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Abstract

The molten globule formed by the helical domain of a-lactalbumin (a-LA)
has a native-like overall fold, even though it lacks fixed tertiary interactions
and its structure is highly fluctuating. To identify the minimal requirements
for forming a native-like overall topology, the helices that are folded in the
molten globule of a-LA were identified by a combination of amide hydrogen
exchange studies (Chapter 2) and a new mutagenesis approach, proline
scanning mutagenesis (Chapter 3). The four helices that are folded in the
molten globule form a subdomain in the structure of native a-LA. Unlike
structure in native proteins, however, the helices in the molten globule
assemble non-cooperatively, and no single helix is required for forming the
native-like overall fold. Mutant proteins with prolines inserted into
multiple helices still adopt the native-like topology with a significant, albeit
diminished, preference when compared to a random coil. These results
suggest that the key determinants of a protein's overall fold may not be of the
all-or-none type.

The hydrogen exchange studies (Chapter 2) also permit investigation of the
differences between the molten globule and the native state. These studies,
together with disulfide exchange and NMR studies (Appendix I) indicate that
the calcium-dependent folding of the p- and interdomain regions is important
for forming specific tertiary interactions in a-LA.
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CHAPTER 1

PARTIALLY FOLDED STRUCTURES OF PROTEIN FOLDING
INTERMEDIATES



Intermediates in protein folding

The Levinthal paradox implies that it is impossible for proteins to fold
via a random search: most proteins fold on the order of milliseconds to
hours, but it would take an astronomical amount of time for even a small
protein to randomly sample all accessible conformations (1). This
observation has guided efforts in protein folding, with the view that
identification of the pathway of protein folding and the intermediates along
this path would elucidate the mechanism of folding. Indeed, over the past 15
years many proteins have been shown to fold via intermediates, and much
progress has been made in assessing their structural and physical properties
(2).

Residual structure in protein folding intermediates--identification of cores

In order to identify the important forces in protein folding, residual
structure has been studied in partially folded forms of a number of proteins.
In general, these studies are aimed at locating the structured regions and
correlating them with high resolution structural information about the
native state. Three main experimental approaches have been used to
delineate structure in folding intermediates. The first approach is to measure
protection from amide hydrogen exchange. In native proteins, amide protons
sequestered from solvent, such as those involved in hydrogen bonds, are
protected from hydrogen exchange. It is thought that protection from
hydrogen exchange in intermediates reflects the presence of secondary
structures (3).

The second way to identify structured regions in folding intermediates
is mutagenesis. Mutation of side chains that are involved in specific tertiary
interactions is highly destabilizing (4). Mutagenesis has been used to identify
tertiary interactions present in both equilibrium and kinetic intermediates (5,
6).

Finally, protein dissection has been used to localize both residual
structure and regions of the protein that are unfolded or extraneous in
partially folded forms of proteins (7, 8).



A number of small proteins have been developed as model systems for

protein folding. Equilibrium and kinetic intermediates observed during the
folding/unfolding of these proteins have been well characterized by the
approaches described above, and fall roughly into two classes. The first class is

exemplified by the intermediates observed during the oxidative refolding of
bovine pancreatic trypsin inhibitor (BPTI). They are cooperatively folded,
with specific tertiary interactions stabilizing at least a subdomain of the

protein. The second class is exemplified by the molten globule forms of apo-
myoglobin. Molten globules are more loosely structured, partially folded
forms of proteins that are populated at equilibrium under mildly denaturing
conditions (9, 10). Apo-myoglobin forms two different molten globules, each
with a high degree of secondary structure, but no fixed tertiary interactions.
To explain what is and what is not folded in these two classes of
intermediates (and the often weak distinctions between them), the residual
structure found in the intermediates of four proteins (BPTI, cytochrome c,
barnase and apo-myoglobin) is discussed in more detail below.

BPTI

BPTI is a 58-residue protein stabilized by three disulfide bonds. The
oxidative refolding of BPTI has been studied extensively. Of the 15 possible
single disulfide bonded isomers, only two predominate early in refolding:
[30-51] and [5-55] (11, 12). The cysteines involved in these disulfide bonds are
in the middle of secondary structure elements: Cys 5 is in the N-terminal 310-
helix, Cys 30 is in the P-sheet, and Cys 51 and Cys 55 are in the C-terminal a-
helix. Peptide models were made to test the idea that native-like structure
stabilizes these disufide bonds (7, 8).

To identify the residual structure in [30-51], peptides were studied that
correspond to the helix (Pa) and the sheet (PP), containing the cysteines
involved in the 30-51 disulfide bond (7). The peptide sequences correspond to
residues around the 30-51 disulfide in native BPTI that make extensive
contacts with one another. Pa and PP fail to fold individually. However,
they form a cooperatively folded subdomain in the presence of the 30-51



disulfide bond. NMR experiments indicate that a large number of specific

tertiary interactions from both hydrophobic cores stabilize this subdomain.

To identify the structure that is important for forming [5-55], peptides
with sequences corresponding to the two helices were studied. Unlike PaPPP,
this peptide model fails to fold. The peptide model of [5-55] does fold with
substantial stability, however, if the central P-sheet region, containing many
of the aromatic side-chains in the two hydrophobic cores, is included (8).

Hydrogen exchange experiments on full-length BPTI with only the two
cysteines corresponding to either the 30-51 or the 5-55 disulfide bonds (and the
other 4 cysteines in each variant mutated to alanine) confirmed that in [30-51],
the central sheet and C-terminal helix are folded, while in [5-55] the N-
terminal 310-helix is folded as well (13, 14). The major hydrophobic cores are
folded in both [30-51] and [5-55]. [5-55] is highly sensitive to destabilizing
mutations in this core (15).

The studies on early intermediates in the folding of BPTI show that
secondary structure elements come together to form a subdomain early in
folding. These subdomains are cooperatively folded and are stabilized by
specific interactions in the hydrophobic cores.

Cyt c

Equine cytochrome c (cyt c) is a 104 residue, single domain, heme
binding protein. Pulsed hydrogen exchange experiments showed that an
early kinetic intermediate contains two helices (the N- and C-terminal
helices) that fold coincidentally (16). In the structure of native cyt c, both of
these helices interact with the heme. Equilibrium denaturation of cyt c has
been monitored for each residue by hydrogen exchange, and these same two
helices are most resistant to denaturant-induced unfolding, and unfold
cooperatively (17). Peptide models corresponding to these helices associate
roughly stoichiometrically in the presence of heme, suggesting that tertiary
interactions stabilize this intermediate (18).



These same two helices, plus another, are protected from hydrogen
exchange in the relatively stable equilibrium molten globule formed by cyt c

in acid and salt (19, 20). While this form of the protein displays poor chemical

shift dispersion reflecting conformational heterogeneity (19), it also displays a

sigmoidal thermal transition, which is evidence for cooperatively folded

structure (21). The acid-destabilized form of yeast cyt c is cooperatively folded

and sensitive to mutations that disrupt interactions between the N- and C-

terminal helices (6). It is not yet clear how the structure in the "molten

globule" and the kinetic intermediate are related, even though they both

contain the same secondary structure elements.

The studies of the cyt c intermediate, like those of BPTI, demonstrate

that secondary structures formed by disparate parts of the protein come

together early in folding. The helices that are present in this intermediate

surround and interact with heme, and fold cooperatively with one another.

While the molten globule form of cyt c appears to be stabilized by specific

tertiary interactions, it also appears to be somewhat fluctuating.

Barnase

Barnase is a small bacterial RNAse, whose folding has been studied

extensively by both NMR and mutagenesis (22, 23). Fersht's group has

studied both an early intermediate and the transition state for folding in

barnase. Both amide proton exchange experiments and mutagenesis indicate

that the kinetic intermediate contains substantial secondary structure.

However, the intermediate is insensitive to mutations that destabilize the
hydrophobic core, so it may resemble the molten globule intermediates

observed at equilibrium for a number of proteins (23). On the other hand, the

transition state is somewhat sensitive to these mutations, indicating that the

rate-limiting step in the refolding of barnase is the formation of fixed
structure within this core.

Again, extensive secondary structure is folded in the kinetic
intermediate observed during the refolding of barnase. However, fixed

tertiary interactions do not appear to be required for its folding. Instead, fixed
tertiary interactions form in the rate-limiting step.



Apo-myoglobin

Apo-myoglobin can adopt 2 different molten globule forms. In the best
studied form, three helices (A, G and H) are protected from hydrogen
exchange (24). Another molten globule form of the protein, in which the B-
helix is also folded, exists in low concentrations of trichloroacetate and is
observed during kinetic folding experiments (25, 26). In the structure of
native myoglobin, the A, G, and H helices pack together and form a
subdomain. However, mutating the hydrophobic residues between the
helices has little effect on the stability of the molten globule (27, 28). Thus, the
apo-myoglobin molten globule contains extensive secondary structure in the
absence of fixed tertiary interactions.

The studies on BPTI, cyt c, barnase, and apo-myoglobin, as well as
similar studies on many other proteins, lead to several general conclusions
regarding the early events in protein folding. First, the bulk of the structure
observed in folding intermediates is native-like. Thus, studying protein
folding intermediates can identify both the interactions that determine the
overall architecture of proteins and the interactions lacking in partially folded
forms of proteins. In addition, secondary structure elements are formed in
intermediates. Because the secondary structures that are folded come from
disparate parts of the polypeptide, and surround hydrophobic cores in the
structures of the corresponding native proteins, it is thought that formation
of some sort of core, even without fixed tertiary interactions, is important for
folding.

The kinetic role of protein folding intermediates

Originally, the intermediates observed along protein folding pathways
were thought to promote folding. A number of intermediates are kinetically
competent for folding to the native state (10, 29). For example, equine cyt c
folds rapidly to the native state from the molten globule. In addition,
mutants that may destabilize the intermediate in T4 lysozyme fold more
slowly (30).



Recently, however, the kinetic role of observed protein folding

intermediates has been called into question. Several lines of evidence suggest

that the intermediates that are detected by readily available techniques may

hinder, rather than help folding. First, theoretical studies indicate that

intermediates that accumulate during protein folding are trapped in local

energy minima, rather than being on the most direct path to the native state

(31-33). Second, rapid protein folding appears to correlate with a lack of

detectable intermediates (34, 35). Finally, an increasing number of folding

intermediates appear to be trapped in metastable conformations that are

partially folded, but require some rearrangement in order to form the native

structure. These intermediates slow down folding (for review, see 36). For

example, intermediates observed during the refolding of cyt c and BPTI are

kinetic traps. Forms of cyt c in which the heme is ligated to the wrong

histidines can be stabilized and trapped by the formation of the subdomain

containing the N- and C-terminal helices (29). The re-ligation of heme
required for native folding is slowed by the presence of cooperatively folded
native-like structure. In BPTI, which contains three disulfide bonds,
formation of essentially the native structure can occur at the two-disulfide
stage, with high stability. When the remaining free thiols are buried, the
protein must unfold before it can form the third native disulfide bond (12).

The "classical view" versus the "new view" of protein folding--perhaps a

convergence of the views is correct

The "classical" view of protein folding is that intermediates reduce the
conformational search of a polypeptide and thus promote folding. However,
the discovery that many of the classically studied intermediates may be
kinetic traps has led to a "new" view of intermediates in protein folding (for
review, see 37). In both views, it is still thought that the protein must search
for the conformation with the lowest energy. However, in the "new view",
the true obstacle in folding is not the search for the right conformation per se,
but rather avoiding other local energy minima throughout the folding
process. The protein folding intermediates that hinder folding are at such
energy minima. In these intermediates, some native-like structure is
cooperatively folded, but part of the protein is not properly folded. Native-
like structure stabilizes these partially folded forms of proteins. However, in



order to attain the truly native structure, at least part of the structure that is

already folded in such an "intermediate" must first unfold.

It is likely that the real role of protein folding intermediates is
somewhere between the old view and the new view. While the observed

pathway for folding may not be the fastest route to the native state, the

intermediates along this path still reveal information about the mechanism

of folding. Protein folding intermediates display strong preferences for

forming native-like structure. Even the intermediates that slow down
folding are very native-like. These intermediates are cooperatively folded
and have fixed tertiary interactions, and may even be simpler model systems
for identifying the requirements for forming a unique structure.

Two major steps in protein folding: (1) formation of native-like structure in
the absence of specific tertiary interactions; and (2) formation of a unique
structure

While there is a fine line between the molten globule-like and the
native-like behavior in some protein folding intermediates, such as those
formed by cyt c and barnase, there are obvious differences between the folding
intermediates formed by apo-myoglobin and BPTI. The molten globule
formed by apo-myoglobin lacks fixed tertiary interactions (27), and yet it still
contains native-like secondary structures. In addition, the apo-myoglobin
molten globule, like other classic molten globules, lacks a unique structure.
On the other hand, the intermediates formed by BPTI are much more native-
like, with fixed tertiary interactions in the hydrophobic cores. These two
classes of intermediates provide simplified model systems for studying
protein folding, and the differences in their behavior imply that protein
folding can be simplified into studying two problems: 1) how can native-like
structure fold in the absence of fixed side-chain interations? And 2) how is
fixed tertiary structure formed?



The molten globule formed by a-lactalbumin

a-Lactalbumin (a-LA) is a two-domain, calcium binding protein that is

stabilized by four disulfide bonds. a-LA forms one of the best studied molten

globules under a wide variety of conditions, including at low pH, in the

absence of calcium and other salts, and upon reduction of a number of its four

disulfide bonds (38-41). Residual structure in the molten globule of a-LA is

localized within one domain (the helical domain) (42). On the other hand, a

number of studies have indicated that calcium binding by the other domain

of the protein, which includes the P-sheet and inter-domain disulfide bonds,

is important for the formation of fixed tertiary interactions (See Appendix

I)(43, 44). Thus, in a-LA, it appears that the factors important for forming a

molten globule are localized to one domain, and that the other domain

contains the information important for directing formation of a unique
structure.

