 3.1 and 3.5.
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Figure 1-1: Distribution of the T50 duration measure of the fourth revised BATSE catalog.
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Figure 1-2: Plot of the (isotropic) distribution of 1637 bursts from the fourth revised
BATSE catalog. (Paciesas et al. 1999). The plot is an Aitoff-Hammer projection in galactic
coordinates, and no correction was made for sky coverage.

1.1.2 Spatial Distribution

There are two key aspects of the spatial distribution of gamma-ray bursts: their

isotropy (uniformity with respect to rotation, i.e., direction on the sky) and homo-

geneity (uniformity with respect to translation, i.e., radial distance from us). Both of

these aspects were addressed by the BATSE observations. With 1005 bursts, Briggs

et al. (1996) demonstrate that the distribution is consistent with isotropy. Figure 1-2

shows the sky distribution of a larger sample of 1637 bursts the fourth revised BATSE

catalog, not accounting for the sky exposure. BATSE data was also used to establish

that the distribution of bursts is inhomogeneous. This is deduced from the paucity

of sources of low brightness in the catalog: if we consider a uniform distribution of

sources in a Euclidean space, N(> P), the number of sources detected with peak flux

greater than P, is expected to scale as p- 3/2 . Since the BATSE burst counts fall

below this power law for low values of P (faint bursts), this implies a non-uniformly

distributed, or inhomogeneous, source population (Paciesas et al. 1999). From the

afterglow redshift measurements we know bursts to be cosmologically distant, so this

result is understandable both because space is non-Euclidean and because the burst

distribution is bounded. (Note that constraining cosmological parameters using the

N(> P) vs. P relation is not possible since the spectral energy distribution of each



source would have to be known, given that different source wavelengths are redshifted

into the detector bandpass for each burst depending on its distance.)

1.1.3 Spectral Properties

Spectral Models

Gamma-ray burst spectra were extensively studied with BATSE. The time-averaged

spectra were found by Band et al. (1993) to be well described with a four parameter

model of two smoothly joined power laws. The form of this GRB model, often called

the "Band" function after the article's first author, is:

A ( E) 0 exp (- ) if E < Ebreak
NE,GRB(E) = 100 keV Eo(ANLGR( - •) ex p (3 - a) (10e) if E> Ebreak

iF 100 keV 1100 keV

where

Ebreak - (a - /3)Eo, (1.2)

A is the normalization (in photons s - 1 cm - 2 keV - 1), a is the low energy spectral index,

/3 is the high energy spectral index. In the E 2N(E)-energy spectrum, this functional

from has a peak at Epk = (2 + a)Eo. Figure 1-3 shows an example analytical Band

model that was used to fit GRB911127.

When Epk falls out of, or near the edge of the sensitive range of the instruments,

the Band model fit cannot successfully determine all four parameters from the data.

In such instances one typically fits simpler models, such as a power-law, N(E) =

A(E/100keV) , or a cutoff power-law:

N(E) A E (p E(2 + ) (1.3)100 keV) Exppk

The relationship in equation 1.3 is identical to the low energy part of the Band

spectrum. Often the energy normalization in the power law is specified as something

other than 100 keV (for example 15 keV in Sakamoto et al. 2005).

Preece et al. (2000) fit the Band model to segments of 156 of the brightest BATSE
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bursts (selected as ones with minimum fluence in the 30-1000 keV band of 4 x 10-5

ergs cm - 2 and a minimum peak flux in the 50-300 keV band of 10 ph cm - 2 s- 1)

and examined the distribution of the model parameters. Epk, a, and 0 all tend to

cluster with singly peaked distributions about typical values of 250 keV, -0.8 and -2.2,

respectively.

1.1.4 X-ray Flashes and X-ray Rich Bursts

The low energy threshold of BATSE of 30 keV prevented it from detecting softer

X-ray transients. X-ray flashes, or XRFs are a class of GRBs that fall into this

category, with Epk as low as a few keV and with high X-ray to -y-ray fluence ratios.

X-ray rich bursts, or XRRs, are similar, but with more moderate fluence ratios. The

exact definitions of these events vary by instrument and research group. For HETE-I

and BeppoSAX the classification is that if log(Sx/S,) > 0, it is considered an XRF,

if -0.5 < log(Sx/S,) < 0 then it is an XRR, and a "hard" GRB otherwise, where

S is the fluence in the band indicated by the subscript (Sakamoto 2004; Sakamoto

et al. 2005). XRFs and XRRs were initially identified and observed with GINGA

(Strohmayer et al. 1998) and BeppoSAX (Heise et al. 2001), and then in greater

numbers with HETE-II (26 XRFs and 36 XRRs to date).

1.1.5 Energetics

Having measured the flux, the integrated flux (fluence) and the redshift, one can

calculate the y-ray luminosity and the total energy released in the GRB, assuming

a geometry for the emitting region and a cosmology. Under the assumption that

the source emits in a spherically symmetrical pattern, the calculated quantities are

called the "isotropic-equivalent" energy and luminosity, denoted by Eiso and Liso.

However, current observations and theory indicate the isotropic emission model is

improbable and instead, highly relativistic jets are present. The reasons for this are

that the highly relativistic (Pr 100-300) emission is more easily accommodated by

a jet model, as are the extremely high energies that would otherwise be implied by



the flux measurements and the assumption of isotropy (Eiso _ 1054 erg). As the

jets expand into the cold material of the medium surrounding the central engine of

the GRB, they create an "external" shock, accelerating electrons which then become

a source of synchrotron emission. This synchrotron emission is observable in most

wave bands (X-ray, optical, radio) as the afterglow emission, which then decays as a

power-law in time (e.g. Sari et al. 1998). As the jets expand and slow down, their

high bulk Lorentz factor decreases until eventually 1/F is about the size of the jet

opening angle, 9j. Up to this point relativistic beaming effects prevent the observer

from seeing the entire jet surface, but once 1/F 9 3j, the entire jet is visible and the

decay in observed flux continues faster. In other words, there is an achromatic break

in the lightcurve of the afterglow, which can be observed in X-ray and the optical. The

time after the onset of the burst prompt emission that this happens is the break time,

tbreak. Conversely, observing a break time in the afterglow, coupled with assumptions

about the ambient density and the efficiency of gamma-ray production by the shock,

allows one to infer the jet opening angle (Sari et al. 1999) and a beaming factor.

This beaming, or collimation, factor can be applied as a correction to the isotropic

equivalent energy and the observed rate of GRBs. Frail et al. 2001 performed this

analysis on 17 GRBs and found that after correcting for a conical jet, the energy

released in gamma-rays is E, - 5 x 1050 ergs, and distributed much more narrowly

than the uncorrected, inferred Eiso. Bloom et al. 2003 analyzed a larger sample of 29

bursts and found E, , 1.33 x 1051 ergs, with a burst-to-burst variance of 2.2 (0.35

dex).

1.1.6 Empirical Relations

Energy and Pulse Width

Realizing that GRBs are cosmologically distant events, it is important to be able to

distinguish between cosmological time dilation and intrinsic GRB effects that influ-

ence the observations. To this end, Fenimore et al. (1995) investigated the timescale

of pulses in GRB lightcurves measured in different energy bands. They calculated the



average autocorrelation function of 45 bright BATSE bursts and found they were well

fit by two exponentials. The width of the autocorrelation peaks depend on the energy

bands, and to a good approximation, the relationship is a power-law: t c E-0.4. This

scaling was confirmed by Norris et al. 1996 using different methods.

'Amati Relation'

With the availability of spectroscopic redshifts it became possible to investigate corre-

lations between intrinsic (cosmological rest-frame) properties of GRBs, which would

be a clue to the underlying physics. Amati et al. (2002) showed using 12 BeppoSAX

bursts that there is a statistically significant correlation with low chance probability

between the intrinsic peak energy, Epk, and the isotropic equivalent energy, Eiso, of

approximately Epk cx Eiso,, 5 . This result was then confirmed with HETE-HI bursts of

all classes (GRB, XRR, XRF), with low and high redshifts. In an updated analysis

Amati (2006) shows that the relation holds over -5 orders of magnitude in Eiso and

~-3 orders of magnitude in Epk, with a scatter standard deviation of about 0.2 dex,

but that bursts of the short class and sub-luminous bursts are inconsistent with it.

This relation is often called the 'Amati' relation, or the Epk-Eiso relation.

'Ghirlanda Relation'

Another relation, found by Ghirlanda et al. (2004a), is a significant correlation be-

tween the intrinsic peak energy and the collimation-corrected energy, Epk OC E0'7.

This empirical relation, called the 'Ghirlanda' or Eiso-Epk-tbreak relation, has smaller

scatter (a standard deviation of 0.1 dex) than the 'Amati' relation. Note, however,

that observation of tbreak is necessary for each burst that is tested against this relation.

'Firmani Relation'

Most recently Firmani et al. (2006c) have shown that a multivariate correlation exists

with even tighter scatter (0.06 dex) than the Amati or Ghirlanda relations. They

found that Liso cx Epk1 62TO.45-0.49, where T0 .45 is a high-signal timescale (mentioned

above in section 1.1.1 and discussed more in section 3.5). The analysis was done with



19 bursts with redshift ranging up to 4.3. The importance of this relation is that it

does not depend on the break time of the afterglow, which means it can be used as

a luminosity (and distance) estimator based only on the prompt burst emission. See

further discussion in section 4.3

Luminosity, Variability and Spectral Lag

Two other relations are worthy of note since they feature in many related works.

They allow the estimation of luminosity based on observables of the prompt -- ray

burst emission, and so are useful as empirical redshift estimators (Section 4.2).

Norris et al. (2000) investigated the spectral and time evolution of GRB pulses in

BA TSE bursts by calculating cross-correlation functions between lightcurves of differ-

ent energy bands (25-50 keV and 100-300 keV). The time lag of the cross-correlation

function is termed the 'spectral lag', and the higher energy channel is found to lead

the lower energy one. Applying the method to the bursts with measured spectroscopic

redshifts (detected simultaneously with BATSE and BeppoSAX), they find that the

maximum (peak) isotropic equivalent luminosity, Liso, and the spectral lag, T, are

related by:

Li,,o 1.3 x 1053erg x (T/0.01s) -1 l1 5  (1.4)

A key point to note about this relationship is that it is established only for long-

duration bursts.

Two related works (Fenimore & Ramirez-Ruiz 2000; Reichart et al. 2001) discuss a

"Cepheid-like" relationship between the variability of long duration burst lightcurves

and the isotropic-equivalent luminosity. The variability, V, is slightly different in the

two works, but is essentially the RMS scatter of the lightcurve once a smoothed version

has been subtracted and the Poisson noise accounted for (the smoothing timescale

turns out to be the T0 .45 high-signal timescale used in the Firmani relation). Reichart

et al. (2001) find that L - V3 _3 and Fenimore & Ramirez-Ruiz (2000) find

L/dQ = 3.1 x 1056V3.35ergs- 1 (1.5)
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Figure 1-4: Effective area of FREGATE, WXM and SXC (Sakamoto 2004).

1.2 The HETE-II Satellite

The High Energy Transient Explorer 2 (HETE-II; Ricker et al. 2003) was launched

into a low altitude equatorial orbit on October 9, 2000 aboard a Pegasus rocket.

A NASA project with international collaborators contributing two of the three sci-

ence instruments, its mission is to detect and localize gamma-ray bursts (GRBs), to

disseminate the information quickly to enable follow-up observations by the astro-

nomical community, and to study GRB prompt X- and 7-ray emission properties. To

accomplish this, the spacecraft carries a complement of three science instruments, the

Soft X-ray Camera (SXC), the Wide Field X-ray Monitor (WXM), and the French

Gamma-Ray Telescope (FREGATE). The WXM and SXC instruments allow sky lo-

calizations of GRBs to about 10 arc-minute and 20 arc-second accuracy, respectively,

but FREGATE is unable to localize GRBs with any reasonable precision. The instru-

ments are complementary in their energy response as well (see figure 1-4). On-board

triggering is possible with FREGATE and WXM. More details of these instruments

are provided in the following subsections.



Communication with the satellite is achieved through three primary ground sta-

tions in Singapore, the Kwajalein Atoll (Marshall Islands), and Cayenne (French

Guiana), as well as with a larger number of secondary, "burst alert", ground sta-

tions. These stations in turn communicate with the operations center at MIT via the

Internet. Information about bursts is disseminated through the Gamma-Ray Burst

Coordinates Network (GCN) via near real-time notices and circulars.

In normal operations, HETE-H is oriented to point the science instruments away

from the sun. The usual anti-solar pointing is modulated by "nodding" away from

the galactic plane in the summer months (when known sources such as Sco X-1 and

the so-called GX sources could dominate the instrument telemetry) and away from

the moon near full moon. Orbits are about 96 minutes long, with about 40 minutes

of nighttime operations. During orbit day, the science instruments do not operate

and the batteries are charged. Daytime aspect is maintained using sun sensors and

magnetometers. At the dusk terminator the instruments are turned on and during

night the aspect is maintained with optical star tracker cameras.

1.2.1 WXM

The WXM instrument on HETE-H was provided by Japan, with major contributions

from RIKEN, Tokyo Institute of Technology, and Aoyama Gakuin University (Shi-

rasaki et al. 2003). Los Alamos National Laboratory and the University of Chicago

were also major participants in the development and operation of the WXM. The in-

strument is sensitive to medium energy X-ray photons, from 2 to 25 keV. It consists

of two "cameras", each providing localization in one primary direction, with the axes

of the two cameras orthogonally oriented to provide two-dimensional locations (X and

Y). Each camera consists of a coded mask mounted 187 mm above two position sen-

sitive proportional counters (PSPCs) labeled XA, XB and YA, YB. The PSPCs are

gas filled detectors with resistive carbon fiber wire anodes and associated pulse height

analyzers and electronics. The gas is 97% Xe and 3% CO2, at a room temperature

pressure of 1.4 atm. There are also 55Fe calibration sources in the support structure

of the coded mask, located 40 mm from the center of the counter. A summary of the



WXM characteristics is in table 1.1.

Wide-Field X-ray Monitor
Built by
Instrument type
Energy Range
Timing Resolution
Spectral Resolution
Detector QE
Geometric Area
Sensitivity (10 a)

Field of View
Localization resolution

RIKEN (Japan) and LANL
Coded Mask with PSPC

2 to 25 keV
1 ms

-25% @ 20 keV
90% @5 keV

-175 cm 2 (each of two units)
,8 x 10- ' erg/cm2/s

(2-10 keV)
1.6 steradians (FWZM)

19'(5a burst)
2.7'(22a burst)

Table 1.1: Wide Field X-ray monitor characteristics. (Kawai et al. 2003)

The data products of the WXM instrument include house keeping (temperatures,

voltage settings, etc.) and raw, unprocessed photon data with 1 ts resolution in

addition to four data products that are used for scientific purposes: TH, POS, TAG

and PHA. TH are time histories (i.e., count rates) with 1.2 s resolution in four energy

bands for the four detectors; POS data are 6.6 s time resolution, 128 bin position

histograms in two energy bands for each of the four detectors; TAG data are 256 As

resolution time-tagged photon data that is generated and telemetered during burst

observation mode; and PHA are 4.9 s resolution energy spectra for four energy bands.

Most of the analysis in this thesis uses POS or TAG data.

