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Abstract

A Newton-Krylov method is developed for the solution of the steady compressible Navier-
Stokes equations using a Discontinuous Galerkin (DG) discretization on unstructured meshes.
An element Line-Jacobi preconditioner is presented which solves a block tridiagonal system
along lines of maximum coupling in the flow. An incomplete block-LU factorization (Block-
ILU(0)) is also presented as a preconditioner, where the factorization is performed using
a reordering of elements based upon the lines of maximum coupling used for the element
Line-Jacobi preconditioner. This reordering is shown to be far superior to standard reorder-
ing techniques (Nested Dissection, One-way Dissection, Quotient Minimum Degree, Reverse
Cuthill-Mckee) especially for viscous test cases. The Block-ILU(0) factorization is performed
in-place and a novel algorithm is presented for the application of the linearization which
reduces both the memory and CPU time over the traditional dual matrix storage format.
A linear p-multigrid algorithm using element Line-Jacobi, and Block-ILU(0) smoothing is
presented as a preconditioner to GMRES. The coarse level Jacobians are obtained using a
simple Galerkin projection which is shown to closely approximate the linearization of the
restricted problem except for perturbations due to artificial dissipation terms introduced
for shock capturing. The linear multigrid preconditioner is shown to significantly improve
convergence in terms of the number of linear iterations as well as to reduce the total CPU
time required to obtain a converged solution. A parallel implementation of the linear multi-
grid preconditioner is presented and a grid repartitioning strategy is developed to ensure
scalable parallel performance.
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Chapter 1

Introduction

Discontinuous Galerkin (DG) discretizations have become increasingly popular for

achieving accurate solutions of conservation laws. Specifically, DG discretizations

have been widely used to solve the Euler and Navier-Stokes equations for convection

dominated problems [6, 7, 8, 13, 14, 5]. DG methods are attactive since the element-

wise discontinuous representation of the solution provides a natural way of achieving

higher-order accuracy on arbitrary, unstructured meshes. A detailed overview of DG

methods for the discretization of the Euler and Navier-Stokes equations is provided by

Cockburn and Shu [14]. They, among others [19, 29], have noted that while DG dis-

cretizations have been extensively studied, development of solution methods ideally

suited for solving these discretizations have lagged behind. In this work a Newton-

GMRES approach using a linear multigrid preconditioner is developed as a solution

method for DG discretizations of the steady Navier-Stokes equations.

The use of multigrid to solve DG discretizations of compressible flows was first

presented by Fidkowski [17] and Fidkowski et al. [19]. Fidkowski et al. used a p-

multigrid scheme with an element-line smoother to solve the non-linear system of

equations. The Newton-GMRES approach has been widely used for finite volume

discretizations of the Euler and Navier-Stokes equations [1, 12, 11, 36, 25, 22, 30].

In the context of DG discretizations, GMRES was first used to solve the steady 2D

compressible Navier-Stokes equations by Bassi and Rebay [8, 9]. GMRES has also

been used for the solution of the linear system arising at each iteration of an implicit

13



time stepping scheme for the DG discretization of the time dependent Euler or Navier-

Stokes equations [37, 16, 34]. Persson and Peraire [34] developed a two level scheme as

a preconditioner to GMRES to solve the linear system at each step of an implicit time

stepping scheme. They used an ILU(0) smoother for the desired p and solved a coarse

grid problem (p = 0 or p = 1) exactly. Recently, several other authors have used p-

multigrid methods to solve DG discretizations of the Euler or Navier-Stokes equations

[20, 29, 15, 23]. Natase and Mavriplis [29, 15] used both p-multigrid (where coarse

solutions are formed by taking lower order approximations within each element), and

hp-multigrid, where an h-multigrid scheme was used to provide a solution update for

the p = 0 approximation. Natase and Mavriplis used this hp-multigrid scheme with

an element Block-Jacobi smoother to solve the non-linear system as well as to solve

the linear system arising from a Newton scheme.

This work presents a linear p-multigrid scheme as a preconditioner to GMRES

for the solution of the steady state Euler and Navier-Stokes equations using a DG

discretization. While results presented here are used to solve steady state problems,

the methods are also suitable for solving time dependent problems. An overview of

the DG discretization and the Newton-Krylov approach for solving systems of non-

linear conservation laws is presented in Chapter 2. Chapter 3 presents the Block-

Jacobi, Line-Jacobi and Block-ILU(0) stationary iterative methods that are used as

single-level preconditioners or as smoothers on each level of the linear multigrid pre-

conditioner. By considering the Block-ILU preconditioner as a stationary iterative

method, a memory efficient implementation is developed which requires no additional

storage for the incomplete factorization, while reducing the total time required per

linear iteration compared to the traditional dual matrix storage format. Chapter 4

presents a new matrix reordering algorithm for the Block-ILU factorization based

upon lines of maximum coupling between elements in the flow. This line reordering

algorithm is shown to significantly improve the convergence behaviour, especially for

viscous problems. Chapter 5 presents a linear multigrid algorithm where the coarse

level Jacobians are formed using a simple Galerkin projection. The Galerkin projec-

tion is shown to be nearly equivalent to the linearization of a restricted discretization,

14



except in the case of strong shocks where artificial dissipation terms introduced for

shock capturing add an h/p dependence to the governing equations. Chapter 5 also

presents numerical results which show that the linear multigrid algorithm reduces

both the number of linear iterations and the time required to obtain a converged

solution. Finally, Chapter 6 presents the parallel implementation of the linear multi-

grid preconditioner and discusses additional considerations required for developing a

scalable parallel preconditioning algorithm.
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Chapter 2

Solution Method

2.1 DG Discretization

The time dependent, compressible Navier-Stokes equations using index notation are

given by:

∂tuk + ∂iFki(u) − ∂iF
v
ki(u) = 0, k ∈ [1, ns] (2.1)

where uk is the kth component of the conservative state vector u = [ρ, ρvi, ρE], ρ

is the density, vi are the component of the velocity, and E is the total energy. For

two- and three- dimensional flows, ns = 4 and 5, respectively (assuming turbulence

modeling or other equations are not included). Fki(u) and F v
ki(u) are inviscid and

viscous flux components, respectively, such that Equation (2.1) is a compact notation

for the conservation of mass, momentum, and energy.

The DG discretization of the Navier-Stokes equations is obtained by choosing a

triangulation Th of the computational domain Ω composed of triangular elements κ,

and obtaining a solution in Vp
h, the space of piecewise polynomials of order p, which

satisfies the weak form of the equation. We define uh to be the approximate solution

in (Vp
h)ns, while vh ∈ (Vp

h)ns is an arbitrary test function. The weak form is obtained

by multiplying Equation (2.1) by the test functions and integrating over all elements.

17



The weak form is given by

∑

κ∈Th

∫

k

vk∂tukdx + Rh(uh,vh) = 0, (2.2)

where,

Rh(uh,vh) =
∑

κ∈Th

[Eκ(uh,vh) + Vκ(uh,vh)] (2.3)

Eκ(uh,vh) = −

∫

κ

∂ivkFkidx +

∫

∂κ

v+
k F̂ki(u

+
h ,u−

h )n̂ids (2.4)

and Vκ(uh,vh) is the discretization of the viscous terms. In Equation (2.4), ()+ and

()− denote values taken from the inside and outside faces of an element, while n̂ is

the outward-pointing unit normal. F̂ki(u
+
h ,u−

h ) is the Roe numerical flux function

approximating Fki on the element boundary faces [38]. The viscous terms, Vκ(uh,vh)

are discretized using the BR2 scheme of Bassi and Rebay [8]. The BR2 scheme

is used because it achieves optimal order of accuracy while maintaining a compact

stencil with only nearest neighbour coupling. Further details of the discretization of

the viscous terms may be found in Fidkowski et al [19].

The discrete form of the equations is obtained by choosing a basis for the space

Vp
h. The solution vector uh(x, t) may then be expressed as a linear combination of

basis functions vhi
(x) where the coefficients of expansion are given by the discrete

solution vector Uh(t), such that:

uh(x, t) =
∑

i

Uhi
(t)vhi

(x) (2.5)

Two sets of basis functions are used in the context of this work: a nodal Lagrange

basis and a hierarchical basis. Further details of the bases may be found in Fidkowski

et al [19].

Having defined a basis for the space Vp
h the weak form of the Navier-Stokes equa-

18



tions given in Equation (2.2) can be written in semi-discrete form as:

Mh

dUh

dt
+ Rh(Uh(t)) = 0, (2.6)

where Rh is the discrete non-linear residual such that Rh(Uh)i = Rh(uh,vhi
), while

Mh is the mass matrix given by

Mhij
=

∫

κ

vhi
vhj

dx. (2.7)

Since the basis functions are piecewise polynomials which are non-zero only within a

single element, the mass matrix is block-diagonal.