The backbone topology of the helical domain of a-LA is native-like in

the molten globule, even though NMR spectra (with extreme line-
broadening and lack of chemical shift dispersion) indicate that it lacks fixed

tertiary interactions (45-47). As with the other folding intermediates that

have been well characterized structurally, the secondary structures folded in
the molten globule of ao-LA probably associate in some manner. Nonetheless,
the important factors for bringing together secondary structures are poorly

understood, as technical limitations have restricted high resolution structural
studies of the molten globule. As a first step toward identifying the factors
that are important for forming a native-like topology in the absence of specific
tertiary interactions, the experiments described in this thesis use alternative
approaches, including a new mutagenesis strategy presented in Chapter 3, to

determine what parts of a-LA are folded in the molten globule. In addition,
the results presented in Chapter 2 and Appendix I hint at ways to approach
the next stage in folding: adopting a unique structure with fixed tertiary
interactions.
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CHAPTER 2

DIFFERENT SUBDOMAINS ARE MOST PROTECTED FROM
HYDROGEN EXCHANGE IN THE MOLTEN GLOBULE AND

NATIVE STATES OF ao-LACTALBUMIN



a-lactalbumin (a-LA) is a two-domain, calcium-binding protein that

forms one of the best studied molten globules. We present here amide

hydrogen exchange studies of the molten globule formed by human a-LA at
pH 2 and compare these results with a similar study of the native state at pH
6.3. The most persistent structure in the molten globule is localized in the
helical domain, consistent with previous results. However, the helices most
protected from hydrogen exchange in the molten globule are, in the native
state, less protected from exchange than other regions of the protein. The
molten globule appears to contain major elements of the native fold, but
formation of the fully native state requires stabilization of structure around
the calcium-binding site and domain interface.



Molten globules are partially folded forms of proteins postulated to be

general intermediates in protein folding. Classic molten globules have few, if

any, fixed tertiary interactions, and are observed at equilibrium for many

proteins in mildly denaturing conditions (Kuwajima, 1989; Ptitsyn, 1992;

Dobson, 1994). In addition, with rare exception (O'Shea et al., 1993), de novo

designed proteins have properties more reminiscent of molten globules than

native proteins (for review, see Betz et al., 1993). Thus, understanding what

distinguishes partially folded states such as molten globules from fully folded
proteins is critical for understanding protein folding and protein design.

The best characterized molten globule is that formed by a-lactalbumin
(a-LA), a 123-residue, two-domain calcium-binding protein (Fig. 1). a-LA
adopts a molten globule conformation readily under a wide variety of
conditions including low pH, reduction of disulfide bonds, and the absence of
calcium and other salts (Kuwajima, 1989; Ewbank & Creighton, 1991; Yutani
et al., 1992). Numerous studies have led to the view that the a-LA molten
globule has a bipartite structure, with (i) a disordered 1-sheet domain and (ii)
an a-helical domain containing substantial secondary structure and a native
tertiary fold, even though it lacks extensive fixed tertiary interactions (Baum
et al., 1989; Kuwajima, 1989; Alexandrescu et al., 1993; Peng & Kim, 1994; Xie
& Freire, 1994; Wu et al., 1995).

It is important to understand the similarities and differences between
the molten globule and a native protein. Amide-proton hydrogen exchange
probes the structure and dynamics of proteins (Linderstrom-Lang, 1955;
Woodward et al., 1982; Englander & Kallenbach, 1983; Wagner & Wiithrich,
1986). We report here hydrogen exchange studies of both the molten globule
and native states of human a-LA. For a number of proteins, a correlation has
been found between the location of the amide protons most protected from
solvent exchange in the native protein and the protein folding core
(Woodward, 1993). For a-LA, however, we show here that the region of the
native structure that is most protected from exchange in the molten globule is
not the region most resistant to solvent exchange in the native protein. Our
results can be attributed to the additional interactions necessary to stabilize
the native state in this two-domain protein.



Exchange rates in the molten globule were measured indirectly because

broad lines and poor dispersion complicate interpretation of the NMR spectra
of the a-LA molten globule (Baum et al., 1989; Alexandrescu et al., 1993).
Hydrogen exchange was carried out for a variable time period at pH* 2, 50 C,
conditions at which a-LA is a molten globule. (pH* refers to meter readings
in D20 solutions using a glass pH electrode, without correction for isotope

effects.) Solvent exchange was quenched by freezing and lyophilization, and

the sample was analyzed subsequently under conditions where human a-LA

is native (Nozaka et al., 1978) and gives rise to high quality 15N-1H HSQC
spectra for which assignments are complete (Redfield, Peng, Schulman, Kim

and Dobson, unpublished). In these experiments, only amide protons that are

highly protected from hydrogen exchange in the native state can be probed.

Nonetheless, 34 amide protons can be assayed in the molten globule: 24 from

a-helices and 10 from the 0-sheet domain (Fig. 2). None of the P-sheet amide
protons that are assayed are significantly protected from solvent exchange in
the molten globule. Protected protons are detected within the a-helical

domain, with local differences in protection factors (Table 1, Fig. 3A). The B-

helix contains the amide hydrogens most protected from exchange, with
protection factors for four residues exceeding 100. The A-helix also persists in
the molten globule, with three of its five probes protected more than 10-fold,
and one is protected by a factor of 50. Only 4 of the 12 probes from the C-helix
are protected more than 10-fold, and none is protected by more than a factor
of 20.

Our data agree with previous work showing that specific helices are
folded in the molten globule of a-LAs from guinea pigs, cows and humans
(Baum et al., 1989; Alexandrescu et al., 1993; Chyan et al., 1993). An additional
finding in the present study is that amides in the A-helix, which were not
probed in previous 1H NMR studies of a-LA, are significantly protected from
exchange. The protection that we observe for a number of helices in the
molten globule strongly supports a view of the molten globule with extensive
native-like secondary structure. In previous studies, analysis of the
propensities of cysteine residues to form disulfide bonds provided clear
evidence that the helical domain of human a-LA retains an overall native-
like fold even as a molten globule (Peng & Kim, 1994; Wu et al., 1995). The
protection from amide proton exchange that we observe for the B-helix, taken



together with the strength of the 28-111 disulfide bond (Peng et al., 1995),
suggest that there is a correlation between secondary and tertiary structure in
a-LA, even in the absence of extensive sidechain packing interactions.

For native a-LA, amide proton exchange rates were measured directly
(Table 1). Relatively similar numbers of amide protons are protected from
exchange in the a-helical and the P-sheet domain regions. The most highly
protected amide protons are located primarily around two disulfide bonds:
61-77, within the P-sheet domain; and 73-91, connecting the P-sheet domain
to the long C-helix (Table 1, Fig. 3B). In the helical domain, the C-helix is
most protected, followed by the B- and then the A-helix. The D- and 310-

helices exchange too quickly to be measured. It is striking that the C-helix,
which is only marginally protected from exchange in the molten globule, is
the most highly protected from exchange in native a-LA (Fig. 4).
Examination of the a-LA structure (Fig. 1), however, provides an explanation
for this observation. The calcium binding site is located in a loop between the
N-terminus of the C-helix and the P-sheet and interdomain disulfide bonds.
In the molten globule state formed at low pH, calcium does not bind strongly.
Loss of calcium, therefore, disrupts the domain interface and results both in
loss of structure within the f-domain and in relative destabilization of the C-
helix to which it is linked by many side-chain contacts and the 73-91 disulfide
bond (cf. Loh et al., 1993).

Based on the large number of proteins which are molten globules
under mildly denaturing conditions (Dobson, 1994), and the relative ease
with which de novo design efforts yield partially folded proteins (Betz et al.,
1993; Davidson & Sauer, 1994) it seems that the protein folding problem can
be sub-divided into understanding: (i) how a protein can fold into a molten
globule with a native-like tertiary fold in the absence of extensive packing
interactions (Peng & Kim, 1994; Morozova et al., 1995; Wu et al., 1995) and (ii)
how fixed tertiary structure is formed (Handel et al., 1993; O'Shea et al., 1993).
The present results shed light on both of these issues. For a-LA, and perhaps
for other proteins, the helices that can fold and still maintain dynamic
flexibility form early in protein folding, without fixed tertiary packing.
Importantly, studies of both a-LAs and the homologous lysozymes indicate
that early kinetic folding intermediates resemble equilibrium molten



globules, with structure concentrated in the helical domain (Kuwajima et al.,
1985; Ikeguchi et al., 1986; Radford et al., 1992; Hooke et al., 1994). In order to
form the fully folded conformations, however, additional interactions are
necessary to lock in the unique tertiary contacts of the native structure, which
involve specific interdomain contacts for both lysozymes and a-LAs (Van
Dael et al., 1993; Ewbank & Creighton, 1993a; Dobson et al., 1994; Pardon et al.,
1995; Wu et al., 1995). In the case of a-LAs, these contacts are stabilized by the
binding of calcium, which promotes the formation of the native state (Fig. 4).
Interestingly, such additional specific interactions are crucial for forming
native-like features in de novo designed proteins (Handel et al., 1993; O'Shea
et al., 1993; Lumb & Kim, 1995).



Table 1: Amide proton exchange rates and protection factors for a-lactalbumin in the
molten globule and native states.

molten globule
(DH* 2, 50C)

native
(PH* 6.3, 3mM

15 0 C)

Residue
Leu 8
Ser 9
Gin 10
Leu 11
Leu 12
Lys 13
Glu 25
Leu 26
Ile 27
Thr 29
Met 30
Thr 33
Val 42
Tyr 50
Phe 53
Gin 54
Ile 55
Ser 56
Trp 60
Cys 61
Lys 62
Ser 63
Cys 73
Ile 75
Cys 77
Lys 79
Phe 80
Leu 81
Asp 82
Asp 84
Thr 86
Asp 87
Asp 88
Ile 89
Met 90
Cys 91
Ala 92
Lys 93
Lys 94
Leu 96
Asp 97
Ile 98
Lys 99
Asp 102
Trp 104(sc)

kex (hrll
.43
.25

.078
.037
.35
.14
.0054
.0039
.076
.010
.0045
.24

.34

.35
3.0

.0

.1

.6

.33

.59

1.1

1.7
1.0
1.4

.063

.099

.17

.44

.20

.089

.94
1.2

.22

.20

kint/kex
3.5

12

18
50

6.0
13

280
220

15
120
520

1.9

2.0

7.8
.50

1.1
.97

1.1
9.2
2.8

1.7

.32
2.9
5.2

17
7.2

14
7.6

14
19

.72
1.5
4.8

6.3

kex (hrll
.080
.56
.29
.31
.026
.66
.059
.018
.0039
.18
.058
.071
.20
.13
.047
.086
.052
.52
.040
.035
.079
.097
.038
.0099
.20
.039
.023
.028
.040
.084

.59

.025
.011
.028
.035
.035
.014
.023
.0093
.037
.023
.067
.42
.06

kintL/kex
(10-31
6.8
7.6

23
4.0

18
2.5
8.8

31
86
41
78

230
1.8
8.7

22
45
17

7.8
17

230
97
93

160
37

100
46

100
32
23
12

3.9
39
33
61

390
240
200
160

49
25
16
23

2.0
.25

Ca2+,



Table Legend

Amide proton exchange was performed on uniformly (>95%) 15N-
labeled recombinant a-LA. a-LA was expressed from BL21 (DE3) pLys S
(Novagen) harboring the plasmid encoding human a-LA under T7 control
(Studier et al., 1990; Peng et al., 1995; Wu et al., 1995), grown in minimal M9
media containing one gram/liter 15N-ammonium sulfate (99.5% 15N; Isotec;
Miamisburg, Ohio), and supplemented with 0.5 mg/liter thiamine (McIntosh
& Dahlquist, 1990). Inclusion bodies containing a-LA were solubilized,
partially purified, oxidatively refolded and purified as described previously
for a related protein (Peng & Kim, 1994). The identity of a-LA was confirmed
by laser desorption mass spectrometry (Finnigan LASERMAT). All protein
concentrations were determined by tryptophan, tyrosine and cystine
absorbance (Edelhoch, 1967).

a-LA is monomeric under the conditions of hydrogen-deuterium
exchange and NMR, as shown by equilibrium sedimentation, using Beckman
6-sector, 12 mm pathlength epoxy cells, and an An-60 Ti rotor in a Beckman
XL-A 90 analytical ultracentrifuge. Samples were dialyzed exhaustively
against the reference buffer [either 100 mM imidazole, pH 6.3, 3 mM CaC12
(native state) or 10 mM HCl (molten globule)]. For the native state, data were
collected at 150C and 25.5k rpm for three initial concentrations (20, 75 and 150
jgM). The measured molecular weight is 15.0 kDa ± 5% (95% confidence;
calculated, 14.1 kDa) with random residuals. The density of the buffer was
measured manually and the partial specific volume was calculated to be 0.736
using constants from Laue et al. (1992). For the molten globule, nonideality
was observed as a decrease in the apparent molecular weight as a function of
increasing protein concentration, likely resulting from the large ratio of net
charge to molecular weight at the low ionic strength of the buffer, thus
requiring the use of the second virial coefficient as a fitting parameter
(Williams et al., 1958). Therefore, data at 5C from three wavelengths (251,
260 and 296 nm), rotor speeds (22, 26 and 30k rpm), and initial concentrations
(20, 40 and 100 giM) were fit simultaneously using HID4000 (Johnson et al.,
1981). Fifteen data sets were fit to a single molecular weight, fifteen intercepts,
fourteen offsets and a single second virial coefficient, with no systematic
variation in the residuals. The measured molecular weight is 13.9 x 103 Da (+
5%, 95% confidence) as compared to the calculated molecular weight of 14,054
Da.

Hydrogen-deuterium exchange was initiated by dissolving lyophilized
samples either in D20, pH* 2 (molten globule) or native exchange buffer (100
mM d4-imidazole [Cambridge Isotope Laboratories, >98% D], 3 mM CaC12 with
a final pH* of 6.3). The protein concentration was 80 gM for exchange in the



molten globule and 800 gM for exchange in the native state. For the molten
globule, exchange was quenched by freezing in liquid nitrogen and
subsequent lyophilization at regular intervals from 10 seconds to 9 days. Dry
samples were stored at -800C and dissolved in native exchange buffer for
analysis. Rates of H-D exchange were measured from 15N-1H HSQC spectra
collected at 150C, consisting of 48 increments of 16 transients defined by 1024
complex data points, and an co2 spectral width of 6024 Hz, an ol spectral width
of 1130 Hz, and a recycle delay of 1 second (Bax et al., 1990; Norwood et al.,
1990). 15N decoupling during acquisition was achieved with WALTZ-16
(Shaka et al., 1983). The residual HOD peak was suppressed with a low power
purge pulse (Messerle et al., 1989). For the native state, rates of H-D exchange
were measured similarly to those in the molten globule, except that one
spectrum was collected for each time point with 64 transients per increment
and 128 increments of tl.

