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fulfillment of the requirements for the Degree of Master of Science in Mechanical

Engineering

ABSTRACT

Skeletal muscle is the mammalian body's largest protein resevoir, serving the critical role of mobilizing
proteins during acute conditions, such as trauma and starvation, and chronic conditions, such as AIDS,
cancer, and muscular dystrophy. When proteins are mobilized in excess of physiological needs, muscle
wasting ensues. With advances in the treatment of the primary effects of these conditions, muscle
wasting, which formerly may have been of secondary concern, has become an impedement to full recovery
from these conditions. With recognition of the growing importance of muscle wasting to clinical
rehabilitation, the need to elucidate the mechanistic underpinnings of muscle wasting has become more
acute.

Previously, whole body and organ culture have been the choice models for investigation of protein
turnover in skeletal muscle. These models have been useful in showing that myofibrillar proteins are
under physiological regulation by hormones and cytokines. However, these models are valid for only
several hours, contain many inherent couplings and cell types, and it is difficult to separate protein
synthesis from degradation, all of which make elucidation of complex proteolytic pathways difficult. Cell
culture can be a very powerful system for investigation of cellular metabolic pathways, offering more
precise control of the cell culture micro-environment and the ability to measure synthesis and degradation
independently. However, caution must be taken to insure that the muscle specific components and
degradative pathways which are regulated in adult muscle are present in the cell culture system. This
study was undertaken to address these concerns and emphasize the need for thorough biochemical analysis
before muscle specific protein turnover may be investigated in cell culture.

The L6 cell line was used as a model cell culture system in this study. Using creatine phosphokinase
(CPK) and DNA, media conditions were optimized to produce maximal differentiation in the short-term.
Next, using CPK, tropomyosin, and ax-actinin, long-term studies were undertaken to evaluate the
suitability of the L6 cell culture system for protein turnover experiments. Finally, static mechanical
tension was applied to the cultured L6 cells as a potential method of augmenting of muscle specific
function. Long-term biochemical analysis of CPK showed that differentiated muscle cells were quasi-
stable in the optimized media for a period of 7 to 14 days depending on the stringency of the
requirements. However, immunoflourescence staining during this period revealed that muscle specific
tropomyosin degraded heterogeneously across the cultures before organizing into myofibrils. Work with
short-term passive mechanical stretch showed that CPK levels increased two-fold over controls,
suggesting that, after appropriate optimization, passive tension may be a viable method for maintaining
muscle specific function during protein turnover studies.

Thesis Supervisor: Dr. Mehmet Toner

Title: Assistant Professor of Surgery
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Skeletal muscle is the mammalian body's largest protein reservoir and serves the critical

role of mobilizing proteins in response to numerous stimuli produced during day to day nutritional

variations and situations of trauma (Cuthbertson, 1930), sepsis (Baracos et al. 1983), and muscle

wasting diseases (Goldberg et al. 1975). When protein mobilization occurs in excess of

physiological needs, muscle wasting ensues. With advances in the treatment of the primary effects

of these conditions, muscle wasting, which formerly may have been of secondary concern, has

become an impediment to full recovery from these conditions. With recognition of the growing

importance of muscle wasting to full clinical recovery, the need to elucidate the mechanistic

underpinnings of muscle wasting has become more acute.

1.1.1 Muscle Physiology

Figure 1.1 portrays the structural hierarchy of adult skeletal muscle, showing the structural

hierarchy of adult skeletal muscle. Muscle fibers are the individual muscle cells, which are

organized into microscopic fasicular bundles. The fascicles are interconnected by connective

tissue and
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organized into macroscopic muscle organs. The muscle fibers, also called myofibers, contain

numerous myofibrils. The myofibrils are long filaments composed of sarcomeres, which are the

individual contractile units of skeletal muscle. Sarcomeres contain A, I, and Z bands, each of

which is characterized by its own protein (the A band is composed of myosin, the I band

composed of actin, and the Z band a.-actinin). The protein isoforms which make up a sarcomere

are specific for muscle tissue although many isoforms of the same proteins are found in other

tissues.

The myofibril also serves as the protein store of the muscle. Its degradation is regulated

by hormones (Fulks et al. 1975; Gulve et al. 1991; Vandenburgh et al. 1991b), various cytokines

(Baracos et al. 1983; Flores et al. 1989), and mechanical stimulation. (Baracos and Goldberg,

1986). Specific myofibrillar proteolytic systems are associated with the myofibril and are

regulated by these physiological agents. There has been extensive investigation of one component

of this system, appropriately named the myofibrillar protease, which was shown to be responsive

to glucocorticoids both in vivo and in vitro (Mayer et al. 1983). This protease has not been

isolated to date and studies which use it rely on biochemical extracts from muscle. Further work

needs to be completed before this protease extract, which may be a set of proteases and/or

pathways, is fully characterized. However, it seems to be an important component of physiologic

regulation of protein turnover and is one which should be present in a model culture system.

1.1.2 Research Models



To date, three models have been used to investigate muscle wasting: 1) whole body

models, 2) organ culture, and 3) cell culture. Metabolic investigations involving whole body

models are extremely difficult because of animal variability, uncontrolled influence of other organ

systems and the inability to separate endogenous from exogenous metabolic insults. Whole body

models are generally most useful for identifying the cytokines or hormones which may be

responsible for the metabolic alterations in muscle (Flores et al. 1989), but not for elucidation of

specific molecular pathways of protein degradation. Organ culture involves the removal of

skeletal muscle from an animal and placing it in a culture chamber. This model has been used to

investigate the molecular mechanisms of muscle protein turnover. However, a major difficulty

with this model is that it is only stable for several hours (Baracos and Goldberg, 1986).

Furthermore, proteolytic pathways are activated as an artifact of isolation; therefore, experiments

with organ culture which investigate proteolysis in response to exogenous agents are difficult to

interpret. Biochemical analysis is also confounded by protein products of the many cell types

present in cultured organs. Lastly, protein synthesis and degradation are difficult to distinguish in

this model.

Cell culture systems offer many advantages over the other two models. The cell type, cell

density, media milieu, and extracellular matrix environment may be more precisely defined and

varied to produce optimal and consistent performance of the system. Independent measurement

of protein synthesis and degradation is also possible in cell culture. In addition, it is also possible

to characterize the inherent limitations of cell culture models in contrast to whole body models

and cultured muscle organs. One drawback of cell culture involves the fact that the myofibrils

which form are generally embryonic and are not contained within their physiological environment,



which may mean that they are not be regulated as adult myofibrils are. In addition, it has been

noted that muscle specific protein is almost undetectable in cell culture (Gulve et al. 1991).

However, an advantage of cell culture systems, which has come from the advances in tissue

engineering is that these limitations have been well-characterized and may be improved by

applying methods developed for other purposes, which indirectly showed that there is potential

for improving cell culture models. For example, neuromuscular researchers have found in co-

culture that nerve synapses produce transition of skeletal muscle isoforms from embryonic to

adult (Emerson and Beckner, 1975). Similarly, passive mechanical stretch was shown to augment

many muscle specific characteristics in primary cells (Vandenburgh et al. 1991 a; Kanda and

Matsuda, 1994), including the induction of muscle specific proteins. Although originally not

intended for such uses, stretch and co-culture systems may be used in order to optimize muscle

cell cultures before protein turnover experiments are begun.

1.1.3 Muscle Cell Culture

Skeletal muscle cell cultures begin with a population of spindle-shaped embryonic

myoblasts, which are the mono-nucleated, proliferative precursors of adult muscle cells. When

myoblasts reach a critical density, they cease synthesizing DNA and fuse into myotubes, which

are the multinucleated precursors of adult muscle fibers. After fusion, myotubes begin to

synthesize muscle specific proteins in preparation to form adult muscle fibers. As already

mentioned, adult muscle fibers are multinucleated and contain striated myofibrils into which the

muscle specific proteins are incorporated.



Muscle cell culture systems may be characterized morphologically three ways: 1) fusion of

myoblasts into myotubes with centrally located nuclei; 2) margination of nuclei to the peripheral

regions of the myotubes, which is accompanied by elongation of the myotubes to hundreds of

microns; 3) formation of the contractile apparatus, which is often accompanied by spontaneous

beating (Konigsberg, 1965). These morphological cues have been used by previous investigators

to characterize muscle cell culture systems. Biochemically, characterization of muscle cell

systems is three-fold as well: 1) systems involved in ATP production; 2) systems concerned with

Ca2' regulation; and 3) systems involved with the contraction process. Examples of muscle

specific proteins associated with these systems include sarcomeric myosin, ca-actin, sarcomeric

tropomyosin, and creatine phosphokinase (CPK). These proteins have been used by previous

investigators to characterize muscle cell cultures and show that the multinucleated cells which

contain morphological similarities to muscle in vivo contain physiological characteristics of adult

muscle biochemical systems (Yaffe D, 1970). These biochemical and morphological parameters

are very critical in evaluating and optimizing muscle cell culture systems because they are the

systems which are physiologically regulated during protein turnover in muscle. (Ewton et al.

