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Abstract

The Mannesmann process is the preferred method in the oil industry for fabrication
of hollow pipes. The critical phenomenon in this process is the formation of a small
round hole at the center of the cylindrical billet ahead of the piercing plug. In this
work the crack initiation that leads to the creation of the small hole has been modeled.
The Gurson-Tvergaard-Needleman model of porous plasticity is used to simulate the
Mannesmann effect. The appearance of a crack at the center of the cylindrical bar
is demonstrated and the stress profiles, plastic equivalent strain profiles and porosity
distribution during the deformation process are analyzed. The influence of various
parameters in the model on the evolution of porosity in the specimen is studied. Other
simple ductile fracture criteria that are proposed in literature are also implemented.
An interface model for fracture using the discontinuous Galerkin framework combined
with a cohesive fracture law is implemented. This approach and its advantages are
illustrated in the application of tensile loading of a simple beam specimen.
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Chapter 1

Introduction

1.1 Motivation and application

The Mannesmann process is the most established method in the industry for pro-

ducing seamless steel tubes used in the oil industry for extraction. Because of the

absence of welding, seamless pipes are more reliable and hence are preferable. They

are produced by cross-roll piercing of solid cylindrical bars at very high tempera-

tures. Local failure at the center of the cylindrical billet forming a small hole prior

to piercing, is an important step in the Mannesmann process. It is crucial to be

able to predict this failure of material at the center of cylinder in the initial stages

because it will significantly influence the forces on the piercing plug, the wear on its

surface, the optimal position of the plug to prevent oxidation of the tube, the optimal

process conditions and thus the quality of the resulting tube. In other words, this

initial transient could play a decisive role in determining the steady-state conditions.

Despite the large body of industrial experience, further optimizations of the process
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parameters are possible only if one can computationally model the crack initiation

and if physics-based descriptions of the process details are given.

1.2 Description of the Mannesmann Process

Molten steel is continuously cast and cut into cylindrical bars called 'billets'. The

billets are then heated to approximately 1300'C and passed through a cross-roll set

up consisting of two barrel shaped rolls, a piercing plug and shoes to support the billet

(Figure 1-1). The cross-rolls compress, rotate and pull the billet simultaneously. The

m-rnp zoPe

ollo

Figure 1-1: Schematic of the Mannesmann setup, taken from [1]

shape of the rolls causes the compression and the angle between the axes of rotation

of the rolls (about 40) causes the pulling. As the compression occurs, the center point

of the billet is under tension in horizontal direction, as shown in Figure 1-2. A small

cavity appears at the center of the billet because the 'rotating' tensile forces open up

a hole at the center [2, 3]. This is called the Mannesmann effect. The cavity opens up
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1

Figure 1-2: Schematic of the stress state at the center of a 2D plate; almost all of
the plate is under compressive stress, except along a line parallel to the 2-axis and
passing through the center where the stress state is tensile in nature

before the material reaches the nose of the plug. The plug then enables the piercing

and flow of material along its surface. Thus steel bars enter the cross-roll setup as

billets and leave as shells in less than ten seconds. These shells are subsequently

sent through a continuous mill and a stretch reducing mill to prepare them to meet

required specifications of thickness, diameter and length.

The position of the fracture initiation affects the service life of the piercing plug.

If the fracture in the central part of the billet is not initiated prior to the plug coming

into contact with the billet, the forces on the plug and the wear on its surface is

excessive and frequent replacements are necessitated. On the other hand, if there is a

large gap between the plug and the origin point of the crack, the internal surface of the

crack will undergo excessive oxidation leading to defects in the final tube. Hence there

is a need to predict the fracture initiation phenomenon to optimize the Mannesmann

piercing process in terms of the plug position and other process parameters.

Even in the absence of a piercing plug, the Mannesmann effect is observed [4], thus

confirming that the formation of the central hole is not only because of the piercing
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action of the plug. In fact, the Mannesmann effect is also observed in a similar

metal forming technique called cross wedge rolling, which is used in the fabrication of

stepped cylindrical parts from billets [3]. There is no piercing action in this fabrication

method and yet undesirable voids appear at the center of the stepped shafts due to

the Mannesmann effect.

1.3 Mechanism of void formation in the Mannes-

mann Process

The Mannesmann process occurs at a temperature of approximately 13000 C. At such

high temperatures, steel is highly ductile in nature and deforms due to creep. Analysis

of the fracture surface of semi-pierced billet shows both ductile fracture and cleavage

zones [4], as shown in Figure 1-3. The high temperature and low tensile stresses of the

process would favor ductile fracture perhaps with some associated creep deformation.

In this work, it has been assumed that the fracture process is ductile in nature.

1.4 Prior modeling work

Attempts have been made to simulate the cross-roll piercing process using conven-

tional plasticity material models. Urbanski and Kazanecki [5] analyzed the strain

distribution in the Mannesmann process using two-dimensional FEM. Capoferri et

al. [6] and Ceretti et al. [7] studied the initiation of voids at the center using 2D

simulations and a fracture criterion based on maximum principal stress. Ceretti et

18



al. [8] extended the work to three dimensional modeling.

In Pietsch and Thieven's work [9], hole formation was due only to the piercing

plug, making it similar to an extrusion process. Komori [10] simulated the piercing

process using a rigid-plastic material model. While the effects of variation of rolling

conditions such as the feed angle, the minimum roll gap and the maximum plug

diameter were studied, the analysis was restricted to the steady state conditions and

initiation of the round hole ahead of the plug was assumed rather than modeled.

Pater et al. [11] conducted a 3D transient analysis of the piercing process using a

thermo-mechanical model. Although they observe that the largest tensile stresses are

present in the workpiece axis ahead of the plug that could lead to cracks, there is no

prediction or analysis of the crack initiation itself.

Berazategui et al. [1] implemented a finite-element approach successfully used

in metal forming and have focused on continuum descriptions of the steady-state

conditions established in the middle sections of the blank. A damaged cone area,

in which the elements are removed intentionally, is introduced to approximate the

Mannesmann effect.

1.5 Scope and organization of present work

The main objective of this work has been to describe the onset of piercing and thus

complement the analysis of the steady state conditions in [1].Models of ductile crack

initiation are employed in order to be able to predict and simulate fracture at the

center of the cylindrical billet. 3D transient simulations are carried out in order

19



to study the crack initiation leading to hole formation ahead of the piercing plug.

Using ductile failure models, an attempt is made to provide a physical basis for the

description of the Mannesmann effect.

Fracture can be simulated mainly in two ways. One is by deleting elements from

the mesh that have exceeded a failure criterion, which is sometimes referred to as the

element removal technique. The other is by splitting the mesh nodes at the interface

of two elements where failure is calculated to occur. In this work, the first approach

is employed by using the Gurson-Tvergaard-Needleman model of porous plasticity

and other simple ductile fracture criteria for analyzing the Mannesmann effect. As a

contribution to the progress in the modeling of fracture processes, a method has been

developed based on the second approach, addressing some of the existing limitations

in fracture models based on cohesive theories of fracture and interface elements. It is

demonstrated with the example of simple beam specimen under tensile loading.