1.2.2 SXC

Like the WXM, the Soft X-ray camera (Villasenor et al. 2003) is a subsystem of two

orthogonally oriented detectors each of which is sensitive to the incident angle of

incoming X-ray photons along one dimension. The SXC also has a coded aperture

mask, although with much finer elements than that of the WXM (see table 1.2). The

detectors in the SXC are front-side illuminated, 2048 x 4096 pixel CCDs, read out

along one dimension at 1.2 s intervals. They operate at -50o C, which is achieved



by passive radiative cooling. The CCDs are sensitive to both optical light and X-

rays, with appreciable effective area for X-rays in the 1.5-10 keV range. Due to the

sensitivity to polluting optical light, e.g. moonlight, two optical blocking filters were

installed: an outer filter above the gold mask made of aluminized polyimide film,

and an inner one made of Be foil that covers half the CCD area. The polyimide

film was eroded by unexpectedly high levels of atomic oxygen in 2001 and therefore

only the chips covered by the inner blocking filter are currently useful. During a five

day interval centered on full moon, even these are contaminated by optical light and

standard operating procedure is to turn off the SXC during these periods. Absorption

of low energy X-rays by the beryllium filter is responsible for raising the low energy

cutoff from about 0.5 keV to 1.5 keV.

Soft X-ray Camera
Camera Size 100 x 100 x 100 mm
Instrument type Coded Mask with CCID-20
Field of View 0.9 sr (FWHM)
Angular Resolution 33"per CCD pixel
Detector-Mask Distance 95 mm
Mask Open fraction 0.2
Mask element size 45 pm
Timing Resolution 1.2s

Table 1.2: SXC characteristics (Villasenor et al. 2003).

The SXC mask pattern is oversampled by the CCD by a factor of three, and

the device can routinely localize sources to high accuracy (about 20" RMS radius).

However, the correlation patterns used in the localization analysis can produce coding

noise correlation peaks for faint sources that are of comparable amplitude to that due

to the source, so it is necessary to restrict the location search to a ±0l range in X

and Y a priori. This is done by "seeding" the position search with the result of the

WXM correlation.

The SXC also carries 55Fe calibration sources to monitor gain changes.



1.2.3 FREGATE

The French Gamma-Ray Telescope (FREGATE) (Atteia et al. 2003) is the instrument

aboard HETE-II with the largest field of view (about 4 steradians) and the widest

energy range (6-400 keV). Table 1.3 summarizes its properties.

The French Gamma-Ray Telescope
Energy range 6 - 400 keV
Effective area (4 detectors, on axis) 160 cm 2

Field of view (FWZM) 700
Sensitivity (50 - 300 keV) 10- 7 erg cm - 2 s - 1

Dead time 10ps
Time resolution 6.4ps
Maximum acceptable photon flux 103 ph cm - 2 s- 1

Spectral resolution at 662 keV "'8%
Spectral resolution at 122 keV -12%
Spectral resolution at 6 keV -42%

Table 1.3: FREGATE characteristics (Atteia et al. 2003).

FREGATE is a set of four cleaved Nal crystal scintillators each with associated

shielding, photomultiplier tubes (PMT), discriminators, pulse height analyzers, and

digital electronics. The shield is mostly opaque to photons of low energies but trans-

parent at higher energies. For example at 150 keV the transparency is 5.5%, but at

300 keV it is 55% (Atteia et al. 2003). The shield extends beyond the PMT and

scintillator, forming a collimator which restricts the field of view of the instrument

at low photon energies. This field of view is larger than that of the WXM, with sig-

nificant exposed detector area (at least 60 cm 2) for any WXM burst. The collimator

reduces the sensitivity of FREGATE to detection of galactic X-ray sources (XRBs,

SGRs, SCO X-1) during the summer whose signal would dominate HETE-II's data

telemetry, thereby inhibiting the detection of transients. The 6 keV low end of the

energy range is set by the beryllium housing of the crystals and the upper 400 keV

end is set by the electronics. Two 133Ba sources outside the detectors allow in-flight

calibration.

The data provided by FREGATE include housekeeping, time histories (light

curves), spectra and burst data. The continuous light curves are generated every



0.16 s and 0.32 s in four adjustable energy bands (nominally 6-40 keV, 6-80 keV,

32-400 keV and >400 keV, or bands A, B, C, D, respectively) for each of the four

detectors. Spectra are generated in 128 channels every 5 or 10 seconds. Burst data

are photon events tagged by energy and time with a resolution of 6.4 ps and 256

channels in the 0-400 keV range. There is a circular buffer of 64k photons per de-

tector. The buffer contents are saved and telemetered to the ground when a burst

triggers. FREGATE is also a triggering instrument, meaning that count rate excesses

are detected by the on-board DSP and can activate burst mode.

1.3 Real Time Triggering and Analysis

The HETE-II satellite has a complex and time variable methodology for determining

a triggered event. Each such event is assigned a BID number (burst identification)

that references any analysis of that trigger. If a trigger is determined to be a GRB

then the BID is also assigned a GRB name which is reported to the GCN (Gamma-

Ray Burst Coordinates Network) via the internet. Figure 1-5 shows a plot of a

trigger event, BID3666, alternatively referred to as H3666. This particular BID is

also GRB050123A, the first GRB (A) detected on 23 January 2005 (050123). As

figure 1-5 indicates this particular burst was triggered in the B spectral band of the

FREGATE instrument. This display is automatically posted to the MIT burst web

site after the full telemetry stream is delivered over the internet usually within 1-2

hours of the time of the trigger. In a number of cases, such GRBs are reported to

the GCN within 10 seconds after the trigger directly from the HETE-II satellite via

a special low bandwidth telemetry channel. The ground system also computes fluxes

in the A, B and C FREGATE bands so that the color ratios C/A and B/A can be

used to mark the location in a color-color diagram (see Figure 1-6). This diagram

also has all prior GRBs plotted so that a quick preliminary assessment of the type of

GRB (XRF, XRR, GRB) can be determined. If the event lies along the correlation

line in the color-color plot, then it is also more likely to be a real GRB. Most triggers

are not real GRBs and therefore have color ratios that are not consistent with GRBs.
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Figure 1-5: The lightcurve for BID3666 (GRBO50123A) which shows that this GRB trig-

gered onboard the HETE satellite based on the excess counts in the FREGATE band B.

The pattern in the color-color diagram also indicates that there is some regularity of

the spectral properties of GRBs that ultimately is the basis for the new approach for

measuring the redshift of GRBs reported in the later sections of this thesis. Figure 1-7

shows an automatic spectral analysis of BID3666 that uses the XSPEC program. The

spectrum is plotted weighed by energy (continuous line) and is a fit to the measured

data points shown. The peak of the model marks an Epeak at about 78 keV. (The value

of 71 keV that is also reported for BID3666 in table A.2 is not from the automated

fit, but a separate effort by Jernigan (2006)). From the spectral fit and the lightcurve

(figure 1-5) the peak flux can be estimated.
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Color-color plot, including burst H3666
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Figure 1-6: The count rates for BID3666 are computed for the A, B and C bands of

FREGATE so that this GRB can be located in the color-color plane C/A versus B/A. Prior

GRBs are also located in this plane for comparison. The bursts are color coded by type

XRF, XRR or GRB.
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Figure 1-7: The spectral fit for BID3666 based on a cutoff power law model (eq. 1.3),generated by the automated analysis. The model is plotted as the continuous (green) linewith parameters of the model in the inset. The XSPEC analysis program was used tocalculate the spectral fit. The plot is weighted by a factor of energy so that the peak of themodel (curve) is clearly seen at the value of Epeak = 78 keV.



Chapter 2

Background Subtraction

2.1 Introduction

To determine the duration of a gamma-ray burst, one must first estimate the back-

ground count rate during the burst and then subtract it. Typically, this background

rate subtraction is performed by inspecting the light curve of the burst and deter-

mining a period of time before and after the burst for which one assumes there are

no burst counts (often referred to as "bracket regions", especially in the context of

"bracket" triggering). To these before and after regions one fits a polynomial model

to allow the interpolation of the background rate during the actual burst. (The time

during the burst is called the "foreground" region, equivalent to an "on-source" mea-

surement.) This analytic interpolation model of the background is then subtracted

from the counts in the foreground region, resulting in an estimate of the burst profile

alone.

We have developed a new and alternative method for background subtraction

that is based entirely on the spatial distribution of photon counts as modulated in

a coded-mask detector. An important advantage of this new method is that it pro-

vides simultaneous foreground and background estimates. These estimates are formed

without need for data before or after the time of the burst. The coded aperture in-

strument can thereby measure the time dependence of both the burst signal and the

background signal without any model dependent assumptions about the background



and only minimal data.

One drawback of the traditional burst isolation method is its reliance on a quali-

tative inspection to determine the before and after burst regions (Koshut et al. 1996).

Under ideal conditions our new method avoids this by comparing the foreground and

background estimates to determine the approximate onset and end of the burst.

The work described in this chapter is an application of the algorithm using data

from the WXM. However, the algorithm could be easily adapted for analyzing data

from any coded-aperture instrument.

2.2 Source Models

The WXM detector response can be modeled with ray-tracing Monte-Carlo simula-

tions which generate point-source models (so-called 'templates', see example in figure

2-1, Graziani & Lamb (2003); Fenimore (2004)). For each localized burst, the ground

analysis pipeline calculates a template for that specific sky position based on a set

of very high-resolution pre-computed models. We use these burst-specific models to

exploit the spatial information encoded by the mask.

2.3 Using the Coded Mask

One may think of the detection using the mask as a spatial chopping or modulating

measurement: by covering parts of the aperture, the mask divides the detector into a

"foreground" and a "background" detector. (Note that this is now a slightly different

meaning of these terms, since above, foreground and background referred to time

intervals, and now they refer to parts of the detector. Nevertheless, the usage is still

analogous to the traditional on-source and off-source measurements.) Which exact

anode wire positions contribute to the "foreground" and which to the "background"

will clearly depend on the location of the X-ray source on the sky relative to the

detector axis. The spatial modulation property can be exploited in a number of ways,

some of which are specific to the instrument. In the case of the WXM on HETE-II, if
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Figure 2-1: Example source model, or template. Panel a is the template for burst
GRB030329 in the WXM X camera. The abscissa is the location along the proportional
counter wire. The template is not a perfect pattern of ones and zeros due to the physical
effects of the detector. Panel b is the actual data for GRB030329 normalized to match the
template in la. Panel c is the difference in a and b and shows a match within the limits of
Poisson noise.

the burst is far enough off-axis, one can use the wires that are not exposed (i.e., those

outside the "partially coded" field of view) to estimate the background rate. Even

when all wires are exposed to the source, some parts of each wire will be covered by

the edges of the detector enclosure and counts recorded in these positions could be

used for background estimates.

Our present method relies on the templates described in section 2.2. We sum the

counts from those positions along the wires that have a low probability of recording

source counts (s ; 0) to estimate the background rate (b2 ). We also sum counts from

all other wire positions to estimate the sum of the foreground (s) and the (scaled)



background rate (bi). Our simple model is therefore:

CF(t) = s(t) + bl (t) "foreground" (2.1)

CB(t) = b2 (t) "background"

and

b (t) = 3b2(t) (2.2)

where CF(t) and CB(t) are the lightcurves of the two detector regions, foreground

and background, respectively, s(t) is the signal, or source, bi(t) and b2 (t) are the

background rate in the two detector regions, and 3 is the scaling between bl (t) and

b2 (t) -

In principle the scaling factor, /, could be calculated ab initio from the detector

geometry and energy response. However, we find that it is best to determine this

factor empirically from the data outside the burst, where s = 0. To find the position

elements to include in the background b2 , we take all locations in the template where

the model indicates a foreground level below some arbitrary fixed relative value.

Figure 2-1 illustrates an example template for burst GRB030329. Figure 2-3 shows

burst GRB030723 as measured, with the simultaneous background determined by our

method and the difference, which is the inferred source lightcurve.

2.4 Finding the Burst Time Interval

Determining emission duration statistics that are dependent on cumulative counts,

such as T50 and T90 , requires that one focus attention only on the interval of time

during which the burst is present, otherwise the noise in the measured cumulative will

dominate and produce spuriously long (or short) burst durations. (The noise in the

foreground and background lightcurves shows up in the cumulative as a component

that is a random walk. The magnitude of this is a stochastic quantity dependent on

the duration of the walk, so by not integrating during the source-free, s = 0, time

intervals, we are minimizing this source of error.) In this section we discuss how



we limit the analysis to periods when the burst is present by using the estimated

background and foreground rates obtained with the method of section 2.3.

What distinguishes the presence of the burst in the event data from its absence is

the increase in photon count rate, or equivalently, a change in photon arrival time or

inter-arrival time distributions. This implies that we may compare the rates or arrival

time distributions of measurements of the same quantity at different times, or even

better, between background and foreground measurements at the same time. We can

apply the Kolmogorov-Smirnov (K-S) test to the simultaneous rates of section 2.3

to evaluate the hypothesis that a burst is present in the data. The null hypothesis

is that there is no burst present and the photon arrival times in the foreground and

background are distributed identically, yielding a K-S D-statistic probability close

to 1. The null hypothesis is rejected when the burst is present and the D-statistic

probability tends toward zero.

We know a priori that a burst is present in the data since we are analyzing GRBs

that were previously localized by the WXM. Therefore we expect the null hypothesis

to be rejected for some portion of the data. If it is not rejected, then we know that

the GRB is not confirmed and we do not proceed with the determination of T9 0 or

T50 . Assuming that the null hypothesis is rejected and that the burst is real, we

address the determination of the start and end times of the burst by calculating the

K-S probability as a function of both the duration of the data window (a limited time

segment used to sample the time distribution of photons) and the midpoint of the

data window in time. This corresponds to considering all possible foreground time

regions to determine the largest range of data that includes emission from the burst.

In general, this search for the correct foreground region would occur in a two-

dimensional space parametrized by the data window duration and its center point in

time, or equivalently, by the start and end point of the foreground region. (We call

these points in time to and t1oo). In practice we choose the data window size to be a

fixed fraction (1/100) of the TAG data buffer length and search only one dimension.

We look for the point in time where the null hypothesis is first rejected, starting

at the beginning and sliding the window toward the end, then search for the point



where the null hypothesis is last rejected by working from the end. We typically use

a probability level of 10-2 or less to determine the onset and end of the burst. See

figure 2-2. In some cases we have to adjust this level if the probability values show

large variance.
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Figure 2-2: Determination of the burst foreground time region. Plotted is the logarithm
of the K-S probability as a function of the midpoint of the data window in time relative
to the burst trigger. The discrete steps show that the calculation splits the buffer into
100 time intervals for K-S comparison of the background and foreground. The horizontal
solid line indicates the probability level we take to reject the null hypothesis (no burst),
and the vertical dashed lines indicate the derived foreground region bounds (we extend this
by one more data window step in both directions to get lower and upper time bounds.)
The increase in probability in the middle is due to the K-S test distinguishing between
distributions of count times, not rates, thereby functioning as a burst "edge detector".