1988).

Muscle cell culture can be divided into primary cultures and cell lines. Table 1.1 shows

the various muscle cell culture systems used previously. With the exception of the BC3H1 cell

line, these systems all form multinucleated myotubes, an irreversible process. The BC3H1 cell

line is unique in that it does not fuse, but differentiates biochemically, synthesizing a number of

muscle specific proteins (Schubert et al. 1974). An intriguing aspect of this biochemical

differentiation is that it is reversible. The L6 and L8 cells lines were isolated by serial passage rat



primary cultures. The L8 cell line is a clone which arose spontaneously while the L6 is the

transformed product of methylcholanthrene treatment of primary muscle cultures. The C2C12 is

a subclone of the C2 cell line, which was isolated previously from chick embryos by serial passage

(Yaffe, 1968).
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1.1.4 Prior Characterization of L6 Cells

The L6 cell line was chosen for this study because previous cloning experiments showed

that these myoblasts formed muscle colonies with 100% efficiency (Richler and Yaffe, 1970).

Original characterization in 1968 also revealed that the L6 cells stopped synthesizing DNA and

readily formed the sarcomeric bands characteristic of adult muscle (Yaffe, 1968). It is noteworthy

that this original study is the only one which documented sarcomere formation. Further

characterization (Shainberg et al. 1971) showed that, in parallel with fusion, CPK, myokinase, and

glycogen phosphorylase, all associated with the ATP system in the muscle cell, increased. In

comparison to control primary cultures, the synchrony of fusion and the increase in enzyme

activity in L6 cultures, however, took place over a prolonged period of time. Early

characterization did not correlate enzyme activity with other biochemical correlates of

differentiation, such as ca-actin or muscle specific myosin.

Nadal-Ginard (1978) was the first investigator to thoroughly characterize the L6 cell line.

He used a subclone of the L6 line, L6E9, which he chose because of its ability to differentiate

quickly. Furthermore, he showed that CPK and myosin heavy chain were coordinately

synthesized upon myoblast fusion. A technique to quantitate morphology was also used

(morphometrics), which showed that 90% of the nuclei in the cultures were in myotubes. The

initial characterization was performed towards investigation of the effects of the DNA synthesis

inhibitors, 13-D-arabinofuranosylcytosine (AraC) and 5-Fluoro-2'-Deoxyuridine (FUdR). At high



seeding densities, it was found that these inhibitors decreased the degree of fusion and increased

the observed degree of fusion to levels approaching 100%.

Further studies with L6 cells concentrated on the ability of hormones and media to

modulate differentiation. The major limitations of these studies in terms of a muscle wasting

model is that very few of the studies extended beyond 2 weeks. Most of the emphasis was on

morphology as opposed to a dynamic biochemical analysis of muscle specific proteins, which as

discussed, is the most important aspect of muscle cell culture as it pertains to protein turnover.

Mandel and Peterson (1974) were the first to report an effect of an exogenous hormone

on L6 cells, showing that insulin increased the total amount of CPK, the number of nuclei per

myotube, and the percentage myotube area per field, but also increased the rate of senescence.

The observed effects may have been caused by an increase in general cell metabolism (i.e. more

myoblast proliferation) or a specific effect on an identical number of myoblasts, causing them to

fuse more rapidly and promiscuously.

Florini and Roberts (1979) characterized a serum-free media for the growth of L6 cells.

While their characterization of myoblast growth was extensive, they did not analyze differentiation

and fusion quantitatively, but only qualitatively in their discussion, where they indicated that their

serum-free medium did not show any significance difference from controls in terms of fusion

capability. Further work by Florini and Ewton (1987) more thoroughly characterized the effects

of insulin and the samatomedins (now the IGF family) on the differentiation of myoblasts. They

separated the mitogenic and differentiation effects of these hormones, showing that insulin and the

samatomedins induce myoblast fusion which did not result from myoblast proliferation alone, but

an increase in fusion of the myoblasts already present.



1.1.5 General Characterization of Muscle Cell Culture Systems

As outlined in Table 1.1, several cell culture systems have been used previously and some

characterization was specifically directed toward extending culture life. Results with these models

provide insight into methods of further stabilizing L6 cultures and also provide insight into the

characterization which must be done with L6 cultures before they can be used to investigate

protein turnover.

Morphological characterization has shown that rat primary cultures form sarcomeric

patterns in culture, which are characteristic of the corresponding adult muscle tissue. CPK levels

were also shown to increase for 50 days in culture and muscle specific myosin increased

coordinately with CPK (Yaffe D, 1968). Morphological and biochemical characterization has also

been repeated by different groups (Coleman and Coleman, 1972).

Manipulation of the extracellular matrix has been a widely used technique to control and

stabilize different types of cell cultures, namely liver (Dunn et al. 1991) and smooth muscle cells

(Kanda and Matsuda, 1994). Similarly, extracellular matrix molecules were found to increase the

stability of skeletal muscle cell cultures. Early work from Konigsberg et. al. (1966) showed that

surfaces coated with gelatin or collagen was preferable for primary rat myoblast differentiation.

Further research by Vandenburgh et al. (1991 a) found that avian skeletal muscle cells could be

maintained for two weeks whereas control cultures deteriorated after 5 days. This report also

showed that myosin heavy chain synthesis (MHC) increased three-fold by the final day of cultures

indicating that myotube protein specifically increased but the fibroblasts did not proliferate.



Matrigel is a basement membrane preparation which has been commonly employed to

enhance cell attachment and function. Muscle fibers are surrounded in vivo by a basement

membrane and the use of Matrigel may be hypothesized to be of physiological importance. Lyles

et. al. {38} investigated the effects of Matrigel vs. type I collagen to support myotube

proliferation in the absence of growth factors in serum. They found that adsorbed collagen was

insufficient to maintain myotubes in the absence of serum but that Matrigel in serum-free media

could support and maintain myotubes for a period of three weeks.

The effect of mechanical work on skeletal muscle hypertrophy in vivo are well-known

(Goldberg et al. 1975). Vandenburgh and Kaufman (1979) found that passive mechanical stretch

of primary avian skeletal muscle cells in vitro resulted in the same types of changes seen in vivo;

that is, increased transport of amino acids, increased incorporation of amino acids into total

protein and myofibrillar protein during stretching. Thus, prior studies deemed passive stretch to

be a valid model for investigating the mechanisms of myofibril hypertrophy. Passive stretch

differs slightly from in vivo mechanical stretch in that the force is imposed on the myotube during

passive stretch while in vivo, the myotube generates force biochemically while being

simultaneously stretched passively. The mechanism of signal transduction in the passive model

has not been elucidated to date and therefore, the physiological difference between effects of in

vitro passive stress versus the combination of passive and active stress in vivo is not known.

Further work involving passive stretch of skeletal muscle cells revealed that prostaglandins

are synthesized and released into the culture media (Vandenburgh et al. 1989), and glucose

uptake and lactate efflux are increased (Hatfaludy et al. 1989) during passive stretch. Recently,

Perrone et. Al. (1995) have shown that stretching is required to observe the effects of certain



growth factors, such as IGF-1. Upregulation of receptors, increased cell metabolism, or both may

play a role in this phenomenon. From a mechanistic standpoint, this is important in that the cells

must be responsive to the stimuli under investigation. Similarly, mechanical stimulation decreased

the myotube atrophy seen in primary avian myoblasts exposed to the glucocorticoid

dexamethasone (Vandenburgh and Chromiak, 1992). These observations point out the

importance of maintaining a physiological environment when cell culture studies are undertaken.

Proteolytic pathways are another important aspect of muscle cell culture systems. The

myofibrillar protease pathway found in vivo and discussed above has been demonstrated in

primary rat myoblasts (Mayer et al. 1983) and shown to be regulated by the same agents as adult

muscle. Only one study which compared specific degradative pathways found in cultured cells to

those previously found in vivo. The conclusions from this study are critical for demonstrating the

relevance of primary cultures to the in vivo model with respect to mature proteolytic pathways

associated with sarcomere and myofibril formation.

Despite the potential advantages of muscle cell culture, very few reports have

characterized protein turnover in cell culture. Gulve and Dice (1989) showed that horse serum

(HS), insulin, and insulin-like growth factors (IGFs) increased protein synthesis and decreased

protein degradation in L8 myotubes in a dose responsive manner. A similar study with the C2 cell

line (Gulve et al. 1991) showed similar effects with HS and IGFs. The purpose of the latter study

was to show that cell culture could simulate the in vivo effects of starvation, in which myosin, a

sarcomeric protein, is the predominant protein mobilized from muscle. However, no difference

was observed when myosin degradation rates in the absence of HS were compared to controls.

