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ABSTRACT

The aminoacyl-tRNA synthetases are a family of proteins that provide
the enzymatic basis for the genetic code by catalyzing the transfer of an amino
acid to its cognate tRNA. The synthetases are divided into two classes on the
basis of conserved sequence motifs that correspond to two specific active site
architectures. The focus of this work is the class I methionyl-tRNA
synthetase (MetRS).

All tRNAs adopt a similar L-shaped tertiary structure. This structure
has two domains. One consists of the acceptor stem and the TYC stem and
loop and the other consists of the dihydrouridine stem and loop and the
anticodon stem and loop. Aminoacyl tRNA synthetases in both classes
contain non-conserved domains in addition to the conserved active site
domains. These non-conserved domains may have been aquired through the
course of evolution in order to increase specificity and efficiency of
aminoacylation. In the case of MetRS, the non-conserved C-terminal
domain is predominantly oc-helical and contains residues that interact directly
with the anticodon of the initiator methionine tRNA (tRNAfMet).

The interactions of critical portions of each of the two major domains
of tRNAfM et with MetRS and with one of its domains were studied in this
work. Sub-pieces of the protein and tRNA were constructed for this purpose.
The anticodon binding domain of E. coli methionyl-tRNA synthetase was
fused to maltose binding protein. This fusion protein and the released,
isolated domain are stable and have native-like structural characteristics as
shown by circular dichroism and thermal denaturation studies. The fusion
protein and the isolated domain bind specifically to a small RNA hairpin
oligonucleotide that recapitulates the anticodon stem-loop of tRNAfMet, as
shown by the technique of affinity coelectrophoresis. The binding specificity
and affinity of the fusion protein and the C-terminal domain duplicate that of
the interaction between native methionyl tRNA synthetase and the
anticodon stem-loop oligonucleotide. Thus, the anticodon binding domain is



functionally independent of the class defining catalytic core and can be joined
to another protein with little change in RNA binding characteristics.

The binding of a mutant MetRS variant to the individual domains of
tRNAfMet was studied with RNA hairpin substrates that recapitulate the
acceptor stem (microhelix). The dissociation constants of MetRS for wild-type
and mutant microhelixfMet, as well as a noncognate microhelix, were
determined. The combination of kinetic data for the aminoacylation of these
microhelices and binding affinities for these microhelices established that
specificity determinants in the acceptor stem of tRNAfMet affect
discrimination primarily during the transition state of catalysis.

The structures of transfer RNAs appear to be strained when bound to
synthetases. Through our analysis of microhelix binding and anticodon
stem-loop binding, as well as the binding of full length tRNAfMet, we were
able estimate the free energy of strain for the binding of tRNAfMet to MetRS.

Acceptor helix interactions occur primarily with the N-terminal
catalytic domain. However, substitution of Arg533 to Ala in the C-terminal
domain affected acceptor stem binding with little effect on anticodon stem-
loop binding. This mutation is located in a C-terminal peptide appendix that
extends from the C-terminal domain of MetRS to fold back near the active
site in the N-terminal domain. These experiments provide a direct
demonstration of how acceptor helix interactions provide a functional
connection between the two domains of the enzyme.

Thesis Supervisor: Professor Paul Schimmel
Title: John D. and Catherine T. MacArthur Professor

of Biochemistry and Biophysics
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Chapter 1

Introduction



Aminoacyl-tRNA Synthetases and the Genetic Code

The aminoacyl-tRNA synthetases are enzymes that catalyze the

transfer of an amino acid to its cognate tRNA (Berg, 1961; Kisselev and

Favorova, 1974; Schimmel and S611, 1979). Specific recognition of the cognate

tRNA and amino acid provides the enzymatic basis for the genetic code by

virtue of associating an amino acid with the anticodon trinucleotide of its

cognate tRNA. The specificity of these enzymes for the correct amino acid

and for the cognate tRNAs is critical for the fidelity of information transfer

according to the amino acid/trinucleotide algorithm of the code. The

enzymes were probably among the earliest proteins to appear, possibly in the

early stages of the transition from the RNA world to the theatre of proteins

(Schimmel et al., 1993).

In the aminoacylaton reaction, the amino acid is attached to the 3' end

of its cognate tRNA through an ester linkage at either the 2'-OH or the 3'-OH

of the terminal adenosine. The overall reaction catalyzed is:

ATP + amino acid (AA) + tRNA , " AA-tRNA + AMP + PPi

This reaction takes place in two steps. In the first step the aminoacyl

adenylate, an enzyme bound intermediate, is formed. Aminoacyl adenylate

synthesis yields an anhydride linkage between the carboxyl group of the

amino acid and the 5'-a-phosphate of the ATP1, with the release of

pyrophosphate:

E + ATP + AA. E* AA-AMP + PPi

1 see abbreviations in Appendix B



In the second step the activated aminoacyl group is transferred to either the

free 2'-OH or 3'-OH of the terminal adenosine of the tRNA:

tRNA + E AA-AMP , ' E + AA-tRNA + AMP

The aminoacyl ester linkage is higher in energy than the peptide bond,

thereby making peptide synthesis (from aminoacyl tRNAs)

thermodynamically favorable.

The transfer RNA substrates all have essentially the same overall

structure (Rich and RajBhandary, 1976). Transfer RNAs contain between 75

and 93 nucleotides that fold into a globular L-shaped two-domain structure

(Figure 1-1) (Kim et al., 1974; Robertus et al., 1974; Rich and RajBhandary,

1976). This structure is formed from four helical stems. The acceptor stem

ends in the amino acid attachment site. It contains seven base pairs which

stack coaxially with the 5 bp of the TPC stem. The acceptor-TTC stem thus

forms one 12 bp domain of the tRNA structure. This domain is believed to be

the historical, or earliest part of the tRNA structure (Weiner anct Maizels,

1987; Maizels and Weiner, 1993; Noller, 1993; Schimmel et al., 1993). The

second domain is formed from the five bp anticodon stem and the four bp

dihydrouridine (DHU) stem which stack coaxially upon each other. The DHU

loop and the TTC loop interact at the corner of the L-shaped tRNA to stabilize

the structure. With this organization, the anticodon and the 3'-acceptor end

of the tRNA are separated from each other by about 75 A (Rich and Kim,

1978).

Identity elements for specific aminoacylation take the form of positive

determinants that interact specifically with the cognate synthetase for that

tRNA or negative determinants that prevent interactions with noncognate



synthetases. Typically identity elements are located in the acceptor stem and

the anticodon (Gieg6 et al., 1993; Saks et al., 1994; Martinis and Schimmel, 1995;

McClain, 1995).

Classes of tRNA Synthetases

In spite of their common function, the synthetases vary greatly in

subunit structure, polypeptide size and amino acid sequence. In E. coli,

quarternary structures include a, a2, a4 and a2132, and reported polypeptide

sizes range from 334 amino acids (tryptophanyl-tRNA synthetase) to 951

amino acids (valyl-tRNA synthetase) (Burbaum and Schimmel, 1991b;

Schimmel, 1991). Though the sequence similarities amongst the synthetases

are limited, the enzymes have been divided into two distinct classes based on

the alignment of short sequence motifs (Table 1-1) (Eriani et al., 1990;

Schimmel, 1991). These sequence motifs correspond to two distinct

architectures for the catalytic domains, with both of these architectures

centering around an ATP binding motif (Moras, 1992).

The class division also corresponds reasonably well to several other

properties of the synthetases. The class I enzymes are mostly monomers

while the class II enzymes are usually OC2 dimers (Burbaum and Schimmel,

1991b). All class I synthetases initially aminoacylate the 2'-OH whereas class II

synthetases initially aminoacylate the 3'-OH, with the single exception of

PheRS, which is a class II enzyme that appears to aminoacylate the 2'-OH of

tRNAPhe (Table 1-1) (Eriani et al., 1990; Moras, 1992).

Sequence alignments of the synthetases fail to show any evidence of a

common ancestor for the two classes of synthetases. Furthermore, there is no

evidence of a synthetase switching its class type in evolution (Schimmel,



1991; Buechter and Schimmel, 1993a). Thus, it appears that the two classes

arose independently of each other (Nagel and Doolittle, 1991) or that division

into two classes occurred very early. The fundamental difference in the

catalytic domain architectures for the two classes of synthetases also supports

this supposition (Burbaum and Schimmel, 1991b; Moras, 1992).

Structures of tRNA Synthetases

The crystal structures of five class I synthetases have now been solved.

These include TyrRS (Brick et al., 1988) and TrpRS (Doublid et al., 1995) from

Bacillus stearothermophilus, MetRS (Brunie et al., 1990) and GlnRS (Rould et al.,

1989) from Escherichia coli, and GluRS (Nureki et al., 1995) from Thermus

thermophilus. All of these structures contain the active site within an N-

terminal domain built around a topologically conserved Rossman

nucleotide-binding fold (Rossmann et al., 1974). This fold is a six-stranded

parallel B-sheet with alternating {a-helices between the fB-strands (in a B30C2

arrangement for each half of the fold) (Figure 1-2). In these structures, there is

a second major domain that comprises the C-terminal portion of the enzyme.

This domain is nonconserved and is involved in binding to distal regions of

the tRNA, which in many cases is the anticodon. These two domains,

therefore, parallel the two domains of the tRNA, in that the N-terminal

domain interacts with the acceptor-TWC domain and the C-terminal domain

interacts with the DHU-anticodon domain (Buechter and Schimmel, 1993a).

The two class-defining sequence motifs are within the conserved N-

terminal domain. The first motif is an eleven amino acid signature sequence

that ends in the HIGH tetrapeptide (Webster et al., 1984). This motif is located

in a loop that follows the first tg-strand of the nucleotide-binding fold

(Burbaum and Schimmel, 1991b; Buechter and Schimmel, 1993a). Residues



in this motif are involved in ATP binding. The second consensus sequence is

a KMSKS pentapeptide (Hountondji et al., 1986) in the second half of the

nucleotide binding fold, in a loop following the fifth f-strand of the Rossman

fold (Burbaum and Schimmel, 1991b; Buechter and Schimmel, 1993a). The

second lysine in this motif has been proposed to be involved in transition

state stabilization for the incipient aminoacyl adenylate intermediate,

through binding to the pyrophosphate moiety of ATP (Fersht, 1987; Rould et

al., 1989; Mechulam et al., 1991).

Within the framework of the nucleotide-binding fold, the class I

synthetases contain idiosyncratic insertions of widely varying sizes. All of the

class I enzymes contain an insertion between the two 133a2 halves of the

nucleotide binding fold designated as consensus polypeptide 1 (CP1). This

insertion is positioned to interact with the acceptor stem of a bound tRNA

substrate (Rould et al., 1989; Perona et al., 1991). A second insertion designated

as CP2 is also present in many of the class I enzymes (Figure 1-2) (Starzyk et al.,

1987; Burbaum and Schimmel, 1991b).

Based on sequence similarities and the detailed topology of the catalytic

domain, the class I synthetases can be subdivided into three subclasses. Class

Ia contains all of the hydrophobic and sulfur-containing amino acids,--MetRS,

CysRS, ValRS, IleRS, LeuRS--and possibly ArgRS (Nagel and Doolittle, 1991;

Land's et al., 1995). Class Ib contains TyrRS and TrpRS. Class Ic consists of

GlnRS and GluRS (Burbaum and Schimmel, 1991b; Moras, 1992).

Within the class I synthetases, the C-terminal domain is not conserved

across the class. Most notably, in MetRS the C-terminal domain is

predominantly a-helical (Brunie et al., 1990), while in GlnRS it is a 13-barrel

structure (Rould et al., 1989; Rould et al., 1991). However, sequence

alignments suggest that the class Ia enzymes are related in their C-terminal



domains (Eriani et al., 1991; Hou et al., 1991; Shiba and Schimmel, 1992a). In

both GlnRS and MetRS, the C-terminal domains are involved in specific

recognition of the anticodons of the cognate tRNAs (Rould et al., 1989; Ghosh

et al., 1990; Ghosh et al., 1991; Rould et al., 1991). Therefore, one of the

idiosyncratic insertions (CP1) and the C-terminal domains are involved in

specific tRNA binding (Moras, 1992; Schimmel et al., 1993).

The class II synthetases are defined by the presence of three degenerate

sequence motifs (Eriani et al., 1990). Crystal structures of class II synthetases

show that their active site architecture is distinct from that seen in the class I

synthetases (Cusack et al., 1990; Ruff et al., 1991). The catalytic domain of class

II synthetases is built around a seven-stranded antiparallel i3-sheet flanked by

three a-helices (Figure 1-3). Crystal structures have now been solved for six

class II synthetases. (In all cases the active site architecture is conserved.)

These enzymes are AspRS (Ruff et al., 1991), SerRS (Cusack et al., 1990), LysRS

(Onesti et al., 1995), PheRS (Mosyak et al., 1995), GlyRS (Logan et al., 1995), and

HisRS (Arnez et al., 1995).

The three shared sequence motifs are all within the conserved active

site domain. Motif 1 consists of an a-helix followed by the first 13-strand of the

active site 1B-sheet. This motif is involved in the formation of a dimer

interface. Motif 2 encompasses the second and third B-strands of the 13-sheet.

Motif 3 contributes the seventh 13-strand and an a-helix. Substrate binding

and catalysis take place on the surface of the 13-sheet (Cavarelli et al., 1994),

with residues in motifs 2 and 3 making contacts with bound ATP (Cusack et

al., 1993; Belrhali et al., 1994).

Class II synthetases have nonconserved polypeptide insertions within

the catalytic domain as well as entire nonconserved domains analogous to

those found in the class I synthetases. These additional domains may be



either on the N-terminal or C-terminal side of the conserved domain

(Buechter and Schimmel, 1993a). Two examples with the nonconserved

domain on the N-terminal side are AspRS and SerRS. AspRS has a 1B-barrel

domain fused to the conserved active site domain (Ruff et al., 1991), whereas

SerRS has an extended antiparallel coiled-coil domain protruding out from

the active site domain (Cusack et al., 1990). In both cases these additional

domains are involved in binding to their respective cognate tRNAs at sites

distal to the acceptor stem (Ruff et al., 1991; Cavarelli et al., 1993; Cusack et al.,

1993; Biou et al., 1994).

For both class I and class II synthetases, the catalytic and additional

nonconserved domains together form a two domain structure that can be

generalized to all of the synthetases (Buechter and Schimmel, 1993a;

Schimmel et al., 1993). In this model, the nonconserved domain that is

unique to each synthetase is involved in binding to sites on the tRNA distal

to the acceptor stem, while within the conserved catalytic domain,

nonconserved inserted polypeptides perform enzyme-specific roles such as

acceptor stem recognition (Buechter and Schimmel, 1993a). As mentioned

earlier, tRNAs also have a two domain structure. Therefore, in the

synthetase-tRNA complex, each discrete domain of the synthetase interacts

with a separate domain of the tRNA (Buechter and Schimmel, 1993a).

Co-crystals of Synthetase-tRNA Complex

Three crystal structures of synthetases have been solved in complex

with their cognate tRNAs. They are the class I E. coli GlnRS (Rould et al.,

1989), and the class II S. cerevisiae AspRS (Ruff et al., 1991) and T. thermophilus

SerRS (Biou et al., 1994). In the GlnRS/tRNAGln co-crystal, the synthetase

binds to the minor groove side of the acceptor stem causing the 3'-acceptor



strand of the L-shaped tRNA to make a sharp turn towards the anticodon

rather than to continue in a helical conformation. A critical feature of this

conformational distortion is that an antiparallel B-loop of protein inserts into

the end of the acceptor helix and disrupts the U1-A72 bp. This antiparallel 13-

loop structure is part of the CP1 insertion (Rould et al., 1989).

The C-terminal half of GlnRS forms two antiparallel 13-barrel-like

domains that interact with the anticodon of tRNAGl n . The anticodon of the

complexed tRNA differs greatly in conformation from the anticodon

structure of free tRNAPhe (Robertus et al., 1974). In free tRNAPhe, the three

anticodon bases are stacked upon one another. These anticodon bases of

bound tRNAGln are splayed out in different directions, thus enabling them to

interact with separate recognition pockets in the anticodon binding domain of

GlnRS (Rould et al., 1991).

The co-crystal structure of the class II AspRS shows that AspRS binds to

tRNA in a manner different than GlnRS (Ruff et al., 1991). AspRS binds to

the major groove side of the acceptor stem and interacts primarily with the

discriminator base G73 and the U1-A72 bp. The CCA end of the tRNA

remains coaxially stacked on the acceptor helix, so that the conformation is

relatively unchanged relative to free tRNAAsp (Moras et al., 1980). The

anticodon stem and loop of tRNAAsP in the complex undergoes a significant

conformational change upon binding. The entire anticodon stem is bent

toward the enzyme and the anticodon loop is unraveled such that five bases

(including the three anticodon bases) protrude outward. As in the GlnRS

structure, this arrangement maximizes the contacts of anticodon bases with

the protein (Ruff et al., 1991; Cavarelli et al., 1993).

The class II SerRS has a unique N-terminal domain that consists of a

long antiparallel coiled-coil a-helix extending out from the catalytic domain



of the synthetase. This structure is present in both E. coli and T. thermophilus

SerRS (Cusack et al., 1990; Biou et al., 1994). In the co-crystal structure, this

coiled-coil domain interacts with the long variable arm of tRNASer. This

additional domain is analogous to the nonconserved anticodon binding

domains of GlnRS and AspRS. However, SerRS does not interact with the

anticodon of tRNASer, which is not surprising given the six-fold degeneracy

of serine codons which must be decoded by five different serine tRNA

isoacceptors which are all charged by the same enzyme. In the co-crystal

structure, the end of the acceptor stem of tRNASer is not visible in the

electron density map. However, the orientation of the tRNA is consistent

with acceptor stem binding similar to that of tRNAAsp, with little distortion

of the acceptor stem and with protein interactions on the major groove side

(Biou et al., 1994).

As mentioned, these co-crystal structures have demonstrated critical

differences between class I and class II synthetases in acceptor stem binding

and orientation of the terminal adenosine, which is the site of amino acid

attachment (Moras, 1992). These differences may explain why the site of

initial attachment of the amino acid is class specific (Moras, 1992; Schimmel

and Ribas de Pouplana, 1995).

Microhelix Aminoacylation and an Operational RNA Code for Amino Acids

In ten synthetase systems that have been tested, oligonucleotide

substrates based on acceptor or acceptor-TTC stems (Figure 1-1) are specifically

aminoacylated by their cognate tRNA synthetase (Frugier et al., 1994; Hamann

and Hou, 1995; Martinis and Schimmel, 1995). These include the class I

CysRS (Hamann and Hou, 1995), IleRS (Nureki et al., 1993), MetRS (Martinis

and Schimmel, 1992; Martinis and Schimmel, 1993) , TyrRS (Quinn et al.,



1995), and ValRS (Frugier et al., 1992), as well as class II AlaRS (Francklyn and

Schimmel, 1989), AspRS (Frugier et al., 1994), GlyRS (Francklyn et al., 1992),

HisRS (Francklyn and Schimmel, 1990; Rudinger et al., 1992) , and SerRS

(Sampson and Saks, 1993). In several of these systems, the synthetase is

known to interact strongly with the anticodon of its cognate tRNA, and yet

microhelix aminoacylation is anticodon-independent.

The determinants for specificity of microhelix aminoacylation in each

tRNA define an operational RNA code that relates nucleotides and structures

in an acceptor stem to the attachment of a specific amino acid. These acceptor

stem interactions were proposed by de Duve (1988) to be a "second genetic

code" (see also M6ller and Janssen, 1990).

Identity elements for microhelix aminoacylation are commonly found

in the first 4 base pairs of the acceptor stem (positions 1"72, 2-71, 3*70, and 4"69)

and the N73 'discriminator base'. The discriminator base N73 (A, U, C, G)

was correlated in early work by Crothers et al. (1972) with the specificity of

tRNA aminoacylation. In subsequent work, N73 has proven to contribute to

the identity of virtually every tRNA species (McClain, 1993; Martinis and

Schimmel, 1995; McClain, 1995).