We do not worry about finding the exact start and end of the burst but aim to

find lower and upper bounds, respectively, because if we have correctly estimated

the background rate, the analysis of duration measures described in chapter 3 will be

robust against small changes in foreground start and end times. A major advantage of

using the K-S test to compare the arrival time distributions is that it is sensitive only



to the fluctuation in time of the photon rates and insensitive to the mean level of these

rates, so the background rate estimate need not be scaled relative to the foreground

rate for comparison, as long as enough events are included in the window sample to

use in a two-sample K-S test. In other words, we do need the value of the scaling

parameter 0 in equation 2.1 for this initial step of the algorithm. However, once a

lower bound of the foreground region is found, the 3 parameter can be estimated

from the data prior to it.

2.5 Background Subtracted Lightcurves

As discussed in section 3.3, we use the TAG event-based data product for our analysis.

Subtracting background from foreground rates in this case can only be done in the

sense of a cumulative as a function of time that is incremented at each event in

the foreground and decremented at each event in the background. A complication

arises from the fact that the rate of background counts bl and b2 differ by a factor J3

(equation 2.1). We find , by simply dividing the number of events in the foreground

by the number of events in the background outside the burst interval determined

with the K-S test, as mentioned in section 2.3. We find it is sometimes necessary

to fix this region manually when the bootstrap error calculation is applied (section

3.4). With / determined, we need to scale the background rate b2 by this scalar to

get Ob2. We do this by calculating a set of interpolated photon arrival times during

the burst time interval, and adding background events at these times to the analysis.

This has the effect of scaling the rate without adding excess noise. For purposes of

plotting we may bin the data but our analysis of the TAG data is always event- or

cumulative-based.
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Figure 2-3: Background subtraction applied to GRB030723. Top panel shows the signal
and the background for GRB030723 separated into two components (s+bl and b2). S is
the signal in the burst, bl is the background component measured with s and bl is the
independent estimate of the background. The lower panel shows the net estimated signal,
s+bl-flb2 , where 3 is a normalization 3 = (bl)/(b2).
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Chapter 3

Burst Temporal Parameter

Estimation and Error Analysis

The definition of T90 and T5 0 provides a convenient recipe for their calculation using

the empirical cumulative distribution function of the incident counts in the detector:

T90 is the time the cumulative of the background subtracted lightcurve spends between

5% and 95% of its maximum, and analogously for T50 . Implementing this simple

calculation is complicated mostly by the ambiguity in the starting and ending times,

the appropriate background rate to subtract (which may be rising or falling), and by

the calculation of the errors. Errors are often estimated by adding Poisson deviates

to the measured binned time-series count data, recalculating the cumulative and

duration parameters of interest.

In contrast, the new method is a purely event-based statistical bootstrap. This

means that multiple realizations of the burst are made from the time-tagged photon

data by resampling the event times as described below in section 3.2. For each such

realized data set, we calculate the cumulative function and the derived T9 0 and T50

duration measures (figure 3-1). The histogram of all realizations of these values

will be the expected error distribution of T90 and T50, and the confidence regions

in these quantities may be determined by finding the ranges that enclose the desired

percentage of all realizations. Figure 3-2 shows the procedure applied to GRB030723.
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Figure 3-1: The cumulative percentage of counts as a function of time. Plotted with dashed
lines is another bootstrap realization of the burst GRB030723. Dotted lines indicate the
5% and 95% fluence levels.

3.1 Duration Measures

Duration measures and their distributions are important statistics of gamma-ray

bursts. They lend insight into the energetics (Eiso) and also provide a basis for dis-

crimination of potential source models. Since the BATSE experiment on the Compton

Gamma Ray Observatory mission, T90 and T50 have become the de-facto standard

measures of burst duration. They are defined as the time elapsed during which the

background subtracted burst counts rise from five to 95 percent, and 25 to 75 percent,

respectively, of the total burst count fluence. (Kouveliotou et al. 1993; Koshut et al.

1996). The distribution of these duration measures show a bimodality which has

led to the belief that there are at least two distinct progenitor classes of gamma-ray

bursts.

Another duration measure, defined by Reichart et al. 2001, is the "high-signal
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Figure 3-2: Panel a) is a histogram of the t5, the 5% count fluence time derived from
multiple bootstrap realizations of the burst GRB030723. Panel b) is the histogram for
t 9 5 , defined similarly. Panel c) shows the histogram of differences, t95 - t5 which is T90.
Panels d) through f) are the corresponding histograms for t25 , t 75 and Ts50 . Indicated by
vertical dashed lines are the median values and the boundaries of regions where 90% of the
realizations fall.

timescale", designated Tf. This is the time elapsed during the brightest f fraction

of the total counts above background for the burst. (We can distinguish this from

measures like T90 by expressing f as a quantity less than 1.) The high-signal counts

need not occur continuously, and for multiple-peaked bursts they generally will not.

Reichart et al. (2001) use Tf as a smoothing timescale for burst lightcurves then with

the help of smoothed lightcurves they calculate a variability statistic that is correlated

with (and is a predictor of) the burst luminosity. When optimizing the fraction f to

give a robust and low-variance luminosity estimator, Reichart et al. (2001) typically

find f = 0.45. Firmani et al. (2006c) also investigate the variability indicator, but

use TO.4 5 as an independent variable, and surprisingly find Liso-Epk-To.45 to be a

CDMCr

u. u.

CD
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much tighter correlation than those using variability. It is also true that the signal

to noise of WXM GRBs is insufficient for the reliable calculation of variability, but

is sufficient for the calculation of T0 .4 5 . To take advantage of this use of T0.45, we

develop our similar event-based statistic as described below.

3.2 Statistical Bootstrap

We use a non-parametric bootstrap method for the analysis of the WXM X-ray photon

data, and in particular, for the analysis of errors of our duration estimates. The

bootstrap in statistics was first put forward by Bradley Efron (Efron 1979, 1982),

and belongs to the class of resampling techniques. The fundamental idea is that

in the absence of being able to repeat an experiment or an observation (such as a

gamma-ray burst), the existing measurements are resampled to form synthetic data

sets.

Resampling means that we take random samples from the data that we have

already measured. For a bootstrap dataset, the number of random re-samples, is equal

to the number of original measurements. A key feature of this statistical method, is

that it is possible to randomly select the same sample over and over again. This is

why the method is often called resampling with "replacement" (as if one were pulling

balls at random from an urn, noting which ones were picked, then placing them back

in the urn before pulling the next one at random, unlike what happens in a lottery).

For illustration, suppose one makes four measurements of x. The measured sample

is then x = (, X2, 3, X 4 ). One resampling could be x*1 = (x2, 4, 1, 3 ), although

this is very unlikely, since each original sample was randomly selected again. This

sample is also entirely equivalent to the original data, x. Another resampling might

be x*2 = (x3, 1, x 4, x 1). Note that xl was resampled twice.

The analysis to be done on the data, i.e., whatever statistic we are interested in,

is then applied to the synthetic data sets just as it would be applied to the original

data. The distribution of the statistic is then calculated as its distribution over the

synthetic data sets.



The bootstrap idea is illustrated in figure 3-3. It differs from Monte-Carlo methods

Original Data Set

Bootstrap
Samples

Bootstrap
Estimates
of S

Figure 3-3: Illustration of the bootstrap method (after Efron, B. and Tibshirani, R. 1993).
The original data set of n items is resampled with replacement to create B synthetic data
sets, x*, each with n elements. The statistic S is calculated on each of the synthetic data
sets.

in that it does not assume an underlying distribution of the data, but rather uses the

measured data as the best estimate of their distribution.

3.3 Event Data

The TAG data product of the WXM instrument is particularly suitable for bootstrap

analysis. It provides information at the level of each individual photon detected:

the energy channel, the position along the detector wire, the wire itself (which also

determines the camera, X or Y, that it was detected in), and most importantly, the

time of detection with 256 ps resolution. The TAG data are stored in a circular

buffer on the spacecraft, which limits the maximum duration recorded. When a

burst is triggered on board, the content of the buffer is unmodified until it has been

telemetered, with the time of trigger approximately in the middle of the buffer.



3.4 Applying the Bootstrap to the Data

The suitability for bootstrap analysis is due to the unbinned, event-nature of the

data. Each recorded time corresponds to a single photon event and we can resample

by randomly selecting the individual photons. The bootstrap is performed by re-

sampling the event times with replacement for both the foreground and background

event streams. For each such realized data set, we calculate the empirical cumulative

function and derive the Too and T50 duration measures (figure 3-1). The histograms

of all realizations of these values will be the expected error distributions of T90 and

T50, and the confidence regions of these quantities may be determined by finding the

ranges that enclose the desired percentage of all realizations. Figure 3-2 shows the

procedure applied to GRB030723 and Table 3.1 summarizes the results. Note that

the bootstrap method shows the non-Gaussian nature of the errors (see panel 3-2 c)

and the 5% and 95% values in table 3.1 are not consistent with Gaussian assumptions

and the medians and variances listed.

Measure 5% 95% Median Variance

t05  13.47 30.00 22.90 28.95
t95 48.44 60.52 58.98 17.08
T90  23.83 42.65 31.51 34.20
t25 29.06 34.54 31.90 2.95
t75 40.18 47.88 42.39 4.57
T50  8.84 14.38 10.92 3.10

Table 3.1: Summary statistics of duration measures for GRB030723 (see figure 3-2)

Smoothing

Before applying a statistical bootstrap procedure to find the confidence regions, we

may smooth the data (which are still just an ordered list of detection times) by

assigning each event a time that is the mean of the times of the nth event before

and the nth event after the one in question. (That is, t' = (t_-, + ti+±) /2, where ti

indicates the time of the event, i is the index of the events in chronological order,

and t' is the smoothed time.) The typical value of n is 50. This procedure preserves

time order and narrows the distribution of inter-arrival times (thereby smoothing



the data). In other words, we construct an approximate infinite statistics version of

the GRB profile by removing some of the photon shot noise in groups of n nearby

photons. This approach has the advantage that is temporally adaptive in the sense

that the smoothing tracks variations in signal-to-noise such that bright portions of a

GRB lightcurve are smoothed less than faint portions.

Using the K-S Test with the Bootstrap Technique

Care must be taken with applying the K-S statistic to the synthetic data sets of

the bootstrap. The two-sample K-S test works for the original data since it is mea-

sured with Poisson statistics and the K-S D-statistic is distributed as is described

in textbooks. However, the creation of the synthetic bootstrap datasets adds extra

variance, which must be accounted for. We have shown for these cases with numer-

ical experiments that the D-statistic is not distributed uniformly in the case of the

null hypothesis, as would be required to apply the probability cuts. Our solution is

to change the test by evaluating the probability for a given D-value, but assuming

there are half as many points in the K-S test, which would also increase the variance.

Using the same numerical experiments, we showed that the D-statistic is distributed

approximately uniformly with this correction, and so we may use the corresponding

probability value.

3.5 T0.45 Measurements

The Tf burst timescales, where f represents a fraction between 0 and 1, were proposed

as smoothing timescales for lightcurves by Reichart et al. (2001) in constructing a

Cepheid-like variability estimator. The quantities represent the total duration of the

highest f fraction of the background subtracted counts. The definition is illustrated

schematically for idealized lightcurves in figure 3-4 for f = 0.5 and f = 0.9. Reichart

et al. found that the optimal choice for f was close to 0.45, which was then used in a

different context by Firmani et al. (2006c) in establishing the Liso-Epk-TO.45 relation

(section 4.3). Motivated by the above definition, we calculate our own similar statistic
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Figure 3-4: Illustration of Tf for schematic lightcurves from Reichart et al. (2001). The
top panel shows f = 0.50 and the bottom f = 0.90. Note the total duration T0.50 = T1 + T2
is made up of discontinuous segments, whereas T0o.90 = T3 turns out to be one continuous
interval.

using event-based methods that we apply to time-tagged data. During times of bright

emission, the cumulative of net burst counts rises steeply, that is, takes less time to

change by some fixed fractional amount. To find our version of T0.45, we calculate

the time it takes for the cumulative to reach 5%, 10%, ... , 100% of its maximum

(t5 , t10, ... , t1 00 in our notation), take the differences (Ati), and sum the shortest 9

intervals. This calculation is easily generalized to shorter but more time intervals,

however increasing the number of intervals to get finer resolution has the disadvantage

of making the results noisier. Obviously, 5% intervals are the largest with which a

45% smoothing timescale can be calculated. We find the errors on the derived TO.45

by applying bootstrap to the lightcurve. An example of the procedure is shown in

the bottom panel of figure 3-5. Section 4.3.1 shows a comparison of our event-based

T0.45 to the traditional binned method used by Firmani et al.. But care should be

taken in the interpretation since the data analyzed are from different instruments,



and Firmani's detailed analysis method is unknown to us.

3.6 WXM T 90, T0 .45 Measurements and Error Dis-

tribution

We measured the T90 (and T5 0) of all the bursts detected in the WXM with available

TAG data. We define the fractional error in the duration measures as the standard

deviation of the bootstrap realizations divided by their median. 6T,/TX. Discussion

of the distributions of the duration measures and their errors is deferred until chapter

5, because we also consider the intrinsic distribution of these quantities, i.e., corrected

for cosmological time-dilation and energy-bandpass effects, using the redshifts found

in chapter 4.
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Figure 3-5: Example T0.45 and T90 calculation with errors for GRB030329. The top panel
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Chapter 4

GRB Luminosity Function and

Redshift Distribution

4.1 Introduction

In this chapter we describe analyses of HETE-II data that attempt to characterize

GRBs by finding their distribution in luminosity and space. There are two reasons

why these questions must be treated simultaneously. The first is that the raw distribu-

tions of these properties are affected by the flux limit of the detector, and since more

luminous objects will be visible to larger distances, corrections to number counts must

be made. The second reason is that we allow for the possibility that the luminosity

distribution evolves with cosmic time, or redshift.

We first describe how it is possible to infer a redshift for bursts that have no spec-

troscopic measurements, and why this is important. We then apply such a method to

WXM bursts to create a catalog of GRBs with peak luminosities and redshifts. We

proceed with non-parametric techniques to determine the evolution of the luminosity

function under some simplifying assumptions, and the shape of the luminosity func-

tion and redshift distribution of GRBs. This analysis carefully includes the effects of

the large log-normal errors of the estimated redshifts. Finally we compare to other

results and discuss the implications.



4.2 Redshift Estimators

The number of GRBs with spectroscopic redshift measurements has been steadily

increasing but is still a small fraction of all the bursts detected. This is most likely

due to observational selection effects that are hard to quantify; as evidence of this,

one sees that the distribution of spectroscopic GRB redshifts obtained from different

satellites varies greatly. For example, after a little over a year of operation, it is

seen that Swift GRBs have higher mean redshifts than those of BATSE or HETE-II,

and Swift may be lacking low redshift bursts. Some of the biases originate in the

instruments or their operations (for example optimal orientation for optical follow-

ups) and some are selections on the properties of bursts or their host environments

(speed of decay of the afterglow, the redshift of the burst, optical column density,

etc.) For these reasons, that is, to have a larger and more complete sample of bursts,

and to avoid selection biases, it is desirable to have a method of measuring redshifts

other than via optical spectroscopy. We refer to these methods as redshift indicators

or redshift estimators.

Redshift estimators are most often constructed using observed phenomenological

correlations between gamma-ray burst properties and luminosity. (These correlations

are established with bursts that have spectroscopic redshifts, therefore these function

as calibrators.) Redshifts may then be calculated given an assumed cosmology, typi-

cally the concordance model. Useful estimators involve observer frame quantities, and

most useful are those that are derived from the prompt X-ray or 7-ray data alone.

