
-- *6 W

Mapping Boundaries of Generative Systems for Design Synthesis
By

Maher EI-Khaldi

Bachelor of Architecture. 2004
American University Of Sharjah

United Arab Emirates

Submitted to the Department of Architecture
in Partial Fulfillment of the Requirements for the Degree of

Master Of Science In Architecture Studies
Massachusetts Institute Of Technology

June 2007

@2007 Maher El-Khaldi. All rights reserved.
The author hereby grants to M. 1. T. permission to reproduce and distribute publicly

paper and electronic versions of this thesis document in whole or in part
in any medium now known or hereafter created.

Signature of Author:
Department of Architecture

May 24, 2007

MA SSACHUSETT S INSTITUTE
OF TECHNOLOGY

JUN 14 2007

LIBRARIES
RorcH

Certified by:
George Stiny

Professor of Computation. M. 1. T.
Thesis Supervisor

Accepted by:
Julian Beinart

Professor of Architecture, M. 1. T.
Chairman, Department Committee on Graduate Students

[_,

2

Thesis Readers:

Terry Knight
Professor of Computation. M. I. T.

Ann Pendleton-Jullian
Associate Professor of Architecture, M. I. T.

3

-- -. 41WOMMEW

4

- -- - 'A

Mapping Boundaries of Generative Systems for Design Synthesis
By

Maher EI-Khaldi

Submitted to the Department of Architecture on May 24, 2007
in Partial Fulfillment of the Requirements for the Degree of

Master Of Science In Architecture Studies

Abstract:
Architects have been experimenting with generative systems for design without a clear reference or theory of what, why or how to deal
with such systems. In this thesis I argue for three points. The first is that generative systems in architecture are implemented at a skin-
deep level as they are only used to synthesize form within confined domains. The second is that such systems can be only implemented
if a design formalism is defined. The third is that generative systems can be deeper integrated within a design process if they were
coupled with performance-based evaluation methods.

These arguments are discussed in four chapters:

1- Introduction: a panoramic view of generative systems in architecture and in computing mapping their occurrences and
implementations.

2- Generative Systems for Design: highlights on integrating generative systems in architecture design processes; and discussions on
six generative systems including: Algorithmic, Parametrics, L-systems, Cellular Automata, Fractals and Shape Grammars.

3- Provisional taxonomy: A summery table of systems properties and a classification of generative systems properties as discussed in
the previous chapter

4- Conclusion: comments and explanations on why such systems are simplicity implemented within design.

Thesis Supervisor: George Stiny
Title: Professor of Computation. M. 1. T.

5

6

j

Acknowledgements:

I would like to start by thanking God for the blessings He bestowed upon me. Only He would know how thankful I am for everything, not least of which
for all the genuine people I met. I envy myself for how blessed I am when I think of how many they are. The least I can do is thank them for making a
difference.

I would like to thank my father Sami El-Khaldi and my mother (God bless her soul) Waheeda Abu Sharkh; my sisters Lina and Maha; and brothers
Ahmed, Mohammad and my twin Munther. They have been always supportive of me in every form. They never said no to anything they could do to
help me realize my dreams.

I also would like to thank some of the most patient and supportive friends I met in my undergraduate school, alphabetically: Abdulla, Alia, Ahmad,
Azadi, Bashar, Hisham, Kareem, Khaider, Khaldoon, Lamees, Marriam, Mohammad, Mohannad, Mouiz, Noor, Nibras, Rawan, Tamer, Zaki. When my
mother passed away I shattered into sharp pieces. Yet, some friends tried as hard as they could to put me back together. Amin, Bashar, Lamees and
Nibras, I can't think of what made them do this! I also would like to thank Abdulla for being such a supportive friend since the day I knew him.

I also would like to thank the person who believed in me and sponsored my first semester at M.I.T with no strings attached! Nancy for helping me find
a scholarship for my master's study, and Danielle and Dina Kan'aan for helping me obtain a visa.

I also would like to thank, from the American University of Sharjah, professors: Ahmad, George, Kevin, Nadia, Nawar, Tarik, Randle, and Rula for being
such passionate teachers.

I also would like to thank some of the wonderful people I met at M. I. T. and Cambridge, who showed me how beautiful Islam is, Dalia and Elizabeth.

I would like to thank my friends Saud, Hassen, and Nadeem for being such great company; Kenfield and Kyle for debugging my Rvb. code; and Arjun,
Josh and Meleena for their feedback.

I would like to thank Lamees for putting a great effort in reading and editing this whole thesis. She has always been a wonderfully patient and
dedicated friend.

I would also like to thank Anas for being such a great mentor throughout my study at M.I.T. He taught me many things starting from day one. Things I
might not have thought of.

I also would like to thank Terry and Ann for the interesting design discussions we had, and Axel for the intersting workshops he offered.

I also would like to thank Bill Mitchell for the deep and rich discussions he enticed my mind with.

I also would like to thank George Stiny for giving me the freedom, coupled with the right amount of pressure to explore and build my own path.

Having met all of these individuals, I believe I could not be any luckier. Thank you all for investing in me.

7

8

Content:

1.0 Introduction:

2.0 Generative Systems In Design:

2.1 Designing with Generative Systems:

2.2 Highlights On Selected Generative Systems:
2.2.1 Algorithms:
2.2.2 Parametric:
2.2.3 L-Systems:
2.2.4 Cellular Automata:
2.2.5 Fractals:
2.2.6 Shape Grammars:

3.0 A Provisional Taxonomy Of Generative Systems:

4.0 Conclusion:

5.0 Bibliography

9

1.0 Introduction:

1

--- _W90momm-

In order to effectively study a topic it is useful to first establish an understanding of key terms. Below are a series of keywords and
meanings found in the Oxford Dictionary. These are loose suggestions to clarify main concepts from a design point of view. Let's start
with the title: "Mapping Boundaries of Generative Systems for Design Synthesis"

-Mapping: "...a diagrammatic representation of an area of land..."
-Boundaries: "...a line that marks the limits of an area..."
-Generative: "...of or relating to reproduction..."
-System: "...a set of things working together as parts of a mechanism..."
-Design: "...an arrangement of lines or shapes..."
-Synthesis: "...combination or composition, in particular: the combination of ideas to form a theory or system..."

The maturity of Generative systems in architecture suffers from severe "lateness". Architects have been solely experimenting with them
for form synthesis. These systems appeared "later" in the in computation for simulating various phenomena for the purposes of analysis.
Both approaches seemed valid in their respective contexts, however, their level of success translate differently. In architecture, most
of the generated outcome is skin-deep where in computation it is endless. The reasons behind such variance lie in the process, goals
and context in which each is being implemented.

The following diagram maps some of the most important occurrences of generative systems in architecture, and in computation. It also
maps the developments of digital tools (softwares) and the related concepts in architecture theory leading to current practices.

1

.UCa) a)

-C

o o
O <
<

O 0

C C
E T

E z a) 2 O
4- c) -cO

C U 0 <'' U <a <
U) < a) 0- 0~ i5 U0~

> 0~ a i 0Q -0
4- 0 n

0 E 000 '

.C g)
e EE 2

0 a) Lna 0
(1) a 0< u:b< 1<

a) iIIIIIII IIIIIIIIII IIIIIIIIIIIUIIhIIIIII

O 1970s 1977 Late 1980s 1999 2003 2006
0 120 192

C = V)E 60
U 9

U) 0 6 E EU

d~ 1111 IIIIIIIIIIIII 11111 NNI IIIIII II11111IIIIIIIIIIII

1821 1920 1926 E5 91 1

O<
U L

2 0)

0).0)5 00EUc
> IDa) C) (9 0 . 'a)

U) < o< a - n

CO O /)

oU '-O E <E 0 jO

Q IIIIIIIIIIIIIIIIIIIIIIIo

<0 zC 0~~
-~ 4- 0 ~ 09 E~ :V

CL v)a-n I < C4UC <~ : ~< Ez

.0

E 1957 1960 1977 1986 1989 1993 1998 1999 2000 2004
0
U

C 0)

E0
U) 0 0 E E' . > -

00 0 ac. ni

0)

>0 < <

C 0 (0 2 o 0

0 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

1930s 1940s 1954 1955 1960s 1968 1971 1970s

Time line showing various developments in architecture, computation and software.

12

The previous diagram is presented as a cascade of four time lines so that the readers may create their own connections. For now, let's
start by the "beginnings of generative systems in architecture". In 1821, Durand wrote the "Partie graphique des cours d'architecture"
describing two design stages to generate Neoclassical Architecture, a bottom-up and top-down approach. The first guides the creation
of an architecture skeleton where the second directs the addition of details. Both processes complement each other.'

On oPa L

Oneio ulliandsPe2. Image Credits: Louis nduNands (ta.) Deoavid Rbrt PrTwofy The Petres on Architecture, Wth Grpici (WPWorton th
LetuesonArhiecur,(Gtt Tus Pblcaios Gtt Rserc IsttuefootemisoraonAtn t20umniie,)00)

"A System MthelTeLoi of ArchitecturalOnmnte:odigwt Deinosopton, Man's Poers".(Cmide Thesepae deie Peaile processes45.

2 Louis Sullivan, ed. Narciso G. Menocal, Robert Twombly, The Poetry of Architecture, 1st edition, (W. W. Norton & Company,
2000).

13

Six years later, Le Corbusier formalized his style in Les 5 points d'une architecture nouvelle. These included: 1- The pilotis elevating
the mass off the ground; 2- The free plan that is achieved through the separation of the load-bearing columns from walls; 3-The free
fagade as the corollary of the free plan; 4- The long horizontal sliding window; 5- The roof garden restoring the area of ground covered
by the house.3 Although these points described only a style, they implicitly impose objectives and goals by which a designer may tailor
their own generation methods.

Le Corbusier's Five Points. Image Credits: http://www.geocities.com/rrl7bb/LeCorbusier5.html

In 1971, Eisenman presented a series of "transformational diagrams" in the House X project series. Although they were deterministic
and descriptive of an existing design artifact, they conveyed possible variations and clear representations of design steps.4

3
4

Transformational Diagrams. Image Credits: Peter Eisenman, "House X," Rizzoli 15 April 1983.

Leland M. Roth, Understanding Architecture: Its Elements, Histo. and Meanig (HarperCollins Publishers 1993), 475-480.
Peter Eisenman, "House X," Rizzoli 15 April 1983.

14

In 1977, Christopher Alexander published "Pattern Language". His work is similar to that of Le Corbusier but at a bigger scale. The
patterns he proposed serve as guidelines for composing an architectural context. He discussed cities, villages, districts, land parcels,
streets, public spaces, private spaces, etc. It is important to note that Alexander's work had a major influence on the field of computer
science, specifically, on building hierarchies in programming languages.

Visual description of good and bad street corners, roof tops, urban corners. Image credits: Christopher Alexander, A Pattern Language: Towns,
Buildings, Construction, (USA: Oxford University Press, 1977).

The concept of reproduction was inherent to all of the above processes. However, none of them explicitly discussed the idea of
"reproduction for variation". One of the first systems written for variation in architecture came right after Pattern language. It was based
on the formalism of Shape Grammars.6 Below is an example of the work devloped by William Mitchell and George Stiny for generating
Palladian Villas7.

1 2 .3 5

8 9 10

I 12 13. 14 15

R6 17 18 19 20

Examples on variation generated through Shape Grammars for Palladian Villas. Image credits: William J. Mitchell, The Logic of Architecture: Design,
Computation, and Cognition, (cambridge: The MIT Press, 1990), 173.

5 Christopher Alexander, A Pattern Language: Towns, Buildings, Construction, (USA: Oxford University Press, 1977).
6 Shape Grammars was developed by George Stiny and James Gips for visual calculation.
7 George, Stiny and W. J. Mitchell. "The Palladian Grammar." Environment and Planning B: Planning and Design 1978, 5: 5-18.

15

These examples were followed by a flow of various implementations by Greg Lynn, Ali Rahim, Cecil Balmond, Norman Forster, and
many others who used systematic design methods to generate "new" architectural forms. Their processes were mainly influenced and
informed by evolving digital tools.

In the previous pages I have tracked some of the major occurrences of generative systems in architecture showing when and how
they were implemented for design. In the following pages, I will introduce another set of (more established) generative systems in
computation and show how they reappeared in architecture as new systems.

As a start, I would like to clarify a certain point to avoid later confusion. Computation should not to be mixed with computerization. The
former is a process of calculating where the later is a technique whereby computation is performed by computers. Humans can also
perform computing to a certain degree, however, they are unable to equal computers ability to perform tasks repetitively and flawlessly,
or to store large amounts of information and immediately retrieve it. This was one of the limitations that Alan Turing attempted to explore
through his abstract machines (Turing machines) in the late 1930s.

As an extension to the concept of automated calculation, John Von Neumann built an abstract model of self-reproduction in the late
1940s to mimic biological growth. He constructed a system of cells and states where each cell would react to its neighbors' conditions.9

This system was known as "Cellular Automata". This represents one of the early models of simulate to analyze.

Diagram of Neumann's Universal Computer. Image Credits: Umberto Pesavento, "An Implementation of von Neumann's Self-Reproducing Machine,"
Artificial Life 1995, Volume 2, Number 4: 337-354.

8
9

Turing, (1936) Undecidable p. 118; footnote Davis (2000), p.151.
Stephen Wolfram, A New Kind of Science, (Wolfram Media, 2002), 876.

16

Neumann's work inspired Nils Aall Barricelli who pioneered building genetic algorithms to simulate evolution, a more sophisticated
model of reproduction. His publication "Solving multi-objective optimization problems using an artificial immune system," in1957 is the
earliest published record of an evolutionary simulation'o.
Around the same time period, Chomsky published his Logical Structure of Linguistic Theory offering a taxonomy of language structures
based on a formalism of sequential string rewriting. In the early 1960s, programming methods made a major leap forward with the
introduction of "Object Oriented Programming", a structure where "Objects" inherit properties of "Classes" within a "hierarchical" data
structure. This served as the base component for major developments in software like: animation, parametric modeling, Building
Information Models (BIM), etc.

In the late 1960s, Aristid Lindenmayer formulated L-Systems as a customized version of Chomsky's Grammars. These were created
to simulate botanic growth behaviors and patterns. Unlike Chomsky's Grammars, L-systems were based on parallel string re-writing
where all alphabets are rewritten at the same time.

5-25 7 d.6.b2 , 22W

P-F['I 41F F-F[.F)F[-n D,

Example showing L-system formalism and generated geometric interpretation.

In the early 1970s, George Stiny and James Gips" introduced Shape Grammars as a system to simulate visual calculation processes.
It was the first design-oriented system. Shape Grammars were used in a many fields to reverse engineer existing design or devise
methods for creating design languages, one of which was mentioned earlier in the Palladian Grammars.

Example showing Shape Grammar Rules.

10 C.A. Coello Coello and N.C. Cortes, "Solving Multi-Objective Optimization Problems Using an Artificial Immune System," Genetic
Programming and Evolvable Machines June 2005, vol. 6, no. 2: 163-190.

11 J. Gips and G. Stiny, ed., C. V. Freiman, "Shape Grammars and the Generative Specification of Painting and Sculpture," Informa-
tion Processing 71. (Amsterdam, 1972), 1460-1465. -- Republished by 0. R. Petrocelli (ed.) The Best Computer Papers of 1971, (Philadelphia:
Auerbach, 1972), 125-135.