In order to discretize Equation (2.6) in time, we introduce a time integration

scheme given by:

Um+1
h = Um

h −

(

1

∆t
Mh +

∂Rh

∂Uh

)

Rh(U
m
h ) (2.8)

To obtain a steady state solution of the Navier-Stokes equations we seek a solution

Uh satisfying:

Rh(Uh) = 0 (2.9)

The steady state solution is obtained by using the time integration scheme given in

Equation (2.8) and increasing the time step ∆t, such that ∆t → ∞. Directly setting

∆t = ∞ is the equivalent of using Newton’s method to solve Equation (2.9), however

convergence is unlikely if the initial guess is far from the solution. On the other

hand, if the solution is updated using Equation (2.8), then the intermediate solutions

represent physical states in the time evolution of the flow, and convergence is more

likely.
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2.2 Linear System

The time integration scheme given by Equation (2.8) requires the solution of a large

system of linear equations of the form Ax = b at each time step, where

A =
1

∆t
Mh +

∂Rh

∂Uh

x = ∆Um
h b = −Rh(U

m
h ). (2.10)

The matrix A is commonly refered to as the Jacobian matrix. Since the Jacobian

matrix is derived from the DG discretization, it has a special structure which may

be taken advantage of when solving the linear system. The Jacobian matrix has

a block-sparse structure with Ne block rows of size nb, where Ne is the number

of elements in the triangulation Th, while nb is the number of unknowns for each

element. Here nb = ns × nm, where nm is the number of modes per state. nm is a

function of the solution order p and the spatial dimension, as summarized in Table 2.1.

Each block row of the Jacobian matrix has a non-zero diagonal block, corresponding

p nm, 2D nm, 3D
0 1 1
1 3 4
2 6 10
3 10 20
4 15 35

p (p+1)(p+2)
2

(p+1)(p+2)(p+3)
6

Table 2.1: Number of modes per element, nm, as a function of solution order, p

to the coupling of states within each element, and nf off-diagonal non-zero blocks

corresponding to the coupling of states between neighbouring elements, where nf

is the number of faces per element (3 and 4 for 2D triangular and 3D tetrahedral

elements, respectively). When the time step, ∆t, is small, the Jacobian matrix is

block-diagonally dominant and the linear system is relatively easy to solve iteratively.

On the other hand as the time step increases the coupling between neighbouring

elements becomes increasingly important and the linear system generally becomes

more difficult to solve.
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2.3 Linear Solution Method

The block-sparse structure of the Jacobian matrix and the large number of un-

knowns suggest the use of an iterative method, more specifically a Krylov-subspace

method, to solve the linear system. Since the Jacobian matrix is non-symmetric

(though structurally symmetric), the method of choice is the restarted GMRES

[39, 40] algorithm which finds an approximate solution, x̃, in the Krylov subspace,

K = {b, Ab, A2b, ...Ak−1b}, that minimizes the L-2 norm of the linear residual

r = b− Ax̃.

The convergence of the GMRES algorithm has been shown to be strongly depen-

dent upon eigenvalues of the Jacobian matrix, A [39, 40, 42]. In order to improve

the convergence properties of GMRES, a preconditioner must be used which trans-

forms the linear system Ax = b into a related system P−1Ax = P−1b with better

convergence properties. Though the preconditioner, P , is presented as a matrix, any

iterative method may be used as a preconditioner. A goal of this work is to develop

effective preconditioning techniques for DG discretizations of convection-dominated

flows which result in fast convergence of the GMRES algorithm in terms of number

of iterations as well as computational effort.

2.4 Residual Tolerance Criterion

When solving the DG discretization of the steady-state Navier-Stokes equations using

the time stepping scheme presented in Equation (2.8), it is often unnecessary to solve

the linear system of equations exactly at each iteration. When the time step is small,

or the solution estimate is far from the exact solution, the linear system only needs to

be solved to a limited tolerance, which depends upon the non-linear residual. Kelley

and Keyes [21] considered three phases of a time stepping scheme in order to solve

the steady state Euler equations: the initial, midrange, and terminal phases. Kelley

and Keyes proved super-linear convergence of the non-linear residual in the terminal

phase of an inexact Newton iteration given sufficient reduction of the linear residual
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in each iteration. In this section an exit criterion is developed for the solution of

the linear system in order to realize the super-linear convergence during the terminal

phase. In order to be able to develop an exit criterion for the solution of the linear

system we consider the convergence of Newton’s method to solve Equation (2.9) .

The solution update is given by:

Um+1
h = Um

h −

(

∂Rh

∂Uh

)−1

Rh(U
m
h ), (2.11)

where Um
h is the approximate solution at iteration m of the Newton’s method. Defin-

ing ǫm
h = Uh − Um

h to be the solution error at iteration m, quadratic convergence of

the error can be proven as ǫm
h → 0. Namely,

∣

∣

∣

∣ǫm+1
h

∣

∣

∣

∣ = C1 ||ǫ
m
h ||

2 , (2.12)

for some constant C1[21]. Similarly quadratic convergence of the solution residual is

observed,

∣

∣

∣

∣Rh(U
m+1
h )

∣

∣

∣

∣ = C2 ||Rh(U
m
h )||2 , (2.13)

for some different constant C2. Based on this observation, an estimate of the reduction

in the solution residual may be given by:

∣

∣

∣

∣Rh(U
m+1
h )

∣

∣

∣

∣

||Rh(U
m
h )||

∼

(

||Rh(U
m
h )||

∣

∣

∣

∣Rh(U
m−1
h )

∣

∣

∣

∣

)2

= (dm)2, (2.14)

where dm =
||Rh(Um

h
)||

||Rh(Um−1

h
)||

, is the decrease factor of the non-linear residual at iteration

m. When the expected decrease of the non-linear residual is small, it may not be

necessary to solve the linear system at each Newton step exactly in order to get an

adequate solution update. It is proposed that the linear system given by Ahxh = bh

should have a reduction in linear residual proportional to the expected decrease in

the non-linear residual. Defining the linear residual at linear iteration k to be rk
h =

22



bh − Ahx
k
h, the linear system is solved to a tolerance of:

||rn
h||

||r0
h||

≤ K(dm)2, (2.15)

where K is a user defined constant, typically chosen in the range k = [10−3, 10−2].

Since the non-linear residual or the decrease factor may increase at some iteration m,

the tolerance for the linear system presented in Equation (2.15) is modified to be:

||rn
h||

||r0
h||

≤ K (min {1, dm})2 . (2.16)

Since the linear residual in the 2-norm is not available at each GMRES iteration

and computing this linear residual can be computationally expensive, the precon-

ditioned linear residual is used, which can be computed essentially for free at each

GMRES iteration. This criterion for the reduction of the linear residual is then used

to determine n, the number of GMRES iterations to perform each Newton step.
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Chapter 3

In-Place Preconditioning

3.1 Stationary Iterative Methods

Stationary iterative methods used to solve the system of linear equations Ax = b

involve splitting the matrix A into two parts such that A = M +N , where M in some

sense approximates the matrix A and is relatively easy to invert. Since an iterative

scheme is typically used directly as a preconditioner to GMRES, M is commonly

refered to as the preconditioning matrix. The principle behind stationary iterative

techniques is to rearrange the system of equation to solve for x:

Ax = b

(M + N)x = b

Mx = b− Nx

x = M−1(b− Nx) (3.1)

In this form, x may be updated iteratively as

xk+1 = M−1(b− Nxk). (3.2)
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An equivalent form of Equation (3.2) is

xk+1 = xk + M−1rk, (3.3)

where rk is the linear residual given by

rk = b− (M + N)xk

= b− Axk. (3.4)

In this form it is also convenient to introduce the concept of under-relaxation, where

only a fraction of the solution update is taken at each iteration:

xk+1 = xk + ωM−1rk (3.5)

= (1 − ω)xk + ωM−1(b − Nxk). (3.6)

In practice, stationary iterative methods involve a preprocessing stage and an

iterative stage. The iterative stage involves repeated solution updates according to

Equation (3.5) or Equation (3.6), where Equation (3.6) is used if the application of

N is computationally less expensive than the application of A, otherwise Equation

(3.5) is used. In addition, if the stationary iterative method is used as a smoother for

linear multigrid, then the iterative stage will involve repeated calculation of the linear

residual, r, using Equation (3.4). In the preprocessing stage the matrix A is factorized

such that the application of M−1, M , N and A in Equations (3.4), (3.5), and (3.6) may

be evaluated at a fraction of the computational cost of the preprocessing stage. In our

implementation, the preprocessing stage is performed in place such that the original

matrix A is rewritten with a factorization of M . As a result the iterative method uses

only the memory required to store the original matrix A, with no additional memory

storage required for M , M−1 or N .
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3.2 Block-Jacobi Solver

The first and most basic stationary iterative method used in this work is a Block-

Jacobi solver. The Block-Jacobi solver is given by choosing M to be the block-

diagonal of the matrix A, where each block is associated with the coupling between

the states within each element, while the coupling between elements is ignored. In

the preprocessing stage each diagonal block is LU factorized and the factorization, F ,

is stored, where

F =











LU(A11) A12 A13

A21 LU(A22) A23

A31 A32 LU(A33)











. (3.7)

This factorization allows for the easy application of both M and M−1 during the

iterative stage. N is given by the off-diagonal blocks of A which are not modified in

the preprocessing stage. Table 3.1 gives the asymptotic operation counts per element

for forming F (given A), as well as the application of M−1, M , N and A. The

operation counts presented in Table 3.1 are asymptotic estimates, in that lower order

terms in nb have been ignored. The application of A is computed as the sum of

the applications of M and N . Since the application of A is computationally more

expensive than the application of N , the Block-Jacobi iterative step uses Equation

(3.6).

Operation Operation Count 2D 3D
Form F 2

3
n3

b
2
3
n3

b
2
3
n3

b

x = M−1x 2n2
b 2n2

b 2n2
b

y = Mx 2n2
b 2n2

b 2n2
b

y = Nx 2nfn
2
b 6n2

b 8n2
b

y = Ax 2(nf + 1)n2
b 8n2

b 10n2
b

Table 3.1: Block-Jacobi solver asymptotic operation count per element
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3.3 Line-Jacobi Solver

The second stationary iterative method presented in this work is a Line-Jacobi solver.