In Chapter 2, the ductile failure models used in the present work for the analysis

of Mannesmann effect are discussed. The models include the Gurson-Tvergaard-

Needleman (GTN) model and simple weighted accumulated plastic strain criteria. In

Chapter 3, the results of simulation using the GTN model are presented first. Simple

2-dimensional simulations for an initial understanding of stress state and the evolution

of porosity are conducted. After providing the geometry, boundary conditions and

mesh used for 3D simulations, the stress profiles, equivalent plastic strain contours

and void volume fraction (VVF) distribution are analyzed. Similarities in the shapes

of the deformed cylindrical billet between the simulations and the actual process are

highlighted. The element removal technique is explained. It is demonstrated, using a
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set of parameter values, that fracture occurs at the center of the cylinder. A sensitivity

analysis of the various parameters involved in the GTN model is done to gain insight

into the model. Results of simulations using the simple ductile failure criteria are then

presented. The damage limits of these failure criteria are calculated. The influence of

stress triaxiality is discussed. Some calibration experiments proposed in the literature

that would be useful for these models to be used effectively are mentioned. In Chapter

4 the formulations of cohesive zone modeling (CZM), discontinuous Galerkin (DG)

method and a combined method based on these two approaches are presented. The

DG based cohesive interface approach is demonstrated in the application of a simple

beam specimen under tensile loading. Its advantages are illustrated by considering

a problem of uniaxial stress-wave propagation inside the simple beam specimen. In

Chapter 5, the work done is summarized and conclusions are drawn. Some directions

for further work in this area are provided.
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Figure 1-3: Fracture surface of semi-pierced billets (a) 'as polished' (b, c, d, e) after

chemical treatment; taken from [4]
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Chapter 2

Models of Void Formation in the

Mannesmann Process

The Mannesmann process occurs under conditions where the material used is highly

ductile in nature. To analyze the initiation of void formation at the center of the

cylindrical billet, two types of ductile fracture modeling theories proposed in the lit-

erature are employed, namely the Gurson-Tvergaard-Needleman model and weighted

accumulated plastic strain criteria. They are both local failure approaches based on

damage mechanics, which use accumulated damage as a criterion for crack formation

and growth. Material is considered to fail when a damage parameter that depends on

local stress and strain fields reaches a critical value [12, 13]. These approaches are in

contrast with macroscopic ductile fracture criteria such as J-integral [14, 15], energy

release rate R [161, J-Q theory[17, 18], the slip-line solution [19] and crack-tip opening

displacement (CTOD) [20] which cannot be readily applied to model crack initiation

and growth stages at the microscopic level. While the CTOD criterion depends on
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specimen configuration and loading conditions, J-Integral criteria in addition is appli-

cable only to small-scale yielding conditions. The non-material nature of these criteria

imposes the drawback that fracture data resulting from simple laboratory tests is not

applicable for other specimens and loading conditions that occur in industry.

2.1 Gurson-Tvergaard-Needleman model

Ductile fracture of metals occurs due to growth and coalescence of microscopic voids

[12, 21]. Apart from the initial porosity present in the material, new voids are nu-

cleated at inclusions and second phase particles by decohesion or cracking of these

particles. The voids grow due to plastic straining of surrounding material under the

application of tensile hydrostatic stresses. When material between two neighboring

voids is thin enough, it starts to neck resulting in accelerated growth of voids. The

voids begin to coalesce, and this results in a crack and subsequent fracture of the

material (Figures 2-1,2-2). McClintock[12], Rice and Tracey[13], Gurson[22], Tver-

gaard and Needleman[23, 24, 25, 26, 27] etc. studied this phenomenon and came

up with micromechanical void growth models and macroscopic constitutive models.

Gurson's porous metal plasticity model, which was later modified by Tvergaard and

Needleman, is the most widely used model amongst these.

The porosity of a material is defined as the ratio of volume of the voids to the total

volume of the material. It is denoted by f and is also referred to as the void volume

fraction (VVF). It is a measure of damage in the material during the deformation

process. The value f = 0 corresponds to fully dense material without any voids
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Figure 2-2: Fracture surface at the center of an intially fully dense tensile specimen

showing coalesced voids around inclusions and second phase particles, taken from [29]

and the value f = 1 corresponds to completely voided material that has no stress

carrying capacity. The GTN theory analyzes plastic flow in a porous material by

averaging the effect of porosity throughout the material.It is a coupled model, where

the accumulated damage influences the material behavior and vice-versa. The damage

parameter f therefore appears in the material response relations.

The voids are assumed to be spherical and the material is an aggregate of these

spherical voids dispersed in the matrix material randomly. The matrix material is

Mises in nature. Mises theory assumes plastic incompressibility and that the hy-

drostatic component of stress does not effect yield. The dilatation, as observed in

processes characterized by large local plastic flow such as those that involve ductile

fracture, is entirely due to void growth. In compression the porous material hardens

due to closing of the voids, and in tension it softens due to growth of the voids, as

shown in Figure 2-3. Here, true stress is plotted on X axis and true strain on the Y
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axis and the matrix material is assumed to be elastic-perfectly plastic material. The

figure also shows that porous material yields at a lower value of stress. When porosity

f, = 0 (Mises)

tension (f0)

conmression (fe)

Figure 2-3: Schematic graph comparing uniaxial behavior of porous metals with Mises
materials, taken from [30]

is present, hydrostatic stress causes dilatancy and affects plastic yield, as shown in

Figure 2-4. In this figure, hydrostatic pressure (scaled by yield stress) is plotted on

X axis and equivalent stress (scaled by yield stress)is plotted on Y axis. It is clearly

shown that for Mises material (f = 0), the yield surface is a straight line implying

that hydrostatic stress has no effect. As the porosity increases, the yield surface graph

shrinks implying that yielding occurs at lower values of equivalent stress. In fact, it

suggests that at very high hydrostatic pressures, yielding occurs even if equivalent

stress is zero. The yield condition is of the form

D= +- (1 + (qf*)2 ) = 0 (2.1)
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=0.2

f = 0.4

IP
M I

Figure 2-4: Schematic graph comparing yield surface of porous metals with Mises
materials, taken from [30]

where ucq is the equivalent stress defined by o-eq = 1To : To, T0 = T + pI is

deviatoric part of Cauchy stress tensor T, p = -IT: I is the hydrostatic pressure, or

is the yield stress of the matrix material (which is a function of equivalent plastic strain

in the matrix s). Here f* is a modified value of porosity f where the modification

accounts for the rapid loss of stress carrying capacity due to void coalescence (Figure

2-5) in the following way:

f iff<fc

fc + - (f - fe) if fc < f < fF (2.2)

1 if f > fF

where f, is the critical value of void volume fraction where void coalescence begins

to occur and fF is the value of void volume fraction at which the material fails.

It is evident that for f = 0, equation 2.1 reduces to the classical yield condition

Oreq=orY
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Figure 2-5: Fracture surface of an initially fully dense notched bar showing void
coalescence, taken from [29]

The parameters qi and q2 amplify the effect of hydrostatic stress on yielding.

They are material specific and can be calibrated to match experimental results by

numerical techniques [31]. For typical metals at room temperature, the values of the

parameters reported in literature are 1.0 < q < 2.0 and q2 = 1.0 [26, 27, 32, 33, 31].