17

In 1975 Benoit B. Mandelbrot coined the term "Fractal" describing what was known since the early 1900s as Mathematical Monsters.-
These were used to generate self-similar structures posing questions on dimensions and topology.

Example of visual representation of fractal formalism through replacement rules. This example shows the generation of a Koch Curve, (This will be explained
later).

Most of these systems reappeared in architecture for form synthesis through the introduction of new architecture-oriented tools. Their
appearance triggered a chain of new thoughts on theory, form, program, tectonics, culture, etc. Such conclusions can be drawn from
the "Software development" and the "Maturity of Generative Systems" timelines. For example, it was after the introduction of computers
when Eisenman said: "One can set up a series of rule structures for inputting into the computer not knowing a priori what the formal
results will be. Then the process becomes one of testing algorithms against possible formal results. The writing and correcting of these
algorithms becomes one of the tasks of design."13 This was also the period when William J. Mitchell published The Logic orArchitecture
introducing the concepts of algorithms, evolution, grammars, and logic into architecture design process; when Greg Lynn published
Animate Form and theorized about Nurbs in relation to Deleuze; when we started reading theories about forces carving programs, or
scooping out forms, or deforming landscapes, etc.

At the beginning, architecture-oriented-softwares served as documentation tools for they gave architects the ability to ensure accuracy
and consistency in all drawings; expedite generation of "copies"; and help visualize possible options right in the monitor space
without destroying drawing-sheets by erasing/drawing ink lines repetitively. These documentation tools witnessed a different type of
implementation with the introduction of parametric features. Now, architects can "update" their drawings by changing parameters like:
dimensions, relationships, formula, history, etc. This replaced the concept of "redraw" by that of "regenerate".

Parallel to the development of parametric softwares was the creation of solid modelers. These added a third dimension to the architect's
digital drawing board. The development continued to include smooth modeling modules allowing architects to create complex forms
never been conceived of before.

12 Mandelbrot, Fractals and Chaos: The Mandelbrot Set and Beyond, 1st edition, (Springer; 2004).

13 Selim Koder, "Interview with Peter Eisenman." Ars Electronica 1992. / This can be found digitally at: http://www.jhfc.duke.edu/
jenkins/Publications/Lenoir_FlowProcessFold.pdf

1

__ _AIANNIEW

Later, a new type of parametric softwares came to break boundaries of static geometry. In the mid 1990s, Animation packages were
offered by major software companies like: Discrete, Alias, and Maxon. These were channeled to serve the media and film industry;
however, architects found them to be rich environments for making "provocative" forms. They were able to create morphing blobs, extract
moments of deforming surfaces, or capture instances of moving geometries, etc. Parametrics softwares (modelers and animators)
helped revive the concept of building systems to generate variations for design.

The development of software was continuous. New programming and scripting languages were introduced in the late 1990s. They
offered enhanced environments for architects to write their own tools (to a certain level). This was the period when generative systems
from computing reappeared in architecture. It was finally possible to write algorithms on top of an existing platform instead of building
specific environments from scratch. Most of these were implemented to solve confined design problems, or slightly described scopes.
In both cases, the resulting objects where shallow if compared to the complexity of architecture. In the following pages, I will present
six different implementations of generative systems in architecture addressing one design problem, that is buildings' envelopes. These
implementations include: Serpentine Pavilion by Cecil Balmond and Toyo Itto (Algorithmic), Swiss Re by Norman Foster (Parametric),
Some academic Projects on L-systems, Automatson by Mike Silvers' (Cellular Automata), Federation-Square by Lab Architecture
(Fractals), and EMP skin solution by Dennis Sheldon (Shape Grammars).

Cecil Balmond and Toyo Itto designed the Serpentine Pavilion by implementing an algorithmic system. In a square shape, it draws a line
from the mid point of a segment to the first third of its adjacent iteratively. After a certain number of iterations it will extend all the lines
sufficiently to cover the surface area of a cube (roof and walls). Then, it breaks, bends and trims the extended lines at the edges of the
cube. It finally adds links between the edges and corners. In the construction phase, the architects applied a checkerboard-coloring
scheme and custom built connections.

Diagrams showing algorithmic procedure of generating pattern. Left: Michael Kubo and Farshid Moussavi, "The Function Ornament," Actar 2006.
Middle and right: Image from Jaime Salazar et al., "Verb Matters", Actar 2004.

, ' .19

Forster partners took that algorithmic design approach to a second level in the Swiss re project. They used parametric systems where
a constant (live) link exists between hierarchies of geometries and numbers. Their system was determined by parametric modeling
software that interpreted numerical data generated by spreadsheet software. The separate representations (numerical and geometric)
delivered an easier, and unusually accurate design process. As such, the parametric model becomes constantly responsive to change,
offering a degree of design flexibility not previously available.

4

~Hf

2C
..................

V

Showing driving geometry (points) generated by Spread sheet. Right: Image from Jaime Salazar et al., "Verb Matters", Actar
Michael Kubo and Farshid Moussavi, "The Function Ornament," Actar 2006.

2004. Left: Image from

Examples of L-systems in architecture are only present in Academia. Most of the work published does
deforming surfaces or creating branching geometries.

not go beyond explorations in

Left: Example on deforming Surface by displacing control points based on an L-system generation, Image Credits: Mike Silver, Programming

Left: Example on deforming Surface by displacing control points based on an L-system generation, Image Credits: Mike Silver, Programmn

Cultures: Architecture, Art and Science in the Age of Software Development, Academy Press, 2006.

2

Qwt

One of the developed examples on using cellular automata for design is a software created by Mike Silver. In an automasonry, Cellular
automata patterns become translated as brick formations using a push-pull algorithm. Again, the implementation of generative systems
did not go beyond applying patterns to buildings'facades.

Screen shot of Automason software showing various parameters for creating variations of brick pattems. Image Credits: Mike Silver, Programming
Cultures: Architecture, Art and Science in the Age of Software Development, Academy Press, 2006.

Designed by lab Architecture through a fractal system, the fagade of Federation-square building complex included a triangular pinwheel
grid hosting a five-tile pattern arranged differently in five panels. In addition, a collection of materials was applied to certain types of
panels suggesting a visual complexity.

2

5 triangles

Left & Middle: Image of Federation Square-Fagade. Right: Panels of five triangles.1mage Credits: left, http://www.labarchitecture.com. Right: Michael
Kubo and Farshid Moussavi, "The Function Omament," Actar 2006.

E

20 triangles 25 triangles1

The skin of Gehry's EMP building in Seattle was designed by Dennis Sheldon who implemented a grammar to transform, and break
regular rectangular metal sheets in several shapes. The intent of this implementation was to arrive at a variety of panel shapes to hide
the regularity of the usual grid systems used for constructing facades.

Experience Music Project Skin design with shape grammars rules. Image Credits: Mike Silver, Programming Cultures: Architecture. Art and Science
in the Age of Software Development, Academy Press, 2006.

In the previous examples, design was more of an outcome than a process. Architects took what generative systems gave them at face
value. They only mapped systems behaviors as geometric patterns (or rather ornaments) on buildings facades, what Adolf Loos might
have called a "crime". There are many reasons behind such a skin-deep implementation some of which will unfold through out the
following chapters of this thesis.

One might ask, what is the relevance or value for implementing generative in architectural design processes? Akin described the design
process as a combination of knowledge and strategy. The richer a strategy is, the more robust the process becomes14.There are many
benefits in every fold of every generative system. These include the ability to A) generate variation, leading to emergence of new forms,
B) unpack dependencies and relationships.

14 Krishnamurti, Ramesh. Artificial Inteigence for Engineering Design. Analysis and Manufacturing 20, (Cambridge University
Press, 2006), 95F103.

2

In architecture studios (both in academia and practice), designers usually decide and select by comparison. For example, an architect
may go with solution A as it satisfies program requirements, or solution B as it expresses "design relationships" more clearly, or
solution C because it satisfies the building code, etc. Comparison can be built on A) heuristics for how things should work; B) numerical
evaluation methods for quantities like area, cost, loads, etc; C) aesthetic judgment. Neither do these three evaluation methods present
themselves in a hierarchical order, nor do we follow one way to prioritize them. Such uncertainty in synthesis and analysis of design
solutions depends dramatically on the amount of available design candidates from which to compare and select.

One of the main incentives in exploring new design processes is "emergence" of new forms. We have seen that architects embraced
softwares as they continued to offer new tools, methods, and scripting platforms, etc. Architects sought emerging shapes in automating
transformations, embedding randomization functions, layering various parameters, etc.

The benefit of implementing generative systems in design reaches beyond variation. In his diagrams, Eisenman demonstrated
consistency in decomposing relationships, clarity of design thinking and mastery of unpacking dependencies of design elements.
Systematic design approaches help in devising decision-making strategies, prioritizing requirements and clarifying distinctions between
qualities and quantities. If implemented correctly, they could push the design process further.

In this introduction I surveyed the current status quo of implementing generative systems in architecture showing their early origins,
current and evolving approaches in design, and their relevance for architects. The following chapter includes discussions and highlights
on six generative systems: Algorithmic, Parametric, L-systems, Cellular automata, Fractals and Shape grammar

23

2.0 Generative Systems In Design:

24

This chapter is broken to two sections. The first introduces general ideas about integrating generative systems in design processes.
The second offers highlights on intrinsic and shared properties between six systems. These include: Algorithmic, Parametrics,
L-systems, Cellular Automata, Fractals and Shape grammars.

25

2.1 Designing with Generative Systems:

Herbert, Lionel March, Yahuda E. Kalay, and many others, discussed the concept of (generate-test) design loops. They defined design
as a result composed by two engines, one is involved with generation and the other is involved with evaluation.

In architecture studios, we typically collect data and investigate sites, build a concept around which we structure a design, and then
analyze possibilities based on an array of criteria we define or receive from clients. This process can be loosely illustrated as shown
below in a three-node diagram. One of the limitations in this process appears in the number of solutions that the "design language"
node can generate. It is usually very few, if not one.

Design Loop

Solution

26

- -Aw

Solution

27

History is a great resource. You can understand how phenomena mature or decay, last or end, continue or break. In the first chapter of
this thesis, we were able to identify the points in time when architects like Durans, Sullivan, Le Corbusier and others prescribed their
processes. If you noticed, all of them externalized their design processes after building a body of work, defining a certain style, working
by a set of architectural elements for certain goals. As for computing, we also found how L-systems or Cellular automata and others
were created for simulation. It was after phenomena were broken down to units, relationships and behaviors. Generative systems can
only be built after defining design objectives, processes and relationships.
The following illustration shows a revised possible diagram for integrating generative systems in design. A fourth node, "generation",
is placed between concept and evaluation. The main gain behind integrating such systems within a process is the ability to test
"many" generated solutions and be able to compare between them. This allows for capturing more possible design solutions for every
conceptual design language. It is important to realize generative systems are context specific for they come after a formalized (defined)
design language.

Design Loop

2.2 Highlights On Selected Generative Systems:

Just like in the introduction of the first chapter, I would like to list a number of keywords to help define the scope of the following
sections. In Oxford dictionary:

-Structure: "...the arrangement of and relations between the parts or elements of..."
-Algorithms: "...a process or set of rules to be followed in calculations or other problem-solving operations..."
-Component: "...a part or element of a larger whole..."
-Rules: "...one of a set of explicit or understood regulations or principles governing conduct within a particular activity..."
-Formalize: "...give (something) a definite structure or shape..."
-Formalism: "...concern or excessive concern with form and technique..."
-Representation: "...the description or portrayal of someone or something in a particular way or as being of a certain nature..."
-Associate: "...connect (someone or something) with something else..."
-Hierarchy: "...a system or organization in which people or groups are ranked one above the other according to status or authority..."
-Inherit: "...derive (a quality, characteristic, or predisposition) genetically from one's parents or ancestors
-Inheritance: "...A thing that is inherited ..."
-Parallel: "...Computing involving the simultaneous performance of operations..."
-Sequential: "...Computing performed or used in sequence..."
-Random: "...made, done, happening, or chosen without method or conscious decision..."

Let's define Generative systems as structures capable of producing many results. These systems are composed of Algorithms that
describe parallel or sequential or random processes. Let's also define formalisms as a special type of a generative system formalized
by rules. These systems and formalisms may display a specific representation.

A generative system might include one or bi-directional associations (relationships). One-directional associations generate
hierarchical structures where elements are placed within ranks. Usually known as a Parent-Child relationship. Within such a
structure, inheritance becomes possible for properties reappear in many generations within a family of elements.

In the following six sections, I will try to highlight major concepts that I find relevant to the scope of this thesis. Each section will
introduce one generative system including background information, experimental implementations within design, and a short
summary.

It is important to not that the experiments I am showing for each system were also built to address similar design problems to those
shown in the first chapter (building envelopes). Each experiment is structured to work for synthesis with almost no evaluation. The
reason I chose such a defined context to design for was to strip each system down to its bones and focus the discussion on its
structure.

28

In the following sections I will introduce six generative systems: Algorithmic, Parametric, L-systems, Cellular Automata, Fractals, and
Shape grammars. Each section is composed of 11 segments. These include:

1.0 History and Background: offering information on when, how and why each system was created.

2.0 System: introducing main ideas and concepts.

3.0 Components: discussing how each system might be structured/ utilized within a design context.

4.0 Units: showing the units' types that a system can recognize and deal with.

5.0 Inheritance, Constraints and associativity: commenting on some prosperities of each system.

6.0 Mechanics: showing how each system works, its behavior or rules.

7.0 Representation: discussing how each design component and units are represented.

8.0 Solution space: showing a way to evaluate how generative a system is.

9.0 Experiments: showing experiments utilizing each system within a confined context (building envelope).

10.0 Summary: offering a brief description of each system.

11.0 References

2

W~'M-

30

Algorithmic Generative Systems

Introduction:
Algorithmic systems are the basic components in all generative system. They are the most malleable when it comes to customization
because they don't impose a specific structure, or relationship, or representation, or units' type or context. They only provide a
working environment as opposed to recipes to implement. For this reason, these systems are the most popular of all systems among
architects. In fact, designing with algorithms is not a totally new concept in architecture. As you have seen in the introduction, many
architects repackaged their design languages in algorithmic descriptions for others to implement. Thinking in terms of algorithms is a
mapping process of design objectives onto step-by-step descriptions. Such a process helps designers decompose context, understand
relationships and devise methods to judge the utility of the outcome.

1.0 History and Background
2.0 System
3.0 Components
4.0 Units
5.0 Inheritance, Constraints and associativity
6.0 Mechanics
7.0 Representation
8.0 Solution space
9.0 Experiments
10.0 Summary
11.0 References

31

1.0 History and Background:
The word Algorithm is an evolved transliteration of the Muslim scientist's family name: Al-Khwarizmi. Algorithms were known as
descriptions for arithmetic manipulations of Arabic number.' The modern view of algorithms extends this definition to include process.
"Algorithms are prescriptions of computational processes that lead to desired results", says Andrei Markov. 2 Descriptions of processes
require decomposing them to steps and relationships. They need to be definite and precise not to leave place to arbitrariness. Algorithms
vary in their structure, logic, representation, etc. Literature on algorithms is deep enough for any scientist to drown in. For the purpose
of this thesis, I will go with the most basic definition, which is: a set of instructions to achieve a certain goal.