The Line-Jacobi solver is given by forming lines of maximum coupling between ele-

ments and solving a block-tridiagonal system along each line. The coupling between

elements is determined by using a p = 0 discretization of the scalar transport equa-

tion:

∇ · (ρuφ) −∇ · (µ∇φ) = 0

The lines are formed by connecting neighbouring elements with maximum coupling.

For purely convective flows, the lines are in the direction of streamlines in the flow.

For viscous flows solved using anisotropic grids, the lines within the boundary layer

often are in non-streamline directions. Further details of the line formation algorithm

are presented in the theses of Fidkowski [17] and Oliver [33].

Using the notation previously presented for stationary iterative methods, M is

given by the block-tridiagonal systems corresponding to the lines of maximum cou-

pling, while N is given by the blocks associated with the coupling between elements

across different lines. In the preprocessing stage M is factorized using a block-variant

of the Thomas algorithm given by:

F =











LU(A11) A12 A13

A21 LU(A
′

22) A23

A31 A32 LU(A
′

33)











(3.8)

where, A
′

22 = A22 − A21A
−1
11 A12 and A

′

33 = A33 − A32A
′−1

22 A23. The corresponding LU

factorization of M is given by:

M =











A11 A12

A21 A22 A23

A32 A33











=











I

A21A
−1
11 I

A32A
′−1
22 I





















A11 A12

A
′

22 A23

A
′

33











(3.9)
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The factorization given by Equation (3.8) is stored as opposed to the LU factorization

given by Equation (3.9) in order to reduce the computational cost of the preprocess-

ing stage. The reduction in computational cost of storing the factorization given by

Equation (3.8) is offset by an increase in the computational cost of applying M and

M−1 during the iterative stage. The total computational cost for both the prepro-

cessing and iterative stages using the factorization given by Equation (3.8) is lower

than the LU factorization given by Equation (3.9), as long as the total number of

linear iterations is less than the block size, nb.

Table 3.2 gives the asymptotic operation counts per element for the preprocessing

stage as well as the application of M−1, M , N and A. The application of A is once

again computed as a sum of the applications of M and N . As with the Block-Jacobi

solver, the application of N is computationally less expensive than the application of

A, so that solution update for the Line-Jacobi solver is given by Equation (3.6).

Operation Operation Count 2D 3D
Form F 14

3
n3

b
14
3
n3

b
14
3
n3

b

x = M−1x 8n2
b 8n2

b 8n2
b

y = Mx 8n2
b 8n2

b 8n2
b

y = Nx 2(nf − 2)n2
b 2n2

b 4n2
b

y = Ax 2(nf + 2)n2
b 10n2

b 12n2
b

Table 3.2: Line-Jacobi solver asymptotic operation count per element

3.4 Block-ILU Solver

The final iterative method presented in this work is a block incomplete-LU factoriza-

tion (Block-ILU). ILU factorizations have been successfully used as preconditioners

for a variety of aerodynamic problems [1, 11, 36, 25, 22, 34, 30]. Typically the LU

factorization of a sparse matrix will have a sparsity pattern with significantly more

non-zeros, or ”fill”, than the original matrix. The principle of an incomplete-LU fac-

torization is to produce an approximation of the LU factorization of A, which requires

significantly less fill than the exact LU factorization. The incomplete LU factoriza-
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tion, L̃Ũ , is computed by performing Gaussian elimination on A but ignoring values

which would result in additional fill. The fill level, k, indicates the distance in the

sparsity graph of the neighbours in which coupling may be introduced in the ILU(k)

factorization. In the context of this work ILU(0) is used, hence no additional fill out-

side the sparsity pattern of A is permitted. In order to simplify the notation, for the

remainder of this work we use ILU to denote an ILU(0) factorization unless explicitly

stated otherwise.

Though incomplete-LU factorizations are widely used, most implementations re-

quire the duplicate storage of both the linearization A, and the incomplete factor-

ization, L̃Ũ . Since in most aerodynamic applications the majority of the memory is

used for the storage of the linearization and its factorization, such duplicate memory

storage may limit the size of the problems which may be solved on a given machine

[11, 27, 34]. In this section an algorithm is developed enabling the incomplete-LU

factorization to be performed in-place, such that no additional memory is required for

the storage of the factorization. This in-place storage format is an enabling feature

which allows for the solution of larger and more complex problems on a given ma-

chine. Assuming the majority of the memory is used for the storage of the Jacobian

matrix and the Krylov vectors, the increase in the size of the problem which may

be solved on a given machine is given by 2+η

1+η
, where η is the ratio of the memory

required to store the Krylov vectors to the memory required to store the Jacobian

matrix. For a typical range η ∈ [0.1, 1.0], this represents an increase of 50-90% in the

size of problem which may be solved.

In order to be able to develop a scheme where the memory usage is no greater than

the cost of the incomplete factorization it is useful to consider the ILU factorization

as a stationary iterative method. In the context of the stationary iterative methods

presented previously, M is given by the product L̃Ũ , such that L̃Ũ is the exact LU

factorization of M . It can be easily shown that A differs from M only where fill is

dropped in the incomplete LU factorization. Correspondingly, N is given by a matrix

containing all fill which was ignored in the ILU factorization. To construct an in-place

storage for ILU, note that both A and N may be reconstructed from L̃Ũ given the
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original sparsity pattern of A. Namely, A can be computed by taking the product

L̃Ũ and ignoring those values not within the original sparsity pattern. Similarly N

can be computed by taking the values of −L̃Ũ outside the sparsity pattern of A.

Though recomputing A and N in this manner is possible, it is impractical since the

computational cost is of the same order as the original ILU factorization and requires

additional memory storage. Fortunately, only the application of A or N is required,

and hence it is possible to compute these products efficiently using L̃ and Ũ .

The remainder of this section describes the implementation and computational

efficiency of the in-place Block-ILU. The analysis for the development of the efficient

storage format for the Block-ILU solver is based on the assumption that no three

elements in the computational grid all neighbour one another. While this assumption

may be violated for some computational grids, such violations occur infrequently,

such that the analysis based on this assumption is sufficient.

As with the Block-Jacobi and Line-Jacobi solvers, the Block-ILU solver involves

a preprocessing stage and an iterative stage. In the preprocessing stage, the block

incomplete-LU factorization of A is performed in-place where A is replaced by the

factorization F . An example of one step of the factorization is given below:





























A11 A13 A15 A16

A22

A31 A33

A44

A51 A55

A61 A66





























⇒





























LU(A11) A13 A15 A16

A22

(A31A
−1
11 ) A

′

33

A44

(A51A
−1
11 ) A

′

55

(A61A
−1
11 ) A

′

66





























Where A
′

33 = A33−A31A
−1
11 A13, A

′

55 = A55−A51A
−1
11 A15, and A

′

66 = A66−A61A
−1
11 A16.

Based on the assumption that no three elements all neighbour one another, only two

of the blocks Aij , Aik, and Ajk may be non-zero for any i 6= j 6= k. This implies that

when eliminating row i only elements Aji and Ajj, j ≥ i are modified. In addition,

fill is ignored at Ajk and Akj , if elements j, k > i both neighbour element i. In the

general case where the assumption is violated, Ajk and Akj are non-zero, and these
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terms are modified in the Block-ILU factorization such that: A
′

jk = Ajk −AjiA
−1
ii Aik

and A
′

kj = Akj − AkiA
−1
ii Aij . The number of non-zero blocks in the matrix N is

given by
∑Ne

i=1 ñfi
(ñfi

− 1) where, ñfi
is the number of larger ordered neighbours of

element i. While the number of non-zero blocks is dependent upon the ordering of

the elements in the ILU factorization, it is possible to obtain an estimate by assuming

an ordering exists where, ñfi
= ⌈ i

Ne
nf⌉. The corresponding estimate for the number

of non-zero blocks in N is Ne(n
2
f − 1)/3.

In the iterative stage the application of M−1 can be easily performed using back-

ward and forward substitution using L̃ and Ũ . The application of A is performed by

multiplying by those components of L̃ and Ũ which would not introduce fill outside

the original sparsity pattern of A. Similarly the application of N may be performed

by multiplying by the components of L̃ and Ũ which introduce fill outside the original

sparsity pattern of A.

The application of A and N is best illustrated with a simple example. Consider

the 3 × 3 matrix A below, and the corresponding ILU factorization, L̃Ũ :

A =











4 5 −6

8 3 0

−12 0 26











L̃ =











1 0 0

2 1 0

−3 0 1











Ũ =











4 5 −6

0 −7 0

0 0 8











The corresponding matrices M , N and F are given by:

M =











4 5 −6

8 3 −12

−12 −15 26











N =











0 0 0

0 0 12

0 15 0











F =











4 5 −6

2 −7 0

−3 0 8











The application of A to a vector x, may be performed by multiplying x by those

components of L̃ and Ũ which would introduce fill outside the original sparsity pattern

of A. For the sample matrix, fill was ignored in the ILU factorization at (2,3) and

(3,2) when eliminating row 1. Hence, for the sample matrix the application of A may
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be performed as follows:

y1 = Ũ11x1 + Ũ22x2 + Ũ33x3 = 4x1 + 5x2 − 6x3

y2 = L̃21Ũ11x1 + L̃21Ũ12x2 +�
�

�
�

��:

L̃21Ũ13x3 + Ũ22x2 = 2(4x1 + 5x2) − 7x2

y3 = L̃31Ũ11x1 +�
�

�
�

��:

L̃31Ũ12x2 + L̃31Ũ13x3 + Ũ33x3 = −3(4x1 − 6x3) + 8x3

Clearly the operation count for computing the application of A in this manner is more

expensive than simply applying A in the original form. However, it is important

to recognize that in the case of block matrices, each of the terms L̃ij and Ũij are

matrices and xi’s are vectors, and hence the (matrix-vector) multiplications become

significantly more expensive than the (vector) additions. Hence, to leading order,

the computational cost is given by the number of matrix-vector multiplications. The

total number of multiplications may be reduced by recognizing that certain products

(Ũ11x1, Ũ22x2, Ũ33x3) are repeated. Taking advantage of the structure of the matrix A,

based on the assumption that no three elements neighbour one another, it is possible

to show that the application of A using L̃Ũ may be performed at a computational

cost of 2(3
2
nf + 1)n2

bNe.