Amide proton decays were followed by measuring peak volumes in
15N- 1H HSQC spectra. The volumes were normalized to peak areas of non-
exchangeable resonances (corresponding to the y2 and 8 protons of Ile 95, and
likely to the a proton of Cys 61) in one-dimensional 1H spectra collected
immediately prior to each set of HSQC spectra for the molten globule, or
before each spectrum of the native state. The amide proton exchange rates,
kex, were determined (Kaleidograph, Abelbeck software) by fitting the data to
the three parameter curve, I(t) = I(o) + 1(0) exp (-kex * t), where I(t) is the
intensity at time (t) after addition of deuterated solvent to the protein. Values
for I(o) were, on average, 10-fold lower than I(0) for the molten globule, and
10- to 30-fold lower for the native state. Predicted intrinsic rates were
calculated according to Bai et al. (1993) for main chain amide protons and to
Wiithrich (1986) for the Trp 104 indole.



Figure Legends

Figure 1: Schematic representation (Priestle, 1988) of human a-LA (Acharya
et al., 1991). Helices are labeled A, B, C, D, and 310. Disulfide bonds are shown
in grey and are labeled by the cysteines that they connect.

Figure 2: (A) 15N- 1H HSQC spectra of native a-LA after exchange in the
molten globule for roughly 5 minutes, one hour, 10 hours, and 8 days.
(Resonance assignments, by Redfield, et al., are forthcoming.) (B) Time
course of signal decay resulting from hydrogen exchange in the molten
globule for the following representative amide protons: Leu 8, Leu 12, Met 30,
Cys 73, Asp 88, and Cys 91.

Figure 3: Histograms showing the distribution of protection factors from
amide hydrogen exchange for (A) the molten globule and (B) the native state
of a-LA. The maximum protection factors shown are 100 for the molten
globule and 105 for the native state to highlight differences.

Figure 4: The most protected amide protons in the molten globule and native
states are highlighted on the structure of native human a-LA (Acharya et al.,
1991). Residues with amide protons protected by factors greater than 50 in the
molten globule are shown in red, and those protected by factors greater than
105 in the native state are shown in yellow. Thr 33, which is protected by
these criteria under both conditions, is colored orange. Residues with
protected amide protons are shown on a backbone drawing in (A) and in CPK
models in (B).
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CHAPTER 3

NON-COOPERATIVE PROTEIN FOLDING



Small proteins generally fold cooperatively: disruption of significant
parts of the folded structure leads to unfolding of the rest. We report here
that a native-like overall fold is achieved by non-cooperative assembly of a
subdomain within the a-lactalbumin (a-LA) molten globule. Evidence for
non-cooperative folding was obtained from proline scanning mutagenesis.
In contrast to the drastic destabilizing effects of proline substitutions in
cooperatively folded proteins, proline mutations in the molten globule cause
only individual helices to unfold, without substantially influencing the
remainder of the subdomain. Thus, the key determinants of a protein's
overall fold may not be of the all-or-none type.



One of the major problems in protein folding is to identify the critical
features of a protein's primary sequence that code for its native overall fold.
Molten globules provide simplified model systems for addressing this
question. Although the term "molten globule" has been used to describe a
wide variety of protein forms, classic molten globules, of which the A-state of
a-lactalbumin (a-LA) is the paradigm (1), have the following characteristics:
i) a near-native level of secondary structure; ii) compactness, with
dimensions slightly larger than the native protein; and iii) a lack of extensive
tertiary interactions, as judged by a number of criteria including a broad
thermal transition and poor NMR chemical shift dispersion (1, 2).

Several pieces of evidence (3-7) indicate that the molten globule of
a-LA has a native-like overall fold, even though it lacks the extensive fixed
tertiary interactions that are characteristic of native proteins (3, 8). Thus,
molten globules are likely to represent the simplest form of a protein in
which there is substantial information transfer from the primary sequence to
the three-dimensional fold. Detailed knowledge of the structures of molten
globules is essential for understanding why they have a native-like fold.
However, it is difficult to obtain detailed three-dimensional structural
information about molten globules because they lack fixed packing
interactions. Indeed, no high-resolution structure has been solved for any
classic molten globule.

Here we use proline-scanning mutagenesis to probe the structure and
folding of the a-LA molten globule. In this approach, individual residues are
changed, one at a time, to proline (9). Proline substitutions are chosen
because they unfold or greatly destabilize native proteins and structured
peptides when inserted in the middle of secondary structures (10, 11). Because
molten globules have a high degree of secondary structure, we reasoned that
proline mutations would be useful probes for structure and folding (12).

Proline-sensitive regions were identified in the molten globule formed
by a variant of a-LA, termed [28-111], by characterizing the circular dichroism
(CD) spectra of proline mutants (13). [28-111] has been shown previously to
retain the properties of the a-LA molten globule even near neutral pH (14).
Numerous studies have shown that the native-like structure in the a-LA



molten globule is localized predominantly to the helical domain
(3, 4, 8, 15, 16) and that the helices formed in the molten globule span the
same, or nearly the same residues that are helical in native a-LA (17).
Accordingly, the proline substitutions were targeted to residues that are
helical in the native protein (Fig. 1A).

A number of sites are sensitive to proline mutations (Fig. 1B, C) (18).
The loss of overall helix-content observed in the mutants appears to be
specific for proline, as alanine substitutions at proline-sensitive sites have no
significant effect (Fig. 1C). Remarkably, in no case do the proline mutations
cause complete unfolding of the molten globule. This observation is
surprising because the destabilizing effect of proline substitutions in native
proteins (2.5-5.7 kcal/mol) (11) is comparable to the total free energy estimated
to stabilize the molten globule of human a-LA (16, 19). Thus, if the molten
globule were folded in an all-or-none cooperative manner, a proline
mutation that disrupted a single helix would be expected to result in complete
unfolding.

The small decrease in the helical CD signal observed in the proline
mutants is roughly of the magnitude expected if only the helix containing the
mutation, and not the entire protein, unfolds upon proline substitution
(Fig. 2A). Indeed, the decrease in helix-content is similar for proline
mutations at a number of different sites within each individual native helix
(Fig. 1C). Moreover, the helix-content is almost unchanged when a second
proline substitution is made within a single helix (Fig. 1C, hatched bars).
Particularly since native-like helices are known to be formed in the a-LA
molten globule (17), we conclude that, to a good approximation, proline
mutations cause only individual helices within this molten globule to
unfold.

Our results indicate that the A-, B-, D- and 310-helices are folded in the
molten globule formed by human a-LA, but that the C-helix is not (Fig. 1C,
2A) (20). The structure of native a-LA suggests that the helices that are folded
in the molten globule form a subdomain (Fig. 2B) (21). However, our
observation that proline mutations cause only individual helices to unfold
demonstrates that this subdomain is not formed in an all-or-none manner.



The ability to use proline mutations to knock out the helices in the
molten globule, one at a time, allows us to evaluate the contribution of each
helix toward forming the native-like overall fold of the molten globule. The
preference of the polypeptide to form a native-like topology is reflected by the
equilibrium distribution of disulfide pairings in the two-disulfide variant of
a-LA, termed ca-LA(a), with only the disulfides in the helical domain (4).
There are three possible ways to form two-disulfide pairings in 0a-LA(a), and
the equilibrium distribution of the three different disulfide isomers reflects
the extent to which the chain prefers a particular backbone topology (Fig. 3A).
Wild-type a-LA(a), which has the characteristics of the acid-induced molten
globule of a-LA, has over a 25-fold greater preference for forming native
disulfide bonds under native conditions than under denaturing conditions
(4, 22).

The striking result is that none of the individual helices within the
subdomain identified by proline-scanning mutagenesis is absolutely required
by the remainder of the protein for forming a native-like overall fold:
introduction of prolines into the A-, B-, D- or 310-helices does not abolish the
preference for forming native disulfide bonds, although in some cases this
preference is reduced slightly (Fig. 3B) (22, 23). Mutating additional helices
reduces further the preference for forming native disulfide bonds, and the
effects of multiple proline mutations are additive (Fig. 3B). The
simultaneous introduction of prolines into the A-, B- and D-helices reduces
the fraction of molecules that form native disulfide pairings from the wild-
type value of 85% to 16%. Interestingly, this latter value is still significantly
larger than the fraction predicted with a random-walk model (2%) or
observed for a-LA(a) in denaturing conditions (-3%) (4).

Taken together with earlier studies, our results suggest a view of how
the a-LA molten globule forms a native-like topology that differs
dramatically from a cooperative all-or-none transition (24). It appears that the
a-LA polypeptide has a significant preference for a native-like overall fold,
even in the absence of substantial secondary structure formation.
Hydrophobic collapse of the polypeptide chain is likely to be an important
global feature for folding (25), and our results suggest that a loss of collapse



accompanies a decrease in the preference for forming a native-like topology

(26). The inherent preference for a native-like overall fold in the collapsed
o-LA polypeptide is enhanced by the formation of individual helices. These

helices form independently of one another: individual helices unfold upon
proline mutagenesis and no single helix is required to form a native-like
overall fold (Fig. 4).

It is remarkable that a protein's overall three-dimensional fold,
attained early and in the absence of extensive side-chain packing, is formed in

a non-cooperative manner. It will be important to understand how a
protein's fold is determined non-cooperatively: properties such as
hydrophobic/hydrophilic patterning, side-chain volumes and secondary
structure propensities are good candidates for investigation (3, 4, 27). The
relationship between the non-cooperative folding observed here and the
cooperative folding events described traditionally is likely to involve later
consolidation of side-chain packing (28).



Figure Legends

Fig. 1: Proline scanning mutagenesis of the a-LA molten globule. (A) Sites of
proline substitutions are shown on a schematic representation (29) of the
structure of native human a-LA (30). The helices are labeled "A", "B", "C",
"D" and "310"; the disulfide bonds are identified by the cysteine residues they
bridge; and the region of a-LA shown previously to contain the essential
elements of the molten globule is shaded (3). (B) Far-UV CD spectra of [28-
111] (filled diamonds) (14) and some proline mutants (18). Some sites are
insensitive to proline mutations (L96P--squares), whereas others are sensitive
to prolines (M30P--circles). Substantial reduction in helix-content requires
multiple mutations (L12P, M30P, L119P--pluses). (C) Effects of proline
mutations on overall helix-content, as measured by CD at 222 nm. The bars
are grouped according to the sites of mutation: "wt" refers to the value of
[O]222 in wild-type [28-111]; "loops/beta/Ala's" refers to mutations in loops,
the P-sheet domain or alanine mutations in proline-sensitive sites; and the
other labels refer to the helices containing the mutations. Hatched bars
indicate that the effects of two proline mutations within a region
corresponding to a single helix in the native structure are similar to the
effects of a single mutation.

Fig. 2: Proline substitutions cause individual helices within a subdomain to
unfold. (A) Comparison of the observed changes in helix-content for proline
mutations (black bars) and the changes expected (31) for disrupting only
individual helices (hatched bars). The helices containing mutations are
indicated above the bars. For the A-, B-, C- and D-helices, the observed change
in [8]222 is averaged for all of the mutations within each helix. For the 310-
helix, L119 was mutated to proline in a background with W118 mutated to
leucine (32). The magnitude of the effects of proline mutations indicates that
only individual helices (A, B, D and 3 10) unfold with proline substitutions.
(B) Space-filling model of the helices and disulfide bonds in the helical
domain of native a-LA (30). The helices folded in the molten globule (blue)
comprise a subdomain in the native structure . The C-helix (yellow), which is
insensitive to proline mutations in the molten globule, is not part of this
subdomain (21).

Fig. 3: The effects of knocking out individual helices, with proline mutations,
on forming the native-like overall fold (assayed by native disulfide bond
formation) (3, 4, 22, 23). (A) HPLC analyses of equilibrium disulfide bond
formation in proline mutants of a-LA(a) under native conditions (upper
chromatograms) and in 6M GuHC1 (lower chromatograms). [6-120; 28-111] is
the native species, "NN1" refers to the non-native species [6-28; 111-120] and
"NN2" refers to the non-native species [6-111; 28-120]. The numbers in
brackets refer to cysteine residues that are disulfide bonded. The mutation



L96P has no significant impact on native disulfide bond formation, whereas
the double mutant L12P, M30P is compromised in its ability to form the
native disulfide bonds. Under denaturing conditions, for all of the proline
mutants, the ratios of the disulfide species are similar to those predicted from
a random-walk model of the polypeptide (3). (B) The effects of proline
mutations in individual helices ("iP"), 2 helices ("2P's") and 3 helices ("3P's")
on native disulfide bond formation. The observed frequencies of forming
native disulfide bonds (black bars) are compared to the frequencies expected if
the energetic consequences of mutating multiple helices were additive
(hatched bars). The helices containing mutations are indicated: "A" refers to
mutation of L12, "B" of M30, "C" of L96, "D" of A109, and "310" of L119. An
alanine substitution in the B-helix (M30A) has no significant effect on
rearrangement (data not shown). The predicted effects of multiple mutations
were estimated by multiplying (% native bonds) observed for the constituent
individual mutations.

Fig. 4: Non-cooperative formation of an overall native fold. Hypothetical
structures are shown for the unfolded, collapsed (3 proline mutant), collapsed
with some secondary structures (single proline mutants), and classic molten
globule stages of folding.
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CHAPTER 4

NON-COOPERATIVE FORMATION OF A NATIVE-LIKE
TOPOLOGY AND FORMATION OF FIXED TERTIARY

INTERACTIONS IN o-LACTALBUMIN



Are molten globules folded non-cooperatively?

Whether or not molten globules fold in an all-or-none manner is
highly debated. On one hand, Ptitsyn and his colleagues present two pieces of
evidence that the molten globule is a discrete thermodynamic state of
proteins. First, they observe a correlation between the slope of denaturant-
induced unfolding and the molecular weights of a large number of proteins.
Second, they monitor the change in elution volume during denaturation of
native proteins by size-exclusion chromatography, and observe a bi-modal
change.

Ptitsyn and his colleagues argue that molten globules will unfold in a
manner that is proportional to their molecular weights if and only if the
entire polypeptide chain is cooperatively folded in an all-or-none manner (1).
The slopes of the denaturant-induced unfolding transitions for molten
globules are found to be proportional to the molecular weights of the
proteins, and these results are interpreted as indicating that molten globules
unfold in a two-state manner. The underlying assumption of this argument
is that guanidine binds an unfolded protein roughly proportionally to its
molecular weight.

For the size exclusion chromatography experiment, Ptitsyn and
Uversky observe a bi-modal change in elution volume upon addition of
guanidine, reflecting the existence of two distinct states with different degrees
of compactness (2). For 3-lactamase, a protein known to unfold via a molten
globule intermediate, the elution volume changes at guanidine
concentrations above that required for unfolding (3). Thus, the two-state
transition is thought to coincide with the transition from one denatured state
to another. The intermediate is thought to be as compact as the native state,
and it appears to become less compact in an all-or-none manner.