2.0 System:
Boolos and Jeffrey beautifully framed the concept of using algorithms in the Computability and Logic (1974, 1999): "No human being
can write fast enough, or long enough, or small enough to list all members of an enumerable infinite set by writing out their names, one after another,
in some notation. But humans can do something equally useful, in the case of certain enumerable infinite sets: They can give explicit instructions
for determining the nth member of the set, for arbitrary finite n. Such instructions are to be given quite explicitly, in a form in which they could be
followed by a computing machine, or by a human who is capable of carrying out only very elementary operations on symbols" (boldface added).3

This concept lends itself smoothly to our context: architectural design. Constructing such a dual environment of human and machine
can only work through the creation of a common language that both understand. One that translates, or rather simulates, the human
thinking process into a language that machines can work with. Such a system can spark unmatchable synergy where the creation of
ideas exceeds the limitations of human immediate perceptions.4 Algorithmic systems can be constructed or networked in different ways.
They can run in parallel where they process different sets of information at the same time without affecting one another. They may also
run sequentially such that a predecessor affects its successor. They may also run in random without following any specific structure.

Parallel Systems Seqtuentil Systems

___ 00

1 <http://www.islamonline.com/cgi-bin/newsservice/profile-story.asp?serviceid=755>, <http://www.muslimheritage.com/day_life/
default.cfm?ArticlelD=317&Oldpage=1>

2 A. A Markov, Theory of Algorithms, (Moscow: Academy of Sciences of the USSR, 1954). Original title: Teoriya Algerifmov. Refer-
enced from: /,http://en.wikipedia.org/wiki/Algorithms/..

3 George Boolos and Richard Jeffrey, Computability and Logic, First Edition, (London: Cambridge University Press, 1999) 19.
4 Kostas Terzidis, Algorithmic Architecture (Architectural Press, June 21, 2006), Chapter 3.

32

3.0 Components:
Building an algorithmic system for design will require mapping of design intentions onto a series of discrete steps and units. They
may include descriptions of quantitative properties like required area, or number of units, geometric descriptions of objects, etc. For
example, designers may be able to evaluate how "well-lit" a space is based on percentage of openings in a wall, or based on the relative
location of these openings to a center of interest, or materials reflections, etc. Designers may also choose to formalize qualitative
properties like: "open", "wide", or "stylish", etc. This type of mapping is usually harder to describe for it requires more details, and
possibly different types of evaluations. One might encode a quality by defining a certain geometric language, along with some materials
attributes to ensure the generation of a certain style. For example, a designer who appreciates open modern plan with organic layout of
walls would write an algorithm to A) push structural elements to the building envelop, B) place free form splines, C) fillet walls edges, D)
create thick slabs to eliminate beams, E) apply glass materials to certain fagade elements, etc. In any case, an algorithmic system for
design will require components to generate data, others to interpret them as output of various types: geometric descriptions, material
properties, etc. Usually another third component is needed to evaluate existing output based on performance-based or aesthetic-
based criteria. Evaluating architecture is no easy task for design is usually ill defined, proprieties change by the minute based on
clients, site conditions, structural requirements, etc. A fully automated algorithm is very complex to achieve and the results are always
questionable. A human controlled process is not as fast, accurate or robust. The complexity of mapping processes and translations of
goals, intentions, performance criteria between human and machine is very new to architectural profession. All of the above imposes
many questions on the implementation of algorithms in architecture design.

4.0 Units:
Algorithms can deal with any types of units, ones with fixed, or flexible definitions. In Computers, an algorithm can only deal with
discrete unit, one with fixed descriptions or identity, or boundaries. These units can be numbers, alphabets, geometric elements,
etc. An Algorithm deals with units through functions. A function is an expression of dependencies (equations) between units through
operators. Operators include: Additions, subtractions, etc. For example: A = 3+X. Collections of functions lead to developing techniques
for achieving certain tasks. These techniques are known as methods. Related methods can be grouped as a class responsible for
generating certain types units. In this context, an algorithm is a collection of methods.5 In algorithms, units might be fixed, or changeable.
They also must be stored in placeholders. A placeholder for fixed units is called a constant, for changeable data is called a variable. A
placeholder for variables or constants is a Parameter. Here is an example of an algorithm described verbally: Create a cube that has a
red color, move a number N of copies distance X towards the North direction, rotate each cube around its Y axis A degrees, change its
color randomly. "Create", "Move a copy", "Rotate" and "Change colors" are functions. Distance X, Angle A, and number of copies N are

5 Kostas Terzidis, Algorithmic Architecture (Architectural Press, June 21, 2006), Chapter 3.

33

variables that can be changed any time. "Color", "North Direction", and "Y-axis" are parameters that channel variable units "Random

Color", "Number of Copies" & "Distance X", and "Angle A" to the functions "Move a copy", "Rotate" and "Change Color".

5.0 Inheritance, Constraints and associativity:
The term "Inheritance" in algorithms describes one directional relationship that is possible through hierarchies, usually known as

Parents and children where the latter inherits properties of the former. Inheritance appears when properties flow from one parent to its

children. Such propagation happens through updating variable data among children sharing the same set of parameters. Constraints

are viewed as limitations, or ranges by which a value is allowed to vary. If were implemented incorrectly, constraints may eliminate

potential solutions or hinder the generation process. Associativity is a set of relationships between elements. It is usually bi directional

like: X = 2 Y. In this case, changing the value of X will update Y and Vise Versa. Associations allow for triggering a series of changes

by only changing a few parameters. This is true for any number of elements involved in a relationship with the same changing set of

parameters. For example, given a set of relationships: Z = 2 A, X = 3Z, Y = X+Z, and C= 2X-Z. If you change the value of A, a change

of changes will ripple through the system in the following order: Z, then X, then Y and C at the same time. This is because the values

of Y and C rely on X and Z, and the value of X relies on Z. An Algorithm cannot update any element before identifying the values of all

of its parameters.

6.0 Mechanics:
An algorithm can be thought of as a description for actions within a certain range of possibilities. These actions can be context-free or

context-sensitive. The latter is usually known as a rule-based algorithm. A rule is best explained as a condition that should be matched

before task is triggered. A condition is a relationship between two entities, or an object property, etc. This might be expressed as: If
"condition" is "true", then trigger function "do this". Rules types are usually inferred from the algorithms they trigger. For example, you

can write a "replacement" rule, or a "transformation" rule, or a "deformation" rule, etc. Replacement algorithms perform replacement

operations on objects or parts of them (This will be explained in the 2.2.6). A simplistic descriptions for this process can be: Pick object

A, and replace it by object B, or Pick a part of object A and replace it by a part of object B, or pick Object C and replace it by nothing,
etc. Rule based systems tackled in this thesis include: L-systems, Cellular automata, Fractals, Shape Grammars.

7.0 Representation:
Algorithms can be described or represented in many forms like: Pseudo code, Graphics and symbols, verbal descriptions or in any

combination. The way an algorithm is built will dictate the representation method. Generation and Interpretation may be combined

within a representation or be dealt with separately. For example, two algorithms may be used to create a bar chart. One generates a

34

series of numbers. The other interprets these numbers as graphics. In this case, each algorithm will require a separate representation
since interpreting (building) graphics cannot start before generating numbers. The opposite example is the generation of a geometric
pattern using a shape grammar. In this case, an algorithm can be written to pick an object and replace it by another at once. In shape
grammars, representations combine both generation and interpretation. This will be explained in more detail later on. Algorithms
concerned with evaluation are always separate. They cannot be merged within representations of other algorithms for they can be only
applied "after" a result is being generated or interpreted.

Representations dictate the type of information being expressed. For example, a cellular automata representation is very powerful
when it comes to describing neighborhoods conditions, but not geometry. On the other side, Shape grammars are capable of handling
complex transformations and geometric descriptions, but not describing neighborhoods' conditions.

8.0 Solution space:
Solution space is a term used to gage the quantity of possible solutions within a certain design system. It indicates how generative a
design system is. The ability to generate in an algorithm is subject to the number of parameters, allowed range of variables, types of
relationships, rules, and number of iterations. It will be misleading to pose a more specific recipe behind algorithms' ability to generate
variety since there is no strict structure for them. In the following sections on Parametrics, L-systems, CAs, Fractals and shape
grammars, I will explain in more detail how each can generate such variety.

35

- -im*

9.0 Experiments:

9.1 Skin and Bones:
This experiment included a generator engine only. It is meant as an example to demonstrate how a basic algorithm can run deterministically
without rules. It also illustrates a simple algorithm by which certain tasks in architectural design processes can be automated. The
algorithm constructs a surface with ribs from a series of curves in three steps. It starts by diving selected curves into segments of as
various sizes such that the projection of these divisions reflects a user-defined slab's height. Then it draws straight-line segments
between every two points on each curve by which it creates patches. Then it draws a poly-line passing through point that are at the
same level in all curves and extrude that as a rib. Below are images showing the steps and results.

Step 1

ii

Step 2 Step 3

+

+ +

Make Skins + Bones:

0 Divide curves in relation
height

to a user-defined slab-

0 Generate straight-line segments between every two
points on each curve (to rationalize the geometry)
and construct a patch

0 Generate a poly-line segments passing through all
points in all curves at each level and create a rib.

36

9.2 Vertical Village Concept:
In this experiment design was implemented by utilizing two engines: a generator and an evaluator. The first is responsible for creating
units where the other deals with evaluating solutions based on number of basic real-estate concepts.

The goal was to revisit the concept of a high-rise building in two folds, spatial zoning and exterior envelop. The intention was to
drive the latter by the former. The concept for spatial zoning revolved around mixing a typical architectural program by a) dislocating
units horizontally and vertically starting from a typical floor plate and b) shuffling various programs in different configurations. This
generated an interesting dialogue between inner void spaces and solid units, subtracted corners and stepped facades, public and
private, commercial and residential spaces, etc.

The algorithm was able to generate various dialects of such a design language depending on parameters like: number of units, number
of iterations, and percentage of public commercial Vs residential spaces. Selection of design candidates was guided by evaluating the
level of exposure, types of space as suggestion to integrating real-estate values within the generative system. Below is a description
of the algorithm and screen shots of the generation process.

Make Vertical village:

0 Define a number of units and iterations.

0 Move each unit in 3D space once per iteration
then:

f Register units'heights and numbers
of exposed faces for all units.

: Store values

Repeat B based on the number of iterations
defined in A.

Select Best Result

I System Control Generation | Evaluators

37

Concept For Vertical Village
What if urban fabric was weaved
vertically? What if program interlaced
within a confined area and generated I
mixed public/ private; living/ shopping;
and work/ leisure environments? In this
experiment, we developed an algo- I
rithm to shift, rearrange and orient solids
in relation to view, number of shared
edges, and amount of voids. The gener-
ated data informed various formations

solid-void conditions allowing for a
ariety of inhabitable environments

Parameters

Neighborhood

Evaluation based on number of voids

12

itiori

Pr Possibiliti

III

10.0 Summary:
Algorithmic systems resemble the core of all generative systems. They package a series of tasks in various structures, representations

or rules. The use of algorithms in design processes might be mistaken as a limitation for they can only deal with explicitly defined

components, or because they break process into discrete tasks, etc. In fact, "algorithmic thinking" can help designers define their goals

better, and clarify their intentions and strategies. Mapping a design process on a world of steps might not be easy or direct, but it helps

externalize logic, thus build a system capable of generating a variety of solutions as opposed to one or a few solutions.

11.0 References:
Boolos, George and Jeffrey, Richard. Computability and Logic, First Edition. London: Cambridge University Press, 1999.
Cormen, Thomas et al. Introduction to Algorithms, Second Edition. Cambridge: The MIT Press, 2001.

Hillier William. The Social Logic of Space. London: Cambridge University Press, 1990.
http://www.islamonline.com/cgi-bin/newsservice/profile-story.asp?serviceid=755

Markov, A. A. Theory of Algorithms. Moscow: Academy of Sciences of the USSR, 1954. (Original title: Teoriya Algerifmov).
Referenced from: <http://en.wikipedia.org/wiki/Algorithms>.

Terzidis, Kostas. Algorithmic Architecture. Architectural Press, 2006.

40

. ! Meg % ----

U

42

Parametrics Systems

Introduction:

In the previous section I tried to highlight a number of concepts about Algorithmic systems, mainly is the fact they don't follow a certain
structure. Algorithmic systems are the basic component on top of which other systems are build. In this section, I will introduce a
specific case of an algorithmic system: Parametrics. These are built around two concepts: associativity and/or Inheritance by hierarchy.
Parametric systems in architecture are usually understood in the context of: A) Geometric Modelers B) Animation packagers. Modelers
like CATIA, Generative Components, or Solid works can create geometry, structure data within hierarchies and create dependencies
through relationships. Animation packages like 3D Max, Cinema-4D and Maya offer a different type of parametric systems where
designers can relate elements to each other through dynamics and inverse kinematics solvers. The fact is any system capable of
associating elements with one another is a parametric one.

1.0 History and Background

2.0 System

3.0 Components

4.0 Units

5.0 Inheritance, Constraints and associativity

6.0 Mechanics

7.0 Representation

8.0 Solution space

9.0 Experiments

10.0 Summary

11.0 References

43

1.0 Brief History and background:
Parametric systems were created to accommodate for variations in the manufacturing industry. Mechanical engineers were always
after optimizing parts based on performance analyses. The available processes required them to redraw their designs from scratch
every time a design changes no matter how minor the changes are. Hence was born the concept of "regenerating" as opposed to
"redrawing".

W. Orchard-Hays, S.I. Gass, and G.B. Manne, among others, introduced the concept of Parametrics to the field of computer science
in early 1950. They investigated the case when the right hand side (result) changes in a linear program.1 In 1957, Dr. Patrick J.
Hanratty created PRONTO2 as the first commercial software to provide parametric algorithms for translating data from computers
to manufacturing machines. In the early 1960s, Sutherland created the first graphical representation of Parametrics for the design
profession in Sketchpad. In 1978, the term "feature" was presented in a bachelor degree thesis, "Part Representation Based on Feature
in CAD (Computer Aided Design) System". A feature is an object attribute achieved by applying Boolean operations and Euclidean
transformations. This attribute is driven by relationships instead of numbers. Thus a change in object dimensions will not destroy or
require rebuilding the same features. The introduction of feature's laid the foundations for current parametric design modelers.3

In the late 1990s was the introduction of a different type of Parametrics, animation softwares. These softwares could move, deform,
and change objects properties based through time by manipulating relationships, constraints, dimensions, etc. This was a period when
architects started to use software for more than documenting their work, but rather, to explore forms with. Some of the most famous
examples were a series of projects by Greg Lynn who proposed theories on mutating programs, deforming shapes, and capturing
transformations.

Examples from Greg Lynn work with animation softwares.

1 T. Gal, "A Note on the History of Parametric Programming," The Joumal of the Operational Research Society Feb, 1983, Vol. 34,
No. 2:162-163.