Some of the commonly used estimators are based on the lag-luminosity, variability-

luminosity, Epk-Eiso (Amati) and Eiso-Epk-tbreak (Ghirlanda) correlations. This last

relation is less useful in practice since the jet break times of the bursts often proves to

be unmeasurable. The Amati relation has been criticized for having a large degeneracy

region in redshift and thereby being unable to differentiate redshifts in the range

0.9 < z < 20 given the typical one standard deviation errors of the energy estimates

(Li 2006).

The Liso-Epk-To.45 relation, discussed in section 4.3, is a recently reported corre-



lation, which when used to infer redshifts, produces low redshift errors (68% of the

calibrator redshift estimates are within 25% of the real values) and the relative un-

certainties of the redshift estimates seem uncorrelated with redshift (Firmani et al.

2006c).

4.3 Liso-Epk-TO.45 Relation

Using a total of 27 bursts detected by a number of different missions, all with spec-

troscopic redshifts, Firmani et al. (2006c) investigate the existence of possible corre-

lations between Liso, Eiso, tbreak, T0.45, Epk, and variability measure (Reichart et al.

2001). They find for a subset of 19 bursts (for which all the observables are available),

a correlation between Liso, Epk, and T0 .45 with a remarkably small scatter of 0.06 dex

(Firmani et al. 2006c, Eq.9):

iso _1052.110.03 ( Epk 1.62±0.08 T. 45  -0.49±0.07

L 102.37 keV 100.46rg s (4.1)

Firmani et al. note that there are outliers to the relations that were not fitted;

these were all low luminosity GRB events (below Liso of - 1051 .2erg s-1) and had

peculiarities in their spectral fits with indications that Epk might be lower than first

reported.

The quantities in equation 4.1 refer to source frame quantities and to infer an Liso

for a burst, one must adjust the observations by the appropriate factor of (1 + z):

Epk = Eks(1 + z) and To.4 5 = TgS5/( + z). But note that the emission time is also

affected by the shortening of temporal features at higher energies (Fenimore et al.

1995), so what we observe is tS-Ib = T0 .45 (1 + z) 0-6.

Redshift Estimation

We now see how the relation can yield burst distances, or redshifts, for those with no

spectroscopic measurements. Having established the correlation, one has the ability



to infer Liso from the prompt emission data, and by using the observed bolometric

peak flux, P, one can calculate the redshift of the burst by inverting the luminosity

distance, since 47rD 2 (z)P = Liso. We stress that this relation applies to bolometric

quantities, and so in practice one has to k-correct (Bloom et al. 2001) the measured

peak flux to a sufficiently wide energy band. Firmani et al. choose to use 1-104 keV

in the source rest frame, which is quite common in the literature. (The k-correction

also allows the simultaneous use of observations from different detectors, although

this is not important for the analysis of our data described in the sections below.)

Equation 4.1 can then be cast in terms of the observables as

10 (1 + z) 1.620.08 -0.49±0.07

Liso = 1052.110.03 E k (1 + 4 rg s- 1 (4.2)102.37keV (1 + Z) 0.4 erg (42)

This can then be rewritten to separate out the redshift dependence (using the best-fit

values of the exponents) as

f(z) = 106.48X (4.3)

where

(1 + z) 1 (91

f4-D,(z) 2 (4.4)

P('tobs )0.49
D b.z (4.5)

DL(Z) is the luminosity distance in Gpc, P is the peak flux in erg cm - 2 s-1, Eobs

is the peak of the energy spectrum in keV and Tob,5 is the high-signal timescale in

seconds. The redshift can then be estimated through

z' = f-1(106.48[). (4.6)

The success of this approach is illustrated in figure 4-1 (Firmani et al. 2006c) which

shows the function f(z) and the actual location of the GRBs with spectroscopic

redshifts (those used to establish the Liso-Epk-To.45 relation) in the Log(I')-Log(z)

plane.
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Figure 4-1: Redshift estimation with the Firmani relation (from Firmani et al. 2006c).
Graphical illustration of using equation 4.6 to determine redshifts. The solid curve is the
function f(z) (equation 4.4). Redshifts are estimated by calculating I from observables
(equation 4.5) and determining the z coordinate at which f(z) takes on that value. Also
plotted are the points for the bursts used to establish the Firmani relation at their actual
spectroscopic redshifts.

Errors in Redshift Estimates

As noted in section 4.2, the errors in the redshift estimates are lower for the Firmani

relation than for most other redshift estimators (e.g., Amati). We investigate the

effects of the errors in the exponents of equation 4.2. Parametrizing the exponents so

that Liso oc 10aEpkTO.4 57, the equation f(z) = 106.48TI becomes:

(1 + z)O- 0.6' = K 2 x 1 0 (2.373+ 0.46-r- a ) (4.7)

47rD2 (z) 
)

where K is the conversion to cm from Gpc, a = 52.11 ± 0.03, / = 1.62 ± 0.08,

and y = -0.49 ± 0.07. Note that the solution for z in this equation will in general

depend on the burst quantities Epk and TO.4 5 in addition to the parameters a, ,, and y

(the dependence on the cosmology through the luminosity distance is assumed to be

fixed). Therefore we could proceed by taking specific bursts and estimating the effects

of errors in the exponents on z, or by assuming typical values for Epk and T0. 45 . We
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Figure 4-2: Errors in redshift estimates due to the uncertainty in the exponents of the
Firmani relation. The solid curve is the function f(z) with the best-fit parameters (equation
4.4). The dashed and dotted lines indicate the one and two standard deviation regions for
f(z) due to the uncertainty in the exponents. The effects are seen to be pronounced at high
redshifts. The vertical dotted lines indicate that an inferred redshift of 4 has a one sigma
logarithmic error of -0.071/+0.097 and at a redshift of 10 this increases to -0.149/+0.262.

choose the latter method and perform a Monte-Carlo study by drawing the exponents

from normal distributions with mean and standard deviation as given above, and

recalculating f(z, a, 0) (the left side of equation 4.7). Note that to compare the

results graphically on the same plot, one has to account for the fact that a change in

a always shifts the effective f(z) curve along the vertical axis, but if E bs = 102.37

keV and Tso = 100.46 s, then to first order the curve does not shift due to changes

in 3 and -y. We pick these values as the typical Epk and T0 .45 , and find the results of

figure 4-2. The confidence region for z is always larger on the high side of the best

estimate than on the low side, and is larger at higher redshifts in general. For z = 5,

the error is between 0.086 and 0.12 dex, but at z = 10 this increases to between 0.15
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Figure 4-3: Differences in estimated and spectroscopic redshifts. We model this as a log-
normal in (1+z) with a standard deviation of 0.093 dex.

and 0.26 dex.

Another way to assess the errors of the redshift estimates is to look at how close

they are to the actual spectroscopic measurements (the 'residuals'). In our sample

there are nine bursts with spectroscopic redshifts, and the differences are found to

have an RMS scatter in log(l+z) of 0.093 dex (see figure 4-3). This is the model

and the magnitude of the errors that we use in subsequent analyses. Note that the

foregoing discussion and figure 4-2 are consistent with this view up to a redshift of

5, though one might be tempted to think that the error is lower at smaller z. We

believe that the residuals approach takes into account sources of error other than the

uncertainty in the fit of the Firmani relation and is thus a better estimate. However,

to be conservative, we must allow for two-sigma relative uncertainties of a factor of

1.35, 1.5, and 1.67 for estimated redshifts of 5, 7 and 10, respectively, and we do not

draw any conclusions for bursts with estimated redshifts beyond 10.



4.3.1 WXM Catalog of Bursts and the Firmani Relation

T0 .45 Calculation

In deriving the correlations among prompt emission properties of bursts, Firmani et al.

(2006c) use 19 bursts, eight of which were HETE-II detections. GRB030226 did not

trigger on board the spacecraft and so has no time-tagged data available, therefore,

we have in common seven bursts for which we can perform our temporal analysis (i.e.,

the determination of TO.45 and its errors). We use these seven overlapping bursts to

"cross-calibrate" our measurements with those of Firmani et al. (2006c) by fitting a
linear model of the form Tomani = OToxM, where TFirmani are the values published

-0.45 04 , 0.45 , 0.45

in Firmani et al. (2006c). The calibration bursts are shown in figure 4-4 along with

the Liso-Epk-TO.45 relation.

For these bursts, the peak of the energy spectrum and the peak bolometric flux

are from the tables of Sakamoto et al. 2005, so the high-emission time, T0 .45, is the

only difference. The difference in T0 .45 (see Figure 4-5) is in part attributable to

our different methods of calculation, but we also expect that our measured values

will be longer than those derived by Firmani et al. (2006c) due to the much higher

energy bandpass of FREGATE than WXM, and due to the well-known narrowing of

temporal features of GRB emission as - E-0.4 (Fenimore et al. 1995). The values

published in Firmani et al. (2006c) have been multiplied by a factor of (1 + z)0 .4,

which we divide out. The fit also requires that we account for variance in the model

as well (i.e., 'structural' rather than a 'functional' model) which we do by adding a

systematic standard deviation in quadrature to the standard deviation of the model.

We fit in linear space and impose the constraint (as per the model above) that the

fit include the origin. We find a = 0.51 with a confidence region of 0.46 to 0.56. The

fit is shown in figure 4-5. Also note that the T0 .45 of the seven HETE-II calibration

bursts span most of the range spanned by the global set of 19 bursts of Firmani et al.

(2006c). A histogram of these is shown in figure 4-6.
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Figure 4-4: The Liso-Epk-TO.45 (Firmani) relation and the seven HETE-II GRBs used to
calibrate the T'4xM . The + symbols with solid error bars are the original values by Firmani
et al.; x symbols with dashed error bars are the T0 .45 values from WXM TAG data. The solid
line is the Liso-Epk-To. 45 relation of equation 4.1. The ordinates of the corresponding points
with dashed and solid errors are the same since only the T0.45 parameter is investigated in
this step.

Epk and Peak Flux

We use Epk and peak flux values for WXM bursts as determined by Jernigan (2006).

The procedure works for those bursts that were triggered on the spacecraft for

which we have WXM TAG and FREGATE event data. For the latter, we com-

pute lightcurves in the 6-400 keV band, and derive maximum count rates per second,

the burst foreground ranges and background ranges, usually from the data prior to

the burst trigger. From the location of the GRB we determine an appropriate re-

sponse matrix (RMF) file that serves as a model of the FREGATE instrument for

that GRB. We then run XSPEC to determine an approximate spectral fit to the GRB

in the form of a cutoff power law.
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Figure 4-5: Observed T0.45 for the seven calibrator bursts. Values published by Firmani
et al. (2006c) are along the ordinate and values calculated from WXM TAG data are along
the abscissa. The best fit for the one parameter model is the heavy line and the errors are
indicated by dashed lines.

From this spectral fit we determine the approximate value of Epk, then use XSPEC

to calculate bolometric and k-corrections. We first numerically integrate the FRE-

GATE counts in the 6-400 keV band weighted by the instrument model, and then do

the same for the total energy in the 1-10 4 keV band for the fitted spectrum without

the instrument model. XSPEC can perform this second integral by creating a fake

instrument model with a perfect flat response from 1-10 4 keV. The ratio of the second

integral to the first measures a bolometric correction factor that determines for each

FREGATE count rate the actual flux in the full 1-104 keV band. This bolometric cor-

rection ratio is multiplied by the peak count rate in the full FREGATE band (6-400

keV) to compute a bolometric energy flux for the GRB. With an assumed cosmology

and an estimated redshift this corrected flux can be converted into an Liso for the

GRB.
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Figure 4-6: Histogram of T0. 45 . Wide hashed are the original 19 of Firmani et al. (2006c)
and more densely hashed are the seven from HETE-II used to calibrate our catalog. The
latter set approximately cover the range of the former.

WXM Catalog of Bursts

The results of the redshift calculations for the WXM bursts and their peak bolometric

luminosities are shown in figure 4-7. Also plotted is the flux limit of the survey,

1.5 x 10- 7 erg cm - 2 s- 1, which was determined to be the lower flux threshold that

includes all bursts in the sample. The calculations use the standard concordance

cosmological model, Ho = 70 km s- 1 Mpc - 1, QM=0. 3 and A=-0.7.

Selection Effects and Completeness

Figure 4-8 shows the results of the analysis of all GRBs detected by HETE-II that

have measured raw count rates in the FREGATE instrument. By dividing the GRBs

into two classes, those that are part of the sample of 31 with estimated redshifts and

those not estimated, we can determine if there is any bias in the selection of the
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Figure 4-7: Peak isotropic-equivalent luminosity and redshift of WXM-detected bursts.
The redshifts are inferred through the Firmani relation. The dashed line represents a flux
limit of 1.5 x 10- 7 erg cm - 2 s- 1 and a ACDM cosmology (Ho=70; QM=0. 3 ; DA=0.7). The
bursts that fall into the upper left quadrants demarcated by the dotted lines are examples
of the associated sets defined in equation 4.8.
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GRBs used in the analysis of the redshift distribution and luminosity function. We

know that the main reasons that only a portion of the GRBs are available for the

Firmani estimated z analysis are operational issues (missing telemetry, failed aspect,

high background, technical failure to trigger, etc). Figure 4-8 shows that the color

distributions of the two classes are consistent with the same underlying distribution

if we correctly remove those GRBs that are at high off-axis angles in the FREGATE

instrument and are therefore not localized by the smaller field WXM coded aperture

instrument. We also know that the performance of the HETE-H FREGATE and

WXM instruments over time is stable such that we expect the sample of 31 GRBs to

be a representative complete flux-limited sample. There is some annual variation in

the background rates that might affect the flux limits but the overall GRB detection

rate does not vary much as a function of the annual cycle. Since GRB properties are

not correlated by the annual cycle, any variation in the flux limit (also see dashed line

in figure 4-7) would not affect the measured z distribution and would only modify the

luminosity function near threshold. The large dynamic range of GRB luminosities

mitigates even this effect.

In summary, we have shown that the sample of 31 is likely to be both without

selection bias and complete. The accuracy of the results is limited only by the small

sample size but is easily and correctly estimated by bootstrap methods. We have not

identified any potential systematic errors at this time. Also, the color-color analysis

of the FREGATE data shows a pattern (see figure 1-6(a)) that is likely related to

Epk, therefore this analysis is appropriate for checking for selection bias in using the

Liso--Epk -TO. 45 (Firmani) relation, which is the basis of the estimated redshifts.