While Ptitsyn's arguments seem reasonable, there are several
drawbacks with both of these studies. Three issues are unresolved regarding
the correlation between denaturant-induced unfolding transitions and
molecular weight. First, the mechanism of guanidine binding is poorly
understood, and may not be random for any given protein sequence (4-6).



Second, the authors state that the correlation they find would only be possible

if the entire polypeptide chain unfolds in an all-or-none manner. In several
molten globules, however, residual structure appears to be localized to one
subdomain of the protein (7, 8). Third, the "control" native proteins, thought
to unfold in a two-state cooperative manner, include some proteins such as
cyt c, that unfold via intermediates, termed partially unfolded forms (PUFS)
(9). Cyt c unfolds with guanidine in a progressive, rather than all-or-none
manner, and yet it still aggrees with Ptitsyn's predictions. Therefore, it is not
clear what the correlation between guanidine-induced unfolding and

molecular weight really means.

In addition, limiting the number of states observed in the size

exclusion chromatography experiments may not be possible for two reasons.
First, each of the two elution peaks apparently corresponds to at least two

states (the "compact" peak contains both the native and molten globule states

and the "non-compact" peak contains the pre-molten globule and unfolded
states). Thus, it is plausible that numerous states have the same level of

compactness. In addition, molten globules have a strong tendency to

aggregate in salt, and the observed bi-modal transition occurs in a range of

guanidine concentrations where the a-LA molten globule aggregates

significantly (1-2 M guanidine, Schulman, Wu and Kim, unpublished

results).

On the other hand, data are amassing that are consistent with the

notion that molten globules are not folded cooperatively. For example, the

thermal denaturation of the molten globule formed by apo-a-lactalbumin

occurs with no measurable change in heat capacity (10). Second, the urea-

induced unfolding of bovine a-LA was examined using 1D 1H-NMR (11).

The transitions of different aromatic residues were monitored by changes in

chemical shift with increasing concentrations of urea. The transitions for
different resonances are non-coincidental. Because the chemical shifts of

unfolded peptides generally do not vary with urea concentration, these
results suggest that unfolding of the molten globule is not a two-state process.
However, interpretation of these data is complicated for two reasons. First,
none of the transitions has clean baselines, so it is difficult to compare them.



Second, even the transitions of adjacent protons on a single tryptophan side
chain do not appear to unfold simultaneously.

Further evidence suggesting that molten globules are non-
cooperatively folded comes from the different ways to stabilize equilibrium
molten globules formed by apo-myoglobin. High resolution experiments
indicate that 3 native-like helices (A, G, H) are folded in one form, and a
fourth helix (B) is added on in another (7, 12, 13). The fact that the B-helix is
not always part of the molten globule shows that it does not fold
cooperatively with the A, G, and H-helices.

The proline mutagenesis data presented in Chapter 3 demonstrate that
one of the best studied molten globules, that formed by human a-LA,
contains native-like secondary structures that assemble with a native-like
topology in a non-cooperative manner. In the molten globule, proline
substitutions unfold only individual helices, and no single helix is required
for forming a more-or-less native-like overall fold in the helical domain. In
addition, combinations of proline mutations have additive effects on native
disulfide bond formation.

On the other hand, in native proteins, proline substitutions destabilize
the entire protein. When a proline substitution does not completely unfold a
protein, its structure remains more-or-less the same but its stability is
dramatically decreased (14, 15). This is because native proteins are
cooperatively folded. The all-or-none formation of structure in native
proteins has been compared with the structure in a house of cards. If one wall
is removed, the rest of the structure will fall down. On the other hand, the
assembly of structure in the molten globule somehow is more flexible, and it
is not known what causes the helices to assemble with a native-like overall
fold.

How can a native-like tertiary fold be achieved non-cooperatively?

Two different extreme models might explain the key steps for
establishing a protein's fold in a non-cooperative manner. The first model
emphasizes the role of local interactions: early formation of secondary



structures might restrict the number of conformations available to the
polypeptide, and thus limit the number of topologies accessible to the chain
(16, 17). In contrast, the second model suggests that the pattern of
hydrophobic and hydrophilic residues dictates the fold (18-20). The
polypeptide chain would be restricted to forming a native-like structure by the
limited number of ways that hydophobic side chains could come together,
with polar side chains exposed .

Hydrophobic collapse probably drives formation of the native fold

Because the most primitive folding intermediates that have been
studied (i.e. molten globules) appear to contain subdomains with folded
secondary structures surrounding a core, it is difficult to deconvolute
the roles of secondary structure formation from hydrophobic collapse.
Nonetheless, native-like local structures do appear to be formed in the
unfolded states of proteins. For example, an "unfolded state" of lysozyme, at
low pH and in TFE, has substantial secondary structure (21, 22). NMR and CD
experiments indicate that both the full length protein and individual peptides
adopt similar structures under these conditions, with most native helices at
least partially folded. Thus, secondary structures could restrict the
conformations available to the chain. Indeed, the ca-helix propensity of the
sequence of the B-helix in the apo-myoglobin molten globule is a factor
determining whether or not it is folded (13).

The most convincing evidence that local structure plays a role in
dictating the three-dimensional fold of proteins comes from the use of
structure prediction algorithms based on local interactions like secondary
structure propensities, such as LINUS (Local Independently Nucleated Units
of Structure) (23). The moderate success of this program suggests that local
interactions are important for determining a protein's fold.

However, numerous studies, both experimental and theoretical,
indicate that hydrophobic collapse is very important (18). Theoretical studies,
championed by Dill, suggest that hydrophobic/polar (h/p) patterning in
proteins directs formation the native-like topology, and also gives rise to two-
state cooperativity in folding (24). Dill and his co-workers have modeled the



polypeptide backbone onto a lattice, and have discovered that some sequences
fold into unique native conformations while others do not prefer any
particular conformation. The h/p patterning dictates both the nature of the
structure and whether a sequence has a preference for a single native
conformation.

Two elegant experiments provide compelling evidence that
hydrophobic collapse or tertiary interactions direct a protein's fold. In the first
experiment, Xiong et al. have synthesized four short peptides to test whether
secondary structure propensitites or h/p patterning are most important for
dictating which secondary structures are formed in oligomeric complexes (19).
One set of the peptides was biased for forming either helix or sheet based on
secondary structure propensities, and the other set of peptides was biased on
the basis of h/p patterning. Regardless of the propensities of the peptide
sequences to form a given secondary structure, the peptides formed the
structure predicted based on h/p patterning.

The work of Minor and Kim demonstrates that in at least some cases,
secondary structure formation does not depend on local determinants (Minor
and Kim, unpublished results). They have made two different mutants of the
57 residue immunoglobulinG binding protein domain, GB1, that contain an
11-residue sequence they call a "chameleon". In one part of the protein, this
sequence forms an a-helix, but when placed in another part of the protein,
"chameleon" forms a P-strand and a turn. Thus, the rest of the protein
determines the secondary structure of this 11-residue sequence.

Secondary structure formation is important for forming the native topology
in a non-cooperative manner

The molten globule formed by the helical domain of a-LA has a >20-
fold greater preference for forming native disulfide bonds in native buffer,
compared to disulfide bond formation in denaturant or predicted by a
random-walk model (8, 25). Thus, monitoring disulfide bond formation in
the helical domain of a-LA is a good way to examine the most important
factors for forming a native-like tertiary fold. The results presented in
Chapters 2 and 3 of this thesis, as well as protein dissection experiments by



Peng and Kim (unpublished data) indicate that only the A-, B-, D- and 310-
helices are folded in the molten globule of a-LA. Originally, we set out to

identify folded helices because we thought they would reveal the features of
the protein that direct folding. In the structure of native a-LA, the helices

that are folded in the molten globule form a subdomain, with an extensive

network of van der Waals contacts between the helices (as opposed to the C-

helix and the P3-domain) (see Chapter 3). On the other hand, other features of

the sequence and structure of a-LA, such as hydrophobicity or intrinsic helix

propensity, do not correlate with the part of the protein that is folded in the

molten globule.

In the structures of native a-LA and the homologous lysozymes, there

is a major hydrophobic core between the A-, B- and 310-helices, containing

aromatic side chains from the B-helix (F31, H32) and the 310-helix (W118) as

well as Y36 from a loop just after the B-helix. This core fills much of the space

between the 6-120 and 28-111 disulfide bonds of the helical domain. The

finding that the helices folded in the molten globule surround and contribute

to this core, and that more or less the same helices are folded in folding

intermediates formed by human and equine lysozymes (26, 27), suggested that

this core might be important for establishing the native-like overall fold of

the molten globule.

It is now clear, however, that the specific interactions observed in the

native state are not important for folding in the molten globule. First,

mutation of Trp 118 to alanine or aspartic acid has no effect on the amount of

native disulfide bond formation (unpublished results). Thus, if there is a

hydophobic core in this region, it is likely that no specific residue is required.

Far more compelling evidence comes from unpublished results of Wu and

Kim, who find that replacing many of the hydrophobic residues in the helical

domain of a-LA with leucine does not affect formation of native disulfide

bonds. These mutations result in a loss of side-chain specificity and a large

decrease in side-chain volume. Thus, if formation of a core is important, it

does not involve specific side-chain contacts or a particular volume to be

filled by side-chains. However, leucine is a good helix-former, so in this

mutant, helix formation cannot be ruled out as a factor that is important

native-like folding.



The only way that we have been able to somewhat destroy formation of
native disulfide bonds in the molten globule of a-LA is by proline

substitution. It is clear that the location of the proline substitution, and not

simply the nature of the mutation, is important, because in some cases L-+P

mutations are deleterious and in others they are not. In addition, we tested

that the effect was due to the proline side chain, and not just the decrease in
hydrophobic volume: mutation of Met 30 to alanine has no significant effect.

The effects of mutations on CD signal are roughly similar for all of the
residues within a single native-like helix (Chapter 3). These data suggest

strongly that it is the destruction of helices that is important. While the

effects of these mutations are small, they add up and are significantly

destabilizing when multiple helices are destroyed. Thus, secondary structure

formation is one factor involved in forming the native-like tertiary fold.

However, these experiments do not test whether or not secondary

structure sets up the native-like architecture, because it is possible, for

example, that in order for the correct hydrophobic interactions to form, the

correct secondary structure elements must be able to fold. Two results suggest
that there is a relationship between collapse and secondary structure

formation. First, as described in Chapter 3, there is probably decreased

collapse in the proline mutants. Second, while reduced a-LA is helical (and

this helical structure is sensitive to proline mutations--data not shown), the

CD signal at 222 nm increases significantly when native disulfide bonds are

formed (25, 28). On the other hand, the CD signal decreases when non-native

disulfide bonds are formed. Thus, formation of the native-like overall fold

(i.e. in the presence of the correct disulfide bonds) promotes secondary

structure formation (8, 25).

While native-like secondary structure formation is at least one of the

factors important for forming the native fold, collapse also appears to be

critical. It is likely that neither of the extreme models accurately accounts for

all of the features necessary for forming a native-like topology. Hydrophobic
collapse is probably the driving force for folding, but local interactions, such as

helix formation, also play a role.



What causes proteins to adopt fixed structure? (Calcium-binding in a-LA)

While the foundation for the native structure appears to be built by the
molten globule stage, it is still not known what is required for adopting a
unique, fixed structure. This is a major problem in protein design, as well as

an unanswered question in protein folding. In designed proteins with

features more reminiscent of molten globules than native proteins, charge-

metal interactions have been incorporated to make the protein more native
(29). Buried polar interaction have been shown to be critical for forming a

unique structure in designed coiled-coils, as well (30). For a-LA, folding of

the calcium binding domain has been implicated as one factor that can induce

fixed packing and the transition from the molten globule to the native state

(10, 31-33). a-LA is a molten globule in the absence of calcium and other salts.

In contast to formation of the helical domain disulfide bonds, formation of

the p- and inter-domain disulfide bonds is sensitive to calcium-induced

structural changes (Appendix I). Disulfide bond reduction, 1D 1H NMR, far

and near UV CD, and thermal denaturation experiments have suggested that,

in the presence of calcium, variants of a-LA containing only the 3- and inter-

domain disulfide bonds, termed a-LA(P) (see Appendix I) have a

cooperatively folded calcium-binding domain with fixed tertiary interactions.

In addition, NMR experiments suggest that the calcium binding region,

including the C-helix, forms a discrete domain in the native protein (Chapter

2, Redifield, Schulman, Kim and Dobson, unpublished, and (33)). The same

delineation of the domains is ascertained by an algorithm that predicts

protein domains based on packing (34).

If the calcium-binding domain is responsible for forming fixed tertiary

interactions, what is the role of the helical domain in folding? Results from

kinetic refolding experiments on both a-LA and the homologous protein,

lysozyme, lead us to question the importance of forming the helical

intermediate. In both the presence and absence of calcium, a-LA folds via a

helical intermediate. Although bovine a-LA can adopt the native structure
in the absence of calcium, folding is accelerated up to 1000-fold in the presence
of calcium (35), suggesting that formation of the calcium binding domain is
rate-limiting.



In addition, the role of the helical intermediate that accumulates
during the kinetic refolding of lysozyme, which resembles the intermediate
formed by a-LA, is unclear. In the original and in recent kinetic experiments,
a significant population of the molecules has been found to fold fast, while
the remaining -85% accumulates as the helical intermediate (36, 37).
Furthermore, a mutant of hen lysozyme, with the cysteines involved in the
6-127 disulfide bond (corresponding to the 6-120 disulfide bond in a-LA)
reduced and carboxymethylated, folds into essentially the native structure
without accumulation of the helical intermediate (38).

Calcium-dependent folding of a-LA is not localized to the calcium binding

domain and requires the helical domain

We have begun to dissect the interplay between the calcium-binding
domain and the helical domain involved in adopting fixed structure (i.e.

calcium-dependent folding) in a-LA. The studies of a-LA(P) described above,
and a number of other studies of similar variants of a-LA, suggest that the

important part of a-LA for calcium-dependent folding is the calcium-binding

domain. To test this notion, we have studied the folding of a mutant of a-LA

containing only the residues thought to be important both chemically and

structurally for calcium-dependent folding. The boundaries reported by

Siddiqui et al. for the two domains in a-LA were used to design this truncated

version of a-LA, termed "P-domain", comprising residues 38-104 (34). This

sequence contains all of the residues known to be folded in a-LA(f): the

calcium binding ligands are the carbonyls of K79 and D84, and the carboxylates

of D82, D87 and D88; the P- and inter-domain disulfide bonds are between

cysteines 61-77, and 73-91; Tyr 103 and Trp 104 are involved in an aromatic

cluster with Phe 53 and Trp 60 in the P-domain. In addition, in the 1D 1H

nmr spectrum of a-LA(f), there are three methyl peaks shifted upfield of

TMSP. These resonances probably correspond to the -y methyl protons of

isoleucines 55 and 95, which have similar chemical shifts in native a-LA

(Redfield, Schulman, Peng, Kim and Dobson, unpublished). In the native

structure, Ile 55 and Ile 95 pack in between the P- and inter-domain disulfide
bonds and the aromatic cluster.



