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ABSTRACT
Solute transport models are essential tools for understanding and forecasting chemical

concentrations in groundwater. Advection-dispersion based models can adequately predict
spatial averages of conservative solute concentrations without using explicit maps of pore
structures or variations in hydraulic conductivity. However, coupling advection-dispersion based
transport models to chemical reaction models is inaccurate because it implicitly assumes
complete mixing. Mixing in natural porous media is a slow process that can control the overall
rate of chemical reactions, and the lack of mixing causes concentrations to be spatially variable.
This thesis develops and experimentally validates a new solute transport modeling framework
that approximates the correct amount of chemical reaction and provides concentration
probability density functions, which are needed to address laws and regulations based on
maximum contaminant levels.

To study solute mixing and reaction in porous media, we conducted highly detailed
lab-scale experiments by digitally imaging the movement of colored dye tracers and colorimetric
chemical reactions through illuminated clear homogeneous and heterogeneous porous media.
The resulting sequence of solute concentration maps demonstrates the problem of conventional
solute transport models and shows that concentrations can be well approximated with Beta
distributions.

Conservative Beta distributions can be modeled with partial-differential equations for
concentration mean and variance. These conservative distributions can then be transformed into
joint reactant distributions, which produces product and remaining reactant distributions. This
upscaling approach is verified by modeling the product and reactant means, variances, and
distributions in heterogeneous media and product means in homogeneous media from our
lab-scale experiments.

We found that (co)variance production-destruction balances can approximate aqueous
species covariance matrixes, which are necessary to form multivariate reactant distributions of
complex reactive transport scenarios. Alternatively, these second moments can be used in
upscaled reaction expressions derived from a second order Taylor series expansion. Incomplete
mixing, parameterized by variance and covariance, causes an upscaled reaction rate to be almost
an order of magnitude smaller compared to the conventional reaction rate that implicitly assumes
complete mixing. Finally, manipulating the flow field to be perpendicular to its original direction
would increase the rate of reactive mixing by an order of magnitude. Thus generating a transient
flow field would be a practical way to accelerate natural attenuation and bioremediation.

Thesis Supervisor: Charles F. Harvey
Title: Professor of Civil and Environmental Engineering
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Chapter 1. Introduction

1.1 Motivation and Background

Water is the most ubiquitous biological compound and it is imperative for life. Only 0.5%

of the world's freshwater is available for consumption. Of this small fraction, groundwater

composes 96% of the available water, and this important resource is vulnerable to contamination.

For example, the USA reported groundwater contamination from leaking underground storage

tanks (LUSTs), landfills, septic systems, and hazardous waste sites. As of 1996, more than

300,000 releases from LUSTs had been confirmed (USEPA, 1998b). Fertilizers, pesticides, and

agricultural chemical facilities also contribute as non-point sources to the contamination of

groundwater. With the world's water demand increasing, it is necessary to understand how

chemicals move and change in groundwater in order to protect groundwater sources and bodies

of water that interact with groundwater.

When chemicals move through aquifers, they undergo both biotic and abotic reactions

with other dissolved chemicals and with the porous matrix itself. A desirable reaction that

removes contaminants from the aquifer is biodegradation in which microorganisms transform

harmful chemicals into safe byproducts. For example, bacteria can metabolize the toxic chemical

benzene, present in LUST spills, with oxygen and transform it into carbon dioxide and water:

C6H 6 +7.50 2 -+ 6CO2 +3H 20 (1)

These types of multi-component redox reactions occur during natural attenuation and can be

facilitated during enhanced bioremediation. Effective biodegradation depends on many variables,



but it is essential to have contaminant and electron acceptors/donors simultaneously present. In a

typical contaminant spill, the electron acceptors/donors are quickly used up leaving contaminant

degradation to occur only at the interface of the contaminant plume and freshwater where new

electron acceptors/donors can mix with the contaminant substrate. What controls the overall

biodegradation reaction rate is the slower of the chemical kinetic reaction rate and the rate that

components are mixed together.

Suarez and Rifai (1999) compiled a database of first-order chemical kinetic degradation

rates of common groundwater contaminants. The mean degradation rates of m-xylene and PCE

(tetrachloroethylene) under aerobic and anaerobic conditions are 0.058 day-' (number of studies

= 90) and 0.05 day-1 (number of studies = 50), respectively. This indicates chemical reaction

kinetics occur on the time scale of (0.058)-' : 17 days and (0.05)-1 ; 20 days. However, all of

these first-order reaction rates are representations of multi-component reactions, such as equation

1, which assumes that the electron acceptor (e.g.. oxygen) or donor (e.g. hydrogen) are not

limiting.

In natural porous media, the rates of contaminant and electron acceptor/donor mixing can

be much slower than reaction rates and can therefore control the overall rate of chemical

reaction. Several researchers have agreed that transverse mechanical dispersion dominates

mixing (e.g.. Dagan and Fiori, 1997; Cirpka et al., 1999; Cirpka and Kitanidas, 2000) and we

verify this in Chapter 3. Recent advancements in measuring transverse dispersion by Cirpka et

al. (2006) have revealed that at typical groundwater flow velocities, transverse dispersion is only

slightly larger than molecular diffusion for steady-sate flow. The mean distance, A, of

diffusion/dispersion, D, is given as a function of the time scale for diffusion/dispersion tDo:

A =,ý1O) (2)



For the time scales calculated from Suarez and Rifai (1999), in order for chemical reaction

kinetics to affect significantly the overall rate of chemical transformation compared to the rates

of mixing, chemical components would have to mix over a mean distance of about

V(20 day)( 10- 9 m2 /s) (86400 s/day) = 4 cm. Even if mechanical transverse dispersion were

two orders of magnitude larger, the mean distance of mixing would be 0.5 m. In natural porous

media, the scale over which hydraulic conductivity values correlate, which determines how far

chemical reactants have to mix, is usually on the scale of 10's to 100's of meters (Gelhar, 1993).

This typically causes the overall chemical reaction rates to be governed by mixing.

Mixing and reaction are critical to: 1) natural attenuation; 2) enhanced bioremediation;

and 3) in-situ chemical oxidation scenarios. Furthermore, fluid mixing in aquifers addresses a

very fundamental issue: chemical concentrations. Not only do small-scale concentrations drive

biogeochemical reactions but EPA laws and regulations are written in terms of MCL or

maximum contaminant levels. Slow mixing causes concentrations to be spatially variable with

maximum concentration levels well above spatial averages.

Natural porous medium are undoubtedly heterogeneous at all scales making it extremely

challenging to construct models that accurately predict the small-scale concentrations that govern

chemical reactions. In many cases, groundwater solute transport models based on the

advection-dispersion equation (ADE) adequately predict spatial averages of conservative solute

concentrations without using explicit maps of pore structures or maps of small-scale variations in

hydraulic conductivity. However, coupling the advection-dispersion equation to chemical

reaction models is inaccurate because it implicitly assumes complete mixing. Furthermore this

approach only provides information about mean concentrations and not the regulated maximum

concentrations. The slow mixing that can control chemical reaction rates and the lack of mixing



that can lead to spatially variable concentrations needs to be accounted for in reactive transport

models.

1.2 Thesis Overview

1.2.1 Objective.

The goal of this thesis is to understand mixing and reaction in porous media and to

develop a reactive transport modeling framework that approximates the correct amount of

chemical reaction and concentration probability density functions.

1.2.2 Tasks.

In order to study and model mixing and reaction in porous media, we conducted

laboratory visualization and numerical experiments. Specific tasks were:

1) Find a colorimetric reaction suitable for optical quantification of mixing and

reaction in illuminated clear laboratory chambers filled with clear porous media.

2) Conduct conservative and reactive experiments in homogeneous and

heterogeneous laboratory chambers.

3) Construct MODFLOW, MT3D, and RT3D numerical models to investigate

reactive transport scenarios not conducted with laboratory experiments.

4) Use results to understand mixing and reaction and develop and validate a new

reactive transport modeling framework.

1.2.3 Thesis Structure.



* Chapter I is a comprehensive overview of the thesis. It covers the thesis motivation and

summarizes the research findings.

* Chapter 2 provides the details of the Tiron/molybdate colorimetric reaction that was used for

optical quantification of mixing and chemical reaction in our laboratory chambers.

* Chapter 3 covers the homogeneous and heterogeneous conservative and reactive transport

experiments and compares the results against conventional modeling approaches.

* Chapter 4 develops the concentration fluctuation Beta pdf (CF-Pf) modeling framework for

reactive transport and validates it against the data from Chapter 3.

* Chapter 5 extends the CF-l modeling framework to address more complex reactive transport

scenarios, proposes how to measure the key modeling parameter at a field site, and proposes

an approach to enhance favorable mixing and reaction in the subsurface.

* Chapter 6 discusses future research directions.

1.3 Summary of Findings

1.3.1 Chapter 2. A Colorimetric Reaction to Quantify Fluid Mixing.

In order to study mixing and reaction in porous media we conducted laboratory

visualization experiments in illuminated clear porous media. We needed a chemical reaction that

consists of two colorless reactants that mix to rapidly form colored, stable, and soluble products.

These colored products can then be digitally imaged and quantified using light absorbance as

they move through the illuminated clear porous media. We found the colorimetric reaction of

Tiron (1 ,2-Dihydroxybenzene, 3,-5-disulfonic acid) and molybdate suitable for optical

quantification of chemical reaction during fluid mixing in laboratory chambers. We developed a

mathematical model to describe the two-step complexation reaction and determined the two



equilibrium constants for this reaction. We also provide methods for relating light absorbance to

product concentration, which allows our digital images to be quantitative.

1.3.2 Chapter 3. Imaging Colorimetric Reactions in Spatially Homogeneous and

Heterogeneous Material.

To characterize solute mixing and reaction in porous media, we conducted highly

detailed lab-scale experiments by digitally imaging the movement of colored dye tracers and

colorimetric chemical reactions through illuminated chambers containing: (1) homogeneous

media, in which spreading is largely caused by mechanical dispersion; (2) heterogeneous media

with mild differences in hydraulic conductivity, in which spreading is accurately predicted by a

Fickian macro-dispersion model; and finally (3) highly heterogeneous media in which solute

spreading is better described by a mass-transfer model. By analyzing the resulting sequence of

solute concentration maps, we show how solute transport models based on the advection-

dispersion and mass-transfer equations adequately predict spatial averages of conservative solute

concentrations without using explicit maps of pore structures or maps of small-scale variations in

hydraulic conductivity. However, we observe the conventional coupling of conservative

transport models to chemical reaction models incorrectly predicts the amount of chemical

reaction because reactants are not well mixed at small scales. The experimental results

demonstrate that Darcy-scale chemical segregation dominates incomplete mixing at the pore

scale. A key result for constructing reactive transport models is that the small-scale distribution

of solute concentrations is distinctly non-Gaussian, and that concentration distributions are very

well approximated by Beta distributions.



1.3.3 Chapter 4. Development and Experimental Validation of the Concentration

Fluctuation Beta-pdf(CF-,f) Model.

Building on the observation that small-scale concentrations are Beta distributed, we

sought to model these distributions with partial-differential equations for conservative

concentration mean and variance. Then, the conservative distributions can be transformed into

joint reactant distributions by applying a mixing line and all the small-scale reactions can be

calculated. This produces product and remaining reactant distributions, which can be integrated

to calculate the expected amount of chemical reaction. The full distributions are useful for

assessing laws and regulations based on maximum concentration levels. This approach is

verified for mildly heterogeneous media by modeling the product and reactant means, variances,

and distributions from the experiments of Chapter 3 and for homogeneous media by modeling

the product means from the experiments of Chapter 3, Gramling et al. (2002), and Raje and

Kapoor (2000). This reactive transport approach works without maps of hydraulic conductivity

fields or pore structures but requires experimental calibration to determine the variance-length

scale, a length scale that characterizes variance destruction and reactive mixing.

1.3.4 Chapter 5. Production-Destruction Balances, Taylor Series, and Practical

Considerations for the CF-/8 Model.

At this stage in development, the CF-P approach works for modeling equilibrium

reactions, reactions with chemical kinetics much faster than mixing rates, and when there is no

difference in chemical sorption between the chemical species in the reaction. These restrictions

arise because, 1) we can currently model only the variance of total reactants because it is a

conservative quantity and, 2) non-differential sorption allows for the covariance between species



to be calculated from a mixing line. Reactive transport situations undergoing rate-limited

reactions with reactants having different retardation factors is an important and practical scenario

(e.g. Oya and Valocchi, 1998). The difficulty for applying the CF-fl framework to these types of

complex reactive transport scenarios is in determining the reactant variances and covariances.

Numerous unclosed terms arrive from perturbation analysis when chemical reactions are

included in variance and covariance budgets. This chapter explores macro-dispersive and

mechanical-dispersive (co)variance production-destruction balances to approximate these second

moments.

Velocity fluctuations shear and distort fluid interfaces. This produces (co)variance and at

the same time establishes mechanical-dispersive transverse concentration gradients that destroy

(co)variance. The rates of (co)variance production and destruction asymptotically balance each

another for both conservative and reactive flows. This balance leads to the following relationship

to approximate an m-by-n aqueous species covariance matrix as a function of the variance length

scale XL, macro-dispersivites Aij, and species mean gradients:

.2 2 , ( A m (3)

We found this relationship to asymptotically hold for the following scenarios based on our

experimental data: variance of a conservative tracer, covariance of two conservative tracers,

covariance of two conservative species with differential sorption, variance of A and P for the

A+B--+P reaction, and the variance of the Tiron/molybdate product. It also holds for the

variances and covariance of oxygen and hydrocarbon undergoing a double-Monod rate-limited

reaction where hydrocarbon sorbs with a retardation factor (RH = 1.0, 1.2, 1.5, 4.0) determined in

numerical simulations.



Production-destruction balances can provide the necessary statistical moments to form

multivariate reactant distributions to upscale complex reactive transport scenarios. Alternatively,

we found that these second-order moments can be used in an upscaled reaction expression

derived from a second-order Taylor series expansion. Incomplete mixing, parameterized by

variance and covariance, caused the upscaled double-Monod reaction rate to be almost an order

of magnitude smaller compared to the conventional double-Monod reaction rate that implicitly

assumes complete mixing.

We propose the decisive variance length-scale can be measured in the field with a

reactive breakthrough curve as it was for the lab-scale experiments of Raje and Kapoor (2000),

or possibly from a breakthrough curve of conservative concentration variance. Finally,

manipulating the flow field to be perpendicular to its original direction would increase variance

destruction and reactive mixing by an order of magnitude. Thus, generating a transient flow field

would be a practical way to accelerate natural attenuation and bioremediation.
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Chapter 2. A Colorimetric Reaction to Quantify
Fluid Mixing

Abstract: We found the colorimetric reaction of Tiron (1,2-Dihydroxybenzene-3,-5 disulfonic
acid) and molybdate suitable for optical quantification of chemical reaction during fluid-fluid
mixing in laboratory chambers. This reaction consists of two colorless reagents that mix to
rapidly form colored, stable, soluble products. These products can be digitally imaged and
quantified using light absorbance to study fluid-fluid mixing. Here we provide a model and
equilibrium constants for the relevant complexation reactions. We also provide methods for
relating light absorbance to product concentrations. Practical implementation issues of this
reaction are discussed and an example of imaged absorbances for fluid-fluid mixing in
heterogeneous porous media is given.



2.1 Introduction.

Understanding chemical reaction during fluid-fluid mixing is important for

environmental processes (Beven et al., 1994), the chemical industry (Sterback and Tausk,

1965), pharmaceutical engineering (Hickey and Ganderton, 2001), process industries

(Harnby et al., 1985), and the field of medicine (Omurtag et al., 1996; International

Union of Biochemistry. 1964) among other disciplines. Reactive mixing results from

molecular diffusion across complex fluid-fluid interfaces (Ottino, 1990).

To better understand this molecular-scale phenomenon, researchers have

developed non-invasive optical measurement techniques. The two leading methods are

laser-induced-fluorescence, where the fluorescence of a reaction product is measured

(e.g. Koochesfahani et al., 1985), and absorption imaging, where the amount of light

absorbance is related to chemical concentration by Beer's Law (Tidwell and Glass, 1994;

Zhang et al., 1995; Gramling, 2002). As pointed out by Zhang et al. (1995), planar-laser-

induced-fluorescence (PLIF) is an excellent technique but involves a relatively complex

setup; requiring laser equipment and cylindrical and spherical mirrors to separate the

laser into a plane. This light plane is able to able to give a 2-D concentration profile at a

selected location in the mixing vessel. However, experimental times are typically short to

avoid changes in the fluorescent signal due to temperature variation (eg. Kling and

Mewes, 2003). Absorption imaging involves a simpler setup by pairing a colorimetric

chemical reaction with a charge-coupled device (CCD) camera and digital image

processing to quantify the 2D absorption field (Tidwell and Glass, 1994; Zhang et al.,

1995; Gramling, 2002). Experimental times can typically be much longer implying this

technique maybe more suitable for studying slower flows (Zinn et al., 2004). Absorption

imaging is a quasi-2D technique that is unable to resolve concentration detail in the third



spatial dimension but it does provide the correct spatial average of the molecular product

formed. Whether the correct spatial average of product formation given by absorption

imaging or a plane giving detailed concentration information in the third dimensional is

more valuable depends on what questions the researchers are trying to answer.

To study reactive mixing with light absorption imaging, a reaction is needed

where two initially colorless reagents react to form a colored, stable, soluble, quantitative

product. Ideally, this reaction should happen at circumneutral pH, not involve hazardous

chemicals, and be unreactive with other materials used in the study. Unfortunately, this

type of reaction is very hard to find (Breidenthal, 1981). Several reactions have been used

for flow visualization: ozone and nitric oxide for turbulent jet studies (Shea, 1977);

photochemically-induced colorimetric reactions for hydrodynamic instabilities at reactive

interfaces (Avnir and Kagan, 1984); iron(II) and nitric acid for studying multi component

convection (Pojman et al., 1991); electrically-induced iodate-arsenous-acid reaction to

produce iodine in the presence of starch (Bockmann and Miller, 2000); phenolphthalein

and base, which is probably the most commonly used reaction to study fluid-fluid mixing

(e.g. Menisher et al., 2000; Fox and Gex, 1956; Zhang et al., 1995; Breidenthal, 1981);

and recently Gramling et al. (2002) used a complexation reaction of copper sulfate and

EDTA.

We found that all of the above-mentioned reactions had undesirable

characteristics for studying fluid-fluid mixing. While the phenolphthalein reaction

contains many of the desired attributes (Breidenthal, 1981), the colored product is

unstable and fades back to colorless (Nicholson, 1989); thus, it only allows for the

calculation of a lower mixing bound (Breidenthal, 1981). Gramling et al. (2002)



overcame this problem of color stability by using a copper sulfate-EDTA reaction that

forms a dark blue complex, but the copper sulfate reagent is initially light blue, making it

impossible to distinguish between reagent and low product concentration. While an ideal

reaction may not exist, we sought to improve the colorimetric reaction used for

absorption imaging. In addition to the above-mentioned reactions, we also considered

starch and iodine, leuco crystal violet and hydrogen peroxide, manganese and periodate,

but they all failed to meet one or more of the aforementioned requirements. We found the

colorimetric reaction of Tiron (1,2-Dihydroxybenzene-3,-5disulfonic acid) and

molybdate suitable to quantifiably study the mixing of two fluids.

In the first section of this paper, we give the background on Tiron, molybdate, and

their complexation reaction. Next, we present a specific chemical recipe and its properties

relevant to study fluid-fluid mixing, cover the governing reaction equations, and model

the reaction to fit two chemical equilibrium constants. Then we discuss how light

absorbance captured by a digital camera relates to product concentration. Finally, we

discuss some practical implementation issues and then give an example of imaged

absorbance of this reaction used to study mixing in transparent heterogeneous porous

media.

2.2 Tiron, Molybdate, and Their Reaction.

1,2-Dihydroxybenzene-3,-5disulfonic acid:



was named Tiron for its use as a chelatometric indicator for both titanium and iron (Yoe

and Armstrong, 1947). Tiron is easily soluble in water, slightly soluble in alcohol, and

insoluble in nonpolar organic solvents. The ionization constants for the two hydroxyl

groups are pKai=7.66 and pKa2=12.6 (Schwarzenback and Willi, 1951). Aqueous

solutions are colorless (Atkinson and McBride, 1957; Will and Yoe, 1953) and have been

reported to remain stable for a year (Atkinson and McBride, 1957). However, tiron easily

oxidizes in alkaline solutions to turn colored (Atkinson and McBride, 1957), and we

found it to slightly photooxidize after sitting exposed to light after about a week. Tiron

forms colored complexes with: Fe+3, MoO 4-2, OsO052, CU+2, UO2+2 , VO+2, Ti +4 (Will and

Yoe, 1953) and many rare earth metals (Taketatsu and Toriumi, 1970, 1971); it forms

colorless complexes with: Al+3, Ca+2, Ce +3, Sn +4 , Zr+4, Th+4 , Hg +2, WO4-2, Pb+2; and Tiron

reduces Ag ÷ and AuCI4" to the metallic state (Will and Yoe, 1953).

Molybdate oxo species polymerize depending on the concentration and pH of the

solution (Aveston et al., 1964; Mitchell, 1990). Under conditions of a pH between 0.9

and 6.0 and molybdate concentrations greater than 10-3 M, MoO 4
2- anions form

[Mo70 24]6 and [Mo80 26]-4 polymeric species. Below a pH of 0.9, molybdate precipitates

as MoO 3. Above a pH of 7, it forms "molybdenum blues", which is a blue mixture of

molybdenum(VI) and molybdenum(V) oxyhydroxides, typically represented as

[Mo3
6+Mo3

5+O8sH]". However, between a pH of 6 and 7, molybdate exists as mono-

anions, which are clear in solution (Mitchell, 1990). When the molybdate ion hydrates, it

can act acidic (the exact degree of protonation is pH dependent; pKal=4.24, pKa2=8.24

(Flaschka, H. A., Barnard, 1967)):

OH H20 0 OH HO 0 OH

O OH H20 O OH HO 0 OH

30



The final product can be described as the tetrahydroxo complex of the molybdenyl(VI)

cation, MoO 2
2+, which will complex with anionic chelating agents (Flaschka, H. A.,

Barnard, 1967).

Dozens of polyphenolic compounds have been reported to react with

molybdenum (Flaschka and Barnard, 1967) via the chelating agent displacing the

molybdate hydroxo ligands (see below) to form a stronger complex (Schwarzenback,

1957). The general structure of the polyphenolic-molybdenum chelate is given by

Halmekoski (1959):

0 0

R, R ,

In the case of Tiron, the two R groups (R2 and RI) are sulfonate groups (-S03-), which are

responsible for the high water solubility of Tiron and its complexes. Tiron was found to

be the most stable molybdate ligand of EDTA, NTA, or 5-sulfosalicylic acid (Chabarek

et al., 1959) and the complexation occurs instantaneously to produce a color that is stable

for at least three weeks (Will and Yoe, 1953). Furthermore, Will and Yoe (1953)

recommended this reaction for the spectrophotometeric determination of molybdate. Two

tiron-molybdate species with a metal to ligand ratio of 1:1 and 1:2 have been reported

(Sommer, 1962). The first complexation reaction can be written as:

Ti + Mo ,---  MoTi (1)

SH/ OI + 2H2O
qH HO) 0 OH

so so-



where Ti is the molar concentration of Tiron; Mo is the molar concentration of

molybdate; and MoTi is the molar concentration of the 1:1 complex. This dehydration can

produce H30+ or OH- as well as H20 depending on the pH of the solution (Flaschka and

Barnard, 1967). In a well buffered solution, this first reaction can be expressed with the

equilibrium expression:

MoTi]
[ Mo Ti

where Ki is the first equilibrium constant (liters/mol). This first product then undergoes

an additional reaction with Tiron to produce the complex in the form reported by

Halmekoski, (1959):

MoTi + Ti == MoTi, (3)

so; o 0H so-

so; l so;

+ 2H2 0

where MoTi2 is the second chelate formed. The second equilibrium expression follows:

K [Mo(4)
[MoTi [Ti]



where K2 is the second equilibrium constant (liters/mol).

Mixing two clear solutions of 0.05M Tiron and 0.025M molybdate buffered at pH

6.1 (see below) forms a red wine color, which progressively appears orange and then

yellow as the products are diluted. The colored products strongly absorb in the violet and

blue region of the spectrum, transmit the yellow and red wavelengths, and the absorbance

of green light increases with product concentration. The red-to-yellow color-shift occurs

because green and red light transmitted together appear yellow (Serway and Faughn,

1995). Thus, at low concentrations, the product solution transmits green, yellow, and red;

the combination of green and red with the yellow give the solution a yellow appearance.

However, as product concentrations increase, the complexes absorb more of the green

wavelengths. Without green light, the transmitted wavelengths progressively appear

redder and the solution changes from yellow to orange to red.

2.3 A Chemical Recipe to Study Fluid Mixing in Laboratory Chambers.

We chose reagent concentrations of 0.05M Tiron (added as a disodium salt) and

0.025M molybdate (added as ammoniummolybdate) in order for a digital camera to

record the colored product absorbances with a dynamic range of over one and one-half

orders of magnitude in a clear tank approximately 0.7 cm thick. A pH of 6.1 was chosen

so molybdate would predominantly exist in the mono-anionic form allowing the diffusion

coefficients of all reacting species to be explicitly calculated and accounted for in a

model if desired. Additionally, at pH 6.1, alkaline-induced oxidation of Tiron is

minimized, reducing absorbance artifacts. We used a 0.13 M succinate buffer (added as

succinic acid) to ensure no spatial or temporal pH changes, which would make the

observed color more difficult to understand, as the reaction is pH sensitive. Succinate



was chosen because its second pKa is 5.64, close to the desired pH, and it had no adverse

effects on the reaction. Finally, sodium chloride was added to the molybdate solution to

equalize its density to the tiron solution.

In summary, the species concentrations in the two solutions buffered at a pH of 6.1

were:

* Tiron Solution: 0.05 M Ti (pKal=7.66, pKa2=12.6); 0.356 M Na; 0.13 M Succinate
(pKai = 4.21, pKa2 = 5.64).