One reason why no effect was observed was that the myosin assay was not sensitive enough to



observe differences. Alternatively, proteolytic pathways may have already been activated so that

HS starvation could not properly simulate starvation in vivo. Or, perhaps the embryonic cell line,

despite synthesizing the adult form of myosin, did not form sarcomere contractile apparatus and

proteolytic pathway. Had the myosin experiments worked as planned, the C2 cell culture system

could have been a powerful model to elucidate detailed mechanistic information regarding muscle

wasting during starvation. This study with the C2 cell line underscores the need for thorough

biochemical analysis and optimization of cell culture systems, but also emphasizes the potential

these systems have as far as a model to elucidate biochemical mechanisms.

1.2 Scope of This Study

This study was undertaken in recognition that characterization of the differentiated

phenotype, both morphological and biochemical, of skeletal muscle cells in culture is a

prerequisite for the elucidation of the mechanisms behind muscle wasting. The L6 cell line was

characterized as a model for this type of characterization as well as a potential model cell culture

system in and of itself. Using CPK and DNA as parameters, short-term experiments were first

undertaken to optimize the media for maximum, stable differentiation. Long-term experiments

using sarcomeric tropomyosin, c-actinin, DNA, CPK, and total protein as biochemical markers

were also undertaken. Finally, using CPK and DNA only, preliminary experiments involving the

application of mechanical strain to L6 cell cultures were performed to investigate the potential of

mechanical strain to stabilize L6 cell cultures.



CHAPTER 2

MATERIALS AND METHODS

2.1 Cell Culture

The L6 cell line was established by serial passage of myoblasts from rat primary skeletal

muscle cells (Yaffe, 1968). L6 cells were obtained from American Tissue Culture Collection

(June, 1994 passage; Rockville, Ma.). Unless otherwise noted, cells (approximately 2x10 6/vial)

were thawed immediately after purchase and divided among five Coming 75cm 2 flasks. These

cells were cultured using high glucose Dulbecco's modified Eagle's medium (DMEM; Sigma, St.

Louis, MI) plus 10% (v/v) fetal bovine serum (FBS; Lot #3J2173, Sigma), 100 gig/ml

streptomycin, and 100 jig/ml penicillin (JRH Biosciences, Lenexa, KA) in a humidified

atmosphere with 10%CO2/90% air and NaHCO3 added to 44 mM. At approximately 80%

confluence, the cells were removed with 0.125% trypsin/lmM EDTA in Ca2+- and Mg2+- free

PBS. All experiments were performed with the cells from first passage and plated at 1000

cells/cm 2 in 10% FBS in six-well Corning dishes. The L6 myoblasts reached confluence by day

five and after washing three times with PBS, were exposed to horse serum (HS; Lot.# 54H4656,

Sigma) in accordance with the specifics of each experiment.



Primary Human Cells (lot # 2859; Clonetics Corp., San Diego, California) were thawed

upon arrival and plated at 3500 cells/cm2 in Coming flasks in Skeletal Muscle Basal Media

(SkGM; Clonetics) in a humidified atmosphere with 5% CO 2/95% air. At approximately 80%

confluence, cells were trypsinized with 0.125% trypsin/lmM EDTA in Ca2+- and Mg2+- free PBS.

These cells (approximately 20x106 at 80% confluence) were frozen in liquid nitrogen in SkGM +

20% FBS + 10% DMSO until use. For experiments, cells were thawed at 370C and quickly

plated at 3500 cells/cm 2 in SkGM in a humidified atmosphere with 5% CO2/95% air. Confluency

was reached approximately 5 days later and cultures were then switched to DMEM + 2% HS and

placed in a humidified atmosphere with 10% C0 2/90% air. All other protocols with Clonetics

cells were identical to those use for L6 cells.

2.2 Preparation of Aliquots for Biochemical Assays

Aliquots for biochemical assays were obtained by washing cell layers three times with 1 ml

PBS chilled to 40C and scraping the cell layer into 250 ptl PBS with a rubber policeman. The cell

suspension was quickly frozen at -800 C until analysis. For assay preparation, the cell suspension

was thawed for five minutes at 370C and homogenized by sonicating for 5-10 seconds (Branson

Sonicator Model 450, power level 1; Branson Corp., Danbury, CT ). For each experimental time

point, aliquots for all three assays were taken from the same homogenate and each biochemical

assay run in triplicate, with the average value used for comparison to respective standard curves.

The amount contained in a given aliquot volume was scaled by the appropriate factor to obtain



the amount in the 250 pl of cell homogenate, or the amount per well, which is the value presented

in the results.

2.3 DNA Assay

DNA was assayed flourimetrically using a method originally developed by MacDonald et.

al. (1991) and modified for use with the L6 cell culture system and creatine phosphokinase (CPK)

assays. Hoechst 33258 dye (Molecular Probes, Eugene, OR) was diluted to a 1.6 gLM

concentration in DNA buffer (TNE; 10mM Tris-HCL, 2M NaCI, pH 7.4, 1 mM EDTA). Twenty

gl aliquots from the cell homogenate were mixed with 200 9ll of Hoechst-TNE buffer and placed

in 96 well plates. Plates were covered with aluminum foil and incubated for 30 minutes at

ambient temperature on a plate shaker. Flourescence intensity was measured with a Cytofluor

2350 Flourimeter (Millipore Corp., Marlborough, MA), using an excitation filter 360 nm, an

emission filter of 460nm, and a sensitivity level set to 5. The DNA content of each sample was

determined using purified calf thymus DNA (Sigma) as a standard. Standards (6-150 gig) were

prepared in PBS and one stock used for all experiments, which was stored in PBS at 40 C.

2.4 CPK Assay

CPK catalyzes the formation of creatine from creatine phosphate. The phosphate is

transferred to ADP to form ATP and then the formation of ATP which can be monitored by

linking the ATP formation to the reduction of Nicotinimide Adenine Dinucleotide (NAD). The



reduction of NAD is then measured by the rate of absorbance increase at 340 nm (Oliver, 1955).

Clinical diagnostic kits, rabbit CPK standards, and controls for the kit were purchased from Sigma

and adapted for the L6 cell culture system. Fifty gl of cell homogenate was spun down for 2

minutes in an eppendorf centrifuge at 14,000 rpm and 4*C. In a cold room, 10 gl of the

supernatant was mixed with 200 p.1 of Sigma substrate in a 96 well plate. After 5 minutes,

samples and standards were transferred to a plate reader (Molecular Devices, Millipore) and the

rate of NAD conversion monitored at 340 nm and ambient temperature. The assay was

performed in triplicate for each sample and the average compared to a rabbit CPK standard curve.

The standard was prepared by mixing 1000 units of rabbit CPK with 1 L of 10 mM glycine buffer

with 5 mg/ml BSA at pH 8.0 and freezing 1 ml aliquots at -800 C. One batch of aliquots was used

for all experiments. Aliquots were thawed at 370C for 5 minutes and then diluted with PBS to

yield a standard curve ranging from 0.3 mU to 10 mU. The storage buffer did not affect the

linearity of the assay. After thawing, standards and samples were kept on ice. To maintain

consistency, standard and samples were thawed in parallel.

2.5 Total Protein Assay

A protein assay kit based on the Bradford (Bradford, 1976) method was purchased from

Biorad (Thousand Oaks, CA). Aliquots of cell homogenate were solubilized by diluting 1:1 with

1 M NaOH and incubating for 30 minutes at 370 C. Samples were then maintained at 40C for the

duration of the assay, typically not more than 3 hours. Depending on the cell culture density,

some samples had to be further diluted with 0.5 M NaOH/0.5X PBS solution in order to fall



within the linear range of the assay. Five glI samples were then mixed with 200 il of Biorad

reagent in a 96 well plate, incubated at ambient temperature for 15 minutes, and the absorbance at

570nm read on a plate reader (Molecular Devices). The amount of protein in samples was

determined using Bovine Serum Albumin (BSA; Sigma) as a standard. Standards (50 - 300

gg/ml), were prepared by dissolving BSA in PBS. Standards were prepared once for all

experiments and stored at 40C.

2.6 Immunoflourescence

A protocol was developed to triple stain cell cultures in order to localize nuclei, F-actin

and either sarcomeric tropomyosin or a-actinin in the same petri dish. All procedures were done

at ambient temperature unless otherwise indicated. Cells growing on polystyrene were washed

three times with PBS and fixed for 20 minutes with 4% paraformaldehyde in PBS (pH 7.4)

solution. After washing with PBS for 10 min, cells were permeabilized for 5 min in 0.1% Triton

X-100 and held in PBS until staining.