At the molecular level, the operational RNA code consists of a spatial

distribution of atoms in three dimensions, quite unlike the simple 'one

dimensional' feature of the genetic code. Major elements of the operational

RNA code for alanine are the 2-NH 2 group of G3 which projects into the

minor groove (Musier-Forsyth et al., 1992), and the 2'-hydroxyl groups of G4,

U70, and C71 which line the edges of the minor groove (Musier-Forsyth and

Schimmel, 1992).

For aminoacylation of microhelices with methionine, the A73

discriminator base and G2"C71, C3-G70 and 4-69 bp's are important (Martinis



and Schimmel, 1992; Martinis and Schimmel, 1993). The specific atomic

groups needed for recognition have not been worked out. Interestingly, the

4-69 bp is not conserved between the two tRNAMet isoacceptors (G'C in

tRNAfMet and U-A in tRNAMet). However, the 4"69 bp is the only one that is

different between the first four bp's of tRNAMet and the tRNAIle (LAU)

isoacceptor, which has a C4-G69 bp. As it turns out, the C4-G69 bp is a

negative determinant for tRNAMet aminoacylation as well as a positive

determinant for tRNAIle aminoacylation (Martinis and Schimmel, 1993;

Nureki et al., 1993).

Activities of Discrete Domains and Truncated Synthetases

Given the nature of the discrete structural domains of synthetases and

of tRNAs, one question is whether a catalytic domain by itself is sufficient for

microhelix charging. Related to this question is the idea that the catalytic

domains of synthetases may be the modem remnants of the primordial

synthetases.

Among the synthetases there are several experimental examples of the

isolation of discrete domains that retain function. In the class II AlaRS, the

functions of the enzyme are arranged in modular fashion along the primary

sequence (Jasin et al., 1983). E. coli AlaRS is a homotetramer of 875 amino acid

subunits (Putney et al., 1981a; Putney et al., 1981b). C-terminal deletions were

made within the gene to code for truncated versions of the synthetase.

Fragments shorter than 699 amino acids were monomeric. A 461 amino acid

N-terminal fragment is capable of adenylate synthesis and aminoacylation,

albeit with reduced charging activity with tRNAAla as a substrate. An N-

terminal fragment of 368 amino acids is virtually incapable of tRNA binding

and aminoacylation but retains full adenylate synthesis activity (Jasin et al.,



1983; Regan et al., 1987). Therefore, the 461 amino acid N-terminal fragment

delineates the catalytic domain of AlaRS. Significantly, this AlaRS1-461

fragment aminoacylates microhelixAla at the same rate as does native AlaRS

(Buechter and Schimmel, 1993b).

The class II SerRS has an N-terminal domain that consists of a coiled-

coil of two antiparallel ca-helices which extend for 60 A (Cusack et al., 1990).

This domain interacts with the long variable loop of tRNA Ser (Biou et al.,

1994). Deletion of this coiled-coil domain does not affect adenylate synthesis

but reduces the efficiency of aminoacylation by more than 4 orders of

magnitude. Furthermore, tRNASer binding was not detectable with the

deletion protein (Borel et al., 1994). Thus, like AlaRS, adenylate synthesis

activity of SerRS is independent of major determinants for tRNA binding.

Khoda et al. (1987) split the class I MetRS from Thermus thermophilus

into four stable domains by proteolysis. The first two domains at the N-

terminal end seem to correspond to the catalytic and anticodon binding

domains of E. coli MetRS. A protein comprised of just these two T.

thermophilus MetRS domains is fully active for aminoacylation. Of these two

domains, the N-terminal one contains the conserved class defining motifs, is

fully active for adenylate synthesis, and even aminoacylates E. coli tRNA fM e t

(at a reduced efficiency). The latter result implies that the catalytic domain by

itself can charge tRNAfMet without having anticodon interactions.

In E. coli MetRS, Trp461 in the nonconserved anticodon binding

domain is critical for anticodon recognition (Ghosh et al., 1990). Kim and

Schimmel (Kim and Schimmel, 1992) created deletion mutants of MetRS that

removed from four to eleven amino acids surrounding Trp461. These

mutant proteins were stable and retained adenylate synthesis activity. One

deletion mutant protein aminoacylated a microhelix based on the acceptor



stem of tRNAfM et at the same rate as did wildtype metRS. Thus, adenylate

synthesis activity and acceptor stem aminoacylation were shown to be

functionally independent of anticodon binding.

Thus, the results with AlaRS, MetRS, and SerRS demonstrate that

adenylate synthesis activity can be decoupled from the protein needed for

much of the tRNA binding activity. Moreover, the studies with the class II

AlaRS and class I MetRS explicitly show that acceptor helix interactions and

microhelix charging are intimately associated with the part of the protein

needed for adenylate synthesis.

Noncovalent Assembly of Synthetases

Burbaum and Schimmel (1991a) split E. coli MetRS between the two

major domains, by inserting a stop codon and a new start codon at an internal

position of the coding sequence of the gene for the synthetase. The two

polypeptides were then expressed together and the complex of the two

polypeptides was able to complement a strain of E. coli which encoded a

MetRS with a high Km for methionine. The assembled polypeptides also

retained significant aminoacylation activity in vitro. This result demonstrated

that high activity is independent of a covalent connection between the two

domains of the enzyme.

In similar work with the class I E. coli IleRS, Shiba and Schimmel

(Shiba and Schimmel, 1992a) split the gene for IleRS in 18 widely disparate

locations so that the complete IleRS protein was expressed as two

polypeptides from separate plasmids. Eleven of these fragment pairs were

able to reconstitute IleRS activity sufficient to complement an E. coli ileS null

strain. None of the individual fragments separately complemented the null



strain. It was also possible to split IleRS into 3 protein fragments that

reconstituted full length, functional IleRS (Shiba and Schimmel, 1992b).

These biochemical results give, within both classes of synthetases,

examples of the discrete natures of the functional domains of the synthetases.

Assembly of a Synthetase-tRNA Complex in Evolution

The conserved catalytic domain of tRNA synthetases probably

represents the core primordial synthetase and is responsible for the

operational RNA code (Figure 1-4). One speculation is that these primordial

synthetases were capable of aminoacylating small RNA oligonucleotides or

larger RNA structures that contained acceptor helix-like motifs (Buechter and

Schimmel, 1993a; Schimmel et al., 1993; Schimmel and Ribas de Pouplana,

1995). As template-directed protein synthesis developed, the anticodon

domain was added to the primordial RNAs and at this point additional

domains were added to the synthetases to facilitate interactions with distal

regions of the emerging tRNA (Figure 1-4). As is suggested by the results with

split MetRS and IleRS, additional synthetase domains may have originally

been associated with the catalytic domain in a noncovalent complex, with the

genes for the domains fusing later to produce modem synthetases (Buechter

and Schimmel, 1993a; Schimmel et al., 1993).

Two other groups have independently noted the possibility of acceptor

stem-like RNA motifs in a primordial RNA world (Weiner and Maizels,

1987; Maizels and Weiner, 1993; Noller, 1993). Because several RNA viruses

contain acceptor stem-like motifs at the 3' ends of their genomic RNA,

including plant viruses which have RNA genomes that are specifically

aminoacylated, Maizels and Weiner (Weiner and Maizels, 1987; Maizels and

Weiner, 1993) proposed that tRNAs originated as motifs that tagged genomic

28



RNAs for replication in an RNA world. Because contacts of the acceptor stem

and anticodon are segregated clearly between 23S and 16S rRNA, respectively,

Noller proposed that the two major domains of tRNAs had independent

origins (Noller, 1993).

MetRS as an Example of a Class I Enzyme

The work presented here focuses on E. coli methionyl-tRNA

synthetase. E. coli methionyl-tRNA synthetase is a homodimer of 676 amino

acid subunits (Dardel et al., 1984). Mild trypsinolysis produces a stable

monomeric polypeptide that is 551 amino acids in length (Cassio and Waller,

1971). This form of the enzyme has nearly wild-type activity. The crystal

structure of the truncated enzyme has been solved at 2.5 A resolution (Zelwer

et al., 1982; Brunie et al., 1990) (Figure 1-5). Deletions of coding sequences of

metG were used to fine-map the trypsin cleavage site of MetRS (Mellot et al.,

1989). In these studies, the MetRS polypeptide was reduced to 547 amino acids

without significant loss of activity or stability. Progressive shortening of the

C-teminus beyond this point caused a significant loss in thermostability and

activity (Mellot et al., 1989).

A variety of approaches have been used to determine the residues

within MetRS that are involved in tRNA binding, as well as the nucleotides

in tRNAMet that define its identity. Crosslinking with tRNA derivatives

carrying lysine-reactive moieties was responsible for the first identification of

regions involved in RNA binding (Hountondji and Blanquet, 1985;

Valenzuela and Schulman, 1986; Leon and Schulman, 1987b; Leon and

Schulman, 1987a). Subsequent mutagenesis targeted to these regions

identified specific residues that interact with tRNAMet (Ghosh et al., 1990;

Ghosh et al., 1991; Kim et al., 1993a).



Within the C-terminal domain is a region that contains several

residues needed for anticodon binding. Trp461 is among the most important

of those involved in anticodon binding (Ghosh et al., 1990) (Figure 1-5).

(Some evidence suggests that Trp461 interacts directly with C34 of the

anticodon (Ghosh et al., 1990).) A Trp461Phe substitution increases Km for

tRNA fM et by 60-fold. A Trp461Ala substitution decreases the efficiency of

aminoacylation by 125-fold beyond that of the Trp461Phe mutant, thereby

making the Km not measurable (Meinnel et al., 1991b). Further mutagenesis

and genetic selection protocols have identified Asp391, Arg395 (Ghosh et al.,

1991; Kim et al., 1993a), Asp449, Asp456 (Meinnel et al., 1991b; Schmitt et al.,

1993), Asn452, Arg453, Pro460 and Lys465 (Kim et al., 1994) as also being

involved in anticodon discrimination.

Each subunit of MetRS binds zinc to a Cys4 cluster within the CP1

insert that divides the catalytic domain. This zinc is essential for activity but

is proposed to play a structural role rather than a catalytic role (Fourmy et al.,

1993a; Fourmy et al., 1993b; Landro and Schimmel, 1993). It is known that the

acceptor stem of tRNAMet has nucleotides that are critical for the identity of

tRNAMet (Lee et al., 1992; Martinis and Schimmel, 1992; Meinnel et al., 1993).

The co-crystal structure of the class I E. coli glutaminyl-tRNA synthetase with

tRNAGln shows that residues in the CP1 insertion make contacts with the

tRNAGtn acceptor stem (Rould et al., 1989). The peptide F102-T124 in CP1 of

GlnRS has some structural similarity to peptide E102-I124 in CP1 of MetRS

(Perona et al., 1991). Though it seems likely, it has not been explicitly

demonstrated that residues located in CP1 (possibly including the metal

binding motif) of MetRS make specific contacts with the acceptor-stem of

tRNAMet.



A separate region of MetRS has also been shown to interact specifically

with the acceptor stem of tRNAMet. In the crystal structure of the truncated

MetRS, an extension of the C-terminal domain--termed a C-terminal peptide

appendix--wraps back around the N-terminal domain adjacent to the active

site (Figure 1-5) (Brunie et al., 1990). Kim et al. (Kim et al., 1993b) determined

that Arg533 in this peptide appendix is involved in binding to the acceptor

stem of tRNA fM et. Other work (by the author) provided more direct evidence

that the peptide appendix made acceptor helix contacts (Kim et al., 1993b).

Chapter 5 of this thesis discusses some of this work.

Much is known about the identity elements in tRNAMet. Schulman

and coworkers showed through RNA chemical modification and

replacement of nucleotides that the anticodon of tRNAMet is a main

determinant of identity (Stern and Schulman, 1977; Schulman and Pelka,

1983; Saks et al., 1994). Replacement of any of the three anticodon nucleotides

results in significant reduction of the aminoacylation rate by MetRS.

Nucleotide C34 at the wobble position is especially critical for recognition,

with mutations causing a decrease in aminoacylation rate of >105 (Schulman

and Pelka, 1983; Schulman et al., 1983). Changes in anticodon loop size also

have a detrimental effect on aminoacylation (Schulman and Pelka, 1983).

Alteration of the anticodon of tRNAfMet can also change the identity of the

tRNA. For example, changing the anticodon of tRNAMet (CAU) to that of

tRNAVal (UAC) changed the identity of the mutant tRNAfMet to valine. The

"reverse" construction--replacing the anticodon of tRNAVal with the CAU

anticodon of tRNAfMet--yielded a mutant tRNAval that was charged with

methionine (Schulman and Pelka, 1988).

The success of these anticodon replacements may be due in part to each

of the tRNAs having the same acceptor stem discriminator base. (As



discussed earlier, the acceptor stem of tRNAfM et also contains nucleotides

important for aminoacylation.) In S. cerevisiae tRNAASP, replacement of the

anticodon with the tRNAMet anticodon (CAU) was not sufficient to allow

methionylation with yeast MetRS. However, the additional substitution of

the discriminator base G73 with an A, was sufficient to promote

methionylation. Substitution of U32, G37 and C38 in the anticodon loop,

with the corresponding nucleotides from tRNAfMet, also had a positive effect

on methionylation efficiency. These results illustrate the role of sequence

context and the importance of the acceptor stem discriminator base

interactions (Senger et al., 1992).

Rationale for Experiments Presented in Thesis

This thesis focuses on dissecting out the two discrete domains of

tRNAfM et and studying their interactions with full length and truncated

MetRS and with the isolated C-terminal anticodon binding domain. The

work focused also on comparing the stability and activity of the discrete

protein domain with that of the native protein. Most of the earlier work on

domains of synthetases has used catalytic activity per se as the measure of

function. I investigated primarily RNA binding which was independent of

activity. In particular, I focused on the interaction of the isolated C-terminal

domain of MetRS with the anticodon trinucleotide in the context of the

whole tRNA and of a small RNA hairpin oligonucleotide. Separately, I

studied the interaction of the acceptor helix of tRNAfMet with MetRS. Thus,

each of the two major domains of tRNAfMet was investigated.

The binding energies so obtained and kinetic data enabled me to

separate the contribution to tRNA recognition of protein interactions in the

initial binding step from those in the transition state of catalysis. In addition,



using binding energies for the individual tRNA domains, I was able to

estimate the strain induced in the full tRNA when its two domains are

joined together and bound simultaneously to MetRS.

In order to measure the relatively weak binding interactions, it was

necessary to adapt a special gel binding technique to the protein-RNA system

studied here. Chapter 2 discusses the affinity coelectrophoresis technique

which was utilized.

Chapters 3 and 4 discuss the production, characterization, and RNA

binding affinity of the C-terminal domain of MetRS, in the form of a fusion

protein and as a separate, free domain. This work has been presented (in part)

in Gale and Schimmel (1995b). Chapter 5 discusses work done in

collaboration with Dr. Sunghoon Kim to characterize a mutation in the C-

terminal peptide appendix of MetRS that is involved in acceptor stem

binding (Kim et al., 1993b). Chapter 6 analyzes the binding of various acceptor

stem microhelix RNA substrates to both the full length dimeric and native

MetRS (MetRS1-676) and the truncated monomer form of MetRS (MetRS1.

547). These binding interactions are interpreted in the context of the

aminoacylation activities of these microhelices.

All of this work focused on isolating interactions between domains of

synthetases with domains of the tRNA, and using these data to dissect out

specific contributions to tRNA recognition. By showing that it was possible to

separate the individual domain-domain interactions within the MetRS-

tRNA complex and still retain function, I also obtained support for the

feasibility of the assembly of the synthetase-tRNA complex in evolution from

individual protein and RNA domains.
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Legend to Figure 1-1

Schematic of the tRNA cloverleaf secondary structure, its folded L-shaped

tertiary structure, and minihelix and microhelix RNAs

A. The secondary structure of tRNA is depicted on the left in the

cloverleaf form. The numbering is based on the most common tRNA length

of 76 nucleotides. The right structure illustrates the tertiary structure of the

tRNA. In the tertiary structure of a tRNA, the acceptor stem stacks coaxially

on the TPC stem-loop to form one arm of the L-shaped tRNA. The

dihydrouridine (DHU) stem-loop stacks coaxially on the anticodon stem-loop

to form the other arm of the tRNA. Tertiary interactions between the loops at

the corner of the molecule are critical for maintaining the tertiary structure of

the molecule. B. The left hairpin helix represents a minihelix substrate,

which is composed of the acceptor-TPC stem and the TTYC loop. The right

hairpin helix represents a microhelix substrate, which is composed of the

acceptor-stem and the TPC loop. Adapted from (Martinis and Schimmel,

1995)
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Legend to Figure 1-2

Representation of the conserved active site domain of class I aminoacyl-

tRNA synthetases

The class I aminoacyl-tRNA synthetase active site consists of

alternating fl-strands and a-helices which form a six-stranded parallel f9-sheet

(in a f33a2 arrangement for each half of the motif). This structure is a

Rossman nucleotide binding fold which is found in enzymes that bind

adenine nucleotide cofactors (Rossmann et al., 1974). The approximate

locations of the 11 amino acid (ending in HIGH) signature sequence and the

KMSKS consensus sequence are shown. Alpha-helices are shown as

cylinders, and iS-strands are shown as arrows. Adapted from Starzyk et al.

(1987).
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Legend to Figure 1-3

Representation of the conserved active site domain of class II aminoacyl-

tRNA synthetases

The class II aminoacyl-tRNA synthetase active site consists of a seven-

stranded antiparallel 13-sheet. The locations of the three sequence motifs

characteristic of the class II synthetases are highlighted. Alpha-helices are

shown as cylinders, and B1-strands are shown as arrows.
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Legend to Figure 1-4

Assembly of RNA/protein domains during the evolution of a synthetase-

tRNA complex

Transfer RNAs and synthetases may have coevolved from primordial

RNAs and primordial synthetases. The conserved synthetase domain was

the primordial synthetase that interacted with an RNA acceptor-TYC-like

domain, resulting in an operational RNA code for amino acids that related

RNA structure/sequence to specific amino acids. As a template-dependent

translation process developed, the anticodon-D-stem-biloop domain was

added to the primordial tRNAs and an additional nonconserved domain was

added to the synthetases to facilitate interactions with these distal regions of

the tRNA, such as the anticodon. In the process, acceptor stems with their

amino acids became associated with specific anticodon sequences and the

genetic code was established. Adapted from Schimmel et al. and Schimmel &

Ribas (Schimmel et al., 1993; Schimmel and Ribas de Pouplana, 1995).
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Legend to Figure 1-5

Crystal structure of truncated monomeric MetRS

The crystal structure of the truncated monomeric form of MetRS

(residues 1-551) has been solved to 2.5 A resolution (Brunie et al., 1990).

Shown (in dark blue) in this depiction of the crystal structure is the N-

terminal catalytic domain, including the Rossman nucleotide binding fold.

The C-terminal non-conserved, anticodon binding domain is highlighted in

light blue. Trp461, which is thought to interact with the anticodon, is

highlighted in red. The C-terminal peptide appendix is shown in green.
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Chapter 2

Affinity Coelectrophoresis for Dissecting Protein-RNA Domain-Domain

Interactions in a tRNA Synthetase System



INTRODUCTION

Affinity coelectrophoresis (ACE) is a gel retardation method that allows

the measurement of binding under equilibrium conditions in a gel (Lee and

Lander, 1991; Lim et al., 1991). As described below, it is useful for analyzing

the relatively weak interactions between an aminoacyl-tRNA synthetase and

its cognate tRNA. Furthermore, it is uniquely ideal for characterizing the

interactions between individual synthetase and tRNA domains. Interactions

between aminoacyl-tRNA synthetases and isolated domains of their cognate

tRNAs can be demonstrated to be kinetically specific (Francklyn and

Schimmel, 1989; Buechter and Schimmel, 1993a; Martinis and Schimmel,

1995) but the binding affinity is often so low that it can be difficult to measure

by other commonly used techniques for measuring binding affinities. This

chapter explains the method and summarizes the application of ACE to the

interactions of aminoacyl-tRNA synthetases and their RNA substrates. This

chapter is adapted from (Gale and Schimmel, 1995a).