2 http://mbinfo.mbdesign.net/CAD1960.htm
3 Robin Saitz, "Electronic Design Automation," MCAD Magazine 15 December 2005.

44

2.0 System:
The very essence of Parametrics is the concept of associativity where objects' properties stem from relationships and/or inheritance.
There are two types of associations, one directional and bi-directional. The first allows for data to flow from top to bottom only, what
is known as Parent-Child relationship. The second allows for data to flow both ways, which is similar to the mathematical view of
associations where the change of one side will update the other. Parametric systems with one-directional (Parent-child) relationships
are known as Hierarchical systems for they force a certain ranking into the organization of elements within the system. Hierarchies
allows for inheritance for every child receives properties of its parents by definition. This allows designers to create families of
elements where change in parents (values) will ripple through the children.

One-Directional Association Bidirectional Association
(Hierarchy)

30-

Below is an example of a stole design created in a parametric environment (CATIA). The geometry is driven by a series of parameters
within hierarchies. For example, wood thickness will drive the tolerance value, spacing of the seating-ribs, and depth of all wooden
members; the height of the stole legs will drive their width and locations of the nudges. In this case, the system is controlled by only
two main parameters: Thickness and height. Changing one of the other parameters will only affect their subordinates. For example,
changing tolerance will update spacing for the seating ribs, but not the thickness of wooden sheets.

/ p-

45

In hierarchical-parametric systems, a change in values will propagate through parameters in a vertical or a horizontal fashion. Vertical
propagation updates values of the branches by reaching to the last element in the last generation then to its sister elements, then
back track to the generations higher in the hierarchy. This method is known in as (depth first). Horizontal propagation updates values
for branches at the same level of hierarchy (Parents) at time, then the lower and lower. In either way, the propagation happens in a
sequential fashion since every child depends on data passed from parents. Below are two visualizations of propagations:

Depth First Width Systems

O

0 _1

Left: Vertical Propagation of values. Right: Horizontal Propagation of values. Both start by the left direction then the right one

3.0 Components:
Parametric systems, like Algorithmic systems, include three types of components. These include Generators, Interpreters and
evaluators. Within design, generators are those components including concerned with constructing data (objects) like solids, surfaces,
and wires, excel sheets, graphs, number, etc. Interpreters are those concerned with solving, updating and controlling flow of information
through associations (relationships). For examples: a designer might generate a solid as an extrusion of a curved surface. This surface
degree curvature is associated with the extrusion parameter. The higher the extrusion is, the flatter the curve becomes. Interpreters
translate these changes in height as degrees of curvature. In Parametrics, interpreters are usually implicitly defined within generators.
A specific type of interpreters can be found in animation systems in the form of inverse-kinematics solvers. These interpret changes
in objects properties based on embedded relationships and changing data. Evaluators are functions capable of analyzing, registering,
and processing objects attributes. For example, an evaluation component can analyze surface curvature (Gaussian or Mean), register
values, and express them in various forms like colors, numbers, etc.

4.0 Units:
In abstract, parametric systems can handle any type of units because they don't have specific representations or rules. They only provide
a platform rich in associations to build other systems. In fact, they can be classified as a certain type of Algorithms systems. However,
there are two limitations that force parametric systems to deal with units as discrete. The first is the fact that we implemented them

46

through digital computer environments, ones that can only understand discrete units. The second limitation is imposed by parametric
systems themselves through one-directional associations. For example, if B is a child of A, then it can only be found through that
relationship only.

5.0 Inheritance, Constraints and associativity:
Inheritance appears in parametric systems through hierarchy. Constrains manifest themselves in the form of internal relationships or
externally exerted limitations. Associations in parametric systems are one-directional. They allow for dependencies between elements
in through hierarchies where children inherit parent's properties. Associations can only exist between families, or elements within a
family of objects. Associating two elements from different families is only possible if these families share a similar global parameter than
can be passed to the parents first, then to the children.

6.0 Mechanics:
There two type of structures in any parametric system. One deals with a family of elements (parts), and the other deals with families
or elements (assemblies). The first, deals with the topological descriptions and internal relationships of an elements. For example, the
way a solid is build, its components, attributes and parameters. All these are only manipulated at the element level. At this level, Part A
is built by associations between children (Al, A2, A3). The second structure deals with associating families. For example: Associating
family A with family B creates an assembly AB. There two types of relationships nested within assemblies. The first is possible between
A (as a whole) and B (as a whole) just like associating Al with A2. At the second is possible through associating elements from different
families, say Al and B1. In this case, it is only possible to associate elements if they share the same set of parameters.

7.0 Representation
Representation in parametric design system for architecture is similar to algorithmic systems. It does have a specific form. But in terms
of parametric software, generators and evaluators are usually represented visually, or numerically where interpreters hidden in the
background. Parametric systems only offer a platform, or an environment to build more specialized design systems. They provide for
one-directional associations (hierarchies) where designers can build families of elements triggering chains of actions by updating a few
parameters. In the following sections on L-systems, Cellular automata, Fractals and shape grammars you will notice that each has a
specific representation like: strings, Symbols, numerical or geometrical.

8.0 Solution space:
In parametric systems, solution space is identified as a function of:
(Number of allowed discrete variables) X (Number of parameters) X (Number of relationships)

47

-- mmmim- KV " - - , , .- __ __ -

9.0 Experiments:

9.1 Parametric Skin Component:

The design intention in this experiment was to create a wall with various degrees of opacity based on the percentage of closed or open
components that are driven by surface curvature. This was actualized by developing a parametric component capable of adapting to
an array of surface deformations without bending or shearing. The component avoids such problems by rotations around hinges and
pivots.

Such a components becomes easy to construct and assemble for it relies on flat panels, and basic hinge and pivot connections. This
project can be perceived as a static wall or as a dynamically moving one for components are capable of adapting to changing surface
conditions. However, they can only adapt to a certain range because panels are not design to expand beyond a certain bounding
volume.

There were two designed components developed for this project. Both had the same number of joints and panels, however configured
differently. Each component was design as a composite of three arms connected alternatively with each other. The first component
design had more degrees of freedoms per joint compared to the second. In other words, it was harder to manipulate. Thus, the second
component was selected as a solution.

10ff

The upper strip shows various deformation of the first configuration. The lower strip shows the second component, and the degrres of freedom each
component has.

48

The project was realized by four systems. Controlling Geometry, Responsive Geometry, Mediating Geometry and Adaptive Geometry.
The first three systems were built to simulate a changing context (deforming skin) where the fourth system handles the parametric
component.

The first system is made of a point grid arranged in a hexagonal fashion. These points are used to generate a series of Nurbs curves
(Non-Uniform Rational Bezier Spline) Curves, by which a Nurbs surface is built.

The second system builds a secondary layer of curves on top of the Nurbs surface, finds intersection points and centroid-locations
based on these points. These points will be used to drive the mediating geometry in the third system.

The third system uses the intersection points and the centroid points to build pyramid-like surfaces that will control elements generated
in the last system.

The fourth system will include a series of surfaces (panels) joint together at their vertices. This type of connection allows for rotation
only.

The above shows components adapting to different skin deformations.

Every level is a parent to its lower one. One of the advantages of cascading systems is the ability to package many actions into a few
control triggers. Adaptation of behavior becomes possible by propagating changes through hierarchies of elements. In this experiment,
generation, interpretation and evaluation were all handled by CATIA internally.

49

-:1"

Points

NURBS
Surface

4

<A

Configuration I

10.0 Summary:
Parametric systems are hierarchical-algorithmic system controlled by one-directional associations. These systems allow for propagation

of values in shared sets of parameters among elements within a family or different families. One of the limitations in parametric systems

is that they generate results within a limited space for they are bound to relationships. In the introduction, I mentioned that Parametrics

introduced the concept of regeneration instead of recreation. Creation requires reconstructing elements from the ground up every time

a new result is needed. No matter how flexible such an environment is, it becomes unfeasible to implement for problems were solutions

are constantly evaluated and recreated.

11.0 References:
Gal, T. "A Note on the History of Parametric Programming." The Journal of the Operational Research Society Feb, 1983, Vol. 34,

No. 2: 162-163.

http://mbinfo.mbdesign.net/CAD1960.htm

Saitz, Robin. "Electronic Design Automation." MCAD Magazine 15 December 2005.