As usual, plastic flow is assumed to be normal to the yield surface:

_ = (2.3)
OT

The hardening of matrix material is described through or, = a, (s). For example, a

power law can be assumed. The plastic work is expressed as:

(I - f) O-yt' = or : iP (2.4)

The above relation gives the evolution of equivalent plastic strain. Since change in
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porosity of the material is due to the combination of growth and nucleation, the

evolution of void volume fraction is given by:

f = fgr ±nucl (2.5)

where fg, is change due to growth of existing voids and c is change due to nucle-

ation of new voids. The law of conservation of mass requires:

fg=(1 -f)6i':I (2.6)

Nucleation is assumed to be strain controlled and normally distributed [23] in the

following way:

fu=A6P (2.7)

where

SNN

Nucleation strain is normally distributed with mean values EN and standard deviation

SN as parameters. fN is the maximum volume fraction of the nucleated voids. Also,

voids can nucleate only during tension. As Equation 2.8 suggests, the nucleation

function A/fN is assumed to have a normal distribution. For the same mean EN, a

higher standard deviation SN results in a flatter distribution (Figure 2-6). Finite ele-

ment analysis of a cylinder under rolling and compression is performed using the GTN

model to study the Mannesmann process. It is presented in Chapter 3. The results
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Figure 2-6: Distribution of the nucleation function, taken from [30]

of the simulation showing stress profiles, equivalent plastic strain contours, distribu-

tion of VVF and its evolution are examined to understand the physical mechanisms

preceding the Mannesmann effect.

2.2 Damage models based on accumulated plastic

strain

Many uncoupled ductile crack formation criteria have been proposed in the literature.

They estimate that fracture occurs when weighted accumulated plastic strain reaches

a critical value:

f (stress state) d = C (2.9)

where f is a weighting function that depends on the stress state in the material

locally, K is the equivalent strain, Ef is the equivalent strain to fracture and C is a
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material constant that needs to be calibrated. Uncoupled models assume that there

is no influence of the accumulated damage on the material constitutive response. The

damage parameter calculation is thus a procedure that can be implemented in the

post-processing phase. Hence the calibration of these criteria is relatively easier. Some

successful criteria belonging to this category are shown in Table 2.1. In this table,

Table 2.1: Uncoupled ductile fracture criteria [34]

Criterion

Equivalent strain
Cockroft-Latham-Oh
Hydrostatic stress

Clift
Brozzo

Rice-Tracey (high stress triaxiality)

General Rice-Tracey

LeRoy

McClintock

Formula

f0 OUeqd

exp (t)dK

fJ .558sinh (tm + O.008t'cosh (i) dr
f ( - r) ds

f~[~~~sinh ( 2 jia2) + 2"-]ds

2( -n 2(-eqeg 4 &

a1 and a2 are the maximum and intermediate principal stresses; n is the hardening

coefficient; v = -2 2- 3; el _i2 e3 are the principal strain rates. These fracture

criteria are less phenomenological and more empirical in nature. A notable feature of

these criteria is that they are simpler and contain fewer parameters as compared to

the GTN model. Thus they are suitable for application in an industrial environment.

For calibrating the constant C of Equation 2.9 for a material, both experimental

and numerical tests have to be performed. The integral is evaluated either as a post-

processing step or as an uncoupled internal variable depending on the stress and

strain tensors calculated at a material point. The failure point is determined from
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Table 2.2: Equivalent strain to fracture and average stress triaxiality for typical tensile

and upsetting tests, taken from [34]

Specimen Equivalent strain Average stress

to fracture f triaxiality (')

Upsetting, do/ho = 0.5 0.45 -0.273
Upsetting, do/ho = 1 0.36 -0.236
Tensile, smooth 0.45 0.4

Tensile, r = 12 mm 0.28 0.64
Tensile, r = 4 mm 0.16 0.95

the experiments. For example, in upsetting tests, cracks form in the equatorial area

[35] and can be observed easily. In the case of tensile tests where the crack initiates

at the center of the necking region and which cannot be observed on the surface, the

loading process is interrupted frequently and the specimens are sliced and inspected

for cracks.

Stress triaxiality plays an important role in ductile fracture. It is the ratio of

the hydrostatic stress to the mises stress . This ratio changes quite sharply in a

specimen undergoing large deformation, as will be seen in Chapter 3 for the cylindrical

billet in the Mannesmann process. In order to measure the effect of stress triaxiality

on the fracture phenomenon, an average stress triaxiality parameter defined as follows

has proved to be useful [34]:

Orm dm (2.10)
\req/) av f 0 Ore

where Ke is the equivalent strain at failure. Table 2.2 shows the average stress

triaxiality values for some common tests. In this table do and ho are the initial
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diameter and height of the upsetting specimens, respectively; r is the notch radius of

the tensile specimens. It has been observed that the value C in Equation 2.9 is not a

universal constant of the material but is dependent on the average stress triaxiality

[34], and most likely on the temperature as well. Based on various compressive and

tensile tests on notched specimens, it has been found that the equivalent fracture

strain varies with average stress triaxiality as shown in Figure 2-7. Also, the fracture

m t se in fractureFracture due to
wel ovoid formation

-1/3 0 0.4

Figure 2-7: Fracture locus in the space of equivalent strain and stress triaxiality, taken
from [35]

mechanism itself depends on triaxiality. For processes where triaxiality is high, the

mechanism of fracture is ductile in nature due to void growth and coalescence. For

negative stress triaxiality (upsetting tests), shear decohesive fracture through the

matrix material is observed. The Rice-Tracey, hydrostatic stress and McClintock

criteria are based on assumptions of growth of spherical voids, and hence work well

for tests in the high stress triaxiality range while Cockroft-Latham-Oh criterion works

well for upsetting tests.

Finite element analysis of a cylinder under rolling and compression is performed
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in conjunction with these failure criteria. The analysis is presented in Chapter 3. The

damage limit constants of these failure criteria are calculated and comparisons with

a simple tensile test are provided.
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Chapter 3

Finite Element Analysis of the

Mannesmann Effect

Finite element analysis using the continuum models proposed in Chapter 2 has been

done to simulate the Mannesmann effect. In this chapter the results of these sim-

ulations are presented. They are performed using the commercial FEM software

ABAQUS/Explicit. The piercing plug is not part of the simulations because only the

initial stage of the Mannesmann process is studied.

3.1 Gurson-Tvergaard-Needleman model results

As stated before, the tensile stress state at the center of the the cylindrical billet is a

key factor in the Mannesmann process. To verify this claim, a simple two dimensional

compressive rolling test has been simulated. The specimen is a circular plate of radius

39.6 mm. Velocity boundary conditions are applied as shown in Figure 3-1(a). The
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mesh consists of quadrilateral plane stress elements. A fairly coarse mesh has been

used as shown in Figure 3-1(b) because the interest is in qualitative results in these

2D simulations. The material properties used for this simulation are shown in Table

3.1. The stress-strain curve input given for the model is the one corresponding to the

lowest strain rate of Figure 3-2. The values of other parameters of the GTN model

have been taken from literature [23, 24, 26].

V x =0.1 2 m/s

No Slip (Rough)

Vx= -0.12 m/s

(a) Boundary conditions (b) Mesh

Figure 3-1: 2D simulation setup
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Figure 3-2: Experimental stress-strain curves, taken from [1]
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Table 3.1: Material properties used in the GTN model

Property Value

Density 7800 kg.m-3
Young's modulus 1 GPa
Poisson ratio 0.3

fo 0.01
fc 0.15
fF 0.25
fN 0.04
EN 0.2
SN 0.075
qi 1.5
q2 1.0

q3 2.25

The results of the 2D simulations are shown below. Figure 3-3 plots the -a stress

contours at various stages of compression in the simulation. Clearly, the oa tensile

stress is maximum at the center of the circular plate at each stage of the compression.