For immunolocalization of F-actin, cells were incubated for 60 minutes with rhodamine

conjugated phalloidin (Molecular Probes) and diluted 1:100 (to 3.3tM) in PBS. Phalloidin is a

fungal protein which binds to all polymerized forms of actin (F-actin). After incubation, cells

were washed in PBS for 15 min. Following F-actin staining, nuclei were localized by staining

DNA. Cells were incubated for 20 min with 1.6pM Hoechst dye in PBS. After washing in PBS

for 10 min, immunolocalization of a-actinin and sarcomeric tropomyosin was begun by incubating

cells for 1 h in blocking solution (3% BSA in PBS, pH 7.4). Cells were then stained for 1 h at



370 C with a mouse monoclonal antibody to rabbit skeletal muscle a-actinin (diluted 1:200 in PBS

and spun down for 2 min @ 14,000 RPM in an Eppendorf Centrifuge; Sigma) or a mouse

monoclonal antibody to chicken skeletal muscle tropomyosin (diluted 1:50 in PBS and spun

down; Sigma). Following four washes in PBS (15 min each), cells were incubated at 370 C for 1 h

with flourescein-conjugated anti-mouse IgG (Sigma; diluted 1:100 in PBS). Finally, dishes were

covered and incubated overnight on a shaker.

For objective lenses smaller than 20X, flourescent micrographs were taken through the

bottom of the polystyrene dishes. Objective lenses greater than 20X, however, required an

additional protocol to visualize cells. PBS was aspirated from dishes and a drop of n-propyl-

gallate (preparation described below; Sigma) placed in the center. A glass cover slip was then

placed over the n-propyl-galete and fixed to the polystyrene dish with nail polish. The walls of the

dish were then trimmed off with pliers with care taken not to crack the dish. Images were

obtained by placing the dish on the microscope stage with the plastic side up and the cover slip

down. With this technique, flourescence could be visualized with objectives up to 100X

magnification.

n-Propyl Gallate solution preserves flourescence by scavenging oxygen free radicals in

solution. It was prepared by mixing 4.5 ml H20, 5 mis Tris, 0.5 ml NaCI, 35 ml glycerol, and .5 g

n-Propyl Gallate in a beaker while stirring. After the solution was thoroughly mixed, glycerol was

added to obtain a final volume of 50 ml. Stocks were stored at 4VC.

2.7 Morphometry



Morphometry was used to obtain a numerical average for number of myotube nuclei per

field, percentage of each field covered by myotubes, and percentage of nuclei contained within

myotubes per field. This method was only feasible with the 1% HS cultures because the 10% HS

cultures were too dense to reliably distinguish myotube nuclei from myoblast nuclei. After the

triple staining procedure described above, random digital pictures of 11 fields were taken with a

20X objective lens and analyzed using metamorph software (Universal Imaging, Westchester,

PA). At this magnification, a field of view represented 1/3500 of a 9.6 cm2 petri dish. Total

nuclei per field was obtained from Hoechst staining. Myotube area was obtained by outlining

myotubes stained with tropomyosin and calculating the percentage area contained within these

outlines. During the initial stages of myotube formation, all myotubes stained with tropomyosin;

however, as the cultures deteriorated and myotubes degraded, bright field images had to be used

to outline myotubes. The percentage of nuclei within myotubes was determined by transferring

the myotube outline to the accompanying Hoechst image and counting the number of nuclei

within the outlines. The nuclei were considered myotube nuclei only when there were three or

more present within an outlined area.

2.8 CPK Control Experiments

A large number of control experiments were performed in order to substantiate the

biochemical assays. The majority of controls, however, focused on the CPK, because its stability,

both in the cell homogenate and when frozen, is of major importance in evaluating cell culture

experiments. A batch of cell homogenate was aliquoted, frozen, and assayed on successive days



for enzyme activity to test the stability at -800 C. Storage of CPK standards was similarly tested

this way. Enzyme levels were also measured on successive freeze-thaws and before and after

sonication to check stability during these processing steps. Sample stability was also evaluated

while the sample was maintained on ice. In addition, because the proportion of myotubes and

myoblasts changes throughout an experiment, a number of controls were performed to insure that

the heterogeneous population of cells did not affect enzymatic determination. Enzyme standard

was spiked into PBS, which was then used to homogenize cell cultures. This procedure was

repeated a number of times throughout the time course of the experiments to insure that the

proteolysis seen during the deterioration of the cell cultures did not taint data. Homogenate from

myoblast cultures was also mixed with homogenate from myotube cultures to insure that

myoblasts did not contain an inhibitor of CPK which could affect observed enzyme levels during

the experiments.

2.9 Passive Stretch

The Flexercell Strain Unit (rented from Flexcell International Corporation, McKeesport,

Pa.) is a device to apply mechanical strain to cells on petri dishes with flexible silicon bottoms.

Petri dishes with laminin coated, flexible silicon membrane bottoms (Flex I) were also purchased

from Flexcell. The laminin coated membranes were used because they induced the greatest

amount of myotube formation, as observed visually during initial testing. The Flexercell Unit was

connected to the in-house vacuum system through output ports in the incubators.



Several minor changes were made to the above protocols to account for slower growth

rates and smaller well sizes (now 4.9 cm2 instead of 9.8 cm2). Cells were plated at a seeding

density of 30,000/cm 2 so that confluence was attained in four days. The media in the plates was

gently swirled every five minutes to prevent cell pooling in the center of the wells. Biochemical

aliquots were obtained by scraping cells into 100 pl rather than 250 pl. All other procedures were

identical.

Experiments in this study investigated passive stretch only. That is, the membrane was

stretched once and remained stretched throughout the experiments except when media was

changed and biochemical aliquots were prepared. The strain level of the unit was set by adjusting

pressure control valves on the computer which accompanied the unit. The maximum strain used

was 25% + 3% for all experiments. This parameter is the unit's variable parameter and represents

the maximum surface strain on the membrane. The strain profile across the membrane for this

maximum strain and a discrete set of other maximum strains were characterized previously

(Gilbert et al. 1989).

2.10 Data Analysis and Statistics

With the exception of the passive stretching experiment, each experiment was repeated at

least twice with different batches of reagents and cell stocks. Each experimental time point is the

average of three identically treated wells, and all biochemical assays were performed in triplicate.

The error bars in all figures with the exception of the morphometric figures represent the standard

deviation from the three wells. The error bars in the morphometric figure and represent the



standard error of the mean. A one-sided Student's t-test with p values smaller than 0.05 was used

to assess statistical significance where indicated. In the morphometric curves, all points were

compared to the maximum point in the graphs.



CHAPTER 3

RESULTS

3.1 Short-Term Effects Of Horse Serum On L6 Cell Cultures

L6 cells were grown in DMEM + 10% FBS until confluence (5 days), at which time the

media was switched to DMEM with different concentrations of HS. After 6 days in the HS media

(11 days total), cultures in 10% HS contained distinctly fewer myotubes and dense regions of

myoblasts whereas 1% HS cultures contained fewer myoblasts and what appeared to be a greater

density of myotubes. Fig. 1 shows representative fields from L6 cell cultures on day 6 after media

switch. These cultures contained three distinct morphological characteristics associated with

myotubes (Yaffe D, 1970): 1) numerous marginated nuclei; 2) diameters ranging from 10 to 50

glm; and 3) lengths on the order of hundreds of microns. Cultures in 10% HS contained distinctly

fewer myotubes and dense regions of myoblasts whereas 1% HS cultures contained fewer

myoblasts and what appeared to be a greater density of myotubes.

The biochemical response of L6 cultures to different doses of HS was assessed in order to

maximize muscle specific protein and minimize myoblast proliferation before long-term

experiments were begun. Biochemical quantitation (Fig. 2B) revealed that DNA synthesis rate

per well decreased from 5 rig/day to 0 gtg/day as the dose decreased from 10% HS to 1% HS. By

day 13, the 10% HS cultures contained 10-fold more DNA than the 1% cultures. The DNA

levels in the 0% HS cultures were stable, but morphologically, few myotubes formed and they
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deteriorated rapidly. These results indicate that as the dose of HS decreased, myoblast growth

was progressively inhibited.

CPK was used as a marker of biochemical differentiation in L6 cell cultures in order to

investigate the effect of HS on a marker of differentiated muscle function (Yaffe D, 1970).

Absolute levels of CPK in the 10% HS cultures increased with time from undetectable levels on

day 5 to over 70 mU per well on day 11 (Fig. 2A). This increase in CPK was at least 50-fold

greater than the CPK before fusion. The increase in CPK also occurred in a somewhat dose

responsive manner, as the 10%, 1%, and 0% HS cultures showed distinctly different rates of

increase. The CPK in the 0% HS culture increased and then decreased rapidly to 0 after day 8.