Unlike a-LA(f), however, P-domain fails to form native disulfide

bonds in the presence of calcium. This leads to two possible conclusions.

Either 1) formation of the molten globule, which has been removed in

0-domain, is required for forming a cooperatively-folded calcium-binding

domain, or 2) the calcium-binding domain extends into part of the helical

domain. Experiments are in progress to test these possibilities. If the first

model is correct, then formation of the molten globule would establish both

the native-like architecture in the helical domain, and also the fixed tertiary

interactions in the calcium-binding domain. On the other hand, if a region of

the helical domain is part of the cooperatively folded calcium binding

domain, this would explain why binding of calcium leads to fixed tertiary

interactions in both the 0- and the a-domains.

Summary

In molten globules, a native-like overall fold is achieved in a non-

cooperative manner. The folding of individual helices within the molten

globule plays a role in dictating the native-like topology, while the formation

of specific tertiary interactions probably does not. Specific tertiary interactions

are imparted to a-LA by the folding of the calcium-binding region.

Formation of the 0- and inter-domain disulfide bonds is calcium-sensitive,

and thus provides a sensitive assay for studying the formation of specific

tertiary interactions. Preliminary results indicate that the helical domain

plays a role in calcium-dependent structure formation.
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APPENDIX I

DISULFIDE DETERMINANTS OF
CALCIUM-INDUCED PACKING IN o-LACTALBUMIN



a-Lactalbumin (a-LA) is a two-domain calcium-binding protein that
folds through a molten globule intermediate. Calcium binding to the wild-
type a-LA molten globule induces a transition to the native state. Here we
assess the calcium-binding properties of the a-LA molten globule by studying
two disulfide variants. a-LA(a) contains only the two disulfide bonds in the
a-helical domain of a-LA, while a-LA(P) contains only the P-sheet domain
and interdomain disulfide bonds. We find that only a-LA(f) binds calcium,
leading to the cooperative formation of substantial tertiary interactions. In
addition, the P-sheet domain acquires a native-like backbone topology. Thus,
specific interactions within a-LA imposed by the P-sheet domain and
interdomain disulfide bonds, as opposed to the two a-helical domain
disulfides, are necessary for the calcium-induced progression from the molten
globule towards more native-like structure. Our results suggest that
organization of the P-sheet domain, coupled with calcium binding, comprises
the locking step in the folding of a-LA from the molten globule to the native
state.



Introduction

Native proteins are distinguished from partially folded forms by rigid

side chain packing and extensive tertiary interactions. Many proteins fold

through the molten globule, a compact but highly dynamic species with a

native-like backbone topology (Kuwajima, 1989; Dobson, 1992; Ptitsyn, 1992;

Ptitsyn, 1995). Native packing and tertiary interactions are subsequently

acquired from the molten globule (Matthews, 1993), but our understanding of

the structural and mechanistic bases of these events is poor.

a-Lactalbumin (a-LA)1 is a widely studied calcium-binding

protein composed of two structural domains. Folding of a-LA proceeds in

two major steps (Ikeguchi et al., 1986; Kuwajima et al., 1990; Ptitsyn, 1992;
Dobson et al., 1994; Peng & Kim, 1994; Wu et al., 1995). Collapse of the

polypeptide chain yields a molten globule intermediate, which then acquires

rigid side chain packing and tertiary interactions to form the native protein.

We previously assessed the structure of the a-LA molten globule by studying

the properties of two disulfide variants, a-LA(u) and a-LA(P) (Wu et al.,

1995). Our studies indicated that the molten globule of a-LA is a bipartite

structure in which the a-helical domain adopts a native-like backbone
topology, while the P-sheet domain is largely unstructured (Peng & Kim,

1994; Wu et al., 1995).
Formation of the a-LA molten globule is independent of

calcium (Ikeguchi et al., 1986; Kuwajima, 1989). In addition, the equilibrium

molten globule of a-LA is studied in the absence of calcium (for reviews, see

Kuwajima, 1989; Ptitsyn, 1992). Calcium binding to a-LA appears to induce

native structure from the molten globule and affects the rate of folding from

the molten globule to the native state (Dolgikh et al., 1981; Hiraoka & Sugai,

1984; Ikeguchi et al., 1986; Kuwajima et al., 1990; Ewbank & Creighton, 1993a;

Ewbank & Creighton, 1993b). Furthermore, calorimetric and structural

analyses of equine lysozyme, a calcium-binding lysozyme structurally

homologous to a-LA, indicates that the protein unfolds in two stages, the first

of which is calcium-dependent and results in the loss of specific tertiary

interactions and side chain packing (Van Dael et al., 1993; Griko et al., 1995).
Here we study the calcium-binding properties of a-LA(a) and a-LA(P), in

order to localize the disulfide determinants of native packing and tertiary

interactions in a-LA.



Materials and methods

Production of a-LA Variants

a-Lactalbumin variants were produced and purified as described

previously from expression plasmids pALA-A2 and pALA-B2 for ca-LA(a)

and oa-LA(P), respectively (Wu et al., 1995).

Sedimentation Equilibrium

Sedimentation equilibrium experiments were performed on a

Beckman XL-A analytical ultracentrifuge as described previously (Wu et al.,

1995). Our data indicate that slight aggregation of a-LA(a) and a-LA(P) occurs

at high concentrations of CaC12 (-15% aggregation at 1 mM CaC12 ). Based on

this observation and the results of the calcium titration (see below), a

concentration of 200 gM CaC12 was used for all further studies of a-LA(a) and

ca-LA(P) in the presence of calcium. Protein solutions were dialyzed

overnight against 10 mM Tris, pH 8.5, with either 0.5 mM EDTA or 200 gM

CaC12. Initial protein concentrations of 100, 40 and 15 gM were analyzed at 23

and 27 krpm. The data for oa-LA(o) and a-LA(1) in both the presence and

absence of calcium fit well (within 8%) to a model for an ideal monomer,

with no systematic deviation of the residuals. There is no concentration

dependence of the observed molecular weight for either variant.

Circular Dichroism (CD) Spectroscopy

CD spectroscopy was performed with an Aviv 62 DS spectrometer as

described previously (Wu et al., 1995). Samples were dissolved in 10 mM

Tris, pH 8.5, with either 0.5 mM EDTA or 200 gM CaC12. The spectra of native

a-LA were taken in 10 mM Tris, 1 mM CaC12 , pH 8.5. Thermal denaturation

data were collected at 208 nm at 20 intervals, allowing 1.5 minutes

equilibration time and 60 seconds data averaging, using samples dissolved to

a concentration of 2.5 gM in 10 mM Tris, pH 8.5, with either 0.5 mM EDTA or

200 kM CaC12. Denaturation curves were smoothed by least squares fitting to
a third-order polynomial, using a window of ten data points. All thermal

melts are >90% reversible with no hysteresis. Protein concentrations were



determined by absorbance in 6 M GuHCl, 20 mM sodium phosphate, pH 6.5,
using an extinction coefficient at 280 nm of 22,430 (Edelhoch, 1967).

Calcium Titration

Changes in the far-UV CD signal of a-LA(a) and a-LA(f) upon
addition of CaC12 were monitored at 208 nm. Samples were dissolved to a
concentration of 4 gM in 10 mM Tris, pH 8.5, pre-treated with a chelating
agent (Chelex, Bio-Rad). CaC12 was added in small aliquots from 300 jiM, 3
mM, 30 mM, 300 mM, and 3 M stocks, and CD signal was normalized for
volume changes. The titration data for a-LA(P) were fit to a model for a
single binding site with a non-linear least squares fitting program
(Kaleidagraph, Abelbeck Software) to yield the dissociation constant.

Disulfide Exchange

Disulfide exchange studies were performed at 40 C as described
previously (Wu et al., 1995). Native buffer consisted of 10 mM Tris, pH 8.5,
with either 0.5 mM EDTA or 200 gM CaC12. Denaturing buffer consisted of 6
M GuHC1, 10 mM Tris, 200 jiM CaC12, pH 8.5.

Nuclear Magnetic Resonance (NMR) Spectroscopy

Protein samples were dissolved in D20 to a concentration of -100 igM
at pH 8.5 (uncorrected for isotope effects), and either 0.5 mM deuterated EDTA
or 200 giM CaC12. Both a-LA(c) and a-LA(1) are monomers under these
conditions, as determined by sedimentation equilibrium. 1H NMR
spectroscopy was preformed at 500.1 MHz on a Bruker AMX spectrometer. 1D
spectra were acquired at 40C using a spectral width of 7812.5 Hz, 4096 complex
points, 32,768 transients, and a recycle delay of 1.5 seconds. The residual water
peak was suppressed by mild presaturation. Chemical shifts were referenced
to 0 ppm with internal (trimethylsilyl)-propionate (TMSP).



Results

a-LA(a) corresponds to human a-LA, with the P-sheet domain and
interdomain cysteines replaced by alanines, leaving the native 6-120 and 28-
111 disulfide bonds intact (Fig. la). Conversely, a-LA(P) corresponds to
human a-LA, with the a-helical domain cysteines replaced by alanines,
leaving the native 61-77 and 73-91 disulfide bonds intact. In the absence of
calcium, a-LA(a) and a-LA(P) are both molten globules with structural
properties very similar to the widely studied pH 2 molten globule (A-state) of
a-LA (Wu et al., 1995).

Calcium does not affect the structural properties of a-LA(a), as judged
by far-UV CD titrations of up to 1 mM calcium (Fig. ib). Indeed, the far-UV
and near-UV CD spectra (Fig. 2a) of a-LA(a) in the presence of calcium are
superimposable on those of the calcium-free molten globule of a-LA(a).

Moreover, the 1H NMR spectra of a-LA(a) are identical in the presence and

absence of calcium, and resemble closely that of the A-state molten globule of

a-LA (Fig. 3). Finally, disulfide exchange studies (Peng & Kim, 1994; Wu et

al., 1995) under native conditions in both the presence and absence of calcium

give identical results (data not shown).

On the other hand, a-LA(3) binds calcium with a Kd of 6.6 ± 0.3 gM
(Fig. Ib). For comparison, the Kd of wild-type a-LA is 2-10 nM, depending on

solution conditions. (We determined the Kd of calcium binding to a-LA(3), a

variant of human a-LA, in 10 mM Tris, pH 8.5, 0 'C. Reported Kd's for wild-

type bovine a-LA are 1.7x10 - 9 M, measured in 5 mM Tris, pH 8.04, 20 'C
(Permyakov et al., 1981), and 1x10- 8 M, measured in 60 mM Tris, pH 8.4, 25 'C
(Hamano et al., 1986). The Kd of human a-LA is -20% greater than that of

bovine a-LA under identical conditions (Segawa & Sugai, 1983). (Permyakov

et al., 1981; Segawa & Sugai, 1983; Hamano et al., 1986; Mitani et al., 1986). The

far-UV CD spectrum of calcium-bound a-LA(1) resembles closely that of

native a-LA (Fig. 2b). The near-UV CD of calcium-bound a-LA(P) is more

intense than that of the a-LA(3) molten globule, indicative of tighter side
chain packing, but it is substantially less intense than that of native a-LA (Fig.

2b). These results suggest that, upon addition of calcium, a-LA(p) acquires

more native-like structure, but does not become fully native. Thermal



denaturation studies indicate that the formation of this structure is
cooperative (Fig. 4).

In the molten globule of a-LA, the 5-sheet domain is largely

unstructured, lacking a marked preference for native disulfide pairings in
disulfide exchange assays, although the a-helical domain has a native-like

tertiary fold (Peng & Kim, 1994; Wu et al., 1995). Under denaturing

conditions (6 M GuHC1) in the presence of calcium, only 18% of the a-LA(p)
molecules assume the native disulfide pairings, in agreement with the

behavior predicted for an unfolded polypeptide, using a random-walk model

(Kauzman, 1959; Snyder, 1987). Strikingly, addition of calcium to a-LA(f)

under native conditions permits 90% of the a-LA(P) molecules to assume the

native disulfide pairings (Fig. 5a), in sharp contrast to the molten globule (Fig.

5b) and unfolded (Fig. 5c) forms of a-LA(P).

Although the CD and disulfide exchange studies indicate that calcium

binding induces more native structure in the 1-sheet domain, the lack of a

significant increase in near-UV CD intensity in calcium-bound a-LA(P)

suggests that the molecule is still flexible. The NMR spectrum of a-LA(P) in

the absence of calcium is broad, lacks chemical shift dispersion, and resembles

closely the 1H NMR spectrum of the A-state molten globule of a-LA (Fig. 3).

However, the NMR spectrum of calcium-bound a-LA(3) (Fig. 3) contains

extensive chemical shift dispersion, including resonances shifted upfield of

TMSP, indicative of substantial tertiary interactions. These features suggest

that a significant amount of folded structure exists in calcium-bound a-LA(P),

albeit less than in native a-LA.

Discussion

Previous studies indicate that in the molten globule of a-LA, the

a-helical domain is a dynamic, native-like structure, while the 1-sheet

domain is largely unstructured (Wu et al., 1995). Calcium induces the

transition between the molten globule and the native state of a-LA. We find
that calcium binding to a-LA(O) introduces specific structure, while a-LA(a)
remains a molten globule in the presence of calcium. Thus, the 1-sheet
domain (61-77) and interdomain (73-91) disulfide bonds, as opposed to the



a-helical domain disulfides, are crucial for the calcium-induced progression

from the a-LA molten globule towards native structure.

The folding of lysozyme, a protein homologous to a-LA, proceeds via a
kinetic molten globule intermediate in which the a-helical domain is native-
like, while the 3-sheet domain remains largely disordered (Radford et al.,
1992; Miranker et al., 1993; Dobson et al., 1994, Balbach et al., 1995).