52

- _"MOMW

53

- - - inkh m II-b i N5 - - , in Id-- - - - 1 - -110 1 1E - ei

54

~~~~~~1



L-Systems

Introduction:
In the previous section, I introduced Parametrics as a specific case of algorithmic systems, (ones with associations). In this section, and
the following three, I will introduce a series of more specific algorithmic systems. These are rule-based systems, what I defined earlier
as formalisms. Rules are usually presented as a left side, arrow and a right side. For example, X-> Y. This means find X and replace
it by Y.

It is important to note that these formalisms were created to simulate very specific phenomena as opposed to providing a working
platform like Algorithmic or Parametrics systems. For example: L-systems were used to simulate botanic growth, Cellular automata
were created to simulate reproduction, Fractals were created to simulate self-similarity in nature, and shape grammars were created to
simulate human ability to see, or compute visually.

1.0 History and Background

2.0 System

3.0 Components

4.0 Units

5.0 Inheritance, Constraints and associativity

6.0 Mechanics

7.0 Representation

8.0 Solution space

9.0 Experiments

10.0 Summary

11.0 References

55



1.0 History & background:

L-systems have been always introduced in the light of Chomsky's work on formal grammars. Following this tradition, I will also start the
discussion on L-systems by highlighting some concepts in Chomsky's grammars.

A formal grammar defines (or generates) a formal language, which is a (possibly infinite) set of sequences of symbols. It consists of:
A) a finite set of terminal symbols; B) a finite set of nonterminal symbols; C) a finite set of production rules with a left- and a right-hand
side, D) and a start symbol.

Terminal symbols form the parts of strings generated by the grammar, nonterminal symbols are containers of terminals. For example
A = {2,3,4}. 2, 3,4 are terminal symbols and A is a nonterminal symbol. In other words, Terminal symbols act like (variables) that are
stored in nonterminal symbols (parameters). Symbol replacement is sequential. It is implemented by matching the left side of a rule
with a sequence of symbols. If a match exists, symbols in the right side of a rule replace those matched by the left side. This is called
a derivation. Chomsky grammars are categorized in four types. These include: Type-0, Type-1, Type-2 and, Type-3.

Type-0 grammars (unrestricted grammars) include all formal grammars. They generate all languages that can be recognized by a
Turing machine 1. That is defined by an infinite set of elements following direct replacement rules such as: a ® b. (in this context, all
generative systems are computed by Turing machines, except shape grammars because it is not limited to discrete units.) This type of
grammar has unlimited set of nonterminal and terminal elements.

Type-1 grammars (context-sensitive grammars) are similar to linear bounded automata, i.e. 1-dimensional Cellular Automata (will
be covered in the next chapter). In addition to replacement rules, they include methods to evaluate context in a string prior to rule
application. These have a fixed set of nonterminal elements and an unlimited set of terminal elements.

Type-2 grammars (context-free grammars) are similar to the previous type except that they are not limited to a certain context to apply
rules.

Type-3 grammars, known as (regular grammars), which are a context free grammar with a fixed set of nonterminal and terminal
elements.2

On top of these grammars, Lindermeyer built L-systems in the late 1950s to simulate botanic growth patterns (i.e. how plants grow)
through string replacement (will be explained in the following sections). In addition to the generation process, L-systems include
components to interpret the generated alphabets as geometric objects to help visualize growth.

1 Marvin Minsky, Computation: Finite and Infinite Machines, (New Jersey: Prentice-Hall, Inc., 1967). See Chapter 8, Section 8.2
"Unsolvability of the Halting Problem."

2 Noam Chosmsky, The Logical Structure of Linguistic Theory, (Univ. of Chicago Press, 1985).

56



2.0 System:
The essential difference between Chomsky grammars and L-systems lies in the method of derivation. In Chomsky grammars, rules
are applied sequentially, whereas in L-systems they are applied in paralle 3 replacing all letters simultaneously (this was explained in
the section on Algorithmic systems). The parallel replacement process of L-systems mimics the production of cells where divisions
occur at the same time. 4

Parallel Systems Sequential Systems

(O 0

Diagram showing parallel and sequential replacement rules.

3.0 Components:
An L-system is composed of Axioms, Initial Strings, rules, and depth. Axioms are the set of all alphabets used in the system. Initial
strings are the first seed for an L-system. Rules are presented in the form of: R + L where R is the initial Alphabet, L is the replacing
Alphabet. For every new generation, the previous result becomes an initial string. Depth is the number of generations (iterations) of
replacement.

Within a design context, the generation process of strings is always followed by an interpretation step where letters are used for
constructing new objects, properties, geometric relationships, etc. Some architects experimented with L-systems to generate creases
to fold paper patterns. Others used them to create branching architectural forms. All of these were implemented as experiments in
academia, or as art installations.

The following example will clarify the difference between parallel and sequential replacement processes. Say you had a string of letters
RRL, and a set of rules to replace R by UR. Using a parallel process will generate: (UR) (UR) (L) where each letter is being replaced
at the same time. Using a sequential process you will generate: URL, then UURL, then, UUURL, etc.

Before looking at the components of an L-system in a design context, Let's look at another example. Given an initial string {RRLR}, and
rules set {R 4 L, L 4 RR}, let's generate a solution of three generations.

3 Aristid Lindenmayer and Przemyslaw Prusinkiewicz, The Algorithmic Beauty of Plants, (New York: Springer-Verlag, 1990).
4 <http://www.biologie.uni-hamburg.de/b-online/e28_3/sys.html>

FU7



Initial String
Generation 1
Generation 2
Generation 3

R R L R
L L RR L
RR RR L L RR
LL LL RR RR L L

L-systems rules are not limited to a one-to-one replacement process. Here is an example showing a set of tile-like replacing rules:

R+ RL
RR

L+ LR
LR

Applying the above rules to {R} as an initial string for two generations will result:

Initial String

Generation 1

Generation 2

R

RL
RR

RLLR
RRLR
RLRL
RRRL

If you mapped the growth of alphabets, you would generate a tree-like network since each newly generated alphabet(s) is a child (or
children) of a single previous alphabet (parent). The total set of generations is called a solution. Below is a graphical representation
of an L-systems growth pattern

m >s TcD-+ o

Image Credits: Aristid Lindenmayer and Przemyslaw Prusinkiewicz, The Algorithmic Beauty of Plants, (New York: Springer-Verlag, 1990).

U



Some L-systems may include parameterizations5.This is usually used for interpretation purposes. Below is an example of a parameterized
L-system:

Initial String RRRL
Alphabet Replacement Rule R + RLC
Parameter Replacement Rule C + C+1

Below is an example on parametric L-systems. Parameters included in this example were segments rotations and lengths only.

The above example shows variations in the rotation angles and lengths of segments where the lower one shows a consistent angle. Image
Credits: Aristid Lindenmayer and Przemyslaw Prusinkiewicz, The Algorithmic Beauty of Plants, (New York: Springer-Verlag, 1990).

The components mentioned above resemble the generator engine within an L-system. Generators are concerned with
producing strings. After a generation process, strings are given to interpretation engines. An L-system interpretation process
can happen incrementally per generation or for the whole solution. Interpreters are composed of two parts. The first is involved
with parsing (iterating) through the generated strings of data and sets of parameters. The second is involved in constructing an
interpretation (such as the graphical representations shown earlier). Evaluation engine can also be implemented through
the generation or interpretation step in the case of context sensitive L-systems (more explanation is offered in section 6).

5 Aristid Lindenmayer and Przemyslaw Prusinkiewicz, The Algorithmic Beauty of Plants, (New York: Springer-Verlag, 1990).

59



4.0 Units:
As you may have guessed already, the smallest units in L-systems are alphabets. In fact, they are the only units. Unlike
the general cases of algorithmic or parametric systems, L-systems can only deal with discrete symbols (units) known as
alphabets. Their discrete identity makes them computationally (and programming wise) possible to integrate within any
design process. However, their rigid structure makes them less robust than other generative systems in terms of variations
because a letter means includes only one value. If you compare these units to the ones in the following system, cellular
automata, you will find that CA symbols can carry more than one value (various states), thus, capable of giving more variations.

5.0 Inheritance, Constraints and associativity:
In L-systems, inheritance is not possible because of replacement rules. These will always replace existing information by new ones in
every generation step.

Parameterization of alphabets allows for embedding properties to alphabets thus breaking the limitation of dealing with a set of fixed
symbols. It also allows for applying local constraints to control the interpretation process later on. Constrains can also be applied
externally as global conditions.

Associativity appears between alphabets within one string in the generation process, which will be explained in the following section in
the context-sensitive L-systems. It is also possible to associate interpretation rules with embedded parameters or with each other. Below
is an example of an L-system with a parameter n that gets updated through generations based on contextual conditions (constrains).

Given a string {LRRRL}

Rules: R+RRL,
L + Li : n = number of alphabets R,
LK + L L

The re-writing process of this string for two generations will look like:

Initial String: LRRRL

Generation1: L, RRL RRL RRL L

Generation2: L L RRL RRL L RRL RRL L RRL RRL L, L-L

60



Applying external constraints to the above system within the replacement rules can be expressed in the following rule:

L + L, : n = number of alphabets R, and n < Limit.

6.0 Mechanics:
In this section, we will look at the mechanics (behavior types) of L-systems. The most famous and
L-system behavior include: Deterministic, Non-deterministic, Context free, Context sensitive.6

6.1 Deterministic L-Systems:
This type of L-systems applies rules in a deterministic manner. There is only one replacement rule
example:

well-documented types of

for a given set of alphabets. For

Initial string: {RRL},
Given rule: R-+ L
R can be only replaced by an alphabet L.

6.2 Non-Deterministic L-Systems:
This type of L-systems includes more than one replacement rule. For example:

Initial string: {RRL},
Given rule: R+ L

R+ M
R can be replaced by an alphabet L or M.

6.3 Context-Free L-Systems (Sometimes known as OL):
Such an L-system applies rules to alphabets regardless of any context within a given string.

6.4 Context-Sensitive L-system (Sometimes known as I L):
This type of L-systems applies rules to an alphabet based on type of its adjacent alphabets. It is usually presented with "<"for right,
">" for left adjacent. For example:

Initial string: {RRL},
Given Rule: R<R+ L

6 M. Alfonseca and A. Ortega, "A Study of the Representation of Fractal Curves by L Systems and Their Equivalences," IBM Jour-
nal of Research and Development 1997, Volume 41, Number 6.

61



This means that the above rule only will replace alphabets R if its right-side neighbor is R. If not, the rule will not be triggered. In this
example, there can be only one generation: LRL for the above rule is not applicable to any letter in the LRL (R's right neighbor is not
R).

The above types may be combined as: Context-Free Deterministic, Context-Free Non-deterministic, Context-Sensitive Deterministic,
or Context-Sensitive Non-Deterministic

7.0 Representation:
A representation introduces a methodology, an environment where the user interacts with the system. It highlights and eliminates
certain systems properties. An L-system is usually broken into three components as briefly discussed earlier. The generative
component is typically represented in the form of strings of alphabets, parameters, rules, and a set of symbols {<, >, ->}. Since
L-systems deal with discrete units (alphabets), a solution is a composite of constituent units. Thus, there not need be a sophisticated
recognition engine especially that an alphabet' topology remains continuous.

Interpretation takes place after a solution is generated. Representation within the interpretation engine is typically: a) graphical,
usually known as Turtle Graphics, or b) mathematical, known as Vectors graphics (Matrices).

Turtle graphics representation is widely used as it presents an intuitive representation of L-systems growth patterns. Seymour Papert
developed a robot (Turtle) that would move forward, backward, turn left or right based on a given set of symbols.7 This representation
method was intended to aid in teaching children geometric concepts like rotations, displacements.

In a design context, "Turtle geometry"8 is constructed via direct or indirect interpretive rules. Direct application of rules would
translate alphabets directly to actions like: R = move a point distance d in direction c or draw a line with length so and so. An indirect
application would translate letters to data, then to a representation like: R = value of X / height. The result would be used later as
data for other interpretation processes

8.0 Solution space:

The concept of solution space was new to the design profession. It is mainly borrowed form the engineering discipline, mainly
the optimization field. A solution space can be explained as all the possible solutions given by the strategy for solving a given
problem. Within generative design system, the capacity of generating variation is mirrored in the number of parameters, variables,
(relationships if implemented) and rules. In L-systems a solution space can be expressed as follows:
Number of generations X String length X Number replacing symbols sets

7 Seymour Papert, Mindstorms: Children, Computers, and Powerful Ideas, (New York: Basic Books, 1980).
8 Turtle Geometry is the pattern produced by the path of an imaginary turtle moving around on a plane.

62



9.0 Experiments:

9.1 Make A Tree:
The goal behind this basic experiment was to present the concept of packaging certain representations (geometric in this case) into
a series of letter. The system was built by one component only (interpreter) that deals with creating a geometric representation for a
user-input of alphabets. There are no string-rewriting processes (generator), nor context-sensitive rules. The algorithm prompts the
user asking for an input string of L for go left, M for go right, and R or S for reverse direction. Then it will interpret each letter as a
moving point that leaves a trace (line) behind.

Make Tree-Branch:

0 Insert a string of alphabets.

0 Parse through the string L MRS

$ Translate each alphabets to a vector (point LLLLLLLLLLRMMMMMMMMLLLLLLLLLLRMMMMMM-
and a direction) MMLLLLLLLLLLRMMMMMMMLLRMMMRMMMMMR

MMMMMLLLRLLI LSLLLLLLLLSMMMMMRLLL

$ Place a line segment on each vector

9.2 Basket Structure:

In the second experiment L-systems are used to generate a membrane structure on a user-defined surface. In this context, the system
includes both a generation and an interpretation engine. The first deals with generating string-derivations by applying deterministic
replacement rules. The second engine translates these string derivations to a network of curves on a surface. There was an implicit
evaluation component embedded inside the interpreter to make sure the last drawn geometric shape reaches to opposite surface edge.
The number of derivations generates density where the number of replacement rules generates variations. This created a basket-
like network of intersecting curves rapping around the surface. Such a system can be extended to include structural parameters like
maximum spans, members' thicknesses, cross sections, materials, etc. The experiment was mean as of driving structural components
by a series of replacement rules where performance-driven variations of structure are possible.

A1<

Above are variations based on 4 different initial strings 1, 2, 3, 4 using the replacement rules.Below is a result using the initial string that generated
design solution 1.

63





x



10.0 Summary:
L-systems can package a variety of behaviors in a few alphabets and rules. In terms of programming, these systems are also very easy
to implement for they deal with discrete units. A user only needs to provide rules and an initial string. Then, the string will be tokenized,
rewritten and concatenated iteratively based on the specified number of generations. L-systems have not yet been deeply implemented
within an architectural context. Their structure does not match the complexity found in many architectural design problems.

11.0 References:
Alfonseca, M. and Ortega, A. "A Study of the Representation of Fractal Curves by L Systems and Their Equivalences." IBM Journal

of Research and Development 1997, Volume 41, Number 6.

Chosmsky, Noam. The Logical Structure of Linguistic Theory. Univ. of Chicago Press, 1985.

<http://www.biologie.uni-hamburg.de/b-online/e28_3/isys.html>

Minsky,Marvin. Computation: Finite and Infinite Machines. New Jersey: Prentice-Hall, Inc., 1967.

Lindenmayer, Aristid and Prusinkiewicz, Przemyslaw. The Algorithmic Beauty of Plants, New York: Springer-Verlag, 1990.

Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books, 1980.

6



67



68



Cellular Automata

Introduction:

In the previous section, I presented L-systems as the first of the four formalisms I chose to discuss in this thesis. The
reason was that it was the least flexible of all systems. Its symbols are limited to one type of meaning, alphabets. Cellular
Automata systems offer a richer environment for its symbols are not limited to one type of meaning. A symbol in CA (cell)
can refer to "Color" with its variations (black, white, etc.), or size (with various numbers), location (in reference to many
axes), etc or even different objects.

1.0 History and Background

2.0 System

3.0 Components

4.0 Units

5.0 Inheritance, Constraints and associativity

6.0 Mechanics

7.0 Representation

8.0 Solution space

9.0 Experiments

10.0 Summary

11.0 References

69

-- -WOWNW



1.0 Historical Background:
In 1940s John von Neumann was working on the problem of self-replicating systems. His initial goal was to build robots that
could produce copies of themselves. Through the process, he faced major difficulties in devising methods for recognition
so a robot can identify and pick different parts. Later, he worked with an abstract environment (mathematics) where he
could select and recognize parts simply by indexing. He was able to build a universe of cells where reproduction behavior is
simulated in discrete actions performed by each cell. Thence was the birth of Cellular Automata. His system was built on 29
states per cell '(Batty, 2005). Each cell's behavior is driven by the states of its neighbors through sequential rule application
(This was explained in the section on Algorithmic systems). It is not a surprise that CA, and many other formalisms in
computing, inspired the field Artificial Intelligence where behavior is being driven by networking a set of discrete tasks
performed by agents (among other things).

Neumann First Cellular Automata. Image reproduced from< http://en.wikipedia.org/wiki/Image:VonNeumannuniversalconstructor.PNG >

As a provisional model to Neumann's CA, John Conway invented the Game of life back in the 1970s to be the earliest CA