* Molybdate Solution: 0.025 M Mo (pKal=4.24, pKa2=8.24); .0215 M NH4 (pKa =

9.25); 0.477 M Na; and 0.192 M Cl, 0.13 M Succinate

We also investigated the viscosity of the two solutions and calculated the

diffusion coefficients of all the species involved, as these factors might be important for

reactive transport situations. Using a Cannon-Fenske Routine Viscometer in triplicate, we

found no distinguishable difference between the kinematic viscosity of the tiron,

molybdate, or product solution (equal volumes of 0.05 M Tiron with 0.025 molybate).

The average viscosity of the three solutions was 0.9798 ± 0.0017 mm2/s at 250 C (H20 =:

1.1526 mm2/s), where the uncertainty is in the range of our experimental error. The self

diffusion coefficients not found in the literature were calculated by the method of Hayduk

and Laudie (1974), which relates the molecular diffusion in water (cm2/s) to the species

molar volume calculated by the method of Fuller et al. (1966). The self diffusion

coefficients for the species considered are given in Table 1.

Table 1



2.4 Tiron and Molybdate Reaction Model.

At a pH of 6.1, the predominant species and their charges are: Na÷ (over 96% of

the cations by concentration are sodium and we considered it the only cation in system);

Ti 2 (> 97% diprotonated); Mo-' (> 98% mono-prononated); and 74% Succ 2- and 26%

Succlt. These will be the species considered in the model. The colorimetric reactions can

be modeled as (the specifics of the reaction will be developed below):

Mo-' + Ti-2 M Ti- + 2H 20 (5)
MoTi-3 + Ti-2  " MoTi-4 + OH- + H20

We assumed that because of succinate's pKa's and high concentration, it is the only

species to react with the OH- and that the reaction occurs rapidly.

SuccH-' + OH- = Succ-2 + H 20  (6)

The rapid reaction assumption was supported by the experimental observation that the pH

did not change during the reaction. If the colorimetric reaction is rapid and produces OH1

as supported by the literature and experimental observation in an unbuffered solution at

pH = 6.1, the quenching of OH' must also be instantaneous or the pH would change.

Therefore, because MoTij2 is equal to the amount of OKh produced, we can assume:

SuccH- = (Succ- )o - MoTi (7)
Succ-2 = (Succ-2 0 MOTi7 4



Where SuccHo' and SuccHo2 are the initial concentration of protonated and unprotonated

succinate respectively.

When the concentrations are mixed, mass balances for the total molybdate, MOT,

and the total tiron, TiT, can be written:

Ti = Ti + MoTi + 2 * MoTi2

Mo . = Mo + MoTi + MoTi,
(8)

Combining equation 8 with equations 2 and 4 redefines the two equilibrium expressions:

MoTi

K' [Mo, - MoTi- MoTi2 ]Ti, - MoTi - 2 MoTi2

K2 = MoTi[TT -*[MoTi2
2' [MOnTi - MoTi-2* MoTi2 ]

(9)

(10)

Equations 9 and 10 can be

for each of the complexes:

solved simultaneously to obtain independent analytic solutions

[MoTi] = f([Ti,. ],[Mo,],K,,K 2)

[MoTi2] = f ([Tir],[Mo,],K,,K2)
(11)

The solutions found using

Beer's Law is additive, the

Matlab are too lengthy for presentation in this paper. Because

linear absorbance, At, of the two products can be expressed as:



-1 (i= A, = e [MoTi]+ [ MoTi] (12)

where T/To is the fraction of light transmitted; and ev and 4 are coefficients that include

the transmittance path length (1 cm in our experimental tank) and the corresponding

molar absorptivity of the compound. It is expected that the complexed species with two

tirons absorbs more light because it has more delocalized electrons (larger antenna to

absorb light).

2.5 Equilibrium Constants.

The two stock reagent solutions described above were combined in incrementally

increasing ratios of Mo:Ti to make thirty samples with identical total volumes (actual

concentrations of Mor and Tir can be read from Figure 1). The resulting absorbances

were measured with a Beckman DU 640 spectrophotometer at 580 nm with a 1 cm

cuvette. The cuvette containing the product was placed in front of a sophisticated light

box designed to give a constant source of diffuse white light (see Detwiler et al., 1999 for

details). An Optronics MagnaFire 10 bit (1024 x 1024 pixel) digital camera (designed for

quantitative scientific imaging) was placed 2 ft in front of the cuvette on the opposite side

of the light box to take digital images with an exposure time of -0.6 seconds. The

resulting images were processed with IP Lab to convert pixel intensities towards the

center of the cuvette into normalized absorbances according to Beer-Lambert Law:

A, _ log(I,) - log(Iblank) (13)
Amax log(Im ..) - log(Iblank,



Where Ai is the absorbance of the ith product solution, Am, is the maximum product

absorbance, Ai is the measured light intensity of ith product solution, Iblank is the measured

light intensity of the blank solution, Imax is the measured light intensity of the max

product solution. The resulting normalized absorbances varied little over the cuvette and

an average value was used. Replicate absorbances were created with a different brand of

chemical reagents (originally Sigma and then Fluka) on a different day to produce

absorbances within 5% of each other.

Utilizing equations 11 and 12, a Gauss-Newton non-linear least squares

minimization was used to fit K1, K2, el, and L- to the observed absorbance at 580 nm.

Different initial guesses were used for the same estimation to confirm that the parameters

converged to a unique value. Conventional methods were used to calculate the standard

deviations on each of the fitted parameters from the Jacobian matrix (derivatives of

residuals with parameter values) at the solution and the residuals (Milton and Arnold,

1995). The model gave an excellent fit to the data (Figure 1) to produce the following

parameter values: K1 = 3.4 ± 0.8 x10 3 liter/mol, K2 = 7.5 ± 1 x10 2 liter/mol, e6 = 4.3 ± 2

liters/(mol*cm), e2 = 83 ± 1 liters/(mol*cm).

Figure 1

These fitted K values should be applicable to a wide range of combinations of molybdate

and tiron concentrations over a wide range of wavelengths as long as the pH is

maintained at 6.1. A parameter sensitivity analysis was conducted by determining the

change to sum of the squared residuals caused by decreasing each of the following

parameters by 5%: MOT, TiT, KI, K2, el, and s. The parameter rank from most sensitive



to least sensitive including the resulting % change of the sum of squared residuals is: 4

(520%), TiT (410%), MOT (360%), K2 (11%), K1 (2.2%), rE (1%). At a pH of 6.1 and a

wavelength of 580 nm, absorbance is dominated by the MoTi2 species. If the model is

simplified (incorrectly) by setting the absorbance of MoTi to zero, then the best fit has a

15% higher root mean square error, although the total error is still very low. However,

treating MoTi2 as the only absorbing species may serve to be a good first approximation.

2.6 Imaged Absorbance versus Monochromatic Absorbance.

Digital cameras that record polychromatic absorption provide a practical tool for

studying spatial patterns of color-changing reactions in experimental tanks. The observed

color-shift from yellow to orange to red led us to investigate the relationship between the

recorded polychromatic absorption and the monochromatic absorbance predicted by

Beer's law. We found that this relationship is nonlinear, but very well described by an

exponential function (Figure 2):

Figure 2

This result is explained by considering absorbance curves over the full visible spectrum

on the spectrophotometer. Fifteen samples were prepared as previously described, and the

concentrations of MoTi and MoTi2 were calculated using the best-fit equilibrium

constants. Then the absorbance over the visual spectrum, which is what the digital

camera observes, was compared to the absorbance at 580 nm (Figure 3).

Figure 3



Beer's law is valid for monochromatic light and states that absorbance is linear with

concentration. However, non-linear behavior is often observed at high absorbance values

because of measurement limitations and an increase in the refractive index as the solution

becomes more concentrated. For the MoTi and MoTi2, shorter wavelengths are

significantly transmitted at low product concentrations and they make up a portion of the

observed light as seen by the digital camera. However, as the product concentration

increases the shorter wavelengths plateau while the higher wavelengths are still absorbed

in proportion to the concentration, implying that at high concentrations the short

wavelengths are below the detection limit, which also verifies the progressively redder

appearance of the product solution (see section 2). Therefore, the plateauing absorbance

of lower, but not higher, wavelengths with increasing product concentration explains the

non-linear behavior of digitally imaged camera absorbances and concentrations. The

wave-like appearance of the higher absorbance values is systematic with the crests having

predominantly MoTi and the troughs having predominantly MoTi2. This implies the ratio

of MoTi to MoTi2 molar absorbtivities (e, and c2) at the lower wavelengths (and higher

absorbances) is higher than the implemented value determined at 580 nm. The only

importance of this is MoTi does seem to have a more significant absorbance in the visible

spectrum than determined from the fit at 580 nm. Because Beer's law is valid for

monochromatic light, we can transform camera absorbances, A/Ao, into linear

absorbances, A,, through the following relationship (see Figure 2):

A, = CI *(e ' 2* AI/A - 1) (14)



where iK and K2 are fitted coefficients. Using known concentrations of Tiron and

molybdate, pixel-by-pixel calibration curves to fit K, and /2 (equation 13) can be

constructed from linear absorbances, such as at 580 nm, and digitally imaged absorbances

of the physically system containing the known amount of product. These pixel-by-pixel

calibration curves allows for absorbances captured by the digital camera to be converted

into experimental linear absorbances, which can then be compared with modeled linear

absorbances calculated from modeled product concentrations.

2.7 Practical Implementation: An Example of Imaged Absorbances for

Mixing in Heterogeneous Porous Media.

We have presented a colorimetric reaction and relevant properties to fluid mixing,

that starts with two colorless reagents that upon mixing instantly form colored, stable,

soluble, quantitative products that can be modeled and used to assess fluid mixing.

However, before implementing this reaction, there are some practical issues worth

addressing. At a concentration of 0.05 M and pH of 6.1, Tiron has a very slight

absorbance, which may be non-negligible if the path length is above a few centimeters.

Additionally, if a fluid-fluid system is being studied at slow flow rates and is constantly

exposed to light, Tiron may photo-oxidize and turn slightly colored. There are several

alternatives to overcome these Tiron absorbance artifacts. First, if the path length of the

system is longer than 1 cm, the tiron and molybdate concentrations can be decreased

because the absorbance of both the colored product and tiron vary linearly with path

length. The decrease in product concentration will directly offset the increase in path

length and would still be visible to the digital camera over one and one-half orders of



magnitude. Additionally, if explicitly modeling the diffusion of each species is

unimportant (and there are no concerns with molybdate polymerizing), the pH of the

solution could be lowered to minimize Tiron absorption as long as new K1 and K2 are

determined. For experiments run for several days, photo-oxidation can be minimized by

shutting off the light source or blocking it with an opaque barrier between snapshots.

Additionally, tiron solutions should be stored in the dark to minimize photo-oxidation.

Lastly, because Tiron complexes with many metals (see first section), metals must be

absent from the fluid-fluid system. For example, we found that trace amounts of iron our

system react with Tiron to form a deep purple color. Iron was subsequently removed by

magnetic separation. With these issues resolved, this reaction can be very useful for

studying fluid-fluid mixing.

For example, we used the tiron-molybdate reaction to image fluid-fluid mixing in

heterogeneous porous media. Assuming solutes are not sorbing to the porous media,

mixing in porous media is a result of hydrodynamic dispersion (pore-scale and local

velocity variations), which leads to the spreading and stretching of solute plume

interfaces. This stretching itself does not mix solutes, but it greatly enhances the surface

areas for solutes to diffuse. Concentrations C are calculated by modeling reactive

transport with a hydrodynamic dispersion coefficient D from the

advection-dispersion-equation:

aC ' 2C acC- =D v- - (15)at ax2  ax

where v is the average linear velocity. This model implicitly averages reacting

concentrations at the pore scale and larger length scales in heterogeneous formations; this



incorrectly assumes complete mixing and leads to an over prediction of mixing and

reaction (e.g. Kapoor et al., 1997; Ginn et al., 1995; Miralles-Wilhelm et al., 1997;

Gramling et al., 2002; Jose et al., 2004). To help resolve these issues and create up-scaled

models of reactive transport in heterogeneous porous media, we used the experimental

setup described by Gramling et al. (2002) and the tanks of heterogeneous porous media

created by Zinn et al., (2004) with the Tiron-molybdate reaction (Figure 4):

Figure 4

In this setup, a clear heterogeneous tank (40 x 20 x 0.65 cm) had spatially varying

hydraulic conductivity from large glass beads (2.1 mm) packed in 2.5 cm diameter

circular inclusions that contained smaller glass beads (0.9 mm) resulting in a hydraulic

conductivity ratio of 6, with slower velocities moving through the small circles. The tank

was initially saturated with the Tiron solution and a molybdate solution (see section 3 for

solution concentrations) was injected with an ISCO model 500D syringe pump at a flow

rate of 4.1 ml/min. The chamber was mounted in front of a sophisticated light box

designed to give a constant source of diffuse white light (see Detwiler et al., 1999 for

details). A 14-bit liquid-cooled CCD (charge-coupled device) camera was placed on the

opposite side of the tank at a distance of -10 ft, which gave a spatial resolution of -0.3

mm while still capturing the entire 20 x 40 cm absorbance field, which ultimately

produced -750,000 absorbance values per time snap shot. Images were taken every

minute with an exposure time of -0.7 s. IP Lab was used to process the images to convert

pixel intensities into normalized absorbance according to equation 13 (figure 5):



Figure 5

The normalized camera imaged absorbances were transformed to a linear absorbance by

constructing pixel-by-pixel calibration curves from six known Tiron/molybdate mixtures

(table 2) to fit the exponential transform coefficients Kc and K2 (R2 = 0.99 ± 0.02) from

equation 14 at every pixel. A mass balance was then performed by comparing the

digitally imaged mass to the known injected mass and the total masses differed by less

than 3%, indicating there is fairly low experimental error. The transform coeffecients

allowed for the observed linear absorbance based on molecular scale collisions to be

compared to a model-predicted linear absorbance. The modeled linear absorbance was

based on a finite difference of the conventional 1D advection-dispersion-equation

(equation 15) to model the mixing and reaction of Mor and Tir (equations 11 and 12).

The experimental product is inherently averaged over the thickness of the tank but it does

provide the correct spatial average of the molecular scale product. Next the product is

spatially averaged over Y so that it can be compared to the 1-D model along X. Using a

Gauss-Newton non-linear least squares minimization, the best fit dispersion coefficient

0.63 cm2/min and average linear velocity of 0.57 cm/min does a poor job of modeling the

correct amount of mixing and reaction (figure 6).

Figure 6

As can be observed from the variability in the Y-direction in figure 5, mixing is not

complete as assumed by the advection-dispersion-equation. This incomplete mixing



causes the discrepancy between the observed and model predicted reaction. Up-scaled

models to describe reactive transport, as visualized in figure 5, do not yet exist and are

the focus of our, and many other researchers' studies (e.g. Kitanidis, 1994; Kapoor and

Kitanidis, 1996, 1998; Weeks and Sposito,1998; Oya and Valocchi, 1998, Cirpka et al.,

1999).We feel that the reaction and analysis method presented in this paper will be

instrumental in understanding mixing in porous media. Ultimately, it is hoped that this

reaction and analysis method will broadly help researchers in industry and academia

improve their conceptual and mathematical models of fluid-fluid mixing.
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Figure 1. Modeling the Tiron-molybdate reaction to fit K1 and K2 at pH = 6.1. This figure
is read by looking at the top and bottom x-axis of respective total Tiron and total Molybdate
concentrations that formed the Product concentrations (left y-axis) and corresponding
Absorbances at 580 nm (right y-axis)
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Figure 2. Monochromatic Absorbance versus Normalized Imaged Absorbance.
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Figure 5. Imaged Absorbances of six time snap shots of fluid-fluid mixing in heterogeneous porous
media, elucidated by the Tiron-molybdate reaction. Flow is from left to right.
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Table 1. Diffusion coefficients.

Species Ti 2  MO-1  Succ-2  Succ' CT MoTi 3  MTi2
4  a

ree Solution Self] 5.4 x 10. 6 * 1.98 x 10.-' 9.6 x 106" 9.4 x 10-6* 2.03 x 10-"5 5.1 x 106 . 3.3 x 106* 1.334 x 105#
Diffusivity [cm 2/s]

*Calculated from Hayduk and Laudie (1974) and Fuller et al., (1966)
# Taken from CRC
* For suggested recipe multiply by .98 for viscosity corrections

Table 2. Calibration Curve Solutions.

Solution # 1 2 3 4 5 6
Tiron (M) 0.05 0.0053 0.043 0.017 0.033 0.025
Molybdate (M) 0.0 0.022 0.0033 0.016 0.0083 0.0125
A,, at 580 nm 0.0 0.047 0.26 0.40 0.64 0.83



Chapter 3. Imaging Colorimetric Reactions in
Spatially Homogeneous and Heterogeneous
Material

In many cases, groundwater solute transport models based on the advection-dispersion and
mass-transfer equations adequately predict spatial averages of conservative solute concentrations
without using explicit maps of pore structures or maps of small-scale variations in hydraulic
conductivity. However, these upscaled models may incorrectly predict solute reactions because
reactants are not well mixed at small scales. To characterize solute mixing in porous media, we
conducted highly detailed laboratory experiments by digitally imaging the movement of colored
dye tracers and colorimetric chemical reactions through illuminated chambers containing: (1)
homogeneous media, in which spreading is largely caused by mechanical dispersion; (2)
heterogeneous media with mild differences in hydraulic conductivity, in which spreading is
accurately predicted by a Fickian macro-dispersion model; and finally (3) highly heterogeneous
media, in which solute spreading is better described by a mass-transfer model. By analyzing the
resulting sequence of solute concentration maps, we quantify how the conventional coupling of
conservative solute transport models to chemical reaction models over-predicts chemical
reaction. The experimental results demonstrate that Darcy-scale chemical segregation dominates
incomplete mixing at the pore-scale. A key result for constructing reactive transport models is
that the small-scale distribution of solute concentrations is distinctly non-Gaussian, and that
concentration distributions are very well approximated by Beta distributions.



3.1. Introduction.

Understanding how chemicals move and change in porous media is fundamental to the

study of geochemical weathering, diagenesis, and mineral deposition as well as to the design and

management of schemes for aquifer remediation, nuclear waste disposal, and carbon-dioxide

sequestration. In this sequence of papers we attempt to address the disparity between

representations of large-scale solute migration and representations of local well-mixed

biogeochemical reactions. This gap exists because solute transport models that predict

large-scale solute migration and spreading do not describe the local distributions of

concentrations that drive geochemical reactions, and, likewise, sophisticated biogeochemical

models that accurately represent transformations within well-mixed solutions rarely attempt to

represent. the physical processes that mix solutes and thereby drive solute reactions. In this paper,

we describe lab-scale experiments that directly image reactive transport and provide detailed

quantification of small-scale solute mixing and reaction.

Several theoretical studies (e.g. Ginn et al., 1995; Kapoor et al., 1997; Miralles-Wilhelm

et al., 1997; Cirpka and Kitanidis, 2000; Robinson and Viswanathan, 2003) have suggested

mixing and reaction are much less than predicted by a large-scale models of dispersive mixing

(figure 1).

Figure 1.

For example, to model their biostimulation field data, Semprini and McCarty (1991) had to

greatly reduce the dispersion coefficient from the value fit to a conservative tracer. Sturman et al.

(1995) reviewed existing bioremediation laboratory and field data and pointed out several



remediation cases in which pollutant removal was less effective in the field than predicted by

laboratory experiments. They attributed this to a problem associated with incomplete mixing in

heterogeneous aquifers. Raje and Kapoor (2000) showed that breakthrough curves of a

rate-limited bimolecular reaction in homogeneous porous media are overestimated by assuming

complete pore-scale mixing. Gramling et al. (2002) conducted colorimetric experiments in a

transparent homogeneous porous media to demonstrate that actual reaction is overestimated by

coupling dispersion and chemical reaction. Jose and Cirpka (2004) and Jose et al. (2004)

conducted tank experiments to show that the effective-dispersion coefficient that predicts the

correct total amount of product formed from the mixing of two reactants is less than the macro-

dispersion coefficient. In order to predict and understand how conservative and reactive

concentrations behave without explicitly mapping pore structures and hydraulic conductivity

fields, which is highly impractical, unresolved small-scale mixing has to be understood and

parameterized in reactive transport models.

In this first of three papers, we begin by describing the laboratory methods used for

imaging conservative and reactive transport in porous-media-filled chambers. We then compare

our high resolution data to predictions made by advection-dispersion and first-order

mass-transfer equations coupled to chemical reaction models. We find that this upscaled

modeling approach adequately predicts conservative solute transport but not reactive solute

concentrations because of incomplete mixing at small scales. We assess the upscaling error

caused by pore-scale solute segregation to Darcy-scale solute segregation in heterogeneous

porous media, and then we investigate how different initial reactant concentrations affect the

accuracy of upscaled predictions. Incomplete small-scale mixing creates solute concentration

distributions that may not be adequately described by Gaussian distributions. We show that the



small-scale concentration distributions are accurately described by Beta distributions. Models of

small-scale concentration distributions are necessary for upscaling non-linear reactions, and the

results presented in this paper serve as a basis for developing a reactive transport modeling

approach in the accompanying paper.

3.2. Laboratory Visualization Methods.

3.2.1 Experimental chambers.

Three glass-walled experimental chambers were filled with glass beads. One chamber (30

x 5 x 0.65 cm) contained uniform-sized beads (0.4 mm) as described by Gramling et al. (2002),

and hence has spatially homogeneous conductivity. Two different chambers (40 x 20 x 0.65 cm),

described by Zinn et al. (2004), had spatially variable hydraulic conductivity. Each of these

chambers contained large glass beads (2.1 mm diameter) packed around circular inclusions (2.5

cm diameter) containing smaller glass beads (0.9 mm or 0.135 mm diameter). Because the

inclusions were filled with small beads, they had much lower conductivity. The first chamber,

with inclusions filled with 0.9 mm beads, had a contrast in conductivity of 6. In this chamber,

conservative solute transport followed classical advective-dispersive behavior. The second

chamber with inclusions filled with much smaller beads (0.135 mm) had a conductivity ratio of

300, and transport through this tank was reproduced accurately by advective-mass-transfer

equations (Zinn et al., 2004).

3.2.2 Light absorption imaging.

Non-invasive light absorption imaging of solutes was used for each of the three

chambers. This technique relates digital images of a colored solute to concentration through



Beer's Law (e.g. Oates and Harvey, 2006). Experiments with conservative solutes were

conducted by imaging a blue dye, FD&C Blue#l, at 25 mg/l as it moved through the illuminated

tanks with a 14-bit digital camera (spatial resolution of 0.3 mm) and measuring breakthrough

curves with a photometer (figure 2) (Zinn et al., 2004).

Figure 2.

For the reaction experiments, a clear chemical reactant was pumped into the tanks displacing

another clear chemical reactant. When the two reactants mix, they produce colored complexes,

which we quantified with the same light absorption method (Oates and Harvey, 2006).

3.2.3 The colorimetric reaction: Tiron and molybdate complexation.

The complexations of Tiron and molybdate (Tiron solution: 0.05 M Tiron, 0.356 M

sodium, and 0.13 M succinate; Molybdate Solution: 0.025 M molybdate, 0.0215 M ammonium,

0.477 M sodium, 0.192 M chloride, and 0.13 M succinate) were used as the colorimetric reaction

(Oates and Harvey, 2006). Tiron and molybdate are both initially clear and they react to produce

two colored products (1:1 and 2:1 Tiron to molybdate products), which create absorbance linear

with the sum of the concentrations weighted by their respective molar absorbances. In these

papers we will use the term "product" to refer to light absorbance at 580 nm (Oates and Harvey,

2006).

3.2.4 Batch sorption experiments.



Zinn et al. (2004) tested FD&C Blue#1 with the chamber components and demonstrated

that the dye did not sorb. As Tiron, molybdate, and the glass beads are all negatively charged, we

did not anticipate significant sorption, but we ran batch sorption experiments to ensure that

sorption could be considered negligible. Six different Tiron/molybdate mixtures (table 1) were

placed in sealed glass Erlenmeyer flasks containing glass beads and the O-rings, metal screens,

and glue used to construct the low-conductivity inclusions in the heterogeneous tanks. After

recording the absorbance at 580 nm, the flasks were stored in the dark for one week and the

absorbance at 580 nm was measured again and found to be indistinguishable. Thus we concluded

that neither Tiron, molybdate, nor their product were significantly sorbing.

3.2.5 Image processing and analysis.

The captured images were processed with IPlab by applying Beer's Law to every pixel

(approximately 250,000 pixels for the homogeneous tank and 750,000 for the heterogeneous

tanks) to quantify the temporal evolution of the entire two-dimensional absorbance field, which

is equal to the normalized concentration field for the conservative tracer (Tidwell and Glass,

1994; Zhang et al., 1995; Gramling et al., 2002):

A = og(T) - log(T k (1)
A, log(Tm ) - log(T,, )

where A is the absorbance; Ao is the absorbance of the maximum concentration (25 mg/1 FD&C

Blue#1 or colored product from 0.025 M Tiron and 0.0125 M molybdate solution); T is the light

transmittance; Tban,,k is the light transmittance of the tank filled with water; and Tma, is the

transmittance of the tank with the maximum colored concentration. The normalized

camera-imaged absorbance, A/Ao of the Tiron/molybdate product is nonlinear with chemical

concentration and was transformed to the absorbance at 580 nm, Al, which is linear with respect



to concentration, by constructing pixel-by-pixel calibration curves (Oates and Harvey, 2006).

The product of six known Tiron/molybdate mixtures (table 1) was imaged in the tanks with the

digital camera and then measured by the spectrophotometer at 580 nm.

Table 1.

The resulting six camera absorbances A/Ao were compared with the six linear spectrophotometer

absorbances, At at 580 nm, to fit the coefficients KI and K2 (R2 = 0.99 ± 0.02) at every pixel

(Oates and Harvey, 2006):

A,= K *(e ' *AIAo - 1) (2)

Using equation 2 and the pixel-specific transform coefficients, all camera absorbances A/Ao were

converted to linear absorbances At that vary linearly with concentration. The evolution of the

observed absorbances can then be compared to modeled absorbances to assess the validity of

reactive transport models. To assure the accuracy of the visualization technique, mass balances

were performed for both the FD&C Blue#l and Tiron/molybdate product on all three tanks by

comparing the known injected mass to the mass calculated from the digital images.