CPK normalized to DNA showed that the maximum amount of CPK relative to DNA occurred in

the 1% HS cultures (Fig. 2C) and also that the rapid rise in CPK could not be explained by

myoblast proliferation. Normalized CPK also decreased in a dose responsive manner. This

decrease could be due to either an increase in the number of myotubes or an increase in CPK per

myotube. These dose response experiments were repeated at different times with different

reagents and cell batches and biochemical trends were identical in both experiments.

Thus, the short-term culture experiments showed that: 1) biochemical information

corroborated the short-term morphological information in that DNA in the 10% HS cultures

increased in accordance with myoblast proliferation, the 1% culture DNA reached a plateau in

accordance with a cessation of myoblast growth, and the CPK in culture increased in tandem with

the morphological formation of myotubes; 2) 1% HS was the superior media for long-term

experiments, given the requirements of decreased myoblast proliferation and increased expression



of CPK. For the remainder of this study, 1% HS was used and 10% HS was used for

comparison.

3.2 Long-term Effects of Horse Serum on L6 Cultures

3.2.1 Morphology

To evaluate the suitability of L6 cultures for long-term experiments, myoblasts were

grown to confluence in DMEM with 10% FBS, at which time (5 days), cultures were switched to

1% HS or 10% HS with DMEM. Cultures were subsequently analyzed over a 35 day period. In

1% cultures (Fig. ID), although the myoblasts proliferated to some extent, the cultures consisted

primarily of myotubes. There was a marked difference in myotube morphology between day 6

and day 20, with the myotubes in day 20 cultures appearing thinner and shorter. The myotubes in

10% HS deteriorated by day 23 (Fig. 1 C) and the cultures became dominated by myoblasts.

To obtain a quantitative assessment of the apparent degradation in long-term cultures and

substantiate the observed morphology, morphometric analysis of 1% HS cultures was undertaken.

The percentage of the microscopic field of view covered by myotubes (Fig. 3A) showed that

myotube area increased 5 fold over a 9 day period, peaked at day 20, and then declined 5 fold 9

days after the peak. The decline in myotube area corroborates the morphological differences seen

between day 6 and day 23 cultures in 1% HS. The number of myotube nuclei increased 10-fold

over the six-day period from day 12 to day 18 (Fig. 3B), indicating that the majority of myotubes
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were formed during this period. The number of myotube nuclei then reached a constant value

toward the end of the culture. Along with the data which showed a declining percentage myotube

area, this result suggests that most of the myotubes remained intact in the cultures, or identically,

that the myotube density remained constant and the myotubes atrophied. Finally, the percentage

of myotube nuclei per field in long-term cultures reached a maximum and continued to decline

toward zero (Fig. 3C), which along with the constant number of myotube nuclei, indicates that

after day 20, myoblasts proliferated in excess of myotubes.

3.2.2 Biochemical Analysis of Long-Term L6 Cultures

Since morphometric data showed myotube degradation and myoblast proliferation, it is

important to see how these were reflected in biochemical functions that are more pertinent to

skeletal muscle cultures. To this end, cells were grown to confluence for five days in 10% FBS

and then stimulated with 1% HS for a period of 33 days. CPK and DNA were used as

biochemical parameters and 1% HS results compared to a condition that promotes proliferation

(10% HS). The DNA in 1% HS cultures appeared stable through day 15 (Fig. 4), at which point

the DNA slowly increased, indicating that the myoblasts began to proliferate. In comparison,

DNA in 10% HS cultures increased until day 20, when the cultures appeared to reach a steady

state of approximately 35 tg/well. Between day 10 and day 25, the 10% HS cultures increased 7-

fold whereas the DNA in the 1% HS cultures increased only 2-fold, indicating that the myoblasts

proliferated at a slower rate. Thus, long-term analysis of DNA revealed that 1% HS maintained

myotube cultures for approximately 7 days but was not sufficient to keep myoblasts quiescent for
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longer periods of time. Experiments with the 1% HS cultures were continued until day 38, at

which point, the multinucleated cells were mere remnants of the myotubes which were once

present. By day 23 in 10% HS cultures, there was excessive cell turnover and experiments were

stopped.

To investigate the responsiveness of the culture system, 1% HS cultures were stimulated

on day 10 with 10% HS (open squares, Fig. 4). The DNA resumed its increase, with a slope

similar to the 10% HS cultures. By day 20, the DNA levels in the 1% HS and 10% HS cultures

were comparable, indicating that the myoblasts present in the 1% HS cultures remained

competent to rapidly proliferate. This result indicates that the myoblasts were held in a non-

proliferating state when the concentration of HS was decreased to 1%. Absolute and normalized

CPK data during this experiments showed results similar to the DNA (data not shown), where the

levels began close to the 1% HS levels and then reached the levels of the 10% HS curves. This

result may be explained by 1) the proliferating myoblasts fused into myotubes or 2) the myotubes

already present began to produce more CPK.

CPK was used to assess long-term function of the L6 myotubes. The absolute level of

CPK in long-term experiments was detectable two days after media was switched (Fig. 5A) and

increased through day 18, when a peak was reached in both the 10% HS and 1% HS cultures. In

1% HS, the level of CPK reached a peak on day 18 and thereafter, began to decline. After day

21, the cultures attained a quasi-steady state for the remainder of the long-term experiments, with

the rate of decrease approximately 1 mU/day. In comparison, after day 20, the level of CPK in

10% HS cultures declined at a rate of 25 mU/day. However, the maximum level attained in the

10% HS cultures was approximately 3 times higher than the level attained in the 1% HS cultures.
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The morphological appearance of the 10% HS cultures paralleled the enzyme degradation and

proliferation of myoblasts (Fig. 1C); on day 23, 10% HS cultures were stopped. The higher level

of CPK in the 10% HS cultures can be explained either by an increase in CPK per myotube or an

increase in the total number of myotubes. These results indicate that myotube function

deteriorated rapidly in 10% HS cultures and more slowly in 1% HS cultures. The fact that the

enzyme degradation slopes of 10% and 1% cultures are different suggests that the myoblasts may

have a deleterious effect on the myotubes. Normalized CPK levels accounted for the myoblast

proliferation in the cultures (Fig.5C) and showed that normalized CPK increased and then

decreased rapidly. This result shows that CPK per DNA also increased and decreased with

similar slopes in both 1% and 10% HS cultures, which again suggests that the myoblasts exert a

deleterious effect on the myotubes. In addition, there was a sharp increase in DNA and a sharp

decrease in normalized CPK, which coincided with the peak in absolute CPK levels. This result

may be explained by media conditioning by the myotubes secreting growth factors, such as IGF-1

(Tollefsen et al. 1989). Conversely, a fast growing myoblast clone may have been selected for,

which could have resulted in an increase in myotubes and a decrease in normalized CPK as well.

The decline in absolute CPK levels correlates with the conclusion from area percentage of

myotubes in the morphometric data, both of which indicate a decline in myotube function.

Similarly, the decrease in normalized enzyme levels correlates with the DNA levels and the

percentage myotube nuclei from the morphometric data, both of which indicate increased

myoblast proliferation. The long-term experiments were repeated twice and trends were identical.

Initial characterization of protein turnover focused on total protein (Fig. 6). After

stimulation of the cultures with 1% HS, protein content increased during the first five days. From
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day 10 to day 20, protein stabilized in the 1% culture, but continued to increase in the 10% HS

cultures. After day 20, total protein increased in a manner similar to DNA in both 1% HS and

10% HS cultures. DNA analysis showed that myoblasts proliferated after day 20 as well;

therefore, total protein in the cultures after day 20 appeared to depend on myoblast proliferation.

Long-term quantitative biochemical studies suggest that myotube function is quasi-stable

from day 22 until day 38 in cultures maintained in 1% HS over the 38 day period. The overall

biochemical state of the culture system, however, is unstable because myoblasts begin to

proliferate after their apparently quiescent state immediately after stimulation with 1% HS.

However, based solely on the stable levels of CPK, this muscle culture system may be useful for

protein turnover studies if muscle specific biochemical markers as long as markers are used.

3.2.3 Immunoflourescence Staining and Birefringence Microscopy of L6 Cultures

To further document muscle specific protein degradation and myotube deterioration in

situ in culture, immunoflourescence staining was undertaken using monoclonal antibodies for

muscle specific tropomyosin and a-actinin, markers of differentiation. The specificity of these

antibodies has been shown previously (Lin et al. 1985; Lin and Lin, 1986). Tropomyosin staining

after 3 days in 10% FBS showed that myoblasts contained little tropomyosin (Fig. 7A,B).

However, after six days in 1% HS, myotubes showed significantly brighter flourescence (Fig.