MATERIALS

Synthesis and Radioactive Labeling of RNA Oligonucleotides. RNA

oligonucleotides were chemically synthesized on a Gene Assembler Plus

synthesizer (Pharmacia LKB Biotechnology Inc., Piscataway, NJ) as previously

described (Usman et al., 1987; Scaringe et al., 1990; Musier-Forsyth et al., 1991).

The RNA substrate was 5'-[32 P]-labelled according to (Silberklang et al., 1977;

Park and Schimmel, 1988).

Custom gel electrophoresis equipment for these experiments was made

by Owl Scientific (Cambridge, MA). Low melting point agarose (LMP agarose)

(BRL, Gaithersburg, MD) (1%) was prepared in 50 mM Hepes (pH 7.5), 0.1 mM

EDTA, 4 mM MgC12, 1 mM 3-ME, and 100 gg/ml BSA.



METHODS AND RESULTS

Affinity coelectrophoresis was used to investigate the binding of the

wild-type and mutant enzymes to the RNA substrates. Affinity

coelectrophoresis is a technique that was developed by Lee and Lander (1991)

to investigate binding of proteins to glycosaminoglycans under equilibrium

conditions. It is also generally applicable to protein-nucleic acid binding

interactions (Lim et al., 1991) and we found it to be particularly useful for

visualizing the relatively weak binding interactions of aminoacyl-tRNA

synthetases and their cognate tRNAs (Kim et al., 1993b; Gale and Schimmel,

1995b).

A Teflon comb with 10 parallel bars that have a footprint of 35 X 2 mm

and are separated from each other by 5 mm was placed on Gelbond film (FMC

Bioproducts, Rockland, ME) in a Plexiglas casting tray. A Teflon comb that

made a well measuring 73 X 1 mm was placed 4 mm from one end of the

parallel bars (Figures 2-1 and 2-2). The agarose was poured to a depth of about

2 mm. When the combs were removed, 10 parallel 35 X 2 mm wells

perpendicular to a 73 X 1 mm slot resulted. The appropriate protein was then

prepared in a series of concentrations in buffer at twice the desired final

concentrations. These samples were mixed 1:1 with 2% LMP agarose and

loaded into the 35 X 2 mm wells. The range of protein concentrations in the

gel was from 0.05 gM to 2.5 pM for the experiment with MetRS and

tRNAfMet.

The 5'-[32P]-RNA (10,000 to 150,000 cpm) was mixed 1:1 with 2% LMP

agarose at a final concentration of roughly 10 nM and loaded into the 73 X 1

mm slot along with 0.02% bromophenol blue and 0.02% xylene cyanol.

Alternatively the 5'-[32P]-RNA was diluted to 70 Cl in the buffer described



above along with 0.02% bromophenol blue, 0.02% xylene cyanol, and 3%

glycerol and then loaded into the 73 X 1 mm slot. The gel was electrophoresed

at 100-150 V for 1.5 to 2 hours in a thermostated circulating gel box (Hoefer

Super Sub, model HE100 (Hoefer Scientific, San Francisco, CA)) at 25 'C. The

gel running buffer was the gel buffer without 13-ME and BSA. Gels were dried

in an open vacuum oven with low heat or under a heat lamp and visualized

using a PhosphorImager from Molecular Dynamics (Sunnyvale, CA). The

protein moves in the gel as does the RNA, however, this shift is much less

than the RNA shift. The movement of the protein due to electrophoresis can

be visualized by staining the dried gel with coomassie brilliant blue (0.05%) in

50% MeOH and 10 % acetic acid. The staining for protein (and detection of its

movement) is most conveniently done after visualization of the radioactive

RNA on a PhosphorImager screen.

The 5'-[ 32P]-RNA was electrophoresed most of the way through the

protein in each lane. The Kd was determined by measuring the vertical shift

m of [32P]-RNA in each protein lane, relative to a protein-free lane (Figure 2-

2). This shift should be proportional to the fraction of RNA bound to protein

at equilibrium in the gel, assuming that the kinetics of association and

dissociation are rapid relative to electrophoresis times and that there are only

2 states, bound and free. The shift value m is divided by the maximum

possible shift n to give a retardation coefficient R (R = m/n, Figure 2-2). Given

the retardation coefficient R, if R. is the maximum possible value of R than

R/RO = 0, where 0 represents the fractional saturation of the RNA with

protein.

Because R is proportional to 0, data from ACE can be analyzed using

the Scatchard equation. For a first order reaction the model for binding is:

P + A, - --- PA Kd = [P][A]/[PA]



with

0 = [PA]/([PA] + [A])

where P is protein and A is the RNA fragment. Since 0 = R/R., the

expression for binding can be written as

R = &R/[1 + (Kd/[P])]

Because [P] = [Ptot] - [PA] and [PA] is very low relative to [Ptot] (because the

exeperiments are conducted with trace levels of A (RNA)) this equation

becomes

R = R /[1 + (Kd/[Ptot])].

Therefore,

R + (R-Kd)/[Ptot] = Ro

which rearranges to

R/[Ptot] = -R/Kd + R,/Kd.

Therefore, a Scatchard plot of R vs. R/[Ptot] gives a linear plot whose slope is

equal to -1/Kd (Lim et al., 1991).

Affinity coelectrophoresis was first used to investigate the dissociation

constant of MetRS for tRNA fM et (Figure 2-3). In this ACE gel tRNAfM et was

electrophoresed through lanes containing MetRS. A dissociation constant

was determined from a Scatchard plot as described above. The Scatchard plot

gave a value for the dissociation constant of 0.5 jgM, at pH 7.5, 25 OC (Figure 2-

3). This value compares with a published Kd of 0.06 gM given by Blanquet et

al. (1973a) which was determined spectrofluorimetrically under similar

conditions. It is not clear why the value determined by affinity

coelectrophoresis is weaker than that determined by Blanquet et al.. We

determined a Kd of MetRS for tRNAfM et by fluorescence quenching using

conditions similar to that of Blanquet et al. and obtained a value of 0.3 pM



(data not shown). This determination by fluorescence titration is consistent

with the electrophoresis results.

DISCUSSION

In subsequent chapters of this thesis are many examples of affinity

coelectrophoresis applied to the interaction of MetRS and various small RNA

substrates that recapitulate either the acceptor stem or anticodon stem and

loop of a tRNA. Dissociation constants for these small RNA substrates range

from 5 gM to 500 gM. Though very weak, many of these binding interactions

are sequence specific.

The technique of affinity coelectrophoresis has several advantages that

make it attractive for measuring the binding interactions between aminoacyl-

tRNA synthetases and small RNA substrates. The synthetase-tRNA

dissociation constants are generally on the order of 0.1 to 1 RM at pH 7.5

(Helene et al., 1971; Blanquet et al., 1973a; Lam and Schimmel, 1975; Schimmel

and S611, 1979; Meinnel et al., 1991b). Compared to other protein-nucleic acid

complexes, these interactions are relatively weak, presumably because of the

need for turnover during protein synthesis. Therefore, many standard

techniques for measuring dissociation constants do not work well. Filter

binding assays have been used for measuring dissociation constants of tRNAs

to aminoacyl-tRNA synthetases (Yarus and Berg, 1967; Yarus and Berg, 1970),

but generally these assays need to be done at an acidic pH value (pH 5.5 - 6.0)

where tRNAs bind more tightly to aminoacyl-tRNA synthetases (Schimmel

and S611, 1979). Even at pH 5.5 small RNA substrates such as acceptor stem

microhelices may be bound with an affinity below the sensitivity of the filter

binding assay. Fluorescence quenching has also been used to measure



synthetase-tRNA interactions (Helene et al., 1971; Blanquet et al., 1973a;

Blanquet et al., 1973b; Lam and Schimmel, 1975). This method also does not

work well for small RNA substrates because the concentrations of optically

dense RNA necessary to quench the protein fluorescence signal are not

practical. (The large size of the RNA substrate makes a technique like

equilibrium dialysis also impractical.) Affinity coelectrophoresis, in contrast,

is capable of measuring dissociation constants up to values above 100 giM.

Affinity coelectrophoresis does have limitations. Measuring weak

binding constants requires large amounts of protein. For experiments in

which the binding constants for the acceptor stem microhelix to MetRS1-547

were measured (see chapters 5 and 6), the protein concentration range was

from 10 gM to 350 pM in a total volume of 160 gL for each of 8 lanes. Thus,

about 11.5 mg of MetRS1-547 (MW= 62,400 daltons) were required for one

experiment. Therefore, good expression systems and purification protocols

are necessary to obtain the quantities of protein needed for this technique.

However, for measuring binding constants to full length tRNAs much

less protein is needed. A concentration range of about 1/5 of the expected Kd

to 5 times the expected Kd is appropriate to measure the Kd. In the case of

MetRS1-676 with tRNAfMet shown here (Figure 2-3) the range was from 0.05

to 2.5 p.M MetRS1-676. Therefore, this experiment used a total of 86 gg of

MetRS1- 676 (subunit MW = 76,000 daltons).

It is clear, then, that the technique of affinity coelectrophoresis is

uniquely qualified to measure the weak binding interactions between

synthetases and small RNA substrates that recapitulate segments of the

tRNA. Furthermore, it has the additional advantage of being a

straightforward technique for measuring the interaction between synthetases

and full length tRNAs at physiologic pH and buffer conditions.



A.

Figure 2-1

Affinity coelectrophoresis gel casting apparatus

A. The components of the ACE gel casting apparatus. Plexiglass casting

tray (left), slot-forming comb (upper right) and the lane-forming comb (lower

right). B. The assembled gel casting apparatus. The Plexiglass casting tray is

assembled with tape along the edges to seal the tray and hold up the slot-

forming comb. The lane-forming comb is placed on the tray with the lanes

perpendicular to the slot-forming comb.

B.



Legend to Figure 2-2

Schematic representation of an affinity coelectrophoresis gel before and

after electrophoresis

A. Prior to electrophoresis, protein is cast in agarose in parallel

rectangular lanes in increasing concentrations from right to left. Labeled

RNA is aliquoted into the slot at the top of the gel. B. Following

electrophoresis the RNA has moved through the rectangular zones of protein

but is slowed by binding to the protein. The amount of retardation is

indicated by the value m and a retardation coefficient R =m/n is proportional

to the fractional saturation of RNA with protein. This figure is similar to that

of Figure 1 of Lee and Lander (1991).
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Legend to Figure 2-3

Affinity coelectrophoresis (ACE) to determine the binding constant of

MetRS for tRNAfMet

A. Gel electrophoresis of MetRS in lanes of increasing concentration

from right to left with [32 P]-end labeled tRNAfMet electrophoresed through

the protein lanes at pH 7.5, 25 'C. B. Scatchard plot of the measured R values

versus R/[MetRS]. The slope of the line is equal to -1/Kd.
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Chapter 3.

Construction, Purification and Physical Properties of Fused and Unfused

C-terminal Domain Proteins



INTRODUCTION

MetRS, like other tRNA synthetases, is composed of two major

domains. The class-defining catalytic domain is within the N-terminal half

of the structure, while the C-terminal domain is predominantly oc-helical and

is known to contain residues that interact directly with the anticodon of

tRNAMet (Valenzuela and Schulman, 1986; Ghosh et al., 1990; Ghosh et al.,

1991; Meinnel et al., 1991b; Kim et al., 1993a; Auld and Schimmel, 1995) (Figure

3-1). Previous work demonstrated that MetRS could be split so that the two

domains of the synthetase were expressed as separate polypeptides. A non-

covalent complex of these two domains maintained high levels of activity

(Burbaum and Schimmel, 1991a). This finding showed that the function of

the combined domains is independent of a covalent connection between

them.

Based on this previous work, and considering the pathways for the

evolution of the two-domain structure of tRNA synthetases, we considered

whether the anticodon binding domain could function as a discrete unit

when joined to an arbitrary protein. In particular, a peptide "appendix" at the

end of the anticodon-binding domain curls back to the active site of the N-

terminal domain of MetRS, thereby linking together the two structures

(Brunie et al., 1990; Kim et al., 1993b) (Figure 3-1). We thought that this

linkage, as well as the packing interaction of the domain interface, might be

necessary to achieve a conformation for RNA binding by the C-terminal

domain.

We decided to produce this C-terminal domain as a fusion protein in

order to facilitate solubility and purification. We chose to define the start of

the C-terminal domain as residue 1367 based upon the work of Burbaum et al.

(1991a) in which MetRS was split into two co-expressed polypeptides that



were able to reconstitute active MetRS. In this work Burbaum et al.

engineered a split in the protein at six different locations from residue 355 to

374. Three of the six constructs produced active MetRS, including one that

started the C-terminal polypeptide at 1367 (preceded by a methionine start

codon).

In this work we fused amino acids 367 to 547 of the anticodon binding

domain of E. coli MetRS with maltose binding protein (MBP-C367-547) (Guan et

al., 1987; Maina et al., 1988). We also made one variation of this fusion

protein that contained a Trp461 Ala substitution in the C-terminal domain

(MBP-C 367-547(W461A)).

These fusion proteins contained a linker between the gene for MBP

and the C-terminal domains which encoded ten amino acids that included a

Factor Xa protease cleavage site (Figure 3-2). This linker allowed for the

separation of the C-terminal domains from MBP so that they could also be

characterized as isolated proteins. The first stage of the analysis of these

fusion proteins and C-terminal domain fragments was to physically

characterize them to determine whether or not the C-terminal domains in

these proteins maintained native-like structure. The results of the

characterization of MBP-C 367-547 and C367-547 have been reported (Gale and

Schimmel, 1995b) and the text that follows is adapted with permission from

that report (Copyright 1995, American Chemical Society).

MATERIALS AND METHODS

Construction of Fusion Proteins. Phagemid pJB104 encodes the

monomeric form of Eschcerichia coli methionyl tRNA synthetase (residues 1 to

547) (Kim and Schimmel, 1992). (All work in this chapter was done with the

547 amino acid N-terminal fragment of MetRS which hereafter will simply be



referred to as "MetRS1-547".) Site-directed mutagenesis with the Sculptor in

vitro mutagenesis system (Amersham, Arlington Heights, IL) was used to

insert a Bam HI site in the MetRS1-547 gene of phagemid pJB104 directly before

the codon for 1367. The mutagenic primer, 5'-

CGATATCATCAATGGATCCAGAGAGTTTCGC-3', was used for this

purpose. All oligonucleotides were synthesized by the MIT Biopolymers

Laboratory. This construct (phagemid pAG117) was cleaved with Bam HI to

produce a 759 bp fragment that was inserted into the Barn HI site of plasmid

pMal-c2 (New England Biolabs, Inc., Beverly, MA) (Guan et al., 1987; Maina et

al., 1988) to produce a gene fusion between MalE and codons 367 to 547 of

MetRS including a linker between the two genes that encodes for 10 amino

acids, including a Factor Xa cleavage site. The resulting plasmid is designated

as pAG120 (Figure 3-2).

Site directed mutagenesis was used to change the codon for W461

(TGG) in the gene for MetRS1-547 in the phagemid pJB104 to an alanine codon

(GCG) (phagemid pAG123). The mutagenic primer 5'-

TGTTTCGCCACCACCGCCGGAGCCTGTrCATC-3' was used for this purpose.

This mutation was then "marker-transferred" into pAG120 by cleaving both

pAG123 and pAG120 with Cla I to remove a 492 bp fragment. The mutant

fragment from pAG123 was then inserted into pAG120 to produce a plasmid

that encodes for a fusion between maltose binding protein and residues 367 to

547 of MetRS with a W461A mutation (protein MBP-C 367-547(W461A),

plasmid pAG124).

The sequence of all plasmid constructs and mutants were verified by

DNA sequencing. Sequencing was done using Sequenase (United States

Biochemical, Cleveland OH) according to the manufacturer's instructions.



Purification of Fusion Proteins. Plasmids pAG120 and pAG124 were

transformed into E. coli strain TG1 (K12, SupE hsdd5 thi A(lac-proAB) F'[traD36

proAB+ lacIq lacZAM15]). Expression of the fusion proteins was induced with

0.5 mM IPTG and the cells were harvested at late log phase. Cells were

resuspended in buffer containing 20 mM Tris-HCI (pH 7.5), 200 mM NaC1, 1

mM EDTA, 10 mM B-ME, and 0.5 mM PMSF, and lysed in a French press at

15,000 lbs/in.2. The lysate was centrifuged at 27,000 X g for 15 minutes and the

resulting supernatant was precipitated with 0.2 % polyethyleneimine (PEI)

and then centrifuged at 12,000 X g for 10 minutes. The supernatant was then

dialyzed into 25 mM Tris-HCl (pH 7.5), 1 mM g-ME (Buffer A). The fusion

proteins in this solution were purified using an FPLC system with a Mono Q

HR 10/10 column (Pharmacia LKB Biotechnology, Uppsala, Sweden) with a

linear NaCl gradient from 0 to 400 mM. Fractions containing fusion protein

were identified by SDS-PAGE, concentrated to about 20 mg/mL protein, and

then purified using an FPLC Superose 12 column (Pharmacia LKB

Biotechnology, Uppsala, Sweden) in 25 mM Tris-HCl (pH 7.5), 200 mM NaC1,

and 1 mM JB-ME.

Alternatively, for large scale preparations, a 500 mL DEAE-TSK column

(Pharmacia LKB Biotechnology, Uppsala, Sweden) was substituted for the

MonoQ column. After the protein sample was loaded the column was

washed with 600 mL of Buffer A, and then the fusion protein was eluted with

a linear NaCl gradient from 0 to 400 mM in 1600 mL. Fractions containing

fusion protein were identified by SDS-PAGE, concentrated to about 5-10

mg/mL, and then purified over a 100 cm X 2.4 cm Sephacryl 100HR column

(Pharmacia LKB Biotechnology, Uppsala, Sweden) in 25 mM Tris-HCl (pH

7.5), 200 mM NaC1, and 1 mM 13-ME. Protein concentration was determined

by absorbance at 280 nm (Edelhoch, 1967; Cassio and Waller, 1971).



MetRS1-547 was produced from a high-expression construct made by

inserting the MetRS gene from phagemid pJB104 into the plasmid pKK223-3

expression vector with its tac promoter (Pharmacia Biotech, Inc., Piscataway,

NJ). Phagemid pJB104 was cleaved with Eco RI and Sal I, and plasmid

pKK223-3 was cleaved with Eco RI and both were digested with mung bean

nuclease to remove single stranded ends (Sambrook et al., 1989). The MetRS1-

547 gene was blunt-end-ligated (Sambrook et al., 1989) into plasmid pKK223-3

to produce plasmid pAG112. MetRS1-547 was purified as described earlier for

the fusion protein except that after PEI precipitation the supernatant was

fractionated with ammonium sulfate, and proteins precipitated at 30-55%

ammonium sulfate were resuspended in 25 mM Tris-HC1 (pH 7.5) and 1 mM

f9-ME. This solution was then dialyzed into the same buffer to remove

ammonium sulfate and purified by FPLC as described earlier for MBP-C 36 7-

547.

Cleavage of Fusion proteins. The fusion proteins were cleaved using

Factor Xa (New England Biolabs, Inc., Beverly, MA) in 50 mM Tris-HCl (pH

7.5), 100 mM Nacl, 2 mM CaC12. MBP-C 367-547 at a concentration of 1 mg/mL

was incubated with Factor Xa at a concentration of 5 gg/mL (200:1, w:w) for 12

hours at room temperature. This reaction was then dialyzed into 25 mM

Tris-HC1 (pH 7.5), 1 mM 8-ME and the C-terminal domain (C367-547, see

Figure 3-2) was separated from maltose-binding protein by anion exchange

using a Mono Q HR 10/10 column (Pharmacia LKB Biotechnology, Uppsala,

Sweden) as described earlier.