Acquisition of near-UV CD signal and enzymatic activity are single kinetic

events late in the folding pathway, with rates identical to the rate of folding of

the 1-sheet domain determined by hydrogen-exchange NMR (Radford et al.,

1992; Dobson et al., 1994; Itzhaki et al., 1994).

Thus, in both a-LA and lysozyme, although the a-helical domain folds

first, interactions outside of the a-helical domain are important for the

acquisition of native packing and tertiary interactions. Our studies, taken

together with previous work (Radford et al., 1992; Miranker et al., 1993;

Dobson et al., 1994; Peng & Kim, 1994; Wu et al., 1995), suggest the following

pathway for the folding of the structurally homologous a-lactalbumins and

lysozymes. Initial formation of the molten globule yields a species in which

the a-helical domain is native-like, while the P-sheet domain is

predominantly unfolded. Subsequently, a locking step requiring organization

of the 3-sheet domain, and calcium binding in a-LA, yields the unique native

structure.

It is interesting that the NMR spectrum of calcium-bound a-LA(3)

suggests significant tertiary contacts, while the near-UV (aromatic) CD

spectrum lacks much of the intensity of native a-LA. Our studies indicate

that the 3-sheet domain has a native-like fold in calcium-bound a-LA( ).

However, the detailed structure of calcium-bound a-LA(3) remains unclear.

Many possibilities are apparent, in which the individual domains of a-LA

have varying degrees of native structure.

At one extreme is the possibility that calcium binding to a-LA(P) yields

slightly more structure throughout the entire molecule, converting a-LA(P)

from a molten globule to a "highly ordered molten globule", a flexible,

partially folded species in which the native secondary structures are largely



formed, but loop regions are disordered (Feng et al., 1994; Redfield et al., 1994).
At the other extreme is the possibility that calcium binding to ca-LA(3) causes
the P-sheet domain to fold entirely, while the a-helical domain remains
dynamic; the relatively small near-UV CD signal may result from the fact that
only one of three tryptophans and one of four tyrosines in a-LA are present
in the P-sheet domain. This second possibility is consistent with the previous
identification of a stable two-disulfide species of a-LA involving the 3-sheet
domain and interdomain disulfide bonds, which is transiently populated
during reduction of a-LA in the presence of calcium (Ewbank & Creighton,
1993a; Ewbank & Creighton, 1993b). High-resolution structural
characterization or protein dissection of a-LA(f) in the presence of calcium
should resolve this issue.



Figure legends

Figure 1: Calcium induces structural changes in a-LA(P), but not a-LA(a). (a)
Schematic representation of human a-LA (Acharya et al., 1989; Acharya et al.,
1991) produced with the program RIBBON (Priestle, 1988). The a-helical
domain (white) contains the four a-helices. The P-sheet domain (shaded)
contains two short 3-strands and several loop structures. A single calcium
ion (black ball) binds to the calcium-binding loop, comprised of residues 78-89.
a-LA(a) contains the two disulfide bonds in the a-helical domain (6-120 and
28-111; white), with the P-sheet domain and interdomain cysteines replaced
by alanines. a-LA(P) contains the disulfide bond in the P-sheet domain (61-
77; black) and the interdomain disulfide bond (73-91; black), with the cysteines
in the a-helical domain replaced by alanines. (b) Calcium titration of a-
LA(a) (open circles) and a-LA(P) (filled circles) at 40C, pH 8.5, monitored by
the CD signal at 208 nm.

Figure 2: Far-UV and near-UV CD spectra of a-LA(a) and a-LA(1) in the
presence (filled circles) and absence (open circles) of calcium at 40C, pH 8.5.
Spectra of native a-LA (pluses) are also shown for comparison. (a) ao-LA(a).
(b) a-LA(P). The spectra of native a-LA and a-LA(a) and a-LA(P) in the
absence of calcium have been published previously (Wu et al., 1995).

Figure 3: 1H NMR spectra of a-LA(a) and a-LA(f) in the presence and
absence of calcium at 40C, pH 8.5. For comparison, spectra of the pH 2 A-state
and native ao-LA (Peng & Kim, 1994) are also shown.

Figure 4: Thermal denaturation studies of a-LA(P) in the presence of calcium
indicate that formation of native-like structure is cooperative. CD signal of a-

LA(3) in the presence (filled circles) and absence (open circles) of calcium are
shown.

Figure 5: Disulfide exchange studies of a-LA(j) at 40C, pH 8.5. (a) Native
conditions with calcium. (b) Native conditions without calcium. (c)
Denaturing conditions. The expected equilibrium populations (calculated
with a random-walk model) for a-LA(P) under denaturing conditions are
given in parentheses in (c). The numbers in brackets denote the disulfide-
bonded residues in each species.
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APPENDIX II

HYDROGEN EXCHANGE IN BPTI VARIANTS
THAT DO NOT SHARE A COMMON DISULFIDE BOND



Bovine pancreatic trypsin inhibitor (BPTI) is stabilized by three
disulfide bonds, between cysteines 30-51, 5-55, and 14-38. To better understand
the influence of disulfide bonds on local protein structure and dynamics, we
have measured amide proton exchange rates in two folded variants of BPTI,
[5-55]A1a and [30-51; 14- 38 ]V5A55, which share no common disulfide bonds.

Essentially the same amide hydrogens are protected from exchange in both of
the BPTI variants studied here as in native BPTI, demonstrating that the
variants adopt fully folded, native-like structures in solution. However, the
most highly protected amide protons in each variant differ, and are contained
within the sequences of previously studied peptide models of related BPTI
folding intermediates containing either the 5-55 or the 30-51 disulfide bond.



Disulfide bonds stabilize substantially the native state of many

proteins. This stabilizing effect has been attributed both to the restriction of
conformational entropy in the unfolded polypeptide and to enthalpic
stabilization of the folded state (for a review, see Betz, 1993). A quantitative
understanding of the effects of disulfide bonds on protein stability will
therefore require knowledge of the effects of cross-links on the folded state as
well as the unfolded state.

BPTI is a very stable 58 residue protein stabilized by three disulfide
bonds, between residues 30-51, 5-55, and 14-38 (Fig. 1A). BPTI unfolds
spontaneously upon reduction of these disulfide bonds, even in the absence
of denaturants. Thus, the folding of BPTI is thermodynamically coupled to
disulfide bond formation (Creighton, 1977; Creighton & Goldenberg, 1984;

Weissman & Kim, 1991, 1992b).

The folding pathway of BPTI (Fig. 1B) has been studied extensively in

terms of the disulfide-bonded intermediates that accumulate during folding

(Creighton, 1977; Creighton & Goldenberg, 1984; Weissman & Kim, 1991,
1992b). Two interesting intermediates which accumulate during folding are

[5-55] and [30-51; 14-38]. Both of these intermediates have been shown to fold

into native-like conformations (Altman, et al., 1991; Weissman & Kim, 1991;

van Mierlo, et al., 1991a, 1991b; Staley & Kim, 1992). Thus, no particular
disulfide bond is essential for adopting the BPTI fold.

We focus here on the amide proton exchange properties of two
completely folded recombinant variants of BPTI: [5-55]Ala, retaining only the

5-55 disulfide bond, with Cys 14, 30, 38 and 51 replaced by Ala (Staley & Kim,
1992); and [30-51; 14-38]V5A55, containing both the 30-51 and 14-38 disulfide

bonds, with Cys 5 replaced by Val and Cys 55 by Ala (Altman, et al., 1991). Our
amide proton exchange results confirm that both [5-55 ]Ala and

[30-51; 14 -38 ]V5A55 adopt native-like structures in solution and indicate that

the arrangement of disulfide bonds affects local structural fluctuations in the

folded state of BPTI.



Results

NMR Assignments of [30-51; 1 4 -3 8]V5A55

The high-resolution crystal structure of [30-51; 14-38]V5A55 is very

similar to that of native BPTI (Kossiakoff, personal communication). The
similarity in the chemical shifts of the alpha and amide protons in
[30-51; 14 -38]V5A55 and BPTI (Fig. 2A, B) and a number of unambiguous,

readily identifiable, nonsequential NOEs (Fig. 2C) indicate that
[30-51; 14-38]V5A55 also folds in solution into a conformation very similar to

native BPTI.

Aside from resonances from the mutated residues, only five alpha or
amide proton chemical shifts differ by greater than 0.2 ppm between
[30-51; 14-3 8]V5A55 and BPTI, and all of these protons are close to sites of

mutation. These five protons arise from residues that include Tyr 23, Thr 54
and Gly 56, which are within 6A of the 5-55 disulfide bond in native
BPTI (Wlodawer, et al., 1984). The other two residues with large changes in
chemical shift are Gly 57 and Ala 58; these differences may result from the
addition of a methionine residue to the N-terminus of [30-51; 14-3 8]V5A55'
potentially interfering with a hydrogen-bonded salt bridge between the X-
carboxylate of Ala 58 and the free amino terminus of Arg 1 in native

BPTI (Brown, et al., 1978).

Amide Proton Exchange

The rate constants of exchange at pH 4.6 for amide protons in [5 -55]Ala
and [30-51; 14-38]V5A55 were measured at 50 and 200 C, and additionally at 300C
for [30-51; 14 -3 8 ]V5A55 (Fig. 3; Table 1). Both [5-55]Ala and [30-51; 14- 3 8]V5A55
are monomeric in exchange buffer at 50C as determined by equilibrium
sedimentation (see Materials and Methods). The patterns of protection from
amide proton exchange (Fig. 4) in [5 -5 5 ]Ala and [30-51; 14 -3 8]V5A55 are very

similar to each other and to BPTI (Wagner & Wiithrich, 1982a; Wagner, et al.,
1984). All of the amide hydrogens involved in regular secondary structure in
BPTI are significantly protected in both disulfide variants.



Although almost all of the amide protons protected from exchange are
the same in [5 -5 5 ]Ala and [30-51; 14 -3 8]V5A55, some protons are protected to

different extents in the two molecules. The most striking overall difference is
that most of the protected amide hydrogens in [5-55]Ala are protected to a

similar degree, whereas there is much greater variation in the protection
factors for amide hydrogens in native BPTI (Wagner & Wiithrich, 1982a;
Wagner, et al., 1984) and [30-51; 14-38]V5A55 (Fig. 4).

In both [5-55]Ala and [30-51; 14-38]V5A55, all of the amide protons are
more protected at 50C than at 200C. This difference is greater in [5 -55]Ala ,
which is slightly less stable than [30-51; 14-38]V5A55; the Tm values are 420C

and 60'C, respectively (Staley & Kim, 1992 and data not shown). The extent of
this increase in protection, however, is clearly different for different residues.
In [5-55]Ala, there is no obvious correlation between the temperature

dependence of protection from amide proton exchange and structural features
of the protein. In [30-51; 14-38]V5A55, on the other hand, the amide hydrogens

from the N-terminal 310-helix and from residues 54 and 55 in the C-terminal

a-helix display a smaller change in protection factor with temperature than

other residues involved in secondary structure. This difference is even more

pronounced between 200 and 30 0 C (Fig. 4).

Stable formation of native-like structures

In both [5-55]Ala and [30-51; 14 -38]V5A55, 25 of the 29 backbone amide

hydrogens involved in H-bonds in the crystal structures of native BPTI

(Deisenhofer & Steigemann, 1975; Wlodawer, et al., 1984, 1987) are protected

from exchange by greater than 100-fold at 50C (Table 1). Of the remaining four

H-bonded residues, three (Phe 4, Lys 26 and Asp 50) are also not protected

significantly in native BPTI (Wagner, et al., 1984). The additional H-bonded

amide hydrogens that are not protected substantially from exchange are Val 5
in the case of [30-51; 14-38]V5A55 and Ala 38 in [5-5 5]Ala. In both cases these

residues are sites of mutation and the amide protons are protected slightly

(over 30-fold at 50C).

Ten additional amide protons are highly protected in both [5-55]Ala and

[30-51; 14-3 8]V5A55. All of these protons are either considerably buried in the



crystal structure of native BPTI (Deisenhofer & Steigemann, 1975; Wlodawer,
et al., 1984, 1987) or are protected in native BPTI despite exposure to solvent in
the crystal structures (Wagner & Wiithrich, 1982a; Wagner, et al., 1984;

Tiichsen & Woodward, 1985). The amide proton of Ser 47 is significantly
protected from exchange in both variants described here, and is among the
most protected amide protons in a partially-folded variant of BPTI retaining
only the 30-51 disulfide bond (Staley, 1993). Although Ser 47 has not been
shown previously to be protected from exchange in native BPTI, it is buried
in the crystal structure (Chothia & Janin, 1975; Wagner & Wiithrich, 1982a).
Additionally, in [5-55 ]Ala, Ala 30 is also protected more than 100-fold at 50C.

X-ray crystallographic studies have shown that [30-51; 14-38]V5A55 has

the same global fold as native BPTI (Kossiakoff, personal communication).
Similarly, a previous 1H NMR study showed that [5-55 ]Ala retains native

structure (Staley & Kim, 1992). Our results show that stable, native-like

folding occurs in both variants in solution.

Discussion

Comparison of Amide Proton Exchange Properties

One remarkable feature of amide proton exchange in [5-55]Ala, as
compared to native BPTI and [30-51; 14-38]V5A55, is that all of the amide

hydrogens involved in H-bonds are protected to a similar extent, suggesting
that exchange occurs predominantly via a route that involves global
unfolding. It is particularly striking that at 50C, the N-terminal 310-helix and

residues 54-56 of the C-terminal a-helix are more protected from exchange in

[5 -5 5 ]Ala than in [30-51; 1 4 -3 8 ]V5A55, even though [5 -5 5 ]Ala is less stable than

[30-51; 14 -38 ]V5A55. The differences in the extent of protection from exchange

can be explained by differences in the subdomains that are likely to be
populated in [30-51; 14-38]V5A55 and [5-55]Ala (see also Clarke, et al., 1993; Kim,

et al., 1993; Woodward, 1993).