4.4 Statistical Analysis of the WXM Catalog

We analyze the WXM catalog of bursts to determine the luminosity function and

the number distribution of bursts as a function of redshift. We choose to do this

with Lynden-Bell's C- non-parametric method (Lynden-Bell 1971), originally devel-

oped for quasars, but applicable generally to data sets with truncation. The method
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Figure 4-8: Comparison of HETE-II GRBs in the sample of 31 that have redshift estimates
(squares) and those GRBs without (dots). (a) shows the color-color diagram for all GRBs
with measured count rates in the FREGATE A, B and C bands. These bands are in order
from low to high energy (also see figure 1-6). The dashed line marks loglo B/A = 0.35.
The points to the right of this line are GRBs that are far off axis (high incident angle) in
the FREGATE instrument where effective area is modified differently in the A, B and C
bands due to collimator absorption. The sample of 31 GRBs are detected in both WXM
and FREGATE and therefore are all to the left of the dashed line. The dots to the right of
the dashed line also show higher values of loglo C/A as expected. (b) shows the cumulative
distribution of the B/A ratio for the dots to the left of the dashed line in (a) as a dotted
line. The cumulative curve for the sample of 31 (squares in (a)) is the solid line. These
two cumulative curves are nearly the same and are consistent with the same underlying
distributions according to a K-S test (confidence better than 90%).
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has been shown to give luminosity and density functions equivalent to maximum

likelihood estimates (Marshall et al. 1983; Choloniewski 1987). We investigate the

evolution with redshift of the luminosity function using a closely related rank-order

correlation test (Efron & Petrosian 1992) that also applies to truncated data sets.

This method has been applied to quasars (Maloney & Petrosian 1999), and gamma-

ray bursts (Lloyd-Ronning et al. 2002; Yonetoku et al. 2004; Kocevski & Liang 2006).

Correlations between luminosity and redshift of gamma-ray bursts should not ex-

ist unless they are due to an evolving luminosity function or observational selection

effects. The aim of the Efron & Petrosian (1992) approach is to eliminate the selec-

tion effects and to quantify the evolution. That the flux limit creates an artificial

correlation between L and z is well known and the idea is to eliminate this by calcu-

lating correlation coefficients only among those bursts that would have been mutually

observable. This set is defined as follows: if a burst i was observed, take the set of

all bursts that would also have been observed (their luminosity greater than that of

i), but limit the set to only those whose observations would in turn imply that i

would have been surely observed (their limiting luminosity less than the luminosity

of i). This set is often called the "associated set", and is graphically a rectangle in

the L-z plane, whose one corner is on the detection limit curve and whose lower edge

intersects the burst i. More formally, the set is defined as:

Ji - {j : Lj > Li, Liim,j < Li} (4.8)

In this set, we define the rank in redshift, Ri, of burst i as

R {E j :Zj z> zi (4.9)

where J+ includes the associated set Ji and burst i, and the absolute value signs

indicate the number of elements, or cardinality of the set. If there is no correlation

between L and z, then R, will be distributed uniformly between 1 and Ni = IJil,

the number of bursts in the associated set, with expected value Ei = (Ni + 1)/2

and variance Vi = (Ni2 - 1)/12. We can now form a correlation statistic similar to



Kendall's tau (a rank-order correlation coefficient) from the rank of each burst:

C (Ri - E 1)
= - E) (4.10)

This quantity has zero mean and is normalized to have a standard deviation of one.

The significance of the correlation is then given by the value of IT1.

We can write the bivariate distribution of gamma-ray bursts in luminosity and

redshift, i(L, z), explicitly as the separable product of the GRB rate density and

the evolving local luminosity function: p(z)O(L/gk(z), a)/gk(z), where p(z) is the

GRB rate density, and a8 parametrizes the shape of the luminosity function. gk(z)

parametrizes the correlation between L and z thereby describing the evolution of the

luminosity function with z. Typically, one assumes a functional form gk = (1 + z)k.

The evolution of ¢(L) can then be found by letting L - L' - L/gk(z) and varying

the parameter k, until T(k) is zero. The la error region of the evolution parameter,

k, will be determined by the region where -1 < 7 < 1.

With the evolutionary effect parametrized, we can proceed with the set (L', z) and

calculate the luminosity function and the GRB rate. The Lynden-Bell C-method gives

a solution to the cumulative luminosity distribution function, that is, the number of

bursts with luminosity greater than a given value:

In I(Li) = E In 1 + (4.11)

(Lynden-Bell 1971; Efron & Petrosian 1992). In eq. 4.11 the Li are ordered by

luminosity (Li > Lj <= i > j) and the Nj are, as before, the number of bursts

in the associated sets. The normalization of the resulting cumulative luminosity

distribution is relative. The cumulative distribution in redshift is obtained with the

same method, but with the associated sets defined as all bursts with redshift less

than that of the given burst and with luminosities above its luminosity limit. In

calculating the cumulative redshift distribution with the Lynden-Bell method, the

bursts are ordered by their redshifts.



The traditional luminosity function and redshift distribution can be calculated by

either taking a numerical derivative of the cumulative, or differentiating an analytic

functional form fitted to the data. To find the comoving rate density of GRBs, p, we

divide the rate per redshift interval, da/dz, by the differential volume at the redshift,

and multiply by (1 + z) to account for time dilation:

da(z) (dV(z)- (4.12)
p(z) = (1+z) (4.12)

dz dz

4.4.1 Accounting for Errors in the Redshift Estimates

Spectroscopic redshifts are sufficiently accurate with normal rather than log-normal

errors that a Lynden-Bell analysis is possible in which the errors in z are ignored. The

use of an estimator with log-normal errors requires a modified Lynden-Bell approach

that has not been addressed in the literature yet.

We have seen that the errors in the Firmani redshift estimator are approximately

log-normal with a standard deviation of 0.093 dex. The main manifestation of the

errors is that they widen the observed distribution of redshifts compared to the true

distribution. This is seen as a scattering of estimated z from the 1 < z < 2 range

into 0 < z < 1 and the scattering of high z > 8 estimates to even higher z. Both

these distortions are caused by the convolution of the true redshift distribution with

a wide log-normal error distribution. We wish to deconvolve the errors to recover the

true redshift distribution.

We oversample the original 31 bursts to adequately represent the error regions of

their redshift estimates. (This has the additional advantage that it facilitates taking

numerical derivatives of the Lynden-Bell cumulatives in later stages of the analysis.)

This oversampling is a Monte-Carlo procedure, not a bootstrap, because we have a

model of the parent redshift error distribution. For each re-sample, we take the burst

redshift and add a deviate to log(1 + z) that is drawn from a normal distribution of

zero mean and width 0.093 (i.e., from i.'(0, 0.93)). We also add a normal deviate to

log(L) drawn from a normal of width 0.2 merely to smooth our luminosity function
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Figure 4-9: Deconvolution of redshift estimates and errors. Plotted are histograms of the
roughly 2000 redshifts resampled from the original 31. (Not plotted are the luminosity val-
ues, which are also resampled in pair with the redshifts.) The dotted curve is a smoothed
version of the measurements (2000 rather than 31 points). The smoothing is due to inde-
pendent log-normal errors from estimating the redshifts and the resampling. This curve
has points scattered into low and high z. The solid curve is the estimated true flux-limited
z distribution. The solid histogram is convolved twice with the log-normal errors to com-
pute the dashed histogram. Since the dashed histogram approximately matches the dotted
histogram with excess low and high points, the solid curve is a correct approximation of the
true flux-limited z distribution.



results (with a dynamic range in L of 3 orders of magnitude, this will have little

effect on the derived luminosity function). This resampled distribution represents

our "measurements" and is shown in figure 4-9 as the dotted line (only the z values

are histogrammed). The information content is still just that of the redshifts and

luminosities of the original 31 bursts, and size of the error in log(1+z).

But now resampling has actually introduced the measurement error acting twice

on the true redshift distribution: once in the original redshift estimation via the

Firmani relation, and once in resampling procedure just described. (One can think

of a hypothetical set of spectroscopic measurements as the "true" distribution.) To

estimate the true distribution, we add a random deviate to log(l+z) that has the

tendency to increase z when it is less than one, and decrease it when it is larger than

8, in the process reducing the tails of the distribution. The expected change in each

point is less than the 1 sigma error in the redshift estimation. The ad hoc function

we use is

A log(1 + z) ~ (e -z ( - e(-z/8)2) , ) (4.13)

where a = 0.093.

The result of this transformation is shown as the solid curve in figure 4-9. To prove

that this ad hoc method works and indeed recovers the correct true z distribution,

we apply the log-normal redshift errors twice to the distribution shown in the solid

curve, getting the dashed line in figure 4-9. This is equivalent to the dotted line we

started with under a K-S test. Note that both the large shift of the peak to lower z

and the modest excess of z's in the range z > 10 has been recovered while shifting

the individual z's by less than one sigma on average.

In the final step, the (L,z) pairs represented by the solid curve are cut at the flux-

truncation limit of the original 31 bursts, as shown in figure 4-10. The remaining pairs

are now intended to model the correct flux-limited distribution of z without the effects

of the log-normal errors. They form the input to the Lynden-Bell method to deduce

the luminosity function and z distribution of GRBs, corrected for flux truncation.



10 55

1 054

1053

1052

10 51

1 05 0

0 2 4 6 8
z

Figure 4-10: The Monte-Carlo resampling of the data
resampling allows for the effects of the large log-normal

10 12 14

in the Luminosity - z plane. The
errors in the redshift estimates.



4

2

0

-2

-4

-6

-8

0.0 0.5 1.0 1.5 2.0
k (Exponent)

Figure 4-11: The 7 coefficient of correlation between redshift and luminosity as a function
of the power of (1+ z) in the luminosity rescaling L --+ L/(1 + z)k. The dotted lines indicate
the values that yield the one standard deviation interval and the dashed line indicates the
value where the correlation vanishes (T = 0, k = 1.03).

4.5 Results

Luminosity Evolution

Figure 4-11 shows the correlation as a function of the exponent k of the evolution

function, gk(z) = (1 +z)k. The results are confirmed by a bootstrap analysis as shown

in figure 4-12. Our data reject the non-evolving luminosity function at a significance
of 5.7 a, with an implied luminosity evolution of L oc(1 + z) 1.03 o 01. These results

are within the limits of L oc(1 + z) 1.410.5 found by Lloyd-Ronning et al. (2002) using

a similar analysis of 220 BATSE GRBs with the luminosity-variability relationship,

and about two standard deviations from L oc (1 + z) 1.7+ °.3 found by Kocevski & Liang

(2006) who analyzed the 900 GRB BATSE set of redshift and luminosities calculated

by Band et al. (2004) using the lag-luminosity relationship.
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Figure 4-12: Error analysis of the luminosity function evolution parameter. Note that
variations in the bootstrapped result at k=O imply 4 < T < 8, clearly rejecting a model
with no evolution (k = 0). The solid line is the median of the bootstrap realizations, the
dashed lines enclose the 68% confidence region (+1 standard deviation), and the dotted
lines bound the 90% region. Note that the dashed lines are 1l in T, which just confirms
that 7 is constructed to have unit variance.
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Figure 4-13: The cumulative gamma-ray burst luminosity function (number of objects
with luminosity greater than the abscissa) as determined by the non-parametric Lynden-
Bell method. The luminosity is the peak, isotropic equivalent luminosity, scaled to remove
evolutionary effects. The Lynden-Bell method does not give the normalization, which is
separately set to 1.0.

Luminosity function

Figure 4-13 shows the cumulative luminosity function of GRBs, and figure 4-14 shows

the differential luminosity function with a dashed line of L-152 over-plotted. That

power-law was found by Donaghy et al. (2003), who performed a maximum likelihood

analysis of BATSE GRBs using the variability-luminosity indicator and a power-

law parametrized luminosity function. Our results are consistent with this behavior,

but show a shallower slope at low luminosity and may be better described by a

broken power-law. Kocevski & Liang (2006) and Lloyd-Ronning et al. (2002) also find

that the differential luminosity power-law index is approximately -1.5 for L' < 1052,

although their inferred luminosities tend not to range as high as ours.

Our and the aforementioned authors' empirical non-parametric luminosity func-
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Figure 4-14: GRB luminosity function, derived by numerically differentiating the values
of figure 4-13. The differentiation is over a multi-point interval, so successive points are
somewhat correlated, in addition to the curve being derived from 31 original points. The
dashed line indicates the slope of a power law GRB luminosity function fit found by Donaghy
et al. (2003) from a likelihood analysis of BATSE data, based the variability-luminosity
estimator.
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Figure 4-15: Cumulative GRB Rate as a function of redshift as given by the non-parametric
Lynden-Bell method. The normalization is set to 1.0.

tions do not show log-normal form, which is assumed throughout Woods & Loeb

(1995); Bromm & Loeb (2002, 2006) and by Sethi & Bhargavi (2001).

GRB rate vs. Redshift

Figures 4-15 and 4-16 show the derived cumulative and differential GRB rates, respec-

tively, to within a normalization factor. The differentiation was performed simply

with a, slope calculation over a multi-point interval. While this introduces correlations

in the derivative from point to point, we again point out that a significant amount of

smoothing is already present in the 2000 point resampling of the original 31 bursts.

Figure 4-17 shows the errors on the calculation that were obtained with bootstrap

estimation. The steep drop beyond a redshift of two is statistically significant (see

section 6.3). In figure 4-18 we compare the relative-normalized number of GRBs

observed as a function of redshift to what is expected from a uniform density in con-
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Figure 4-16: Comoving GRB Rate density. Calculated by numerically differentiating the
values of figure 4-15 and applying equation 4.12. The differentiation is over a multi-point
interval, so successive points are somewhat correlated. The fast variations are due to residual
Poisson noise from the set of 2000 (L,z) pairs. The general trend of the curve is a true
estimate of the rate density.
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Figure 4-17: Error analysis of the comoving GRB rate density. Calculated by performing
bootstrap realizations of the 2000 point Monte-Carlo data set. The solid line is the median
of all realizations, the dashed lines enclose the 68% confidence region (±a), and the dotted
lines enclose the 90% regions. The analysis confirms that the fast variations are due to
Poisson noise.
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Figure 4-18: Comparison of the HETE-II GRB redshift distribution and uniform comoving
rate density. The smooth curve is the calculated distribution for a uniform comoving rate
density, normalized to its maximum (y-axis scale). Our observed results are over-plotted
on a relative scale.

cordance cosmology. The previous figure 4-16 is the ratio of these two. Figure 4-19

shows the raw histogram of redshifts from the Monte-Carlo resampling in compari-

son to Lynden-Bell C-method rate. Lastly, figure 4-20 shows that the Lynden-Bell

method predicts many more intermediate (2 < z < 6) redshift bursts than would be

expected from simply the 31 in our sample.

The GRB rate curves (figures 4-16 and 4-18) deserve special mention since Lloyd-

Ronning et al. (2002) and Yonetoku et al. (2004) found upward trending rates with

redshift and only Kocevski & Liang (2006) showed a turnover beyond a redshift of 2,

all based on BATSE bursts.
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Figure 4-19: Comparison of the uncorrected redshift distribution and the result of the
Lynden-Bell method, numerically differentiated. As expected, the agreement is close, but
when the differential result of the C- method is scaled to match the low redshift end of
the raw distribution, the high redshift wing shows an excess. Although the differences are
small, the effects at high z (> 4) have significant physical implications.
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Figure 4-20: Comparison of spectroscopic redshifts and WXM redshift indicators. Panel
(a) shows cumulative distributions. The dotted curve is the cumulative of spectroscopic z's
from Amati (2006). The solid curve is the raw cumulative of our 31 points. The dashed
curve is the Lynden-Bell corrected version. Note that the Lynden-bell matches the solid
curve up z = 2, deviates lower from 2 < z < 6, and deviates slightly higher for z > 6
Panel (b) curves show the dotted and solid curves as histograms.