3.3. Transport and Reaction Models.

3.3.1 Conservative transport.

To model the conservative tracer (FD&C Blue #1) in the homogeneous and

heterogeneous media we applied the conventional 1-D advection-dispersion equation (ADE) and

included rate-limited mass transfer for the highly heterogeneous conductivity field:



BC dC 82C dS
-v-+D - - (3)at ax + ax 2 •

where C is the mass per mobile volume, v is the average linear velocity, D is the hydrodynamic

dispersion coefficient (mechanical dispersion for homogeneous media and macro-dispersion for

heterogeneous media), Pf is the ratio of immobile to mobile volume, and S is the mass per

immobile volume. Mass transfer is approximated as a rate-limited process representing diffusion

or very slow advection (e.g Zinn et al., 2004):

aS
S= a(C- S) (4)at

where a is a rate coefficient. For the homogeneous and mildly heterogeneous case a and f are

equal to zero.

A constant flux boundary was used for the inflow side of the chamber and zero gradient

was applied at the outflow:

DC
-D-+ vC = vCo  x = , t (5)

ax

BC = 0 x = L, t (6)
ax

where Co is the initial concentration; and L is the tank length. The initial concentrations of tracer

and reactant were uniform everywhere and the two coupled equations (3 and 4) were solved

numerically by a central-in-space Crank-Nicholson finite difference scheme with Matlab.

3.3.2 Tiron/molybdate reaction.

Oates and Harvey (2006) discuss the Tiron/molybdate reaction as it applies to absorption

imaging in detail. Here we describe the relevant aspects of this reaction for constructing a



reactive-transport model. Briefly, Tiron, Ti, and molybdate, Mo, undergo an instantaneous two

step complexation governed by two equilibrium expressions:

[Mo][Ti]
(7)

[ MoTi2(MoTi + Ti~---MoTi2; K2  [MoTi

The concentrations of the two colored products, MoTi and MoTi2, can be calculated from the

concentration of total Tiron [TiT,] the concentration of total molybdate [MOT,] with the two

equilibrium constants (KI = 3.4 ± 0.8 x10 3 liter/mol and K2 = 7.5 ± 1.0x10 2 liter/mol):

[Tin]]= [Ti] + [MoTi] + 2[MoTi2]

[MoT ]= [Mo] + [MoTi] + [Mo Ti2 (8)
[MoTi] = f ([Ti ],[MoT ],K, ,K2)

[MoT 2or = f([Ti ,],[Mor],K,K2)

where ft ) represent analytical solutions found in Matlab that are too lengthy for presentation

(Oates and Harvey, 2006). Because Beer's Law is additive, the linear absorbance, Ai, of the two

colored products can be expressed as:

A, = e, [ MoTi] + 2 [ MoTi] (9)

Where e1 and c2 are coefficients that depend on the transmittance path length (1 cm) and the

corresponding molar absorptivity of the compound (at 580 nm, e, = 4.3 ± 2.0 liter/(mol*cm), c2 =

83 ± 1 liter/(mol*cm)).

An important property of the Tiron/molybdate reaction is that the concentration of

product can always be calculated from the concentrations of total Tiron Tir and total molybdate

MOT (equation 8). Because neither Tiron, molybdate, nor their products sorb to our porous media,



total Tiron and total molybdate are conserved quantities and will be transported through the

chamber like a conservative tracer. For example, when a solution of molybdate displaces a

solution of Tiron from the mildly heterogeneous chamber, the total concentrations of tiron and

molybdate are mirror-image solutions to the advection-dispersion equation:

Mo 7. 1 x - vt Ti . 1 x - vtMO7 = erfc -Vt Tit = - erfc X (10)M ,o 2 Ti ,o 2 2

because,

Ti MOTS= 1 (11)
Tir,o Mor,o

In other words, Tir and Mor lie along a mixing line and represent fractions of each fluid present.

This mixing line concept holds true for any pair of conservative solutes if they do not sorb (or

they have the same equilibrium linear sorption coefficient) and if dispersion dominates diffusion

(or the chemicals have the same diffusion coefficients). Mixing lines also hold for rate-limited

mass transfer if mass-transfer is driven by advection or if the two species have the same diffusion

coefficient:.

Because of this conservative behavior, reactive transport of Tiron and molybdate can be

modeled from a conservative tracer by the following steps:

1) The mixing line concept is used to find concentrations of total Tiron and total molybdate from

a conservative solute C/Co:

MoT / Moro = C/Co; TiT/TiT,o =1-C/C; (12a)
where Mo,o = 0.025 M and TiT,o = 0.05 M

2) The chemical equilibrium equations are solved to determine product concentrations:

[MoTi] = f ([Ti, ],[Mo , K,,K 2)
[MoTi2 = f ([Ti],[Mo ],K,,K 2) (12b)



3) The linear absorbance is calculated from the reaction product concentrations:

At = s,[MoTi] + E2 [MoTi2] (12c)

This modeled linear absorbance is then compared to the observed linear abbsorbance to assess

the accuracy of coupling the advective-dispersion and rate-limited-mass-transfer equations to

chemical reaction for homogeneous and heterogeneous porous media.

3.4. Results and Discussion.

3.4.1 Conservative tracer and Tiron/molybdate product images.

The experimental results were captured as 250,000 conservative and reactive

concentration values in homogeneous porous media and 750,000 concentration values in the

heterogeneous porous media per image (figure 3).

Figure 3.

Comparing the known injected mass to the mass calculated from the digital images resulted in

less than a 1% difference for the homogeneous tank and less than 3% for both heterogeneous

tanks for both the conservative tracer and reaction product. These results demonstrate how

non-invasive absorption imaging can provide highly detailed reactive concentration data in

homogeneous and heterogeneous porous media.

3.4.2 Homogeneous Porous Media: Comparison of Experimental Results to Conventional

Transport Models.



The reactive-transport experiments in the tank filled with uniformly sized beads provide

information about pore-scale mixing because the Darcy-scale velocity field is nearly uniform.

The results of these experiments corroborate the findings of Raje and Kapoor (2000) and

Gramling et al. (2002) that pore-scale segregation reduces mixing and reaction. The tracer

experiment (figure 4-A) is well fit by the advection-dispersion equation (equation 3 with f = 0)

with a longitudinal dispersion coefficient of 0.15 [cm 2/min] (mechanical dispersivity of 0.35

[mm], comparable to the mean bead size of 0.4 [mm]) and a mean velocity of 4.3 cm/min.

However, coupling this model with the chemical equilibrium equations (equations 8 and 9)

significantly overestimates the total and peak product formed (figure 4-B), indicating pore-scale

segregation of reactants.

Figure 4

Flow was stopped at 298 seconds when the reactive front was -3/4 of the distance across the

tank to test the hypothesis that the observed product would increase with time because diffusion

would complete pore-scale mixing. Over the forty-three minutes after stopping the flow, product

concentrations in the reactive front increased towards the concentrations predicted by the ADE-

reaction model, indicating that molecular diffusion mixed reactants that were segregated at the

pore-scale. The mean distance of diffusion over forty-three minutes is approximately 0.5

millimeter (below our experimental resolution), which is comparable to the mean bead size. This

demonstrates that chemical reactants are segregated in neighboring pores.

3.4.3 Mildly Heterogeneous Porous Media.



3.4.3.1 Comparison of experimental results to conventional transport models. We fit

the ADE (equation 3 with f = 0) to the breakthrough curve of the conservative tracer to estimate

a dispersion coefficient. The ADE gave an excellent fit to the conservative tracer breakthrough

curve in the mildly heterogeneous tank with a dispersion coefficient of 0.63 cm 2/min (macro-

dispersivity of 1.1 cm) for a mean velocity of 0.57 cm/min (figure 5).

Figure 5.

Using these fit coefficients, the ADE gives a very good prediction of the space-time evolution of

the mean tracer concentration (averaged over the Y direction) across the heterogeneous tank.

However the ADE has no capability to describe the observed variability around the mean

concentration as indicated by the observed large standard deviation (figure 6-A).

Figure 6.

Reaction product concentrations predicted by coupling the ADE to the chemical reaction model

(equations 8 and 9) significantly overestimate the total and peak product (averaged over Y) and

do not capture the observed large standard deviation (figure 6-B). Simulations indicate that the

overestimation of reaction would be much greater in finer grained material. In contrast to the

large gravel-sized beads we used in our tanks, fine-grained material would have less mixing and

reaction because mechanical dispersion would be reduced. If the log conductivity variance (ratio

of high to low conductivity) was held constant while reducing both bead sizes, the

macro-dispersive spreading would remain the same but the reduced mechanical dispersion would



reduce mixing and reaction and result in thin but distorted ribbons of product. This affect is

easily demonstrated by adjusting the variance length-scale in the CF-,6(concentration fluctuation

Beta-pd.) model we develop in the next paper (see next paper) to account for a reduction in

mechanical-dispersivities proportional to a reduction in grain size (figure 6-B, compare red and

black line). In this calculation we reduced the mechanical dispersion by a factor of 10 and the

overestimation in product is dramatic. Although the modeling approach is developed in the next

paper, we include the result in this paper to show that product formation can be grossly

overestimated even though the ADE gives an excellent fit to the conservative breakthrough curve

(figure 5) and the lab-scale chemical reaction is well understood (Oates and Harvey, 2006).

3.4.3.2 Relative importance of pore-scale mixing. In heterogeneous porous media, there

is reactant segregation at both the pore-scale and at the scale of conductivity variations. We used

the detailed two-dimensional images of the conservative FD&C Blue#l tracer to assess the

relative importance of pore-scale mixing in mildly heterogeneous porous media by applying

equations 12a through 12c to every pixel of the conservative tracer data. Because the pixel

dimensions (0.3 mm) are greater than the pore sizes, the imaged concentration fields represent an

average pore-volume concentration, and the reaction products calculated from these average

concentrations approximate the product that would be produced if there was complete pore-scale

mixing. Therefore, pore-scale segregation of reactants can be assessed by comparing the true

product (figure 7-A) to the product simulated based on the assumption of complete pore-scale

mixing (figure 7-B).

Figure 7



Figures 7-A and 7-B look very similar. However, figure 7-B shows that there is a solid red band

of product in the middle of he very deformed reaction front as a result of complete pore-scale

mixing. If spatial averaging was done in such a way as to follow the twist and turns of the

product front, the comparison of true and complete pore-scale mixing would resemble the

product front in the homogenous chamber (figure 4-B). However, most chemical segregation is

at the scale of conductivity variations, which is why the average concentrations between the true

product and the simulated product that assumes complete pore-scale mixing are so similar (figure

7-C).

3.4.3.3 Simulated A+B-+P reaction and the effects of initial concentration differences.

In this section we investigate how a generic bimolecular reaction would have behaved in our

mildly heterogeneous tank and use this reaction to assess how different initial concentrations

would affect upscaling errors. The mixing line approach (section 3.3) can be used for irreversible

reactions as long as the chemical reaction rate is much faster than the rate of mixing. In this case,

the reaction goes to completion and the product is equal to the limiting reactant. Koussis et al.

(2003) studied and concluded that the instantaneous assumption is generally valid for many

reactions except for initial plume development close to the contaminant source or during high

flow velocities and these concepts have been discussed by Ham et al. (2004). The consequences

of slow mixing relative to faster kinetic rates is that kinetic expressions such as the commonly

used Michaelis-Menten or Monod models can be replaced by assuming that multi-component

reactions are controlled by the limiting reactant. Thus, a generic bimolecular reaction with

reactants A and B and product P (e.g. Kapoor et al., 1997; Ciprka et al., 1999; Gramling et al.,

2002; Ham et al., 2004):

A + B - P (13)



can be modeled from the concentrations of a conservative tracer C, as long as A and B do not

sorb differently, by applying the following steps:

1) Apply a mixing line to calculate total reactant concentrations AT and BT, which are

conserved quantities:

A, / A7 ,o = C/Co; BT /IBr,o = 1-C/Co; (14a)

2) Calculate the product concentration to be equal to the limiting reactant:

P = minimium(Ar,BT) (14b)

3) Calculate the remaining reactants A and B as the total concentration minus that converted into

product:

A= A. -P; B=BT -P (14c)

Many studies have examined this generic reaction (e.g. Kapoor et al., 1997; Ciprka,

1999; Gramling et al., 2002) under the condition that the initial reactant concentrations Ar,o and

Br, are equal. However, initial reactant concentrations are usually different in field problems.

For example, oxygen concentrations are approximately 8 mg/l when in equilibrium with air,

while benzene has a solubility of around 1800 mg/l. Therefore, if oxygenated water (reactant

BT, o) were flushed into a benzene plume (reactant AT,o), the ratio of initial concentrations of ATo

to Br o would be 225 (assuming the two plumes are saturated or equally diluted). A scenario of

oxygen and ethanol could have an even larger initial concentration ratio.

To simulate the A+B -- P reaction with different initial concentrations the initial

concentrations ofArTo and B r,o are adjusted in equation 14a. We will refer to the ratio of ATo to

Br o as RAs. We showed in section 3.4.3.2 that pore-scale segregation causes only a slight

difference between this simulated reaction and actual reaction. However, we find that scaling our

conservative data by more than 20 to simulate reaction of a different initial concentration makes



noise significant, which is undesirable. To overcome our noise limitations we applied the CF-fI

approach to simulate the A+B-+P reaction (Chapter 4) and compared it to the ADE predicted

product for different values of RAB. All of the ADE and CF-f predictions were made using

parameters fit from the reaction experiments in the mildly heterogeneous chamber. When the

initial concentration ratio RAB = 20 (concentration of Ar,o = 20 in the domain with concentration

Br,o = 1 entering the domain) both the macro-dispersion predicted product and the mean of the

small-scale product are shifted backwards towards B when compared to the RAB = 1 case (figure

8).

Figure 8.

When RAB = 20, the discrepancy between the ADE and the averaged small-scale product is no

longer symmetric. The ADE-predicted product accurately models the leading edge of the reaction

front where reactant concentrations are different, but poorly predicts the following edge where

reactant concentrations are similar. When RAB = 1/20 (concentration of ATo = 1/20 in the domain

with concentration Br,o = 1 entering the domain) we see a mirror image of RAB = 20 (figure 8).

Additionally, the percent over-estimation of the ADE-predicted total product (product integrated

over space) compared to the CF-6 total product changes and generally increases as the initial

concentration ratio differs further from 1 (figure 9)

Figure 9.



This demonstrates that upscaling problems become more important as initial concentrations

differ for the A+B --+ P reaction.

3.4.4 Highly Heterogeneous Porous Media.

3.4.4.1 Comparison of conservative experimental results to conventional transport

model. The rate-limited mass-transfer model (equations 3 and 4) closely fit the breakthrough

curve for the conservative solute in the highly heterogeneous tank (figure 10) with the following

parameter values: v of 0.13 cm/min, D of 0.061 (dispersivity of 0.46 cm), a of 0.001 [min~'], and

afpof 0.7 [(immobile volume)/(mobile volume)]. In addition to the observed concentration

variability in the macro-dispersive front (the part of the front that can be modeled with the ADE),

there was less but still significant variability during the rate-limited mass transfer tailings

(concentrations modeled by rate-limited mass transfer).

Figure 10

Dispersion was lower than in the mildly heterogeneous media because concentrations in the

macro-dispersion front did not experience the velocity fluctuations in the circular inclusions

because of the large difference in hydraulic conductivity. The estimated values for the rate

coefficient, a, and the ratio of immobile to mobile volume, A, are physically reasonable. Zinn et

al. (2004) calculated the internal velocity v n through the circular inclusions as 0.0016 cm/min,

which implies the characteristic length L of the immobile domain is 1.6 cm from the expression

for advective mass transfer, a = vi, / L. This distance is the same as the harmonic average of the

distance across the circular inclusions given by 4R/,r, where R is the radius of the inclusion. The



estimated value of fl, 0.7, is also close to the volume of circles divided by the volume of

surrounding media - 0.5.

3.4.4.2 Simulated A+B--+P reaction compared to conventional model predictions and

the effects of initial concentration differences. During the Tiron/molybdate reaction experiment

in the highly heterogeneous chamber, density affected flow in the low-permeability inclusions

(figure 11) due to a difference in diffusion coefficients between products and reactants (Oates et

al., 2007).

Figure 11.

The effects were not noticeable in the other experiments because of the short residents times

compared to the highly heterogeneous experiments. As a result of the density affected flow, so

we did not use these experiments to quantify upscaling reactive transport in highly

heterogeneous porous media (figure 11). Instead, we used our conservative tracer data from the

highly heterogeneous experiment to simulate reaction in the same way we used our conservative

tracer data from the mildly heterogeneous chamber to assess pore-scale mixing in (section

3.4.3.2)

We investigated upscaling reactive transport in highly heterogeneous porous media by

simulating the bimolecular A+B -- P reaction with equal and different initial concentrations

(equations 14a-14c) using the imaged conservative concentrations C/Co at every pixel. We did

not exceed a factor of 20 in the initial concentration difference in order to avoid introducing

excessive noise when scaling our data. With this method, we obtained the detailed space-time

evolution of product and reactant concentration profiles. The only difference between this



approach and a true reaction experiment is pore-scale mixing, which we found relatively

unimportant in a macro-dispersion front and we believe is unimportant in highly heterogeneous

media. For the purpose of our simulations, we considered A to exist in the domain and B to be

entering; these initial conditions apply to all the analysis to follow. The spatial averages of the

simulated bimolecular reaction (equations 14a-14c) were then compared to predicted product

behavior calculated from the upscaled ADE and rate-limited mass-transfer model (equations 3

and 4). For the case of RAB = 1, there is an overestimation of product in the dispersion front

(shown to the left of the Y-axis in figure 12) but the average amount of reaction behind the

dispersion front is accurately predicted by the mass-transfer model (figure 12).

Figure 12.

When RAB is greater than 1, as shown for RAB = 5, RAB = 10, and RAB = 20 in figure 12, the

spatially averaged product concentrations agree with the ADE and rate-limited-mass-transfer

model predicted product concentrations at the leading part of the reaction front where reactant

concentrations are different, but poorly represents the tailing region where reactant

concentrations are similar (figure 12). Conversely, when RAB is less than 1, the estimation of the

lead part of the reaction front is poor but the estimation of the tailing front improves (not shown).

In general, for highly-heterogeneous porous media, the large variations in hydraulic conductivity

tremendously distort the interface between the two reacting fluids and set up an extremely large

surface area for transverse mixing to generate large amounts of mixing and reaction.

3.4.5 Incomplete Mixing.



Generally, the observed product is less than the ADE and ADE-mass-transfer modeled

product because reactants are not completely mixed at small-scales. Even though the upscaled

ADE and ADE-mass-transfer models accurately predict conservative solute spreading (figure 13-

A,-B,-C top row), concentrations are not completely mixed at small-scales.

Figure 13

In the homogeneous tank, the lack of mixing is evident by the incomplete product formation,

which can be seen by the spotty areas of red product (figure 13-A, bottom-left). The lack of

mixing is dramatically evident in the macro-dispersion front as shown by comparing the spatial

pattern of the observed product (figure 13-B, bottom-left) to the ADE predicted product (figure

13-B, bottom-right), which clearly shows that in the area of ADE predicted mixing there is

chemical reactant segregation. In highly heterogeneous porous media, reactant segregation

occurs from mass transfer occurring in small thin tails coming out of spatially variable local

immobile inclusions (figure 13-C bottom-left).

Generally for the 1 to 1 stoichiometric reaction of A+B -+ P, product formation is most

overestimated where the reactant concentrations are equal because any fluctuation away from the

mean will always result in the limiting reactant being lower. For example, consider a case where

the mean of AT = 0.5 and the mean of BT = 0.5; reacting the mean concentrations will produce a

P of 0.5 (see equation 14b). However if the means are decomposed into ATr, = 0.3 and AT,2 = 0.7

and from the mixing line the paired reactants are Br, = 0.7 and BT,2 = 0.3, these small-scale

reactions would produce P1 = 0.3 and P2 = 0.3. Then taking averages would produce a mean P of

0.3 versus a predicted value 0.5. This demonstrates how similar reactant concentrations can have

high discrepancies between the small-scale reactions and performing reactions based on spatially



averaged concentrations. Conversely, when mean concentrations are substantially different such

that the mean of AT = 0.2 and the mean of Br= 0.8, reacting the means would produce a P of 0.2.

If these means are decomposed into AT,I = 0.0 and AT,2 = 0.4 with Br,i = 1.0 and BT,2 = 0.6, they

would produce PI = 0.0 and P2 = 0.4. Then taking averages would produce a mean P of 0.2

versus a predicted value 0.2 demonstrating how different concentrations can have very low

discrepancies between the true local reactions and performing reactions based on spatially

averaged concentrations. The reason for this is when concentrations are different, the limiting

reactant is still fully consumed whether it is the true small-scale values or the mean value so long

as the small-scale concentrations do not fluctuate around the mean so much that they are no

longer the limiting reactant. If they are no longer the limiting reactant, then upscaling error is

introduced. For different stochiometries, the same principles apply but should be different by a

ratio of the stochiometry. For example, if the reaction was A+2B -- P, we would expect the

biggest discrepancy between observed and predicted product where mean B concentrations are

two times mean A concentrations.

3.4.6 Concentration distributions and the Beta distribution.

As a result of the incomplete mixing, concentration distributions exist in any unresolved

volume of porous media and they should be accounted for when considering both conservative

and reactive transport. Before examining concentration distributions in our experimental results,

it is useful to consider the concentration distribution of a typical contaminant pulse. For a pulse

injection, the particle positions for a Fickian process produce a normal or Gaussian distribution

(figure 14-A).



Figure 14

In this case, the Gaussian pulse has been normalized by its maximum concentration to keep

concentrations between 0 and 1. We wish to determine the concentration probability density

function (pdf) of the concentration profile for a distance of ±4o- around the mean. Recognizing

that normalizing the distance between -4o- and the mean at x-vt represents a cumulative density

function (cdj) (i.e. the relative volume of water containing each concentration value) we can

differentiate the distribution to analytically calculate the concentration pdf (see appendix for

derivation):

f1. =(15)
fc,2 = 4 (C/ Cmax) og (C / Cmax

The most important feature to recognize is that even though particle positions are normally

distributed, the concentration pdfis highly non Gaussian and has a bimodal shape (figure 14-B).

Based on the first two moments, the Beta distribution is capable of reproducing bimodal

behavior (initial stage of mixing), a uniform distribution (early stages of mixing), asymptotically

approaching a Gaussian distribution (later stages of mixing), and finally a delta function around

the mean if the system is ever completely mixed. Thus, the Beta distribution is a natural choice

to represent concentration pdfs in porous media, and it has been used to model the similar

process of turbulent mixing (Frankel et al., 1991; Frankel et al., 1992; Girimaji, 1991). The Beta

distribution is:

f r(a+b) (C / Co )a ( - C/Co)b- (16)
T (a) TF(b)

Where fcco0 is the probability density of normalized concentrations C/Co, F is the gamma

function, and a and b are shape parameters calculated from the concentration mean and variance:



a =C/CO 2 ,) 1 j; b (lc/C ) c Ic2(i-cic") (17)
rc,/co 

/c 0

Typically the initial concentration Co is the maximum concentration C,,,, but if there were not

the case, then concentrations would have to be normalized by C,,a• to ensure the values ranged

between 0 and 1.

Integrating the pdfof a Gaussian pulse bound by 4o- (equation 15) produces the mean and

variance (see appendix):

CCmax -j•  erf 2,2 (18)

of2.-x (4V/-erf (4) - rerf 2 )2  (19)

where erf is the error function. A Beta distribution with the same mean and variance as a pulse's

pdfbound by ±4o- (equation 15) is virtually identical (figure 14-B), demonstrating the versatility

and usefulness of the Beta distribution for modeling concentration pdfs in porous media. The

Gaussian pulse may be thought of representing many repeated fingers in a macro-dispersive front

that have been smoothed out by transverse dispersion, and it is therefore expected that the Beta

distribution will be useful for modeling concentration pdfs in our experimental macro-dispersion

front.

Looking along a few slices of Y in the macro-dispersion front in our experimental results

(figure 15-A-B-C):

Figure 15.



where the colored squares show the location of the corresponding colored distributions, it is

evident that there is not a uniform concentration value (i.e. a dirac delta of the mean value) as

predicted by the ADE, but rather a distribution of concentrations. For a given mean and variance,

we found that the space-time evolution of these conservative distributions are very well

described by Beta distributions. We used the empirical mean and variance over y at a given x to

generate Beta distributions which were then compared to the observed pdf for the same location

and the results were found to be in good agreement for the mildly heterogeneous results (figure

15-A,-B,-C). The agreement for the highly heterogeneous results was equally as good although

the distributions were generally tighter (not shown).

To quantitatively compare how well the Beta distributions matched at a given (x,t) we

calculated the root-mean-square-error of Beta cdf compared to the observed cdf along the

dispersion front at a given time for the mildly heterogeneous chamber and along the entire

domain for the highly heterogeneous chamber. Then all the root-mean-square errors were

averaged at a given time and reported as solute passed through both heterogeneous mediums

(figure 16).

Figure 16.

The full space-time evolution of the conservative concentration distributions can be

approximated as a Beta distribution with only a 3-4 percent root-mean-square error on average.

The fact that solute concentrations are distributed over many values at unresolved spatial

scales has important implications for understanding and upscaling reactive transport. For non-

linear reactions, each concentration or pair of concentrations in the distribution or joint



distribution will react differently, which is why it is not appropriate to first average the reactants

and then calculate chemical reaction based on the mean reactant values. The small-scale specific

reactions have to be calculated first before any averaging is applied if the reaction is non-linear.

There are several types of non-linear reactions encountered in practice (table 2-A) that would be

affected by incomplete mixing.

Table 2.

For the simplest linear reactions, mean reactions are adequately modeled by calculating chemical

reaction based on mean reactant concentrations (table 2-B). However, reactant and product

distributions still exist for linear reactions. These distributions are useful to know to help answers

important questions like what is the probability that the concentration will exceed their regulated

MCL.

3.4.7. Maximum Contaminant Levels versus Spatial Averages.

EPA laws and regulations are in terms of MCLs or maximum contaminant levels. Slow

mixing in porous media causes concentrations to be spatially variable with maximum

concentrations to be well above spatial averages. If there was a similar concentration profile of

figure as 15-A at a larger scale (hypothetical scaling shown in green), two wells right next to

each other could measure very different concentrations. The green square shows the x value

where the ADE very accurately predicts a mean of C/Co = 0.5. However, even though this is the

correct mean, because of incomplete mixing, different concentrations outside the mean exist and

in this case, the mean value is actually the least likely concentration for a well to experience. It is



much more likely that a well would see almost no concentration or a very high concentration.