A contour plot of equivalent plastic strain is shown in Figure 3-4. The equivalent

plastic strain is maximum at the periphery of the circular plate. This plastic strain is

caused due to large compressive stresses, as opposed to the comparatively very small

strains at the center of the circular plate caused by a tensile stress state.

Figure 3-5 plots the contours of porosity in the material at various stages of

compression showing the evolution of VVF. It is always maximum at the center and

close to zero at the periphery. The evolution of VVF due to nucleation (VVFN)

and evolution of VVF due to growth (VVFG) show similar trends (Figures 3-6(a), 3-

6(b)). Although nucleation is plastic strain controlled, holes nucleate only in tension.

Hence nucleation is maximum toward the center of the plate and becomes negligible
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Figure 3-3: 2D simulation results showing contour plot snapshots of a-l stress; the

tensile stress is maximum at the center of the plate at each stage of deformation

Diameter reduction = 25 %

Figure 3-4: Contour plot of equivalent plastic strain; it is maximum at the periphery

and minimum at the center
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closer to the periphery where the stresses, although high, are compressive in nature.

The growth of voids depends on hydrostatic stresses. Tensile hydrostatic stresses

enlarge the voids while compressive hydrostatic stresses shrink them. Hence, VVFG

is also maximum at the center and negligible at the periphery. The combined effect

of VVFN and VVFG is that VVF is maximum at the center and decreases toward

the periphery.

V"
+6.1098-OS
+6.017e-02I+5.954.-OS
+5.935.-OS
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Figure 3-5: Evolution of total VVF for the 2D simulation

(a) VVF due to nucleation

VVFG
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(b) VVF due to growth

Figure 3-6: Contour plots of VVF components for the 2D simulation at 25% diameter
reduction

Some aspects of the Mannesmann process are not captured in 2D simulations.
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Figure 3-7 shows how a semi-pierced billet has a radially symmetric trough at the ends.

To capture such effects, and also to get closer to more realistic process conditions,

three dimensional simulations are carried out.

This kind of effect cannot
be modeled in 2D

Figure 3-7: Cross-section of a cylindrical billet after cross-rolling showing a curved

surfaces at either ends, taken from [4)

The three dimensional cross-roll setup can be created in a standard FEM package

by modeling the rolls as rigid analytical surfaces in the shape of drums and oriented at

an angle with each other, as shown in Figure 3-8. The cylindrical billet is in contact

with both rolls. In this geometric model, the shoes preventing lateral expansion and

movement of the billet are ignored. Instead, the axis of the cylinder is constrained

to move only in the y-direction so as to reduce wobbling. There is contact friction

between the surfaces of the cylinder and the drums. When the drums are rotated

about their axes, the cylinder gets pulled in and compressed simultaneously, emulating

the actual Mannesmann process.Figure 3-9 shows the deformed mesh at the final

time step of a successful Mannesmann process simulation. This figure also shows the

torsion of the billet and the end effect at the leading section. The deformed face at

the leading edge is also seen to have the maximum VVF at the center.

This geometric model works well, but takes considerable amount of time for sim-
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Figure 3-8: 3D simulation setup including cross-rollers for the Mannesmann process

WF
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Figure 3-9: Simulation of the Mannesmann process; the cylindrical billet is pulled in
due to the angle between the cross-rolls and is compressed due to their shape
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ulations owing to its complexity. In order to model the key features of the onset of

piercing without the complexities of the full three-dimensional model, a simplified ap-

proach has been devised. The cross-rolling process is approximated through a wedge

rolling process as shown in Figure 3-10. Similar to the 2D geometric model discussed

earlier, the cylindrical billet is compressed and rolled simultaneously. The stress state

inside the material closely replicates the cross-roll conditions. 8-node brick elements

are used to mesh the specimen.

Vx = -0. 12

5 Mnh

Vx = 0.12 wds

Figure 3-10: Simplified setup and specimen mesh for 3D simulation

Figure 3-11 is a contour plot of a cross-section of the cylinder showing the evolution

of o stresses as the diameter of the cylinder is reduced up to 25%. The stress state

at the center is tensile in nature, and it is the maximum at this location. Toward the

periphery of the cylinder, the stresses are compressive in nature.

5, ~ Z cut
+5. 249m+0r
+4. 812@+0? 2_________
+4.374.4072+3.O6Ze+O7

+3.0624+01

+2.625007 reduction 10%
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Figure 3-11: Evolution of cr11 stresses in the 3D) simulation
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Figure 3-12 shows the contour plots of the equivalent plastic strain at cross-sections

along the Z-plane. It can be noticed that plastic strain is very high along the boundary

of the cylinder. Since porosity of the material is negligible here due to compressive

hydrostatic stresses, the material cannot undergo volume change and has nowhere

to go except to flow longitudinally along the axis of the cylinder. This is consistent

with the observations in practice of troughs on the faces of the billet in cross-rolling

(Figure 3-7). The specimen in the simulations also deforms in a similar fashion as

shown in Figure 3-13.

P110
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1+1- 623e-01
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Figure 3-12: Contour plot of equivalent plastic strain at a cross-section in the 3D
simulation

Material at the centre does not
move as much along the axis of

the cylinder as the material at the
boundary. Consistent with the

observed phenomenon.

Figure 3-13: Deformed shape of the cylinder in the 3D simulation

In order to model the onset of void formation, a popular approach for modeling

fracture within the finite element codes known as the element removal technique

[26, 36] is employed. Under this approach, a damage parameter for each element is
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calculated and tracked and the element is considered to fail when a fracture criterion is

reached. In the GTN model, the fracture criterion is based on the VVF approaching

a failure limit. Once an element fails, it is unable to sustain any load and can

undergo any amount of deformation without affecting the neighboring elements. In

other words, the element is completely removed from the simulations. This approach

of fracture simulation is available in ABAQUS/Explicit [30] and is adopted in this

work. As expected, the fracture phenomenon has mesh dependency. The finer the

mesh, the more accurate the fracture process is in the simulations.

The simulations show that VVFG is maximum at the center and decreases away

from it (Figure 3-14). In the GTN model, nucleation is 'tensile strain' controlled. Fig-

ure 3-15 shows that VVFN is maximum midway between the center and periphery, an

aspect that was not captured by the 2D model. This is because the U33 tensile stresses

and the resulting strains are highest in this region of the specimen. Nevertheless, the

value of VVFN near the center is also high in comparison. The combined effect

VVFG
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+4.206e-03
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+1. 682e-03
+1. 262e-03
+8-412e-04
+4. 206e-04

i+0.00OOe+00
-4. 986e-02

Figure 3-14: Contour plot of VVFG in the 3D simulation

is that total VVF is maximum at the center of the cylinder. Figure 3-16 shows the

evolution of VVF at a cross-section at various stages of deformation of the cylinder.
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Figure 3-15: Contour plot of VVFN in the 3D simulation

In these simulations fN = 0.20, EN = 0.05 and the values of other parameters are

from Table 3.1. For this set of parameters, the last snapshot in Figure 3-16 shows

that when the diameter reduction is 18% the elements at the center of the cylinder

have reached the fracture criterion f = 0.25, resulting in fracture along the axis of

the cylinder.