Circular Dichroism Spectroscopy. CD experiments were performed on an

AVIV model 62DS CD spectrometer with an AVIV model W5TE-159-S

thermoelectric temperature-controlled cuvette holder (AVIV Associates, Inc.,

Lakewood, NJ). All experiments were done in 20 mM sodium phosphate (pH



7.3), 100 mM NaC1 and 1 mM IB-ME. Spectra were recorded from 260 to 200

nm in 1 nm wavelength increments with a signal acquired for 5 seconds at

each wavelength with a 1.5 nm bandwidth. The signal was recorded in units

of mean residue ellipticity ([0] deg cm 2 dmol-1). Thermal denaturation was

monitored by the change in [0] at 222 nm. Temperature was incremented in 1

'C steps from 25 to 80 OC. The samples were equilibrated for 1 minute at each

temperature and the signal was recorded for 5 seconds. The pH of the buffer

in this temperature range changed by less than 0.2 pH unit. The melting

temperature was determined as the minimum of the first derivative of [0] at

222 nm versus 1/temperature (Cantor and Schimmel, 1980b). All spectra and

thermal denaturation experiments were done at both 50 Cgg/mL protein and 1

mg/mL protein with a 5 mm pathlength and 0.5 mm pathlength,

respectively.

RESULTS

Production and Cleavage of MBP-C 367-547. We chose the maltose binding

protein (MBP) to fuse to the anticodon binding domain of MetRS. This

protein has a molecular weight of 42,500 daltons and its interaction with

amylose can be used as a basis to purify a fusion protein. In addition, the use

of a linker with a Factor Xa cleavage site enables the release of the polypeptide

joined to MBP (Figure 3-2). The fusion protein MBP-C 367-547 was expressed at

high levels in E. coli strain TG1, typically yielding 40 mg/L of culture. The

expressed fusion protein was soluble and stable and therefore amenable to

purification (data not shown). We attempted to purify this protein with an

amylose resin column (Maina et al., 1988) but, although this column bound

MBP with high affinity, MBP-C 367-547 did not bind well to the amylose resin.

Instead, we used ion exchange chromatography on a Mono Q HR 10/10



column followed by gel filtration on Superose 12 which yielded MBP-C 367-547

of about 90% purity (Figure 3-3). Both MBP-C367-547(W461A) and MBP-C 367-

676 behaved essentially identically to MBP-C 367-547 in the purification protocol

and gave similar yields.

Factor Xa at a 1:200 (wt:wt) ratio cleaved 100% of the fusion protein,

and domain C367-547 was then separated from MBP by ion exchange

chromatography on a Mono Q HR 10/10 column (Figure 3-3). Edman

degradation of the released cleavage product (carried out by the MIT

Biopolymers Laboratory) verified that the N-terminus had the sequence

ISEFGSIDDI, as expected (Figure 3-2). Although purified domain C367-547 was

analyzed by circular dichroism, amounts of cleaved domain C367-547 sufficient

to analyze for RNA binding by affinity coelectrophoresis (>5 mg) were

limited. This limitation is primarily due to the relatively high levels of

expensive Factor Xa needed to cleave the fusion protein. Therefore, most of

the affinity coelectrophoresis analyses were done with the intact fusion

protein MBP-C 367-547 (see Chapter 4). C367-547(W461A) was cleaved from MBP

and purified with the same protocol as C367-547-

Circular Dichroism. According to the X-ray crystal structure of MetRS1-

547 (Brunie et al., 1990), the secondary structure of domain C367-547 is primarily

a-helical. Domain C367-547 has a CD spectrum similar to that of MetRS1-547

with minima at 209 and 222 nm (Figure 3-4A). These minima are

characteristic of a-helix secondary structure (Cantor and Schimmel, 1980a).

The similarities of the CD spectra of the two proteins suggest that domain

C367-547 has a native structure like that of the same domain contained in the

intact protein. The contribution of the N-terminal domain of MetRS to the

CD spectrum decreases the negative peaks at 209 and 222 nm because that

domain has short elements of f3-strand, a-helix, and irregular structures



which in toto should reduce the overall signal when expressed in units of

mean residue ellipticity (Cantor and Schimmel, 1980a).

We also compared the CD spectrum of domain C367-547 to spectra of

MBP-C 367-547 and MBP alone (data not shown). Both domains are primarily

a-helical and show characteristic minima at 209 and 222 nm. However, the

CD spectrum of MBP alone has an overall minimum at 222 nm, whereas

domain C367-547 has a global minimum at 209 nm. Domain C367-547 also has a

deeper minimum with a value of -16,500 deg cm 2 dmol-1 at 209 nm whereas

MBP has a value of -11,000 deg cm 2 dmol-1 at 222 nm. The spectrum for MBP-

C367-547 falls between these two spectra and qualitatively appears to be an

average of the combined spectra (data not shown). The spectra for MetRS1.

547, C367-547 and MBP-C 367-547 all show some dependence on concentration

with all three showing somewhat less a-helical character at 50 gg/mL than at

1 mg/mL. The CD spectrum of MBP, however, was concentration-

independent over the range of 50 gg/mL to 1 mg/mL. Collectively, these

results suggest that there is little difference between the overall structure of

domain C367-547 in the fusion protein or as an "isolated protein".

The W461A mutant fusion protein and isolated C-terminal domain

had CD spectra that were essentially identical to their wildtype counterparts.

The CD spectrum of C367-547(W461A) has a global minimum at 209 nm with a

value of -17,100 deg cm 2 dmol-1 at a concentration of 1 mg/mL (Figure 3-5A).

Both the spectra for C367-547(W461A) and MBP-C 367-547(W461A) show some

dependence on concentration with somewhat less a-helical character at 50

gg/mL than at 1 mg/mL, as seen with the wildtype proteins. These results

confirm that mutation of W461 to alanine does not cause any major

structural perturbations in the C-terminal domain.



Thermal Melting Curves. Thermal melting curves of domain C367-547

were performed to evaluate the thermal stability of this domain relative to

intact MetRS1-547 and to fusion protein MBP-C 367-547 (Figure 3-4B). Thermal

denaturation was monitored at the 222 nm local minimum characteristic of

(a-helix structure. Experiments were done at both 50 gg/mL and 1 mg/mL for

all proteins. MetRS1-547 and MBP-C 367-547 had similar denaturation profiles

at 1 mg/mL, where MetRS1-547 had an apparent Tm of 61.5 'C and MBP-C36 7-

547 had an apparent Tm of 63 °C (Figure 3-4B).

In both cases denaturation was not reversible, probably because of the

aggregation of denatured protein. Denaturation of the fusion protein was

somewhat concentration-dependent with an apparent Tm of 56 'C at 50

gg/mL. It was not possible to measure the apparent Tm of MetRS1-547 at 50

gg/mL because the denatured protein appeared to precipitate out of solution

and settle to the bottom of the cuvette. However, the denaturation transition

of MetRS1-547 at 50 gg/mL appeared to start at the same temperature as

MetRS1-547 at 1 mg/mL.

The thermal denaturation curve of domain C367-547 consistently

showed a sharp cooperative transition, but the measured apparent Tm's

varied significantly from preparation to preparation (Figure 3-4B). This

variation was probably due to differences in the trace amounts of undigested

MBP-C 367-547 and smaller fragments of C367-547 present in purified

preparations of C367-547. In all cases the denaturation was largely

nonreversible and aggregation was observed after denaturation. In four

experiments with four independent preparations of C367-547, apparent Tm's

ranged from 62 to 68 'C at 1 mg/mL protein and from 60 to 67.5 'C at 50

jig/mL. The denaturation curve shown in Figure 3-4B has an apparent Tm of

66 oC.



Although some aggregation during the thermal denaturation of these

proteins was evident, the cooperativity of the transitions (Figure 3-4B)

suggests a native-like structure for the C-terminal domain both

independently and as part of the fusion protein MBP-C 367-547. Protein C367-

547 appears to be as stable as, or more stable than, MetRS1-547 or MBP-C 367-547.

Thermal denaturation of MBP-C367-547(W461A) and C367-547(W461A)

showed a significant difference between these proteins and their wildtype

counterparts in thermal stability. At 1 mg/mL, MBP-C367-547(W461A) has an

apparent Tm of 57.5 'C, which is 5.5 °C lower than that for wildtype MBP-C367-

547. Protein C367-547(W461A) has an apparent Tm at 1 mg/mL of 58.5 °C, which

is 3.5-9.5 'C lower than that of the wildtype C367-547 (Figure 3-5B). Therefore,

mutation of W461 to alanine has a significant effect on the thermal stability of

the C-terminal domain, both in the fusion protein and in the isolated C-

terminal domain.

As was the case for the wildtype proteins, the thermal denaturation of

the mutant proteins was not reversible. However, in contrast to MBP-C367-

547, MBP-C367-547(W461A) shows very little concentration-dependence. The

apparent Tm of MBP-C 367-547(W461A) at 50 gg/mL was 55.5 'C, a decrease of

only 2 °C. Wildtype MBP-C 367-547 shows a difference in apparent Tm of 7 'C

in this concentration range. Protein C367-547(W461A) also shows very little

concentration-dependence with a decrease of 1 °C to 57.5 'C in its apparent Tm.

But this small difference is similar to that observed with wildtype C367-547,

though at both concentrations the apparent Tm of the mutant domain is

significantly decreased relative to that of the wildtype domain.

In spite of the effect on Tm of the mutation of W461 to alanine, both

mutant proteins still have a cooperative melting transition characteristic of a

native-like structure. Thus, the W461A mutation has not caused a large



structural perturbation of the C-terminal domain, but to some extent it has

weakened the stability of the C-terminal domain.

DISCUSSION

Methionyl tRNA synthetase from Thermus thermophilus has been

analyzed structurally by limited proteolysis. T. thermophilus MetRS was

cleaved into four stable domains designated T1 through T4, in order of their

location from the N-terminal to the C-terminal end of the protein (Kohda et

al., 1987). T1, but not T2, is active in aminoacylation, whereas both T1 and T2

could be crosslinked to tRNAMet. These two domains appear to correspond to

the N-terminal catalytic domain and the C-terminal anticodon binding

domain of E. coli MetRS, respectively. Therefore, in T. thermophilus MetRS it

appears that the two primary domains of the synthetase, the catalytic domain

and the anticodon binding domain are stable and functional in an isolated

form. Our data indicate that the anticodon binding domain from E. coli

MetRS is also stable and native-like in structure as an isolated polypeptide.

The C-terminal end of MetRS is an appendix that extends back to the

catalytic site (Brunie et al., 1990) (Figure 3-1), where it contributes to binding of

the acceptor stem of tRNAMet (Kim et al., 1993b). We thought that this contact

might influence the conformation of the anticodon binding domain and that

it might also be needed for its stability. However, the stability of domain C367-

547 in isolation is greater than that of MetRS (Figure 3-4B). The higher

thermal stability of domain C367-547 compared to MetRS (Figure 3-4B) shows

that interactions of the C-terminal peptide appendix with the catalytic site are

not required for the stable, native structure formed by domain C367-547.

Though the Trp461 Ala substitution did not cause any major

perturbations of the structure of MBP-C 367-547 or of C367-547, it did cause a



decrease in thermal stability (Figure 3-5). It is possible that this decrease in

thermal stability has some effect on the functionality of this protein.

However, in view of the close similarities in the properties of the fused and

unfused C-terminal domain, it is likely that any contribution of stability to

the function of a W461A mutant MetRS would be similar to the contribution

of stability to the function of the isolated W461A mutant domain.



Legend to Figure 3-1

Structure of MetRS1-54 7 and the proposed structure of domain C367-547

On the left is the structure of MetRS1-547 with residues 367 to 547 highlighted

in lighter blue. On the right is the proposed structure of the isolated C-

terminal domain, C367-547, with the peptide appendix labeled.
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Legend to Figure 3-2

Plasmid pAG120 encoding the fusion protein MBP-C36 7-547

The expanded region shows the coding sequence of the junction

between MBP and domain C367-547 in the gene for the fusion protein MBP-

C367-547. A Bam HI site was added to the MetRS1- 547 gene in phagemid pJB104

directly before the codon for 1367. A Bam HI fragment was then excised from

plasmid pJB104 and inserted into the Bam HI site of plasmid pMal-c2 to give

plasmid pAG120. Adapted with permission from Gale and Schimmel (1995b)

(Copyright 1995, American Chemical Society).
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Legend to Figure 3-3

SDS-PAGE of extracts of cells expressing MBP-C 367-547 and the

purification and cleavage of MBP-C367-547

This gel shows the stages of the purification of MBP-C 367-547 and C367-

547. Left lane, molecular weight standards with molecular weights in

kilodaltons given along the left ordinate; A. MetRS1-547; B. Protein ( 7.5 gg)

from extracts of uninduced pAG120/TG1 cells; C. Protein (7.5 Gg) from

extracts of pAG120/TG1 cells induced with 0.5 mM IPTG for 4 hours to express

MBP-C 367-547 at mid-log phase; D. MBP-C 367-547 (3 gg); E. MBP-C 367-547 (5

gg) cleaved with Factor Xa; F. MBP (3 gg) cleaved from MBP-C 367-547 and

purified from C367-547; G. C367-547 (3 gg) cleaved from MBP-C 367-547 and

purified from MBP. Adapted with permission from Gale and Schimmel

(1995b) (Copyright 1995, American Chemical Society).
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Legend to Figure 3-4

Circular dichroism analysis of domain C367-547

A: CD spectra of MetRS1-547 and C367-547 at 25 'C on an AVIV 62DS CD

spectrometer, each at a concentration of 1 mg/mL. B: Thermal denaturation

curves of MetRS1-547, C367-547 and MBP-C 367-547, each at a concentration of 1

mg/mL. All CD spectra and thermal denaturation curves were done in 20

mM sodium phosphate (pH 7.3), 100 mM NaCl and 1 mM B1-ME. Adapted

with permission from Gale and Schimmel (1995b) (Copyright 1995, American

Chemical Society).
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Legend to Figure 3-5

Circular dichroism analysis of domain C367-547(W461A)

A: CD spectra of MBP-C367-547(W461A) and C367-547(W461A) at 25 'C

on an AVIV 62DS CD spectrometer, each at a concentration of 1 mg/mL. B:

Thermal denaturation curves of MBP-C 367-547(W461A) and C367-547(W461A)

compared to the denaturation curve of C367-547, each at a concetration of 1

mg/mL. All CD spectra and thermal denaturation curves were done in 20

mM sodium phosphate (pH 7.3), 100 mM NaCl and 1 mM fI-ME.
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Chapter 4

Binding of an Anticodon-Containing RNA Hairpin to an Isolated Domain



INTRODUCTION

In the previous chapter it was demonstrated that a fusion protein of

maltose binding protein and the C-terminal, anticodon-binding domain of

MetRS (residues 367-547) was stable and soluble and that, as part of this

protein, the C-terminal domain had native-like structural and physical

properties (see Figure 3-4). It was also demonstrated that the C-terminal

domain by itself (C367-547) was stable and exhibited native-like structural and

physical properties. Finally, a variation of this C-terminal domain construct,

containing a mutation of Trp461 to alanine (Figure 3-5) was also found to

maintain native-like structural and physical properties.

Considering that these fusion proteins and isolated C-terminal

domains appeared to maintain their native structure, the next stage of

analysis was to test the functional properties of the C-terminal domain in this

context. The C-terminal domain of MetRS has been proposed to have been

fused to the core primordial synthetase in order to add the capability for

interactions with the second, anticodon-containing domain of tRNA

(Schimmel et al., 1993). In the case of MetRS, it is known that the C-terminal

domain contains determinants for binding to the anticodon of tRNAMet

(Ghosh et al., 1990; Meinnel et al., 1990; Ghosh et al., 1991; Meinnel et al., 1991a;

Meinnel et al., 1991b; Kim and Schimmel, 1992; Auld and Schimmel, 1995).

Therefore, the function of this C-terminal domain was analyzed by

characterizing its binding properties to the anticodon of tRNAfMet. The RNA

substrate used was a small RNA hairpin oligonucleotide that recapitulated

the anticodon stem-loop of tRNA fM et (Figure 4-1). The RNA binding

function was investigated by the affinity coelectrophoresis (ACE) method (Lee

and Lander, 1991) described in chapter 2. This method enabled us to detect

directly RNA-protein complexes formed with isolated MetRS fragments and



the RNA hairpin substrate. The results concerning MBP-C367-547 and C367-547

have been reported (Gale and Schimmel, 1995b) and the text below is adapted

with permission from that report (Copyright 1995, American Chemical

Society).

MATERIALS & METHODS

Synthesis and Radioactive Labeling of RNA Oligonucleotides. RNA

oligonucleotides were chemically synthesized on a Gene Assembler Plus

synthesizer (Pharmacia LKB Biotechnology Inc., Piscataway, NJ) as previously

described (Usman et al., 1987; Scaringe et al., 1990; Musier-Forsyth et al., 1991).

The RNA substrate was 5'-[32 P]-labelled according to (Silberklang et al., 1977;

Park and Schimmel, 1988).

Affinity Coelectrophoresis. Affinity coelectrophoresis was used to

investigate the binding of the proteins to the RNA substrates. Affinity

coelectrophoresis was performed as described in Materials and Methods of

Chapter 2 (see Figures 2-1 and 2-2).

RESULTS

Affinity Coelectrophoresis. We found that with the ACE assay MetRS1-547

binds to tRNA fMet with a Kd of 3.6 ± 1 gM at pH 7.5 and 25 'C (see Chapter 6).

Using the same procedure, the dissociation constant for the anticodon stem-

loop RNA (Figure 4-1) was 31 ± 5 gM (Figure 4-2A, D and Table 4-1). (By

using an anticodon stem-loop structure as a competitive inhibitor of

aminoacylation, Meinnel et al. (Meinnel et al., 1991a) obtained a KI = 38 + 5 gM

at pH 7.6 and 25 'C. ) The 6- to 7-fold difference between the dissociation

constant for tRNAfMet and that for the anticodon stem-loop suggests that

much of the binding energy between MetRS1-547 and tRNAfMet is derived



from interaction with the anticodon stem-loop domain. This result is

consistent with the anticodon of tRNAMet being a major specificity

determinant for MetRS (Saks et al., 1994). For example, change of the UAC

anticodon of tRNAVal to the CAU anticodon of tRNAMet switches the

specificity of aminoacylation of tRNAval from valine to methionine

(Schulman and Pelka, 1988).

Considering that the C-terminal domain had native-like characteristics,

we wanted to determine whether it could interact with tRNAMet, and, if so,

whether that interaction was recapitulated with the anticodon stem-loop

hairpin alone. The fusion protein MBP-C 367-547 bound to the anticodon

stem-loop structure with a dissociation constant of 39 ± 5 gM. This affinity is

similar to that of MetRS1-547 for the anticodon stem-loop hairpin (Figure 4-

2A, B, D and Table 4-1).

In addition, we obtained enough of the free domain C367-547 to show

that its complex with the anticodon stem-loop structure was essentially the

same (Kd = 31 ± 2 gM) as that of the MBP-C 367-547 fusion protein (Figure 4-3A

and Table 4-1). Furthermore, the free domain, C367-547, bound to intact

tRNAfMet with a Kd of 53 ± 5 gM (Figure 4-3B). While this Kd is somewhat

weaker than that for C367-547 bound to the anticodon stem-loop, it is close

enough to suggest that there is little or no difference in the determinants for

binding of the C-terminal domain to the anticodon stem-loop hairpin

compared to intact tRNAfMet. By the criterion of RNA binding, therefore,

domain C367-547 recapitulates the interaction of MetRS1-547 for the anticodon

stem-loop of tRNAfMet. The binding site for the anticodon stem-loop of

tRNAfMet is contained entirely within the C-terminal domain. Furthermore,

the C-terminal domain does not appear to interact with any part of the tRNA

outside of the anticodon stem-loop domain.