This implies that it would be more appropriate to model contaminant transport situations such

that point locations such as wells or control planes have less then a 5% (hypothetical) chance of

seeing a threshold concentration value as opposed to making decisions based on mean values.

Furthermore it suggests that transport models calibrated with sampling wells could be erroneous

if sampling wells are insufficiently refined.

3.5. Conclusions.

Molecules must collide before they can react, and collisions result from molecular

diffusion across complex fluid interface. In natural porous media these interfaces may have very

complex spatial structures at all scales. Here we describe the results of an experimental method

that combines visual light absorption imaging and colorimetric chemical reactions to create very

accurate and high-resolution images of changing concentrations during reaction in spatially

homogeneous and heterogeneous media. Data from physical experiments are extremely valuable

because they enable testing of hypotheses concerning reactive transport without the assumptions

and artifacts of numerical simulations.

Previous work with conservative tracers in similar experimental chambers (Gramling et

al., 2002; Zinn, et al., 2004) shows that the advection-dispersion and mass-transfer models can

accurately predict spatially-averaged conservative solute spreading in homogeneous, mildly

heterogeneous, and highly heterogeneous media. Here we show that these approaches do not

accurately represent reactive transport because these upscaled transport models do not consider

small-scale concentration variability and reactant segregation.



We find pore-scale segregation of reactants consistent in magnitude to the findings of

Gramling et al. (2002). However, as theorized by Jose and Cirpka (2004) our experiments show

that pore-scale chemical segregation is relatively unimportant for reactive transport in

heterogeneous porous media because chemical segregation is dominated by hydraulic

conductivity variations at a larger scale. We also explore how differences in mean reactant

concentrations moderate reactive transport. Upscaling error is greatest where the mean

concentrations are similar, thus reactive transport may be most inhibited in either the leading

edge of a plume or within the plume core depending on the initial or boundary concentrations of

reactants. Also, highly heterogeneous porous media can cause large amounts of mixing and

reaction, but upscaling error from spatially variable immobile domains is dependent on initial

reactant concentrations.

A key finding from these experiments is that the local distribution of solutes

concentrations is not Gaussian. Even in mildly heterogeneous porous material, where

concentration profiles have a Gaussian shape, the distribution of concentrations is decidedly not

Gaussian. Instead, we find concentration distributions are accurately fit by Beta distributions.

This experimental result, that concentration distributions are Beta and not Gaussian, has

important implications for understanding reactant mixing and hence constructing reactive

transport models. These implications are explored in the second paper of this three-part series.

Appendix.

For a pulse injection that undergoes Fickian spreading, the concentration evolution can be

described by the following equation, which is essentially a normal distribution:



1(X - lV l)2

C(x,t)= Co e 4v4xA' (A-l)
4xvx Ax t

The maximum concentration occurs at x = vxt which means:

Cmax (X, t) = CO 1 (A-2)/4x vxAxt

To keep concentrations normalized such that they fall between 0 and 1 equation A-i is divided

by equation A-2:

(X-vYY)2

C/Cmax (x, t)= e 4v-AS, (A-3)

The spatial location of the concentrations is obtained by solving for the concentrations location:

x = vxt + 2i lJF 1og(C /Cma x ) (A-4)

Arbitrarily choosing a cutoff of 4ar (or = 2tAv x ), and making use of symmetry, the

concentration distribution is bounded between the spatial locations:

vt - 4 2Vxt < x < vt (A-5)

The concentrations at these locations are constant:

C/Cmax (x = vt -4 42v Axt , t)= li/e (A-6)

C / Cmx (X = Vt, t) = 1 (A-7)

The spatial location of the concentrations is converted into to cumulative density functions by

subtracting the distance of -4o- to evaluate the selected part of the domain and then normalizing

by 4o- such that cumulative frequencies are:



F(ClCmax)

F(C/Cmax)

vXt+2i4v7At lVog(C/CCa) -(vt-4 2v Axt)
4V2vA-.,At

i log(C/Cx) +
2 F

The pdfis then given by the differentiating with respect to C / Cmx

f' 44,[ (C / Cmax ) log (C/Cmax)

The first three moments are found by integrating over the pdf

Oth= ei dC/Cmax =1
S42 (C/ Cmx)log (C/Cmax)

st= i C/C dC/Cmax  Erf(2 C

lse= /,[ 4 ( (C/Cmax) log(C/Cmx) ma 4

2nd= e log(C/ (C/Ca) dC/C., =8C Erf (4)
4 4i(C/Cma) log(C/C.) 8

From the moments, the mean and the variance can be calculated:

C/Cmax =- Erf (2 )

cr/,, = (4 , -Erf (4) - rErf (2,)2)

(A-8)

(A-9)

(A-10)

(A-ll)

(A-12)

(A-13)

(A-14)
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Figures.

A) Homogeneous B) Mildly Heterogeneous C) Highly Heterogeneous

Modeled Actual Modeled

Figure 1. Flow is from left to right. A) In both homogenous and heterogeneous porous media, mechanical

dispersion has incomplete mixing from solute movement through some pores but not though adjacent pores.
This small scale chemical reactant segregation (shown by yellow boxes) is not captured by applying
conventional conservative transport equations that assume complete mixing (product shown in red). B) In
mildly heterogeneous porous media, local velocity variations cause solute spreading or macro-dispersion
which appears as mixing at larger scales but potential reactants remain spatially separate. C) When

concentrations slowly come out of local immobile regions in highly heterogeneous media, rate-limited mass-

transfer models assume that concentrations tailing the dispersive front are uniformly mixed when infact
chemical segregation exists.

Actual Actual Modeled

€



Figure 2. Experimental chamber filled with porous media. Contains circular
inclusions of low conductivity.
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Figure 4. A) Comparison of advection-dispersion-equation (ADE) predicted mean dye
concentration to the observed mean dye concentration. B) Comparison of the predicted
mean product from the ADE coupled to the Tiron/molybdate reaction model to observed
mean product at 208, 238, 268, 298 and 2580 seconds. Flow was stopped at 298 seconds to
allow diffusion to complete the pore-scale mixing. The observed jump in product
concentration is shown after 43 minutes (2580 seconds).
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Figure 5. Concentration breakthrough curve of the
modeled by the ADE.
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Figure 6. A) Comparison of ADE predicted mean dye concentration based the dispersion coefficient
and average velocity fit from a breakthrough curve to the observed mean dye concentration shown at
8 and 46 minutes. B) Comparison of the predicted mean product from the ADE coupled to the
Tiron/molybdate reaction model to observed mean product. The black line represents the theoretical
mean product if the grain size and hence mechanical dispersivities in our tanks were reduced.
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Largest upscaling error is when AT=BT

RAB = 1; Pmax= 0.5

; RAB= I
RAB = 20; Pmax= 0.95
; RAB = 20
RAB = 1/20; Pmax =0.05
; RAB = 1/20

33 36

x [cm]
Figure 8. Effects of initial concentration difference on the ADE predicted product and
mean concentration fluctuation beta pdf (CF-,8) product (average of small scale
product) for the A+B-+ P reaction.
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Figure 10. Breakthrough curves of conservative tracer and ADE-mass-transfer model.
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Figure 11. Observed density effects of the Tiron/molybdate reaction in the low
conductivity inclusions for the highly heterogeneous chamber. Flow is upwards
against gravity.
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Figure 12. Observed product and ADE-mass-transfer modeled breakthrough curves. The
rate-limited mass-transfer model yielded a good fit for the conservative tracer and reaction
product (except for dispersion front) when initial reagent concentrations are equal. However,
as the ratio of initial concentrations RAB get larger problems with reaction behind the
dispersive front develop.
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Figure 13. Top row of panels A, B, and C: experimentally observed and modeled conservative solute front for
A) Homogeneous media (mechanical-dispersion) 30 x 5 cm, B) Mildly heterogeneous (macro-dispersion) 40 x
20 cm, and C) Highly-heterogeneous media (mass-transfer) 40 x 20 cm. Bottom rows of panels A, B, and C:
experimentally observed and modeled reactive solute fronts (product shown in red) for A) Homogeneous
media (mechanical-dispersion), B) Mildly heterogeneous (macro-dispersion), and C) Highly heterogeneous
media (mass-transfer). The mass-transfer results are reactive simulations based on the conservative tracer for
the A+B-* P reaction; shown for RAB = 10.
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Figure 14. A) Gaussian concentration pulse normalized by maximum concentration. The dashed blue
lines show domain for which the pdf is calculated. B) pdf of the concentration pulse compared to beta
distribution with the same mean and variance.
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Figure 15. Observed concentration distributions for selected values of x compared to beta distributions
at A) Early; B) Middle; and C) Late stages of flow. 9-A has also been hypothetically scaled (green
units) to show how two well right next to each other would experience very different concentrations
compared to the correctly predicted mean concentration because of lack of mixing.
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Table 1. Calibration Curve Solutions.

Solution # 1 2 3 4 5 6
Tiron (M) 0.05 0.0053 0.043 0.017 0.033 0.025
Molybdate(M) 0.0 0.022 0.0033 0.016 0.0083 0.0125
A,, at 580 nm 0.0 0.047 0.26 0.40 0.64 0.83
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Table 2. A) Mean reactions not adequately modeled by mean concentrations: 1) Equilibrium reactions, 2)
Rate-limited reactions higher than first order, 3) Microbial Michaelis-Menten utilization and Monod growth
kinetics; 4) Freundlich and Langmuir sorption; 5) Rate-limited Freundlich and Langmuir sorption. B) Mean
reactions adequately modeled by mean concentrations: 1) First-order decay; 2) Linear sorption; 3)
Rate-limited linear sorption.

A) Mean Reactions Not Adequately B) Mean Reactions Adequately
Modeled by Mean Concentrations Modeled by Mean Concentrations

1) aA+bB cC+dD; K= [C]c [D]d
acN ac

2) = - r C, 1) = -&C

2) S= = KdC

at - Ks.- + C,  mx 3) - a(K,,C-S)

4) S= K, C"; S =
1 +kC

5) = a(K,C"- S); = a kk2C SOt at (+kC
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Chapter 4. Development and Experimental
Validation of the Concentration Fluctuation
Beta-pdf (CF-fl) Model

Mixing-controlled non-linear reactions in porous media can be accurately upscaled by
modeling concentration means and variances and assuming that reactants can be
described by joint Beta distributions. This approach is verified for mildly heterogeneous
media by modeling the product and reactant means, variances, and distributions from the
experiments of Chapter 3 and for homogeneous media by modeling the product means
from the experiments of Chapter 3, Gramling et al. (2002), and Raje and Kapoor (2000).
This reactive transport approach works without maps of hydraulic conductivity fields or
pore-structures but requires experimental calibration to determine the variance-length
scale, a length scale that characterizes variance destruction and reactive mixing.
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4.1. Introduction.

The ideal approach for modeling reactive transport in porous media would fully

resolve heterogeneity at all scales, fully resolve the velocity field, and then use

advection-diffusion equations coupled to a chemical reaction models to account for

transport and reaction. Even if this were computationally possible, heterogeneity will

likely never be fully resolved at a field site. As such, we must resort to upscaled modeling

approaches that can capture the effects of heterogeneity without actually having to

resolve heterogeneity. This can be done by viewing concentrations as random variables

and taking spatial averages to yield mean or expected concentration values.

In stationary porous media with small log-conductivity fluctuations,

macro-dispersion theory can accurately predict the spreading of mean conservative

concentrations, but it overestimates mixing and reaction. To reduce the macro-dispersion

predicted mixing, it is possible to choose a smaller dispersion coefficient that predicts the

correct total amount of product formation, but reducing dispersivity still overestimates

the peak concentration, underestimates spreading (Cirpka, 2002; Cirpka and Nowak,

2003), and will not capture the observed product variability (figure 1).

Figure 1.

More sophisticated approaches are needed to predict the space-time evolution of reactive

flows in porous media. The crux of the upscaling challenge is that spatial averages have

to be taken to approximate the average amount of the chemical reaction because

heterogeneity cannot be resolved. The expected value, denoted by the over-bar, of
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chemical reaction, r(C,,C2,... C,,), is only equal to chemical reaction based on the mean

concentrations provided by macro-dispersion theory, r(C1,C2,... C,,), under first-order

decay and linear sorption. A different but related issue is that regulations are based on

maximum contaminant levels (MCLs) and conventional transport models only provide

average concentration values, and incorrectly when concentrations undergo non-linear

reactions. A solute transport modeling framework is needed that addresses both the

correct amount of chemical reaction and maximum contaminant levels.

Both Lagrangian and Eulerian approaches have been applied to upscale reactive

transport. Lagrangian-based stream-tube models have been developed to predict reactive

breakthrough curves such as the stochastic-convective-reactive transport model

(Simmons et al., 1995). Stream-tube models use a conservative tracer breakthrough curve

to generate a residence-time distribution and then approximate mixing and reaction based

on residence-times. This approach has been successfully applied to multi-component

reactive transport situations (Ginn, 2001; Ginn et al., 2001), but it only serves as a lower

bound on the amount of mixing as it assumes flow in layered parallel media with

different hydraulic conductivities (Cirpka and Kitanidis, 2000; Robinson and

Viswanathan, 2003). A major limitation of this approach is it does not allow for local

dispersion, which is what controls mixing and reaction for equally sorbing solutes. Ginn

(2001) expanded the stream-tube approach to allow longitudinal dispersive mixing in

individual stream-tubes but not transverse mixing between stream-tubes, which can be

the dominant component of mixing (Cirpka et al., 1999). A conceptual problem with

stream-tube approaches is that the full space-time evolution of small-scale mixing cannot

be captured from a single breakthrough curve of a conservative tracer. Robinson and
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Viswanathan (2003) state that this approach can only treat mixing as a "black box" to be

bounded. They were able to place an upper bound on the amount of mixing but only by

using unrealistic conductivity fields.

Cirpka and Kitanidis (2000) propose that many conservative tracer breakthrough

curves taken along the stream tubes can yield information about the evolution of

transverse and longitudinal mixing, which is captured by apparent-dispersion

coefficients. Apparent-dispersion coefficients essentially parameterize transverse

exchange between independent stream-tubes as enhanced longitudinal dispersion within a

stream tube. Measuring apparent dispersion coefficients at a field site requires a large

number of point-source breakthrough curves (Jose and Cirpka, 2004; Jose et al., 2004),

which may not be feasible to measure in realistic field situations. The average apparent

dispersion coefficients can be modeled as effective dispersion, which is the average

dispersion coefficient for point-like injections (Dentz et al., 2000; Cirpka, 2002; Jose and

Cirpka, 2004; Jose et al., 2004). Effective dispersion coefficients have been derived for

specific conductivity statistics (Dentz et al., 2000) and have shown good predictive

abilities for reactive transport scenarios influenced by both mechanical-dispersion and

differential sorption (Janssen et al., 2006). However, studies have shown that apparent

dispersion coefficients are highly variable. The numerical results of Cirpka and Kitanidas

(2000) reported a coefficient of variation of 0.55 for apparent dispersion and the

experimental results of Jose et al. (2004) reported apparent dispersion coefficients

ranging from 1.8 x 10-7 to 3.4 x 10-5 m2/s. This raises the question: is replacing such

variable mixing rates with an average valid? Variable mixing rates will generate variable

concentrations of reactants and since reactions can be non-linear, the average of all
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reactions can be substantially different then a reaction based on the average mixing. This

is essentially the upscaling problem.

Eulerian analysis has yielded analytical results for bioreactive transport (Miralles-

Wilhelm et al., 1997; Miralles-Wilhelm and Gelhar, 2000), but the results are not

applicable for dispersion-controlled mixing (Ginn, 1998). Kapoor et al. (1997) analyzed a

generic bimolecular reaction using an Eulerian perturbation approach and focused on the

cross-covariance term, which is difficult to determine. Furthermore, a perturbation

analysis could prove extremely complex for complicated chemical reactions. For

example, the chemical products for the Tiron/molybdate reaction (Oates and Harvey,

2006) have dozens of very non-linear terms such as:

K (2Mo, - Ti2 )3 TiT + K2MOTi ,11 , where TiT is the concentration of total Tiron,

MOT is the concentration of total molybdate, and K1 and K2 are constants. If TiT and MOT

were decomposed into a mean and perturbation, the terms were expanded, and expected

value was taken, the solution could become extremely complicated and require

knowledge of high-order moments. This means that applying a perturbation approach for

complicated reactions may not be feasible. Complex chemical reaction models, valid at

the lab-scale, need to be readily applicable to field scale reactive transport models.

In this paper, we present a new approach to upscaling reactive transport in porous

media that models concentration mean and variance and assumes that mixed reactants can

be modeled with a joint distribution with Beta marginal probability density functions

(pdfs). First, we briefly review the derivation of the conservative mean and variance

equations and discuss how to apply a mixing line to transform an assumed Beta pdf of a

conservative tracer into a joint distribution of reactants. Next, we show that this approach
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can successfully model the space-time evolution of the means, variances, and

distributions of both reactive and conservative concentrations observed in the

heterogeneous experiments of Chapter 3 and finally, the product means from the

homogeneous experiments of Chapter 3, Gramling et al. (2002), and Raje and Kapoor

(2000).

4.2. Concentration Fluctuation Beta-pdf (CF-fl) Model for Reactive

Transport in Mildly Heterogeneous Media.

4.2.1 Conservative concentration mean and variance.

We used the advection-dispersion equation (ADE) for conservative mean

concentrations and an equation for conservative concentration variances from the work of

Kapoor and Gelhar (1994a) based on Eulerian linear stochastic theory. A Lagrangian

concentration variance approach (e.g. Dagan and Fiori, 1997; Pannone and Kitanidis,

1999; Fiori and Dagan, 2000; Fiori, 2001; Fiori, 2003; Pannone and Kitanidis, 2004)

could have been implemented, but we found it more convenient to work with equations

that could be solved by conventional finite-difference techniques. Kapoor and Gelhar

(1994a) applied Eulerian stochastic theory to obtain the governing differential equations

for the mean and variance of a conservative tracer in heterogeneous porous media.

Starting with the small-scale advection-mechanical-dispersion equation:

ac av,C a2C
a+ da (1)8t 8x, " x 8x
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where summation over repeated indexes is implied. Concentration C and velocity v are

treated as random variables that can be decomposed into a mean and a zero mean

fluctuation (Gelhar and Axness, 1983):

C = C + c'; v = v + v', (2)

In this treatment, the diagonal mechanical dispersion tensor d, is assumed constant and to

depend only on the mean velocity (e.g. Kapoor and Gelhar, 1994a; Dagan and Fiori,

1997). Substituting equation 2 into equation 1 and taking expectation denoted by the

over-bar (E[C]= C) yields the equation governing the mean concentration with flow

aligned in the xi direction:

ac - C av',c' c 2C
-- = -v - + d-- +d, (3)ax @x, I ' x x/

Equation 3 is subtracted from the result of equation 2 substituted into equation 1 to yield

the governing equation of a concentration perturbation. The governing equation for a

concentration perturbation is multiplied through by another concentration perturbation,

and taking expectation (E[(c')2] = ) yields the budget for concentration variance:

ao_ -, 2a ( ) a2 __ ac7 ac,'ac'- v- +d, -2c'v'i -2d - (4)
t x, axi  " axax, ' ax, " ax, 8x,

Assuming the heterogeneous porous medium is stationary with small log conductivity

fluctuations, Kapoor and Gelhar (1994a) adopted the following closure approximations:

S= -vA v, '( = -vAi,, ; 2 d,, = (5)dx i ax ix axd
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The first two terms are macro-dispersion closure approximations, which have been

addressed in the literature. The last closure term of the equations in 5 is for variance

destruction. The key to this term is approximating mean perturbation derivatives in terms

of concentration variance. For 2-D flow and transport, which assumes no conductivity

variations in the z direction as is true for our tanks, the perturbation derivatives can be

approximated by introducing concentration micro-scales (Tennekes and Lumley, 1972):

(AC)2 = ; ( )2 = CI (6)
(ac'/aL)2  (ac aT)2

where and A, is the longitudinal micro-scale, A" is the transverse micro-scale, L is the

longitudinal direction, and T is the transverse direction. The micro-scales are length

scales that characterize the small-scale separation behavior of a statistically stationary

concentration perturbation covariance function (Kapoor and Gelhar, 1994a).

Perhaps a more intuitive approach to understanding concentration micro-scales

can be gained by taking the square root of the equations in 6 and rearranging terms to

show:

- - (7)

that the average perturbation derivatives are approximated as rise divided by run, where

the rise is given by the standard deviation and the run is the micro-scale (figure 2).

Figure 2.
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Consider a theoretical case where a concentration profile varies in a macro-dispersion

front as a function of the transverse direction T and has the form of an arbitrary periodic

function:

C=A*Cos() + B

The mean of this function is found by taking expectation with a dummy variable ý of

integration:

BT + AASini T)
TT'( A T

For large T, the mean may be approximated as B. Subtracting B from equation 8 for large

T, yields a perturbation and the expected value of a perturbation squared is the variance:

2 A2 T- +- ASin2 A2

c 7 >2iJ(A*Cos ({)) ')d"= 24 (iJ
T A T 2

The expected value of the squared perturbation derivatives is:

IC _c 2 2) A2(T ASinI (2-) A2

c' 2  1  "  Cs A2 4 A2
= A*Cos{)JJ d = A2 A(U) T( a A 2T 22

Therefore, according to equation 6, dividing equation 10 by equation 11, the transverse

concentration micro-scale is equal to 2:

A(, =A

and most importantly has no relation to the amplitude of the periodic function. This

shows that the amplitude of concentrations does not affect the concentration micro-scales
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because the variance changes proportional to the perturbation derivatives. The micro-

scale is determined by the wavelength of the concentration profile which would be

determined solely by the flow structure. For these reasons, the micro-scales do not vary

much over the plume (Kapoor and Kitanidas, 1998; and we also verify this in section

3.1), which justifies using average longitudinal and transverse values. Furthermore, the

length-scale that approximates the perturbation derivative where concentrations go from

maximum to minimum is one-half the period of a Cosine function is given as An. This

means the length scale that transverse dispersion has to mix over to destroy variance is

characterized by a micro-scale that's a factor of rn smaller. The micro-scale is always

going to be smaller then the length-scale characterizing the distance it takes for

concentrations to go from minimum to maximum because the standard deviation is

always smaller than maximum minus minimum.

The variance destruction term can be rewritten in terms of micro-scales and

variance (shown for 2-D):

2d, 2+ 2d 2 = + dT = (13a)
L) ( a 27 J a~* (13aO

2d =+ 2dT (13b)
N'()2 (A(')2

where d. and d, are the longitudinal and transverse mechanical-dispersion and X is the

first order variance decay term.

Essentially, ' is a mixing-rate, which implies mixing occurs at the rate that

mechanical dispersion destroys concentration fluctuations over length-scales that
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characterize their spatial derivatives. The reciprocal of " is called the "variance residence

time" or VRT, and it is a characteristic time over which local dispersion destroys

concentration variance. VRT asymptotically increases like macro-dispersion, albeit more

slowly, until the micro-scales reach asymptotic values (Kapoor and Kitanidas, 1998).

Temporally increasing VRTt and hence Z, as can be modeled as:

VRT, = VRT,(1e- ), (15)oo(lee;z") (15)
(1 - e- ' )

where xz is the rate at which the concentration micro-scales approach their asymptotic

value and VRT,, and ",, are the respective asymptotic values. This approach is able to

reproduce the early time variance destruction behavior observed in Kapoor and Kitanidas

(1998) (figure 3).

Figure 3.

Since local dispersion is assumed to depend on the mean velocity, we can simply factor

out the mean velocity from the variance destruction term to group the unknowns into a

single unknown we call the variance length scale "L:

2 d 2dT 2vaL 2va, - 2a, 2a, v
X = + - + ( 2T =V[ L+ (16)

" (A :" (AC) 2  ( m C) 2 (A• - (A- 2 ( mC  2 1

where aL is the longitudinal mechanical-dispersivity and aT is the transverse

mechanical-dispersivity. Analogous to the VRT, XL can be thought of a characteristic

distance a plume has to travel to destroy variance. We also assume that the rate at which

XL approaches its asymptotic value should be proportional to how much of the porous
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medium the plume has experienced, which is in term proportional to the mean velocity

such that:

v
K = (17)

where G" is the variance growth-scale and can be thought of a characteristic length that a

plume has to travel in order to reach the asymptotic variance destruction rate or ZL.

Making the appropriate substitutions allows us to rewrite the mean and variance

equations in terms of length-scales and mean velocity (shown in 1-D as they will be used

to model the 1-D mean transport in our tanks):

aC -acC - aC
- = -v--+ vA vA (18)
at ax x C 2

aoi 2  a02  - 2o' (a-> v
S+vA 2 +2vA, (19)

at ax X a'2  -ax L) z

Remembering that if early time behavior is of interest then:

ZXl, = XL, ý(I - e-( +) X ;  (20)

The equation for conservative mean concentration is the advection-dispersion equation

with macro- instead of mechanical-dispersion. Concentration variance is advected and

dispersed like the mean concentration, but it is also produced by macro-dispersion, and

destroyed by mechanical-dispersion. It should be noted that the over-bar on the mean

concentration is typically dropped. Dropping the over-bar means that the predicted

concentrations are the only concentrations, i.e. there is zero variance, and these predicted

concentrations can therefore be directly used in chemical reaction models. However, the

over-bar means that these concentrations are spatial averages and not the small-scale
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concentrations that actually drive biogeochemical reactions. This could be why the

upscaling problem has persisted in reactive transport modeling.

Variance production and destruction is directly analogous to reactive mixing.

Essentially, macro-dispersion creates concentration variance and chemical segregation,

but it enhances fluid-fluid interfaces and creates steep concentration gradients for

mechanwical-dispersion to create variance destruction and mixing. Mixing results in

chemical reaction (Roshko, 1976). Now that the equations for conservative concentration

mean and variance have been covered, we will assume conservative probability

distributions and transform them into joint reactant distributions.

4.2.2 Transforming conservative Beta distributions into joint reactant distributions

with a mixing line.