automated by computers. Martin Gardner popularized this game in Scientific American articles2. The game displayed an

impressive diversity of behavior, fluctuating between apparent randomness and order, what Stephen Wolfram noted as

Complex and considered a universal Turing machine.

1 M. Batty, Cities and Complexity: Understanding Cities with Cellular Automata. Agent-Based Models, and Fractals. (Cambridge:
The MIT Press, 2005) 229-258.

2 M. Gardner, A Quarter-Century of Recreational Mathematics Scientific American, 1998.

70



Since 1983 Wolfram has been publishing papers systematically investigating one-dimensional cellular automata, which he
called "elementary cellular automata". Their simple structure and unexpected complex behaviors led him to suspect that
complexity in nature could also be generated by similar mechanisms. In the New Kind of Science (2002)3, Wolfram re-
presented cellular automaton as a new domain for exploring different fields and branches of science including chemistry,
geology, biology, physics, and many others. He repackaged almost all written literature on Cellular Automata and added a
major contribution resembled in the taxonomy of their behaviors.

In architecture, cellular automata were mostly explored as generative systems for pattern generation. Within design, John
Frazer presented some of the most known experiments of using CAs for form generation. However, some designers like
Michael Batty utilized cellular automata as universal computers that can reproduce (reorganize) themselves ensuring certain
conditions. He produced a considerable amount of work on implementing cellular automata for generating neighborhoods
of different land uses.

2.0 System:
Cellular Automata simulates reproduction behavior by sequentially applying replacement rules to cells' patches
(neighborhoods). These rules manipulate the states of a cell and its neighbor once at a time. A neighborhood definition may
change based on various embedded rules. For example a cell may consider a neighborhood of three if its state is A, but
considers only one cell if its state is B. Rules may also be related to time steps. CA systems are composed of replacement
rules, cells, and initial states. Rules are only applied if their (left side) matches an initial condition (states of a cell and its
neighbors). This will be explained in more detail in section 6. Below is an example of CA rules.

3.0 Components:
Like L-systems, Cellular automata design systems are composed of separate data generators interpreters and evaluators.
The difference is that Cellular automata are only context-sensitive; there is always a need for evaluation components to
check states of cells and adjacent cells within a neighborhood. Thus, evaluators are always embedded within generators.
Interpretation components can map cells'states directly as outcome. It is also possible to embed evaluators within interpreters.

3 S. Wolfram, A New Kind of Science, (Champaign: Wolfram Media Inc., 2002)

7



For example, given a CA generation of 20 cells, an interpreter might map cells' states as colors on a surface, or might check
(evaluate) indexes and states of certain states, and translate that data into various levels of glass properties for a building
skin.

4.0 Units:
Similar to L-systems, Cellular Automata is a composition of discrete units (cells). However, they do not have to be of the
same type. CA cells can carry a variety of "things". They may contain geometric descriptions, colors, numbers, etc. These
descriptions may only change in values, but not in type. Thus, Neighborhoods, relationships and cells' topologies are always
maintained. The fact that CA units can include multiple meanings makes them capable of generating more variation than
L-systems.

5.0 Inheritance, Constraints and associativity:
Unlike L-systems, initial inputs (cells' states) do not affect most of Cellular Automata systems behavior. This is apparent
specifically in the periodic automata where the system will always generate a definite pattern (this will explained in the

following section). This is due to the fact that rules are applied sequentially where neighborhoods (update) each other. In

other words, neighbors' conditions are constantly changing based on changes in the previous neighborhoods. A piece of
information does not extend beyond one generation. This means that it is not possible to ensure the existence of an attribute
or property along through out generations. Thus, Inheritance is not possible. Constraints are usually embedded implicitly
within the generation step through defining the number of iterations a certain cell may undergo, or types or locations of cells

that are allowed to change. Associations may be established in the interpretation components where various parameters

may drive the creation of results. These parameters may include: states, time steps, history of cells states, etc.

6.0 Mechanics:
Wolfram described four types of behavior in Cellular Automata systems in reference to the time period needed for them to

mature (stop or repeat themselves). These are: Fixed, Periodic, Chaotic and Random. A Fixed Point behavior is identified
as the sudden halting after a very short period of time. Periodic behavior shows repetitive pattern within a fixed period of

72



time. A Chaotic, also known as Aperiodic, or Complex, seems to repeat its behavior within different durations of time steps.
Complexity can be visualized as a mixture of the periodic and random behaviors. The last type of behavior, Random,
does not seem to repeat its behavior within any specific time period. Wolfram classified 256 rules for elementary cellular
automata. The number of initial conditions is calculated by: States Neighbors, which is 23= 8. Below are eight neighborhoods
with two states.

1 2 3 4 5 6 7 8
E0ME] EWE EDE] EE WEDE WWW

In the above eight initial states combinations, you may only generate two new states (black or white). So that the total
number of possible combinations becomes: States Neighbor Combinations= 28 = 256 rules. Cells' initial combinations and new states
are called Rules. They are represented numerically through a binary system where white means zeros and black means
one. For example, a state of 01101011 equals rule 107. I generated a series of experiments to represent the four classes
of behavior. 4

Rule Application

Change Self

DD DDF

Change Other

EDD ED
DED0 DEE
EDD [ED

Change Other
Replacement rules

E E:110:1: DO 0E1 DNE DE E MEN

Initial State D E ED D ED0
DDDDDDD
DDDDDDD
DDODDD
0DDDDDD

Time Step 0

Time Step 1

Time Step 2

Time Step 3

Time Step 4

-4
-4
--
-4

4,Continuous Boundary

Lii WMEDNEN

4 G. W. Flake, The Computational
(Cambridge, The MIT Press, 1998), 229-258.

Beauty of Nature: Computer Explorations of Fractals, Chaos. Complex Syses n d~ain

73

Rule Structure

0 Mo .2
0)C 0.

0

DI:
Replacing Cell

Beautv of Nature: COMIDuter xr)lorations of Fractals. Chaos. COMIDlex Systems, and AdaDtation.



6.1 Class one:
An example of a fixed-point behavior is rule 8. Here, the system reaches to a fixed state instantly after one generation.

128
0E MEI
iE E]

64
M*O

EW

32
MEI

l

16
ERD

EW

8 4 2
E EW.OM

W W El

I ~

L~O.
7

6.2 Class two:
A periodic behavior can be generated using rule 109. CA repeats a behavior in similar time periods.

128
0E MON
1U El

64 32 16 8 4 2 1
ES MEMMEWW DEM EW WE EE

W M M E E W W

1
EWW

W

74



6.3 Class three:
An example of Complex behavior is rule 90. Complex behavior seems to repeat certain triangulation patterns through
different time periods.

128
00 E 0UE
1 El

64
HOE]

N

32
MEIN

0

16
E*r

El
8

Eu.
U

4
EJE]

U

2 1
EE ElO

* El

6.4 Class four:
An example of random behavior is rule 22. The pattern does not seem to repeat any specific pattern within a fixed time
period.

128
0E MEN
in E

64
ENE]
El

32
MOE

16
rEO
IN

8
EEE

O

4
EEO

IN

2 1
Om nO

M El

ir.4 Ri IF
V

'I -I.M
S. 

h

75

- q1.



Chris Langton proposed a diagram to map the transition of CA behavior from Fixed Point to completely Random. The logic
relies on representing both extremes: Fixed Point where rules will generate fixed type of cells, Random where rules will
generate a variety of cells' types. These two types of rules will make the total rules set.

A = (Total Rules - Fixed Point Rules) / Total Rules

x
QJ

0.
E

Fixed Periodic 0 Chaotic

I I U I I I U I I I I I I I I I I'''' mi'' il'' I 11 llHIIIII~Il lllllHl lul llIIIIIIIllluIlIflh ill 1 ll11

0.0 1.0

The value of A reflects the type of behavior on the scale from Fixed, to Periodic, to Complex to Chaotic (random)

CA rules can be automated iteratively within a fixed number of time steps, or progressively until a global condition is achieved.
The first type of application is computable for rules, cells number, and time periods, which are fixed. The second type is not
necessarily computable in abstract since its halting condition may not be achieved. Consequently, any solution space in
CA is always computable by virtue of repeating behavior or by inherited limitations in computers. For this reason, CA Class
four behavior, Random, may be considered as an extended complex behavior that computers were never able to capture.
These various behavior types show that CA systems deliver limited variations. More of its behavior is periodic, (patterned).
For this reason, these systems do not lend themselves to complex architecture problems. This pushes the application of CA
to organizational aspects or patterns generation.

7.0 Representation:
Like L-systems, Cellular Automata systems are usually implemented through two separate representations for design
purposes: One for generating data (states), and one for interpreting these states as outputs. Evaluation is usually merged
within the generation and interpretation.

5 G. W. Flake, The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation,
(Cambridge, The MIT Press, 1998), 229-258.

Ibid.

76



8.0 Solution space:
Solution Space in CA is the set of possible variations in cell's states over time. It is calculated as a function of Time Steps
x States cels*. A complete solution space can only be identified when the behavior of cellular automata matures by repeating
itself or by halting.

9.0 Experiment:
9.1 Cellular Automata As A Texture Map
In the first experiment, the system implements rule set 126 (as identified by Wolfram) and directly maps the solution as
colors. The context of this experiment only required a generator and an evaluator engine. There was not an interpretation
engine. A system-controlling unit was implemented to handle the computation.

9.2 Porous Skin design:
The concept in this experiment was to use Cellular Automata Systems as data calculators to A) arrive at a general global condition of
zeros and ones, B) then interpret that data as variations of canonical-truncated-pyramids. These pyramids include different sizes of
openings to simulate a porous skin. An extemal system component was implemented to automate the process based on a defined
number of time steps. This experiment utilizes two main engines: a generator and an interpreter. Unlike L-systems, the evaluation
component is embedded in the generator engine to help guide rule selection based on cells states.

The system requires the user to select a starting condition from a predefined set of One-color, random, or checker board6 .Then it asks
for a number of iterations where it will apply replacement-rule-22 and keep track of cell's history. Then it asks the user to select a surface
where it populates a patch-grid. After a final solution is generated, the system uses cells'final states and update history to create vectors
with different magnitudes. It finally constructs canonical pyramids with various opening-sizes. This system can be extended to control
various types of geometric constructions based on locations of cells in relation to each other, or a certain architectural program, etc.

6 Some Cellular Automata Rules are sensitive to the starting condition. The rule used in this experiment (Rule 22) is one of them.

7



AL ja

aelb V
I FO

I

1.4



7, t yI

States Generator & Representer,

0 1 0 m
1 0

States Egenrator&Rersnr
0 0 0 M

1 0 0 M
0 0 1 M



10.0 Summary:
Most of cellular automata behaviors generate ordered patterns like periodic or aperiodic, and very few generate universal patterns (not

bound to certain order) like random or chaotic. Since architecture is a) not driven by only sequential processes; b) neither it is about

patterns; c) nor is it about unpredictability; Cellular automata applications within architecture become very limited to certain confined

tasks. The implementation of such systems requires a great deal of appropriation and customization for design as they utilize a specific

structure, and representation, which might not always match the complexity of architecture design problems.

11.0 References:
Batty, M. Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals. (Cambridge: The

MIT Press, 2005).

Flake, G. W. The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation.
(Cambridge, The MIT Press, 1998).

Gardner, M. A Quarter-Century of Recreational Mathematics. Scientific American, 1998.

Wolfram, S. A New Kind of Science. (Champaign: Wolfram Media Inc., 2002).

80



8

I



82



Fractal Systems

Introduction:

We saw in the previous sections that L-systems and Cellular Automata maintain the size of their smallest units. Rules replace alphabets

or cells without breaking them to smaller ones. The concept of the "smallest unit" is not applicable to Fractal Systems for they are based

on mathematical models of recursion. Fractal algorithms will recursively fracture elements first, and then replace them by new ones.

1.0 History and Background

2.0 System

3.0 Components

4.0 Units

5.0 Inheritance, Constraints and associativity

6.0 Mechanics

7.0 Representation

8.0 Solution space

9.0 Experiments

10.0 Summary

11.0 References

83

- -MMORW



1.0 History and Background:
Coined by Benoit B.Mandelbrot, the term "Fractals" describes what was known as mathematical monsters explored between the end

of 191h and beginnings of 20th century. These include Cantor (1872), "Cantor set"; Giuseppe Peano (1890), "Peano Curve"; David Hilbert

(1891), "Hilbert Curve"; Helge von Koch (1904), "Koch Curve"; Walclaw Sierpinski (1916), "Sierpinski Carpet"; and Gaston Julia (1918),

"Julia Set"; among many others. These "monsters" were considered "exceptional objects" for they don't fall under any theoretical

framework2 . They were generated to explore fundamental concepts like topology and continuity. The most famous example of fractals

is the Cantor set. So, let's take it as an entry point to the subject.

Cantor set, also known as no middle-third set3, (Cullen 1968, pp. 78-81), is generated by removing the open-middle -third interval of a

set recursively. This can visually illustrated as shown below:

In design, one of the first examples on procedures that generate such objects occurred in the work of Albrecht DOrer 1525 who

published "The Painters Manual" which contained a section on "Tile Patterns Formed by Pentagons" 4.

Durer Pentagon. http://ecademy.agnesscott.edu/~riddle/ifs/pentagon/image3Ol.gif

1 Benoit Mandelbrot, "How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension," Science 5 May, 1967, New
Series, Vol. 156, No. 3775: 636-638.
2 Hartmut Jurgens, Heinz-Otto Peitgen, and Dietmar Saupe, Chaos and Fractals, 2nd Edition (Springer: 2004), 63.
3 H. F. Cullen, Introduction to General Topology, (Boston: Heath, 1968), 78-81.
4 Lee Makowski, "An Unreasonable Man in a Quasi-Equivalent World," Biophysical Journal, January 1998, Volume 74: 534 -536.

8



Fractals, as Mandelbrot defines them, are self-similar objects at different scales. Just like any other geometric property, self-similarity
is expressed by a dimension called: Fractal dimension. It is more than the object's Topological Dimension and less than it's minimum
Euclidian dimension. What does this mean?
Our typical understanding of dimensions is built on the Euclidean dimension, (DE); That is, the minimum number of axes or directions
needed to describe an object in relation to the space that contains it. For example: a line in can be described by one direction only if
it was straight. Otherwise, it needs two directions in reference to a plane, or three in reference to a volume.

Statements like: "a line is one dimensional or a surface is two dimensional regardless of space", are based on topology. A Topological
dimension (DT), usually known as the covering dimensions, relies on the minimum number of the smallest-disks-possible needed to
cover an object. It is the number of disks generating "an" intersection -1. In the case of a point, a topological dimension is 0. In the case
of a curve, there are no more than 2 covering disks per intersection. Thus, the topological dimension of a curve is 1. In the case of a
surface, there are 3 spheres per intersection. Thus, the topological dimension of a surface is 2.5

The figure above shows covering disks and various objects, a point, a line and a surface.

A simpler way of describing topological dimensions is to think of a moving point. Ask yourself: How many possible directions would a

moving point have on an object? In the case of a line it is one direction: forward/backward. In the case of a surface, it is two directions:

forward/backward, and left/right. In the case of a solid, you add a third direction: Up/down. The concept of how many units needed

5 Paul S. Addison, Fractals and Chaos: An Illustrated Course, (Taylor & Francis, 1997), 10-15.

Li



to cover or measure an object is the essence of the Fractal dimension, or Similarity dimension (Ds). It is a measure of how similar an

object is to itself. Does not make much of sense! Does it? The following paragraph will hopefully give a clearer description.

Empirical evidence suggests that the smaller the increment of measurement, the longer the measured length becomes, and the more

accurate it is. If you were to measure a stretch of coastline with a long ruler, you would get a shorter length than if you were to measure

the same coastline with a smaller ruler (broken into pieces) even though you are using the same measuring units. The second measure

can be mapped more accurately than the first one like shown in the following figure. Thus, it is said to be more "similar" to real measure

of the coastline. Is there a way to gage how similar these measure are to the coastline?

j7/

Figure showing different measuring sticks for a curve. The smaller the measuring device is, the more accurate the measurement is.

In a broader sense, many objects in nature possess self-similar properties where a certain pattern re-appears at different scales. A

fractal dimension assumes the re-appearance of patterns. Another way of explaining the concept of re-appearance is the following:

Given a line length L of unit 1, a number of division N such that a unit M = L/N. Since L = 1, then M = 1/N. Thus L = M * N = 1, Similarly,

an Area will be presented as A = L * L = (M * N) 2= 1. In (Euclidean terms) the super script refers to the dimensionally level. This

definition will always generate an integer for the relationship between the number of divisions and the measure of the unit at different

scales is always proportional. Thus, if you scale M up by a certain ratio, then N will be scaled down by the same ratio.

Fractal objects do not maintain this property, thus the dimensionally level is a non-integer. The equation to calculate the fractal dimension

is usually written in the following form: Ds = Log (number of measuring units) / Log (1/Number of divisions). In the case of a line, Ds =

Log (M)/Log (1/N) = 1. In the case of one of the mathematical Monsters, a Koch Curve, where the re-appearance of a four segments

scaled to a third is evident at different scales, DS = Log (4) / Log (3) = 1.261... The following fractal system shows the generation

process of the Koch Curve.

86



A curve is replaced by a four-sided polygon where each side is scaled by the ration of 1:3.

2.0 System:

A fractal system is capable of generating objects with self-similar parts where pattern reoccurs at various scales. Such a system can

be algorithmically achieved through recursion. Recursive algorithms are procedures that "calling themselves" for a given object or a