BPTI contains a subdomain comprising the anti-parallel f3-sheet and
C-terminal a-helix (Oas & Kim, 1988). Peptides corresponding to this

subdomain, termed PaPpf, are folded in the presence of the 30-51 disulfide



bond (Oas & Kim, 1988), and this subdomain is present in partially folded
variants of BPTI containing only the 30-51 disulfide bond (Staley, 1993; van
Mierlo, et al., 1993; Staley & Kim, 1994). The N-terminal 310-helix is not part
of the PaP3 subdomain. In [30-51; 14- 38]V5A55, the high degree of protection in

part of the a-helix and the anti-parallel P-sheet, taken together with the more
local unfolding behavior of the 310-helix (Fig. 4B), suggests that the PaPf
region is a stable subdomain in [30-51; 14 -3 8 ]V5A55-

The 5-55 disulfide bond connects the N-terminal 310-helix to the

C-terminal a-helix. Peptide models containing these secondary structures,
together with the 5-55 disulfide bond, fail to fold without inclusion of a
substantial portion of the central P-sheet of BPTI (Staley & Kim, 1990). Thus,
while a peptide model, termed PaPy, of a subdomain of BPTI containing the
5-55 disulfide can be made, at least part of each unit of BPTI secondary
structure is required for folding (Staley & Kim, 1990). This requirement
might explain the increased contribution of global unfolding to the exchange
properties of [5 -5 5 ]Ala.

Another difference between the patterns of protection in [5 -55]Ala and

[30-51; 14 -38]V5A55 is the rate of exchange of residue 30 in the P-sheet. In
native BPTI and [30-51; 14-38]V5A55, Cys 30 is disulfide-bonded to Cys 51. In [5-
55]Ala, Cys 30 is mutated to alanine. The amide proton of Cys 30 exchanges
rapidly in native BPTI (Wagner, et al., 1984), [30-51; 14- 38]V5A55 (Fig. 3B, 4B),

and a modified form of BPTI in which cysteines 14 and 38 have been blocked
by iodoactetamide (Wagner, et al., 1984). In [5-55]Ala, however, the amide

proton of Ala 30 is highly protected from exchange (Fig. 3A, 4A). This
difference might arise from a change in dynamics near residue 30 in [5-55]Ala,
or from a conformational change upon removal of the 30-51 disulfide bond.

Both solution and x-ray structures have been solved for a mutant BPTI in
which both Cys 30 and Cys 51 have been mutated to alanines (Eigenbrot, et al.,
1990, 1992; Hurle, et al., 1992). Although the mutation results in slight
changes in conformation at the interface between the a-helix and 3-
sheet (Eigenbrot, et al., 1990), there does not appear to be an obvious structural
explanation for the dramatic increase in protection from amide proton
exchange for Ala 30 in [5 -5 5 ]Ala.



Implications for the folding pathway of BPTI

A key feature of the oxidative folding pathway of BPTI (Creighton,
1977; Creighton & Goldenberg, 1984; Weissman & Kim, 1991, 1992b) is that an
initially formed two-disulfide intermediate, [30-51; 14-38], cannot oxidize

directly to native BPTI, but instead rearranges to another two-disulfide
intermediate before forming a third disulfide bond (Creighton, 1977;
Creighton & Goldenberg, 1984; Weissman & Kim, 1991). It has been proposed
(Weissman & Kim, 1991, 1992a) that premature formation of native structure

during the folding of BPTI buries the free thiols of Cys 5 and Cys 55, rendering
them inaccessible to external oxidizing agents such as glutathione, thereby

inhibiting formation of a third native disulfide bond in [30-51; 14-38] (see also

Goto & Hamaguchi, 1981). The amide proton exchange properties of
[30-51; 14-3 8]V5A55 suggest that native structure, including that around

residues 5 and 55, inhibits amide proton exchange much like it might inhibit

disulfide chemistry.

Similarly, the one-disulfide folding intermediate, [5-55], does not

readily form the 30-51 disulfide bond. Again, this behavior can be explained

(Staley & Kim, 1990, 1992; van Mierlo, et al., 1991b) by native structure burying

Cys 30 and Cys 51, inhibiting access of external oxidizing agents to these thiols.
A previous NMR study of [5-55]Ala (Staley & Kim, 1992), and a related study

of [5- 55 ]Ser in which the cysteines other than 5 and 55 were replaced with

serines (van Mierlo, et al., 1991b), demonstrated that [5-55] folds into

essentially the same conformation as native BPTI. The pattern of protection
from amide proton exchange in [5-55]Ala (Fig. 4A) strengthens this

conclusion.

In summary, our results demonstrate that variants of BPTI containing

different disulfide bonds show local differences in the extent of protection

from amide proton exchange, indicating that there are substantial local

differences in the dynamics of the folded structure. Nonetheless, the high
degree of protection of the same residues in [5-55]Ala, [30-51; 14-38]V5A55 and

native BPTI underscores the conclusion that none of the disulfide bonds is

absolutely required for BPTI to adopt its native fold in solution.



Figure Legends

Fig. 1: (a) Schematic representation (adapted from Creighton, 1975) of the
crystal structure of BPTI (Deisenhofer & Steigemann, 1975; Wlodawer, et al.,
1984; Wlodawer, et al., 1987), with labels for the cysteine residues involved in
disulfide bonds and the first and last residues. The disulfide bond 14-38 is
accessible to solvent, exposing 50% of its total surface area, whereas the
disulfide bonds 30-51 and 5-55 are inaccessible, exposing 0% of their total
surface area (Lee & Richards, 1971). (b) Schematic diagram of the folding
pathway of BPTI at 250C, pH 7.3 (Weissman & Kim, 1991; Weissman & Kim,
1992b). Intermediates are designated by the disulfide bonds that they contain.

R refers to reduced BPTI; N, to native BPTI; N SH e precursor to native

BPTI; and N*, to a kinetically trapped intermediate. The folding of N* can be
accelerated -6000-fold by protein disulfide isomerase (Weissman & Kim,
1993). The dashed arrows indicate that the major one-disulfide intermediates
do not form directly from reduced protein but rather from rearrangement of
other one-disulfide intermediates (Creighton, 1977). The relative rates of
intramolecular transitions at pH 7.3 are indicated; "very fast" rates are on the
order of milliseconds, while "very slow" rates are on the order of months

(Weissman & Kim, 1992c). N S, N*, [30-51; 14-38] and [5-55] fold into
essentially the same conformation as native BPTI (Stassinopoulou, et al.,
1984; States, et al., 1984; States, et al., 1987; Eigenbrot, et al., 1990; Altman, et al.,
1991; van Mierlo, et al., 1991a; van Mierlo, et al., 1991b; Eigenbrot, et al., 1992;
Hurle, et al., 1992; Staley & Kim, 1992; Kossiakoff, personal communication).

Fig. 2: Differences in chemical shift (AS) between native BPTI (Staley, 1993)
and [30-51; 14-38]V5A55 at pH 4.6, 200 C for the (a) amide and (b) alpha protons,

plotted versus amino acid residue number. A positive A6 value represents an
upfield shifted proton in [30-51; 14-38]V5A55 as compared to native BPTI. (c)
Unambiguous nonsequential NOEs arise from pairs of protons distributed
throughout [30-51; 14 -38]V5A55 and are consistent with the formation of
native secondary and tertiary structure. Some of these proton pairs are
displayed on a schematic representation (Richardson, 1985; Staley & Kim,
1992) for native BPTI.

Fig. 3: The decay in intensity of the 15N-1H HSQC correlation for the amide
protons of residues 17 (squares), 29 (circles) and 30 (triangles) in (a) [5-55]Ala at
50C, pH* 4.6 and (b) [30-51; 14-38]V5A55 at 200 C, pH* 4.6.

Fig. 4: Relative amide proton exchange rates plotted as log (kex/kint) versus
residue number at pH* 4.6 in (a) [5-55]Ala at 50C (triangles) and 200 C (circles)
and (b) [30-51; 1 4 -3 8 ]V5A55 at 50C (triangles), 200 C (circles) and 30 0C (diamonds),
and at pH* 4.5 in (c) BPTI at 36 0C (circles) and 56 0C (triangles). The values for



BPTI are taken from Wagner, et al., 1984. Exchange rates that are too fast to
measure are shown, in filled symbols, at the minimum rate of exchange for
these residues.

Materials and Methods

Protein Expression and Purification

The gene encoding [30-51; 14-3 8]V5A55 was produced by oligonucleotide-
directed mutagenesis (Kunkel, et al., 1987) of a gene encoding BPTI (D.
Nguyen, J. P. Staley and P. S. Kim, unpublished), which was synthesized with
convenient restriction sites and optimal codon usage for E. coli and ligated
into the Ndel/BamHI site of pAED4, a pUC-based T7 expression plasmid
with an F1 origin (Studier, et al., 1990; Doering, 1992). The resulting plasmid
is called pV5A55BPTI. The plasmid encoding [5-55]Ala, denoted p5-55, is
described elsewhere (M. -H. Yu, J. S. Weissman and P. S. Kim, submitted).
Unlabeled [5 -5 5 ]Ala and [30-51; 1 4 -3 8]V5A55 were expressed essentially as
described previously for [5-55]Ala (Staley & Kim, 1992) except that rifampicin
was omitted. 15N-labeled proteins were expressed in minimal M9 media,
containing one gram/liter 15N-ammonium sulfate (99.7% 15N; Isotec, Ohio)
and 0.5 mg/liter thiamine (McIntosh & Dahlquist, 1990). Cells were induced
at an OD600 of -0.8 and harvested three hours after induction. Both variants
of BPTI form inclusion bodies upon expression in E. coli. Inclusion bodies
containing [30-51; 14-38]V5A55 were recovered and solubilized as for [5-55]Ala
(Staley & Kim, 1992). Reduced [30-51; 14-38]V5A55 was then purified by
reversed-phase HPLC (Weissman & Kim, 1991) and the pure, reduced protein
was refolded at a concentration of 10 gM in degassed folding buffer (100 mM
Tris, pH 8.7, 1 mM EDTA, 5 mM reduced glutathione, 0.5 mM oxidized
glutathione) containing 15% glycerol (Cleland, 1991) at room temperature and
was subsequently repurified by reversed-phase HPLC. [5-55]Ala was purified
and refolded as described previously (Staley & Kim, 1992). The identity of
each variant was confirmed by laser desorption mass spectrometry on a
Finnegan Lasermat and found to be within 2 daltons of the calculated mass.

NMR Spectroscopy and Resonance Assignments

Spectra were collected at protein concentrations of -4mM (pH 4.6) in
the absence of buffer or salt. 1H chemical shifts were referenced to
trimethylsilylpropionic acid (DeMarco, 1977), and the 15N shifts referenced

indirectly to NH4
+ (Levy & Lichter, 1979). Data were collected on a Bruker

AMX 500-MHz spectrometer. Water was presaturated for 1 second and 1024
data points were collected in the t2 dimension. 150-256 increments were used
in the tl dimension. Data from 2D heteronuclear nuclear Overhauser
spectroscopy (HSMQC-NOESY) experiments were collected with a mixing



time of 150 ms; data from heteronuclear 2D total correlation spectroscopy
(HSQC-TOCSY) experiments were collected with mixing times of 80 and 110
msec (Gronenborn, et al., 1989; McIntosh, et al., 1990).

Strong similarity with spectra of BPTI (Wagner & Wiithrich, 1982b;
Tiichsen & Woodward, 1987; Wagner, et al., 1987; van Mierlo, et al., 1991a)
facilitated the assignment of resonances in spectra of [30-51; 14-38]V5A55. At
least one unambiguous sequential NOE (Wiithrich, 1986) was observed for
each residue.

Equilibrium Sedimentation

Measurements were made in Beckman 6-sector, 12 mm pathlength
epoxy cells in a Beckman XL-A 90 analytical ultracentrifuge. Samples were
dialyzed against 20 mM acetic acid, pH 4.6. Data were collected at 50 C at three
wavelengths (249, 261 and 272 nm), rotor speeds (37, 41 and 45 krpm), and
initial concentrations (50, 100 and 200 gM) as determined by tyrosine and
cystine absorbance (Edelhoch, 1967). The final concentrations varied
continuously between 25gM and 400gM. The program HID4000 (Johnson, et
al., 1981) was used to calculate molecular weights by simultaneously fitting
fifteen data sets to a single molecular weight, fifteen intercepts, fourteen
offsets and a single second virial coefficient. The residuals showed no
systematic variation. Nonideality was observed as a decrease in the apparent
molecular weight as a function of increasing protein concentration, requiring
the use of the second virial coefficient as a fitting parameter. This nonideality
most likely results from the large ratio of net charge to molecular weight
(Williams, et al., 1958) at the low ionic strength of the buffer used for NMR.
The density of solutions and partial specific volumes of protein species were
calculated using values from (Laue, et al., 1992). An analysis of [5-55 ]Ala yields
a molecular weight of 6246 Da ± 5% (95% confidence; calculated, 6519 Da) and
[30-51; 14-38]V5A55 yields a molecular weight of 6571 Da + 4% (95% confidence;
calculated 6610 Da). A similar analysis of native BPTI yielded comparable
results (Staley & Kim, 1994).

Amide Proton Exchange

Fully protonated samples of [30-51; 14-38]V5A55 or [5-55]A1a were
adjusted to pH 4.6 and lyophilized prior to initiating H-D exchange by
dissolving the samples in exchange buffer (20 mM NaCD3COO, pH* 4.6).
(pH* refers here to meter readings in D20 solutions using a glass pH
electrode, without correction for isotope effects.) The temperature was
maintained in circulating water baths between later time points. The protein
concentration was -3 mM.



Rates of H-D exchange were measured by recording 15N- 1H HSQC
spectra with 2-4 transients per increment, 2048 real data points, an 0)2 spectral
width of 6250 Hz, a total recycle delay of 1 second, and 128 increments of tl
(Norwood, et al., 1990). 15N decoupling during the acquisition was achieved
with WALTZ-16 (Shaka, et al., 1983). The residual HOD peak was suppressed
with low power presaturation during the recycle delay.

Data Analysis

Amide proton decays were followed by measuring peak volumes in
15N- 1H HSQC spectra. The volumes were normalized to peak areas of the
non-exchangeable resonances of the Y21 alpha or Y23 epsilon protons in 1D
1H spectra collected immediately prior to each HSQC spectrum except the first
six. One 1D spectrum was collected immediately following the first six
experiments. The amide proton exchange rates, kex, were determined using
the curve-fitting routine in Kaleidograph (Abelbeck software) by fitting the
data to the three parameter fit, I(t) = I(o) + I(0) exp (-kex * t), where I(t) is the
intensity at time (t) after addition of deuterated solvent to the protein. Values
for I(o) were 60 to 200-fold lower than I(0).