Recall in Chapter 3 we showed that conservative concentration distributions that

are normalized by the maximum concentration are well approximated by Beta

distributions:

fC = F(a+b)(C /CO)I) (1-C/ C,)I (21)
F (a) F (b)

wherei fcco is the probability density function, F is the gamma function, and a and b are

shape parameters calculated from the normalized concentration mean C /Co and

variance 0o-7 C

C / C I/ 1br C) (2
a = C/C 2 -1 b; b= 1( /CI -1C/ )2 (22)

ICi o . (
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The continuous distribution can be approximated as discrete to make calculations easier

using a large number of discrete of c/co values with small grid spacing Ac/co:

P(C/C, = c/co) f: /(oAc/co  (23)

The essential jump from conservative concentration distributions to joint reactant

distributions is applying a mixing line. Recall that the total amount of Tiron and

molybdate or the total amount of A and B for the A + B -+ P reaction (Chapter 3) behave

as conservative quantities. As long as nothing sorbs, a mixing line can be applied for any

arbitrary value of a conservative quantity C1/CI,o in a Beta distribution to calculate a

corresponding conservative C2/C2,0 value. These two mixed concentrations have the same

discrete Beta probability as CI/CI,o. Next, the reactant pairs are unormalized, run through

a chemical reaction model that can be arbitrarily complex and non-linear, and the formed

product and remaining reactants retain the original discrete Beta probability of CI/CI,o .

This calculation is performed across the entire mixing line weighted by the Beta

probabilities to generate a new product and remaining reactant distributions, which can

then be integrated to calculate product and remaining reactant means and variances.

Forming joint distributions with Beta distributions and a mixing line creates joint

distributions with perfect negative correlation. Consider two normalized concentrations

C1 and C2 that are each decomposed into a mean and fluctuation: C, = C, + c', and

, =C+c' 2 If they fall on a mixing line then C + C2 =1. Substituting in the

decomposition:

C, + c' + C2 + '2 = 1 (24)

Taking expectation:
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C, +C2 =1 (25)

Subtracting equation 25 from equation 24 yields: c', = -c' 2. Using this relationship it is

easily show that E [(c')2] E[(-c'2)2] = E[-c' c'21 r 1 that ao = th = -qo and thus

the correlation coefficient is -lwhen a mixing line applies.

As an example of transforming conservative Beta distributions into joint reactant

distributions, consider a normalized mean total molybdate, MOT/MOT,O of 0.3 and from

the mixing line the normalized mean total Tiron concentration, TiT/TiT,o, would be 1.0 -

0.3 = 0.7. Assuming that the conservative total molybdate distribution is Beta, the

conservative total Tiron distribution can be calculated from the molybdate distribution by

applying the mixing line, which forms a joint distribution (figure 4):

Figure 4.

The normalized Tiron and molybdate concentrations have the same variance,

meaning that Tiron will have the mirror image Beta distribution of molybdate. With the

joint pdf approximated, the potential normalized mixed reactant concentrations are

unnormalized (all Tiron values are multiplied by 0.05 M and molybdate values are

multiplied by 0.025) and reacted to calculate the potential product and remaining

reactants (see Oates and Harvey, 2006 for more details on the Tiron/molybdate reaction).

The discrete probability is conserved through the reaction yielding product and remaining

reactant distributions. Essentially, all potential mixed reactant concentrations are

considered, and the reactions are weighted by the probability that they are present. This

means that by modeling the mean and variance of a conservative tracer it is possible to
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calculate any number of nonlinearly reacting reactant pairs as long as the reactants are not

sorbing. It is important to point out that because all possible reactions are considered

before any averaging is performed; the reaction can be extremely non-linear. This process

explicitly calculates product and reactant distributions, which can account for the high

variability reported for mixing controlled reactions (Cirpka and Kitanidis, 2000; Cirpka,

2002). An overview of the distribution chemical reaction calculations is given in the

appendix.

The above process explicitly calculates product and reactant distributions prior to

integration, but we wanted to investigate if the new distributions could also be

approximated as Beta distributions based on new means and variances. Beta distributions

range from 0 to 1 so product and reactant concentrations must be normalized to fall

within this range. This can be done by dividing the product or reactants means by their

maximum value and dividing the product or reactant variances by the maximum value

squared. The maximum value of A is 1, C is 0.5 and, the Tiron/molybdate product is 0.8.

These normalized means and variances can then be used to calculate shape parameters for

Beta distributions.

4.3. Results.

4.3.1 Application of the CF-fi Model to the Mildly Heterogeneous Experiments.

We will validate the CF-Pf approach to reactive transport modeling by

investigating and modeling the space-time evolution of the conservative tracer variance;

the means and variances of P, A, and Tiron/molybdate product; the space-time evolution

of the conservative and reactive distributions. All results are compared to our
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experimental data. Then we use the CF-fl approach to model how different grain sizes

and a larger domain would have affected reactive transport for our experiments. These

results demonstrate that the CF-fl approach can model the correct amount of chemical

reaction and provide probably density functions for use in regulatory compliance

situations based on maximum contaminant levels.

4.3.1.1 Perturbation field analysis. Given the high resolution of our data (Chapter

3), we can directly compare the perturbation analysis to our perturbation field and apply

equation 9 to study the concentration micro-scales. To do this, the mean concentration

value along x are calculated by averaging over y and then this mean is subtracted from

each pixel at a given x to reveal the concentration perturbation field (figure 5-A).

Figure 5.

To approximate the effects of transverse and longitudinal mechanical-dispersion, which

act parallel and perpendicular to local stream tubes, respectively, we assumed that

transverse dispersion is acting in the direction of the maximum local concentration

gradient, and longitudinal dispersion acted perpendicular to this direction. This is based

on the notion that transverse dispersion is much smaller than longitudinal dispersion and

the direction of smallest dispersion would have the steepest gradient. Concentration

gradients were calculated by considering a pixel and taking a central difference of the

perturbation field from the neighboring pixels and then determining the transverse and

longitudinal directions. This approach was used to calculate the squared transverse

perturbation derivatives (ac'/8T)2 (figure 5-B) and the squared longitudinal perturbation
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derivatives (ac'/8L)' (figure 5-C). Next, at a given x, the variance is divided by the

average perturbation derivatives to yield the two concentration micro-scales (equation 6)

(figure 5-E). Finally, to calculate ZL from equation 16, we assumed longitudinal and

transverse dispersivities aL Z dhr and that aTradl/ 0 where d is the average bead diameter

(Spitz and Moreno, 1996), which yield respective values of -0.03 and 0.003 cm (figure

5-E). Looking at the concentration micro-scales across the dispersive-front, they remain

fairly constant because when the variance is smaller the mean squared perturbation

derivatives are smaller and vice versa so the ratio remains close (see equation 6). This

constant behavior justifies using a spatially averaged value. Over time, the average

longitudinal micro-scale shows substantial growth while the transverse micro-scale is

very constant (figure 6-A).

Figure 6.

Considering this behavior, the relative mixing contribution of transverse and longitudinal

mixing can be calculated as the percentage of the variance destruction term (see equation

13b) (figure 6-B). In agreement with other researchers (e.g. Fiori and Dagan, 1997;

Cirpka, 1999; Cirpka and Kitanidas, 2000), transverse mixing dominates mixing and

variance destruction. Initially, longitudinal mixing is strongest because concentration and

concentration perturbation gradients are still steep, which produces a small micro-scale

for a given variance. Longitudinal mechanical dispersion is much larger than transverse

mechanical-dispersion so with a small micro-scale longitudinal mechanical-dispersion

initially creates most of the mixing as shown by its large initial mixing percentage.
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However, as soon as the plug-flow distance passes only one correlation length,

heterogeneity stretches and distorts the mechanical-dispersive front creating very steep

transverse gradients and a large surface area for transverse dispersion to act over. At the

same time, the stronger longitudinal mechanical-dispersion decreases its perturbation

gradient faster than variance decreases, which causes the longitudinal micro-scale to

grow and lesson its mixing contribution. There are no mechanisms to sharpen the

longitudinal mechanical-dispersion gradients while heterogeneity creates velocity

fluctuations that shear the fluid interfaces and maintain relatively sharp transverse

gradients. As time progresses, transverse mechanical-dispersion starts smoothing out the

transverse concentration fluctuation derivatives and this is mainly what is responsible for

reducing variance. Therefore, the ratio of variance to the average transverse fluctuation

derivative remains fairly constant because they are both being decreased by the same

process at the same rate. Calculating the behavior of ZL as a function of the micro-scales

(figure 7)

Figure 7.

shows good agreement with the modeled behavior of XL that was used to fit the

conservative concentration variance (next section). These results show that the

concentration micro-scales remain constant over the dispersion front validating the

closure approximation for the variance destruction term, and that transverse

mechanical-dispersion is the dominant mixing mechanism.
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4.3.1.2 CF-/I means and variances. It has already been shown that the ADE

adequately models the mean conservative concentrations (figure 6-A, Oates et al.,

Chapter 3). We calculated the space-time evolution of the variance of the conservative

tracer data at every x by calculating the variance over y. Concentration variance was

modeled with a Crank-Nicholson finite-difference approximation of equations 19 and 20

with the following boundary conditions:

ar = 0 x = 0, t (26)

= 0 x = L, t (27)
ex

and there was no variance initially in the domain. The concentration mean, and thus the

variance production term in the variance equation, was calculated with a Crank-

Nicholson finite-difference of the ADE (equation 18) with the following boundary

conditions:

- ac
-vA + vC = vCo  x = 0, t (28)ax

S=0 x=L,t (29)
ax

where the macro-dispersivity and mean velocity were calculated from the breakthrough

curve of the conservative tracer with values of Ax = 1.1 cm and v = 0.57 cm/min

respectively (Chapter 3). Then, using a non-linear least squares optimization algorithm,

ZL and ZG were fit to the space-time evolution of the variance. The fit values of ZL and ZG

were used in CF-/f model to predict the mean of P, A, and the Tiron/molybdate product.

Additionally, ZL and ZG were fit to the observed mean Tiron/molybdate reaction using the

CF-/I modeled mean product. The A+B--+P concentration field was simulated from the
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conservative tracer (Chapter 3; the P and the A field can be seen in figure 11) and the

only difference between the simulated fields and actual reactive transport data is

pore-scale mixing (Chapter 3).

Applying a finite-difference model of the mean and variance shows that the

variance of the conservative tracer can be reasonably modeled by fitting ZL and ZG (table

1) and we would expect a smoother fit if our tanks contained more correlation lengths

(figure 8-A).

Figure 8.

Using the values of ZL and XG fit to the conservative variance, the CF-ft model

excellently predicts the P, A, and Tiron/molybdate product means (figure 8-B, 8-C, 8-D),

the moments of the means and peak mean concentrations (figure 9), and the observed

variability (figure 10) all with the same variance length-scales. This verifies the success

of the CF-fl approach for modeling the complex reactive transport observed in our tank

experiments.

Figure 8.

Figure 9.

Fitting XL. and ZG (table 1) to the mean Tiron/molybdate product reaction shows a very

similar behavior to predictions made from the conservative tracer except the mean

product is slightly less (figure 8-D and 10-C solid and dashed line). Interestingly, the
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conservative variance profile predicted with the variance length-scales determined from

the reaction experiment is slightly higher then the conservative tracer (figure 8-A solid

and dashed line). We believe that this slight increase in variance is a result of the

incomplete pore-scale mixing, which manifest itself in a slightly higher macroscopic

variance. This idea is further supported when using the XL and ZG values obtained from

fitting the variance of the blue dye tracer to simulate the mean Tiron/molybdate product;

it produces slightly higher mean values (figure 7-D and 9-C, dashed lines; and figure 7

from Chapter 3). As already stated, this difference is not much and not thought to be very

important for field-scale application. However, it implies that variance serves as a global

mixing parameter that can assess and weight the importance of mixing over different

scales. Furthermore, the important implication of this comparison is that ZL and ZG can be

very precisely inferred from the mean value of a reactive tracer; an idea that will be

revisited later.

Looking at the left tail of the mean Tiron/molybdate product (figure 8-D) shows

that for the two-step complexation reaction of Tiron and molybdate, the over prediction

of mixing can result in less product. This is because mixing more molybdate into the

reaction shifts the product from the highly colored species (two Tirons and one

molybdate) to the less colored species (one Tiron one molybdate). Unfortunately, our

concentration field was not smooth enough to verify this experimentally, but it does

demonstrate that it is possible to underestimate a product species by overestimating the

amount of mixing. The results in this section demonstrate that the CF-fl approach can

model the correct amount of chemical reaction by calculating the expected value of
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chemical reaction by explicitly integrating over product and remaining reactant

distributions.

4.3.1.3 CF-/I distributions. We also wanted to assess how well this approach

could model the space-time evolution of the conservative, product, and reactant

concentration distributions. To separate out the error introduced by modeling the mean

and variance and the error caused by assuming a Beta distribution, we generated Beta

distributions from the modeled mean and variance and also from the exact empirical

mean and variance calculated at a given x for both conservative and reactant

concentrations. We calculated the root-mean-square error of the Beta cumulative density

function (cdf) compared to the observed cdf, which we consider a more useful measure of

error compared to a Kolmogrov-Smirnof-test given our large sample size per distribution

(n> 1000).

For a bounded range of concentrations and a given mean and variance, the Beta

distribution does a good job of describing the observed distributions (figure 11).

Figure 11.

Calculating the mean and variance from the observed distributions shows the Beta

distribution was able to reproduce the distribution of tracer, reactant and both products

consistently with around 2-5% error (figure 12).

Figure 12.
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The difference in error between the modeled Beta cdfs and the empirical Beta cdfs

implies that the largest part of the error when modeling the full distributions results from

modeling the mean and variance especially at early times. The model and data thus far

have demonstrated the usefulness and versatility of the Beta distribution approximation,

but it cannot capture all the complexities of fluid mixing in porous media. For example,

the Beta distribution cannot reproduce multi-modal distributions where the peaks occur

towards the middle of a distribution. Instead, the extra variance that results from these

peaks raises the tails around 0 and 1 of the Beta distribution to honor the same variance.

As such, high probabilities in the tail region should be viewed with a degree of caution. It

is likely if a heterogeneous field contained more correlation lengths than our tanks that

some of these peaks would smooth out. The CF-/i approach is capable of modeling the

space-time evolution of conservative and reactive concentration pdfs, which can be used

in regulatory compliance situations based on maximum contaminant levels.

4.3.1.4. Smaller grains and bigger tanks. The mean bead size of the grains

outside the circular inclusions was approximately 2.1 mm; around the size of coarse

gravel. Since mechanical dispersivity scales with grain size (Spitz and Moreno, 1996),

the tanks have almost the highest mixing rates possible for the given conductivity field

and produce mixing and reaction closest to the macro-dispersion prediction. The effects

of mechanical dispersion on macro-dispersion have been previously investigated (e.g.

Gelhar and Axness, 1983; Dagan, 1989; Neuman and Zang, 1990; Fiori, 1996) and have

been found to reduce macro-dispersion for highly anisotropic heterogeneity but

mechanical dispersion is generally considered to have negligible contribution to the

macro-dispersive flux (e.g. Dagan, 1982; Gelhar and Axness, 1983; Graham and
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McLaughlin, 1989). However, mechanical dispersion plays a critical role in variance

destruction (e.g. Kapoor and Gelhar, 1994a; Dagan and Fiori, 1997) and therefore

reactive transport. If our tank beads were smaller but maintained the same relative

permeability, then macro-dispersion and hence variance production would remain

virtually the same. However, variance destruction and reactive mixing would be

significantly reduced. We will assume that the conductivity micro-scales would remain

unchanged because they represent features of the small-scale flow structure for advection

dominated situations (Kapoor and Kitanidis, 1996, 1998). Therefore, changing the mean

grain size from gravel dG to an arbitrary grain size d would change the longitudinal and

transverse mechanical-dispersivities of gravel, aL, d, and aT, d• respectively, to new

dispersivities al,,d and aL,d .From Spitz and Moreno (1996), we assume the following

relationships:

d da.,_dG d a a d; aTd (30)T,_ ," -- d; Td - 10

Solving for the dispersivities of a new grain size in terms of the old dispersivities yields

the following relationships:

d d
ttad LdG; ld = TdG d- (31)

Consider the variance length scale, XL, dG , we have determined for our course gravel

tanks:

2 aLdG 2 aT,rdG

XL,d; (A2 )2 (32)
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A theoretical tank with the same relative conductivity field but with smaller grains would

have the effect of replacing the gravel dispersivities in equation 32 with the new

dispersivities in equation 31. This theoretical tank would have the new variance length

scale, XL,d :

-XL

: Ld =

2aT, G
+()2 (33)

Dividing equation 33 by equation 32 yields:

dZL,d d- Lt.de, (34)

which means that we can model the effects of smaller grain sizes by just scaling the

variance length scale (note that the assumption of aL, a, = 10 can be relaxed).

We investigated the hypothetical situation of our tanks having beads with a mean

diameter of 0.42 mm, a high value for medium sand (d,,/d = 5), and 0.21 mm an average

value for fine sand (d,; d=10). With the new variance length scale values, the CF-fl

model was then applied to simulate P and A, for A+B--P, and the Tiron/molybdate

product (figure 13).

Figure 13.

Smaller grains and hence smaller mechanical-dispersivities can have a large impact on

the amount of mixing as shown for this physically plausible tank situation where reaction

is dramatically over predicted. Conceptually, this situation would produce very fine

ribbons of product stretched about in the macro-dispersion realm of predicted spreading.
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An important point to raise is that lack of mixing and reaction could cause A, a theoretical

contaminant, to travel much further and faster then predicted by conventional models

(figure 12-B)..

We also wanted to model the reactive transport behavior over a larger domain to

investigate what would happen if we had the same stationary conductivity field but if our

tank was longer. To do this we extended the domain to 250 [cm] and used the CF-/

model to simulate the Tiron/molybdate product for the cases of gravel, medium sand, and

fine sand and compared the moments of the mean to the conventional ADE prediction

(figure 14).

Figure 14.

Even after solutes mix over hundreds of correlation lengths, which were assumed not to

increase with scale in this case, there still exists significant upscaling error especially for

small pore-scale dispersion, which can be accurately modeled by the CF-/f modeling

framework.

Mixing in natural porous media is a slow process that can control the overall rate

of chemical reactions and the lack of mixing causes concentrations to be spatially

variable. The CF-/P modeling framework has been experimentally validated to

approximate the correct amount of chemical reaction and provide concentration

probability density functions, which are needed to address laws and regulations based on

maximum contaminant levels.
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4.3.2. Application of the CF-,f to Homogeneous Experiments.

4.3.2.1. Overview. In Chapter 3 we demonstrated that incomplete pore-scale

mixing was relatively unimportant for heterogeneous porous media. However, as reaction

constants can be inferred from column experiments in homogeneous porous media, we

wanted to see if the CF-,/ could also model pore-scale mixing in homogeneous porous

media. This would be important so that reaction constants do not unknowingly have a

degree of mixing imbedded in them. Essentially, there is no such thing as a perfectly

homogeneous medium and as such, variance production (or reactant segregation) would

result from solute movement through some pores but not others as described by the

mechanical-dispersion coefficient. Variance destruction (or reactant mixing) would result

from diffusion smoothing out concentration gradients over a large surface area created by

pore-scale velocity fluctuations. We were not sure a priori whether variance destruction

would have a linear relationship with velocity representing a smaller-scale

mechanical-dispersive mixing process, a quadratic relation with velocity suggesting

mixing follows a Taylor-Aris type of dispersion, or perhaps no relation with velocity

implying diffusion is unaided by velocity fluctuations.

First, the homogenous Tiron/molybdate experiments were modeled to assess if the

CF-1f approach is applicable for homogeneous porous media. Next, we investigated the

velocity dependence of variance destruction by applying the CF-fl approach to model the

copper sulfate/EDTA reaction from the work of Gramling et al. (2002). Finally, we

analyzed the breakthrough curves of Raje and Kapoor (2000) by fitting the variance

length-scales to their first breakthrough curve, and then using these fit values to predict

their second breakthrough curve generated at a different velocity and different initial

reactant concentrations for their non-linear reaction.
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4.3.2.2. Tiron/Molybdate product The CF-fl approach does an excellent job of

modeling incomplete pore-scale mixing in homogeneous porous media (figure 15-A).

Figure 15.

The observed product variance was significantly lower then the modeled variance (figure

15-B) because our experimental technique could not observe pore-scale variability. Even

though the true pore-scale variance could not be observed, it had to be modeled to predict

the correct mean of the non-linear reaction which our experimental technique did resolve.

This means that by comparing the observed to the modeled mean we can actually predict

the pore-scale concentration distributions. The distributions had lower variance than the

heterogeneous tanks as a result of the lower variance production, but they were very far

from Gaussian except near the center of the plume (not shown).

4.3.2.3. Analysis of Gramling et aL (2002) and velocity dependence of variance

destruction. All experimental results of Gramling et al. (2002) which were run at

different velocities, were analyzed with the CF-fl approach and the results were similar to

figure (15-A). The rate constants X and Kz were fit at three different velocities, which

allowed their velocity dependence to be assessed (figure 16).

Figure 16.

It is clear that these parameters have a linear dependence on velocity for the

advection-dominated flow studied, implying there is a small local-scale
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mechanical-dispersive mixing process destroying variance and that the behavior of the

variance destruction evolves proportionally to the amount of the porous media

experienced. This means that velocity can be factored out and the same length-scale

dependent equation that applies to heterogeneous porous media also applies for

homogeneous media (table 1).

4.3.2.4. Analysis of Raje and Kapoor (2000) and measuring variance

destruction from a reactive breakthrough curve. The rate-limited bimolecular reactive

breakthrough curve for run 1 from Raje and Kapoor (2000) was modeled with the CF-/f

approach assuming that the chemical reaction rate (438 M 1' s') was fast enough

compared to the advective time-scales to model the reaction as instantaneous. Fitting XL

and ZG (table 1) did an excellent job of modeling the breakthrough curve (figure 17-A).

Figure 17

The fitted values were then used to predict run 2 from Raje and Kapoor (2000), which

was run at a different velocity with different initial concentrations for the non-linear

reaction and the results were found to be in good agreement (figure 17-B). Aside from

demonstrating the validity of the CF-,f approach, it demonstrates that the variance length

scales can be reliably determined from a breakthrough curve of rate-limited bimolecular

reaction. This could have very important implications: a breakthrough curve of a rate-

limited bimolecular reaction might be an appropriate field technique for measuring these

length-scales at a field site. As the reaction rate from Raje and Kapoor (2000) was very

fast compared to the advective time scales across the tank, we treated it as instantaneous
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reaction. However, and very importantly, the reaction rate was slow enough not to react

in the outflow tube, which allowed the effects of chemical segregation to be observed.

4.3.2.5. ZL and XG in homogeneous media. L and XG differed between the

Tiron/molybdate and Gramling et al. (2002) experiments (table 1). For the

Tiron/molybdate experiment, the mean grain size is much smaller but ZL is almost an

order of magnitude higher, meaning worse mixing (table 1). We believe the important

difference in terms of mixing between these experiments is grain roughness. The

Tiron/molybdate experiment used smooth spheres while Gramling et al. (2002) used

freshly crushed cryolite grains. The freshly crushed cryolite would have highly irregular

surfaces that would increase small-scale velocity fluctuations and produce mroe efficient

mixing. Raje and Kapoor (2000) also used smooth spherical beads and the %L for their

experiment (8.6 cm) is very similar to the ZL from the homogeneous Tiron/molybdate

experiment (8.3 cm) which also used smooth spheres. This similarity implies the

importance of grain roughness for pore-scale mixing. However, the XG values are

different between Raje and Kapoor (2000) and the Tiron/molybdate but similar between

Raje and Kapoor (2000) and Gramling et al. (2002). This might be due in part to the

similar grain sizes. Further research is necessary to determine the relationships between

2L, XG, grain roughness, grain diameter, and perhaps porosity. This could be

accomplished by determining the variance length scales for a variety of homogeneous

media using reactive breakthrough curves similar to Raje and Kapoor (2000). The

behavior of ZL for all the homogeneous experiments is shown in figure 7. These results

show that the CF-fl modeling framework can upscale reactive transport in homogeneous

porous media without resolving pore-structures.
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4.4.4. CF-f Limitations.

We have verified the success of the CF-/I approach for modeling reactive

transport observed in our laboratory experiments. However, the CF-/i approach currently

requires two potentially limiting assumptions: 1) reactions can be viewed as

instantaneous because reaction rates are much faster than mixing rates; and 2) reactants

do not sorb to the porous media and therefore fall on a mixing line. While these

assumptions may hold in some field situations such as the slow mixing of oxygen and

ethanol, a more general frame-work needs to be developed to relax these assumptions.

We propose and verify that production-destruction balances can allow for variance and

covariance approximations by scaling the mean gradients by the macro-dispersivity and

the variance-length scale in the final paper of this series. If the large time production-

destruction balance is generally applicable, which it appears to be, it would provide the

necessary statistical moments to construct multivariate distributions for when reactants

sorb differently and/or the instantaneous reaction assumption does not hold.

Appendix.

Numerically implementing the Beta distribution can be difficult for high variance

situations, where it is possible to have close to a dirac delta at 0 and/or 1. In these cases it

is difficult to generate a distribution that numerically integrates back to 1, even though it

is exact analytically. To overcome this issue we: 1) made the grid spacing exponentially

smaller around 0 and 1, where the values and derivatives of the Beta distribution can be
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extremely large; 2) forced the distribution to integrate to 1 by normalizing by a numerical

integrand; and 3) refit the shape parameters a and b to honor the input mean and variance.