Chapter 5

Observed and Intrinsic Duration

Distributions

In section 3.6 we described how the parameters T9 0 and T0.45 are computed for each

individual GRB. The methodology not only determines the median value of T9 0 and

T0.45 but also their full non-Gaussian error distributions via a bootstrap approach.

In this section we discuss properties of the aggregate distribution over all bursts

of T90, T0.45, and their fractional errors. We summarize the error distribution of

individual bursts by calculating the median and the 68% confidence limits centered

on the median. These limits would correspond to one sigma limits in cases where

the errors are normally distributed, but they are still a useful and valid summary of

the error distribution in the general case. The following analysis does not depend on

whether or not the Gaussian model is valid in either a linear or logarithmic scale.

5.1 Fractional Error Distributions

We estimate the fractional error of T9 0 by the size of the 68% confidence region divided

by the median (6T90 /T90 ), and similarly for T0 .4 5 . This approach was first carried out

for the T90 durations of the BATSE catalog (see figure 5-1 from Koshut et al. 1996).

The fractional error distributions of the BATSE Tgo (TB0), the HETE-II/WXM

T9 0 (T H,) and the HETE-II/WXM To.45 (T045), all show approximate log-normal
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Figure 5-1: Relative error distributions of BATSE T 0oo. (Figure 3a from Koshut et al.
(1996)).

distributions (figures 5-1, 5-3 panels a and c). The median fractional error for BATSE

is about 10% (logo10 6T o/T = -1). For the WXM, logo1 (6T 'o.5 /TO 45)  -0.3010.40,
and loglo(6THF/T H,) , -0.40±0.35. The larger median errors for the WXM compared

to BATSE are due to the lower average signal-to-noise (S/N) for WXM GRBs, since

the aperture is much smaller than that of BATSE. However, the width of the log-

normal distributions of all three fractional errors are nearly the same (about 0.4 dex).

Although the median fractional error of the larger aperture instrument is smaller,

they both detect many individual GRBs that have T9 0 and T0 .45 with fractional errors

in excess of 100%. An aperture 100 times larger than BATSE would be needed to

reach a median fractional error of 0.01 (a factor of V1T0 = 10 improvement in S/N),

an accuracy that would still have one sigma fluctuations of about 10%, if we assume

the log-normal form of the fractional error distribution does not change.
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Figure 5-2: Distribution of T90 of the BATSE 4B catalog.

5.2 Duration Distributions

5.2.1 Intrinsic WXM T90 Distribution

With z estimates for the WXM sample of GRBs, we can calculate the histograms

of T9 0 and the redshift-corrected (intrinsic) T90 as shown in figure 5-4 (a) and (c),

respectively. For a comparison with the observed BATSE T90 distribution see figure

5-2. (In making the comparison we are only addressing the GRBs with T90 > 2s,

i.e., the long GRBs. Short GRBs are not included in the WXM sample of 31.) We

do not have estimates of z for the BATSE GRBs, so we cannot directly compare the

redshift-corrected BATSE and WXM distributions. (An independent analysis of the

BATSE GRBs and the application of the Firmani z estimator is beyond the scope

of this thesis.) The redshift correction factor of (1 + z)0.6 is the product of (1 + z)',

the time dilation factor, and (1 + z) - 0.4, an energy bandpass related correction factor

similar to the one found by Fenimore et al. (1995) for energy-dependent pulse widths,

and also used by Firmani et al. (2006c) for T0.45 . Unlike the situation with energy



spectra where we can rely on the Band model, no good model exists for the instrument

bandpass dependence of the T9 0 parameter that would allow a clear correction as a

power of (1 + z).

We find both the observed and intrinsic HETE-II T9 0 distributions are consistent

with a log-normal form with better than 90% confidence based on a K-S comparison

test. The log-normal form does not depend on the specific values of the exponent of

the (1 + z)k correction factor.

5.2.2 T90 Fractional Error and T90 Distributions

Assuming independence of the errors and the durations, we can write the observed

dispersion in T90 as the sum (in quadrature) of the width of the error distributions

and the intrinsic duration distribution:

02 2 2 (5.1)
l9og T90,obs =~ og T90,intrinsic 

•  log T90,error

Figures 5-3(c), 5-4(a) and (c) show that the widths of the T90 error distribution, the

observed and the redshift-corrected T90 distributions are nearly the same. Equation

5.1 then implies that the log-normal wings (right and left) of the T9o distributions

are consistent with being due to the errors of measurement, and are therefore not

necessarily related to any physical properties of GRBs as suggested by several authors

(McBreen et al. 1994, 2001; loka & Nakamura 2002).

The log-normal errors for the BATSE T90 distribution also shows a width com-

parable to that of the observed T9 0 distribution, according to the published report

on the analysis methods of the BATSE catalog (figure 5-1 and Koshut et al. (1996)).

As stated above, the HETE-II data confirm this result and we report for the first

time the likely conclusion that the wings of the T9o distribution are a measurement

artifact.

Quantitatively, any residual log-normal distribution that is a true physical prop-

erty of GRBs likely has a standard deviation alogTgo,intrnsc --< 0.3alogT9 0,obs This

estimated upper limit is based on a K-S test for a model that convolves a true GRB



related log-normal with the measured log-normal relative error distribution. The data

then are consistent with a physical T90 log-normal variance of zero, or more realis-

tically, the functional form has small variance. The functional form need not have

a logarithmic argument and could even be a Gaussian or exponential in T90 . The

small sample of 31 GRBs from the WXM data archive is not sufficient to quantify

these possibilities other than to reject the notion that the full log-normal effect is an

intrinsic GRB property.

5.2.3 Intrinsic TO.4 5 Distribution

Figure 5-5 shows a similar type of analysis of the distribution of the TO.45 parameter as

what was just discussed for the T9 0 parameter shown in figure 5-4. Here the results are

quite different. The observed T0 .45 distribution (figure 5-5(a) and (b)) shows extension

in the logarithm of the parameter. However, the distribution is not consistent with

a log-normal distribution. Note the lack of a Gaussian wing beyond a TO.4 5 greater

than "15 seconds (log T0 .45 > 1.4). To show this more clearly in the cumulative curve

the reflection of the distribution about the median in both the abscissa and ordinate

is plotted as a dashed curve. The curve and its reflection differ in K-S value by 0.2,

which is rejected at the 90% confidence level as due to a chance sampling error. This

means that the symmetric form of a log-normal is not present.

More importantly, the redshift-corrected T0.45 distribution (figure 5-5(c) and (d))

is not consistent with a log-normal distribution and is in fact a good match to an

exponential distribution with a mean of 6 11 seconds on a linear (not log) scale. This

basic result does not depend strongly on the choice of the power of (1 + z) shown in

figure 5-5(c) and (d). For example replacing the (1 + z)0.6 with (1 + z)1 which would

be true for pure time dilation effect, would still show an exponential distribution in the

linear abscissa with a mean of 5 seconds instead of 6 seconds. Although an exponential

distribution has standard deviation of order the mean, this shows a duration measure

of GRBs that is much tighter than a log-normal distribution. We do not have a clear

physical interpretation of the TO.45 parameter, but it seems to quantify the duration

of a GRB better than T9 0, hence the success of the T0.45 based Firmani z estimator.
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Chapter 6

Conclusions

In Chapters 1 through 3 we presented technical aspects of our work, and in Chapters 4

and 5.2.3 we applied these ideas to HETE-II data to determine intrinsic distribution

properties of gamma-ray bursts. In this chapter we conclude by discussing further

our results in relation to high redshift GRBs, the GRB luminosity function, and its

evolution. We discuss the connection of our work to cosmology and star formation

rates and conclude with a view toward future experiments and a final summary.

6.1 High Redshift Bursts

In interpreting the redshift estimates, and in particular two of our highest values of z'

of 18.4 and 11.6, it is important to note the distinctions between estimated redshifts

and spectroscopic redshifts. Spectroscopic redshifts are often quoted with one stan-

dard deviation errors of 0.01 or better and are assumed to be normally distributed.

Redshift estimates, on the other hand, are modeled to have log-normal errors. In-

deed, we find that the error in log10o(1 + z') in comparison to spectroscopic redshifts is

approximately normal, with standard deviation 0.093±0.031 (section 4.3). Consider

what this means for a burst with an estimated redshift of 411: its two-sigma confi-

dence region extends from -5.8 to -20. Li (2006) points out that the errors of the

redshifts inferred from the Amati relation are even more severe. Hence the need for

more accurate luminosity indicators. We also note that photometric redshift errors,



while larger than those of spectroscopic redshifts, are nevertheless normal and still

much smaller than redshift estimator errors.

It is also important to note that the log-normal error of 0.093 was found for the

Firmani relation in the spectroscopically available range of z up to 3.2. In section 4.3

we showed that the uncertainty in the Firmani relation itself will be comparable in

magnitude, and much larger at redshifts higher than 10. In these regimes not only

might the scatter increase, but the validity of the Firmani relation itself can come into

question. Thus we have to assume that we have unmodeled and likely large systematic

errors at high z'. Yonetoku et al. (2004) also realized this in connection with the

Amati redshift estimator, and in their analysis truncated their dataset at a redshift

estimate of 12. It is quite possible that the redshift range in excess of 10 might not

be spectroscopically investigated for some time yet. This requires spectrographs that

operate at very long wavelengths and time on the largest of telescopes. Consequently,

it will be difficult to establish the errors of the Firmani relation at such high redshifts.

We may also look at the errors on the quantities in equation 4.5, namely those

of T0.45 , P, and Epk. We believe that errors on the peak flux will dominate due to

the large bolometric correction (extrapolating the flux from the observed band of 30-

400 keV to 1-104 keV). It is also difficult to determine Eo (and Epk) for bursts that

have high values (> 400 keV) for these parameters, and overestimating Epk would

imply higher redshift estimates. However, bursts with ill-determined Eo have been

excluded from our sample, and we do not find that the high z' bursts also necessarily

have high Epk. Neither propagating the errors in equation 4.5, nor accounting for the

uncertainty in the fitted exponents of equation 4.2 will capture all sources of errors,

and presently we believe that the best way to characterize their distribution is as we

have done, by looking at the deviation of the estimates from known spectroscopic

redshifts.

Given the large confidence regions, we view the redshift estimates as a statistical

ensemble and realize that there might be outliers. (Even in sets of spectroscopic

redshifts there are outliers, since large errors could be due to misidentification of

emission or absorption lines or misidentification of the GRB host galaxy for which



the lines are measured.) By their nature as outliers, these bursts are likely to have

their redshifts estimated at the extremes of their error ranges, and so for the very

high z' samples, the true values are probably lower. Nevertheless, looking at the set

statistically, we can ask what the probability is of having detected a burst with a

redshift larger than a given value, say 5. Inspection of the cumulative of burst counts

with respect to redshift (figure 6-3) shows that on aggregate, there are about 10%

that are above 5, which is approximately 3 bursts for a sample of 31. If we assume

that the cumulative of the tail of the distribution is Poisson distributed with mean of

3, that gives a probability of zero events at z > 5 of 5%. Thus we have shown that

-10% of all gamma-ray bursts should be from z > 5, and that the Firmani relation

is still sufficiently functional to allow us to probe this essentially unexplored region

of the universe.

6.2 Luminosity Evolution

The strong evidence that we found for an evolving isotropic equivalent luminosity

function is not inconsistent with the "standard energy reservoir" of Frail et al. (2001)

and Bloom et al. (2003). First, we note that the standard energy is the integrated

luminosity after correcting for (model-dependent) jet collimation angles and for the

burst durations, therefore the comparison is not quite valid. Also, most of the bursts

in these studies occurred in a redshift range of 1 to 3, where an evolution of the

form oc (1 + z) - 1 would result in changes in average properties on the order of a

factor of 2. This is less than the reported scatter of the "standard" E,. A more

constraining finding by Kocevski & Liang (2006) is that E, is uncorrelated with

redshift, although this is a formal result that is not unexpected given the large scatter,

narrow redshift interval, and 25 data points. Furthermore, since we are comparing an

evolutionary change of distribution properties to a set of individual measurements,

any inconsistency would be tenuous.

Nevertheless, if the gamma-ray burst energy is approximately constant with red-

shift, but the luminosity function is evolving, that is an indication that the burst



durations, jet opening angles, or jet structures are evolving in such a manner that

higher redshift bursts appear to be more luminous. Evolution of burst properties is

physically plausible since there is evidence of evolving metallicity and initial stellar

mass function in the universe. Theoretical models could explain how larger mass

progenitors, or ones with higher angular momentum or higher mass loss rate, can

produce more luminous bursts (MacFadyen & Woosley 1999).

A uniform jet model assumes that the energy emitted per solid angle, e(0), is

uniform across the jet, and the various achromatic afterglow lightcurve break times are

mostly due to different jet angles. In this simple model the higher luminosities would

imply narrower jet angles, yet the same data that show no evidence for correlation

between E, and z also show no correlation between the inferred jet opening angle

(Ajet) and z (Kocevski & Liang 2006). Other jet structures, such as Gaussian (e(0) oc

.N(0; 0, uo)) and power-law (e(0) c 0 3-k), are also able to account for observed breaks

in the afterglow lightcurves as a function of viewing angle (0,), and have additional

degrees of freedom that could account for evolution, such as a power-law index that

is a function of redshift

The more complex jet profiles can also lead to predictions about the shape of

the luminosity function. Power-law jets predict luminosity functions with a slope

of -(1 + 2/k) (Zhang & Meszaros 2002) while Gaussian jets predict a slope of -1

(Lloyd-Ronning et al. 2004). If we assume a power-law form, our results of chapter 4

(which showed consistency with the luminosity function of the form dJ(> L')/dL' oc

L'-1.5 ), imply that k = 4, or e(O) oc 0' -4 . It is clear we need more bursts to better

quantitatively determine the luminosity function and its evolution before being able

to strongly discriminate between GRB jet models. Importantly, more bursts would

also let us investigate of the evolution of the shape of the luminosity function by

splitting the data into redshift intervals.



6.3 Cosmology

Cosmological parameters and the Hubble diagram

Studies of the expansion history of the Universe and the possibility of the existence

of a medium with negative pressure (repulsion), often called "dark energy", are per-

formed by Hubble diagram studies. These diagrams plot an independent measure

of distance (e.g., luminosity distance) against the spectroscopically determined red-

shifts of objects. In the simplest form of the procedure, the objects must be "standard

candles", that is, of known luminosity, for the luminosity distance to be a truly inde-

pendent measure of distance. One can than vary the cosmological parameters until a

best fit to the data is found.

The procedure is more complicated when the objects plotted are not perfect, ide-

alized standard candles, as in the case of supernovae Ia (SNe Ia). The solution is to

"standardize" the candles, i.e., to find some other distinguishing factor that can be

used to infer the true luminosity of the objects, such as the decay rate of the lightcurve,

then calibrate this effect with nearby supernovae where the cosmology does not affect

the measurements. With standardized supernovae Ia, Riess et al. (1998) and Perl-

mutter et al. (1999) demonstrated that the expansion of the Universe is accelerating.

SNe Ia occur in the local universe in large numbers but their observability is limited

to about z < 1.7.