To determine whether the interaction observed in these gels was

specific to the anticodon trinucleotide, we investigated the hairpin stem-loop

structure with a GAU instead of a CAU anticodon trinucleotide sequence.

MetRS1-547 binding was weak and MBP-C367-547 binding was not detectable to

the mutant anticodon stem-loop that contains the anticodon GAU instead of

the wildtype anticodon CAU (Figure 4-2C and Table 4-1). The isolated

domain C367-547 also had no detectable binding to the mutant anticodon stem-

loop substrate (Table 4-1). These experiments established that domain C367-547

maintains the same specificity as MetRS1-547 for interaction with the RNA

substrates. Because this specificity duplicates the specificity of interaction seen

between MetRS and tRNAMet (Schulman and Pelka, 1983), we believe that

MBP-C 367-547 and C367-547 are binding to the RNA substrates in a native

orientation.

It is known that a region of the MetRS C-terminal domain from about

Ala 451 to Glu 467 is primarily responsible for the discrimination of the

tRNAMet anticodon (Meinnel et al., 1991b; Kim et al., 1993c; Kim et al., 1994)

along with a region from Asp 387 to Arg 395 (Ghosh et al., 1991; Kim et al.,

1993a). In particular, mutation of Trp 461 to Phe or Ala causes a strong

reduction in aminoacylation rate that can be attributed primarily to a loss of

affinity towards any tRNA with a CAU anticodon (Ghosh et al., 1990; Meinnel

et al., 1991a; Meinnel et al., 1991b). Ghosh et al. (Ghosh et al., 1990) showed that

substitution of W461 with Phe increased Km greater than 60-fold with a less

than 2-fold increase in kcat. Meinnel et al. (Meinnel et al., 1991b) showed

further that substitution of W461 with Ala decreased kcat/Km 125-fold further

beyond the decrease caused by a Phe mutation at that location. In this case, a

Kd or Km was not measurable.



Based on this knowledge we also tested the affinity for an anticodon

stem-loop substrate of a C-terminal domain fusion protein with a W461A

mutation (MBP-C367-547(W461A)). The W461A mutation should eliminate

binding to the anticodon stem-loop substrate. This was, in fact, what was

observed (Figure 4-4A). The protein MBP-C 367-547(W461A) does not bind to

the anticodon stem-loop RNA substrate. This protein and the isolated

domain C367-547(W461A) are somewhat less stable than their wildtype

counterparts but the physical characterization suggests that they are

nonetheless in a native-like conformation (see Chapter 3 and Figure 3-5).

Because this mutation (W461A) has the same effect on the fusion protein that

it has on MetRS, we believe that this result further confirms that the C-

terminal domain (C367-547) has a native-like structure and function,

regardless of whether it is a part of a fusion protein or is isolated by itself.

DISCUSSION

Although the catalytic domain is shared by all enzymes in the same

class, RNA-binding insertions into that domain and the entire second major

domain vary from enzyme to enzyme (Starzyk et al., 1987; Schimmel et al.,

1993). For example, the second domain of class I methionyl-tRNA synthetase

is comprised of a-helices (Brunie et al., 1990) while the corresponding domain

of the related class I glutaminyl-tRNA synthetase is rich in 2-structure (Rould

et al., 1989; Rould et al., 1991). Moreover, in comparing sequences of a

particular tRNA synthetase through evolution, the class-defining catalytic

domain is much more strongly conserved than is the second domain. Thus,

the class I E. coli and human isoleucyl-tRNA synthetases have a 16-20%

similarity of sequence throughout the N-terminal catalytic domain, but the C-



terminal domain shows a similarity of only 0-7%, depending on the region of

the domain that is considered (Shiba et al., 1994).

The primordial tRNA synthetases probably lacked these idiosyncratic

domains and were most likely comprised of the class-defining catalytic

domains which could activate amino acids. When bound to an RNA

substrate, these small enzymes may have interacted with no more than a few

nucleotides adjacent to the amino acid attachment site. These RNA

substrates possibly resembled the acceptor-T'PC minihelix domain of

contemporary tRNAs (Schimmel et al., 1993). In the case of the class II alanyl-

tRNA synthetase, a fragment comprised of approximately half of the enzyme

has been directly demonstrated to aminoacylate the minihelix domain of

tRNAAla (Buechter and Schimmel, 1993b). With E. coli methionyl-tRNA

synthetase, anticodon interactions are mediated through a helix-loop motif

which encompasses W461 of the C-terminal domain (Ghosh et al., 1990;

Ghosh et al., 1991; Kim et al., 1993a; Auld and Schimmel, 1995). Deletion of 11

amino acids from this motif eliminates interaction with the anticodon of

tRNAMet but has no effect on the activity for amino acid activation or on that

for aminoacylation of a microhelix comprised of the seven base pairs of the

tRNAMet acceptor stem (Kim and Schimmel, 1992). Thus, the capacity of the

core enzyme for amino acid activation or aminoacylation of an acceptor stem

substrate is not dependent on the integrity of the second domain.

The present work shows that, conversely, the anticodon binding

function of the second domain of at least methionyl-tRNA synthetase acts

independently of the catalytic domain. We found no evidence for domain-

domain cooperativity, at least with respect to the binding of the anticodon

stem-loop structure. Our data do not address the question of whether

domain-domain interactions at the subunit interface affect the energy of the



transition state for aminoacylation (kcat) through subtle conformational

effects at the active site. However, because deletion of the helix-loop motif

that binds the anticodon does not affect the activity for microhelix

aminoacylation (Kim and Schimmel, 1992), we surmise that any domain-

domain communication may require an intact tRNA "bridge" that spans

across the two structural units. A similar suggestion was made by Wright et

al. (1993) (Wright et al., 1993) in their analysis of interactions of E. coli GlnRS

with the acceptor stem helix and anticodon stem-loop domain of tRNAGln.

The C-terminal end of MetRS is an appendix that extends back to the

catalytic site (Brunie et al., 1990), where it contributes to binding of the

acceptor stem of tRNAMet (Kim et al., 1993b) (Figure 2-1). We thought that

this contact might influence the conformation of the anticodon binding

domain and that it might also be needed for its stability. However, the

affinity for the anticodon hairpin stem-loop of the free C-terminal domain

and of the C-terminal domain C367-547 joined to MBP is comparable to that of

C367-547 joined to the N-terminal domain of MetRS (Table 4-1). We conclude

that interactions of the C-terminal peptide appendix of MetRS with the N-

terminal domain do not affect the RNA binding conformation of domain

C367-547. This result is consistent with those of Kim et al. (1993b) who showed

that a point mutation in the peptide appendix of MetRS (which disrupted

acceptor helix contacts) did not affect anticodon binding (see Chapter 5). In

addition, the stability of domain C367-547 in isolation is greater than that of

MetRS (Figure 3-4B). The higher thermal stability of domain C367-547

compared to MetRS (Figure 3-4B) shows that interactions of the C-terminal

peptide appendix with the catalytic site are not required for the stable, native

structure formed by domain C367-547-



Because the anticodon binding domain of methionyl tRNA synthetase

functions independently of the protein to which it is joined, such as MBP, we

imagine that this functional RNA binding unit could be joined to the catalytic

core of other tRNA synthetases and then adapted to the particular anticodon-

containing tRNA domain of the cognate tRNA. Consistent with this view,

recent experiments of Auld and Schimmel (1995) showed that a variant of the

anticodon binding helix-loop peptide motifs of IleRS and MetRS could be

swapped between the two enzymes, with anticodon binding being switched by

a single amino acid swap. In addition to isoleucyl-tRNA synthetase, the class

I cysteinyl-, leucyl-, and valyl- tRNA synthetases are closely related to

methionyl-tRNA synthetase, and the structures of these enzymes can be

modeled after that of the methionine enzyme (Burbaum et al., 1990; Burbaum

and Schimmel, 1991b; Eriani et al., 1991; Hou et al., 1991; Shepard et al., 1992).

In spite of the large size variations among these five class I enzymes, and in

contrast to the less related class I glutaminyl-tRNA synthetase, sequence

comparisons of their C-terminal domains suggest that, while highly diverged

in sequence, all are made up of a-helices and probably originated from the

same progenitor (Shiba and Schimmel, 1992a). Thus, the properties of the

anticodon-binding domain of methionyl tRNA synthetase investigated here

may be prototypical of this particular domain in this subclass of tRNA

synthetases.



Table 4-1: Dissociation constants of MetRS1-547 and C-terminal domain

variants for the anticodon stem-loop RNA substrate at pH 7.5 and 25 oCa

Dissociation Constant Kd, gM

Proteins CAU (wildtype) GAU

MetRS1-547 31b ± 5 see footnote e

MBP-C367-547 39c ± 5 not detectable

C367-547 31d + 2 not detectable

MBP-C 367-547(461A) not detectable not tested

MBP not detectable not tested

aThe anticodon stem-loop substrate was chemically synthesized with a

sequence according to that of tRNAfMet (Figure 4-1). bAverage of two

determinations given in Kim et al. (1993b), and of a single determination

made in this work. cAverage of five determinations made in this work.

dAverage of two determinations made in this work. The Kd values were

determined from a Scatchard plot of the data obtained from affinity

coelectrophoresis (see Chapter 2 and Figure 4-2). eWeak binding to the GAU

anticodon substrate was detected for MetRS1-547 but the gel shift was smeared

making calculation of the Kd difficult. One possible explanation for a weak

interaction that produced a smear in the gel is a nonspecific interaction with

the tRNA acceptor stem binding site that is located in the N-terminal

domain. Adapted with permission from Gale and Schimmel (1995b)

(Copyright 1995, American Chemical Society).



Legend to Figure 4-1

Cloverleaf and L-shaped structure of E. coli tRNAfMet and the anticodon

stem-loop RNA hairpin

Sequence and cloverleaf structure of E. coli tRNAfMet (left) (Sprinzl et

al., 1989), the L-shaped arrangement of the three-dimensional structure

(center), and the sequence and hairpin structure of the anticodon stem-loop

RNA substrate (right). The hairpin structure is based on the shaded portion

to which a C was added to the 3'-end to pair with the unmatched G. Adapted

with permission from Gale and Schimmel (1995b) (Copyright 1995, American

Chemical Society).
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Legend to Figure 4-2

ACE gel analysis of the binding of MetRS1-547 and MBP-C367-547 to the

tRNAfMet anticodon stem-loop RNA hairpins

A. ACE gel of MetRS1-547 with the wildtype anticodon stem-loop RNA

hairpin (MetRS1-547 concentration ranged from 4 to 100 tM). B. ACE gel of

MBP-C 367-547 with the wildtype CAU anticodon stem-loop RNA hairpin

(MBP-C 367-547 concentration range from 4 to 100 gM). C. ACE gels of MetRS1I

547 (left) and MBP-C 367-547 (right) with the GAU anticodon mutant of the

anticodon stem-loop RNA hairpin (concentration range from 8 to 100 RiM for

both proteins). D. Scatchard plots of the binding of MetRS 1-547 and MBP-

C367-547 to the anticodon stem-loop RNA hairpin. Adapted with permission

from Gale and Schimmel (1995b) (Copyright 1995, American Chemical

Society).
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Legend to Figure 4-3

ACE gel analysis of the binding of domain C367-547 to the tRNAfMet

anticodon stem-loop RNA hairpin and to tRNAfMet

A. ACE gel of C367-547 with the wildtype anticodon stem-loop RNA

hairpin (C367-547 concentration range from 4 to 80 gM). B. ACE gel of C367-547

with tRNAfM et (C367-547 concentration range from 4 to 80 gM).
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Figure 4-4

ACE gel analysis of the binding of MBP-C36 7.54 7(W461A) to the tRNAfMet

anticodon stem-loop RNA hairpin

ACE gel of MBP-C 367-547 (W461A) (right) versus MBP-C 367-547 (WT)

(left) with the wildtype anticodon stem-loop RNA hairpin (MBP-C 367-547 (W461A)

concentration range from 4 to 100 tM, MBP-C 367-547 at 20 and 80 jiM).



Chapter 5

Evidence for Interactions of a C-terminal Peptide Appendix with the

Acceptor Stem Helix of tRNAfMet



INTRODUCTION

The X-ray crystal structure of the truncated monomeric form of E. coli

MetRS has been solved to 2.5 A resolution (Brunie et al., 1990). From this

structure it is clear that the synthetase consists primarily of two major

domains. The N-terminal domain (1-360) contains the catalytic site built

around the Rossman nucleotide-binding fold and the C-terminal domain

(361-519) is primarily a-helical. This C-terminal domain is known to have

various residues that are involved in binding to the anticodon of tRNAMet

(Valenzuela and Schulman, 1986; Ghosh et al., 1990; Ghosh et al., 1991;

Meinnel et al., 1991b; Kim et al., 1993a).

In addition to being covalently joined, the two domains are non-

covalently linked. Extending from the end of the C-terminal domain is a C-

terminal peptide appendix that folds back to interact with the N-terminal

domain adjacent to the active site cleft. This peptide has been proposed to

guide docking of the tRNA acceptor end to the active site cleft (Mellot et al.,

1989). A short motif (Y531-D535) is conserved between methionyl tRNA

synthetases from E. coli, Bacillus stearothermophilus, and Saccharomyces cerevisiae

(cytoplasmic) (Kim et al., 1993b).

To investigate the role of this peptide appendix in tRNA binding, point

and insertion mutants were made in this conserved motif and the resulting

mutants were analyzed for the ability to complement a MetG null strain as

well as for in vitro activity as measured by aminoacylation assays and binding

to small RNA substrates measured by affinity coelectrophoresis (Kim et al.,

1993b).

The work that is being reported here is a subset of the data reported in

Kim, Landro, Gale and Schimmel (1993b) (adapted with permission,

Copyright 1993, American Chemical Society). One mutant in the C-terminal



peptide appendix (R533A) had a particularily interesting phenotype so it was

investigated further using the technique of affinity coelectrophoresis to

characterize its binding affinity to small RNA hairpin substrates that

recapitulated the acceptor stem and the anticodon stem-loop of tRNAfM et.

Analysis of the other point mutants and the insertion mutants that are

discussed in Kim et al. (1993b) was done primarily by Dr. Sunghoon Kim and

will not be presented here.

MATERIALS & METHODS

Protein Production and Purification. Phagemid pJB104 encoding the

monomeric N-terminal active 547-mer of E.coli methionyl tRNA synthetase

(Kim and Schimmel, 1992) was used to construct (by Dr. S. Kim) the R533A

mutant using site-directed mutagenesis (Amersham, Arlington Heights, IL)

(Kim et al., 1993b). Wild-type and mutant monomer forms of MetRS were

purified as previously described (Burbaum and Schimmel, 1991a; Kim and

Schimmel, 1992). Amino acid activation assays and aminoacylation assays are

described by Kim et al., 1993 (1993b).

Affinity Coelectrophoresis. Affinity coelectrophoresis was used to

investigate the binding of the proteins to the RNA substrates. Affinity

coelectrophoresis was done as described in Materials and Methods of Chapter

2 (see Figures 2-1 and 2-2).

RESULTS

To clarify the role of the C-terminal peptide appendix, alanine

substitutions at N532, R533, and D535 were made by Kim et al. (1993b). Also,

two tetrapeptides (GKKG and ALFA) were inserted between 1534 and D535. Of

these mutant enzymes, the R533A enzyme had the most altered activity.
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While amino acid activation activity was only reduced by 35%,

aminoacylation activity was reduced by 40-fold (Table 5-1). Kinetic analysis of

the aminoacylation of tRNA fMet showed that the Km for tRNA was increased

about 20-fold while the kcat was decreased about 2-fold (Table 5-2) (Kim et al.,

1993b). This result suggested that R533 is primarily involved in binding to

tRNA.

To isolate further the effect of the R533A mutation on binding to a

specific domain of tRNAfMet, dissociation constants of the wild-type and

R533A mutant proteins for small RNA substrates based on the anticodon

stem-loop and the acceptor stem sequences of tRNAfM et (Figure 5-1) were

determined by affinity coelectrophoresis. Wild-type MetRS binds to the

acceptor stem microhelix of tRNAfM et with a Kd of 249 pM whereas specific

binding of R533A mutant MetRS to the microhelix was not observed (Figure

5-2, Table 5-3). (The smear seen in the protein lanes of the R533A mutant

enzyme with acceptor stem microhelix is characteristic of nonspecific

binding.) On the other hand, R533A mutant MetRS still binds to the

anticodon stem-loop RNA. In fact, the dissociation constant is about 6-fold

tighter than that of wild-type MetRS. The wild-type MetRS bound to the

anticodon stem-loop with a Kd = 31 + 5 gM (see Chapter 4, Figure 4-2, and

Table 5-3) while R533A mutant MetRS bound with a Kd = 5.4 + 1.0 gM (Figure

5-3, Table 5-3) (Kim et al., 1993b). This tight binding may indicate a small

indirect effect of the R533A mutation on the structure of the anticodon

binding region of the enzyme. As a negative control, a MetRS mutant that

had 11 amino acids deleted from the anticodon binding motif (A11(Y454-A464

-- S)) (Kim and Schimmel, 1992) was investigated. The deletion mutant

protein did not show detectable binding to the anticodon stem-loop RNA

(Figure 5-3, Table 5-3) (Kim et al., 1993b).
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DISCUSSION

The R533A mutation had a strong effect on aminoacylation of

tRNA fM et as well as on aminoacylation of microhelixfMet (Kim et al., 1993b).

The effect on aminoacylation of tRNAfMet is primarily an alteration to Km,

suggesting that the mutant does not bind tRNA as well as does the wild-type

protein (Table 5-2). The corresponding decrease in microhelixfMet binding

suggests that the decrease in tRNA binding is a result of weaker acceptor stem

binding interactions. It is not possible to determine kinetic constants for the

microhelix substrate because the rate of aminoacylation, even for the wild-

type enzyme, is about 106 fold lower relative to that of the full length tRNA

substrate (see Chapter 6) (Martinis and Schimmel, 1992). Determination of

dissociation constants by affinity coelectrophoresis directly established the

effect of the mutation on binding by demonstrating that binding of the

microhelix substrate by the R533A mutant enzyme is not detectable, whereas

the mutant enzyme actually binds the anticodon stem and loop of tRNAfMet

somewhat better than does the wild-type enzyme (Kim et al., 1993b).

A general structural organization of both class I and class II synthetases

has been proposed (Buechter and Schimmel, 1993a). In this model the

synthetases contain two discrete primary domains. The first domain is the

active site domain which contains the conserved class defining motifs and

interacts with the acceptor stem of the tRNA. The second domain is not

conserved among synthetases within the same class. This domain interacts

with the more distal regions of the tRNA. One proposal is that synthetases

evolved from primitive systems in which core catalytic domains activated

amino acids and charged small RNA molecules that subsequently became the

acceptor stems of contemporary tRNAs (Schimmel et al., 1993). Additional
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non-conserved domains were added later, perhaps through a process of gene

fusion, to enable interactions with more distal parts of the tRNA structure

and thereby increasing efficiency and specificity (Buechter and Schimmel,

1993a).

Methionyl tRNA synthetase is typical of the class I enzymes in that it

contains an N-terminal conserved catalytic domain and a C-terminal non-

conserved domain. In the case of MetRS, this C-terminal domain is known

to interact with the anticodon stem and loop. The C-terminal peptide

extension is an exception to this domain organization. Though it extends

from the C-terminal domain, it wraps back around the active site in the N-

terminal domain.