The application of N is performed by multiplying those components of L̃ and

Ũ which would introduce fill outside the original sparsity pattern of A. For the

sample matrix, fill was ignored at (2,3) and (3,2) when eliminating row 1. Hence, the

application of N to a vector x may be performed as follows:

y1 = = 0

y2 = −L̃21Ũ13x3 = −2(−6x3) = 12x3

y3 = −L̃31Ũ12x2 = 3(5x2) = 15x2

Once again, the computational cost is dominated by (matrix-vector) multiplications,

and additional efficiency may be attained by recognizing that some products may

be repeated. Since the number of elements in the matrix N is dependent upon the

ordering of the elements used in the ILU factorization the operation count of applying
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N cannot be determined exactly. However, it is possible to obtain an estimate for the

operation count by using the same ordering of elements used to obtain the estimate

of the number of elements in N . The corresponding estimate for the operation count

for applying N is given by 2/3(nf + 4)(nf − 1)n2
bNe.

Operation Operation Count 2D 3D
Form F 2(nf + 1)n3

b 8n3
b 10n3

b

x = M−1x 2(nf + 1)n2
b 8n2

b 10n2
b

y = Mx 2(nf + 1)n2
b 8n2

b 10n2
b

y = Nx (Estimate) 2
3
(nf + 4)(nf − 1)n2

b 91
3
n2

b 16n2
b

y = Ax 2(3
2
nf + 1)n2

b 11n2
b 14n2

b

y = Ax (Full Storage) 2(nf + 1)n2
b 8n2

b 10n2
b

Table 3.3: Block-ILU solver asymptotic operation count per element

Table 3.3 shows the asymptotic operation count per element for the preprocessing

stage and components of the iterative stage for the Block-ILU solver using the in-place

storage format. Note that if the Block-ILU factorization L̃Ũ is stored as a separate

matrix such that the original matrix A is still available, the cost of computing y = Ax

is 2(nf +1)Nen
2
b . Based on the operation counts presented in Table 3.3, performing a

linear iteration using triangular elements in 2D should be performed using Equation

(3.6), since the application of N is computationally less expensive than the application

of A. In 3D it appears as though a linear iteration should be performed using Equation

(3.6) since the application of N is more expensive than the application of A. However,

in practice the cost of an application of N is significantly less than the estimate given

in Table 3.3. As a result the application of N is performed at a lower cost than the

application of A and hence each linear iteration in 3D is also performed according to

Equation (3.6).

3.5 Timing Performance

In order for the in-place factorization to be competitive, the cost of performing a

linear iteration using the in-place factorization should not be significantly more ex-

pensive than that using duplicate matrix storage format. In the previous sections,
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timing estimates were presented in terms of the operations counts for the different

components of each solver. In order to verify the validity of these estimates actual

timing results were obtained using a sample 2D test grid with 2432 elements using a

p = 4 discretization. The actual and estimated timing results are presented in Table

3.4 where the time has been normalized by the cost of a single matrix vector product

of the Jacobian matrix. The timing estimates based on the operation counts provide a

Operation Block-Jacobi Line-Jacobi Block-ILU
Estimate Actual Estimate Actual Estimate Actual

x = M−1x 0.25 0.39 1.00 1.24 1.00 1.16
y = Nx 0.75 0.76 0.25 0.28 1.17 0.51

y = Ax 1.00 1.14 1.25 1.34 1.38 1.43

Table 3.4: Block-ILU solver asymptotic operation count per element

good estimate of the actual time taken; though the actual cost of operations involving

LU factorized block-matrices are slightly more expensive than the estimates, which

ignore operations of order nb.

Table 3.4 also shows that the actual time to perform the application of N using the

in-place storage format is less than half of the estimate. This justifies the assertion

made in the previous section, that in practice the cost of the application of N is

significantly less than the estimate.

Table 3.5 gives the asymptotic operation counts for the different solvers presented

in this work. The in-place matrix storage format for the Block-ILU solver is at most

8% and 30% more expensive in 2D and 3D respectively. However, in practice a linear

iteration of the Block-ILU solver may be performed faster using the in-place storage

format than the traditional duplicate storage format, while achieving a 50% reduction

in memory usage.
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Preconditioner 2D 3D
Block Jacobi 8 10
Line Jacobi 10 12
Block-ILU In-Place 171

3
26

Block-ILU Full Storage 16 20

Table 3.5: Linear iteration asymptotic operation count per element (in multiples of
n2

b)

3.6 In-place ILU Factorization of General Matri-

ces

The in-place ILU algorithm developed in this chapter has been tailored for DG dis-

cretizations and may not be generally applicable to sparse matrices arising from other

types of discretizations. While the application of A and N may be computed using

the ILU factorization for any sparse matrix, the use of an in-place factorization may

be unfeasible due to the number of operations required. The number of non-zero

blocks in N and correspondingly, the computational cost for the application of N

scales with the square of the number of off-diagonal blocks in the stencil of A. Simi-

larly, if the assumption that no three elements neighbour one another is removed, the

operation count for the application of A using the ILU factorization also scales with

the square of the number of off-diagonal blocks in the stencil. The in-place ILU algo-

rithm is feasible for DG discretizations since there is only nearest neighbour coupling,

resulting in a stencil with few off-diagonal blocks. On the other hand, discretizations

such as high-order finite volume discretizations have much wider stencils, involving

2nd and 3rd order neighbours[5, 30], making the in-place ILU factorization algorithm

unfeasible.
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Chapter 4

ILU Reordering

In the development of an efficient Block-ILU(0) preconditioner for DG discretiza-

tions, the choice for the reordering of the equations and unknowns in the linear

system is critical. Matrix reordering techniques have been widely used to reduce fill

in the LU factorization for direct methods used to solve large sparse linear systems

[40]. These reordering techniques have also been used with iterative methods when

incomplete factorizations are used as preconditioners to Krylov subspace methods

[11, 36, 10, 30]. Benzi et al [10] performed numerical experiments comparing the

effect of different reordering techniques on the convergence of three Krylov subspace

methods used to solve a finite difference discretization of a linear convection-diffusion

problem. They showed that reordering the system of equations can both reduce fill

for the incomplete factorization, and improve the convergence properties of the iter-

ative method [10]. Blanco and Zingg [11] compared Reverse Cuthill-Mckee, Nested

Dissection and Quotient Minimum Degree reorderings for the ILU(k) factorization

used as a preconditioner to GMRES to solve a finite volume discretization of the

Euler Equations. They showed that the Reverse Cuthill-Mckee reordering reduced

the fill and resulted in faster convergence for ILU(2). Similarly, Pueyo and Zingg [36]

used Reverse Cuthill-Mckee reordering to reduce fill and achieve faster convergence

for the finite volume discretization of the Navier-Stokes equations. In the context of

ILU(0) factorizations, no additional fill is introduced, hence reordering the system of

equations effects only the convergence properties of the iterative method. However,
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Benzi et al [10] showed that even for ILU(0), reordering the systems of equations can

significantly reduce the number of GMRES iterations required to reach convergence.

The effect of several standard reordering techniques are examined in this chapter.

The numerical results for the matrix reordering algorithms were determined using

the PETSc package for numerical linear algebra [2, 4, 3]. The matrix reordering algo-

rithms presented are those available in the PETSc package; namely Reverse Cuthill-

Mckee, Nested-Dissection, One-Way Dissection and Quotient Minimum Degree. In

addition, the ”natural” ordering produced by the grid generation is employed. Fi-

nally, a new matrix reordering algorithm based on lines of maximum coupling within

the flow is developed.

4.1 Line Reordering

The matrix reordering algorithm based on lines of maximum coupling within the

flow is motivated by the success of implicit tridiagonal line solvers for both finite

volume and DG discretizations [24, 26, 18, 19]. The reordering algorithm simply

involves creating lines of maximum coupling in the flow as by Fidkowski et. al. [19].

The elements are then reordered in the order that the elements are traversed along

each line. We note that this does not produce a unique reordering, since each line

may be traversed in either the forward or backward directions. The lines themselves

may also be reordered. While a systematic approach may be developed in order to

choose an optimal permutation for the lines, the natural ordering produced by the line

creation algorithm is used for the test cases presented. For these test cases, reordering

the lines according to the standard reordering techniques (Reverse Cuthill-Mckee,

Nested-Dissection, One-Way Dissection and Quotient Minimum Degree) or reversing

the direction of the lines from the natural ordering did not significantly impact the

convergence rate.
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4.2 Numerical Results

In order to investigate the effectiveness of a reordering based upon lines, numerical

results are presented for two representative test cases: an inviscid transonic flow and a

subsonic viscous flow. The convergence plots are presented in terms of the number of

linear iterations since the computational cost of performing the ILU(0) factorization

or a single linear iteration is independent of the matrix reordering when using the

traditional dual matrix storage format. The implications of matrix reordering for the

in-place matrix storage format are discussed in Section 4.3.