set of objects "until" a base condition is matched. This general framework draws three methods for generating fractal objects:

The first, deals with recurrence. The most famous fractal object generated by this method is the Mandelbrot set. It is represented by
the following formula: Zn.1 = Z n - p where Z = X + I Y: X, Y are real numbers, I is a fixed parameter, and p is a complex number36.

This type relies on reusing the last result (Z) as initial data for the following calculation. Thus, the value of Z reoccurs mathematically

in the equation. ,T Im(C)

Re (c)

I-2

Visualization of Mandelbrot set. Image Credits: http://www.fractalus.com/kerry/articles/area/overall-mandelbrot.gif

6 Benoit Mandelbrot and W. H. Freeman, The Fractal Geometry of Nature, (1982), 180.

87



The second method generates fractal object through Iterated Function Systems (IFS). These include fixed replacement functions.

Fractals generated by this method include Cantor set, Sierpinski carpet, Sierpinski gasket, Peano curve, and Koch snowflake among
7others. Iterative functions include: Displacement, Scaling and Rotation

The generation process of a Peano Curve. Image Credits:http://home.hia.no/-byrgeb/png/Peano.png

The third method is stochastic (random). A recursive algorithm is randomly applied on different parts of a given set of objects. These

include simulations of mountains, clouds and many other natural plants representations.

The generation process of terrain. This fractal was generated by random application of mid-point displacement algorithm. Image Credits: http:l

www.cs.clemson edu/-mvannin/805/P4/

Since fractal Systems are built by recursive process, they are hierarchical by nature. A main function will trigger an intemal one within

the system structure. For this reason also, fractal systems can be described as parametric for a change in a parameter in the main

function, typically a base condition (halting condition), will affect the generation process through the number of times it will trigger an

internal function. For example, a fractal system may run until a segment length is smaller than a minimum (integrated evaluation), or it

may run for n number of iterations (separate evaluation).

7 Gary William Flake, The Computational Beauty of Nature: Computer Explorations of Fractals. Chaos. Complex Systems. and
Adaptation, (Cambridge: The MIT Press, 2000), 103-106.

88



3.0 Components:
Unlike L-systems or cellular automata, Fractals have generators and interpreters combined in one engine, which I will refer to a
generator/interpreter as "Constructor". This proposes a different system component layout. Fractal systems also include three engines,
but coined differently. These are: initiators, Constructors, and evaluators.
Initiators are those functions that call Constructors for as long as a stopping condition is not matched. Constructors are responsible for
constructing (generating/interpreting) data as long as they triggered by the initiator. Evaluators are responsible for finding a stopping
condition for the system to halt. Currently available computers have limited capacity. Thus, the third engine is essential to make
recursion computationally possible as it registers and evaluates for stopping conditions. Like the previously discussed systems, Fractal
compositions are composed of discrete units. Thus, recognition algorithms don't go beyond calling objects by their indexes.

4.0 Units
Like L-systems and Celluar automata, Fractals systems deal with units as discrete. This is due to the fact that fractal algorithms
always break elements into a predefined number of smaller units, similar to what we saw earlier in the Koch curve. This fact draws
an interesting distention between fractal systems on one side, and L-systems and Cellular Automata on the other. Fractals are not
bound to the concept of the smallest unit because they recursively break elements into smaller ones before applying replacement
rules, where L-system and Cellular automata are limited to one size because they only replace whole units without breaking them.
However, from an implementation point of view, the smallest unit for geometric fractal systems is a point, and zero for mathematical
ones.

5.0 Inheritance, Constraints and associativity:
Although hierarchical, fractal systems also do not allow for inheritance like L-systems and cellular automata for data is

constantly replaced through recursion. Constraints take the form of a) stopping conditions like "run until area = A", b) or
context-descriptions like "apply rules to objects on first and last objects only", c) or certain rule behavior like "divide by
ration of X". Associativity can only be found within the constructors, as they are responsible for manipulating given objects.

- _400NOW



6.0 Mechanics:

Fractal systems' behaviors generate from: Recurrence, Iteration or Random. These include: Exact Self-Similar by recurrence, Semi

Self-Similar by iterations, and Statistically Self-Similar.

6.1 Exact Self-similar:

These are strictly self similar in all levels. Proportion is maintained. This type includes exact scaled down copies of the whole in every

part of the object.

6.2 Semi Self-similar:

These include self similar parts, but may vary in scale, or proportion. Usually deferred to as distorted fractal.

6.3 Statistically Self-Similar:

These include any object or set of objects that have a non-integer similarity dimension as a minimum description. Thus, such type of

fractals is included in the definition of both the Exact and Semi self-similar types. These two types belong to the fractal family as they

share the Self-similarity and non-integer dimension.

7.0 Representation:

In the previously explored systems within design, there was always a distinction between the representation of various

components: generation, interpretation and evaluation. In Fractal generative systems, generation and interpretation are

merged in one representation for they both happen in one step.

8.0 Solution space:

Fractal systems ability to generate variation can be described by the following function: Number of replaced objects

X number of replacing objects X number of recursive operations (controlled by halting conditions or global number of

iterations).

90



9.0 Experiments:

9.1 Fractal Curves:

In fractals and shape grammar design systems, generators and interpreters are combined in one engine. This experiment

shows the generation process of a series of fractal curves. The system includes a constructor, an embedded evaluator and

an initiator. The first deals with breaking and constructing shapes, the second evaluates for a stopping condition, and the

third handles the automation of the process.

1.1 Koch Curve -

1.2 Butterfly Curve

1.3 Butterfly Curve_2 -

9.2 Paneling System Based on Surface Curvature:
This experiment utilizes a similar structure to the previous one, however the context is more complex. The goal was to devise a system
that can generate optimized panels for complex curved surfaces. The algorithm will break a surface to a number of optimized patches.
Then construct a series of (slightly) optimized ones in the same region recursively until the evaluation engine declares a stopping
condition, which in this case is a minimum surface area or an acceptable curvature. Finally each panel is given a thickness as a
suggestion to material properties. Like the previous experiment, an Initiator is needed to handle the automation of the computation.

91





Design System

Moderator

Patch Maker



10.0 Summary:

Fractal systems are not limited to the boundaries of "smallest units" like L-systems or Cellular automata. A fractal system will recursively

break units to smaller ones until a stopping condition is matched, and then apply replacement rules. This makes them very expensive

to implement because the number of units will grow exponentially with every generation (level of detail). Their specific structure makes

them less applicable in many fields except for those dealing with recursive methods for problem solving. In architecture specifically,

problems are usually far more complex to be solved by repetitive methods.

11.0 References:
Addison, Paul S. Fractals and Chaos: An Illustrated Course. Taylor & Francis, 1997.

Cullen, H. F. Introduction to General Topology. Boston: Heath, 1968.

Flake, Gary William. The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and

Adaptation. Cambridge: The MIT Press, 2000.

Freeman, W. H. and Mandelbrot, Benoit, The Fractal Geometry of Nature, 1982.

JOrgens, Hartmut, Peitgen, Heinz-Otto, and Saupe, Dietmar. Chaos and Fractals. 2nd Edition, Springer: 2004.

Makowski, Lee. "An Unreasonable Man in a Quasi-Equivalent World," Biophysical Journal January 1998, Volume 74: 534 -536.

Mandelbrot Benoit. "How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension." Science 5 May, 1967,
New Series, Vol. 156, No. 3775: 636-638.

94



95

I



9

~1



Shape Grammars

Introduction:

The previously discussed formalisms (L-systems, Cellular Automata, and Fractals) recognized units as discrete in reference to their
locations (boundaries) assuming they have fixed identities throughout the computation process. In Shape Grammars, units are recognized
both by fixed and flexible definitions. The first relies on "identity" (like other systems) where the second relies on "embedding" (intrinsic
to shape grammars). These systems were built to capture visual calculation processes in design. They handle recognition through the
human ability to see. Mapping such a concept to the world of discrete units that computers understand requires very sophisticated
algorithms. Ones that can pick shapes wherever they may be. This fact limited the implementation of shape grammars to analog
processes performed by humans, or computer-automated ones working with discrete units only.

1.0 History and Background

2.0 System

3.0 Components

4.0 Units

5.0 Inheritance, Constraints and associativity

6.0 Mechanics

7.0 Representation

8.0 Solution space

9.0 Experiments

10.0 Summary

11.0 References

97



1.0 History and Background:
"Design is more than sorting through combinations of parts that come from prior analysis (how is this done?), or evaluating schemas in which
divisions are already in place. I don't have to know what shapes are, or to describe them in terms of definite units - atoms, components, constituents,
primitives, simples, and so on - for them to work for me. In fact, units mostly get in the way. How I calculate tells me what parts there are. They're
evanescent."'

George Stiny
Shape

The main concept of shape grammars can be encapsulated in the adverb "how", as opposed to "what". George Stiny,2 along with James
Gips, created a system for visual computing termed 'Shape Grammars' which is based on the decomposition of shapes into embedded
parts, boundaries and relationships.

The ability to "pick" shapes or parts of shapes is possible through the concept of embedding. In shape grammars, if you can see it, then
you can pick it. Following is a basic example on a Shape Grammar system where a rule says: Pick the a square and rotate it from a
given set of shapes. The designer may pick any shape as shown below:

Left side is the rule, right side are two possible results. The first is generated by applying the rule the lower square where the second is generated
by applying the rule to the square in the middle.

2.0 System:
Shape Grammars looks at computing as a composite of counting and seeing. Counting provides a methodology to measure or describe
whole shapes and seeing devises a framework to pick out embedded parts from larger shapes. Shapes are sets of maximal elements.
These include all possible embedded smaller elements. For example, there are indefinitely many line segments in any given line
segment, indefinitely many surfaces in a surface, and solids in a solid. There are two relationships by which shape grammars recognize,
or 'pick', elements: embedding and identity. Embedding appears in the case of seeing parts within maximal shapes. For any given rule,

1 George Stiny, Shape. (Cambridge: The MIT Press, 2006).
2 J. Gips, and G. Stiny, ed. C. V. Freiman, Information Processing 71, (Amsterdam, 1972), 1460.

98



which operates on a line segment, embedding allows one to pick either a whole line segment (maximal) or any part thereof. This way,
the composition of shapes can be continually reconfigured into smaller and larger parts. The exception is points; since a point can only
ever contain itself, points can not be enlarged or reduced. Maximal elements only contain shapes with similar topologies3 . For example,
it is not possible to pick (or embed) a point element in a segment. However, it is possible for them to overlap such that a point exists in
the space of a segment. Identity allows for seeing maximal elements only. It mean that any element can be embedded in itself.
Here is another way of expressing these two concepts:

Given three Sets:
C = {pl, p2, p3}, B = {pl}, D = {a}. It is true that:

1- C C C, B C B (Identity relationship)
2- B C C .-. C is a Maximal Element
3- D ( C for D has different types of basic elements (Shape grammars do not mix topologies)
4- C ( B for C - B O B - C

In the above example, multiple symbols in set C suggest multiple embedded elements, but of similar topology.

In shape grammars, the boundary of an element with dimension n is identified by elements of dimension n-1. For example, two points
bound a segment. Three or more segments, or three or more points bound a surface. A minimum of four surfaces, or six line segments,
or four points bound a solid. Furthermore, any element of dimension n must exist in a space of a similar, or higher dimension. A point
may exist in a point space, line space, plane space or volume space. A segment may exist in a line space, or volume space, but not
point space. Points are the only elements that can exist in point spaces, thus they can be used for counting. This may be best presented
in the following Algebra Table, represented as U J.

U U U U,
U00 U01 U02 U03

U11 U12 U13

U UsU22 U23

U33

"U" Refers to the element, "i" refers to its dimension (used for Boolean part relationships); and "j" refers to dimension of space containing
it (used for Euclidean transformations). For example, UOO is a shape with dimension 0 (a point), in a 0 dimensional space (point-
space).

3 Topology is a continuous description over two states of before and after a Boolean operation, a transformation or a deformation. For
example, it is true to state that a square maintains its topology after a rotation/shearing (even twisting) for it still contains the same description of 4
sides. If you subtracted a circle from a Square, then you changed its topology because you introduced new edges. For further reading on topology,
see: Dover, Experiments in Topology.

99

- 1.0,vaidw



In shape grammars, the empty shape represents the null set of symbolic math. Any transformation of an empty shape results in an
empty shape. Any transformation of a nonempty shape contains the transformation of each of the basic elements in the shape.

a) The rule X+ X means X is X. This rule may sound redundant as it redefines the element X. But in fact, it expresses the concept of
picking (seeing) elements by identity relationships. In any other context, X is considered a part-shape or a maximal shape.

b) The rule X + X' means X is under transformation, thus X' = X + Transformation.

c) The rule X + means X is being erased. This rules expresses the Boolean operations of subtraction.

d) The rule X + X+Y means that element Y is being added to element X

e) The rule X + Y means X is being replaced by a new element Y

Below is an example on applying shape grammars rules.

x X A()

Shape Rules Calculation of rules.

3.0 Components:
Shape grammars components are packaged differently in comparison to the previously discussed systems. They include: Constructors,
Recognizers and Initiator. A Constructor is similar to that of fractal systems. It combines generator and interpretation processes. A
Recognizer deals with temporary decomposition of existing shapes to find embedded initial shapes (left side of grammars' rules).

Upon successful findings, the Recognizer will report (pick) the results and inform the Initiator. Initiators deal with system management.

They select which rules should be applied and pass them along with the picked shapes to the constructors. Recognition in shape

grammars can be performed by human or by a computer. For a computer to recognize initial shapes for a given set of rules, it must be

able to decompose the existing shapes into boundary elements and embedded basic elements, identify any possibility to construct an

10



initial shape, then finally "pick" the element(s). The current status quo in computer science is not fully capable of implementing shape
grammars due to the limitation of making computers recognize any shape anywhere.

4.0 Units:
Before discussing the units in shape grammars, I would like to reiterate the following facts:
1- Any shape may be a part of other shapes (embedding)
2- Shapes are made of basic elements (collections of topologically similar elements)
3- Shapes can be manipulated through Boolean operations like subtraction, addition, or intersection, and transformed through translation,
rotation, scaling and reflection.

In the previously discussed formalisms (L-systems, cellular automata, and fractals) you have noticed that units and rules were fixed
(continuous) through out the computation. New types of units or rules cannot just appear. In shape grammars, rules can be written on
the fly and units can be recognized anywhere in any form. Recognition is usually performed by human. Thus, they can pick anything
anywhere, and make any rule for what they picked on the spot.

In shape grammars, units are made up of basic elements of a single kind: points, segments, surfaces, or solids. Points have no
divisions. But segments, surfaces, and solids can be broken into discrete pieces, (smaller line segments, triangles, and tetrahedrons).
More generally, every basic element has a distinct basic element of the same dimension embedded in it, and a boundary of other basic
elements from a lower dimension. Points have no boundaries. The above-mentioned properties of basic elements are presented in the
following table:4

Basic element Dimension Boundary Content Recognition
Point 0 none none Identity

Line 1 two points length embedding

Plane 2 three or more area embedding

Solid 3 four or more volume embedding

The abstract premise of shape recognition by embedding allows shape grammars to handle units with flexible or fixed definitions (like
algorithmic or parametric systems in abstract). However, once implemented through computers, designers have to force distinctions
and fixed descriptions of units' locations so that they can be picked or recognized easily.

4 This table is taken from George Stiny, Shape, (Cambridge: The MIT Press, 2006).

10



5.0 Inheritance, Constraints and associativity:
It is possible within a shape grammar to inherit properties because replacement rules can be applied to parts of elements where other
parts continue to exist throughout the computation in various generation steps.

In shape grammars, like other generative systems, associativity defines dependencies between rules, shapes, and parameters. For

example, the rule: X-> Y, can only be implemented if an element matching the topology of X exists, or is generated by other rules.

Associativity is also possible by parameterizing properties of shapes like in parametric shape grammars. or by parameterizing rules.
(x,y)

(x,y)

0- --------
(x,y) (x,y)

Parameterized rotation Parameterized shape

Constraints can be applied through aids that describe contextual conditions when locating initial shapes. For example, adding labels or

colors. In the following page you will find an example on adding labels to shape grammars rules constrain their behavior.

Fj

Replacement rule with a lable. Generation processes

6.0 Mechanics:
It is important to formalize a design language before building a generative system for it. Once a language is formalized, design

objectives, architectural forms, and rules extraction become easier. Rules might be nested in stages to ensure a certain control of