Although it is known that A73 and the base pairs G2*C71 and C3-G70 in

the acceptor stem of tRNAMet are important for the identity of tRNAMet

(Martinis and Schimmel, 1992; Meinnel et al., 1993), very little is known about

the protein residues within MetRS that make specific contacts with the

acceptor stem. The cocrystal structure of the class I E. coli glutaminyl-tRNA

synthetase and tRNAGln shows that residues in the so-called CP1 insertion in

the nucleotide binding fold make contacts with the tRNAGln acceptor stem

(Rould et al., 1989). The peptide F102-T124 in CP1 of GlnRS has some

structural similarity to peptide E102-I124 in CP1 of MetRS (Perona et al., 1991).

However it is not known whether residues located in CP1 of MetRS actually

make specific contacts with the acceptor-stem of tRNAMet.

The start of the C-terminal peptide extension is directly adjacent to the

junction of the catalytic and anticodon binding domains (Brunie et al., 1990).

Therefore it is conceivable that the C-terminal peptide extension was part of

the core catalytic domain before insertion of the anticodon binding domain,

which was sandwiched between the peptide and the rest of the catalytic
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domain. Alternatively, the peptide extension may have been recruited from

another genetic source and added to the C-terminal domain. Regardless of

the details, the end result is that the two major domains are physically linked

by a peptide that is essential for catalytic activity and acceptor stem binding.

This linkage may increase the selective pressure to keep the C-terminal

domain as part of methionyl tRNA synthetase.

MetRS is part of a subclass of the class I synthetases that includes the

cysteinyl-, isoleucyl-, leucyl-, and valyl-tRNA synthetases. The structures of

these enzymes can be modeled after that of MetRS and in all cases the C-

terminal domain is predicted to be a-helical (Burbaum et al., 1990; Burbaum

and Schimmel, 1991b; Eriani et al., 1991; Hou et al., 1991; Shepard et al., 1992).

In isoleucyl-tRNA synthetase the 52 C-terminal amino acids of the 939 amino

acid synthetase are required for aminoacylation activity (Shiba and Schimmel,

1992a). It is possible that the isoleucyl enzyme has a C-terminal appendix

similar to that in MetRS that is part of the active site and makes contacts with

the acceptor stem.
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Table 5-1: Relative amino acid activation and tRNAfMet

aminoacylation activities of the R533A mutant

Proteins Amino Acid Activation Aminoacylation

Wild-Type 100 100

R533A 65 2

Adapted with permission from Kim, Landro, Gale and Schimmel

(1993b) (Copyright 1993, American Chemical Society).
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Table 5-2: Kinetic parameters for aminoacylation of tRNAfMet by wild-type

and R533A mutant MetRS.

Proteins Km, tRNAMet (pM) kcat (sec -1) Relative kcat/Km

MetRS1-547 WT 2.5 1.7 1

MetRS 1-547 R533A 50.0 0.8 2.6 x 10-2

Aminoacylation reactions were carried out in the range of 0.15-100 AM

tRNAfMet. Adapted with permission from Kim, Landro, Gale and Schimmel

(1993b) (Copyright 1993, American Chemical Society).
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Table 5-3: Dissociation Constants of the Wild-Type and Mutant Enzymes for

the Anticodon Stem-Loop and Microhelix RNA Substrate at pH 7.5 and 37 oCa

dissociation constant (Kd)

proteins anticodon stem-loop (jiM) microhelix (gM)

wild-type 31 +5 249

R533A 5.4 ± 1.0 not detectable

A11(Y454-A464--S) not detectable not determined

aThe anticodon stem-loop hairpin helix and microhelix were synthesized on

the basis of tRNA fM et (Figure 5-1). The Kd values were determined from the

Scatchard plot of the data obtained from affinity coelectrophoresis. Adapted

with permission from Kim, Landro, Gale and Schimmel (1993b) (Copyright

1993, American Chemical Society).
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Legend to Figure 5-1

Cloverleaf and L-shaped structures of E. coli tRNAfMet and the acceptor

stem and anticodon stem-loop RNA hairpins

Sequence and cloverleaf structure of initiator tRNAMet (left), the L-

shaped arrangement of the three dimensional structure (center), and

sequences and hairpin structures of microhelix fM et (top right) and anticodon

stem-loop (lower right) RNA substrates.
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Legend to Figure 5-2

ACE gel analysis of wildtype MetRS1. 547 and R533A mutant MetRS1-547

with the tRNAfMet acceptor stem RNA hairpin

Affinity coelectrophoresis gels of wildtype MetRS1-547 (top) and R533A

mutant MetRS1-547 (bottom) with acceptor stem microhelix RNA substrate

(Figure 5-1). Concentration range for MetRS1-547 in both gels was from 10 to

350 gM.
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Legend to Figure 5-3

ACE gel analysis of MetRS 1-.547 mutant proteins with the tRNAfMet

anticodon stem-loop RNA hairpin

A. Affinity coelectrophoresis gel analysis of R533A mutant MetRS1-547

and MetRS1-547 deletion mutant A11(Y454-A464--S) binding to the tRNAfMet

anticodon stem-loop RNA substrate. Concentration ranges were from 1 to 40

gM for the R533A protein and from 40 to 125 gM for the A11(Y454-A464--S)

protein. B. Scatchard analysis of the data for the binding of the R533A

MetRS1-547 mutant protein to the anticodon stem-loop RNA substrate.

Adapted with permission from Kim, Landro, Gale and Schimmel (1993b)

(Copyright 1993, American Chemical Society).
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Chapter 6

Evidence that Specificity of Microhelix Charging by a Class I tRNA

Synthetase Occurs in Transition State of Catalysis
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INTRODUCTION

Synthetase-tRNA complexes are relatively loose, having dissociation

constants (at pH 7.5) on the order of one micromolar (see Chapter 2) (Helene

et al., 1971; Blanquet et al., 1973a; Lam and Schimmel, 1975; Schimmel and

S611, 1979; Meinnel et al., 1991b). The loose association of synthetases with

their cognate tRNAs enables the enzymes to turn over rapidly during protein

synthesis. The relative weakness of binding interactions associated with

highly specific aminoacylation reactions suggests that additional interactions

are required to achieve high specificity. This expectation has been

demonstrated for the class II E. coli alanyl-tRNA synthetase, which

discriminates tRNA substrates in large part on the basis of an acceptor stem

G3-U70 base pair. This discrimination occurs at both the binding step and,

additionally, during the transition state of catalysis, with the relative

contribution of each part being dependent on pH (Park et al., 1989).

In this work, we focused on the class I E. coli methionyl-tRNA

synthetase and the nature of the contribution of acceptor helix interactions to

aminoacylation specificity and efficiency. Unlike alanyl-tRNA synthetase

which makes no contact with the anticodon, the methionine enzyme has a

strong interaction with the CAU anticodon of tRNAMe t . This interaction is a

major determinant of the identity of methionine tRNAs (Schulman and

Pelka, 1983; Schulman and Pelka, 1988).

At least ten different synthetases specifically aminoacylate small RNA

substrates that recapitulate the acceptor stem (microhelix) or the acceptor and

TYC stems (minihelix) of their cognate tRNAs (Frugier et al., 1994; Hamann

and Hou, 1995; Martinis and Schimmel, 1995). These include several that are

known to interact with the anticodons of their cognate tRNAs. Notably the

class I methionyl- (Martinis and Schimmel, 1992; Martinis and Schimmel,
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1993; Martinis and Schimmel, 1995), valyl- (Frugier et al., 1992) and isoleucyl-

tRNA synthetases (Nureki et al., 1993) specifically aminoacylate minihelix

substrates, even though the anticodon is a major identity determinant for all

of these enzymes (Stem and Schulman, 1977; Schulman and Pelka, 1983;

Schulman and Pelka, 1988).

Although MetRS specifically aminoacylates microhelixMet substrates,

the rate of charging of these substrates is so low that kcat and Km can not be

reliably determined. Nonetheless, consistent with the observed sensitivity of

aminoacylation of tRNAfM et to acceptor helix sequence alterations (Lee et al.,

1992; Meinnel et al., 1993), the aminoacylation of microhelixMet is sequence-

specific (Martinis and Schimmel, 1992; Martinis and Schimmel, 1993). To

investigate further the question of whether this specificity derived from the

binding step or, additionally or alternatively, from the transition state of

catalysis, we sought to obtain an independent measure of the association of

wild-type and mutant microhelices with MetRS.

For these studies, RNA microhelix substrates were synthesized having

sequences which reconstruct the acceptor stem of tRNAMet and iwhich gave

variants of that stem. An adaption of the conventional aminoacylation assay

was used to achieve a more sensitive detection of the charging of these

substrates (The aminoacylation assays were done by Dr. J.-P. Shi). To study

microhelix binding to methionyl-tRNA synthetase in isolation from kinetic

phenomena, we utilized the affinity coelectrophoresis (ACE) procedure (see

Chapter 2). In Chapter 4, I described the use of this method to investigate the

interaction of the methionine enzyme with RNA hairpins which

reconstructed the anticodon stem-loop of tRNA fM et (Gale and Schimmel,

1995b). Thus, in addition to providing an approach to investigating the basis

for specificity of microhelix aminoacylation by methionyl-tRNA synthetase,
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these affinity coelectrophoresis studies enabled us to assess separately the

relative contribution of binding interactions to each of the major subdomains

of each of the two domains of the tRNA structure. The interaction free

energies for the individual domains calculated from these data can be

compared with the free energy of interaction of whole tRNAfMet with MetRS.

This comparison, in turn, enabled us to estimate the free energy of distortion

of the complex that occurs as a result of linking the two domains together.

MATERIALS AND METHODS

Synthesis and Radioactive Labeling of RNA Oligonucleotides. RNA

oligonucleotides were chemically synthesized on a Gene Assembler Plus

synthesizer (Pharmacia LKB Biotechnology Inc., Piscataway, NJ) as previously

described (Usman et al., 1987; Scaringe et al., 1990; Musier-Forsyth et al., 1991).

The RNA substrate was 5'-[32 P]-labelled according to (Silberklang et al., 1977;

Park and Schimmel, 1988).

Aminoacylation of tRNAfMet and Microhelix RNA Substrates. All

aminoacylation assays were carried out at 37 'C, in 50 mM HEPES pH 7.5, 0.1

mM EDTA, 150 mM NH 4C1, 4 mM MgC12 and 100 pgg/mL BSA. These assays

(by Dr. J.-P. Shi) were carried out using a modification of described methods

(Francklyn and Schimmel, 1989; Francklyn and Schimmel, 1990; Musier-

Forsyth et al., 1991). This modification was necessary to study the charging of

inefficient substrates and is described in Franklyn et al. (Francklyn et al., 1992).

Briefly, aminoacylation reaction products were digested with RNase A

(Boehringer Mannheim, Indianapolis, IN) until quenched with 0.7 M HOAc.

After centrifugation to remove protein, the hydrolysate was fractionated on a

Vydac 401 TP HPLC column to isolate radioactive aminoacyl-adenosine. This

product was then quantitatively measured by placing a sample in Hydrofluor
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(National Diagnostics, Manville, NJ) to measure radioactivity on an LKB

Wallac model 1211 liquid scintillation counter (Gaithersburg, MD). Because

of the low rates of aminoacylation, it was not practical to exploit a wide

concentration range. For that reason, reported kcat/Km values should be

viewed as "operational" or "apparent" kinetic parameters. However, in all

cases the measured velocities were directly proportional either to total

substrate or to total enzyme, depending on which was varied in the analysis

of a particular microhelix. Either three different enzyme or three different (at

least) substrate concentrations were investigated in each instance. These

concentrations varied from two-fold to more than eight-fold, depending on

the microhelix being investigated.

Protein Purifications. MetRS1-547 and MetRS1-676 were expressed from

plasmid pAG112 (Gale and Schimmel, 1995b) and plasmid pJB103 (Burbaum

and Schimmel, 1991a), respectively. The purification was performed as

described earlier (Chapter 3) (Gale and Schimmel, 1995b). Protein

concentration was determined by absorbance at 280 nm (Cassio and Waller,

1971). For the aminoacylation assays, MetRS1-676 was purified as described

previously (Burbaum and Schimmel, 1991a) and subsequently was stored at 4

'C in 25 mM Tris pH 7.5, 200 mM NaCl and 1 mM 13-ME. Samples were

removed from time to time and enzyme concentrations were determined by

active site titrations as described by Fersht et al. (1975).

AlaRS1-461 was expressed from the plasmid pQE-461 cotransformed

with plasmid pREP4 (which carries the lacI gene (Farabaugh, 1978)) into strain

TG1 to express high levels of the lac repressor. Plasmid pQE-461 contains the

gene for AlaRS1-461-6H which encodes residues 1-461 of AlaRS joined to a C-

terminal extension of 6 His codons (courtesy of L. Ribas, unpublished results)

to facilitate purification of the expressed protein by affinity chromatography
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on a Ni2+-nitrilo-tri-acetic acid (Ni-NTA) resin column (Hochuli, 1989;

Janknecht et al., 1991) (Qiagen, Chatsworth, CA). Expression of AlaRS1-461-6H

was induced with 1 mM IPTG and the cells were harvested in late log phase.

The cells were resuspended in 50 mM Na-phosphate (pH 7.8), 300 mM NaC1,

and 0.5 mM phenylmethanesulfonyl fluoride and lysed in a French press at

15,000 lbs/in2. The lysate was centrifuged at 30,000 rpm for 1 hr in a Beckman

ultracentrifuge (Palo Alto, CA). AlaRS1-461-6H was then purified on a 4 mL

Ni-NTA resin column according to the manufacturer's instructions (Qiagen,

Chatsworth, CA), except that none of the buffers used contained glycerol.

Protein concentration was determined by the Bio-Rad Protein Assay (Bio-Rad

Laboratories, Hercules, CA).

Affinity Coelectrophoresis. Affinity coelectrophoresis (Lee and

Lander, 1991) was used to investigate the binding of the proteins to the RNA

substrates, and was performed as described in Materials and Methods of

Chapter 2 (see Figures 2-1 and 2-2). The standard buffer was 50 mM HEPES

(pH 7.5), 0.1 mM EDTA, 4 mM MgC12, 1 mM 13-mercaptoethanol, and 100

gg/mL BSA. This buffer was used in all ACE gel experiments except where

specifically indicated. All experiments were done in a thermostated

circulating gel box (Hoefer Super Sub Model HE100, Hoefer Scientific, San

Fransisco, CA) at 25 'C. Although the aminoacylation assays were performed

at 37 'C, which provided a basis for comparison with related work (Lee et al.,

1992), affinity coelectrophoresis was not practical at 37 'C because low-melting

point agarose was used to prevent excessive heating of the protein when it

was mixed with liquid agarose to pour the gel.

For the affinity coelectrophoresis competition experiments, an ACE gel

was prepared as described previously except that an unlabeled competitor

tRNA (either tRNA fM et or tRNAVal) was added to the gel along with the
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protein (MetRS1-676) in one lane. MetRS1-676 was added to the gel in two

lanes at a final concentration of 10 gM. The competitor tRNA sample was

also added to one of these lanes at a final concentration of 12 gM. The [5'- 32p]

microhelix RNA substrate was then electrophoresed through these lanes and

the shift of [5'-32p] RNA was compared between the lane with and the one

without competitor tRNA.

RESULTS

Aminoacylation of tRNAfMet and microhelix RNA substrates. Mutations in

the acceptor stem of tRNAfMet can substantially decrease Vmax/Km for

aminoacylation. For example, for the 'discriminator base' G73 mutant,

Vmax/Km for aminoacylation was decreased 30-fold relative to wild type

tRNA fM et. While the G72 mutant was reduced only 2.3-fold in its rate of

aminoacylation, a double G72, G73 mutant had Vmax/Km reduced 475-fold,

apparently due to a strong synergistic coupling of the two mutations in the

double mutant. This double mutant was also demonstrated to be defective in

vivo. Interestingly, the apparent Km for aminoacylation was only decreased by

2.3-fold, showing that the acceptor helix interactions in the full tRNA have a

strong influence on Vmax (Lee et al., 1992). Other acceptor stem mutations

also strongly affect the kinetic parameters (Meinnel et al., 1993).

We were interested to see whether the effects of mutations in the

acceptor stem of full length tRNAfM et would be reproduced in microhelices

based on the acceptor stem alone, or whether the effects of these mutations in

the whole tRNA were influenced by the part of the structure which is missing

from microhelices. In particular, we wanted to determine if much of the

discrimination of microhelixfMet was due to interactions in the transition

state of catalysis, as suggested for acceptor stem interactions of tRNA fM et. In
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previous work, Martinis et al. (1992) used a gel electrophoresis assay to detect

directly the charging of microhelixfMet with [35S]-methionine. This assay was

not sensitive enough for measuring kcat/Km. Alternatively, the sensitive

HPLC assay developed by Francklyn et al. (1992) was adopted and used to

determine the rate of aminoacylation under conditions where the rate is

linear with respect to total enzyme or total substrate concentration.

The kcat/Km for the aminoacylation of tRNAfM et is 2.8 X 106 M-1 s-1, at

pH 7.5, 37 'C (Table 6-1). (This value is comparable to a value of 1.43 X 106 (M-

1 s-1) (at pH 7.6, 25 °C) determined by Meinnel et al. (1993).) In contrast,

kcat/Km for the aminoacylation of microhelixfMet (Figure 6-1) is 9.4 X 10-1 M-1

s-1. Thus, kcat/Km is decreased by 3.0 X 106-fold relative to the kcat/Km for the

aminoacylation of tRNAfMet (Table 6-1). Because of the large reduction in

rate, we could not accurately measure individual kcat and Km parameters.

Two mutant microhelixfM et substrates were also characterized.

Mutation of the discriminator base from A73 to G73 decreases the kcat/Km for

aminoacylation 7-fold below that of wildtype microhelixfMet. The kcat/Km for

the aminoacylation of the double mutant G72, G73 (Figure 6-1) is 13-fold less

than that of wildtype microhelix fM et (Table 6-1). Thus, the single and double

mutants are defective for aminoacylation, but less so relative to the wild type

counterpart than are the same mutations when placed in the full tRNA (see

above).

In the acid gel techniques used by Martinis et al. (1992) , trace levels of

charging of microhelixAla by MetRS were detectable. The kcat/Km of the

noncognate substrate microhelixAla (Figure 1) was measured in this work and

found to be 8.3 X 10-2 M -1 s-1 (Table 1), which is a decrease of about 11-fold

relative to that of wild type microhelix fM et. Earlier work showed that no

aminoacylation was detected in the cases of microhelixHis, microhelixGly,
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microhelixGlu, or microhelixPhe, or in the cases of several mutant variants

based on the tRNAMet or tRNAfMet acceptor stem (Martinis & Schimmel,

1992; Martinis & Schimmel, 1993). Therefore, with the exception of a weak

aminoacylation of microhelixAla, microhelixfMet charging is highly specific.

Binding of MetRS to MicrohelixfMet Investigated by Affinity

Coelectrophoresis. To determine whether the effect of mutations on kcat/Km

was due to a change in binding affinity, we chose to investigate the

association of these microhelix substrates to native MetRS1-676, using the

technique of affinity coelectrophoresis. Affinity coelectrophoresis is a gel

retardation method in which the protein of interest is imbedded directly in an

agarose gel at defined concentrations. The labeled RNA substrate is then

electrophoresed through the protein in the gel, allowing the measurement of

binding affinities under equilibrium conditions (Lee and Lander, 1991; Lim et

al., 1991; Kim et al., 1993b). Using this technique, we determined that MetRS

and the C-terminal domain of MetRS bind specifically to an RNA substrate

that recapitulates the anticodon stem-loop of tRNAfM et. For both proteins,

binding was not detectable when a single base of the anticodon was

substituted within the anticodon stem-loop substrate (see Chapter 4) (Gale

and Schimmel, 1995b).