+Z.Z92e-01
+2.0830-Cl
+1 %875C .i+1.6670-01
+1.4584-0l
+1.250.-0l

+8.3330-Cl
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+0. 000e+00

2 X (tt

3 ) -1 Defomtlon 15 % 16.25% 17.5% 17.075% 18%

Figure 3-16: Evolution of VVF in the 3D simulation; fracture at the center is demon-
strated

In addition to the parameters involved in the classical plasticity model, the GTN

model includes 8 parameters: porosity parameters (fo, f, fF), nucleation parameters

(fN, EN, SN) and curve-fitting material parameters (qj, q2). It is important to study

the effects of these parameters on the model to gain a deeper understanding of the

GTN theory.
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Figure 3-17 shows the evolution of total VVF (of an element at the center that fails

first) plotted against diameter reduction for three different sets of parameters. For

high fN and low q2 , nucleation dominates throughout the deformation process. For

low fN and low q2, nucleation dominates initially until it flattens out after reaching a

max value of fN. Growth of existing voids then dominates the contribution to total

VVF. For low fN and high q2 , growth portion dominates throughout. Thus the evo-

lution of porosity in the model depends heavily on values chosen for the parameters.
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Figure 3-17: Effect of parameters fN and q2 on the evolution of VVF at the center of

the cylindrical specimen

As expected, diameter reduction for failure decreases with increase in fo and fN,

and increases with fe, as shown in Figure 3-17. Except for very small values Of CN,

the diameter reduction required for failure increases with increasing EN. The reason is
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evident from the distribution of the nucleation function as shown in Figure 2-6. The

area under this curve up to a particular equivalent strain rg represents the VVFN.

For large values of EN, the peak is far from the origin and large deformations are

necessary to achieve large VVFN. For very small values of EN, the bell shape of the

nucleation function is truncated at the = = 0 axis because voids nucleate only in

tension. Hence the diameter reduction for failure increases slightly for very small

values of CN-

20. 
24-

*~ 1- .~ 22.
4~ 17. 20-

18- - Is -

.2 104- 
48

134

12- V 12-

10 ______________________00 0.1 0.15 0.2 025
0 0.02 0.04 0.00 0.08 01 nuclkationporosIy(fN)

In iial porosity

Influence of fo Influence of fN
22

14

0 008 0.1 015 012 02S

rn" gd VDPtuMe fIactim

Influence of fc

Figure 3-18: Effect of parameters fo, f, and fN on diameter reduction for failure

Some practical considerations in implementing the GTN model are mentioned

here. The input data for GTN model consists of Young's modulus, Poisson ratio,

yield stress, stress-strain curve, porosity parameters (fo, fe, fF), nucleation parame-

ters (fN, eN, SN) and curve fitting parameters (qi, q2). While there are established

experimental tests for obtaining the parameters of the conventional plasticity model,
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Figure 3-19: Effect of parameter EN on diameter reduction for failure

it is less clear how to obtain the parameters of thle porous GTN model. Calibration

of fo, fN and fF can in principle be done using metallurgical tests involving optical

microscopy and image processing techniques [37]. However, it is difficult to precisely

measure these values. Values of 0.15 and 0.25 have been reported for fF [37]. Also,

because of the idealizations in the model, fo determined from metallurgical studies

may not be directly relevant. The critical porosity f, is dependent on the values

chosen for other parameters. A fitting procedure can be applied to determine f, after

the other parameters have been selected first. The value of f, for which the load drop

point is the same for both numerical simulations and experimental results is identified.

Another method for determining f, is by using an analytical cell model with constant

stress triaxiality [38, 39, 40]. The equations can be integrated in a semi-analytical

way to determine when there is necking in the unit cell model, thereby identifying f,.
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These selected parameters are usually verified by different notched tensile specimens

and then used in other applications. However, some of these parameters could be

influenced by stress triaxiality [41, 42, 43] and temperature. In particular, a constant

critical porosity may not be an accurate criterion at low to mid triaxialities [44]. The

values of the parameters for materials at high temperatures of the order of 13000C

are not available in literature and have to be found out experimentally. Indeed, it has

been found that the selection of some of the parameters is not unique in parameter

fitting when using finite element models [38].

The GTN model does not predict failure under shear. Low stress triaxiality con-

ditions are unfavorable for the GTN model because the assumptions in this model

are usually valid in high triaxiality conditions such as those in simple tensile tests.

Also, modifications in the model are needed to account for void shapes, void spacing

and void orientations [45, 44].

3.2 Modeling results of simple ductile fracture cri-

teria

Uncoupled ductile criteria are simpler owing to the fact they can be implemented as

a post-processing step of traditional finite element method. The analysis of stress-

triaxiality at the center of the cylinder in the simple 3D rolling test is carried out first.

Classical plasticity model is used for the material behavior. Figure 3-20 shows the

evolution of triaxiality at the center. It can be seen that as the deformation increases,
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the triaxiality increases too. Also, the triaxiality is negative in the beginning.
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Figure 3-20: Stress triaxiality at the center of the cylinder plotted against diameter

reduction

To compare the wedge rolling test with a simple tensile test, an axisymmetric

tensile test is simulated. The geometry and mesh of the tensile specimen is shown in

Figure 3-21. The same material as that of the 3D rolling test is used. The specimen

is pulled up to the point of necking and fracture, when there is an abrupt drop in the

load - displacement curve.

Experimental studies [4] have suggested that fracture in non-plug cross-rolling

occurs at about 15% diameter reduction of the cylinder. Hence in the 3D rolling test,

it is assumed that fracture occurs at 15% diameter reduction to enable comparison

with the tensile test and to calculate the calibration constants of the various fracture

criteria of Table 2.1. As shown in Table 3.2, the two processes are considerably
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ciack format A

Figure 3-21: The geometry and mesh of the 2D tensile specimen

Table 3.2: Comparing the tensile test and simple 3D rolling test

Tensile test 3D Rolling test (Fracture
assumed to occur at

15% diameter reduction)

Average stress triaxiality of failed element 0.41 0.24
Equivalent strain to fracture 0.313 0.042

different in terms of average stress triaxiality. Also, the equivalent strain to fracture

is almost an order of magnitude lower in the 3D rolling simulation case.

Assuming fracture at the center of the cylinder at 15% diameter reduction in

the simple 3D rolling test, the values of the calibration constants C of Equation

2.9 have been calculated according to the formulae of Table 2.1. The results are

presented in Table 3.3. The constants are calculated for the simple tension test too

for comparison. It can be seen that the calibration constants are much lower for the

3D rolling test which is expected because of lower average triaxiality conditions. In

order to verify the values for the calibration constants obtained for the 3D rolling
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Table 3.3: Calibration constants for the uncoupled ductile

for tensile test and simple 3D rolling test
failure criteria, evaluated

Fracture Criterion Tensile test 3D Rolling test

Equivalent strain 0.313 0.042

Cockroft-Latham-Oh 0.337 0.038

Hydrostatic stress 0.128 0.010

Clift 1.414E+07 0.126E+07
Brozzo 4.049E+03 0.398E+03
Rice-Race for high triaxiality 0.209 0.033

General Rice-Tracey 0.050 0.009

LeRoy 2.108E+07 0.148E+07
McClintock (hardening coeff = 0.05) 0.601 0.064

(a) Low triaxiality

Figure 3-22: Specimens suggested by Bao
stress triaxiality condition tests

(b) Medium tri-
axiality

and Wierzbicki [35] for low to medium
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test, the fracture criteria need to be calibrated using experiments and numerical

simulations of processes that have similar average stress triaxialities. To be able to

predict crack initiation in the Mannesmann process, one approach is to use the non-

plug piercing experiments and simulations for one particular case of the Mannesmann

process, calculate the fracture criteria constants and use these calibrated constants

for predicting fracture for other geometries and conditions. Another approach is to

perform simpler tests that have similar average stress triaxiality. For very low stress

triaxialities, Bao and Wierzbicki [35] suggest that a pure shear test can be performed,

as shown in Figure 3-22(a). For low to moderate stress triaxialities they suggest a

combined shear and tensile loading test, as shown in Figure 3-22(b).
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Chapter 4

Interface Model based on the

Discontinuous Galerkin Method

The Mannesmann effect was modeled using the element removal method in the previ-

ous chapter. A more fundamental approach to modeling the initiation of fracture

under the conditions of the Mannesmann process consisting of modeling the mi-

cromechanisms of intra and intergrain fracture at high temperature may be pursued.