The grid spacing Ac / c, was constant in log space where ng is the number of grid

points:

Ac/lc,, = (log(0.5)- log(10-6))/(n, /2) (A-l)

Then a vector of numbers, c / c,,11/2, ranging from - 0 to 0.5 with spacing of Ac / c,, was

generated (using Matlab notation)

C/C 1/2 = [log(10-16): Ac/c, log(0.5)] (A-2)

Next a mirror image of this vector was created using Matlab's fliplr (flip left to right)

command and the two vectors where then combined into one vector and the whole vector

was exponentiated to yield a grid c / c,, that ranges from 0 to 1 with exponentially

smaller grid spacing around 0 and 1:

C/C,, = [ ecI l•c ~ : e P t'r(i-C•lc,,2) (A-3)

The numerical Beta distribution was then integrated over all c / c, to normalize the

density and ensure it integrated to 1:

f = ( ) (1c/ (A-4)

f (f(O+) +fcc(,+I)) /2(C/c0 i+ -c ! /C "(-,I))
i=l

The mean C, and variance a2oi. of any conservative or reactive concentration are

calculated from the numerical Beta distribution by numerical integration as follows:

C,= (f,.(,) + f/'( ))/2(C(,) + C(,+) )/2 (c/c,)(,) - c/ (,)) (A-5)
i=1
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JU2X (( i) + fcl(,(+J))/2 (C(,) + C(,+1)) / 2)2 (clfi(I+- c/co(i-I) (A-6)
i=1

2 2 2
of, = -Cp (A-7)

After calculating the mean and variance of the conservative numerical Beta distribution

(denoted by subscript Pf), the distribution was checked to ensure that it matched the input

mean and variance (denoted by subscript M). If a match was not found, new shape

parameters a and b where determined that minimized the following function:

2 2 2

f C-C + c. -2 r (A-8)
C ) CM

which ensured that the numerical mean and variances matched the input values. The

numerical conservative Beta distributions can then be transformed into product and

reactant distributions by applying the mixing line and running all possible reactant pairs

through a reaction model. Finally, the product and reactant mean and variance can be

calculated using equations A-5 - A-7 where C is the product or remaining reactant

concentration.
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- Observed Mean Product

x [cm]

Figure 1. Effects of using a smaller dispersivity as an upscaled parameter to account for incomplete mixing.

Reducing the dispersivity will always produce the same peak mean P for the A+B--+P reaction and does not

account for the for the unresolved-scale variability as indicated by the observed large standard deviation.

Dispersivity could be chosen to match either the zeroth or the second product moment, but not both. P was

simulated from the conservative tracer data in Chapter 3.
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Figure 2. Average perturbation derivatives approximated as rise = standard deviation and run =

concentration micro-scale. A) Hypothetical mean gradient. Three arbitrary spots are chosen and hypothetical

transverse concentration profiles are plotted in panel B. Barbels in table show relative magnitude of each

parameter for three different concentration profiles. The point to note is the standard deviation changes

proportionally to the perturbation derivatives and concentration micro-scale stays the same, which justifies

using an average value.
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Figure 3. Exponential fit of temporally increasing variance residence time VRT. Data from numerical
simulations of Kapoor and Kitanidas, 1998.
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Concentration fluctuation partial derivative in the longitudinal direction; D) Original concentration field; E)
Longitudinal and transverse concentration micro-scales; F) Variance length-scale across the dispersion front.
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Figure 8. Mean concentration profiles at 8, 21, 35, and 48 minutes. A) Solid blue lines: best fit of the variance

model to the observed tracer variance. Dashed blue lines: predicted tracer variance fit to the mean

Tiron/molybddate reaction. The reaction incorporates sub-pixel variance while the tracer does not. B) P for

the A+B -+ P reaction. Mean ADE predicted P, mean small-scale P, and predicted mean P from the CF-f. C)

Mean A for the A+B -+ P reaction. Mean ADE predicted A, mean small-scale A, and predicted mean A from

the CF-f. D) Tiron/molybdate product. Solid lines: mean ADE predicted product, observed mean small-scale

product, and best fit mean product from the CF-f. Dashed Lines: mean product predicted by the CF-f

model using variance parameters fit to the local dye tracer that do not account for pore-scale mixing.
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fit mean product from the CF-f model and associated ± 1 SD. Dashed Lines: mean CF-fl predicted product

± 1 SD using variance parameters fit to the local dye tracer that do not account for pore-scale mixing.

152



20 20 2030 4
0 1 2 30i~ ~ 40~ 0vu 9 10n 2 30 4 0 1 20 30 4011

Xn tcml x Icnl X Ic-i

4?

00.51 00.51 00.51 00.51 001.51 00.51 00.51 00.51 00.51 00.51 00.51 00.51 00.51 00.51 00.51
C/Co C/Co C/Co

cJ10- .5~.0 -- cC 1

______________ -
t ______20 20 a

0 10 20 30 40 0 10 0 30 40 0 10 20

+ X Icmi X Icmi lm

00.1 00.1 0.1 0.1 00.5 0.1 005 005 00.1 0.1 00.5P100.171 0.1 005 00.

00.51 00.51 00.51 00.51 00.51 00.51 00.51i 00.51 00.51 00.61 00.51 00.51 00.51 00.51 00.51l

C/Cmrax C/Cmax C/Cmax

xicml xrm icemi

2O 2 4H
0cc L 5~L 0.1

OO~i~ 0.5 0051 0.6 0051 0.5 005100.51 00.51 00.51 00.51 00.51 00.51 00.51 00.51
CYCmrax /Cmrax C/Cmaxr

153

Figure 11. Observed, empirical beta (red dashed line), and CF-8f beta (solid red line) modeled conservative

and reactive distributions. Colored squares at the bottom of the concentration field show the location of the

corresponding x-location of the corresponding colored distribution.
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Figure 12. The root mean square error was calculated between the beta CDF and the empirical CDF across

the dispersion front for a given plug flow distance. The mean behavior of this error is shown for beta

distributions based on the modeled mean and variance (solid symbols) and empirical mean and variance

(unfilled symbols).
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Figure 13. ADE and CF-f predicted mean concentration profiles at 8 and 35 minutes assuming finer grains

and hence lower mechanical dispersivities for A) P for the A+B -+ P reaction. B) A for the A+B -4 P reaction.

C) Tiron/molybdate product.
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Tiron/molybdate product assuming finer grains and hence lower mechanical dispersivities in an extended
domain.
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Figure 15. A) ADE predicted, CF-fl fit, and observed mean Tiron/molybdate product in the homogeneous

tank at 13, 58, 103, 178, 238, and 298 seconds. B) Observed pixel-scale product variance and CF-f predicted

pore-scale variance for the same times as above. The blue line is the CF-fi predicted variance with the same

dispersivity and variance length scale of a conservative tracer with a constant source.
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Figure 16. Variance destruction and pre asymptotic growth rate compared to mean velocity from the
experiments of Gramling et al. (2002). X is the rate of variance destruction and Kz is the rate that X
approaches its asymptotic value.

158

+B

I



o Observed Product
- ADE Predicted Product

--· CF-/I Fit Mean Product

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

O Observed Product
- ADE Predicted Product
---- CF-,/ Predicted Product

tv/L

Figure 17. A) CF-fl fit of the reactive breakthrough curve for run 1 of Raje and Kapoor (2000). B) CF-fl
prediction of the reactive breakthrough curve for run 2, which was at a different velocity and had different
initial concentrations (Raje and Kapoor, 2000).
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Table 1. Estimated Parameters for the Concentration fluctuation Model.

Experiment v aa, 0 dCo Xl (C •

[cm/min] [cm [[-1 [Cm] [cm] [cm] L T

S[cm] [cm]
Heterogeneous; A+B -+ P 0.57 1.1 0.4 0.21/0.09 9.3 7.8 2.5 0.25
Heterogeneous; Ti/Mo 0.57 1.1 0.4 0.21/0.09 12.1 5.9 NC NC
Homogeneous; TilMo 4.3 0.035 0.4 0.04 8.3 10.8 NC NC
Homogeneous; 39.6, 3.96, 0.78 0.27±0.1 0.35 0.13 0.7 3.9 NC NC
Gramling et al. (2002)
Homogeneous; 5.76, 4.2 0.33 0.45 0.15 8.6 3.2 NC NC
Raje and Kapoor (2000)
Not Calculated

160



Chapter 5. Production-Destruction Balances,
Taylor Series, and Practical Considerations
for the CF-,B Model

Velocity fluctuations shear and distort fluid interfaces. This produces (co)variance and at
the same time establishes mechanical-dispersive transverse concentration gradients that
destroy (co)variance. The rates of (co)variance production and destruction asymptotically
balance each another for both conservative and reactive flows. This balance leads to the
following relationship to approximate an m by n aqueous species covariance matrix as a
function of the variance length scale XL, macro-dispersivites A,, and species mean
gradients:

az m ac,
.2m ; k Xm i2XLA4

We found this relationship to asymptotically hold for: 1) the following scenarios based on
our experimental data: variance of a conservative tracer, covariance of two conservative
tracers, covariance of two conservative species with differential sorption, variance of A
and P for the A+B-+P reaction, and the variance of the Tiron/molybdate product; and 2)
the variances and covariance of oxygen and hydrocarbon undergoing a rate-limited
double-Monod reaction where hydrocarbons sorbs with a retardation factor (RH = 1.0,
1.2, 1.5, 4.0) from numerical simulations. The production-destruction balance can
provide the necessary statistical moments to form multivariate reactant distributions to
upscale complex reactive transport scenarios. Alternatively, we found that these second
order moments can be used in an upscaled reaction expression derived from a second
order Taylor series expansion. Incomplete mixing, parameterized by variance and
covariance, caused the upscaled reaction rate of double-Monod kinetics to be almost an
order of magnitude smaller compared to the conventional double-Monod reaction rate
that implicitly assumes complete mixing. We propose the decisive variance length-scale
can be measured in the field with a reactive breakthrough curve as it was for the work of
Raje and Kapoor (2000), or possibly from a breakthrough curve of conservative
concentration variance. Finally, manipulating the flow field to be perpendicular to its
original direction would increase variance destruction and reactive mixing by an order of
magnitude. Thus, generating a transient flow field would be a practical way to accelerate
natural attenuation and bioremediation.
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5.1. Introduction

So far in this series on upscaling reactive transport, we have presented a

framework for solute transport modeling that approximates the correct amount of

chemical reaction and concentration probability density functions. Probability density

functions would aid in regulatory compliance situations based on the maximum

contaminant levels (MCL) for example, to ensure there is a low probability that benzene

would exceed its regulated probability of 5 ppb. Essentially, normalized conservative

concentration distributions can be modeled as Beta distributions based on conservative

mean and variance transport equations. Conservative distributions can then be

transformed into joint reactant distributions with a mixing line as long as reactants sorb

equally. Finally, as long as the reaction can be treated as instantaneous, all potential non-

linear reactions can be calculated and the correct product and remaining reactant

distributions can be formed.

A potentially important application of this approach is the mixing and reaction of

oxygen and ethanol. The possibility of having a sustainable source of fuel has already led

countries all over the world, notably Brazil, to have E10 or 10% ethanol fuel available

(Niven, 2005) and General Motors (GM) has already produced over 2 million vehicles

capable of running on E85 or 85% ethanol (GM, 2006). Even with current strict storage

tank construction, monitoring, and regulations, spills have not been eliminated

(Committee of Energy and Commerce, House of Representatives, 2003) and will likely

never be eliminated (Niven, 2005). Ethanol itself is undesirable in groundwater and can

severely limit the biodegradation of petroleum contaminants such as BTEX by

preferentially reacting with oxygen and other electron acceptors. This effect hinders
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natural attenuation and extends contaminant plume lengths (e.g. Heermann and Powers,

1998; Molson et al., 2002; Arey and Gschwend, 2005). Many numerical studies on the

biodegradation of ethanol (e.g. Heermann and Powers, 1996; Stockholm et al., 1998;

Ulrich, 1999; McNab et al., 1999) assume that ethanol biodegradation can be modeled as

first order decay, which is incorrect. Ethanol biodegradation would result from a reaction

where ethanol and an electron acceptor existed simultaneously (e.g. Molson et al., 2002).

Since ethanol and oxygen do not readily sorb and reaction rates are typically faster then

mixing rates, the biodegradation of ethanol and electron acceptors would be mixing-

limited and the CF-/f modeling approach would be suitable.

Currently, the CF-/f approach works for modeling equilibrium reactions, reactions

with chemical kinetics much faster then mixing rates, and when there is no difference in

chemical sorption. These restrictions arise because 1) we can currently only model the

variance of total reactant because it is a conservative quantity and 2) because non-

differential sorption allows for the covariance between species to be calculated from a

mixing line. However, reactive transport situations with reactants having different

retardation factors, such as oxygen and a non-polar organic contaminant in an aquifer

with a significant fraction of organic carbon, is an important and practical scenario (Oya

and Valocchi, 1998). Even with a large difference in retardation coefficients, reactive

transport is still affected by small-scale dispersive mixing (Janssen et al., 2006) and the

CF-/f framework needs extension to handle this situation. Reactants with different

retardation factors and rate-limited reactions would move concentrations off the mixing

line and as such, the mixing line approach for forming joint reactant distributions would

not apply. In order to form the yet to be determined multivariate distribution of reactants,
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or expand reaction terms with a Taylor series, the reactant variances and covariances

need approximation.

Assuming that macro-dispersive (co)variance production balances mechanical

dispersive (co)variance destruction affords simple mean gradient approximations for the

space-time evolution of aqueous species covariance matrixes:

0 -2 . •m~ 2 ax (1)

where m and n are indices of the aqueous species and when m = n, the main diagonal of a

species covariance matrix is the individual species variance. Using this assumption,

which will be tested under a variety of conditions in this paper, more complex reactive

transport situations might be modeled with following operator splitting approach: 1) at a

time step transport the mean concentrations with standard software; 2) calculate the

variances and covariances by scaling the mean gradients; 3) form a multivariate

distribution (yet to be determined) based on these moments; 4) calculate all possible

reactions in the multivariate distribution; 5) integrate the multivariate distribution and

update all the mean concentrations. Alternatively, for some reactions, it could be possible

to use these statistical moments in an upscaled reaction expression based on a truncated

Taylor series about the mean concentrations. These approaches would avoid incomplete

mixing error that exists in traditional approaches. Furthermore, scaling the mean

gradients and assuming a Beta distribution would provide a complete statistical

description for any species, which could aid in regulatory decisions based on maximum

contaminant levels and calibrating transport models with field data.

In this paper, we test the production-destruction balance assumption for

conservative and reactive transport from our tank experiments and from detailed
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numerical simulations. First, we investigate this assumption for conservative tracer

variance based on transport parameters fit from our tank experiments. Next, we derive a

governing equation for covariance of conservative species undergoing differential

sorption and verify that the production-destruction balance holds for this scenario with

our tank data. Then we cover some principles to show how the variance length-scale does

not change because of chemical reactions and verify this and the production-destruction

balance for the reactive flows in our tanks. Combining all these ideas, we verify the

production-destruction balance for the mixing and rate-limited reaction of oxygen and

hydrocarbon in a random conductivity field where hydrocarbon sorbs with a retardation

factor of 1.0, 1.2, 1.5 and 4.0. We then cover some ideas about multivariate distributions,

which still need further research before a full distribution approach can be applied to

more complex reactive transport scenarios. As an alternative approach, we found that a

second order Taylor series expansion of a reaction term about the mean concentrations

produces an upscaled reaction rate as a function of mean concentrations and

(co)variances. The second order approximation works well if the reaction can be

approximated as quadratic. If a quadratic approximation is poor, higher order moments

need to be included in the Taylor series. Next, we show empirical correlations between

the decisive variance length-scale to other mixing parameters and propose how to

measure it at a field site. Finally, we show that making the flow perpendicular to its

original direction increases variance destruction and reactive mixing by an order of

magnitude. This suggests that creating a transient flow field would be a practical way to

accelerate mixing limited natural attenuation and bioremediation.
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5.2. Production-Destruction Balances.

5.2.1. Conservative tracer variance.

The longitudinal velocity fluctuations of macro-dispersion create variance and

covariance, but at the same time shear fluid packets setting up transverse concentration

gradients that destroy variance and covariance. This implies that the rates of (co)variance

production and destruction are intimately coupled because they are linked to the rate that

macro-dispersive velocity fluctuations distort fluid interfaces. A common assumption in

turbulence literature is that the production and destruction balance each other (e.g.

Tennekes and Lumley, 1972; Shaw et al., 2001). Gross and Nowell (1985) found

production-destruction balances in a tidal channel; Trowbridge et. al. (1999) and Sanford

and Lien (1999) found production-destruction balances in parts of a tidal estuary and tidal

channel; and it its generally agreed that production-destruction balances exists in stable

atmospheric boundary layers (e.g. Wyngaard and Cote; 1971, Wyngaard, 1992).

This concept has only recently begun to be applied to porous media research.

Kapoor and Gelhar (1994b) and Kapoor and Kitanidis (1998) found a variance

production-destruction balance for porous media for a Gaussian pulse at large times away

from the center of mass; Kapoor and Kitandidis (1996) found this global balance to hold

in two-dimensional periodic media; and Kapoor and Anmala (1998) found this true for

rectilinear flows. Concentration variance is advected and dispersed like the concentration

mean but is also produced by macro-dispersion and destroyed by mechanical dispersion:

S v + +d - 2c'v, '.- 2d ) (2)
axt ax c8x, aOx x ' xx, x, axiI I j J /I
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By equating production (second to last term of equation 2) to destruction (last term of

equation 2) and adapting the closure approximations from Chapter 4, it is possible to

obtain a very simple approximation for concentration variance (Kapoor and Gelhar,

1994b; Kapoor and Kitanidis 1998):

-xi -axiaC ac' ac' - (C (C v 2ax, "8x,8x, yxx.,) Jx, ) ,

Pannone and Kitanidis (2004) used a mixed Lagrangian/Eularian approach to find the

variance of a conservative tracer is equal to the squared mean gradients multiplied by a

constant as it is in the above expression. It is possible to derive simple analytic solutions

for concentration variance using equation 3. The solution for mean concentration with

remote boundaries (shown in 1-D) is:

C = Ierfc X (4)
C, 2- 2 FxA (4)

This solution can be differentiated with respect to x to calculate the mean gradient, which

is then squared and multiplied by the variance length-scale and macro-dispersivity to

arrive at an approximate solution for the variance based on the production-destruction

balance:

S(l_e 1 , (,;)) ,.e 2Ae1.v
(5)2)rtv

The first term on the right hand side of the equation has been included for early time

behavior. Applying the parameters from our tank experiments, we can compare a finite
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difference solution of the full variance equation (see chapter 4) that includes all the terms

in the variance budget with the solution based on the production-destruction balance

(figure 1).

Figure 1.

During early times, even with the early time behavior of the variance length-scale

accounted for, production is greater than destruction violating the balance assumption and

variance is overestimated. Initially, production has to be greater then destruction or else

there would never be any variance because there is no variance initially in the domain.

For a hypothetical case of a larger variance length-scale (less mixing), the early time

variance can be impossibly high and it takes longer to reach the correct values. However,

the large time agreement is good and it should be kept in mind that the tanks are only

about one-dozen correlation lengths long.

A 1-D production-destruction balance in terms of perturbation derivatives and

recognizing that transverse dispersion is predominantly responsible for variance

destruction (Chapter 4), yields:

- ac' - aC
va, T) A (6)

where T is in the transverse direction and L is in the longitudinal. For illustration and

simplicity, we will assume that all the perturbation derivatives are equal, such that there

would be a saw tooth transverse concentration profile along a transverse slice of a

macro-dispersion front. Taking the square root of both sides of equation 6 shows that
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when the production-destruction balance holds, the absolute value of the transverse

derivatives are proportional to the absolute value of the mean gradient:

(7)
c9T aa

It is also easy to show that when the production-destruction balance holds, that the ratio

of the macro-dispersive flux to the average transverse flux is proportional to the square

root of the ratio of macro- to transverse mechanical-dispersivity. The dependence of the

mean transverse gradient on the longitudinal mean gradient makes intuitive sense. The

velocity fluctuations of macro-dispersion will shear and move packets of fluids past each

other, which will establish transverse gradients between newly neighboring fluid packets

as long as the packets have different concentrations. Therefore, on average, the

magnitude of the transverse gradients should depend on the concentration difference

between the newly neighboring sheared packets of fluid, which depends on the mean

gradient (figure 2).

Figure 2.

This transference of mean gradients to transverse gradients shows how the

production-destruction balance can occur locally. Generally, the velocity fluctuations

control the rate of variance production and destruction, which leads to the balance.

As a conceptual example of how the production-destruction balance holds in flow

fields with different conductivity and hence concentration structures, consider two flow

fields with the same mean longitudinal concentration gradients, the same

macro-dispersivity, and the same mechanical-dispersivity. However, the fields have
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different log conductivity variance and correlation lengths even though the product of the

two is the same (figure 3).

Figure 3.

The mean concentration gradient and macro-dispersivities are the same for the two fields

so variance production is occurring at the same rate. The field with the lower correlation

length (figure 3-A) shows the solute fingers are closely spaced. As a result, it might be

thought that variance destruction would occur faster in this field compared to the field

with the solute fingers spaced further apart (figure 3-B). At large times, if variance

destruction occurs at two different rates but is produced at the same rate, then the

production-destruction balance cannot hold. However, panel C shows that the

perturbation derivatives of the two fields are basically the same meaning that variance

destruction is in fact occurring at the same rate. The difference of the two fields, is field B

has more variance, which means that it would have a larger concentration micro-scale

(recall the squared micro-scales are defined as the variance divided by the mean squared

perturbation derivatives) and hence a larger variance length-scale. The last question to

answer in this conceptual exercise, is with the same macro-dispersivity and if the

production-destruction balance holds, how is it possible for one field to have more

variance? Field B has a larger variance length scale and hence worse mixing compared to

field A. This means that while the balance holds asymptotically, field A reached the

production-destruction balance quicker then field B. As such, the early time condition of

variance production being greater then variance destruction lasted longer for field B so it
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has more variance than field A at large times. This suggests that some function of the

macro-dispersivity and the variance length-scale determines how quickly the production-

destruction balance is achieved.

5.2.2 Conservative tracer covariance and differential sorption.

For the case of two conservative tracers mixing with no difference in sorption, the

covariance can be directly calculated from a mixing line and it equals the variance but

with opposite sign (Chapter 4). This means that since the rate of variance production

balances the rate of variance destruction that the rate of covariance production has to

balance the rate of covariance destruction and the following relation is also true

o02; ;: 2l A,, a (8)
C2 cx, 8x,

This relationship can be derived by applying a mixing line to equation 3, but it is

explicitly derived for differential sorption below. Reactive transport situations with

reactants having different retardation factors, such as oxygen and a nonpolar organic

contaminant in an aquifer with a significant fraction of organic carbon, is an important

and practical scenario. Species with different retardation factors would move

concentrations off the mixing line and as such, the mixing line approach for calculating

the covariance and for forming joint distributions would not apply.

To start to address this issue, consider two solutes (C, = C1, C2) that do not react

with each other and are subject to different equilibrium linear sorption (R, = R1, R2 ),

advection, and mechanical-dispersion:

R C, _v,C ý 2Cat a +daax (9)
" 8t 8x, " 8xBxi
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Concentrations and velocities are decomposed into a mean and zero mean perturbation

and a governing perturbation equation for each solute is derived as was done in Chapter

4. Next the two perturbation equations are added together and multiplied by (cl'+ c2').

Expectation is taken, and the individual solute variance equations (identical to equation 2

but with a retardation factor) are subtracted. Then making use of a symmetric dispersion

tensor yields the governing equation for concentration covariance for two solutes

undergoing different equilibrium sorption:

(R, + R,) + -R 2 (C R (c, ')
at 

(10)av'c, ' c2 , ' ,aI aoI• a, - a , O a~i c 1 ' (2
- -c - v -c, v v + d, , 2d,, a c

ax, 'x, " 8x, 8x " 8x j x, " 8x, 8x ,

Adopting the following closure approximations:

a ca cl'2 c2' Vaa
v,'cI C2 ' ._ --v axi d2, " -2 (11)

'xa x, ax % 1,

yields the final form of the covariance equation with a new term still unclosed:

a o((. - 2a 2(. 2

(R2 + R,) a -v + vA, + d,,
(12)at a x 2 ax)axJj (12)

+2vA, ax, ) (2 ,2 + R2 (C2  + R, (c, '')t
8x, 8x , a, " at at

Concentration covariance is advected and dispersed like the concentration mean,

produced by macro-dispersion, destroyed by mechanical-dispersion, and it is unclear

exactly what the last term represents. When R1 = R2, the unclosed term disappears (after

integration by parts) and the covariance equation collapses to the variance equation of a

single solute, except with negative production term since the mean gradients of the two
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solutes will have opposite signs when one is leaving the domain and the other is entering.

With no interaction and no difference in sorption, a mixing line holds, which means

concentration variance equals negative covariance so the variance and covariance

equations should be equal with opposite sign as they are.

Velocity fluctuations distort packets of fluids containing two species and create

covariance proportional to the difference in concentrations of both species between fluid

packets, which is captured by the mean gradients of both species. If there is no average

concentration difference between distorted fluid packets of one species, i.e. the mean

gradient is zero, then one species will not vary and no covariance will be produced. At

the same rate, the velocity fluctuations distort fluid packets setting up transverse

gradients of both species that controls mixing and covariance destruction. Again, we

would expect the rate of production and destruction to balance each other because they

are both controlled by the rate that the fluid interface is distorted. The only impact of

differential sorption would appear in the mean gradients of the species. Assuming that

macro-dispersive (co)variance production balances mechanical-dispersive (co)variance

destruction in equation 12 leads to the following relation for solutes undergoing

equilibrium linear sorption:

CC, j C2
2 ax •, (13)

Note that this assumption allows us to ignore the unclosed term in 12. The solutions for

mean concentrations with remote boundaries with Cl in the domain and C2 leaving the

domain undergoing sorption are (shown in 1-D):
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C 1fc x - vt/R C 1 x - vtR (14)
- = - erfc 2 r 2

Ci,, 2 2vAxt/R ,  C2,() 22t / R2

These solutions can be differentiated to obtain the gradient of the mean concentrations,

which can then be multiplied and scaled by the variance length-scale and macro-

dispersivity to arrive at approximate solutions for the variance:

R,,(x-vt/R,J
2l e w,( ),, X;))z,R,ne  2A,Iv

0 (
.2  ( =_ (15)

C"l'n 2rtv

and covariance:

(R,+R,),t (R,+R 2 )x -4x

2 _ (1-e / R1R (R, XG XL RR 2 e 4A,

<. -,,c 70, 2rrt (16)2ztv

where the first term on the right side of the equations have been included for early time

behavior. While it was not clear a prori which retardation or average of retardation

factors to use for the variance growth scale for covariance, we found the best agreement

with our tank and numerical data was obtained with the larger of the two retardation

factors. However, we did not test this for a difference in retardation factors greater than 4.