7C,D) than the myoblasts. By day 28, tropomyosin degraded in a large number of myotubes, but

the degree of degradation (Fig. 7E,F) was heterogeneous throughout the cultures. While the

staining in a number of myotubes was bright and diffuse (Fig. 7E), many myotubes contained
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Figure 7:



stained and unstained regions in different areas of the same myotube. The flourescent

micrographs in all six panels were taken at identical camera settings to ensure that the intensity

levels were comparable. In addition, controls with secondary antibody did not show any staining.

Thus, these results indicate a two-fold conclusion: 1) the antibody stained specifically for

sarcomeric tropomyosin in the L6 myotubes; 2) degradation of skeletal muscle tropomyosin

correlated with the degradation of CPK, supporting the use of CPK as a marker of muscle specific

function and as an indicator of the state of the contractile proteins.

To further document myotube atrophy and the degradation of tropomyosin, high

magnification images were obtained (Fig. 8). Cultures were stained simultaneously with F-actin

and tropomyosin. Day 11 myotubes showed that the two structural molecules co-localized along

peripheral stress fibers (Fig. 8A). The multinucleation can also be seen clearly in this micrograph.

Later cultures (Fig. 8B) showed that tropomyosin staining was punctate. Parts of the myotube

stained diffusely while other parts of the same myotube did not stain at all, although the stress

fibers remained intact as visualized with F-actin. Thus, high magnification staining suggests a

number of conclusions: 1) early cultures show the beginnings of myofibril formation, which has

been shown previously to begin with stress fiber localization of muscle specific proteins (Wang et

al. 1988); 2) two different proteins (F-actin and tropomyosin) within the the same myotube may

degrade at different rates; 3) these images confirm that tropomyosin degradation seen in Figure

7E is in fact specifically located within the myotubes, a conclusion which could not be drawn from

the low magnification images; 4) these results showed that tropomyosin, a muscle specific protein,

degraded while F-actin did not appear to degrade and the myotube remained intact. This

correlates with the morphometric result which suggested that myotubes atrophied, as indicated by



Fig.8 Confocal images of 1% HS L6 cultures stained for F-actin (red) and tropomyosin (green)
White arrow in A depicts multinucleation and dark arrow depicts tropomyosin localized to
peripheral stress fibers. In B, the white arrow points to degrading tropomyosin and the
dark arrow points to intact stress fibers.
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a decrease in myotube area per field in combination with a constant total number of myotube

nuclei.

Immunoflourescence staining for ao-actinin (Fig. 9) and birefringence microscopy (Fig. 10)

were also used in order to assess the level of structural differentiation of L6 myotubes. The well-

known characteristics of adult muscle are the well-defined sarcomere patterns. Although

tropomyosin, myosin, ao-actin, or ca-actinin can be used to visualize sarcomeric patterns, ao-actinin

offers the greatest resolution because it incorporates into the Z-bands (see Fig. 1.1). Birefringent

microscopy depicted the striated pattern as well, but only with the resolution to separate the I-

bands and A-bands. The myotube in Fig. 9A shows diffuse staining with Ca-actinin, but there is

some indication that sarcomeres are forming. Most myotubes, however, stained even more

diffusely than the one shown in Fig. 9A. In contrast, Fig. 9B shows a primary human myotube

with distinct sarcomeric patterns. The majority of myotubes in the primary human myotube

cultures showed this level of structural differentiation. Fig. 10 shows a birefringent myotube

indicating that this cell contained sarcomeric patterns. Again, very few birefringent myotubes

were seen in the L6 cell cultures. These results suggest that little structural differentiation is

attained by the L6 cell myotubes. However, including cc-actinin staining, at least two muscle

specific proteins are expressed by the L6 myotubes. The specific staining shown in the human

primary cultures indicates that the the antibody is specific and the microscopy techniques allow

for the visualization of sarcomeres if they are present in the myotubes.



Fig. 9: ox-actinin staining of an L6 myotube (A) and a primary human myotube
(B). Scale bar represents 10 pm.
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Birefringent L6 myotube. Scale bar represents 10 gmFigure 11:



3.3 Passive Stretch Experiments

Passive stretch experiments were performed as a preliminary test of the hypothesis that

myotube function can be augmented and potentially stabilized when cells are maintained under

tension. L6 cells were grown on flexible laminin coated silicon membranes in DMEM + 10%

FBS. After 5 days, the cells became confluent and the media was switched to 1% HS. Following

7 days of incubation, plates were either stretched statistically at 25% maximum strain or left

unstretched (controls). Table 1.1 shows that both DNA and CPK showed a statistically

significant increase over controls, but the normalized DNA remained constant. The numbers in

parentheses represent the standard deviation across the 3 wells. These preliminary results indicate

that passive stretch influences the metabolic state of the culture system either by directly signaling

the cells, changing the substratum configuration, or sufficiently separating the cells so as to avoid

contact inhibition and promote growth.

Table 3.1 Effect of passive mechanical stretch on L6 muscle cell cultures

DAYS CPK (mU) CPK (mU) DNA (jpg) DNA (pg) Norm.CPK Norm. CPK
(control) (stretched) (control) (stretched) (control) (stretched)

5 3.2 (.7) -- 1.02 (.27) -- 3.2 (.11) --
14 5.84 (0) -- 1.63 (.44) -- 3.6 (.29) --
16 6.7 (.1) 7.8 (.57) 1.55 (.07) 2.45 (.3) 4.32 (.21) 3.2 (.08)
18 6.9 (.02) 9.6 (.18)* 1.46 (.03) 2.49 (.03)' 4.73 (.38) 3.9 (.15)
20 8.6 (.04) 15.2 (.02)* 1.78 (.14) 3.18 (.75)* 4.8 (.19) 4.8 (.09)

p<0.05; n=3



3.4 CPK Controls

When CPK standard was spiked into PBS and used to homogenize cells at different time

points during a 40 day cultures, the concentration of enzyme recovered was identical to the

original concentration, indicating that proteases were not a problem during the extraction or assay

steps at any time. In the experiments in which myoblasts and myotubes were mixed together, the

resulting concentration of CPK was additive, indicating that the myoblasts did not contain an

inhibitor of CPK. The cell homogenate and CPK standards were stable for over 50 days at -800 C

and were also stable for at least 12 hours when kept on ice after thawing. Sonication did not

result in any decrease in enzyme. The reliability of the biochemical assays was demonstrated by

the fact that dilution and standard curves for all three biochemical assays were linear and slopes

were within 15% of one another.



CHAPTER 4

DISCUSSION

Previous studies on muscle cell cultures, both primary and cell lines, have primarily

focused on myotube formation and expression of muscle specific genes. However, the level of

differentiation attained as well as the long-term stability of muscle specific characteristics has not

been thoroughly characterized. In this study, we quantitatively studied the functioning of L6 cells

in both static and mechanically stimulated culture conditions. The major finding of this study is

that differentiated L6 myoblasts, maintained under static culture conditions, are stable for a period

of 7 to 14 days depending on the stringency of the steady state requirements. However, the

muscle specific markers undergo a slow rate of degradation in longer term cultures. Results with

static passive stretch of L6 cells after 10 days in static culture showed that mechanical stimulation

of muscle cells may prolong the culture time and decrease the rate of degradation.

Results from long-term studies showed that L6 cells in 1% HS differentiated into a

population of myotubes which contained a maximum of 30% of the nuclei per field. The total

number of myotube nuclei remained constant after 15 days, suggesting that most of the myotubes

were formed by 15 days and the number remained relatively constant. Alternatively, but less

likely given the net degradation seen at later times, a steady state of myotube formation and

disappearance may existed. In the original characterization of the L6 cell line (Yaffe, 1968), it

was noted that "100% of the myoblast clones formed muscle forming colonies." It was also noted



that as the line was passed, the stringency of the culture media requirements to maintain myoblast

clones was reduced. It is not clear exactly what the muscle forming colony index referred to and

thus it could not be compared to current studies. Nadal-Ginard (1978) quantitated the percentage

nuclei per field contained within L6E9 myotubes in a manner identical to current studies; he

reported an index of 80%-90% in 10% HS depending on the initial seeding density. He also

reported that in 20% fetal calf serum, the index was 0%. The L6E9 cell line is an L6 subclone

specifically selected by Nadal-Ginard for its ability to differentiate quickly. Thus, there is

considerable variability in the degree of differentiation seen in different studies, which emphasizes

the need for characterization of media and cell lines in order to understand the limitations prior to

use of muscle cell cultures for various physiological studies.

It is possible that genetic drift occurs with continued propagation of the L6 cells and with

time, its ability to differentiate declines. In primary cultures, cells lose their ability to differentiate

after a finite number of cell divisions, the value of which is sensitive to the exact culture

conditions employed (Yaffe, 1968). A similar effect was seen in the current studies: with

continued passage, the ability of the cells to differentiate rapidly declined, which was the reason

why we carefully controlled passage number. It may be that muscle cell lines must be recloned to

maintain differentiation, which is a difficult task given that when the cells differentiate, they stop

proliferating. Nonetheless, care must be taken to standardize and characterize culture procedures

and media in order to obtain reproducible results.