the design's development, in a bottom-up or top-down process. It is also possible to parameterize rules such that shapes can have

variations within them. For example, a 4-sided shape might be drawn as a square, rectangle parallelogram, diamond, etc. All these

102

I



shapes can be generated by parameterizing angles or sides' lengths. Like the previous three formalisms, Shape Grammars are
also built by replacement rules. In this context, replacement rules include initial shapes, spatial relations (typically presented as an
arrow), and replacing shapes. Initial shapes make the left side of a grammar. Spatial relations make middle. They handle: a) Boolean
Operations (Union, subtract, intersect), and b) Euclidean transformations (Move, Rotate, Scale, Reflect). Replacing shapes make the
right side of grammars. A replacement rule x -> y is read as: "x goes to y" where x is the initial shape (right side of the equation), "goes
to" is a spatial the relation, and y is the result or replacement for x (left side of the equation). In the opposite page you will find examples
on these concepts.

X X X X

x X

X X -X

n __X XX X X--
X X

Examples of Boolean Operations and Euclidean Transformations

7.0 Representation:
Representation in shape grammars is built through geometric shapes, labels and colors. Just like Fractals systems, there is no distance
between generation and interpretation processes. Both are combined in one representation.

8.0 Solution space:
In shape grammars, solution space is almost infinite. However, it can be understood as a function of the number of recognized shapes
X the number of possible replacing shapes X design steps (iterations). There are many other variables that I eliminated for simplicity. It
is not my intention to exactly define the size of solution space as much as it is to suggest and highlight the drivers behind the ability to
generate variations. Variables are mainly problem specific.

1L3



9.0 Experiments

9.1 Art Installations:
In this experiment shape grammars was used to generate designs for an art installation. The system utilized additive grammars where

units build on top of each other growing A) weaved arms, or B) twisted columns. Labels were used to guide the growth pattems.

This system was built as analogue where the designer handles selection and application of rules. One of the intentions behind this

exploration was to integrate material properties like thickness or weight as one of the design parameters where rotations, connectivity,
joints and aesthetics play a major role in arriving at a design. Below is an example on the weaved arms. Opposite is an example on

the twisted columns.

104.

ILI'

Am

L r--'



L



9.2 Ice-ray Windows
The systems used in this experiment included three components: a constructor, a recognizer and an initiator. The first component builds
shapes; the second identifies their types, and the third picks rules then passes them to the generator. The goal behind this experiment

was to generate variations of Chinese-Ice ray window designs.

The generator receives rules from the initiator and starts by dividing shapes into duals. In the case of a parallelogram it generates: A) a
pentagon & a triangle, or B) two parallelograms. In the case of a triangle, it generates a smaller triangle & a parallelogram. In the case

of a Pentagon, it generates: A) a triangle & a parallelogram. The fact that each shape generates a defined number of new shapes made
recognition easy to implement. The recognizer identifies the topology of two at a time. Then it passes the information to the initiator that

handles the selection of rules. This system requires the user to select an initial shape (a parallelogram, a triangle or a pentagon), and
a stopping condition of a minimum area for each shape.

F-1

The above strip shows the replacement rule where the lower shows the calculation processes. Below are some generated varations.

1 0

-U-----

M -



No



10.0 Summary:
Shape grammars were created to simulate visual computing for design. They devise of how to see shapes instead of what shapes to

see. Thus, they don't presuppose or force the concept of units into the design processes. They are usually used in reverse engineering

existing designs; and in generating new solutions that convey a similar design language. Shape grammars, like other formalisms, rely

on rules and units. However, units are only defined by topology but not size or location. Designers can implement a rule wherever they

recognize its initial shape in a given schema.

11.0 References:
Stiny, George. Shape. Cambridge: The MIT Press, 2006.

Gips, J. and Stiny, G., ed. Freiman, C. V. Information Processing 71. Amsterdam, 1972.

Gips, James. "Computer Implementation of Shape Grammars."

10



09

40l1i-1001 oW-O.-Wmm~



3.0 A Provisional Taxonomy Of Generative Systems:

1



Earlier in the second chapter, I defined generative systems as structures composed of: Algorithms that are expressed in various
representations, and capable of producing many results. I also defined formalisms as a context-sensitive type of generative systems for
they work by rules. Then I showed a proposed model for integrating generative systems within a design process. Finally, I introduced
a series of sections on: Algorithmic, Parametrics, L-systems, Cellular automata, Fractals and Shape grammars, where I highlighted
shared and intrinsic properties to each system.

This chapter complements the previously covered material as it offers a summary table of generative systems properties and a discussion
on relationships among them leading to a provisional taxonomy.

1



In the previous chapter you have read about various generative systems, their structures, components, units, etc. I believe it will be
helpful to recapitulate these finding in a table where you can reflect on them side by side.

Algorithms Parametric L-systems Cellular Automata Fractals Shape Grammars

Context in Mathimatical

Computing Varies Regeneration Botanic Growth Reproduction Monsters Visual Calculation

Computation Varies Varies Parallel Sequential Varies Varies

Design Generators/Interpretors Generators/Interpretors Generators/Interpretors Generators/Interpretors Initiators/Constructors Initiators/Constructors
Components Evaluators Evaluators Evaluators Evaluators Evaluators Evaluators

System Varies Possible Inheritance Deterministic or Non Periodic, Aperiodic Recurssive Deterministic or Non
Behavior Context Sensitive of Non Chaotic, Random

RulesType Varies Varies Replacement Replacement Replacement Replacement

Units Type Varies Varies Symbols Symbols Symbols , Numbers Shapes

Smallest Units Varies Varies Alphabet Cell Zero or oints Basic Elements

Means to Varies Varies Counting Counting Counting Seeing
Recognition

Basic System Algorithms & Algorithms & Algorithms & Algorithms & Algorithms &
Components Tasks and units Associations Replacemnet Rules Replacemnet Rules Replacemnet Rules Replacemnet Rules

Inheritance Continuous Continuous Discrete Discrete Discrete Continuous

Constraints Relationships Relationships Adjacent Letters States, S o ctions olor, Labels, AxesNeighbor, Location Stopping Conditions CorLblAe

Units,Tasks, Parameters, Variables, Rules, Generations RulesTime Steps Rules, Rules, Recognized Shapes,Solution Space Relationahips Relationships Replacing Alphabets Cells, Neighborhood Size Stopping Conditions, Replacing Shapes

From the previous discussions and the above table, you may have realized already that all generative systems build on top of one core
component, algorithms. They add different layers of properties devising distinct categories. These layers may also overlap highlighting
finer classes within a category. In other words, every generative system is an algorithmic system.

11



We found earlier that Algorithmic systems may run in a Parallel, and/or a sequential, and/or random fashion. Parallel Algorithms deal
with elements simultaneously and separately without affecting each other. Sequential Algorithms deal with elements one by one such
that a predecessor affects its successor (this was explained in the previous chapter). Random algorithms do not follow any specific
order.

We also found earlier that some systems included associations (relationships) such as linking parameters to one another, or an action
to a series of actions, etc. Associations are usually viewed as constraints for they impose definitions of how a system behaves.

A special type of associative-algorithmic-systems is the Hierarchical systems (explained earlier in section 2.2.2). In this type, elements
are arranged within a ranking structure. A (higher) main element will control a (lower) sub element. This arrangement is usually
visualized as a family of components. Hierarchical systems allow for only one-directional associations where "Parents" drive "children"
and not vise versa. Non-Hierarchical systems, by their definition, do not posses any structure. So, every hierarchical system is an
associative system, and not every associative system is hierarchical.

Whether associative or not, hierarchical or not, some systems are context-sensitive (Rule-based). This property is usually expressed
in the form of "if.. .then" statements. Rule-based systems include functions or tasks that only work if a defined context (condition) is
matched. There are many types of rules like interpretation, transformation, deformation, replacement, etc. In general, any rule can be
written as a replacement rule. This type of rules can handle many algorithms in its representation for it includes: a left side (input),
an operation (algorithm), and a right side (output). The first defines a condition to match (element to replace); the second contains
descriptions of tasks; and the third describes the result (replacing element). Below is a series of diagrams showing various layers of
the above-mentioned properties.

11



Algorithms

In this taxonomy, parametric systems exist in the associative zone where elements and behaviors are driven by relationships. A finer
class of parametric systems lies in the hierarchical zone where families of elements exist. This is the zone where Animation and
parametric Modeling softwares can be found.

In the introduction of this thesis, I described formalisms as special types of generative systems that work with rules. In the light of
this definition and the properties of each system, we can locate: L-systems, Cellular Automata, Fractals and Shape Grammars in the
replacement-rule-based category since they work by replacement rules. It is also possible to locate a finer class in the associative-
replacement-rule-based algorithms zone like: Parametric L-systems, Parametric CA, Parametric Fractals and Parametric Shape
Grammars. In the following paragraphs, I will use "formalism" instead of "rule-based-algorithmic-system".
These formalisms lie within specific locations in the Replacement-Rules zone based on how they run. For example, L-systems are

114



located in the intersection of parallel application and replacement rules. CA is located in the sequential one. Fractals and Shape
grammars can be located in Parallel, Sequential or Random zones.
If we look at these replacement-formalisms from a shape grammar point of view, we can circle a finer sub category based on how
replacement rules identify elements. For example L-systems, Cellular automata and fractals operate on Identity, where Shape grammars
operate on identity and embedding. Thus, they can pick explicitly defined or embedded elements. This makes shape grammars a more
general class of replacement-rules for it includes all the other formalisms.

Here is a question for you. Is it possible to build hierarchical-replacement-L-system? I actually discussed this issue briefly in each
section in chapter 2, specifically, in the fifth segment on (inheritance, associativity and constraints).

Let's reiterate a few concepts. A hierarchical system has a specific type of structure where elements are arranged in ranks, mainly
families. In a hierarchy, there is a top and a bottom. Parents can inform, drive, update children but not vise versa. This might happen
in the form of rules driving rules, or objects supporting others, or relationships updating others, etc. In L-systems, or any system, a
hierarchy only channels the flow of information in one direction. It controls the context in which a rule can be triggered, but not how it
works. Thus, any system can be built with a hierarchy.

Here is another question. Do hierarchical-associative-replacement-formalisms have inheritance?

Hierarchy allows for inheritance where attributes reappear in many generations as they flow from parents to children and not vise
versa. For inheritance to take place, there needs be a common placeholder, or carrier, or (gene) existing in all generations. In general,
a Replacement-formalism works by "replacing" elements with "different" ones. Thus, there is always a possible discontinuity where
elements might disappear. This is especially true for L-systems, Cellular Automata and Fractals because they deal with symbols
as discrete units. These formalisms replace whole elements every time rules are applied. However, this is not the case with Shape
Grammars.

As I stated earlier, Shape Grammars finds elements by identity (whole elements) or by embedding (part elements). Thus, replacement
rules may replace a whole element or a part of it while keeping the rest for the following generation. This makes it possible for
inheritance to exist in shape grammars.

In fact, Palladian Grammars are inheriting-hierarchical-formalisms. They are structured in ranks where top-down rules drive bottom-up
rules (hierarchical). They also allow for continuity as they can replace parts of shapes (inheritance). For example, you start by building
a skeleton, then build a series of walls on top, then find rules to carve windows and doors inside walls, etc.

It is important to note that the previously shown taxonomy is provisional. It repackages systems' properties only discussed in this
thesis. My goal was to propose a departure point for others to situate these systems in relation to one another, read their potentials and
constraints, maybe create new types of systems, and hopefully edit or arrive at totally new diagrams.

1



4.0 Conclusion:

16



'*LJIAL

Most of the current implementations of generative systems in architecture are skin-deep. They are usually geared towards solving
simplistic problems, or designing in confined contexts. This can be explained by many reasons, some of which are discussed below.

As shown earlier, algorithmic and parametric systems offer less constrained environments for design since they do not utilize any
specific structure or rule or representation. However, in order for these systems to be applicable to a certain problem, they needed to
be customized to provide more specific, and less generic, contributions. The downside to this being that the more they are tailored to
a specific context, the less useful they may be for others. A standard generative system is not possible.

Contrastingly, formalisms like L-systems, Cellular Automata, or Fractals were tailored for specific contexts and purposes. Thus, they
have their own inherent limitations like: structures, rules sets, and representations. Such limitations make it hard to appropriate these
formalisms in design. For example, L-systems are based on parallel replacement of symbols only, which is one approach for synthesizing
solutions that may not always match the complexity of architectural problems. Cellular automata are sequential systems, thus they are
hard to control or guide. Most of their behavior is periodic or random, which in many cases is not applicable to design processes. Fractals
systems are also hard to impose on any design context for they are (purely) recursive. To a greater extent, those formalisms display
their behavior graphically, which some architects took at face value. For example, L-systems are usually used to generate branching or
tree-like geometric shapes, where most of Cellular Automata and Fractals systems are used to generate geometric patterns.

While the implementation of these formalisms is fairly possible by computers, shape grammars impose a hardedge problem, which
is recognition. Shape grammars deals with units in terms of topology and embedding where computers understand them as discrete
numbers only. The contrast between these two opposing worlds is hard to blend. It requires very sophisticated algorithms to simulate
and embed artificial intelligence in computers so that they can ipick any shapei. Even if were implemented by designers themselves,
Shape grammars require very detailed descriptions to carry a full design from start to finish. The formalism allows designers to pick any
shape, anywhere, or apply any rule, or even create new ones. Such a universe of possibilities is hard to select from without detailed
descriptions of how and what to apply rules to.

The design process itself can be found to be another reason that many of these systems are implemented in a very superficial way.
Architectural design problems are non-linear, and decision-making is always driven by many factors simultaneously. In most cases, a
design problem slowly gains its definition over the course of the design process. Thus building certain generative systems specific to
ill-defined problems becomes time-consuming and in many cases unfeasible.

Finally, most of the implementations of generative systems in architecture are being channeled towards synthesis of forms without
the guidance of thorough performance-based criteria. Thus, it is possible for a generative system to create variations of lunfiti design
candidates for it cannot detect or evaluate deficiencies.

1



Current implementations of generative systems in architecture provoke many questions about their future. Will they continue to be
used? Should we seek deeper integration methods within our design processes? Are we going to create new ones? Since design
problems seldom present themselves in the same fashion, customization of generative systems becomes inevitable. I believe this
requires us (architects) to gain higher levels of mastery in building analysis methods, performance-based evaluation criteria and robust
synthesis processes.

18



1



5.0 Bibliography:

120

.- -40MIOVWIL



Alexander, Christopher. A Pattern Language: Towns, Buildings, Construction. USA: Oxford University Press, 1977.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 20, Cambridge University Press, 2006.

Coello Coello, C.A. and Cort6s N.C, "Solving Multi-Objective Optimization Problems Using an Artificial Immune System," Genetic
Programming and Evolvable Machines June 2005, vol. 6, no. 2: 163-190.

Eisenman, Peter. "House X," Rizzoli 15 April 1983.

Kalay, Yehuda E. Architecture's New Media: Principles, Theories, and Methods of Computer-Aided Design. Cambridge: The MIT
Press, 2004.

Koder, Selim. "Interview with Peter Eisenman." Ars Electronica 1992.

Krishnamurti, Ramesh. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 20, (Cambridge University Press,
2006), 95n1103.

Gips, J. and Stiny, George, ed, Freiman C. V. "Shape Grammars and the Generative Specification of Painting and Sculpture." Information
Processing 71. Amsterdam, 1972.

March, Lionel. The Architecture of Form. Cambridge: Cambridge University Press, 1976.

Mandelbrot. Fractals and Chaos: The Mandelbrot Set and Beyond. 1St edition, Springer; 2004.

Mitchell, William J. The Logic of Architecture: Design, Computation, and Cognition. Cambridge: The MIT Press, 1990.

Roth, Leland M. Understanding Architecture: Its Elements, History, and Meaning. HarperCollins Publishers 1993.

Simon, Herbert. Sciences of the Artificial, 3rd edition. Cambridge: The MIT Press, 1996.

Stiny, George. "Production Systems and Grammars: A Uniform Characterization," Environment and Planning 1980, B, volume 7:
399-408.

Stiny, George and Mitchell, W. J. "The Palladian Grammar." Environment and Planning B: Planning and Design 1978.

U



Sullivan, Louis, ed. Menocal, Narciso G. and Twombly, Robert. The Poetry of Architecture. 1st edition, W. W. Norton & Company,
2000.

Turing, A. Undecidable p. 118; footnote Davis 2000.

Wolfram, Stephen. A New Kind of Science. Wolfram Media, 2002.

12



1