This requires the ability to describe fracture within the finite element framework with

more detail than available in the element removal technique. The best established

approach in this direction is based on cohesive theories of brittle fracture, in which

cracks are modeled explicitly at the interelement boundaries via specialized interface

elements endowed with a fracture mechanics based traction-separation law [46].

In this approach of modeling fracture, crack initiation and propagation is allowed

along predefined cohesive surfaces that are embedded in the material along likely

crack propagation paths along the internal surfaces of a discretized body [46, 47].The
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cohesive layer opens up when the stresses in the adjoining bulk elements exceed a

cohesive limit, and from then on the thickness of the cohesive element represents the

extent of the crack during the deformation process.

There are some problems associated with this approach. A constitutive law of the

interface chosen is in general independent of the constitutive behavior in the bulk of

the solid. Hence the cohesive interface formulation introduces unphysical numerical

quantities in the stiffness matrix and can lead to problems in wave propagation [48].

The effect of this inconsistency can be minimized by choosing a high initial stiffness of

the cohesive law. But this requires small time steps to avoid instabilities in dynamic

simulations and relaxation of the assumption that the cohesive law is a material

property [48]. In this work, it is proposed to address this problem by formulating the

interface elements within the discontinuous Galerkin (DG) framework.

In the DG method, the problem unknowns are allowed to have discontinuities at

the interelement boundaries in a consistent manner. It is superior to the continuous

formulation in modeling fracture because one can represent the discontinuities that

appear in the solution. The versatility of the DG method is evident in the fact that

recent efforts in this field include applications to non-linear elasticity [49], beams and

plates [50], shells [51], fracture [52] and non-local theories of damage [53]. Compu-

tations involving wave propagation, high strain rates and large plastic deformations

have been carried out to demonstrate and verify the robustness of the method [54].

Apart from being convenient to be implemented along with conventional finite ele-

ment methods, the DG method also lends itself to easy parallel implementation [54]

and is highly scalable.
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Mergheim et al. [52] proposed an approach to model fracture that combines the

discontinuous Galerkin method in the pre-failure regime with the CZM approach in

the post-failure regime. This formulation eliminates the problems with the cohesive

approach discussed earlier while inheriting the advantages of the DG method. In

this chapter, this hybrid approach is applied to an example of simple elastic beam

specimen under tensile loading. Simulation of the Mannesmann process using this

method is left for future work.

The formulations of the DG method, cohesive theory and the proposed combined

approach are now presented. To begin with, the boundary value problem of static

finite deformations of elastic bodies is written as follows [551:

Vo -P + poB = 0 in Bo (4.1)

p=(p on ODBo (4.2)

P-N=Ton &NBO (4.3)

where Bo C R3 is the region of space occupied by the body in its reference configu-

ration, P is the first Piola-Kirchhoff stress tensor, poB are the body forces per unit

reference volume, Vo is the material gradient operator, p is the deformation map-

ping, N is the unit surface normal in the reference configuration and ( and T are

the boundary conditions applied on the displacement ODBO and traction &NBO parts

of the boundary, respectively.

For numerical discretization, the body BO is approximated by a discretized domain

(mesh) Boh as shown in Figure 4-1.
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Figure 4-1: Schematic of the
vision Boh, taken from [49]

aNB

C)DB Bo

discrete representation of elastic domain BO as a subdi-

4.1 Formulation of the DG method

In the DG method, the problem unknowns are allowed to have discontinuities at

interelement boundaries. Henceforth the subscript h added to any symbol denotes the

finite element approximation of the corresponding entity and exists in an appropriate

space that differs from the conventional finite element space in that it allows for jump

discontinuities at interelement boundaries.

The strong form (Equation 4.1) is multiplied with a test function 60p and inte-

grated by parts over the the domain Boh to obtain:

fBOh Ph :V 06hdV + fIBOh h (h)- NdS =

fBOh poB -PhdV + fNBOh 6h TdS V6Wh E Xk (4.4)

where [*] and (o) denote the jump and mean respectively in a generic field * at

the boundary of two elements. This weak form is neither symmetric nor stable.
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3NBo

N

aDBo X~ +

Figure 4-2: Details of two elements Q' and %' of the discretization Boh, taken from
Noels and Radovitzky [49]; aDBO is the Dirichlet boundary, &NBo is the Neumann
boundary, &IBoh is the interior boundary of the discretization; the outward normals
of the two elements are represented

A symmetrization term and a penalty term (to stabilize the method) are added to

Equation 4.4 resulting in the following final weak form of the DG formulation:

fBOh Ph : V06phdV + foiBOh (&hd (C : Vo h) - N + V6 h[ (Ph) - N) dS

± f9 6h1 0 N: K C) : Phl 0 NdS =

fBOh poB -6ohdV + foNBOh 
6 WPh TdS V6 ph E (4.5)

The DG formulation can easily be extended to dynamic problems [54]. Even in

the presence of physical discontinuities in the material, the DG method provides a

rigorous means of ensuring both consistency and stability. Consistency is guaran-

teed because of the use of average numerical fluxes at the interface and stability is

ensured by appropriate quadratic terms in the weak formulation. Also, using the

DG approach one can rigorously enforce the continuity requirement weakly in the-

ories requiring higher-order continuity such as gradient theories of plasticity. The
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consistency, linearized stability in the non-linear range and the convergence rate of

the method have been proved [49]. Computations involving wave propagation, high

strain rates and large plastic deformations have been carried out to demonstrate and

verify the robustness of the method [54].

4.2 Formulation of the cohesive interface approach

In the cohesive zone modeling (CZM) method, fracture is regarded as a phenomenon

in which separation takes place in a cohesive zone at a crack tip when the separating

forces exceed cohesive traction limits [56, 57, 14]. A cohesive fracture law can thus be

formulated giving a relation between an effective opening displacement 6 and traction

t as shown in Figure 4-3. The weak form of Equation 4.4 is the basis of the formulation

(a)

G

2 4 6
8/8,

(c)

G0

. ! -0 - - .8 1.2

8/e C

1

0

1

(b)

2 4 6

(d)

0
0 0.4 08 1.2

8/8x C/

Figure 4-3: Examples of cohesive laws relating normalized effective opening dis-
placement 6 and effective traction t, taken from [46] (a)Reversible Smith-Ferrante
(b)Irreversible Smith-Ferrante (c)Reversible linear (d)Irreversible linear
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for the cohesive interface approach. The material behavior across an inter-element

boundary is governed by a traction-separation law of the interface and the cohesive

formulation is written as:

fBOh Ph V6hdV + faiBoh h t [hJ) dS

fBOh poB 6ohdV + faN BOh 6 h TdS V6Wh E (4.6)

where the traction vector t is determined as a function of the opening displacement

hj according to a chosen cohesive law. Specifically, the traction vector is divided

into normal and tangential components as:

t = tnN + tmM (4.7)

where M is a tangential vector of the mid-interface. An exponential cohesive law of

Smith-Ferrante type can be written as:

tn (6) = e(1-6/6c)6n (4.8)

tm (6) -y'l'-e (1-c)68 (4.9)

where 6n = [ h - NJ and 6, = [Wh - MI are the normal and tangential components

respectively of the interelement jump, 6 = N/726 2 + 6, 2 is an effective opening dis-

placement as seen in Figure 4-3, -y is a parameter assigning different weights to the

normal and tangential opening displacements, o- is the maximum cohesive normal
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traction and 6, is a characteristic opening displacement.