The first test case is an Euler solution of the transonic flow over the NACA 0012

airfoil at a freestream Mach number of M = 0.75 and angle of attack of α = 2.0◦.

The flow is solved using a p = 4 discretization on an unstructured mesh with 7344

elements. Figure 4-1 shows the convergence plot of the non-linear residual starting

from a converged p = 3 solution. The fastest convergence is achieved using the

reordering based on lines, which requires only 946 linear iterations for a 10 order

drop in residual. One-Way Dissection and Reverse Cuthill-Mckee algorithms also

perform well requiring only 1418 and 1611 iterations to converge respectively. On the

other hand, Quotient Minimum Degree and Nested Dissection reorderings result in

convergence rates which are worse than the ”natural” ordering of the elements.

The second test case is a Navier-Stokes solution of the subsonic flow over the

NACA0012 airfoil at zero angle of attack with a freestream Mack number of M = 0.5

and a Reynolds number of Re = 1000. A p = 4 solution is obtained on a compu-

tational mesh with 2432 elements, where the solution procedure is restarted from a

converged p = 3 solution. Figure 4-2 presents the convergence plot of the non-linear

residual versus linear iterations. The reordering based upon lines is superior to all

other reorderings; requiring only 341 iterations to converge. The second best method

for this test case is the natural ordering of elements which requires 1350 iterations.

The natural reordering performs well for this test case since a structured mesh is

used (though the structure is not taken advantage of in the solution procedure),

and hence the natural ordering of the elements involves some inherent structure. Of
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Figure 4-1: Non-linear residual vs linear iterations using the Block-ILU(0) precondi-
tioner with different reordering techniques for a transonic Euler solution of the flow
about the NACA0012 airfoil

the other reordering algorithms, Reverse Cuthill-Mckee performs best, requiring 1675

iterations, followed by One-Way Dissection, Quotient Minimum Degree and finally

Nested Dissection.

Clearly, reordering the elements according to the lines of maximum coupling re-

sults in superior convergence for both inviscid and viscous test cases. The advantages

of the line reordering algorithm is especially obvious in the viscous case where re-

ordering according to lines results in a convergence rate nearly 5 times faster than

the standard matrix reordering algorithms available in the PETSc package. Due to

the clear success of the line reordering algorithm for these two sample problems, the

line reordering method is used for the remainder of the work presented here.

4.3 In-place ILU Storage Format

Though the operation count for performing a single linear iteration is independent of

the ordering of the elements when using the traditional dual matrix storage format,

this is not be the case when using the in-place matrix storage format. The total
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Figure 4-2: Non-linear residual vs linear iterations using the Block-ILU(0) precon-
ditioner with different reordering techniques for a Navier-Stokes solution of the flow
about the NACA0012 airfoil

fill which is ignored in the Block-ILU(0) factorization, and hence the size of N , is

dependent upon the ordering of the elements, and hence the computational cost of

the application of N depends upon the ordering used. As discussed in Section 3.4

the operation count for the application of N is dependent upon the number of higher

numbered faces of each element. Using the ordering of the elements based upon lines

effectively reduces the number of ”free” faces for all but the first element in each line

since at least one of the faces corresponds to a lower numbered neighbour. A revised

estimate for the operation count for the application of N using the in-place storage

format may then be obtained by replacing nf by nf −1 in the initial estimate given in

Table 3.3. Namely, the revised estimate for the operation count per element is given

by: 2
3
(nf + 3)(nf − 2)n2

b .

Table 4.1 shows this revised estimate of the operation count for the application of

N normalized by the operation count for the application of A using the traditional

dual matrix storage format, for both 2D and 3D problems. Table 4.1 also shows

the sample timing results from several sample 2D and 3D problems. For each grid,

timing results are presented for p = 1 as well as the largest value of p for which the
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Dim Type # Elements p Estimate
2D Estimate 0.50

Structured 2432 1 0.78
Unstructured 7344 1 0.84
Cut Cell 1250 1 0.69
Structured 2432 4 0.51
Unstructured 7344 4 0.52
Cut Cell 1250 4 0.46

3D Estimate 0.93

Structured 1920 1 0.86
Unstructured 45417 1 1.02
Cut Cell 2883 1 0.98
Structured 1920 3 0.77
Cut Cell 2883 3 0.85

Table 4.1: Revised Timing Estimate for Application of N for in-place Block-ILU(0)

Jacobian matrix could fit into memory on a single machine. For the p = 1 cases

the actual timing results are worse than the revised estimate. However, for large p

the actual timing results closely match the revised estimate in 2D, and are bounded

by the revised estimate in 3D. The poorer performance for the p = 1 cases may be

attributed to the effects of lower order terms in nb, which become significant since

the block size for the p = 1 solution is relatively small.

A linear iteration may be performed faster using the in-place storage format if the

application of N , using the in-place storage format, is faster than the application of

A using the traditional dual storage. For large p, the in-place storage format for the

Block-ILU(0) solver allows for a linear iteration to be performed at a computational

cost which is less than that using the traditional dual matrix storage format. Even

in the case of small p, where lower order terms in nb become significant, the in-place

storage format allows for the performance of a linear iteration at a computational

cost no greater than the traditional dual matrix storage format.
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Chapter 5

Linear Multigrid

Multigrid algorithms are used to accelerate the solution of systems of equations arising

from the discretization of a PDE-based problem by applying corrections based on a

coarser discretization with fewer degrees of freedom. The coarse discretization may

involve a computational mesh with fewer elements (h-multigrid) or a lower order

solution space (p-multigrid). The DG discretization naturally lends itself to a p-

multigrid formulation as a coarser solution space may be easily created by using a

lower order polynomial interpolation within each element. Multigrid algorithms may

be used to directly solve a non-linear system of equations (non-linear multigrid),

or to solve the system of linear equations arising at each step of Newton’s method

(linear multigrid). This chapter presents a linear p-multigrid algorithm which is used

as a preconditioner to GMRES and makes use of the stationary iterative methods

presented in Chapter 3 as linear smoothers on each multigrid level.

5.1 Linear Multigrid Algorithm

The basic two-level linear-multigrid algorithm is presented below. While only a two-

level system is presented here, in general the multigrid formulation involves multiple

solution levels.

• Perform pre-smoothing: x̃k
h = (1 − ω)xk

h + ωM−1
h (bh − Nhx

k
h)
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• Compute linear residual: r̃k̃
h = bh − Ahx̃

k
h

• Restrict linear residual: bH = Ih
H r̃k

h, where Ih
H is the restriction operator

• Define coarse level correction: x0
H = 0

• Perform coarse level smoothing: x
j+1
H = (1 − ω)xj

H + ωM−1
H (bH − NHx

j
H)

• Prolongate coarse level correction: x̂k
h = x̃k

h + IH
h xH , where IH

h is the prolonga-

tion operator

• Perform post-smoothing: xk+1
h = (1 − ω)x̂k

h + ωM−1
h (bh − Nhx̂

k
h)

As presented in Section 2.1, the solution space for the DG discretization is given

by Vp
h, the space of piecewise polynomials of order p spanned by the basis functions

vhi
. The corresponding coarse solution space is given by Vp−1

h , the space of piecewise

polynomials of order p− 1 spanned by the basis functions vHk
. Since Vp−1

h ∈ Vp
h, the

coarse level basis functions may be expressed as a linear combination of the fine level

basis functions:

vHk
=
∑

i

αikvhi
. (5.1)

The matrix of coefficients αik form the prolongation operator IH
h . The coefficients

of expansion may also be used to define the restriction operator by considering the

restriction of a component of the residual:

Rh(uh,vHk
) = Rh(uh,

∑

i

αikvhi
) =

∑

i

αikRh(uh,vhi
). (5.2)

Hence the restriction operator is given by Ih
H =

(

IH
h

)T
. In our implementation of the

linear multigrid algorithm, the coarse grid Jacobian AH is given by a simple Galerkin

projection of the fine grid Jacobian:

AH = Ih
HAhI

H
h . (5.3)
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5.2 Coarse Grid Jacobian

As presented in Section 5.1, the coarse grid Jacobians are formed using a simple

Galerkin projection of the fine grid Jacobian. The Galerkin projection is used as op-

posed to the linearization about the restricted solution since evaluating the Galerkin

projection is computationally much less expensive, especially in the case of hierar-

chical basis functions where the Galerkin projection involves a simple extraction of

values. In this section we demonstrate that the Galerkin projection is nearly equiv-

alent to the linearization of the lower order discretization of the restricted solution.

The components of the fine grid Jacobian, Ah, are given by:

Ahij
=

∂Rh(uh,vhi
)

∂Uhj

. (5.4)

The corresponding coarse grid Jacobian is given by AH = Ih
HAhI

H
h , where:

AHkl
=

∑

i

∑

j

αikαjl

∂Rh(uh,vhi
)

∂Uhj

(5.5)

=
∑

j

αjl

∂Rh(uh,
∑

i αikvhi
)

∂Uhj

(5.6)

=
∂Rh(uh,vHk

)

∂UHl

(5.7)

If Rh is independent of the solution space, then RH = Rh and the expression for AH

simplifies to:

AHkl
=

∂RH(uh,vHk
)

∂UHl

. (5.8)

In the case of linear problems

∂Rh(uh,vhi
)

∂uhj

= Rh(vhj
,vhi

), (5.9)
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hence,

AHkl
= RH(vHl

,vHk
). (5.10)

Thus, the coarse level Jacobian is exactly equal to the linearization of the lower order

discretization.