The situation is reversed with gamma-ray bursts: they are observable in the

prompt emission to high redshifts (currently the highest spectroscopic redshift is 6.3,

with the typical around 2) but they occur very infrequently locally. Their luminosity

also varies greatly as we have seen in this thesis, and so they are by no means stan-

dard candles. However, luminosity estimators allow one to calculate the luminosity

of the GRBs from other observables and thereby allow them to be placed on the Hub-

ble diagram (e.g., figure 6-1) (Schaefer 2003; Ghirlanda et al. 2004b; Firmani et al.

2006a,b). With the lack of nearby bursts, calibration becomes a problem due to the

'circularity' in using the cosmological parameters to establish the luminosity indicator

relation, then using the luminosity indicators to fit for the cosmological parameters.
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Figure 6-1: Top panel is a Hubble diagram of GRBs from Firmani et al. (2006b) for a
concordance cosmology. The residuals are shown in the bottom panel. The red symbols
are Type la supernovae, the blue are GRBs. Note the scarcity of GRBs at low redshift of
the lack of SNe at high redshifts, hence the complementarity of the two types of objects.
It is also clear that the GRB luminosity distances have much larger errors than those of
supernovae.

Firmani et al. (2006b) solve this issue by fitting the cosmological parameters and

the Liso-Epk-TO.45 jointly with an iterative Bayesian approach. They show that their

19 GRB sample is complementary to the 117 SN Ia and greatly helps constrain the

cosmological parameters. Furthermore, the best fit is consistent with the standard

concordance cosmology.

A key point in the foregoing is that this type of analysis does not require an

unbiased or complete flux-limit sample, but any set of bursts with spectroscopic red-

shifts and accurately determined spectral and temporal parameters. The sample sizes

currently are too small for the confident investigation of deviation from concordance

cosmology, but with larger samples of spectroscopic z's this method will be seen to



be a useful and independent complement to other techniques.

Statistical Studies

In contrast to the above, another type of study builds models out of luminosity func-

tions, GRB rates, spectra, and cosmological parameters, and attempts to constrain

cosmological parameters, sometimes jointly with GRB properties, with distributions

of observables. These observables might be GRB peak intensity, peak flux, or the

fractions of bursts that can be characterized as X-ray flashes, X-ray Rich bursts, or

GRBs (Kommers et al. 2000; Firmani et al. 2004; Daigne et al. 2006). In these studies

the completeness of the sample, freedom from observational biases, and known flux

limits are important. The analyses in this thesis fall into this category, requiring

complete, unbiased samples.

We have taken the concordance cosmology as a prior, which we believe is a well

founded assumption. Firmani et al. (2006a) have pointed out that the Liso-Epk-To.45

relation has minimum variance near the concordance values of OM and QA, and the

exponents of T0 .45 and Epk in the best fitting Liso-Epk-To.45 relation do not change sig-

nificantly with QM and PA. This gives us confidence in the robustness of our results.

Our analysis of the GRB redshift distribution for cosmologies other than concordance,

with an unaltered or slightly different Liso-Epk-To. 45 would yield the same results,

since the redshift estimator is calibrated against (invariant) spectroscopic redshifts.

In an alternate cosmology, the main difference would be the luminosity-redshift re-

lation (i.e., luminosity distance), which by calibration, would have to yield the same

redshifts, though perhaps with slightly larger errors. The same could not be said of

our luminosity function results, where the analysis would have to be carried through

to investigate a change of OM and hA.

We may conclude that our results point to a rough consistency of the GRB density

with a uniform comoving density in the concordance model (see figure 4-18), however

the derived rate density curve falls below the uniform density model for the nearby

universe (z < 1). The log-normal redshift estimate errors in this region are large

compared to the scale over which the GRB rate changes appreciably (dN/d ln(1 + z))



and the deconvolution method that corrects for this bias is more susceptible to un-

known systematic errors. Also, the scarcity of observations in the smaller cosmological

volume in this redshift region leads to larger relative Poisson fluctuations.

At higher redshifts, the relative low rate is statistically consistent with the uniform

density model within a standard deviation (fig 4-17), and though there are likely

systematics affecting the measurements, such as the extrapolation of the Firmani

relation to higher redshifts (z >-5), we conclude that a rate several times what

we infer is highly unlikely. Note that we see a decline in the rate relative to the

constant density model already above a redshift of 2.5, which is within the range of

the spectroscopic redshifts used in the Firmani relation.

6.4 GRB Rate and Star Formation Rate

By now there is much accumulated evidence to indicate that gamma-ray bursts, and

long-duration bursts (T90 > 2 s) in particular, are associated with supernovae (for

a recent review, see Woosley & Bloom 2006), star-forming galaxies and star-forming

regions of galaxies (e.g. Paczyniski 1998; Fruchter et al. 1999; Le Floc'h et al. 2003;

Le Floc'h 2004). Coupled with the evidence that GRBs are likely the end-stage of

massive, short-lived stars, it is logical to assume that the GRB rate should trace the

cosmic star formation history. Interest in GRBs and their relation to stars is further

heightened by the fact that the y-rays are expected to be visible (not appreciably

scattered or absorbed) out to very high redshift (~20)(Lamb & Reichart 2000). This

could make possible the detection of the earliest stars ever formed, the so-called

population-III (or Pop III) stars, which are thought to have reionized the Universe.

Indeed, the recent discovery of a very long GRB with a spectroscopic redshift of

6.29 (Kawai et al. 2006), the highest one for a GRB to date, seems to point in this

direction, as does the higher median redshift of Swift detections than those of previous

missions.

Bromm & Loeb (2006) construct theoretical star formation models and calculate

the expected GRB rate (figure 6-2) as well as the expected contribution from Pop III



stars. In particular, they calculate that with a limiting flux of 0.2 photons s- 1 cm-2,

the fraction of bursts detected by Swift above a redshift of 5 is expected to be about

10%. They also calculate that Pop III stars are likely to be detected at the rate of

only 0.1 yr-

Our measured GRB rate density qualitatively agrees with the Bromm & Loeb

(2006) predicted GRB formation rate, peaking close to a redshift of 2. These theo-

retical models agree with observation and detailed numerical simulations (Ascasibar

et al. 2002; Mannucci et al. 2006). Given the Bromm & Loeb (2006) limits for Swift,

we cannot reasonably hope to see any population III bursts in the HETE-H data,

unless their rate were two to three orders of magnitude more frequent. Drawing in-

ferences at redshifts as high as where the Pop III weak chemical feedback cases peak

in figure 6-2 (the more favorable of the alternatives for purposes of detection), is also

fraught with uncertainty since this would extrapolate the Firmani relation to well

beyond the range where it was calibrated, as discussed in section 6.1.

Nevertheless, our current results also indicate that 10% of the Swift bursts should

originate above a redshift of 5. Figure 6-3 shows in the dashed curve the cumulative

rate of GRBs that we measure with our analysis. At a redshift of 5 this curve is at the

90% level. The dotted curve shows the cumulative distribution of Swift's spectroscopic

redshifts, which indicates that only about 5.6% (3 of 53) of the spectroscopic redshifts

originate above z = 5. (Note that fast rise of this curve from zero seems to imply a

dearth of low redshift bursts.) This is clearly a lower bound on the fraction, since only

about a quarter of Swift bursts have spectroscopically determined redshifts. Since

Swift's flux limit is much lower than that of HETE-II, its overall cumulative should

more closely follow the form found with the Lynden-Bell method and the Firmani

redshift estimates (compare the dotted and dashed curve in figure 6-3).

6.5 Future Projects

Looking forward, we see the greatest avenue for progress in further observational

confirmation and more tests of the Firmani relation. With more bursts available,
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the intrinsic scatter of the relation will be reduced, and it might be possible that

the properties of outliers, and the reasons for their being outliers will become clear.

With more bursts, the number that will have well-determined spectral properties

will also increase. It is also possible that record setting high-redshift spectroscopic

observations will be able to calibrate or confirm the relation at high z. It will be

possible to better quantify the luminosity evolution, and as mentioned above, the

form of the luminosity function will be better determined at each redshift interval.

The evolution parametrization of (1 + z) - k can then be also tested. We would also

expect to see an improvement in the errors of the GRB rate vs. redshift curve as the

square-root of the increase in the number of bursts. Finally, it is also possible that

other, tighter, relations will be discovered that can serve as redshift estimators with

even smaller error.

Clearly there will still be a need for redshift estimators to attain flux-limited

samples free of spectroscopic observational bias. More HETE-II bursts are not likely,

certainly not in large numbers. Swift has trouble determining Epk for -75% of bursts

detected (Butler 2006) so applying the Firmani relation will not avoid selection biases.

More promising is the Gamma-Ray Large Area Space Telescope (GLAST) with

its Burst Monitor (GBM) (Lichti et al. 2001), to be launched by NASA on 7 Octo-

ber 2007. This instrument has an energy pass-band of 5 keV to 25 MeV and will

provide unprecedented ability to determine Epk over a large energy range. Operating

together with Swift to provide accurate locations, the two missions will be able to

fully characterize bursts and test the Firmani relation.

Our ideas, including the background subtraction method, would also be applicable

to the proposed small satellites with coded aperture detectors that could detect ~1000

GRBs per year (Lamb et al. 2005), and to the EXIST mission which is planned to

detect just as many (Grindlay & The Exist Team 2006). With the Firmani relation,

a complete L-z sample could be attained with only selective follow-up afterglow

observations from the ground.

102



6.6 Summary

In this thesis we report the development of a new background subtraction technique

for coded aperture mask instruments, and a new approach for determining GRB

duration statistics via a photon-by-photon bootstrap analysis of event-level data. We

then analyze the HETE-H WXM bursts using these techniques.

We are the first to apply to a complete flux-limited sample of bursts a recently

discovered luminosity and redshift indicator that is based only on the prompt emission

properties of GRBs (Firmani et al. 2006c).

Using our bootstrap calculation of the confidence regions of the duration statistics

and the estimated redshifts of 31 GRBs, we analyze both the observed and intrinsic

duration distribution properties of GRBs. We show that the observed distributions of

T90 are highly affected by measurement errors of log-normal form. It is possible that

the true intrinsic distribution of GRB durations may not be log-normal, contrary to

assumptions in several publications (McBreen et al. 1994, 2001; Ioka & Nakamura

2002; Horvath 2002). We compare the HETE-H T90 results with those reported

for the BATSE catalog. We further show, for the first time, that the intrinsic T0 .45

distribution is best modeled by an exponential with a mean T0.45 of 6 ± 1 seconds.

With a rank-order correlation analysis that takes into account the flux limitation

of the sample, we see strong evidence (5.7 a) for the evolution of GRB luminosities

as L oc (1 + z)1.03 .

We calculate the redshift distribution and the luminosity function of GRBs, cor-

recting for the flux limitation of the HETE-H WXM and FREGATE instruments

with the non-parametric method of Lynden-Bell (1971). We develop and apply a

Monte-Carlo method to account for errors in the redshift estimates. These errors

are log-normal and large, unlike the errors in spectroscopic and photometric redshifts

that tend to be Gaussian and small. We also use a bootstrap approach to estimate

the confidence region of the measured GRB redshift distribution.

Our results show that the GRB rate density falls off beyond a redshift of two,

consistent with the Kocevski & Liang (2006) analysis of BATSE bursts and with
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theoretical predictions of Bromm & Loeb (2006).

Our flux-corrected GRB rates imply that Swift will detect 10% of its bursts at

redshifts greater than five, also in agreement with the theoretical star formation

models of Bromm & Loeb (2006).

The methods set forth in this thesis will be applicable to future missions, with the

greatest improvement resulting from a larger sample of bursts.
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Appendix A

WXM Bursts

Table A. 1 lists the temporal parameters for the sample of 31 bursts used in our analysis

to determine the GRB rate and luminosity function. Table A.2 lists the Eob, the peak

flux, and the parameters of the cutoff power-law spectral model for the same bursts.

Table A.3 lists the redshift indicator and isotropic equivalent luminosity implied by

the Liso-Epk-TO.45 (Firmani) relation.

Figures A-i through A-31 show lightcurves and distributions of T90 and T0.45

(along with confidence regions) for the 31 bursts in the sample.
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GRB name
1896
1902
1963
2262
2380
2434
2448
2493
2650
2652
2779
2818
2821
2849
2925
2976
3128
3218
3489
3557
3558
3564
3568
3570
3622
3666
3711
3862
3889
3947
4010

GRB020124
GRB020127
GRB020331

GRB020813A
GRB021004

GRB021104A
GRB021112A
GRB021211
GRB030328

GRB030329A
GRB030725
GRB030823
GRB030824
GRB030913

GRB031111B
GRB031220
GRB040319
GRB040511
GRB040810

GRB040912B
GRB040916
GRB040924
GRB041004
GRB041006

GRB041211B
GRB050123A
GRB050408
GRB050709
GRB050807
GRB051021
GRB060121

9+4.1
•-r-4. 9

5 + 2.6
• --2.1

16.7 +2.
20. 8 0 6
2 0-0.6

16.0 4.1
9.4+2 .8
• -3.0

0.9 + 1 12•-0.7

31.3 +3.4
12 0+0.2

• -0.2
26 + 4.7

• -4.0

27.3+
7.2

4.4 o
2. +1.4
-1.2
7 9+ 3.8

-3.0
6.2

+2.1

3 5+2.3
• --2.2

11.5 +3.
11.5+3

1

24.1+
6 9

22.0+5.1
2.3 +4.3
5 7+4.3
• -3.7

12.7+0.4S-0.4
12.6 +2.4
6. +2.0
• -_2.0

12. 1+.7
0 2 + 0 .3

•-0.2

14.5 +2.9

19.1 i51
1. 5+0.4

47 + 2.s47.2-8.1

50.6 + 32.7

47.7 + 4.5

75. -1.6
65.5 + 4.8

14.6 + 5.0

28.5-20.5

70.9 + 8.4

43.1 + 19

96.5+I:
27. 2.118.20

28.7± o25.1+ 9.6

47.4 0

86.31
86.9+,75.6 5

47.6.6
35.1+7 .0

39..71-9

30.19
33. 8 .2

4. 7 .3

50.6r
74.0 16.-14.8

6.8_1.8

Table A. 1: Temporal properties of the bursts in our sample. The measurements and errors
are derived by the methods of chapter 3. Error limits indicate 68% confidence regions
centered on the median values.
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BID
1896
1902
1963
2262
2380
2434
2448
2493
2650
2652
2779
2818
2821
2849
2925
2976
3128
3218
3489
3557
3558
3564
3568
3570
3622
3666
3711
3862
3889
39,17
4010

GRB name
GRB020124
GRB020127
GRB020331

GRB020813A
GRB021004

GRB021104A
GRB021112A
GRB021211
GRB030328

GRB030329A
GRB030725
GRB030823
GRB030824
GRB030913
GRB031111B
GRB031220
GRB040319
GRB040511
GRB040810
GRB040912B
GRB040916
GRB040924
GRB041004
GRB041006
GRB041211B
GRB050123A
GRB050408
GRB050709
GRB050807
GRB051021
GRB060121

E. (keV)
91.73
123.83
123.29
186.50
96.52
38.98
18.63
68.28

177.08
108.79
133.39
42.06
60.44

160.08
59.06
41.96

210.98
141.31
198.60
53.98
39.10
51.95
57.20
63.19

359.97
70.89
19.45
91.92
159.05
143.84
144.54

Table A.2: Spectral properties of the bursts in our sample, including the parameters of the
cutoff power-law fit, the peak flux and the peak of the energy spectrum.
'These parameters are defined for the cutoff power-law model in section 1.1.3. Units of Eo
are keV and of A are cm - 2 s- 1
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P (erg cm - 2 s- 1)
4.56 x 10-7
1.89 x 10-6
6.68 x 10-7