As measured by affinity coelectrophoresis, full length E. coli MetRS1-676

binds to tRNAfM et with a Kd of 0.51 ± 0.14 pgM (Table 6-2) (Gale and

Schimmel, 1995a). We then found that MetRS1-676 binds to the wildtype

microhelixfMet substrate with a Kd of 12 + 3 gM. A Kd of 12 gM suggests a

significant amount of binding energy for acceptor stem interactions with

MetRS1-676.

To further analyze binding of MetRS to the acceptor stem of tRNAfM et,

we investigated binding to G72, G73 microhelixfMet. We also tested binding

122



of the noncognate microhelixAla to MetRS1-676. In contrast to the

aminoacylation results (Table 6-1), we found that the double mutation G72,

G73 had little or no effect on binding to MetRS1-676. MetRS1-676 bound to

both the wildtype microhelixfMet and the G72, G73 microhelix fMet with a Kd

of 12 gM (Table 6-2, Figure 6-2A, B). In addition, microhelixAla binds tighter

to MetRS1-676 than to either of the microhelixfMet substrates, with a Kd of 5.6

gIM (Table 6-2, Figure 6-2C). Finally, a mutant C70 microhelixAla also bound

to MetRS1-676 (with a Kd of 4.6 gM) (Table 6-2).

The affinity coelectrophoresis experiments are carried out in the

absence of added monovalent salt. In order to confirm that our results could

be directly related to the aminoacylation experiments, NH 4C1 (150 mM) was

added to the standard affinity coelectrophoresis buffer and the experiments

were repeated. The resulting composition is identical to the buffer

conditions used in the aminoacylation assays. Under these conditions, the

binding of MetRS1-676 to microhelix substrates was weakened 5-10-fold, but

for all three substrates the relative decrease was about the same. Therefore,

the relative binding constants for the three microhelix substrates were

unchanged (data not shown).

These experiments collectively suggest that synthetase-microhelix

interactions in the transition state rather than at the binding step are the

major contributor to the specificity of microhelix aminoacylation.

Binding of AlaRS to MicrohelixAla is Sensitive to 3 70 Base Pair. In Chapter

4, we showed that the affinity coelectrophoresis method could easily

demonstrate the marked difference in affinity for methionyl-tRNA

synthetase of a wild-type and mutant RNA hairpin mimicking the anticodon

stem-loop of tRNAMet. In particular, a hairpin with a CAU anticodon bound

with a dissociation constant of about 30 gM, while binding of a GAU-

123



containing hairpin could not be detected (Gale and Schimmel, 1995b). These

and other experiments support the idea that highly specific interactions can be

monitored by the gel electrophoresis method, and suggest that the lack of

specificity of binding of microhelixfMet substrates to methionyl-tRNA

synthetase truly reflects a greater emphasis on transition state interactions.

To demonstrate further the detection of specific interactions, however,

we turned to alanyl-tRNA synthetase, where acceptor helix interactions have

been well studied by other methods. The main identity element of tRNAAla

is a G3-U70 base pair in the acceptor stem (Hou and Schimmel, 1988; McClain

and Foss, 1988). Mutation of this basepair to G'C or to A'U eliminates

aminoacylation in vivo and in vitro (Hou and Schimmel, 1988). Furthermore, a

tRNAAla with a substituted 3170 base pair does not inhibit charging of wild

type tRNAAla (at pH 7.5), suggesting that binding is weakened by a factor of at

least 30 (Park et al., 1989). Therefore, we would expect that the binding of

AlaRS to microhelixAla substrates would be sensitive to substitutions of the

G3"U70 base pair.

We used a fragment of AlaRS that contains residues 1-461 (AlaRS1-461-

6H), because a fragment of the N-terminal 461 amino acids aminoacylates

microhelixAla with the same efficiency as full length AlaRS (Buechter and

Schimmel, 1993b). We found by affinity coelectrophoresis that AlaRS1-461-6H

bound to microhelixAla with a Kd of 12 ± 5 pgM. However, we could not detect

binding to AlaRS1-461-6H of either G3"C70 microhelixAla or microhelixfM et

(Table 6-2). These results confirm that interactions with acceptor helices

which differ by a single base pair can be discriminated by the ACE method.

Competition Between Binding of MicrohelixfMet and tRNAfMet. In order to

prove that binding of microhelix substrates to MetRS was at part of the same

site as that occupied by tRNAfMet, we performed an affinity coelectrophoresis
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gel competition assay. MetRS1-6 76 and tRNAfM et were placed together into

the ACE gel at concentrations of 10 giM and 12 jgM, respectively, in one lane.

In a parallel lane, MetRS1-6 76 was added alone at a concentration of 10 RM.

The three [5'- 32 P]-microhelix substrates of interest were then separately

electrophoresed through these lanes (Figure 6-3). Presumably, tRNAfMet

should compete for the binding sites on MetRS1-676 and inhibit the binding of

the microhelix substrates. Therefore, in the lane containing tRNAfMet, the

microhelix substrate should have a decreased shift relative to the lane

without tRNAfMet. This expectation was fulfilled for all three microhelix

substrates (Figure 6-3). (The inhibition of shift was most pronounced for

wild-type microhelixfMet). As a negative control, tRNAval was used as the

competitor RNA for microhelixfM et. In this case, the shift of microhelixfMet

was only slightly inhibited (Figure 6-3). We conclude that wild-type and G72,

G73 microhelix fM et, and noncognate microhelixAla, each bind to the same site

as the one occupied by tRNAMet.

Influence of C-terminus on MicrohelixfMet Binding to N-terminal Domain.

The dissociation constant for the complex of MetRS1-676 with tRNA fMet is 7-

fold smaller than that for the complex between the truncated MetRS1-547 and

tRNAfMet (Table 6-3 and Chapter 4) (Gale and Schimmel, 1995b). The

relative difference in affinity for tRNAfMet is comparable to that seen by

Blanquet et al. (1973a), as measured by fluorescence quenching. We speculated

that the difference in affinity (for tRNAfMet) between the native and

truncated forms of methionyl-tRNA synthetase was related to the role in

acceptor helix binding of the peptide appendix located at the C-terminal end

of MetRS1-547. This peptide appendix is critical for the stability of the

truncated synthetase (Mellot et al., 1989), and mutations within a conserved

portion of the appendix (Y531-D535) have a marked affect on binding of
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tRNA fM et or of microhelix fM et (Mellot et al., 1989; Kim et al., 1993b). In

particular, an Arg533Ala substitution abolished detectable binding of

microhelix fM et (Table 6-3 and Chapter 5) (Kim et al., 1993b).

We reasoned that the conformational stability of this appendix might

be weakened in MetRS1-547 compared with MetRS1-676 and, additionally or

alternatively, that the C-terminal side of residue 547 might also contribute to

acceptor helix interactions. In either case, weakened interactions with the

acceptor stem could explain why MetRS1-547 has a reduced affinity for

tRNAfMet. Alternatively, the strength of anticodon interactions could be

different with the two forms of MetRS, especially because the C-terminal

domain contains all of the determinants for binding to the anticodon of

tRNAfMet.

We found that MetRS1- 676 binds to an RNA hairpin that recreates the

anticodon stem-loop (of tRNAfMet) with a dissociation constant of 22 pM

(Table 6-2). This value is similar to that observed for the complex of the

RNA hairpin with MetRS1-547 (31 jiM) (Table 6-3 and Chapter 4) (Gale and

Schimmel, 1995b). Therefore, the difference in affinity (for tRNAfMet)

between MeRS1-676 and MetRS1-547 is not due to a difference in binding to the

anticodon stem-loop of tRNA fM et. This result is consistent with anticodon

interactions occurring entirely within the domain from Ile367-Lys547 (see

Chapter 4) (Gale and Schimmel, 1995b) and suggests that the integrity of this

structural unit for anticodon binding is not influenced by the region from

residues 548-676.

In contrast, we found a large difference in binding of microhelixfMet to

MetRS1-547 compared to MetRS1-6 76 . MetRS1-676 binds to microhelixfM et with

an apparent Kd of 12 gM, while MetRS1-547 binds with an apparent Kd of 330

pgM (Table 6-2 and Table 6-3). A lack of binding discrimination between wild
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type, mutant and the noncognate microhelix substrates was also seen with

MetRS1-547 (Table 6-3). Therefore, the difference in binding affinity for

tRNAfM et of native and truncated MetRS is mirrored in the affinity for

microhelixfMet. This result suggests that, within the portion of MetRS that is

unique to the full length synthetase (residues 548-676), there are residues that

directly or indirectly influence the interaction of MetRS with the acceptor

stem of tRNAfMet.

DISCUSSION

The structure of the co-crystal of class I GlnRS with tRNAGln shows

that, in order for the site of aminoacylation to fit into the active site, a large

conformational change in the tRNA is required. Some of these changes are at

the end of the acceptor stem where, for example, the U1-A70 base pair of

tRNAG1n is disrupted. Also, the 2-amino group of G73 is hydrogen bonded to

the phosphate group of A72, thereby stabilizing a hairpin loop conformation

for bound tRNAG1n (Rould et al., 1989). The sensitivity of aminoacylation of

tRNAGln and microhelixGln to specific sequences in the acceptor stem has

been investigated (Jahn et al., 1991; Wright et al., 1993). Mutation of G73, or of

the G2"C71 and G3-C70 base pairs of tRNAGIn has effects on both kcat and Kin,

possibly through effects on the conformational change at the acceptor end of

tRNAGln.

Comparison of the structure of MetRS1-547 with the structure of the

GlnRS:tRNAGl n co-crystal led to a model for binding of tRNAMet to MetRS

which suggested binding-induced distortion of tRNAfM et similar to that seen

with tRNAGIn (Perona et al., 1991). If this distortion is required, then

substitution of the first base pair (C1-A72) and of the discriminator base (A73)

127



of tRNAfMe t would be expected to have a significant effect on this

conformational change.

The effect of acceptor stem mutations on kcat/Km was qualitatively the

same for tRNAfMet and microhelixfMet. However, our results show that the

dissociation constant for microhelix fM et is not affected by the G72, G73

substitution (Table 6-2). This observation is in parallel with that reported by

Meinnel et al. (1993) for the whole tRNA substrate. These authors showed

that acceptor stem substitutions in tRNAfMet had little affect on binding

interactions, even in cases where the Km for aminoacylation was affected.

Thus, the Km for aminoacylation of tRNAfM et is not measuring just a binding

phenomenon.

The results obtained here suggest that the N73 and 1"72 determinants

for aminoacylation of microhelixfM et are responsible for correct orientation of

the substrate in the transition state of the aminoacylation reaction. In the full

length tRNAfMet, the identity of N73 affects the stability of the end of the

acceptor stem, as well as the conformation of the CCA end. In a tRNA fMet

variant with a C1-G72 bp, substitution of A73 with U or C destabilizes the

C1 G72 bp, possibly due to a loss of the stacking interaction of A73 with G72

(Lee et al., 1993) . NMR analysis of microhelixfM et substrates containing a

mutant G1-C72 bp and either the wildtype A73 or mutant U73 discriminator

base, showed a large effect of the U73 substitution on the conformation of the

CCA end of the microhelix. In the A73 microhelix, the CCA end remains

stacked on the acceptor stem. In the U73 microhelix, the CCA end folds back

such that the 3'-terminal A76 is close to G1 (Puglisi et al., 1994). In related

work, NMR studies of a tRNAAla acceptor stem duplex RNA substrates

showed that the G1-C72 bp and A73 both contribute significantly to the

stability of the acceptor stem helix. Substrates with a C73 substitution or a
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Ul A72 bp were significantly less stable (Limmer et al., 1993). Thus, in light of

the studies by Lee et al. (1993), Limmer et al. (1993), and Puglisi et al. (1994),

there is a sound structural basis for proposing that N73 and 1 72 determinants

for aminoacylation affect the orientation of the acceptor stem in the transition

state of catalysis.

The absence of a Watson-Crick base base pair at the end of the acceptor

stem is a critical feature in prokaryotic initiator tRNAs that prevents them

from being used as elongator tRNAs. This C-A mismatch at the end of the

acceptor stem is critical for binding of Met-tRNA transformylase and in

preventing the binding of elongation factor EF-Tu. Mutation of A72 to G72

creates a C'G base pair at the end of the acceptor stem, which enables

tRNAfM et to be utilized as an elongator tRNA. The tRNAfMet variant with a

weak U1-A72 bp has an intermediate level of activity as an elongator tRNA,

whereas the U1-G72 species is inactive as an elongator tRNA (Seong and

RajBhandary, 1987; Lee et al., 1992). Therefore, a determining factor in EF-Tu

binding is the stength of the base pair at the end of the acceptor stem. In

contrast, MetRS shows little sensitivity of binding to substitutions of the first

base pair (Tables 6-2 and 6-3), consistent with its needing to be active on both

initiator and elongator methionine tRNAs.

The results reported here on binding of microhelixfM et to MetRS,

combined with the earlier results on the binding of the anticodon stem-loop,

provide sufficient information to estimate the free energy cost of distorting

the enzyme-tRNA complex when the two domains are linked together and

bound simultaneously to the protein. This estimate can be achieved by

adding the free energy of binding of each of the two stem-loop structures and

comparing this sum with that obtained from an independent measure of the

dissociation constant for the MetRS-tRNAfMet interaction. This estimate
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does not include all distortion energies such as, for example, that part of the

free energy of distortion of the acceptor stem which is common to both

microhelix fM et and tRNAfMet.

Calculating the free energy of binding (AG°) as RTlnKd, and given the

values for binding of the RNA substrates to MetRS1-676 (Table 6-1), AG' for

tRNAfMet = -11 kcal mole-1, AG0 for the anticodon stem-loop = -8.7 kcal

mole-1, and AG' for microhelixfMet = -9.1 kcal mole-1. (These values have

been corrected for the cratic entropy contribution (-RTln55 = -2.4 kcal mole-1)

associated with a bimolecular reaction (Cantor and Schimmel, 1980b).) The

sum of free energies for the anticodon stem-loop and microhelixfMet is -17.8

kcal mole-1, thus suggesting an estimate of about 7 kcal mole-1 for the free

energy of strain associated with binding the linked domains of the whole

tRNA. Because there may be additional favorable synthetase-tRNA contacts

outside of the acceptor stem and anticodon, the actual free energy of

distortion may be greater than 7 kcal mole-1.

Our analysis of the higher affinity of MetRS1-676 (compared to

MetRS 1-547) for tRNA fM et suggests that the incremental binding energy is due

to contacts with the acceptor helix and not with the anticodon stem-loop. By

comparison of the data in Tables 6-2 and 6-3, we estimate that this

incremental contribution amounts to -1.2 (tRNAfMet) and -2.0

(microhelixfMet) kcal mole- 1. The smaller value for tRNAfMet, (by 0.8 kcal

mole -1) may reflect a coupling of binding-dependent distortion of the acceptor

helix to the rest of the tRNA structure.
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Table 6-1: Kinetic parameters for aminoacylation of RNA substrates by

E. coli MetRS at: pH 7.5, 37 'C

kcat/Km (M-1 s-1) Relative kcat/Km X 106a

tRNAfMet

MicrohelixfMe tl

G(7:3 MicrohelixfMet

G72, G73 MicrohelixfMet

MlicrohelixAla

2.8 X

9.4 X

1.3 X

7.0 X

8.3 X

106

10-1

10-1

10-2

10-2

1.0 X 106

0.34 (1)b

0.046 (0.14)

0.025 (0.074)

0.030 (0.088)

aRelative kcat/Km is the ratio of kcat/Km of each RNA substrate to the

kcat/Km of tRNAfM et. bThe values in parenthesis are relative kcat/Km

values for the microhelices relative to wild type microhelixfMet..
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Table 6-2: Dissociation constants of MetRS1-6 76 and AlaRS1-46 1-6H for

t]RNAfMet and small RNA substrates at pH 7.5 and 25 oCa

Dissociation constants (Kd, 9iM)

MetRS1-676  AlaRS1-4 61-6H

t.RNAfMet 0.51 + 0 .1 4b Not tested

Anticodon S-L 22 ± 6 Not tested

MicrohelixfMet 12 + 3 Not detectable

Gc72, G73 Microhelix fM et 12 + 1 Not tested

MicrohelixAla 5.6 ± 1.6 12 ± 5

C70 MicrohelixAla 4.6 Not detectable

aThe Kd values were determined from Scatchard plots of the data

obtained from affinity coelectrophoresis. bResult previously reported

in Chapter 2 and (Gale and Schimmel, 1995a).
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Table 6-3: Dissociation constants of MetRS1-547 wild type and the R533A

mutant for tRNAfMet and small RNA substrates at pH 7.5 and 25 oCa

Dissociation constants (Kd, gM)

MetRS1-547 MetRS1-547(R533A)b

tRNAfMet 3.6c, (0.51)d Not tested

Anticodon S-L 31c, (22) 5.4 ± 1.0

MicrohelixfMet 330 (12) Not detectable

G72, G73 Microhelix fM et 520 (12) Not tested

MicrohelixAla 210 (5.6) Not tested

aThe Kd values were determined from Scatchard plots of the data obtained

from affinity coelectrophoresis. The values given had errors ranging from

16-28%. bResults for this protein previously reported in Chapter 5 and

(Kim et al., 1993b). CResults previously reported in Chapter 4 and (Gale and

Schimmel, 1995b). dThe numbers in parenthesis are the equivalent values

for MetRS1-676 shown in Table 2.
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Legend to Figure 6-1

Sequence and cloverleaf structure of E. coli tRNAfMet and microhelix

variants

Sequence and cloverleaf structure of E. coli tRNAfMet (left) (Sprinzl et al.,

1989). The acceptor stem and TPC loop are highlighted to indicate portions of

the tRNA recapitulated in microhelix RNA substrates shown on the right.

From left to right are wild type microhelixfMet, the double mutant G72, G73

microhelixfMet and wild type microhelixAla.
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Legend to Figure, 6-2

ACE gel analysis of the binding of MetRS 1-676 to microhelix RNA

substrates

Affinity coelectrophoresis analysis of the binding of MetRS1-676 to microhelix

IURNA substrates. A: ACE gel of MetRS1- 676 with microhelixfMet. MetRS1-676

concentration ranged from 2 to 80 gM. B: ACE gel of MetRS1-6 76 with G72,

G73 microhelixfM et. MetRS1- 6 76 concentration ranged from 2 to 80 RtM. C:

ACE gel of MetRS1-6 76 with microhelixAla. MetRS1-676 concentration ranged

from 0.5 to 25 ptM.
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A. Microhelix fMet, WT

80

B. Microhelix fMet G72G73
80

C. Microhelix Ala

25

Figure 6-2
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Legend to Figure 6-3

ACE gel competition assay

For each [5'-3 2P] labeled microhelix RNA substrate, MetRS1- 676 at a

concentration of 10 jgM was placed in each of two lanes. Transfer RNAfMet or

tRNAVal at a concentration of 12 tiM was added to the left lane of each pair.

The [5'- 32p] labeled microhelices were electrophoresed through the paired

lanes (+ -) and unlabeled tRNA inhibited the shift of the labeled microhelix

substrate, if the two RNA molecules competed for the same binding site on

MetRS1-676.
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ACE Gel Competition Assay

Microhelix

fMet fMet fMet Ala
WT WT G72G73 WT

tRNAfMettRNA a

Val
tRNA

+- + - + -

+ -

Figure 6-3
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Appendix A

Analysis of the Fusion Protein MBP-C1-6 76
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INTRODUCTION

In addition to the fusion proteins analyzed in Chapters 3 and 4, we

constructed another fusion protein that joined the C-terminal domain of full

length MetRS1-676 to MBP (MBP-C367-676). This protein contains the

dimerization domain of native E. coli MetRS, as well as the anticodon binding

domain. Given that this protein includes the dimerization domain of

MetRS, physical characterization focused on charactarization of the

oligomeric state of the protein as well as determination of whether or not it

maintained a native-like structure. Physical characterization utilized circular

dichroism spectroscopy as described in Chapter 3 as well as analytical

ultracentrifugation. Functional analysis was also performed as in Chapter 4

using the technique of affinity coelectrophoresis to measure specific binding

to the anticodon stem-loop RNA substrate.