Similarly, if uh ∈
(

Vp−1
h

)ns

, then uh = uH , and

AHkl
=

∂RH(uh,vHk
)

∂UHl

=
∂RH(UH ,vHk

)

∂UHl

, (5.11)

so that the coarse level Jacobian based on the Galerkin projection gives the exact

linearization of the restricted discretization for a non-linear problem. In general,

however, uh /∈
(

Vp−1
h

)ns

and the Galerkin projection of Ah will not result in the

linearization ∂RH(UH )
∂UH

.

The effectiveness of using the Galerkin projection for the evaluation of the coarse

grid Jacobian for the linear multigrid algorithm was verified by performing an eigen-

value analysis of the Jacobian matrix derived from the discretization of a subsonic

viscous flow over the NACA0012 airfoil. The Jacobian matrix is evaluated for a p = 3

solution of a M = 0.5, Re = 1000 flow at zero angle of attack using a computational

grid with 2432 elements. Figures 5-1(a) and 5-1(b) show the 500 largest magnitude

eigenvalues for the p = 3 Jacobian and corresponding p = 2 Galerkin projection

respectively. It can be clearly seen from Figures 5-1(a) and 5-1(b) that the largest

eigenvalues of the Galerkin projection closely match those of the p = 3 discretization.

Figure 5-1(c) shows the eigenvalues of the linearization of a p = 2 discretization ob-

tained by restricting the p = 3 solution. As predicted by the analysis presented above,

the eigenvalues of the Galerkin projection closely match those of the linearization of

the restricted flow solution.
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Figure 5-1: Eigenvalue analysis of NACA0012 subsonic viscous test

5.2.1 Stabilization Terms

The previous section demonstrated that the coarse grid Jacobian obtained using a

Galerkin projection of the fine grid Jacobian is nearly equivalent to the lineariza-

tion of the restricted system. These results from the previous section required that

the operator Rh(uh,vh) be independent of the triangulation Th or the solution space

Vp
h. Where Rh(uh,vh) depends upon the triangulation Th or the solution space Vp

h,

the restricted system may not be consistent with a lower order the discretization of

the governing equations. Okusanya [32, 41], showed that h-dependent stabilization

terms, necessary for the streamline upwind/Petrov Galerkin (SUPG) discretization of

the Navier-Stokes equations, were improperly scaled when obtaining a coarse grid Ja-

cobian using a Galerkin projection for an h-multigrid scheme. Okusanya also showed

that the improper scaling of the stabilization terms can result in the coarse grid system

which is inconsistent with the governing PDE resulting in poor solver performance.

Unlike the SUPG discretization, the DG discretization does not require the use

of stabilization terms. However, in order to accurately resolve discontinuities in the

flow, a discretization-dependent, artificial dissipation is required. In this work, we

use the shock capturing scheme presented by Persson and Peraire [35]. Persson and

Peraire[35] proposed an artificial dissipation for higher order polynomial approxi-

mations that scales as h/p, where h is the mesh spacing and p is the order of the

polynomial interpolant within each element. Thus, by increasing p, a shock can be
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captured within a single element. In the context of p-multigrid, the mesh spacing h

is fixed for all multigrid levels, hence the artificial dissipation terms should scale as

1/p. In order to examine the behaviour of the Galerkin projection linear multigrid

algorithm for flows with discontinuities, an eigenvalue analysis is performed on the Ja-

cobian matrices arising from two representative test cases: a transonic flow involving

a weak normal shock and a hypersonic flow involving a strong oblique shock.

The first test case is a transonic, M = 0.75 flow over the NACA0012 airfoil at

an angle of attack of α = 2◦ discretized on a compuational mesh with 165 elements.

Figure 5-2(a) shows the plot of the 500 largest magnitude eigenvalues of the Jacobian

matrix corresponding to a p = 3 discretization while Figures 5-2(b) and 5-2(c) show

the p = 2 Jacobians based on the Galerkin projection and p = 2 discretization

respectively. Since this test case involves only a relatively weak shock, dominant

modes of the Jacobian matrix are not significantly affected by the presence of artificial

dissipation terms. As a result, the eigenvalue spectra of the Jacobians based on the

p = 2 Galerkin projection and the p = 2 discretization closely match those of the

p = 3 discretization.
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Figure 5-2: Eigenvalue analysis of the transonic, M = 0.75, NACA0012 test case

The second test case is a hypersonic, M = 11, flow in a shock ramp involving a

strong oblique shock. The eigenvalue spectra of the Jacobian matrix for a p = 3 dis-

cretization, and the corresponding Jacobians based on the p = 2 Galerkin projection

and p = 2 discretizations, are presented in Figure 5-3. The eigenvalues of the p = 3
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discretization and the Galerkin projection closely match for the largest magnitude

eigenvalues which extend out along the real axis due to the presence of the strong

shock. On the otherhand the eigenvalues of the Galerkin projection do not match

those of the Jacobian for the p = 2 discretization. The presence of larger artificial

dissipation terms reduces the spectral radius of the Jacobian for the p = 2 discretiza-

tion, while the corresponding spectral radius of the Galerkin projection matches the

spectral radius of the p = 3 discretization. The Jacobian based on the Galerkin pro-

jection is significantly different from the coarse order discretization, that the coarse

level system gives poor solution updates. As a result of these poor solution updates

the linear multigrid method is unstable for this problem and cannot be used as an

effective preconditioner.
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Figure 5-3: Eigenvalue analysis of the hypersonic, M = 11, shock ramp test case

5.3 Memory Considerations

In many aerodynamic applications the size of a problem which may be solved on a

given machine is limited by the memory available. Therefore, memory considerations

are important in the development of an efficient preconditioner. The memory usage for

any Newton-Krylov based solver is dominated by the storage of the Jacobian matrix

and Krylov vectors [40]. For a linear multigrid preconditioner significant additional

memory is required for the storage of the lower order Jacobians on each multigrid

49



level. Table 5.1 shows the additional memory required for all lower order Jacobians

in terms of the fine grid Jacobian for p = 1 → 5.

Solution Order 2D 3D
p = 1 11.1% 6.25%
p = 2 27.7% 17.0%
p = 3 46.0% 29.3%
p = 4 64.9% 42.2%
p = 5 84.1% 55.5%

Table 5.1: Additional memory usage for lower order Jacobians for linear multigrid

Several authors [27, 17] have argued that a linear multigrid preconditioner may

be unfeasible for large problems due to the additional memory cost of storing these

lower order Jacobians. Alternatively, others have advocated for skipping multigrid

levels to reduce memory usage. For example, Persson and Peraire [34] employed a

multi-level scheme where only p = 0 and p = 1 corrections were applied. Though the

linear multigrid method may require significant additional memory for the storage of

the lower order Jacobians, faster convergence of the GMRES method is expected and

hence fewer Krylov vectors may be required in order to obtain a converged solution.

Hence, in order to provide a memory equivalent comparison between a single- and

multi-level preconditioner, the total memory usage for the Jacobians and Krylov

vectors must be considered. In the context of a restarted GMRES algorithm this is

equivalent to increasing the GMRES restart value for the single level preconditioner so

that the total memory used by the single and multi-level preconditioners is the same.

Table 5.2 gives the additional memory for the storage of all lower order Jacobians for

the linear multigrid solver in terms of the number of solution vectors on the fine grid.

Table 5.2 may also be viewed as the additional number of GMRES vectors allocated

for the single-level preconditioner to provide a memory equivalent comparison with

the multigrid preconditioner.
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Solution Order 2D 3D
p = 1 5 6
p = 2 27 43
p = 3 74 146
p = 4 156 369
p = 5 283 778

Table 5.2: Additional memory usage for lower order Jacobians for linear multigrid
solver in terms of solution vectors

5.4 Numerical Results

The performance of the three preconditioners presented in Chapter 3, as well as

the linear multigrid preconditioner presented in this chapter are evaluated using two

representative test cases: an inviscid transonic flow and a viscous subsonic flow.

5.4.1 Inviscid Transonic flow over NACA0012, M = 0.75, α =

2◦

The first test case is an Euler solution of the transonic flow over the NACA0012 airfoil

at an angle of attack of α = 2◦ with a free-stream Mach number of M = 0.75. This

flow is solved using a p = 4 discretization on a computational mesh with 7344 ele-

ments. A GMRES restart value of 40 is used for the linear multigrid preconditioner

while a memory equivalent GMRES restart value of 200 is used for the single-level

preconditioners. The number of linear iterations taken in each Newton step is de-

termined by the tolerance criterion specified in Equation (2.16) up to a maximum of

10 GMRES outer iterations. Table 5.3 shows the convergence results for the differ-

ent preconditioners in terms on the number of non-linear Newton iterations, linear

iterations, GMRES outer iterations and CPU time. The convergence history of the

non-linear residual versus linear iterations and CPU time are given in Figures 5-4(a)

and 5-4(b) respectively. The residual tolerance criterion developed in Section 2.3 en-

sures sufficient convergence of the linear system in each Newton step so that quadratic

convergence of the non-linear residual is observed for all preconditioners except Block-

Jacobi. Additionally, the residual tolerance criterion developed in Section 2.3 ensures
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that the convergence history of the non-linear residual in terms of non-linear iterations

is the same for these preconditioners. The difference in behaviour for the Block-Jacobi

preconditioner is due to stalling of the restarted GMRES algorithm, which prevents

a sufficient convergence of the linear system to obtain quadratic convergence.