The maximum cohesive traction is nothing but the spall strength of the material

and the area under the cohesive law is its fracture energy. Thus the theory incorpo-

rates a physical basis. It is noteworthy that no assumption needs to be made of any

particular type of constitutive response in the bulk of the material, the extent of crack

growth or the size of plastic zone. Also, there are no assumptions of the direction of

crack propagation and its shape except that cracks can only propagate along element

boundaries. Under dynamic loading conditions, this theory automatically accounts

for rate-dependency of fracture [58].

A constitutive law of the interface thus chosen is independent of the constitutive

behavior in the bulk of the solid. This inconsistency can lead to problems in wave

propagation [48]. The formulation of the cohesive approach within the DG framework

that addresses this problem is now presented.

4.3 The discontinuous Galerkin based interface ap-

proach for modeling fracture

The idea of this approach is that the DG method ensures the weak enforcement of

the continuity of the solution along the interface prior to failure and the cohesive

interface approach controls the jump in the displacements after the failure occurs.

This is done by combining the DG approach with the cohesive interface approach [52]

with a switching factor based on a fracture criterion being met. A binary factor a is
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used to obtain the weak formulation of the proposed method as:

fBOh Ph: VO6phdV + a{f fB h ht Wh) dS}

+ (1 - a) {fLIBOh (J0 h[ (C ' V WOh) - N + [Wh] - (Ph) - N) dS +

foIB h (9 N: -C) : IWoI 9 NdS} =

fBOh poB -6WphdV + fNBOh 
6 h TdS V6h (4.10)

The parameter values a = 0 in the pre-failure regime and a = 1 in the post-failure

regime are chosen. The failure criterion is:

Ph : [N 9 N] + yPh : [N 9 M] - oc > 0 (4.11)

For a smooth transition from DG method to interface approach, the values Ph :

[N 0 N] and Ph : [N 0 M] are respectively ensured to be the normal and tangential

components respectively of t for [phj = 0.

4.4 Finite element implementation

For finite element implementation, the symmetrizing term of the weak formulations

is ignored for ease and simplicity of implementation. This term is not necessary as

the weak enforcement of the C0 continuity at element interfaces is already taken care

of by the quadratic stabilization term. The weak form then reduces to:

fint (x) + f' (x) = fext (4.12)
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where

fint 6x = Oh Ph : Vop hdV (4.13)

f ext. 6X = B poB- 6'WhdV + j oW 'TdS (4.14)

constitute respectively the conventional internal and external virtual work leading

to the customary unmodified finite element arrays fint and fext and the interelement

boundary terms leading to the following nodal array that contributes to the internal

force array:

f' -6X = affIBOh V t ( Whj) dS}

+ (1 - a) {faIBOlh [PhV (Ph) - NdS +

faIBh E 9P] 0 N : K3C) P hj 0 NdS} (4.15)

Taking the conventional finite element spatial discretization of bodies as a base, zero

thickness surface-like interface elements are inserted between the bulk finite elements

[59, 60, 46, 49]. In the post-failure regime, thickness of these cohesive elements varies

according to a cohesive law, thereby accommodating the cohesive zone approach.

The interface element consists of two 6-node surface elements (labeled X- and X+)

as shown in Figure 4-4(b). These two surfaces coincide in reference space and make

up one cohesive element with 12 nodes.

The interpolation of the position, the deformation mapping and its jumps in the

reference configuration are performed using the standard shape functions of the sur-
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Figure 4-4: 12-node interface element compatible with 3D tetrahedral elements

face element Na( ), a E [1, n], where = (1,, 2) are the natural coordinates. Thus,

E ZNa ()Xal
a=1

IPhJ W~ =ES Na ( ) [4a a ~
a=1
n

j[(~hJ () E5Na ( ) [64- 6X-]
a=1

(4.16)

(4.17)

(4.18)

where X1 and x, a E [1, n] are the nodal coordinates of the surface elements in the

reference and deformed configuration, respectively. The interelement outer surface

normal N- corresponding to element Q'- evaluated on the mid surface is obtained

as:

=G1 ( ) x G2( )

67 X G2( )j

67

(4.19)



in which
n

Ga( ) = X,a = ZNa,a( )Xa (4.20)
a=1

are the tangent basis vectors, a E [1, 2], Xa = and similarly xa = 2Q . Fur

ther details of the finite element implementation are provided in Noels and Radovitzky

[49].

4.5 Application to a beam under tensile loading

In order to demonstrate the proposed interface method, the problem of tensile loading

of a beam is considered. Figure 4-5 shows a simple beam with a square cross-section,

discretized symmetrically using 10-node quadratic tetrahedral elements. A single

layer of interface elements is inserted between the bulk elements at the mid-section

of the beam parallel to face 'a' and face 'b'. Faces 'c' and 'd' are constrained along

Face b

Face 'f

Face d

Face afL

Face e* z
Face Vc

h

Figure 4-5: Geometry and mesh of a simple beam specimen
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Table 4.1: Geometrical and material properties used in the simulation of the propa-
gation of a stress wave in an elastic medium

Properties Values

Length L = 1 m
Height h = 0.1 m
Density po = 10000 kg-m- 3

Young modulus E = 10000 N-mm 2

Poisson ratio v = 0
Initial velocity vo = 25 m-s-1

Table 4.2: Properties of the interface element

Properties Values

,3 4
7 0.707
ac 1000 MPa

6C 5.46 pm

X axis, faces 'e' and 'f' along Y axis and face 'b' along Z axis. Face 'a' is imposed

with a constant velocity vo in the +Z direction. The geometric dimensions, material

properties and initial velocity are given in Table 4.1. The values of parameters of the

proposed interface law are given in Table 4.2. The cohesive law used in the method

is a Smith-Ferrante envelope as shown in Figure 4-3.

The neo-Hookean material model extended to the compressible range is considered

without Poisson effect (Table 4.1), so as to make the wave propagation uniaxial in

nature. The strain energy density function is

W = ( logJ - p log J+ (I1 -3), (4.21)
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where A and p are the Lame constants, J= det (F) and I, = tr(C).
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Figure 4-6: Simulation of the beam under tension; contours correspond to o stresses;

there is a layer of interface elements at the middle of the beam where a crack opens

up

Figure 4-6 shows the snapshots of the beam at various stages in the simulation.