Initial short-term experiments were undertaken in order to maximize muscle specific

markers and minimize myoblast growth. Experiments with HS doses ranging from 0% to 10%

over a period of 7 days showed that DNA per well remained reasonably constant in the 1% HS



cultures, while the levels of CPK increased, indicating that the 1% HS cultures had the largest

proportion of muscle specific protein. The 10% HS cultures had the highest absolute levels of

CPK but increasing DNA levels suggested that the undifferentiated myoblasts continued to

proliferate. This point was reflected in the normalized CPK, which showed that 1% HS cultures

attained the highest levels of specific CPK activity. CPK has been used as a marker of myogenic

differentiation in previous studies with primary and L6 muscle cell cultures (Coleman and

Coleman, 1972; Yaffe D, 1994), and is considered a marker of contractile protein synthesis, which

is easier to quantitate than the protein levels themselves (Konigsberg, 1965; Devlin and Emerson,

1978). In at least two studies with L6 cells, initiation of CPK and myosin synthesis were were

observed to be coordinated at the time of fusion and increase with similar slopes afterward

(Nadal-Ginard, 1978; Coleman and Coleman, 1972). Furthermore, in the present study,

tropomyosin expression was shown to begin coordinately with fusion and CPK synthesis. Thus,

there is strong evidence from past literature and present work that CPK correlates with contractile

protein synthesis in myotubes. With 1% HS producing reasonably high levels of CPK and limiting

myoblast growth, long-term studies using 1% HS were undertaken in order to investigate the

magnitude and stability of muscle specific protein in L6 cell cultures.

Long-term DNA data from 1% HS cultures showed a proliferation of myoblasts after day

20. From day 20 to day 38, myoblasts proliferated slowly, which indicates that protein turnover

measurements may be obscured by non-muscle cells; thus, measurements of protein turnover

should make use of a muscle specific marker such as myosin, tropomyosin, or cc-actinin.

Alternatively, DNA inhibitors such as cytosine arabinoside (C-arA) (Gulve and Dice, 1989) and 5-

fluorodeoxiuridine (FudR) (Coleman and Coleman, 1972; Nadal-Ginard, 1978), which have been



used in previous work to either augment differentiation and/or eliminate myoblast proliferation,

may be employed to eliminate non-differentiated muscle overgrowth. However, there are

discrepancies in past studies regarding the toxic effect of these inhibitors on myotubes. Zalin et.

al. (1974) showed that FudR and C-arA decreased the degree of fusion in cultures, but Nadal-

Ginard (1978) and Coleman and Coleman (1972) showed a less detrimental effect, indicating that

further characterization is required before use of these inhibitors in muscle cell culture.

Data from 1% HS cultures showed that CPK levels continued to increase until day 20, and

thereafter, declined slowly. The decline in protein levels of approximately 1 mU/day indicates a

deteriorating population of myotubes. However, the period of time 7 to 14 days after the peak

(i.e. days 27-34 of culture) was a relatively stable region and is therefore the most reasonable for

experimentation. CPK normalized to total DNA showed a peak at day 20 with a subsequent

sharp drop-off correlating with myoblast proliferation. It is possible that the myoblasts

proliferated as a result of media conditioning by the L6 myotubes. Primary myotubes have been

shown to secrete at least one growth factor, IGF-1, upon fusion (Tollefsen et al. 1989). An

alternative explanation is that a faster growing myoblast clone was selected for as the myoblasts

slowly proliferated in 1% HS. Previous work (Yaffe, 1970) which characterized the L6 cultures

for periods of time longer than two weeks showed that CPK normalized to protein rose steadily

until day 41 and peaked at day 50, with the next and last time point showing a 25% decline. This

study is difficult to compare with current work because: 1) only one data point after the peak was

shown and statistical significance not assessed; 2) corresponding morphology was not shown; and

3) the enzyme levels were normalized to total protein and the absolute levels not given, i.e. the

decline could potentially be attributed to myoblast proliferation.



Total protein is an important parameter in the characterization of protein turnover. In this

study, total protein increased while DNA was stable during the 5 days after media was switched.

After day 10, total protein remained constant for approximately ten days and then began to

increase in parallel with DNA after day 20. The sudden increase in total protein after day 20

while muscle specific proteins degraded (tropomyosin and CPK) can be explained by the increased

myoblast proliferation. The increase in total protein from day 5 through day 10 and subsequent

stabilization correlates with previous previous work (Coleman and Coleman, 1972), which

reported a similar increase and stabilization of total protein in chick primary cultures in the

absence of DNA synthesis. It is not clear why there is an increase in total protein. It would be

simple to attribute it to an increase in muscle specific protein; however, even after total protein

stabilization, CPK continues to increase in our study, and both CPK and myosin increased in the

study by Coleman and Coleman (1972) while total protein remained at best constant. This

indicates that the total protein level is not strongly correlated with muscle specific proteins.

Indeed Gulve et. al (1991) discussed the relative scarcity of myofibrillar protein in muscle cell

cultures, which again points to the need to study a muscle specific protein during turnover

experiments, as opposed to total protein levels.

Immunoflourescence staining for sarcomeric tropomyosin proved to be a powerful and

relatively simple in situ technique to investigate temporal and spatial changes in muscle specific

protein expression in L6 cultures. In the mixed population of myoblasts and myotubes, a

monoclonal antibody to sarcomeric tropomyosin was used to support CPK data, to visualize

myotubes at low magnification and to analyze structural differentiation at high magnification.

Fluorescent micrographs revealed that sarcomeric tropomyosin was expressed after myoblast



differentiation, and in parallel with CPK and morphological analyses, tropomyosin degraded

toward the end of the culture period.

Analysis of tropomyosin over the time course of these studies showed that tropomyosin

degraded at different rates within each myotube and among different myotubes. Parallel

immunoflourescence with F-actin showed that the myotubes remained intact while tropomyosin

degraded. This observation may lead to the additional hypothesis that myotube proteins are

specifically degraded during the deterioration process, which would suggest that specific and

different degradation mechanisms occur within the cell as the deterioration process progresses.

Additional data would be required to prove this hypothesis, but if proven, the present culture

system may be used as a model to investigate these differing proteolytic mechanisms.

Preliminary results with primary human cells showed that a large number of the myotubes

formed mature sarcomeric patterns. To date, very little work has been done with primary human

skeletal muscle cells, and specifically, there are no published reports documenting culture of the

skeletal muscle cells from Clonetics Corp. Used in the present study. However, human cells may

represent a more physiologically relevant model than L6 cell for studying muscle wasting, and

thus, recent work in our lab has focused on additional characterization of primary human muscle

cells, using phase microscopy and tropomyosin staining. Results to date showed that these cells

formed abundant myotubes (>80%) with very little myoblast overgrowth and well-developed

sarcomeric banding patterns. However, myotube morphology appeared to degrade with time

constants similar to the L6 cell cultures. Work is underway to characterize the human cultures to

evaluate their potential as a model system.



It is well established both in vivo and in vitro, that passive mechanical stretching increases

the level of muscle specific function (Vandenburgh and Kaufman, 1979; Goldberg, 1975). Passive

stretching alters many different aspects of muscle cell function, including IGF-1 secretion

(Perrone et al. 1995), amino acid uptake (Hatfaludy et al. 1989), prostaglandin release

(Vandenburgh et al. 1989), and most importantly, myofibrillar protein turnover (Vandenburgh and

Kaufman, 1979). These studies were all performed with primary cell cultures and no work has

been done with cell lines. In particular, no work has been done with CPK regulation by

mechanical stretching. Results with passive stretching indicated that total CPK, and hence,

muscle specific activity can be increased in L6 cell cultures. These preliminary results indicate

that CPK might also be regulated by stretching. If CPK can be shown to increase coordinately

with the contractile proteins under stretching conditions, future studies would benefit because

CPK rather than contractile proteins could be used as a measure of muscle specific function in

order to optimize the cultures.

Future work with passive stretching requires that a more detailed biochemical study be

completed before the true effect of stretching on muscle specific function can be assessed. In

addition, dynamic stretching needs to be investigated where a number of parameters such as

amplitude, frequency, and pulse width can be modulated in order to optimize cultures.

Additionally, controls have to be run as well to investigate the causes of the increases in CPK. As

it stands, the observed increase in CPK during mechanical stretching may have been due to

myoblast growth, possibly caused by a disruption of contact inhibition after the substratum was

stretched or by an increase in synthesis of growth factors by myotubes after they are stretched.