Preconditioner Newton Iter Linear Iter GMRES Outer Time(s)
Block-Jacobi 10 15024 78 13596
Line-Jacobi 9 3836 23 3925
Block-ILU 9 971 10 1184
LinearMG w/ Block-Jacobi 9 1511 40 3873
LinearMG w/ Line-Jacobi 9 301 11 1417
LinearMG w/ Block-ILU 9 142 9 934

Table 5.3: Convergence results of the inviscid transonic NACA0012 test case

Using the single-level Block-ILU preconditioner significantly reduces the number

of linear iterations required to converge compared to the single-level Line-Jacobi and

Block-Jacobi preconditioners. This improved convergence using the Block-ILU pre-

conditioner ensures that the GMRES restart value is reached only once. On the

other hand, the GMRES restart value is reached in each Newton iteration for the

Block-Jacobi preconditioner and all but the first three Newton iteration for the Line-

Jacobi preconditioner. The repeated restarting of the GMRES algorithm degrades

the convergence rate and leads to the stalling of the GMRES algorithm using the

Block-Jacobi preconditioner. While both the preprocessing and the iterative stages

of the Block-ILU preconditioner are more expensive than the corresponding stages

of the Line-Jacobi or Block-Jacobi preconditioners, the significant reduction in the

number of linear iterations ensures that the Block-ILU preconditioner achieves fastest

convergence in terms of CPU time.

The linear multigrid preconditioners with Block-Jacobi, Line-Jacobi and Block-

ILU smoothing significantly reduce the number of linear iterations required to achieve

convergence compared to the corresponding single-level preconditioners. The im-

proved convergence rate in term of the number of linear iterations ensure that the

GMRES restart value is not reached as often for the multi-level preconditioners de-

spite the memory equivalent GMRES restart value being 5 times smaller than the
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(a) Non-linear residual vs linear iterations
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(b) Non-linear residual vs time

Figure 5-4: Convergence plots of the inviscid transonic NACA0012 test case

single-level preconditioners. This ensures that GMRES stall is not seen with the

linear multigrid preconditioner using Block-Jacobi smoothing. Additionally, the GM-

RES restart value is reached only twice for the linear multigrid preconditioner with

Line-Jacobi smoothing.

Though the linear multigrid preconditioner significantly reduces the number of

linear iterations required to converge this problem, the cost of each application of the

linear multigrid preconditioner is more expensive than the single level preconditioner.

However, fastest convergence in terms of CPU time is achieved using the linear multi-

grid preconditioner with Block-ILU smoothing which performs about 20% faster than

the single level Block-ILU preconditioner.

5.4.2 Viscous Subsonic flow over NACA0012, M = 0.5, α = 0◦,

Re = 1000

The second test case is a Navier-Stokes solution of a subsonic, M = 0.5 flow over

the NACA0012 airfoil at zero angle of attack with Reynolds number Re = 1000.

The flow is discretized using a p = 4 solution on a computational grid with 2432

elements. Once again, a GMRES restart value of 40 is used for the linear multigrid
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preconditioner while a memory equivalent GMRES restart value of 200 is used for the

single-level preconditioners. The convergence data for the different preconditioners is

summarized in Table 5.4 while the convergence plots are presented in Figure 5-5.

Preconditioner Newton Iter Linear Iter GMRES Outer Time(s)
Block-Jacobi 10 18060 91 5348
Line-Jacobi 3 1271 8 446
Block-ILU 3 351 4 166
LinearMG w/ Block-Jacobi 6 2020 51 1669
LinearMG w/ Line-Jacobi 3 159 6 244
LinearMG w/ Block-ILU 3 66 3 146

Table 5.4: Convergence results of the viscous subsonic NACA0012 test case

In order to achieve fast convergence for this viscous test case, it is necessary that

the preconditioner sufficiently resolves the coupling between element in the boundary

layer. Since the Block-Jacobi preconditioner ignores all inter-element coupling, the

restarted GMRES algorithm stalls and the linear system is not sufficiently solved

such that several additional Newton iterations are required to converge the non-linear

residual. On the other hand, the Line-Jacobi and Block-ILU preconditioners which

make use of the lines of maximum coupling within the flow are able to sufficiently

converge the linear system at each Newton step and quadratic convergence of the

non-linear residual is observed.

As with the inviscid test case, the use of the linear multigrid preconditioner signif-

icantly reduces the number of linear iterations required to converge the linear system

at each Newton step. The GMRES restart value is reached less often in the case

of the Linear Multigrid preconditioners despite the GMRES restart value being five

times larger for the single-level preconditioners. This ensures that the Linear Multi-

grid preconditioner with Block-Jacobi smoothing is able to solve the linear system

sufficiently to converge the non-linear residual in 6 non-linear iterations as opposed

to 10 for the corresponding single-level Block-Jacobi preconditioner. Additionally,

only the Linear Multigrid preconditioner with Block-ILU smoothing is able to con-

verge the linear system at each Newton step without restarting GMRES. Once again,

the fastest convergence in terms of CPU time is achieved using the Linear Multigrid
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(a) Non-linear residual vs linear iterations
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Figure 5-5: Convergence plots of the viscous subsonic NACA0012 test case

preconditioner with Block-ILU smoothing.
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Chapter 6

Parallel Performance

The solutions of complex 3D problems necessitates the use of parallel computing. The

development of an efficient solver for DG discretizations must therefore necessarily

consider the implications of parallel computing. This chapter discusses the parallel

implementation of the DG solver, as well as the parallel performance of the linear

multigrid preconditioner presented in the previous chapters.

6.1 Parallel Implementation

Parallel implementation involves partitioning the computational grid across multiple

processors, where each processor maintains all elements in a partition. In addition,

each processor maintains ghosted data, corresponding to neighbouring elements on

other partitions that are required for the local computation of the residual and Jaco-

bian matrix. The ghosted states are updated from the appropriate partition at the

beginning of each residual evaluation, where communication is performed using the

Message Passing Interface (MPI).

6.2 Parallel Preconditioner Implementation

Except for the Block-Jacobi preconditioners, the preconditioners presented in the pre-

vious chapters have some inherent serialism as they require elements to be traversed
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sequentially. Thus, while the Block-Jacobi preconditioners can be trivially paral-

lelized, the Line-Jacobi and Block-ILU methods are more difficult. In our parallel

implementation of the Line-Jacobi and Block-ILU preconditioners, the off-partition

coupling between elements is ignored. For the Line-Jacobi method this implies lines

are cut at partition boundaries with a potential for performance degradation. Simi-

larly, the Block-ILU performance may be degraded by ignoring fill that would occur

between elements on different partitions. To decrease the potential degradation of

the preconditioners, we utilize a grid partitioning strategy that maintains the lines

within a partition.

6.3 Grid Repartitioning

The importance of maintaining lines when performing parallel computation of viscous

flow using line-implicit solvers has been discussed by several authors [26, 28, 17, 31].

Mavriplis [26] employed different grid partitionings for each level of a directional-

implicit agglomeration-multigrid algorithm so as to ensure efficient parallel perfor-

mace. Mavriplis presented a grid partitioning scheme where all elements in a line

were grouped into a single macro element for the partitioning algorithm so as to

guarantee no lines were cut. In the context of the Line-Jacobi preconditioner pre-

sented in this paper, the lines change every non-linear solution update since the lines

are based on the current approximate solution. In order to retain the preconditioner

performance seen in the serial case, it would be necessary to repartition the grid

throughout the solution procedure to ensure that lines are not cut. While it may

be possible to repartition the grid each non-linear iteration, this may be unnecessary

since the lines may not significantly change from iteration to iteration. Instead, the

grid is repartitioned after a fixed number of non-linear iterations, typically every 10

to 15 non-linear iterations.

The grid repartitioning scheme involves five steps. First, the coupling between

elements is determined in parallel, where the initial partitioning may be based on the

unweighted adjacency graph of the elements in the grid or a previous partitioning
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based on lines. Second, the lines are formed in parallel allowing connections across

partition boundaries. Third, a weighted adjacency graph is created by grouping

together all elements in a line into macro-elements. The nodes (i.e. lines) in the

adjacency graph are weighted by the number of elements in each line, while the

edges are weighted by the number of faces between lines. Fourth, ParMetis is used

to partition the grid based on a weighted adjacency graph. Finally, the lines are

reformed in parallel on the repartitioned grid, where connections are not permitted

across partition boundaries.

The parallel line formation algorithm is modified slightly from the serial version

presented by in detail Fidkowski [17]. The serial version of the line formation algo-

rithm involves two stages. In the first stage, lines are formed by connecting elements

with maximum coupling such that each element may only be connected across the

two faces with the largest coupling. In the second stage, adjacent lines are joined if

the coupling across the face between two endpoints is maximum over the free faces

of both endpoint. In parallel, the line formation algorithm is performed differently

before and after the grid is repartitioned. Prior to repartitioning, the first stage of the

line formation algorithm is identical to the first stage of the serial implementation,

however, second stage connections are not permitted across partition boundaries.