MATERIALS AND METHODS

Construction of Fusion Protein. The phagemid pJB103 (Burbaum and

Schimmel, 1991a) contains the gene for the full length MetRS1- 676. The

phagemid pAG117 was cleaved with Pst I and Hind III to produce a fragment

of 592 bp. The phagemid pJB103 was also cut with Pst I and Hind III and the

592 bp fragment from phagemid pAG117 was inserted into The Pst I-Hind III

site in pJB103 to create a phagemid encoding MetRS1-676 with a Bam HI site

directly before the codon for 1367 (at bp 1620). This phagemid was designated

as pAG118.A. Site-directed mutagenesis with the Sculptor in vitro

mutagenesis system (Amersham, Arlington Heights, IL) was used to remove

a Barn HI site at bp 856 of phagemid pAG118.A to create phagemid pAG118.B.

The mutagenic primer 5'-CAGTGCCTGCGGAGCCGGGTAAGCAG-3' was

used for this purpose. Site-directed mutagenesis was used again with the
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mutagenic primer 5'-GCAGCGCCTTGAAGCTTGATTATTTCACCTG-3' and

phagemid pAG118.B to add a Hind III site at bp 682 of pAG118.B to create

pAG118.C. This Hind III site starts 2 bp beyond the stop codon of the coding

sequence of the gene for the full length MetRS.

Phagemid pAG118.C was cleaved with Bam HI and Hind III to create a

941 bp fragment. Plasmid pMal-c2 was also cleaved with Bam HI and Hind III

and the 941 bp fragment from phagemid pAG118.C was inserted into plasmid

pMal-c2 to produce a gene fusion between the MalE gene (encoding maltose

binding protein) and codons 367 to 676 of MetRS. This fusion included a

linker between the two genes that encodes 10 amino acids, including a Factor

Xa cleavage site. This plasmid was designated as pAG122.

Purification and Cleavage of Fusion Protein. MBP-C367-676 was purified as

described in Chapter 3 for MBP-C 367-547. Factor Xa cleavage was also

performed as described in Chapter 3.

Affinity Coelectrophoresis. Affinity coelectrophoresis was performed as

described in Materials and Methods of Chapter 2 (see Figures 2-1 and 2-2).

MBP-C 367-676 was at a concentration range of 8-150 gM.

Circular Dichroism Spectroscopy. CD experiments were performed as

described in Chapter 3 with the following modifications. Two different buffer

compositions were used. The first composition was 20 mM sodium

phosphate (pH 7.3), 100 mM NaCl and 1 mM 13-ME (as in Chapter 3). The

second buffer was 50 mM sodium phosphate (pH 7.3), 0.1 mM EDTA, 4 mM

MgCl2 and 1 mM 1-ME. The second buffer composition was used to more

closely duplicate the conditions under which the affinity coelectrophoresis

was done. In the first buffer, both spectroscopic and thermal denaturation

experiments were done as described in Chapter 3. In the second buffer,

spectroscopic and thermal denaturation experiments were done as described
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in Chapter 3 except for the following details. Experiments were done at 50

pgg/mL (0.65 gRM), 1 mg/mL (13 jgM) and 5 mg/mL (65 giM) protein with a 5

mm pathlength, 0.5 mm pathlength, and 0.1 mm pathlength, respectively.

Thermal melts were also done with 5 mg/mL MBP-C 367-676 (65 RM) in

adlmixture with 65 gM anticodon stem-loop RNA substrate.

Analytical Ultracentrifuge. Analytical ultracentrifugation was carried out

with a Beckman analytical ultracentrifuge, model XL-A (Beckman

Instruments, Inc., Palo Alto, CA). MBP-C 367-676 was dialyzed into 50 mM

sodium phosphate (pH 7.3), 0.1 mM EDTA, 4 mM MgCl2 and 1 mM fg-ME.

Protein was loaded into a six-channel analytical cell at concentrations ranging

from 50 jgg/mL (0.65 jgM) to 3 mg/mL (39 gM). The cell was centrifuged at

8000-10,000 rpm until the protein reached sedimentation equilibrium (14-20

hours). Absorbance scans were done with a 0.001 cm step size with 10 scans

averaged together. Molecular weight values were calculated by fitting the

data to the one-species function, C(r) = C(a)exp[ow2M(1-vp)(r2-a2 )/2RT] using

thle program NonLin for Macintosh (Version 0.9.8b4, Robelko Software,

Carbondale, IL, courtesy of Alan Davidson, MIT), where C(r) is the solute

concentration at radius r, C(a) is the solute concentration at a reference

distance a, wo is the angular velocity, R is the gas constant, T is the

temperature, M is the molecular weight of the protein species, v is the partial

specific volume of the protein, and p is the density of the buffer (Cantor and

Schimmel, 1980a; Johnson and Frazier, 1985). The partial specific volume was

calculated from the standard formula (Laue et al., 1992).

RESULTS AND DISCUSSION

Purification and Cleavage of MBP-C367-676. The fusion protein MBP-C 3 67-

676 was expressed at high levels in E. coli strain TG1, typically yielding 40 mg/L
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of culture. The expressed fusion protein was soluble and stable and therefore

amenable to purification (data not shown). Purification by ion exchange

chromatography on a Mono Q HR 10/10 column yielded MBP-C 36 7-676 of

about 90% purity.

Factor Xa at a 1:200 (wt:wt) ratio cleaved 100% of the fusion protein.

However, C367-676 precipitated out of solution during cleavage by Factor Xa.

Therefore, it was not practical to isolate and characterize C367-676 separate

from maltose binding protein.

Affinity Coelectrophoresis. In the ACE assay, MBP-C 367-676 bound

specifically to the wildtype anticodon stem-loop RNA substrate (Figure A-1).

As was the case for MBP-C367-547, binding was not detectable when a single

base of the anticodon was substituted within the anticodon stem-loop

substrate. Scatchard analysis suggested that MBP-C 36 7-676 was binding to the

anticodon stem-loop in a partially cooperative manner. It was estimated that

50 % of the anticodon stem-loop RNA was bound at a concentration of 53 gM

1MBP-C 367-676 . A Hill plot of the ACE data (Figure A-1) (log(R/1-R) = logKa +

nlog[protein], where R is the relative shift as defined in Chapter 2 and Ka is

the association constant), gave a Hill coefficient, n of 1.5-1.6, indicating

significant apparent cooperativity in the binding of the anticodon stem-loop

RNA. In contrast, binding of native MetRS1-676 to the anticodon stem-loop

(see Chapter 6) gave a Hill coefficient of 1.1 (data not shown).

One possible explanation for this observed cooperativity is that MBP-

C367-676 is less stable than MetRS1- 676 and only dimerizes at concentrations in

the range of protein concentration studied here. In this case dimerization

would stabilize the anticodon binding site.

Circular D)ichroism and Analytical Ultrcentrifuge Analysis. In order to

characterize the tertiary and quaternary structure of MBP-C 36 7-6 76 in solution,
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we performed biophysical analysis using the techniques of circular dichroism

spectroscopy and analytical ultracentrifugation. Initially, circular dichroism

spectral analysis and thermal denaturations were performed with the same

conditions utilized for the fusion proteins studied previously (see Chapter 3).

In these conditions (including 100 mM NaC1), MBP-C 367-676 showed a high

level of a-helical character similar to that seen in MetRS 1-547 and MBP-C367-

547. However, at a concentration of 1 mg/mL, MBP-C367-676 was significantly

less thermostabile than MBP-C 367-547, having an apparent Tm of 55.5 'C

compared to an apparent Tm of 63 °C for MBP-C367-547. As was the case for

MBP-C 367-547, the denaturation of MBP-C 36 7-676 was not reversible.

Denaturation of MBP-C 367-676 was somewhat concentration-dependent, with

an apparent Tm of 53.5 'C at 50 gg/mL.

Thermal denaturation analysis was also done in Na-phosphate buffer

without added NaCl in order to more closely duplicate the conditions under

which the affinity coelectrophoresis experiments were done. The buffer used

contained 50 mM Na-phosphate (pH 7.3), 4 mM MgC12, 0.1 mM EDTA and 1

mM 2-ME. Thermal denaturations were done at 50 gpg/mL (0.65 ~M), 1

mg/mL (13 jgM) and 5 mg/mL (65 jiM), as well as at 5 mg/mL with 65 gM

added anticodon stem-loop RNA. The thermal denaturation curve of MBP-

C367-676 (at 1 mg/mL) with 4 mM MgCl2 had two denaturation transitions.

This behavior is in contrast to the thermal denaturation curve seen in

phosphate buffer with 100 mM NaC1 added instead of MgCl2 (Figure A-2,A).

The first denaturation transition (with 4 mM MgC12) had an apparent Tm of 55

'C and the second transition had an apparent Tm of 76 'C.

The denaturation curves of MBP-C367-676 at 50 gg/mL and 5 mg/mL

both differed significantly from the denaturation at 1 mg/mL (Figure A-2,B).

Both curves only had one denaturation transition. The apparent Tm for MBP-
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C367-676 at 50 Rg/mL was 55.5 'C. The apparent Tm for MBP-C 367-676 at 5

mg/mL was 60 'C. This denaturation curve also had an increase in -0222

directly before the melting transition began. The thermal denaturation curve

of MBP-C 367-676 at 5 mg/mL with 65 pM anticodon stem-loop present did not

differ significantly from MBP-C 367-67 6 alone (data not shown). The shapes of

the CD spectra curves (200-260 nm) were invariant over the concentration

range of 50 gg/mL (0.65 gM) to 5 mg/mL (65 gM) (data not shown).

To determine the oligomeric state of MBP-C 367-676 we analyzed the

protein by sedimentation equilibrium with an analytical ultracentrifuge.

M14BP-C367-676 was centrifuged in 4 mM MgCl2 at 4 different concentrations

ranging from 50 gg/mL to 3 mg/mL (0.65 pgM to 39 gM). At all

concentrations, the calculated Mr from analysis of the sedimentation

equilibrium was consistent with MBP-C 367-676 being primarily in a dimeric

form. Figure A-3 shows analysis of MBP-C 367-676 at 3 mg/ml. Single-species

best fit analysis gave an average Mr of 139,000 + 4% for the four

concentrations tested. The calculated molecular weight of dimeric MBP-C 367-

676 is 154,000 daltons. However, at all concentrations the experimental data

deviate somewhat from the theoretical single-species function. At the lower

concentrations, this deviation is characteristic of aggregation (1993).

Nonetheless, n-2n species analysis (Van Holde, 1975) does not significantly

improve the fit. At 3 mg/mL, the deviation from ideality is not clearly due to

ag;gregation. The deviation may be due to impurities in the protein

preparation or to a small amount of dissociation. Shown also in Figure A-3 is

the hypothetical sedimentation equilibrium curve for monomeric MBP-C367-

676 (1Mr = 77,000 daltons). That curve does not fit the experimental data.

Because MBP-C 367-676 is primarily dimeric at and significantly below

the concentration range used in the ACE gel analysis (analytical
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ultracentrifuge at 0.65-39 gM, ACE gel at 8-150 gM MBP-C 367-676), we conclude

that the observed cooperativity of anticodon stem-loop binding is not due to

dissociation of the MBP-C 367-676 dimer in the concentration range studied.

However, the thermal denaturation data clearly show a concentration

dependent change in the structural characteristics of MBP-C 367-676 (at 0.65-65

ptM MBP-C367-676). These changes may reflect aggregation of the thermally

denatured species and not aggregation of the native dimer. For instance (at

least up to 39 piM of fusion protein), the sedimentation equilibrium analysis

does not demonstrate higher order aggregation, which would tend to give

significantly higher experimental Mr values. Possibly the observed

cooperativity of binding is due to a genuine effect of binding an RNA

molecule to one subunit on the structure of the binding site on the other

subunit. Because the MetRS 1-676 dimer does not elicit this behaviour, we

suggest that the replacement of the N-terminal domain of MetRS may have

artificially generated a novel dimer where new subunit interactions give rise

to cooperativity.
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MBP-C367-676 , Anticodon S-L

150 8 ýM

Figure A-i

ACE gel analysis of the binding of MBP-C 367-6 76 to the tRNAfMet

anticodon stemn-loop RNA hairpin

ACE gel of MBP-C 367-676 with the wildtype anticodon stem-loop RNA

hairpin (MBP-C 367-676 concentration range from 8 to 150 pM).
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Legend to Figure A-2

Circular dichroism analysis of MBP-C367-676.

A: Thermal denaturation curves of MBP-C 36 7-676 at a concentration of

1 mg/mL. The "100 mM NaCl buffer" is 20 mM sodium phosphate (pH 7.3),

100 mM NaCl and 1 mM S-ME. The "4 mM MgC12" buffer is 50 mM sodium

phosphate (pH 7.3), 4 mM MgC12, 0.1 mM EDTA and 1 mM 1-ME. B.

Thermal denaturation curves of MBP-C367-676 at concentrations of 50 gg/mL

(0.65 giM), 1 mg/mL (13 giM) and 5 mg/mL (65 jgM) in 50 mM sodium

phosphate (pH 7.3), 4 mM MgCl2, 0.1 mM EDTA and 1 mM 13-ME.
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Legend to Figure, A-3

Analytical ultracentrifuge analysis of MBP-C367-676.

Mass distribution of MBP-C 36 7-676 at 3 mg/mL (39 gM) following

centrifugation to equilibrium at 10,000 rpm. The best-fit theoretical curve is

superimposed lover the data points. The theoretical curve for monomeric

MBP-C 367-676 (AMr = 77,000 daltons) is also shown. The Mr is the average Mr

determined at four protein concentrations from 50 gg/mL to 3 mg/mL (0.65

to 39 jiM). Experiments were performed in 50 mM sodium phosphate (pH

7.3), 4 mM MgC12, 0.1 mM EDTA and 1 mM 13-ME at 25 'C.

151



7 7.05 7.1 7.15 7.2

Radius (cm)

Figure A-3

152

1.2

1.0

0.8

0.6

0.4

0.2

LO0

h

0
cI,

6.95



Appendix B

153



Description

pBluescript
(KS+)

phagemid vector for mutagenesis and
protein expression

Stratagene

pBluescript (KS+) containing the full- J. Burbaum (MIT)
length metG gene inserted between
the Kpn I and Sac I sites
(Burbaum and Schimmel, 1991a)

pBluescript (KS+) containing the J. Burbaum (MIT)
truncated metG gene encoding residues
1 to 547; created by replacing the
Pst I-Eco RI DNA fragment of pJB103
with the corresponding fragment of
pRS735 that contains the MetRS gene
encoding tandem stop codons after K547
(R.Starzyk and P. Schimmel, unpublished data)
(Kim and Schimmel, 1992)

vector for protein expression and having
the pBR322 backbone and a tac promoter

vector for construction and expression of
fusion proteins with maltose binding
protein; contains a tac promoter

Pharmacia

New England
Biolabs

pAG112

pAG117

pAG118.C

vector pKK223-3 with the gene for
MetRS1-547 inserted after the tac promoter;
phagemid pJB104 was cleaved with Eco RI
and Sal I, plasmid pKK223-3 was cleaved with
Eco RI and both fragments were digested with
mung bean nuclease to remove single-
stranded ends. The MetRS1-547 gene was
then blunt-end-ligated into pKK223-3.

phagemid pJB104 with a Bam HI site
introduced at codon 365 of the gene
for MetRS1-547

pJB103 with the Bam HI site at codon
365 of the pAG117 gene for Met1-547
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Plasmid

Plasmids

Source

pJB103

pJB104

pKK223-3

pMal-c2

Chapter 3

Chapter 3

Chapter 3



transferred into the metG gene of pJB103;
The Bam HI site at codon 621 of the metG
gene was also removed, a Hind III site
was introduced 2 basepairs after the stop
codon of the metG gene.

pMal-c2 with the Bam HI fragment from
pAG117 with the gene for MetRS367-547
inserted into the Bam HI site; encodes the
protein MBP-C 367-547

Chapter 3

pMal-c2 with the Bam HI-Hind III fragment Appendix A
from pAG118.C with the gene for
MetRS367-676 inserted into the Bam HI-
Hind III site; encodes the protein
MBP-C367-676

pJB104 with the codon for Trp461
mutated to Ala

pAG120 with a Cla I fragment of pAG123
inserted into the place of the Cla I fragment
of pAG120 to encode the protein
MBP-C 367-547(W461A)

pQE-70 from Qiagen with the gene for
codons 1-461 of AlaRS inserted into the
multiple cloning site to encode the protein
AlaRS1-461-6H

A plasmid encoding the lac repressor from
the lacI gene .

Chapter 3

Chapter 3

L. Ribas (MIT)

Qiagen
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pAG120

pAG122

pAG123

pAG124

pQE-461

pREP4



Oligonucleotides

Sequence/Description

Barn365

RBam118.B

CGATATCATCAATGGATCCAGAGAGTTTCGC
used to introduce a Bam HI site at codon 365 of the gene for
MetRS 1-547 in pJB104

CAGTGCCTGCGGAGCCGGGTAAGCAG
used to remove Bam HI site at codon 621 in the metG gene in
pAG118 (basepair 856)

H1-ind118.C GCAGCGCCTTGAAGCTTGATTATTTCACCTG
used to add Hind III site at basepair 682 in pAG118,
after the stop codon of the metG gene in pAG118

2 basepairs

TGTTTCGCCACCACCGCCGGAGCCTGTTCATC
used to mutate Trp461 to Ala in the gene for MetRS1-547 in
pJB104

PNR7

A'G2(PNR9)

TACGGGAGGCCAGGT
used for sequencing of anticoding strand
MetRS starting at codon 391

TCAGGTAAGTCATCAGCACGCG
used for sequencing of anticoding strand
MetRS starting at codon 484

of the gene for

of the gene for

CTGCCGAAACTGACCGAG
used for sequencing of coding
starting at codon 500

ATCCAGCAACCGCTGCTG
used for sequencing of coding
starting at codon 520

CAAACTGCTGCGCCTG
used for sequencing of coding
starting at codon 600

TGCCGGTCCTGGCGGG
used for sequencing of coding
starting at codon 657

strand of the gene for MetRS

strand of the gene for MetRS

strand of the gene for MetRS

strand of the gene for MetRS
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495--500

515-520

PRM12

PRM13



Abbreviations

ACE
AMP
ATP
1-ME
bp
BSA
CD
CP1, CP2
C(r)
DEAE-TSK
DHU
EDTA
FPLC
g
HEPES
IPTG
Ka
kcat
Kd
Km
LMP agarose
MBP
MgCl2
Mr
NaCI
P
PEI
PMSF
R
rpm
SDS-PAGE
T
Tris
tRNA
V

VmXxxRS

XxxRS

affinity coelectrophoresis
adenosine 5'-monophosphate
adenosine 5'-triphosphate
13-mercaptoethanol
base pair(s)
bovine serum albumin
circular dichroism
connective polypeptides 1 and 2
solute concentration at radius r
diethylaminoethyl-TSK
dihydrouridine
(ethylenedinitrilo)tetraacetic acid
fast protein liquid chromatography
gravitational force
N-(2-hydroxyethyl)-piperazine-N'-(2-ethanesulfonic acid)
isopropylthio-13-D-galactopyranoside
association constant
catalytic rate constant
dissociation constant
Michaelis constant
low melting point agarose
maltose binding protein
magnesium chloride
relative molecular weight
sodium chloride
density
poly(ethyleneimine)
phenylmethylsulfonyl fluoride
gas constant
revolutions per minute
sodium-dodecyl-sulfate polyacrylamide gel electrophoresis
temperature
tris(hydroxymethyl)aminomethane
transfer RNA
partial specific volume
maximum velocity
angular velocity
aminoacyl-tRNA synthetase specific for amino acid Xxx
(three letter code)
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