Thus, although preliminary results obtained using mechanical stretching appear promising, further

biochemical characterization of this culture system is needed.



Bibliography

Baracos, V., Rodeman, H.P., Dinarello, C.A. and Goldberg, A.L. (1983) Stimulation of
Muscle Protein Degradation and Prostaglandin E2 Release By Leukocyte Pyrogen
(Interleukin- 1). New England Journal ofMedicine 308, 553-558.

Baracos, V.E. and Goldberg, A.L. (1986) Maintenance of Normal Length Improves
Protein Balance and Energy Status in Isolated Rat Skeletal Muscles. The American
Journal of Physiology 251 C588-C596.

Bradford, M. ( 1976) Analytical Biochemistry 72, 248

Coleman, J.R. and Coleman, A.W. (1972) Muscle Differentiation and Macromolecular
Synthesis. Journal of Cellular Physiology 72, 19-34.

Cuthbertson, D.P. (1930) Biochemical Journal 24, 1244-1263.

Devlin, R.B. and Emerson, C.P. (1978) Coordinate Regulation of Contractile Protein
Synthesis During Myoblast Differentiation. Cell 599-611.

Dunn, J.C.Y., Tompkins, R.G. and Yarmush, M.L. (1991) Long-Term in Vitro Function
of Adult Hepatocytes in a Collagen Sandwich Configuration. Biotechnology Progress 7,
237-245.

Emerson, C.P. and Beckner, S.K. (1975) Activation of Myosin Synthesis in Fusing and
Mononucleated Myoblasts. Journal ofMolecular Biology 93, 431-447.

Ewton, D.Z., Falen, S.I. and Florini, J.R. (1987) The Type II Insulin-Like Growth Factor
Receptor Has Low Affinity for IGF-1 Analogs: Pleiotypic Actions of IGFs on Myoblasts
Are Apparantly Mediated by the Type I Receptor. Endocrinology 120, 115-123.

Ewton, D.Z., Spizz, G., Olson, E.N. and Florini, J.R. (1988) Decrease in Transforming
Growth Factor-b Binding and Action During Differentiation in Muscle Cells. The Journal
ofBiological Chemistry 263, 4029-4032.

Flores, E.A., Bistrian, B.R., Pomposelli, J.J., Dinarello, C.A., Blackburn, G.L. and Istfan,
N.W. (1989) Infusion of Tumor Necrosis Factor/Cachetin Promotes Muscle Catabolism in
the Rat. Journal of Clinical Investigation 83, 1614-1622.

Florini, J.R. and Roberts, S.B. (1979) A Serum-Free Medium For the Growth of Muscle
Cells in Culture. In Vitro Cellular and Developmental Biology 15, 983-990.



Fulks, R.M., Li, J.B. and Goldberg, A.L. (1975) Effects of Insulin, Glucose, and Amino
Acids on Protein Turnover in Rat Diaphragm. The Journal of Biological Chemistry 250,
290-298.

Gilbert, J.A., Banes, G.W., Link, G.W. and Jones, G.L. (1989) Surface Strain on Living
Cells in a Mechanically Active In Vitro Environment. pp. 13.2-13.6. Houston, Pa.
Swanson Analysis Systems.

Goldberg, A., Griffin, G. and Dice, J. (1977) Pathogenesis of Human Muscular
Dystrophies, Amsterdam: Excerpta Medica.

Goldberg, A.L., Etlinger, J.D., Goldspink, D.F. and Jablecki, C. (1975) Mechanism of
Work-Induced Hypertrophy of Skeletal Muscle. Medicinal Science in Sports 248-261.

Gulve, E.A., Mabuchi, K. and Dice, J.F. (1991) Regulation of Myosin and Overall Protein
Degradation in Mouse C2 Skeletal Myotubes. Journal of Cellular Physiology 147, 37-45.

Gulve, E.A. and Dice, F.F. (1989) Regulation of Protein Synthesis and Degradation in L8
Myotubes. Biochemical Journal 260, 377-387.

Hatfaludy, S., Shansky, J. and Vandenburgh, H.H. (1989) Metabolic Alterations induced
in Cultured Skeletal Muscle by Stretch-Relaxation Activity. American Journal of
Physiology 256, C175-C181.

Kanda, K. and Matsuda, T. (1994) Mechanical Stress-Induced Orientation and
Ultrastructural Changes of Smooth Muscle Cells Cultured in Three-Dimensional Collagen
Lattices. Cell Transplantation 3, 481-492.

Konigsberg, I.R. (1965) Aspects of Cytodifferentiation of Skeletal Muscle. In:
Organogenesis, pp. 337-358.

Lin, J.J., Chou, C. and Lin, J.L. (1985) Monoclonal Antibodies Against Chicken
Tropomyosin Isoforms: Production, Characterization, and Application. Hybridoma 3,
223-242.

Lin, J.J. and Lin, J.L. (1986) Assembly of Different Isoforms of Actin and Tropomyosin
into the Skeletal Tropomyosin-enriched Microfilaments during Differentiation of Muscle
Cells In Vitro. The Journal of Cell Biology 103, 2173-2183.

MacDonald, C. and Pitt, A.M. (1991) Rapid DNA Quantitation Using the Hoechst 33258
Dye in a Multiwell Flourescence Plate Reader. Journal of Cell Biology 115, 79a

Mayer, M., Chaouat, M., Lernau, O.Z. and Nissan, S. (1983) Hormone-responsive
Myofibrillar Protease Activity in Cultured Rat Myoblasts. FEBS 161, 239-242.



Nadal-Ginard, B. (1978) Commitment, Fusion, and Biochemical Differentiation of a
Myogenic Cell Line in the Absence of DNA Synthesis. Cell 15 855-864.

Oliver, I.T. (1955) A Spectrophotometric Method for the Determination of Creatine
Phosphokinase and Myokinase. Biochmical Journal 61 116-122.

Perrone, C.E., Fenwick-Smith, D. and Vandenburgh, H.H. (1995) Collagen and Stretch
Modeulate Autocrine Secretion of Insulin-like Growth Factor-i and Insulin-like Growth
Factor Binding Proteins from Differentiated Skeletal Muscle Cells. The Journal of
Biological Chemistry 270, 2099-2106.

Richler, C. and Yaffe, D. (1970) The In Vitro Cultivation and Differentiation Capacities of
Myogenic Cell Lines. Developmental Biology 23, 1-22.

Schubert, D., Harris, J., Devine, C.E. and Heinemann, S. (1974) Characterization of a
Unique Muscle Cell Line. The Journal of Cell Biology 61, 398-413.

Shainberg, A., Yagil, G. and Yaffe D. (1971) Alterations of Enzymatic Activities during
Muscle Differentiation in Vitro. Developmental Biology 25, 1-29.

Tollefsen, S.E., Lajara, R., McCusker, R.H., Clemmons, D.R. and Rotwein, P. (1989)
Insulin-like Growth Factors (IGF) in Muscle Development. The Journal of Biological
Chemistry 264, 13810-13817.

Vandenburgh, H.H., Hatfaludy, S., Sohar, I. and Shansky, J. (1989) Stretch -Induced
Prostaglandins and Protein Turnover in Cultured Skeletal Muscle. American Journal of
Physiology 256, C674-C682.

Vandenburgh, H.H., Hatfaludy, S., Karlisch, P. and Shansky, J. (1991 a) Mechanically
Induced Alterations in Cultured Skeletal Muscle Growth. Journal ofBiomechanics 24,
91-99.

Vandenburgh, H.H., Karlisch, P., Shansky, J. and Feldstein, R. (1991b) Insulin and IGF-1
Induce Pronounced Hypertrophy of Skeletal Myofibers in Tissue Culture. The American
Journal ofPhysiology 260, C475-C484.

Vandenburgh, H.H. and Chromiak, J.A. (1992) Glucocorticoid-induced Skeletal Muscle
Atrophy in Vitro is Attenuated by Mechanical Stimulation. American Journal of
Physiology 262, C1471-C1477.

Vandenburgh, H.H. and Kaufinan, S. (1979) In Vitro Model for Stretch-Induced
Hypertrophy of Skeletal Muscle. Science 203, 265-268.



Wang, S., Greaser, M.L., Schultz, E., Bulinski, J.C., Lin, J.J. and Lessard, J.L. (1988)
Studies on Cardiac Myofibrillogenesis with Antibodies to Titin, Actin, Tropomyosin, and
Myosin. The Journal of Cell Biology 107, 1075-1083.

Yaffe D (1970) Cellular Aspects of Muscle Differentiation in Vitro. Current Topics in
Developmental Biology

Yaffe, D. (1968) Retention of Differentiation Potentialities During Prolonged Cultivation
of Myogenic Cells. Proceedings of the National Academy of Sciences, USA 61, 477