After repartitioning, neither first nor second stage connections are permitted across

partition boundaries. However, additional second stage connections are permitted

between local line endpoints which may have larger coupling to faces across partition

boundaries. This allows for longer lines to be formed where second stage connections

across partition boundaries are ignored. Grid repartitioning ensures that the lines

formed in parallel are identical to those formed in serial up to first stage connections,

while second stage connections may be cut across partition boundaries.

Figure 6-1 shows the sample partitioning of the computational grid used for the

viscous NACA0012 test case presented in Section 5.4 for 8 processors. Figure 6-1(a)

gives the initial partitioning based on the unweighted adjacency graph of the elements

in the grid, while Figure 6-1(b) shows the corresponding repartitioning according

to lines. As shown in Figure 6-1(b), grid repartitioning produces partitions which
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are elongated in the stream-wise direction, as the lines of maximum coupling follow

streamlines in the flow.

(a) Initial partitioning (b) Line repartitioning

Figure 6-1: Different grid partitionings for the viscous NACA0012 test case

6.4 Numerical Results

Parallel performance results are presented for the two sample test cases discussed in

Section 5.4, namely an inviscid transonic flow and a viscous subsonic flow over the

NACA0012 airfoil. The performance results presented in this section give the total

wall clock time for solving each problem on a given number of processors so as to

ensure that all parts of the flow solution procedure are considered, including the pre-

and post- processing steps for grid partitioning and reassembly. The parallel efficiency

of an algorithm is affected by communication time, caching effects, and time spent on

repeated computations (such as the duplicated evaluation of the fluxes on partition

boundaries). In order to isolate these effects the sample timing and parallel speed-up

results for the linear multigrid preconditioner with Block-Jacobi smoothing for the
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inviscid transonic flow test case are plotted in Figure 6-2. Figure 6-2(a) plots the

number of linear iterations required to converge for 1 to 16 processors. As discussed

previously, the parallel Block-Jacobi preconditioner is the same as in the serial case

hence the number of linear iterations required to converge is the same for all number

of processors. As shown in Figure 6-2(b) good parallel speed-up is observed for 1-16

processors.
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Figure 6-2: Parallel performance of the linear multigrid preconditioner with Block-
Jacobi smoothing for the inviscid transonic NACA0012 test case

6.4.1 Linear multigrid preconditioner with Line-Jacobi smooth-

ing

Figure 6-3(b) shows the parallel performance of the linear multigrid preconditioner

with Line-Jacobi smoothing for the inviscid transonic flow test case. Figure 6-3(a)

plots the number of linear iterations required to converge versus the number of pro-

cessors. Using no grid repartitioning results in degraded preconditioner performance

as lines are cut along partition boundaries. On the other hand, for this test case

repartitioning according to lines ensures that the same number of linear iterations

are used for all processes. Figure 6-3(b) shows the corresponding parallel speed-up.
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Since cutting lines does not significantly increase the number of linear iterations re-

quired to converge the solution, good parallel speed up is observed for both grid

partitionings.
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Figure 6-3: Parallel performance of the linear multigrid preconditioner with Line-
Jacobi smoothing inviscid transonic NACA0012 test case

Figure 6-4 shows the parallel performance of the linear multigrid preconditioner

with Line-Jacobi smoothing for the viscous subsonic flow test case. The cutting of

lines significantly reduces the performance of the preconditioner, hence significantly

more linear iterations are required to reach convergence if no grid repartitioning is

employed. Repartitioning according to lines results in superior preconditioning per-

formance, where the number of linear iterations is nearly constant over all processors,

with small variations due to the cutting of lines in the second stage of the line for-

mation algorithm.

Figure 6-4(b) shows the corresponding parallel speed-up for both partitioning

methods. As expected, significantly better parallel speed-up is observed when a good

repartitioning of the grid is employed to ensure that no lines are cut. Unfortunately

the parallel speed-up using the repartitioning according to lines is still far from ideal.

Since the grid for this test case involves only 2342 elements, there are relatively

few lines on each partition, leading to partitions which are long and thin with large
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numbers of ghosted elements. For example the 16 processor partitions had an average

of only 4 lines and 152 elements per partition, while each partition had an average of

32 ghosted elements. On the other hand the base partition required only 14 ghosted

elements per partition. In practice, the solution of large aerodynamic problems will

involve partitions with thousands of elements and the ratio of ghosted elements to

local elements will remain relatively small, resulting in good parallel performance.

0 2 4 6 8 10 12 14 16
150

200

250

300

350

400

450

500

550

600
Linear Iterations vs. Number of Processors

Number of Processors

Li
ne

ar
Ite

ra
tio

ns

 

 
None
Lines

(a) Linear iterations vs. # processors

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16
Speed Up vs Number of Processors

Number of Processors

S
pe

ed
up

 

 
None
Lines

(b) Parallel speed-up vs. # processors

Figure 6-4: Parallel performance of the linear multigrid preconditioner with Line-
Jacobi smoothing viscous subsonic NACA0012 case

6.4.2 Linear multigrid preconditioner with Block-ILU smooth-

ing

The parallel performance of the transonic inviscid NACA0012 test case using the

linear multigrid preconditioner with Block-ILU smoothing is presented in Figure 6-5.

Partitioning the domain degrades the performance of the Block-ILU preconditioner

since the coupling between elements across partition boundaries is ignored. The de-

graded preconditioner performance increases the number of linear iterations required

to converge as shown in Figure 6-5(a). For this particular test case, repartitioning

according to lines results in more linear iterations, which appears to contradict the

result for the linear multigrid preconditioner with Line-Jacobi smoothing. While
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repartitioning according to lines ensures that the coupling along lines is captured

within a partition, more off-partition coupling is ignored due to the larger number of

ghosted elements associated with line repartitioning.

Figure 6-5(b) shows corresponding parallel speed-up. Since the number of linear

iteration required for convergence does not significantly increase with the number of

processors, relatively good parallel performance is observed.
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Figure 6-5: Parallel performance of the linear multigrid preconditioner with Block-
ILU smoothing NACA0012 Navier-Stokes test case

Figure 6-6 shows the parallel performance of the linear multigrid preconditioner

with Block-ILU smoothing for the subsonic viscous NACA0012 airfoil test case. The

lines of maximum coupling are very important for accurately resolving this test case.

As a result, cutting the lines across partition boundaries significantly reduces the

preconditioner performance. As shown in Figure 6-6(a) the number of linear iterations

required to reach converges increases with the number of processors irregardless of

the repartitioning used. However, repartitioning according to lines can significantly

reduce the number of linear iterations required. Unfortunately the performance of

the Block-ILU preconditioner degrades even if no lines are cut, since the coupling

between elements across partitions is ignored. The corresponding parallel speed-up is

degraded by the increase in the number of linear iterations, as well as the additional
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repeated calculations for ghosted elements. The corresponding parallel speed-up for

both grid partitioning schemes are presented in Figure 6-6(b).
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Figure 6-6: Parallel performance of the linear multigrid preconditioner with Block-
ILU smoothing viscous subsonic NACA0012 case

Since the performance of the linear multigrid preconditioner with Block-ILU smooth-

ing is degraded even if lines are not cut across partition boundaries, the parallel

speed-up is poor compared to the linear multigrid preconditioner with Line-Jacobi

smoothing. Hence, as the number of processors increases the performance of the

linear multigrid preconditioner with Line-Jacobi smoothing approaches that with

Block-ILU smoothing. Figure 6-7 shows the plot of CPU time versus the number

of processors using the linear multigrid preconditioners for the two samples test cases

presented. For both test cases, repartitioning based on lines is used to improve paral-

lel performance. Despite poorer parallel speed-up, Block-ILU smoothing outperforms

Line-Jacobi smoothing for 1-16 processors for the inviscid transonic test case. On the

other hand, for the viscous subsonic test case, while Block-ILU smoothing outper-

forms Line-Jacobi for 1-4 processors, both Line-Jacobi and Block-ILU smoothing are

comparable for larger number of processor.
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(a) NACA0012 inviscid transonic case
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(b) NACA0012 subsonic viscous case

Figure 6-7: Parallel timing results
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Chapter 7

Conclusions

An efficient, parallel, solution algorithm has been presented for the Discontinuous

Galerkin discretization of the compressible Navier-Stokes equations on unstructured

grids. The algorithm is based on a Newton-Krylov approach with a linear p-multigrid

preconditioner using a Block-ILU(0) smoother.

An in-place Block-ILU(0) factorization algorithm has been developed, which has

been shown to reduce both the memory and computational cost over the traditional

dual matrix storage format. A reordering technique for the Block-ILU(0) factoriza-

tion, based upon lines of maximum coupling in the flow, has also been developed. The

results presented show that this reordering technique significantly reduces the number

of linear iterations required to converge compared to standard reordering techniques,

especially for viscous test cases.

A linear p-multigrid preconditioner has been developed by using a Galerkin pro-

jection to obtain coarse level Jacobians. The Galerkin projection is shown to produce

nearly the exact linearization of a lower order discretization except in the case of

flow solutions with strong shocks, where a multigrid algorithm is not appropriate.

The linear multigrid preconditioner is shown to significantly reduce the number of

linear iterations required to obtain a converged solution compared to a single-level

preconditioner. The linear multigrid preconditioner also results in faster convergence

in terms of CPU time for the representative test cases presented. A parallel imple-

mentation of the linear multigrid preconditioner has also been presented, which uses
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a grid repartitioning algorithm to ensure lines of maximum coupling within the flow

are not cut across partition boundaries.
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