2.85 x 10-6
3.99 x 10- 7

1.84 x 10- 7

1.71 x 10- 7

2.16 x 10-6
1.25 x 10-6
1.05 x 10- 5

1.63 x 10- 6

2.60 x 10- 7

2.90 x 10- 7

7.32 x 10- 7

2.68 x 10- 7

2.89 x 10- 7

7.88 x 10- 7

9.38 x 10- 7

1.74 x 10-6
1.81 x 10- 7

1.47 x 10- 7

2.53 x 10-6
3.67 x 10- 7

1.51 x 10-6
2.45 x 10- 6

4.86 x 10- 7

1.11 x 10- 6

3.04 x 10-6
4.91 x 10- 7

7.85 x 10- 7

3.80 x 10- 6

al1

-0.994
-0.7788
-0.8542
-0.5914

-1.004
-0.453

-0.9986
-1.346
-0.9326
-1.366
-1.195
-1.156

-0.2571
-1.031
-0.538

-0.4983
-1.656

-0.5768
-0.8283
-0.9874
-0.7663
-1.164
-1.244
-1.338

-0.8924
-0.9844
-1.979

-0.9083
-1.828

-0.8665
-0.6629

Eo 1

91.18
101.4
107.6
132.4
96.91
25.20
18.60
104.4
165.9
171.6
165.7
49.83
34.68
165.2
40.40
27.94
613.3
99.29
169.5
53.31
31.69
62.14
75.66
95.46
325.0
69.80
926.3
84.20
924.7
126.9
108.1

A'
5.030
3.563
3.137
3.727
2.690
1.434
2.535
86.15
1.778
51.92
23.88
5.311

0.0771
5.487

0.2236
0.9415

11.40
1.307
8.614
2.222

0.4007
57.58
19.71
65.32
2.972
8.938
190.4
20.36
38.34
1.153
8.531



GRB nameBID

Table A.3: Shown are the redshift estimates and the isotropic luminosities based on the
Liso-Epk-To. 45 relation and concordance cosmology. Results are based on the duration and
spectral values of tables A.1 and A.2.
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1896
1902
1963
2262
2380
2434
2448
2493
2650
2652
2779
2818
2821
2849
2925
2976
3128
3218
3489
3557
3558
3564
3568
3570
3622
3666
3711
3862
3889
3947
4010

GRB020124
GRB020127
GRB020331

GRB020813A
GRB021004

GRB021104A
GRB021112A
GRB021211
GRB030328
GRB030329A
GRB030725
GRB030823
GRB030824
GRB030913
GRB031111B
GRB031220
GRB040319
GRB040511
GRB040810
GRB040912B
GRB040916
GRB040924
GRB041004
GRB041006
GRB041211B
GRB050123A
GRB050408
GRB050709
GRB050807
GRB051021
GRB060121

2.66
1.53
2.24
1.12
2.55
1.74
1.77
0.89
1.66
0.35
1.05
1.01
3.08
11.6
2.43
1.58
18.4
2.37
2.23
1.86
1.50
0.65
2.02
0.64
4.03
2.06
0.26
2.49
5.30
2.28
1.74

L' (erg s- 1)
2.64 x 1052
2.85 x 1052
2.55 x 1052
1.99 x 1052
2.08 x 1052
3.81 x 1051
3.72 x 1051
8.58 x 1051
2.32 x 1052
4.64 x 1051
9.66 x 1051
1.41 x 1051
2.39 x 1052
1.32 x 1054

1.24 x 1052
4.69 x 1051
3.99 x 1054
4.13 x 1052
6.62 x 1052
4.40 x 1051
2.11 x 1051
4.61 x 1051
1.09 x 1052
2.70 x 1051
3.84 x 1053
1.52 x 1052
2.49 x 1050
1.50 x 1053
1.47 x 1053
3.15 x 1052
7.88 x 1052
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Figure A-1: BID H1896. The top panel shows the burst lightcurve and the background rate
(in green). The middle panel shows the T90 distribution, with dashed lines indicating the
median and one standard deviation, and dotted lines bounding the 90% confidence region.
The bottom panel shows the T0.45 distribution with a solid line indicating the median and
dashed lines showing one standard deviations.
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H1902

-50 0 50 100
Time since trigger (s)

5%: 17.00 s median: 50.60 s 95%: 96.18 s

15050 100
T90 (s)

5 10 15 20
To45 (s)

Figure A-2: BID H1902. The top panel shows the burst lightcurve and the background rate
(in green). The middle panel shows the T90 distribution, with dashed lines indicating the
median and one standard deviation, and dotted lines bounding the 90% confidence region.
The bottom panel shows the T0.45 distribution with a solid line indicating the median and
dashed lines showing one standard deviations.
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H1963
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Figure A-3: BID H1963. The top panel shows the burst lightcurve and the background rate
(in green). The middle panel shows the T90 distribution, with dashed lines indicating the
median and one standard deviation, and dotted lines bounding the 90% confidence region.
The bottom panel shows the T0 .45 distribution with a solid line indicating the median and
dashed lines showing one standard deviations.
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H2262

-100 -50 0 50 100
Time since trigger (s)

5%: 72.77 s median: 75.14 s 95%: 76.87 s
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To45 (s)

Figure A-4: BID H2262. The top panel shows the burst lightcurve and the background rate
(in green). The middle panel shows the T90 distribution, with dashed lines indicating the
median and one standard deviation, and dotted lines bounding the 90% confidence region.
The bottom panel shows the T0.45 distribution with a solid line indicating the median and
dashed lines showing one standard deviations.
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H2380

-100 -50 0 50 100
Time since trigger (s)

150

5%: 41.62 s median: 65.52 s 95%: 75.20 s

100
T90 (s)
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ToA (s)

Figure A-5: BID H2380. The top panel shows the burst lightcurve and the background rate
(in green). The middle panel shows the T90 distribution, with dashed lines indicating the
median and one standard deviation, and dotted lines bounding the 90% confidence region.
The bottom panel shows the T0. 45 distribution with a solid line indicating the median and
dashed lines showing one standard deviations.
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H2434
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Figure A-6: BID H2434. The top panel shows the burst lightcurve and the background rate

(in green). The middle panel shows the T90 distribution, with dashed lines indicating the

median and one standard deviation, and dotted lines bounding the 90% confidence region.

The bottom panel shows the T0. 45 distribution with a solid line indicating the median and

dashed lines showing one standard deviations.

114

F

' '[-



300
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H2448
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Figure A-7: BID H2448. The top panel shows the burst lightcurve and the background rate
(in green). The middle panel shows the T90 distribution, with dashed lines indicating the
median and one standard deviation, and dotted lines bounding the 90% confidence region.
The bottom panel shows the T0. 45 distribution with a solid line indicating the median and
dashed lines showing one standard deviations.
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H2493
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Time since trigger (s)

5%: 6.60 s median: 28.51 s 95%: 109.01 s
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Figure A-8: BID H2493. The top panel shows the burst lightcurve and the background rate
(in green). The middle panel shows the T90 distribution, with dashed lines indicating the
median and one standard deviation, and dotted lines bounding the 90% confidence region.
The bottom panel shows the T0 .45 distribution with a solid line indicating the median and
dashed lines showing one standard deviations.
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H2650
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Figure A-9: BID H2650. The top panel shows the burst lightcurve and the background rate
(in green). The middle panel shows the T90 distribution, with dashed lines indicating the
median and one standard deviation, and dotted lines bounding the 90% confidence region.
The bottom panel shows the T0. 45 distribution with a solid line indicating the median and
dashed lines showing one standard deviations.
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H2652
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Figure A-10: BID H2652. The top panel shows the burst lightcurve and the background
rate (in green). The middle panel shows the T90 distribution, with dashed lines indicating
the median and one standard deviation, and dotted lines bounding the 90% confidence
region. The bottom panel shows the T0. 45 distribution with a solid line indicating the
median and dashed lines showing one standard deviations.
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H2779
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Figure A-11: BID H2779. The top panel shows the burst lightcurve and the background
rate (in green). The middle panel shows the T90 distribution, with dashed lines indicating
the median and one standard deviation, and dotted lines bounding the 90% confidence
region. The bottom panel shows the T0. 45 distribution with a solid line indicating the
median and dashed lines showing one standard deviations.
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H2818
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Figure A-12: BID H2818. The top panel shows the burst lightcurve and the background
rate (in green). The middle panel shows the T90 distribution, with dashed lines indicating
the median and one standard deviation, and dotted lines bounding the 90% confidence
region. The bottom panel shows the TO.45 distribution with a solid line indicating the
median and dashed lines showing one standard deviations.
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H2821
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Figure A-13: BID H2821. The top panel shows the burst lightcurve and the background
rate (in green). The middle panel shows the T90 distribution, with dashed lines indicating
the median and one standard deviation, and dotted lines bounding the 90% confidence
region. The bottom panel shows the T0. 45 distribution with a solid line indicating the
median and dashed lines showing one standard deviations.
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Figure A-14: BID H2849. The top panel shows the burst lightcurve and the background

rate (in green). The middle panel shows the T90 distribution, with dashed lines indicating

the median and one standard deviation, and dotted lines bounding the 90% confidence

region. The bottom panel shows the T0.45 distribution with a solid line indicating the

median and dashed lines showing one standard deviations.
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Figure A-15: BID H2925. The top panel shows the burst lightcurve and the background

rate (in green). The middle panel shows the Tg0 distribution, with dashed lines indicating

the median and one standard deviation, and dotted lines bounding the 90% confidence

region. The bottom panel shows the T0 .45 distribution with a solid line indicating the

median and dashed lines showing one standard deviations.

123

.,..,,....,...,,... .,...,,.........

1-

1



Figure A-16: BID H2976. The top panel shows the burst lightcurve and the background 
rate (in green). The middle panel shows the TsO distribution, with dashed lines indicating 
the median and one standard deviation, and dotted lines bounding the 90% confidence 
region. The bottom panel shows the distribution with a solid line indicating the 
median and dashed lines showing one standard deviations. 
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Figure A-17: BID H3128. The top panel shows the burst lightcurve and the backgroundrate (in green). The middle panel shows the T90 distribution, with dashed lines indicatingthe median and one standard deviation, and dotted lines bounding the 90% confidenceregion. The bottom panel shows the T0.45 distribution with a solid line indicating themedian and dashed lines showing one standard deviations.
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Figure A-18: BID H3218. The top panel shows the burst lightcurve and the backgroundrate (in green). The middle panel shows the T90 distribution, with dashed lines indicatingthe median and one standard deviation, and dotted lines bounding the 90% confidenceregion. The bottom panel shows the T0.45 distribution with a solid line indicating themedian and dashed lines showing one standard deviations.
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H3489
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Figure A-19: BID H3489. The top panel shows the burst lightcurve and the backgroundrate (in green). The middle panel shows the T90 distribution, with dashed lines indicatingthe median and one standard deviation, and dotted lines bounding the 90% confidenceregion. The bottom panel shows the TO. 45 distribution with a solid line indicating themedian and dashed lines showing one standard deviations.
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Figure A-20: BID H3557. The top panel shows the burst lightcurve and the background
rate (in green). The middle panel shows the T90 distribution, with dashed lines indicating
the median and one standard deviation, and dotted lines bounding the 90% confidence
region. The bottom panel shows the T0.45 distribution with a solid line indicating the
median and dashed lines showing one standard deviations.
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Figure A-21: BID H3558. The top panel shows the burst lightcurve and the background

rate (in green). The middle panel shows the T90 distribution, with dashed lines indicating

the median and one standard deviation, and dotted lines bounding the 90% confidence

region. The bottom panel shows the T0. 45 distribution with a solid line indicating the

median and dashed lines showing one standard deviations.
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Figure A-22: BID H3564. The top panel shows the burst lightcurve and the background
rate (in green). The middle panel shows the T90 distribution, with dashed lines indicating
the median and one standard deviation, and dotted lines bounding the 90% confidence
region. The bottom panel shows the T0. 45 distribution with a solid line indicating the
median and dashed lines showing one standard deviations.
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Figure A-23: BID H3568. The top panel shows the burst lightcurve and the background
rate (in green). The middle panel shows the T90 distribution, with dashed lines indicating
the median and one standard deviation, and dotted lines bounding the 90% confidence
region. The bottom panel shows the T0. 45 distribution with a solid line indicating the

median and dashed lines showing one standard deviations.
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Figure A-24: BID H3570. The top panel shows the burst lightcurve and the background
rate (in green). The middle panel shows the T90 distribution, with dashed lines indicating
the median and one standard deviation, and dotted lines bounding the 90% confidence
region. The bottom panel shows the TO.45 distribution with a solid line indicating the
median and dashed lines showing one standard deviations.
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Figure A-25: BID H3622. The top panel shows the burst lightcurve and the background
rate (in green). The middle panel shows the T90 distribution, with dashed lines indicating
the median and one standard deviation, and dotted lines bounding the 90% confidence
region. The bottom panel shows the T0. 45 distribution with a solid line indicating the
median and dashed lines showing one standard deviations.
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Figure A-26: BID H3666. The top panel shows the burst lightcurve and the background
rate (in green). The middle panel shows the T90 distribution, with dashed lines indicating
the median and one standard deviation, and dotted lines bounding the 90% confidence
region. The bottom panel shows the T0. 45 distribution with a solid line indicating the
median and dashed lines showing one standard deviations.
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Figure A-27: BID H3711. The top panel shows the burst lightcurve and the background
rate (in green). The middle panel shows the T90 distribution, with dashed lines indicating
the median and one standard deviation, and dotted lines bounding the 90% confidence
region. The bottom panel shows the T0.45 distribution with a solid line indicating the
median and dashed lines showing one standard deviations.
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Figure A-28: BID H3862. The top panel shows the burst lightcurve and the background
rate (in green). The middle panel shows the T90 distribution, with dashed lines indicating
the median and one standard deviation, and dotted lines bounding the 90% confidence
region. The bottom panel shows the T0. 45 distribution with a solid line indicating the
median and dashed lines showing one standard deviations.
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Figure A-29: BID H3889. The top panel shows the burst lightcurve and the background
rate (in green). The middle panel shows the Tg0 distribution, with dashed lines indicating
the median and one standard deviation, and dotted lines bounding the 90% confidence
region. The bottom panel shows the T0.45 distribution with a solid line indicating the
median and dashed lines showing one standard deviations.
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Figure A-30: BID H3947. The top panel shows the burst lightcurve and the background
rate (in green). The middle panel shows the T90 distribution, with dashed lines indicating
the median and one standard deviation, and dotted lines bounding the 90% confidence
region. The bottom panel shows the T0.45 distribution with a solid line indicating the
median and dashed lines showing one standard deviations.
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Figure A-31: BID H4010. The top panel shows the burst lightcurve and the background
rate (in green). The middle panel shows the T90 distribution, with dashed lines indicating
the median and one standard deviation, and dotted lines bounding the 90% confidence
region. The bottom panel shows the T0 .45 distribution with a solid line indicating the
median and dashed lines showing one standard deviations.
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