As the beam gets extended, the deformation gives rise to increasingly large tensile

stresses in the beam. At a certain stage these stresses exceed the cohesive limit at

the middle of the beam. A crack opens up at the interface layer and the interface

elements follow the cohesive law. Because the boundary conditions persist in the

simulation, the crack size increases and becomes comparable to the dimensions of the

beam itself.
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4.6 Stress wave propagation problem

In order to demonstrate the advantages of the DG method based cohesive interface

approach over the simple cohesive interface method, the problem of propagation of a

uniaxial stress wave in an elastic medium passing through multiple layers of interface

elements is considered. The simple beam specimen of Figure 4-5 is used again. There

are interface elements between all the bulk elements in this case. The boundary

conditions in this case are different too. Instead of face 'a', now the entire specimen is

given an initial velocity vo in the +Z direction. Again faces 'c' and 'd' are constrained

along X axis, faces 'e' and 'f' along Y axis and face 'b' along Z axis. Since face 'b' is

constrained along Z axis, a tensile-wave originates there and moves toward face 'a' at

the speed of sound. The velocity vo in this case is 0.1 m-s- 1 . In order to exaggerate

the difference between the cohesive interface approach and the proposed approach

for purpose of clarity, the parameters of the cohesive law in this section are taken as

a- = 6000 MPa and 6, = 5.46x10- 4m, where 6, is far from the optimized value.

At time t = 0 a tensile wave originates in face 'b' and propagates towards face 'a'

at the speed of sound. It passes through the bulk and interface elements of the beam

(Figure 4-7) and reaches face 'a', and the entire beam is under tension. At this stage

the velocity of nodes on face 'a' ideally changes from +0.1 m/s to -0.1 m/s and the

tensile wave reflects instantaneously. The wave passes through the beam again before

reaching face 'b' to complete one cycle of wave propagation. The velocity given to

the beam is low, hence the stresses are low such that the interface layer does not

open up i.e., there is no fracture. Since there is no fracture, the conventional finite
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element (Galerkin) solution is taken as the reference for comparison. In addition, the

proposed approach is essentially a DG approach because the failure criterion is never

reached and a = 0 always.

str8

1.1 E+06
I E+06
900000
800000
700000
600000
500000
400000
300000
200000

Z 100000

Figure 4-7: Propagation of a uniaxial tensile stress wave in the simple beam with
interface elements in between all the bulk elements; contours correspond to -33 stresses

To compare the three approaches, the time evolution of face 'a' velocity is plotted

as shown in Figure 4-8. It shows that the in the case of cohesive interface approach

the stress wave reaches the opposite end of the beam at a much later time. This

shows that the cohesive formulation interferes with stress wave propagation in the

pre-failure stage.

To avoid this problem, Espinosa and Zavattieri [48] have pointed that one could

increase the stiffness of the interface element, represented by initial slope of the co-

hesive law, such that the wave speed in the material is not affected by the interface

elements. As the slope of the function that specifies the traction-separation law

increases, the wave speed in a material with DG method based cohesive interface

elements reaches that of a material without any cohesive elements, as is desired in

case of stress wave propagation in the absence of fracture. The cohesive interface
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Figure 4-8: Time evolution of face 'a' velocity; figure shows that the tensile stress
wave is delayed in the case of pure cohesive interface approach

approach and the proposed approach indeed yield similar results, as shown in Figure

4-9, when an appropriate stiffness for the cohesive law is used (o- = 6000 MPa and

,= 5.46x10-6 m).

* Galedn (Ideal Soauion)
0.15 -- Cohesive Law

Hybdd (DG + Cohesve Law)
0.1 d n wM0- 4 " 6 4

0.05

E 0
i 0 .5 1 1.5 28 -0.05

-0.15

-02
Time (ms)

Figure 4-9: Time evolution of face 'a' velocity; figure shows that for an appropriate
choice of the cohesive law, both the cohesive and proposed approaches yield similar
results

However, as pointed out in Espinosa and Zavattieri [48], the increase of stiffness

comes accompanied with a decrease of the stable time step of the dynamic simulation.
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Table 4.3: Comparison of the stable time step values for different interface approaches
in the stress wave propagation problem

Formulation Stable time step, At,

Continuous Galerkin 5.9014 ps

Interface layer only at the middle of the beam:
Purely cohesive 1.1803 ps
DG method based cohesive 5.9014 ps

Interface layer between all bulk elements:
Purely cohesive 0.5311 ps
DG method based cohesive 3.3638 ps

For the problem considered here, Table 4.3 gives the comparison between the stable

time steps. For this comparison, the parameter values of Table 4.2 were used. The

stable time step for the pure cohesive law approach in this case is about 6 times

smaller than that required for the hybrid law. For more complex problems, this

difference in stable time steps presents a substantial advantage in simulation time for

the DG method based approach.

Thus the initial slope of the cohesive law has to be large enough to mask the

disparity between the interface layer and bulk elements in wave propagation, but

small enough so as to be numerically stable for a given stable time-step. It should

also be noted that the assumption that the traction-separation law is characteristic

for the material is being violated. A different approach proposed is to dynamically

check for the traction on the interface of two bulk elements and introduce a cohesive

element between them only when the failure criterion is satisfied. However, this is

a very complex proposition, especially since the incremental addition of interface

elements is difficult to parallelize. Instead, by using the proposed DG framework
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based approach, the effects on stress-wave propagation in the pre-failure stage are

completely discarded. The dependence of the stable time-step on the initial slope of

the cohesive law is also eliminated. Since the proposed formulation is implemented

in the DG framework itself, the computational advantages of DG methods including

scalability as mentioned in Section 4.1 are inherited.

75



IE

76



Chapter 5

Conclusion

5.1 Summary and conclusions

The Mannesmann effect has been simulated using the GTN model. The tensile stress

state at the center of the cylinder has been verified. The plastic strain profiles,

evolution of porosity, contribution of nucleation of new voids and growth of existing

voids to the total VVF and its evolution have been analyzed. A parametric study has

been done to see how the parameters influence the results of the Mannesmann process

simulation. For a set of parameter values, it has been demonstrated that fracture will

occur at the center of the cylinder. The shape of the deformed body, the analysis of

the stress profiles, strain profiles and the porosity distribution verify the correctness

of the simulations and the applicability of the model to the Mannesmann process.

However, the model overestimates the amount of diameter reduction required for void

formation at the center. This is because the values of the parameters used are not

calibrated to the Mannesmann conditions. The ranges of values reported in literature
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of these parameters do not correspond to high temperature, low stress triaxiality

conditions. With the help of a set of experiments and numerical simulations, the

calibration can be done. Weighted accumulated plastic strain fracture criteria have

been implemented, and the critical damage constants have been calculated.

The formulations for the discontinuous Galerkin method, cohesive interface ap-

proach and a combined method based on these two approaches have been presented.

The DG based cohesive interface formulation avoids the introduction of non-physical

terms in the pre-failure regime. It also presents some advantages in terms of the stable

time step and scalability of the computational modeling. It has been implemented for

a simple specimen under uniaxial loading conditions. The advantages of the proposed

method over that of pure cohesive interface approach have been demonstrated.

It must be noted that in general the interface models do not explicitly account for

the effects of effective plastic strain or the stress triaxiality on ductile fracture.Because

the cohesive law is a phenomenological representation of the ductile fracture processes

of void growth and coalescence, and the creep behavior at high temperature, all these

effects can in principle be accounted for in the interface approach by modifying the

cohesive law to be dependent on parameters such as stress triaxiality and effective

plastic strain of the adjacent bulk elements.

5.2 Future work

The GTN model parameters and the damage limits of the weighted accumulated

plastic strain criteria need to be calibrated for the Mannesmann process. The hybrid
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interface model that has been demonstrated for a simple beam under tensile loading

can be applied for the more complex geometry of Mannesmann process. The creep

behavior of the material can be taken into account explicitly. At the expense of

complicating the model, polycrystal plasticity can be considered and competition

between intra and inter-grain boundary ductile fracture can be studied.
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