To assess the validity of the production-destruction balance assumption for

covariance under differential sorption, we simulated the mixing of two non-interacting

tracers with different retardation factors with the tracer data from out tank experiments.

This was done by comparing images of our conservative tracer at different times. The C'

field, which was entering the domain, followed the true temporal progression of the

experiments. The C'2 field, which was initially in the domain, was calculated by applying

a mixing line to a C, field from an earlier later time such that ratio of the C, time to the
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C2 time is equal to the retardation factor. Superimposing the C1 and C2 concentration

fields allowed us to simulate three different scenarios where C1 invaded C2 and C2 had

retardation factors of R = 1.5, 2, and 3. The calculated variances of C1, C2, and

covariance of Ci and C2 over y at a given x generally showed excellent agreement with

the analytic solutions to the mean, variance, and covariance equations (14)-(16) for all

three retardation cases (shown for R = 1.5; figure 4):

Figure 4.

We again found at early times that covariance was overestimated (similar to figure 1) but

the large-time agreement was found to be excellent, and we were able to model the

covariance of two non-interacting solutes that sorbed differently without accounting for

the unclosed term. This demonstrates how the production-destruction balance holds under

differential sorbing conditions and how various unclosed terms that arrive from a

perturbation analysis can be neglected when applying the production-destruction balance

assumption.

5.2.3 Instantaneous reactions.

There are three main issues to address for the production-destruction balance for

reacting species: 1) How does the chemical reaction impact the expected value of the

perturbation derivatives? 2) How does the chemical reaction affect the variance of

reacting species as numerous new unclosed terms arrive from a perturbation analysis

when reaction is included? 3) Does the chemical reaction affect the mean gradient in such
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a way that the velocity fluctuations produce variance at the same rate that they control the

transverse gradients such that the production-balance still holds?

The fundamental issue of the first two questions is can the same concentration

micro-scales, and hence variance-length scale, apply to both conservative and reactive

transport? The only way that this is possible is if the chemical reaction changes the mean

squared perturbation derivatives by the same amount it changes the variance. This would

mean the ratio of the two would stay constant and the same length-scale would apply to

variance destruction for both conservative and reactive concentrations. This is in fact

what we find in both a simple theoretical exercise and with our tank data.

We first investigated a theoretical transverse concentration profile of total reactant

A along a slice in a macro-dispersive front which was represented by a simple cosine

function (figure 5).

Figure 5.

Next we calculated the corresponding profile of total reactant BT by applying a mixing

line. Then a reaction of A+B ---P was calculated where the amount of product P is equal

to the limiting reactant and the amount of reactant A remaining is just what was there

initially minus what was transformed into product. The squared concentration micro-

scale is defined as a ratio of the variance to the mean squared perturbation derivatives:

A(:)2 = T2 (17)
(ac'/8T)2

We see that the reaction increases the mean squared perturbation derivatives by the same

amount as it increases the variances by essentially stretching the amplitude of the cosine
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function but not affecting the period. From equation 12 in the Chapter 4 the micro-scale

has no relation to the amplitude. This shows that a chemical reaction can scale the

amplitude of a periodic function and not change the micro-scale and hence the variance

length-scale. 'To change the micro-scale, the reaction would have to change the

wavelength which is unlikely as the average distance between similar concentrations is

determined solely by the flow structure. This suggests that the micro-scales will not

significantly change as a result of chemical reaction.

We tested this concept with out tank data. We calculated the longitudinal and

transverse concentration micro-scales of the A and P fields for the A+B-+P reaction with

the approach described in Chapter 4. These results show that variance (figure 6-A) and

the transverse perturbation derivatives (figure 6-B) are significantly affected by the

chemical reaction. However, the ratio of the two, i.e. the transverse concentration micro-

scale, remains almost constant before and after the reaction and across the dispersion

front (figure 6-C).

Figure 6.

Overall, the mean micro-scales of A, P, and the conservative tracer behaved similarly

(figure 7).

Figure 7.
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The mean longitudinal micro-scale of A was slightly less than that for the conservative

tracer and P but the transverse micro-scales, which is the micro-scale that controls

mixing, are remarkably similar. This demonstrates that chemical reactions change the

variance and the mean squared perturbation derivatives by roughly the same amount such

that their ratio stays constant. This justifies using the same average micro-scale and hence

variance length-scale for both conservative and reactive flows. Variance and covariance

are controlled by the flow structure because the flow structure controls the average

distance between solute fingers, which is characterized by the micro-scale. This can be

observed in figure 9 from Chapter 4, where both conservative and reactive plumes have

similar spatial patterns with tongues of solute separated by the same conductivity

correlation scales.

The last requirement for the production-destruction balance to hold for reactive

flows, is velocity fluctuations must produce variance at the same rate they control

transverse gradients. To test this, we modeled the variance of reactant A and product P of

the A+B--P reaction according to equation 1, which scales the respective squared mean

gradients by the variance length-scale and macro-dispersivity that were obtained from the

conservative tracer. The mean gradients were calculated using the CF-/f model. The

production-destruction-balance-predicted variance generally agreed well with the

observed variance (figure 8).

Figure 8.
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This implies that the production destruction balance holds for reactive flows when the

concentration gradient is monotonic. However, the production-destruction balance

approximation is poor in the center of the product plume P where the mean gradient is

zero. Zero and almost zero concentration variance at points of zero-mean gradients have

been observed and predicted (e.g. Vomvoris and Gelhar, 1997; Zang and Neuman, 1996;

Kapoor and Anmala, 1998), but several studies have shown for pulse plumes, substantial

variance can exist at points of zero-mean gradients (e.g. Graham and McLaughlin, 1989;

Li and McLaughlin, 1991; Kapoor and Gelhar, 1994b; Kapoor and Kitanidis, 1998;

Pannone and Kitanidis, 1999). This means the production-destruction balance has not

been reached in the center where the mean gradient is zero and macro-dispersion is

producing and/or transporting variance faster than local dispersion is destroying it.

Fortunately, for pulse plumes, which are somewhat similar to a reaction product created

by the mixing of two reactants, Kapoor and Gelhar (1994b) and Kapoor and Kitandis

(1998) present a solution for variance of a conservative tracer. This solution has the basic

production-destruction balance but also has a term that accounts for variance even when

the mean gradient is zero (shown in 1-D)

C Z)X+ (18)ofa2AXL + 1( 2 ex vt

The second term in equation 18 decays with the inverse of mean distance traveled relative

to the variance length scale squared. We propose that it represents how long it takes for

the production-destruction balance to be established at the center of the plume because it

asymptotically approaches zero, which means the variance will eventually be solely

determined by the production-destruction balance. Including this other term and applying
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it to our reaction product plume P (figure 9-A) and the Tiron/molybdate product (figure

9-B) the prediction is excellent.

Figure 9

We have shown that the production-destruction balance holds for the covariance of two

solutes that sorb differently but do not react and for the variance of reactant plumes. The

logical extension of these results is that the production-destruction balance holds for the

variance and covariance of reactants that sorb differently but we could not test this with

our tank data..

5.2.4 Rate-limited reactions and differential sorption.

Important reactive transport scenarios such as the rate-limited reactions between

electrons acceptors (e.g. oxygen) and donors (e.g. hydrocarbons), where the electron

donors sorb and the acceptors do not, needs to be addressed (e.g. Borden and Bedient,

1986; Borden et al., 1986; Janssen et al., 2006). In order to form the yet to be determined

multivariate distribution of reactants or make Taylor series approximations, the reactant

variances andL covariances need approximation.

I)etailed numerical simulations were used to test the hypothesis that

production-destruction balances can approximate aqueous reactant variances and

covariances under rate-limited reaction and differential sorption conditions. If the rate of

macro-dispersive (co)variance production and mechanical (co)variance destruction

balance one-another in the reactant species variance and covariance equations, then a
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species covariance matrix can be approximated as a function of the variance length-scale,

macro-dispersivity, and mean gradients:

mC ; 2LA C ,x), x ac
(,, 

2
x A1 1  R a x," (19)

where mn and n are indices of the aqueous species and when m = n, the main diagonal of a

species covariance matrix is the individual species variance. This assumption allows

numerous unclosed terms to be neglected that arise from perturbation analysis in species

variance and covariance equations.

MODFLOW was used to calculate a 2-D steady-state velocity field in a

statistically-stationary, isotropic, lognormally-distributed, conductivity field with a

Gaussian covariance structure created with GSLIB (table 1). Solute transport was run

with MT3D and RT3D using the method of characteristics solution, which minimizes

numerical dispersion and allows for small values of mechanical-dispersivity (Mehl and

Hill, 2001). A conservative tracer was run through the domain and the mean velocity,

macro-dispersivity, and the variance length-scales were fit to the observed conservative

tracer mean and variance (figure 10).

Figure 10.

The fits are excellent and production almost balances destruction at early times for this

case of large domain compared to correlation length (compare blue lines of finite

difference solution which includes all the terms of the variance budget equation to the

green lines based solely on the production-destruction balance). This field has a relatively

low variance due to the small correlation length, which helps production balance
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destruction at early times. This was done to ensure that oxygen and hydrocarbon had a

smooth mean gradient because the observed mean gradients will be used to test the

production-destruction balance. In the section on Taylor series to follow, the

production-destruction balance will be investigated for a higher variance situation.

Reactive transport was run with the hydrocarbon in the domain and oxygen

entering (figure 11)

Figure 11.

where hydrocarbons undergoes equilibrium sorption and hydrocarbon and oxygen

undergo a rate-limited double-Monod reaction governed by:

a- = -a + - v,d, - PYA (M) (20)
at dxi, ax, ( kx+ k, + k, + H

aH aviH + a H O H(2
RH - = - + vd (M) (21)St x- x ax, i  (M) ko, + O k , + H

where O is the concentration of oxygen [mg/1]; H is the concentration of hydrocarbon

[mg/1]; ~u is the contaminant utilization rate [s-']; YA/D is the stochiometric yield

coefficient [-]; M is the concentration of microorganisms, which are assumed immobile

and non-prolific; ko and kH are the respective half saturation coefficients for oxygen and

hydrocarbon; and RH is the hydrocarbon retardation coefficient. The combination of

reaction parameters was chosen such that the leading part of the oxygen front was fully

consumed by the time it reached the end of the domain (table 1). It should be pointed out

that applying a perturbation analysis to equations 20 and 21 to derive governing variance
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and covariance equations for oxygen and hydrocarbon would be extremely complex and

contain numerous non-linear unclosed terms.

The oxygen and hydrocarbon means, variances, and covariances were calculated

from the detailed 2-D concentration field after importing the results into Matlab. Then

using the variance length-scale and macro-dispersivity fit to the conservative tracer, the

observed mean gradients of oxygen and hydrocarbon were scaled according to equation 1

to predict the oxygen and hydrocarbon variances and covariance. The agreement between

observed and predicted variances and covariances is excellent for the rate-limited

reaction with no difference in sorption (figure 12),

Figure 12.

when hydrocarbon sorbs with RH = 1.5 (figure 13),

Figure 13.

and when hydrocarbon sorbs with RH = 4.0 (figure 14).

Figure 14.

This demonstrates that 1) macro-dispersive (co)variance production balances

mechanical-dispersive (co)variance destruction under rate-limited and differentially

sorbing conditions and 2) neither sorption or rate-limited reactions alter the variance
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length-scale 1for the parameters studied. The production-destruction balance assumption

can provide the necessary statistical moments to construction multivariate distributions or

Taylor series approximations.

5.3. Multivariate Distributions.

Multivariate Beta-distributions have been investigated and are still an active area

of research (e.g. Mosimann. 1962; Michael and Schucany, 2002; Srivastava, 2003;

Nadarajah, 2004). Girimaji (1991) developed a multivariate Beta distribution for mixing

in turbulent flows which only requires transport equations for the concentration means

and one additional transport equation for the sum of the species variance. This

distribution has been used to investigate multiscalar mixing in turbulent flows (Girimaji,

1993), supersonic combustion (Baurle et al., 1994), and this distribution has been shown

to accurately model parts of the flow regime but poorly model other parts of the flow

regime (Baurle et al.,1994). However, by using this assumed pdf, the species variances

and covariances are no longer independent. This runs the danger of not forming the

correct shape because the variances and covariances are incorrect (Gerlinger, 2003). We

were unable to reproduce the mixing line case using any of the above referenced

approaches.

As an alternative approach, it might be possible to numerically calculate the joint

density without assuming a functional form but ensuring the following requirements are

met: 1) the joint density integrates to 1; 2) the input means, variances, and covariances

are honored; :3) concentrations are bounded between zero and the maximum; 4) the
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distribution is smooth. Consider a discrete joint density function Pi of Ci and Cj. The

moments are calculated:

1-U = (22)
j

C' = jC, (23)

C- = C, PJ (24)

2 " C c C P (26)

S= C Cj - C, CP, (ZcZP (27)

Calling the sum of the left of equations (22)-(27)f and the sum of the right g

f = g (28)

The energy E of the distribution can be defined:

E = (f -g) 2  (29)

At the solution, the energy is minimal or:

OE = 0 (30)
BP

This constraint should yield i timesj equations to be solved simultaneously for all values

of Pij. Further', this produces values that honor the means, variances, and covariances, and

by the very nature of the possible concentrations, the distribution is bounded. If this

approach is computationally efficient, then n-dimensional multivariate distributions could
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be formed, all possible non-linear reactions could be calculated and weighted by their

joint density, and the new product and reactant distributions could be integrated to update

the new concentrations means. A computationally efficient way to calculate bounded

multivariate distributions that honors the first two central moments is needed to extend

the CF-/P full distribution approach to more complicated reactive transport scenarios.

Alternatively, it may be possible to use a Taylor series to upscale reactive transport.

5.4. Taylor Series Expansion for Mean Reactions.

5.4.1. Taylor series.

A general form of the upscaled reactive transport equation is:

ac. =-vC +(vA,) 2  r(C,) (31)
at 8x, x~xx,

where C,, = C71, C2 for the mixing and reaction of two chemical reactants, and r(C,,) is

the expected value of a reaction term. The upscaling approach discussed so far accounts

for the expected value of the reaction term by: 1) approximating joint distributions of

chemical reactants, 2) calculating all possible chemical reactions, and 3) integrating over

the new distributions to obtain new concentration means and higher order moments.

An alternative approach to account for the expected value of the reaction term is

to expand an arbitrary reaction term about the mean concentrations with a Taylor series

and use the second order moments from the production-destruction balance.

Concentrations are decomposed into a mean and zero mean perturbation:

C=C+c' (32)
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and this relationship is used in a Taylor series expansion of a reaction that can be a

function of one concentration:

ar 1 + a r 1 narn
r(C)= r(C)+ c' +-(c') - ) (33)cl- 2 ac, n! c(

or multiple concentrations:

c" 00 a ndC"' -... "n (c ) ... (c ) (34)

n,=O nd= d Vn, . d

Taking expectation of the Taylor series yields the expected value of the reaction in terms

of mean concentrations and higher order moments.

5.4.2 First order second moment expansion for double-Monod kinetics.

Consider the rate-limited double Monod reaction for oxygen in equation 20:

r= YAID ((M)M)0O)( H (35)

This reaction has the following Taylor series expansion about the mean concentrations

truncated at second order terms:

ar ar 1 (,2 a r 1 2 12rr(O, H) r(O,zr )+' - -+H'- +- (') + (H')
a02 d 8H cf 2 a02 2 aH2 j(

(36)

+(O'H') ...

All first order derivatives will by multiplied by zero after taking expectation. The second

order derivatives taken at the mean concentrations are:

a2 r = -2YzYAIDa02d.fl L (k HH)(37)kH + H)
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ar = - YA/

,H 0,

a2O0 = P Y,,,, (M

Expectation of this Taylor series yields the mean reaction rate in terms of mean

concentrations, variances, and covariance:

r(O,H) (Y, (k )• (M) k,0  i - pYA (M
(ko + 0) (kH + H AD(

U2

S0)IL

"2-Pr, (M)( (ko+ (kH ])a + )YA,,
ko H) kH +H

The mean reaction rate r(O,H) only equals the conventional reaction rate of the mean

concentrations r(O,H) when there is no variance, i.e. in a beaker. Since the species

variance is always positive and the covariance is always negative when one fluid

displaces another, these terms that arise from incomplete mixing will always reduce the

reaction rate based on the mean concentrations.

Combing this upscaled reaction rate with the macro-dispersive transport

equations, the governing equations for mean oxygen and hydrocarbon undergoing rate-

conventional limited reactions and differential sorption are:

80 -0 - 820
= -v--vA r(O,H) (41)

at x "V XX
2

-H -al - a H(
R, =-v-----vA -r(O,H)/YA, (42)St ax 8x2a
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The variances and covariances in the reaction term (equation 40) are provided by the

production-destruction balance:

ac 2XL, , 2A ", A - ) (43)

Furthermore, the full distribution of any species can be approximated using the modeled

mean and variance and assuming a Beta distribution.

These upscaled equations and the production-destruction balance were tested

against a second flow and transport scenario with a new set of parameters conducive to

complex mixing and reaction (table 1). Hydrocarbon is initially in the domain, oxygen is

entering, and product is calculated as a conservative tracer minus oxygen (figure 15).

Figure 15.

First, the mean velocity, macro-dispersivity, and variance length-scale and growth-scale

were fit to a conservative tracer run through the conductivity field (figure 16).

Figure 16.

The concentration mean and variance equations showed good agreement, albeit

production was greater than destruction for a significant part of the domain. Using the

parameters fit from the conservative tracer, the upscaled reactive transport equations

(40-43) did an excellent job of predicting the space-time evolution of the mean oxygen,

hydrocarbons, and product concentrations (figure 17, top row).
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Figure 17.

Intimately tied to the mean concentrations, the production-destruction balance provided a

good approximation of species variances and covariance (figure 17, middle row). The

incomplete mixing of the complex reactive fluid interface is captured by the variance and

covariance, which manifests by lowering the mean reaction rate by almost an order of

magnitude (figure 17, bottom row).

Initially in the domain, variance and covariance production is greater then

destruction and variance and covariance are over predicted. This has the effect of under

predicting the upscaled reaction rate and the mean amount of predicted reaction is less

then the observed mean reaction. However, as production starts to balance destruction,

the predicted and observed reactant concentrations agree. One potential way to overcome

this problem is to fit the variance length-scale and variance growth scale using the

production-destruction balance over the whole domain. This essentially forces the

mathematical relationship to hold and the early time imbalance is imbedded within the

variance length-scale and growth-scale. We found the fit to conservative variance with

this approach to be equally as good as applying the full variance equation with all the

terms in the variance budget. The variance length-scale remained virtually the same but

the variance growth-scale increased significantly. We found in the last Chapter that the

variance length-scale increased with travel distance because the longitudinal micro-scale

increases with travel distance as the longitudinal contribution to variance destruction

decreases. When forcing the mathematical relationship of the production-destruction
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balance to hold throughout the domain, the variance growth-scale also captures how far a

plume has to travel to for the production-destruction balance to be obtained.

5.4.3 Tiron/molybdate reaction and higher order expansion.

We applied a second order Taylor series expansion to the Tiron/molybdate

reaction analogous to equation 36. The second order derivatives were calculated at the

mean concentrations with central finite differences. The variances and covariance of total

Tiron and total molybdate were calculated by applying a mixing line to the variance of a

conservative tracer modeled with parameters from the tank experiments. The second

order approximation for the Tiron/molybdate reaction is poor when modeling the tank

behavior (figure 18).

Figure 18.

There are areas of the Tiron/molybdate reaction, notably around the peak product, that

are too non-linear to be approximated as quadratic (figure 19-A).

Figure 19.

Furthermore, the error in the quadratic approximation is amplified by the large

derivatives of how the Tiron/molybdate product changes with respect to changes in Tiron

because the molar absorbance coefficient multiplies the product concentrations by a

factor of 80. This combined effect can be observed in figure 18. At the right side of the
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product front, the approximation is respectively better where the function is better

approximated as quadratic. Where the product peaks, the function is highly non-linear

with respect to total Tiron and molybdate, and we see that this is the area where the error

is the largest. The second order approximation works well for the modeled double Monod

kinetics because the reaction can be well approximated as quadratic (figure 19-B). With

highly non-linear reactions, truncating the Taylor series at second order terms is

inadequate and higher order approximations are needed.

For non-linear chemical reactions involving one chemical species or two chemical

species that lie on a mixing line, higher order moments can be provided by assuming the

chemical species are Beta distributed. The shape parameters of the Beta distribution are a

function of the mean and variance:

C/Co - C/Co 1-C/Co)
a C= C /C 21 ; b -C/ C) (- C/C ) (44)

which can be provided from transport equations and production-destruction balances. The

third and fourth moments of the Beta distribution are:

ab
3 2(b-a)( ab lJ a+b+1 (45)

(C')3 2(b (a + b)2 (a + b + 1)) a+
Co3 =- ~J (2 + a + b)

(C')4  b2 36(a2 +a3'-4ab-2(a2 +ab)b++b)2 + b')
C 4 ab(a + b + 2)(a + b + 3)

-- (46)
Co 4  (a + b)4 (1+ a + b)2

The nth moment can be calculated from the moment generating function for the Beta

distribution given as:
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(c')" a (47)C a +bF, -n, a; a + b; (47)
co 1= a+b a )

where F' is a hypergeometric function. For bimolecular reactions that lie on a mixing line

the following relationship that was derived in Chapter 4 can be used to calculate higher

order cross moments:

c', = -c' 2  (48)

For example to calculate a sixth order cross moment:

(cI ')(C2') 5 (C1 ')( 1 )5 (C1 ,)6= - 6 (49)
C,oC2 C C 5  C, ,,6

where the sixth order moment can be obtained from the moment generating function of

the Beta distribution. However, if a mixing line does not apply, then it is not clear how to

calculate higher order cross moments. Like the multivariate distributions, they would

likely need to be calculated as a function concentration means, concentration covariance

matrixes and the under the conditions that concentrations are bounded and have a smooth

multivariate distribution. Theoretically, this principle could be used to model the

Tiron/molybdate reaction if enough higher order terms were included.

Combining a low order Taylor series expansion of a reaction term to upscaled

transport equations is an attractive approach for upscaling complex mixing and reaction

for its simplicity and computational efficiency. For some reactions, this approach coupled

to the production-destruction balance is able to model the correct space-time evolution of

the product and reactant means, variances, and assumed Beta pdfs without resolving

heterogeneity or utilizing multivariate distributions that are yet to be determined.

Furthermore, Taylor series provide a natural framework for expanding heterogeneous
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reaction parameters that could account for solid-phase chemical or microbial

heterogeneity, if practical ways to calculate the covariance of between aqueous and solid

phase concentrations are developed. However, as was demonstrated for the

Tiron/molybdate product, when the chemical reaction is highly non-linear, low order

approximations can yield poor predictions and higher order moments must be included.

This area needs further research to determine what types of reactions have well behaved

Taylor series and how to approximate higher order cross-moments. In regards to CF-fl

framework, two important issues that warrant discussion are: 1) how to obtain the

variance length-scales for a given modeling situation and, 2) casting reactive mixing as

variance destruction, is there a way to enhance favorable mixing in the subsurface?

5.5. Discussion

5.5.1. ZL, the variance length-scale.

5.5.1.1. Empirical correlations. As far as we know, a first order approximation of

the variance length-scale based on the traditional statistics of the conductivity field has

not yet been achieved. Kapoor and Gelhar (1994a) were able to relate the concentration

micro-scales to the micro-scales of the log conductivity field, which are defined as:

2

(A'nK) 2  In K (50)
(8 lnK'/lx, )2

Unfortunately, to calculate the expected value of the derivatives of the log conductivity

fluctuation field would require intensive characterization of the conductivity field

(Kapoor and Gelhar, 1994b) and is not feasible in a real field situation. Kapoor and

Kitanidas (1996) use calculus of variations to present an upper bound on the variance
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length scale; Kapoor and Anmala (1998) present three different bounds for rectilinear

flow; and Kapoor and Kitandis (1998) apply the Schwartz inequality to give a lower

bound to variance length scale as a function of the Lagrangian velocity integral timescale.

From the Lagrangian perspective of concentration variance, the statistical quantity

that controls the rate of variance destruction is the transverse Peclet number defined as

the transverse correlation length .. number divided by the transverse mechanical

dispersivity a,': Pe,. = 2/ a, (e.g. Dagan and Fiori, 1997; Fiori and Dagan, 2000;

Vanderbrought, 2001). To our knowledge, the transverse Peclet number and the variance

length-scale have not been rigorously compared, but based on the limited work done to

date, they appear highly correlated (figure 20-A).

Figure 20.

Another measure of mixing that has been applied to reactive transport is effective

dispersion (Dentz etl al., 2000; Cirpka, 2002; Jose and Cirpka, 2004; Jose et al., 2004).

Effective dispersion contains the key term r,), which is the time-scale for transverse

dispersion, and it determines how long it takes effective-dispersion to catch up to macro-

dispersion. Assuming that local dispersion depends on the mean velocity, the time scale

for transverse dispersion can be written as: r, = 272/(va, ). Multiplying both sides of the

equation by the mean velocity produces a length-scale, which can be thought of as a

distance that a plume has to travel before effective dispersion catches up to macro-

dispersion. Comparing this distance to the variance length-scale shows that these

quantities are also highly correlated (figure 20-B). Furthermore, Pannone and Kitanidis

195



(2004) found for an isotropic first type hole-Gaussian function (Vomvoris and Gelhar,

1990) that at large times and for a 1-D case, concentration variance can be written as:

( -2

r = 2 Ax  a (51)

We have observed in this work that the production-destruction balance leads to a very

similar relationship:

of= 2 Axz, 2 Ox (52)

Equating the right hand sides of equations 51 and 52, X• = A2/4a, under the conditions

that 51 is valid. This is also very similar to the distance of effective-dispersion.

Kapoor and Gelhar (1994) also state that the log conductivity microscales will

generally be proportional to the log conductivity correlation scale. For scales of evolving

heterogeneity (e.g. Dagan, 1994; Neuman, 1995; Bellin et al., 1996) the log conductivity

correlation scale increases with overall scale (e.g figure 6.5, Gelhar, 1993). Because the

variance length-scale appears related to the correlation scale, there is a good possibility

that like macro-dispersivity, the variance length-scale would exhibit scale dependency,

which is supported by the very limited data available (figure 20-C). The scale dependence

of correlation lengths could have very important implications for mixing and reaction.

Larger correlation scales of conductivity would cause solute to flow in and around larger

structures represented by larger macro-dispersion and hence a larger term of variance

production. Concurrently, the transverse mechanical-dispersion that actually creates

mixing will have larger and larger fingers to mix across and hence a slower variance

destruction term. In the case of a fractal conductivity field, the upscaling problem from
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incomplete mixing could persist over very large spatial and temporal domains. The

framework provided in this work should be suitable for handling this problem using

scale-dependent parameters.

While! an exact formulation for variance length-scale has yet to be derived as a

function of standard geostatistical parameters, which are rarely available or practical to

measure, there is always the possibility of directly measuring this parameter at a field

site. This would also allow for the simultaneous measurement of macro-dispersivity.

Tracer tests are much more practical than directly resolving the statistical parameters of

the conductivity field, especially the log conductivity micro-scales. In fact, measuring the

variance length-scale would yield information about the log conductivity micro-scales

and the small-scale separation behavior of the log conductivity covariance structure,

which would be useful for building new covariance structures for geostatistical

simulations.

5.5.1.2. Measuring XL at afield site. Measurements of variance destruction rates

are difficult because it requires resolution at small-scales. Destruction rates are measured

in turbulence in three classic ways (Stewart and Huq, 2006): 1) Resolve all spatial

gradients and use the exact definition of the expected value of the concentration

perturbation derivatives. 2) Measure or model all the other terms in the variance budget

to yield the destruction rate; this is likely difficult at a field site because it requires

measuring concentration variance which may be possible (more below). 3) Compute the

area under the destruction spectrum; this is also difficult because it requires probes with

high resolution and the spectrum often has to be extrapolated to close the integral (Zhou

and Antonia, 2000). The full conductivity spectrum at a field site, especially the high
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wave numbers, is difficult to determine (Kapoor and Kitanidas, 1998) and therefore it

would be difficult to predict the full concentration spectrum. Nash and Mourn (2002)

used a fast-conductivity/temperature micro-probe to measure oceanic salinity

microstructure and the destruction spectrum. Wain and Rehmann (2005) resolved the

temperature spectrum and hence destruction rate in bubble plume with a self-contained

autonomous microprofiler (SCAMP), which is capable of measuring small-scale

temperature fluctuations. Alford et al. (2006) were able to resolve the salinity spectrum

by using a fiber optic sensor to measure oceanic density fluctuations by refractive index

signatures.

We propose a new approach to measure the variance length-scale and

growth-scale: by measuring the breakthrough curve of a reaction product such as a rate-

limited bimolecular tracer as we did in analyzing the work of Raje and Kapoor (2000).

Our preliminary results suggest that the essential length scales, ZL and ZG, for this

reactive transport modeling framework can be determined by observing the mean product

of a bimolecular reaction downstream from their source. In fact, fitting these parameters

to reactive tracer data was so sensitive that we were able to distinguish between complete

and incomplete pore-scale mixing in the heterogeneous tank (Chapter 4). We propose that

these length-scales can be determined from the measured breakthrough curves of a

rate-limited bimolecular reaction, where the reaction rate is slow enough to prevent

reaction during sampling (i.e. negligible reaction in the well-bore or sampling lines).

Tiedeman and H'sieh (2004) showed that equal-strength forced-gradient well-to-well tests

yield longitudinal dispersivities closest to natural flow and transport conditions.

Consequently, we propose to use this type of well-to-well setup for a reactive tracer test.

198



The bimolecular reaction should have products and reactants that do not sorb, are non-

toxic at aquifer concentrations, are easily detectable after significant dilution, and have a

low molecular weight so significant concentrations can be added without creating density

effects. Additionally, it would be convenient if one of the reactants were naturally

present in the ambient groundwater and if there was little interference from other ambient

chemical species. If this situation does not exist, the two reactants could be injected in

sequence. SN2 methyl-halide reactions contain many of the desired attributes. For

example, the widely studied reaction of methyl-bromide and chloride has a half-life on

the order of days, the reactants do not significantly sorb, and bromide is a product, which

is routinely measured as a quasi-conservative tracer (Schwarzenbach et al., 2002).

As an alternative approach for determining the variance length-scale and

growth-scale, it could be possible to directly measure and then model conservative

variance. Theoretically, a "spiny well" could have dozens of fiber optic cables extend out

of the well screen and measure point locations of fluorescent tracers such as fluorescein

(Jose and Cirpka 2004; Jose et al., 2004). These point concentrations could be used to

construct a breakthrough curve of concentration variance, which could then be modeled

to fit variance length-scale and growth-scale. Furthermore, this approach might provide

the many breakthrough curves required to characterize apparent dispersion at a field site

(Jose and Cirpka, 2004; Jose et al., 2004). Every fiber optic probe could serve to sample a

stream tube and be used to calculate an experimental breakthrough curve and yield an

apparent dispersion coefficient. Then the relationship of Dentz et al. (2000) could be used

to scale the apparent dispersion coefficient along each stream tube if a reactive

breakthrough curve at different distances was required as long as the transverse
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correlation length and transverse mechanical-dispersivity is also known. The same type

of field measurement is needed to provide information for two different approaches of

reactive transport modeling.

5.5.2 A Practical Result of Variance Destruction: Transience-Enhanced Mixing.

For long thin contaminant plumes, the rate of natural attenuation and enhanced

biodegradation is controlled by transverse mixing of electron acceptors/donors and the

contaminant substrate (e.g. Cirpka et al., 1999; Grathwohl et al., 2000). Transverse

mixing is very slow, and if mixing could be enhanced, it might greatly accelerate the

rates of natural attenuation and biodegradation. One way to enhance mixing and reaction

is by creating a transient flow field (Bagtzoglou and Oates, 2006). This concept can be

verified simply by considering the variance destruction, or mixing term. If the flow field

is suddenly perpendicular to its original direction, then longitudinal dispersion will mix

over a series of steep concentration gradients characterized by the much smaller

transverse micro-scale:

V 2 va 2 vaT 2 vaT 2 vaL
Z +(A create perpendicular flow TA + (53)

Creating perpendicular flow for the concentration micro-scales and assumed mechanical

dispersivities fobr our tanks decreases X, by almost an order of magnitude and therefore

increases the rate of variance destruction and reactive mixing rate by an order of

magnitude. Of course, the transverse micro-scale is now the longitudinal micro-scale and

would be expected to grow as macro-dispersive velocity fluctuations create steep

transverse concentration gradients for transverse dispersion to act over. Then after a
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given travel distance, perhaps after a distance of the variance growth scale, the flow could

then be rotated again to create longitudinal mixing over the steeper transverse gradients,

which would greatly accelerate natural attenuation and bioremediation.

5.6. Summary and Conclusions.

Over any unresolved scale such as a field site, numerical grid block, or lab

column, the exact conductivity and/or pore structures will likely never be determined and

concentration values cannot be modeled deterministically. In this work we have shown

that the concentration distributions that result from incomplete mixing within a dispersion

front can be approximated by modeling the mean and variance and assuming that

concentrations are Beta-distributed. Concentration distributions represent the small-scale

concentrations that drive biogeochemical reactions and help address laws and regulations

set forth by maximum contaminant levels. Applying mixing lines to conservative

distributions transforms them into joint reactant distributions, which are in turn

transformed into product and reactant distributions according to the non-linear chemical

reaction. We used our experimental data to validate our reactive transport approach by

modeling the space-time evolution of the means, variances, and distributions of a

conservative tracer and three reactant species. We also demonstrated that the same CF-ft

approach is valid for homogenous porous media by correctly modeling the mean product

of different non-linear reactions for three independent data sets.

This modeling approach can be extended to more complex reactive transport

scenarios by recognizing that macro-dispersive (co)variance production balances

mechanical dispersive (co)variance destruction. This relationship leads to simple mean
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gradient approximations for the space-time evolution of aqueous covariance matrixes and

allows numerous unclosed terms to be neglected. Using production-destruction

approximations, more complex reactive transport situations might be modeled with

following operator splitting approach: 1) at a time step, transport concentration means

with standard software; 2) calculate the variances and covariances by scaling the mean

gradients; 3) form a multivariate distribution (yet to be determined) based on these

moments; 4) calculate all possible reactions in the multivariate distribution; 5) integrate

the multivariate distribution and update all the mean concentrations.

An alternative approach to account for the expected value of the reaction term is

to expand an arbitrary reaction term about the mean concentrations with a Taylor series

and use the second order moments from the production-destruction balance. Combining a

low order Taylor series expansion of a reaction term to upscaled transport equations is an

attractive approach for upscaling complex mixing and reaction for its simplicity and

computational efficiency. For some reactions, this approach coupled to the

production-destruction balance is able to model the correct space-time evolution of the

product and reactant means, variances, and assumed Beta pdfs without utilizing

multivariate distributions that are yet to be determined. However, as was demonstrated

for Tiron/molybdate product, when the chemical reaction is highly non-linear, low-order

approximations can yield poor predictions and higher-order moments must be included.

This area needs further research to determine what types of reactions have well behaved

Taylor series and how to approximate higher order cross moments.

The CF-ft full distribution and Taylor series approach avoids incomplete mixing

upscaling error that exists in traditional approaches without resolving heterogeneity.
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Furthermore, scaling the mean squared gradients and assuming a Beta distribution would

provide a complete statistical description for any species, which could aid in regulatory

decisions based on maximum contaminant levels and calibrating transport models with

field data.

The key parameter controlling dispersive mixing for the CF-/ approach is the

variance length-scale. With the limited data from the literature, we found it to correlate to

the transverse Peclet number and the time scale for transverse dispersion. It also appeared

to correlate with domain and hence correlation length. While this relationship could be

useful for first order approximation, it suggests that concentrations may never or very

slowly become completely mixed because increasing correlation scales could cause

increasing variance production and, at the same time, decreasing variance destruction.

Variance production would increase from macro-dispersion increasing with scale and

variance destruction would decrease from transverse dispersion having to mix over larger

micro-scales created by larger correlation lengths.

As the variance length-scale can be used to model reactive transport, we propose

that reactive tracers can be used to measure the variance length-scale. Specifically,

following the experimental approach of Raje and Kapoor (2000), these length-scales

could be determined from breakthrough curves of a rate-limited bimolecular reaction

with a reaction rate slow compared to measuring time. We believe that this would be a

good approach to measure these length-scales at a field site. Alternatively, it might be

possible to calculate the variance length-scale at a field site by modeling a breakthrough

curve of concentration variance measured by dozens of fiber optic probes coming out of a

well screen. Measuring the variance length-scale with either of these approaches would
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also allow for the simultaneous measurement of macro-dispersivity. Tracer tests are much

more practical than directly resolving the statistical parameters of the conductivity field.

Furthermore, the parameter values measured with the tracer test would yield information

about the conductivity field.

Viewing mixing and reaction as variance destruction and production might help

us understand how to increase favorable mixing in the subsurface. If a system of wells

suddenly switched the flow perpendicular to its original direction, the variance

destruction and reactive mixing rate would increase by almost an order of magnitude

because the larger longitudinal mechanical dispersion would then mix over very steep

concentration gradients that are the result of macro-dispersive velocity fluctuations and

small transverse dispersion. This could be a very practical way to accelerate natural

attenuation and bioremediation.

The model development, experimental validation, and discussion presented in this

work are meant to provide a foundation for distribution reactive transport modeling.

Further research is needed to address reactive transport situations involving solid-fluid

reactions, perhaps through Taylor series expansion. Li et al., (2006) studied geochemical

reaction rates relevant to CO2 sequestration and found the upscaling error for

heterogeneous reaction rates can not only differ by orders of magnitude but the reaction

rates based on a spatial average can predict the opposite reaction direction compared to

the true small-scale reaction. Finally, as pointed out by Kapoor et al. (1998), the same

upscaling problem could also apply for reactive transport in surface waters such as rivers

and estuaries and we feel the CF-f/ approach presented in these papers could be a

potential solution.
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Figure 1. Comparison of finite difference solution of all the terms in the variance budget with the analytic
solution based production-destruction balance for parameters from our tank experiments.
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Figure 2. Zoom in on part of a macro-dispersion front showing how longitudinal gradients are transferred
into proportional transverse gradients. The average of this effect on a larger scale is captured by the mean
longitudinal gradient and the mean transverse gradients and shows how the production-destruction balance
can occur locally.
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Figure 3. Production-destruction balance for two flow fields with the same mean longitudinal concentration
gradient, macro-dispersivity, and mechanical-dispersivity. However, the fields have different log conductivity
variance and correlation lengths even though the product of the two is the same. A) Flow field with higher log
conductivity variance but lower correlation length; B) Flow field with lower log conductivity variance but
higher correlation length. Variance production is the same for both fields. C) Transverse concentration
profile along a slice of the macro-dispersive front showing perturbation derivatives are roughly equal for
both fields, which means variance destruction is also occurring at the same rate. The difference between the
two fields is field B has more variance and hence a larger variance length-scale.
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Figure 4. First and second order statistical moments of two non-interacting solutes with different retardation
factors: A) Observed and modeled means. B) Observed variances, finite-difference solution to full variance
budget, and analytical solutions based on production-destruction balance. C) Observed covariance and
analytical solution based on production-destruction balance.
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Figure 5. Transverse concentration micro-scales of A before and after A+B--+P reaction of a theoretical

transverse slice of a macro-dispersion front. The reaction does not change the micro-scales because the

reaction increases the squared perturbation derivatives by the same amount as the variance: A)

Concentration profiles of total reactant AT and BT and post reaction A. B) Squared perturbation derivatives

of AT and A.

213



- Conservative
-A
-P

D

-A
-P

0 2 4 6 8 10 12 14 16 18 20 24

- Conservative
-A

E

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

x [cm]

Figure 6. Micro-scales of conservative tracer and A and P from the A+B--*P reaction. Looking over a part of
the domain where the micro-scales are defined for the A) Variance, B) Expected value of the squared
transverse perturbation derivatives, and C) transverse micro-scales.
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Figure 8. Mean and variance of A and P for the A+B-P reaction A) Observed and CF-P predicted mean A
and P. B) Observed variances, CF-fl predicted variance found from integrating across the A and P
distributions, and variance prediction based on scaling the mean gradients from the production-destruction
balance (PDB).
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Figure 10. A) Mean conservative profiles and best fit to the advection dispersion equation
and B) conservative tracer variance and modeled variance. Solid lines are the finite
difference model of the full variance budget and dashed lines are the analytic solution based
on the production-destruction balance. Times are 200, 1200, 2200, 3200, and 4200 s.
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predicted from the production-destruction balance.
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Figure 15. Simulation Scenario #2. Concentration maps of A)
hydrocarbon, B) oxygen, and C) theoretical non sorbing
product (e.g. bicarbonate; calculated as conservative tracer
minus oxygen).
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Figure 16. A) Mean conservative profiles and best fit to the advection dispersion equation and B)
conservative tracer variance and modeled variance. Solid lines are the finite difference model of the
full variance budget and dashed lines are the analytic solution based on the production destruction
balance. Times are 1250, 2500, 3750, and 5000 days.
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Figure 18. Mean concentration profile of the Tiron/molybdate reaction based on the ADE, CF-/ and
a second order Taylor series approximation.
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Table 1. Model Parameter Values.

Parameter

Grid
y
x
Ax
Ay

Flow and Transport
In K structure

on K
Correlation length
Hydraulic Gradient
Porosity

Scenario # 1
Value

3000 [cm]
2000 [cm]
2.5 [cm]
2.5 [cm]

Gaussian
1.0

15 [cm]
0.1 [-]
0.3 [-]
0.4 [cm/s]

7.7 [cm]

2.5 [cm]
0.5 [cm]
136 [cm]

966 [cm]

Scenario # 2
Value

10,000 [m]
3000 [m]
12.5 [m]
5 [m]

Gaussian
1.0

100 [m]
0.02 [-]
0.3 [-]
1.6 [m/day]
66.2 [m]

2.5 [m]

0.5 [m]

2697 [m]

2707 [m]

8 [mg/1] 8 [mg/1]
20 [mg/1] 10 [mg/1]
1.0, 1.5, 4.0 [-] 1.2 [-]
0.00125 [s-] 0.03 [day-']
3.0 [-] 1.5 [-]
1.0 [mg/1] 1.0 [mg/l1
0.8 [mg/l] 4.0 [mg/1]
2.0 [mg/1] 5.0 [mg/1]
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Chapter 6. Future Work

There are numerous avenues that need exploration in order to implement and expand the

CF-fl modeling framework developed in this thesis.

6.1 Measuring ZL at Cape Cod.

Cape Cod is an ideal site to test measuring XL in the field with the mean product

of a rate-limited bimolecular reaction or a breakthrough curve of conservative

concentration variance. First, numerical modeling needs to be conducted to ensure that

this idea is tractable. Numerical simulations need to compare values of XL determined

from forced gradient well-to-well tests to those calculated in a standard Cartesian

coordinate system to determine what is the smallest-possible well spacing needed to

obtain an accurate value of XL. To obtain sufficient statistical sampling of the

heterogeneity such that ergodicity holds for macro-dispersion theory, a plume needs to

travel about a 10 correlation lengths. I would expect this is also true for variance

destruction so the wells would have to be about 26 m apart using the longitudinal

correlation length of 2.6 m. However, both macro-dispersion and variance destruction

were observed accurate in our tanks after only 2-3 correlation lengths. This needs to be

further studied with numerical modeling.

Next, fluorescent conservative tracers (e.g., fluorescein) for use with fiber optic

spiny wells, which are wells that can provide dozens of point measurements to construct

a breakthrough curve of conservative variance, and reactive tracers (e.g., methyl bromide

and sodium chloride) need to be tested with Cape Cod sediment for compatibility. After
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determining the experimental design with the numerical model, both reactive and

conservative tests can be conducted. The values of XL found from the well-to-well tests

could be compared to the value of XL reported in Kapoor and Gelhar (1994b) determined

from hundreds of measurements at Cape Cod. This would demonstrate the validity of the

proposed approaches for measuring XL at a field site.

We also found ZL to correlate highly to the transverse correlation length squared

divided by the mechanical transverse dispersivity. It would be useful if a theoretical

relationship between ZL could be derived from stochastic theory. This way, XL could be

predicted from traditional conductivity statistics, or more practically, measuring XL would

yield information about properties of the porous media.

6.2 Time for Production to balance Destruction.

The time for production to balance destruction was assessed for Cape Cod by

comparing the production-destruction balance to the full variance budget using the

following parameters v = 0.42 [m/day], Ax = 1.0 [m], XL = 53 [m] from Kapoor and

Gelhar (1994b) and assuming that XG•; XL as it has for all other situations investigated

(figure 1).

Figure 1.

The production-destruction balance holds after traveling about 75 [m] or after about

traveling 30 correlation lengths using the longitudinal correlation length of 2.6 [m]. In

order to establish when variance production balances variance destruction, more work
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needs to be done. This can be done by defining a measure for when production balances

destruction such as when the difference between the peak variance profile from the full

variance budget is less than 5% of the variance profile from the production-destruction

balance or perhaps when the root-mean-square error between the two profiles is less then

5%. Using this measure, the time to achieve the production-destruction balance can be

generated as a 2-D contour plot as a function of XL and Ax. Generally, the time to achieve

the production-destruction balance should scale proportional to the product of XL and Ax.

It is possible that the whole issue of when production balances destruction can be

eliminated by redefining the variance-growth scale to include the early time imbalance,

as discussed in chapter 5, which needs further exploration.

6.3 Enhancing Mixing with Transient Flow.

One practical result of viewing mixing and reaction in terms of variance

production and destruction is that it gives key insight on how to increase favorable

mixing in the subsurface. Creating flow perpendicular to its original direction would have

increased the rate of variance destruction and reactive mixing by an order of magnitude in

our tank experiments. This increase in mixing results because hydraulic conductivity

variations cause velocity variations that sheer fluids and establish steep transverse

gradients. Transverse-mechanical dispersivity acts slowly on these steep gradients.

Rotating the flow field would result in the much larger longitudinal mechanical

dispersion acting with the same steep gradients to cause a much larger mixing flux.

Small temporal variations (less than a 10 degree rotation) on the flow field and the

resulting effects on macro-dispersion and reactive mixing have been discussed by Cirpka
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and Attinger (2003). However, there should be an optimum rotation angle which is likely

90 degrees and an optimum frequency between switching the flow field. These optimum

conditions are very unlikely to occur under natural conditions and should be engineered

to optimize remediation, which would save time and money.

First, the behavior of the conservative concentration micro-scales should be

studied under conditions of creating perpendicular flow to see if the transverse

micro-scale becomes the longitudinal micro-scale and vice versa when the flow is

rotated. Do these conditions hold when the porous media is anisotropic? Then, the effects

of rotating the flow field should be tested on reactive transport with detailed numerical

simulations of mixing a contaminant plume and electron acceptors/donors with transient

flow. Chromatographic mixing or the mixing between electron donors and acceptors due

to the difference in sorption only works in the longitudinal direction. This minimizes its

impact for long thin plumes and makes transverse mixing along the long edges of the

plume still very important. However, if the flow field was made perpendicular, then

chromatographic mixing would now act along the entire length of the plume which would

greatly accelerate mixing in additional to the enhanced dispersive mixing.

Important issues such as the optimal well configuration and the optimal timing

between alternating the flow field to induce the highest overall rate of reaction rate

should be addressed. Furthermore the effects of dimensionality should be addressed as

steep vertical concentration gradients are often observed in the field. Wells could be

placed below the contaminant plume to induce vertical flow to enhance mixing in 3-D.
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6.4 3-D.

In 3-D, a contaminant plume is surrounded by electron acceptors in all

dimensions and mixing and reaction would be faster than a 2-D representation because

there is a much larger surface over which for mechanical dispersion to mix. The CF-f/

equations are general and apply to 3-D settings. In 3-D, the steep vertical gradients that

are often observed in the field would be characterized by a small vertical micro-scale,

which would manifest by greatly increasing the variance-destruction term (or decreasing

the variance-length scale). 3-D conservative and reactive mixing should be studied with

detailed numerical modeling. How does XL change when the dimensionality of the

problem changes? Dimensionality also needs to be considered for measuring XL at a field

site. Does a reaction product of two reactants injected sequentially only measure mixing

in 2-D? Does a breakthrough curve of conservative variance measuing mixing in 3-D?

6.5 Evolving Correlation Scales.

For scales of evolving heterogeneity (e.g., Dagan, 1994; Neuman, 1995; Bellin et

al., 1996) the log conductivity correlation scale increases with overall scale (e.g., figure

6.5, Gelhar, 1993). Because the variance length-scale appears related to the correlation

scale, there is a good possibility that like macro-dispersivity, the variance length-scale

would exhibit scale dependency. The scale dependence of correlation lengths could have

very important implications for mixing and reaction. Larger correlation scales of

conductivity would cause solute to flow in and around larger conductivity structures

represented by larger macro-dispersion and hence a larger term of variance production.

Concurrently, the pore-scale mechanical transverse dispersion that actually creates
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mixing will have larger and larger solute fingers to mix across and hence a slower

variance destruction term. In the case of a fractal conductivity field, the upscaling

problem from incomplete mixing could persist over very large spatial and temporal

domains. Mixing and reaction in fractal conductivity fields should be studied with

detailed numerical experiments. Whether or not the CF-fl framework can model this

situation with scale-dependent parameters should be assessed.

6.6. Taylor Series.

Combining a low-order Taylor series expansion of a reaction term to upscaled

transport equations is an attractive approach for upscaling complex mixing and reaction

for its simplicity and computational efficiency. For some reactions, this approach coupled

to production-destruction balances is able to model the space-time evolution of the

product and reactant means, variances, and assumed Beta pdfs without resolving

heterogeneity or utilizing multivariate distributions. Furthermore, Taylor series provide a

natural framework for expanding heterogeneous reaction parameters that could account

for solid-phase chemical or microbial heterogeneity if practical ways to calculate the

covariance between aqueous and solid phase concentrations are developed. When

chemical reactions are highly non-linear, such as the Tiron/molybdate reaction, low-order

approximations can yield poor predictions and higher-order moments must be included.

Further research is needed to determine what types of reactions have well-behaved Taylor

series, how to calculate the covariance between aqueous and solid phase concentrations,

and how to approximate high-order cross moments.
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For example consider Arsenic sorption. Taking a Langmuir isotherm

S kC (0.1)
1 + kC

Its retardation factor is calculated by:

0 8 C 0 (1 + k,C) 2

To study the effects of incomplete mixing, concentration C is decomposed into a mean

and zero mean perturbation and the equation for retardation is expanded with a Taylor

series about the mean concentration:

f- R 1 (2 2R
R= R(C)+c'- +-(c') - +... (0.3)

aC - 2 lC2

Truncating the Taylor series after the second term and taking expectation (Note: We can

include higher order terms by using the moments from the beta distribution based on the

mean and variance):

- 1 82R
R (C)= R(C) + 2 -ýC- + ... (0.4)

2 0C2  (0.4)

calculating the second-order derivative:

2 6 k1
3k2  (0.5)

aC2  0 (1 + k,C)4

and taking expectation yields:

p ( k k2 k ph k13'k2(C) = 1 2 + 3 (0.6)
(9 1+k,C 0 (1+kC) °
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This equation shows that any spatial variability in dissolved concentrations will result in

more retardation than predicted by calculating retardation based on the mean values.

Consider the Langmuir isotherm for arsenic sorption calculated in Harvey et al (2002)

(figure 2).

Figure 2.

We see significantly more sorption when concentration variability is accounted for

(figure 3).

Figure 3.

If macro-dispersive variance production balances mechanical dispersive variance

destruction under equilibrium-non-linear-sorption conditions, which has not yet been

verified, then scaling the mean gradients could supply the concentration variance. Non-

liner sorption can have the effects of self sharpening fronts which results in steep mean

gradients meaning that high levels of variance would be sustained at the lead edge of a

plume and could result in significantly different transport behavior. More research such

as through detailed numerical simulations of sorption is needed to verify if the production

destruction balance holds for non-linear sorption and how accurate is the Taylor series

expansion needs to be assessed.
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Figure 1. Production-destruction balance at Cape-Cod
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Figure 3. Effects of incomplete mixing on Arsenic sorption in Bangladesh.
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