Predicted constants for the intrinsic rate of base-catalyzed exchange are
based on data for H-D exchange in poly-D,L-alanine (Englander, et al., 1979)
with corrections for the effects of nearest neighbor side chains on intrinsic
exchange rates (Molday, et al., 1972; Robertson & Baldwin, 1991). The second-
order rate constant for base-catalyzed exchange was modified to account for
the isotope effect on the ionization of D20 (Covington, et al., 1966; Roder, et
al., 1985; Robertson & Baldwin, 1991) . For calculation of intrinsic rates of
exchange at temperatures other than 200 C, the activation enthalpy was taken
to be 2.8 kcal/mol. The pKD20 was calculated at different temperatures using
the relationship (Covington, et al., 1966) pKD20 = 4913(T)-1 - 7.60 + 0.02009(T).
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Table 1: Amide Proton Exchange Rates
BPTI Variants at pH* 4.6

[30-51; 14-381
S5A 55

(x10- 4 min-1) of

15-55]Al

ResidueS H-bondedt 50 C 20 0C 30 0 C 5 0C 20
Cys-5 (Val) + 12 96 390 1.1 7
Leu-6 + 14 110 430 0.70 4
Glu-7 + 10 84 290 0.36 2
Tyr-10 2.6 24 140 4.3 16
Gly-12 26 220 930 13 39
Cys-14 (Ala) 10 1300 1100 350 fas
Ala-16 + 1.6 22 200 18 44
Arg-17 140 900 5900 190 fas
Ile-18 + 0.16 2.6 25 1.1 6
Ile-19 7.6 52 240 4.5 8
Arg-2C + 0.094 1.9 25 1.1 9
Tyr-21 + 0.076 1.2 17 0.96 8
Phe-22 + 0.22 1.5 20 1.1 9
Tyr-23 + 0.14 3.2 35 1.4 11
Asn-24 + 0.16 4.8 56 3.0 25
Ala-25 74 570 2800 13 48
Lys-26 + 400 fast fast 230 fas
Ala-27 + 13 83 330 8.6 19
Gly-28 + 1.8 13 84 2.5 19
Leu-29 0.096 2.2 24 1.1 9
Cys-30 (Ala) 35 3100 1300 2.1 12
Gln-31 + 0.20 2.8 34 1.5 15
Thr-32 3.1 25 160 3.8 25
Phe-33 + 0.068 1.5 18 1.5 13
Val-34 3.4 25 110 2.7 9
Tyr-35 + 0.29 4.2 37 1.1 9.
Gly-36 + 3.8 43 370 6.2 46
Gly-37 1.9 28 290 7.9 56
Cys-38 (Ala) + 15 180 1400 97 fas
Ala-40 340 fast fast 190 fas
Lys-41 8.9 110 870 6.5 52(
Arg-42 230 fast fast 120 fasi
Asn-43 + 55 620 6500 18 70(
Asn-44 + 2.3 45 500 6.4 66(Phe-45 + 0.60 14 170 2.9 26(
Ser-47 17 110 500 4.3 26(
Ala-48 110 790 630 20 63(
Glu-49 500 fast fast 130 210(
Asp-50 + 210 1600 5400 19 37(
Cys-51 (Ala) + 0.32 5.2 63 0.78 6:
Met-52 + 0.28 3.4 36 0.58 4
Arg-53 + 0.42 5.9 61 0.86 7
Thr-54 + 5.6 39 200 1.9 13(
Cys-55 (Ala) + 6.9 46 250 2.3 21(
Gly-56 + 0.19 150 680 2.9 21(
Gly-57 430 fast fast 290 fast
Ala-58 fast fast fast 300 fast
*Residues which are mutated in either [5 - 5 5 ]Ala or [30-51; 1 4 - 3 8 ]V5A55 are denotE

in parentheses.
TObserved to participate in an H-bond in at least one of the crystal structures

of native BPTI (Deisenhofer & Steigemann, 1975; Wlodawer, et al., 1984;
Wlodawer, et al., 1987; Oas & Kim, 1988).

a

0C

2
0
3
0
0
t
0
t
0
9
9
8
5
0
0
0
t

0
0
1
0
0
0
0
0
2
0
0
t
t
3
t

3
0
3
3

30

3

d



Fig. 1
A)

B)

3051 very- 30-51
L50-55 3s 5-55

14-38

NsH N
SH

/

R

[0-51]
4-38

5-55
14-38

N*

0

C,0



Fig. 2
NH

5 10 15 20 25 30 35 40 45 50 55

Residue

acH

L

5 10 15 20 25 30 35 40 45 50 55
Residue

A)

E
0.

CIO

0.8

0.6

0.4

0.2

0

-0.2

-0.4

B)
1.2

1

0.8

0.6

0.4

0.2

E
a*f.0
CIO

0

-0.2

-0.4



Fig. 2C
A4 A 0

51

5-55



Fig. 3
[5- 5 5 ]Ala

Ala 30 Leu 29

Arg 17

/0

0 5 10 15 20 25 30 35 40
Time (hours)

B) [30-51; 1 4 -3 8 ]V5A55

1

Leu 29

Cys 30

A)

0.

0.

0.

0.

>,

cc
0

0.8

0.6

0.4

0.2
Arg 17

0 5 10 15 20 25
Time (hours)



Fig. 4
[ 5 -5 5 ]AIa

10 20io 3'0
Residue

40 50 60

[30-51; 14 -3 8]V5A55

-1

-2 1

Residue

BPTI

0 10 20 30
Residue

a ,,

-W. I · . -. o

40 5'0 60



APPENDIX III

POSITION-DEPENDENCE OF HELICAL STRUCTURE
IN ALANINE-BASED PEPTIDES
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Introduction

The protein folding problem is difficult to approach because the
structures of proteins are diverse and they are stabilized by a combination of

many local and global interactions within the protein, and by interactions
with solvent. Nevertheless, proteins are composed of a hierarchy of
structures: proteins contain compact subdomains, which, in turn, consist of
units of secondary structure packing together (1). In principle, understanding
the folding of each of these simpler units will provide the first step towards
explaining how a protein folds. Toward this end, we are trying to understand
the folding transition of one of the simplest units of structure, the a-helix.

Several features of the a-helix make it an important and tractable
model system. First, the a-helix is the most abundant form of secondary
structure in proteins (2). Second, it is a uniform, repeating structure. Despite
differences in hydrogen bonding between the middle and the ends of a helix,
in the model a-helix, the phi and psi angles of the backbone are -57' and -47',

respectively (2). Third, isolated helices are stabilized primarily by local
interactions. And, perhaps most importantly, short monomeric peptides,
both corresponding to protein helices and of de novo design, can form stable
helices in solution (3-7).

Three pieces of evidence suggest that the structure and stability of a-

helices in proteins are at least partially determined by local sequence. First,

some factors that influence the stability of isolated helices, such as the helix-

propensities of the constituent amino acids and charge-helix dipole

interactions, influence the stability of proteins, as well (8-22). Second, helix

propensities of different amino acids are similar in helices formed by both

short peptides and proteins (11, 13, 23-26). In addition, the moderate success

of secondary structure prediction methods suggests that local structure is at

least one determinant of a protein's overall fold (27). Thus, as a model

system for understanding local structure in proteins, isolated a-helices

provide information that may be useful for protein and peptide design.

In addition to providing information about the forces that stabilize

helices, isolated helical peptides are a model system for studying the
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mechanism of a polypeptide folding transition. The helix-coil transition of

model peptides cannot be described as a simple two-state equilibrium. Helical
peptides are not only either fully folded or fully unfolded, but rather can
adopt a range of partially folded structures (28, 29). Thus, the average helix
content of a peptide is not directly related to a single thermodynamic state

function such as AG. An understanding of the mechanism of the helix-coil

transition is crucial for quantifying the thermodynamic contributions of the
factors stabilizing helices.

A number of statistical mechanical models, such as the "zipper",
Zimm-Bragg, and Lifson-Roig models, describe the helix-coil transition (30-
32). While these models differ in detail, they are based on similar

assumptions. They assume that each residue can exist in either of two states,

helix or unfolded, and assign statistical weights for the conformation of each

residue depending on the conformations of neighboring residues. The

Zimm-Bragg model, for example, uses two parameters: a for nucleating a

helix and s for propagating a helix (31). The value of these models is that they

use only a small number of statistical parameters to describe the helix-coil

transition. If these models are proven valid, the statistical parameters can be

measured for different peptide helices and compared in order to evaluate the

relative contributions of the forces that stabilize helices.

The statistical mechanical models have been successful in predicting

qualitatively the length- and temperature-dependent behavior of isolated

helices. The theories also predict details of helical structure, such as a

position dependence of structure: residues in the middle of a peptide are

expected to be found in the helical conformation more frequently than

residues at the ends.

There are limited ways to measure the fraction of peptides in which a

given residue is helical because assays for site-specific structure, such as x-ray

crystallography or NMR, traditionally detect structure in fully folded

molecules. Other methods such as CD measure average properties of helices,

so details of the specific nature of the helix-coil transition only can be inferred

from how well experiments agree with theoretical predictions. One
microscopic property that can be measured at each position in a peptide is
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chemical shift. Proton chemical shifts are sensitive to the electromagnetic
environment, including the electronic properties of the atom itself and

external factors that influence the local magnetic environment. If the

electronic properties of the probes are the same, then changes in chemical

shift reflect changes in structure.

Alanine methyl protons are good probes of helical structure for several

reasons. First, alanine has been shown to have very high helix propensity

(11, 13, 24, 33). Second, in crystal structures of helical polymers, the f3-
methylene or methyl group of a residue is near the amide of the following

residue (34, 35). This geometry is unique to helices, and is not observed in

other forms of secondary structure (36, 37). Finally, because the methyl

protons do not participate in hydrogen bonds, are not polar and are not in

exchange with solvent, they will be relatively insensitive to solvent

conditions. Thus, in the case of alanine-based helical peptides, alanine

methyl proton chemical shifts should be strongly influenced by the structure

of a peptide. We have measured the changes in alanine side-chain methyl

proton chemical shifts from 5-800C for a number of individual residues in

alanine-based helical peptides. The helical structure in the peptides unfolds

over this temperature range. The change in alanine methyl proton chemical

shift varies with the position of the residue in the peptide sequence. In

agreement with helix-coil transition theory, the data suggest that the residues

at the ends of helical peptides are substantially folded, but are less likely to be

folded than residues at the center.

Results

Resonance Assignments for alanine-based helical peptides

Alanine has a high propensity for adopting a helical conformation, and

alanine-based peptides have been shown to be highly helical (33). The 17-, 22-
and 27-residue peptides, with the sequences Ac-WA(RA 4)n-NH2 and

Ac-AA(RA 4)n-NH 2 (n=3-5) used for this study were based on model peptides

used by Baldwin and colleagues to study the helix-coil transition. (The Trp

was included at the N-terminus for CD studies, in order to facilitate

concentration determination.) Fig. 1 shows the CD spectrum of a
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representative peptide, the 22-mer Ac-WA(RA 4)5-NH 2. All of the peptides
used in this study are highly helical at low temperature (data not shown).

Part of the appeal of studying alanine-based peptides is their
homogeneity and anticipated lack of sequence-specific effects. However, in a
typical 1D 1H-NMR spectrum of alanine-rich polypeptides, assignment of
resonances is difficult because of chemical shift overlap. To circumvent this
problem, we used peptides with side-chain deuterated alanine incorporated in
most positions. Deuterium is invisible in 1H-NMR spectra, so the methyl
deuterons do not appear in the spectrum. Up to three carefully selected
positions are resolved per peptide, and these are distinguished by using
different ratios of 1H-alanine:2H-alanine in each position (Fig. 2).
Substitution of deuterons for protons in the methyl groups is not expected to
influence the stability of these peptides because there is little difference
amongst the helix propensities of many straight-side-chain, nonpolar amino
acids, which have even bulkier substituents attached to the P3-carbon (14, 38).

Position dependent changes in chemical shift over the temperature range of
5-80 OC

Changes in alanine methyl proton chemical shift over the temperature
range of 5 to 800 C were monitored for several positions in the 17-, 22- and 27-
residue peptides. All if the data are compared to the chemical shift at 800C, a
temperature at which CD measurements indicate that the peptides are
unfolded (data not shown). The change in alanine methyl chemical shift (AS)
(that is, the difference in 8 at a given temperature from 8 at 800C) is an
observable that depends both on peptide length and position within the
peptide.

The relative values of A8 have been compared, qualitatively, for many
positions along the sequence of each the 17-, 22- and 27-residue peptides,
Ac-AA(RA 4)3-5-NH 2. There is a smooth curve for the position dependence of

A8 at low temperature: A8 is largest for central alanines and decreases
progressively from the middle to the ends of the peptide (Fig. 3). A8 clearly
depends on formation of the helical structure, because -8M urea, which
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unfolds the peptides, essentially eliminates the differences in A8 for different
residues (Fig. 4).

Changes in A3 reflect changes in helix-content

To test whether the temperature-dependent change in chemical shift in
the helical peptides is related to helical structure, we compared the results
obtained by NMR with the results obtained for a method known to measure
helix-content: CD at 222 nm. CD measures the average helix-content. The
overall features of the thermal transitions observed by CD are similar to the

thermal transitions observed by NMR (Fig. 5), suggesting that the changes in

chemical shift reflect changes in helix content.

Length-dependent differences in the thermal transitions observed for

different positions

Many studies have suggested that helices are frayed at the ends.

Indeed, for residues at the ends, there is a smaller change in A8 upon

unfolding than there is for the middle. In addition to the difference in the

magnitude of the transition for the middle and the ends, there is also a

length-dependent difference in the nature of the thermal transitions for the

middle and the ends. In both the 22- and 27-residue peptides, which are

nearly completely helical at low temperature as judged by CD, the thermal

transition for the middle alanine is more S-shaped, approaching baselines at

low and high temperatures On the other hand, the terminal alanine

undergoes a more broad transition and never approaches a fully folded

baseline at low temperature (Figure 6). Thus, the nature of the transition for

the middle residue is different from the ends, and depends on peptide length.

Discussion

Are the ends of helices frayed?

Theoretical models for the helix-coil transition predict a strong

position-dependence of helical structure (30). 2D NMR studies of isolated

peptides show that the interproton distances and angles are consistent with ox-
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helical structure. These studies also indicate, qualitatively, that the ends of
helices are frayed (39-41).

Baldwin's group has examined the loss of overall helix-content arising

from amino acid substitutions at various positions within a helical sequence.

Studies on the C-peptide of RNAse A and on a streamlined alanine-based
peptide show that there is a position-dependent loss of helix-content upon
substituting an amino acid with low helix-forming propensity (glycine or
proline) for one with high helix-forming propensity (alanine) (42-44). There
is little effect of substituting residues at the termini, but there is a large effect
for mutating residues near the middle of the sequence. These data have been
interpreted to mean that the ends of the helices are substantially frayed.

Recently, the protection from hydrogen exchange has been measured
for different residues in 15N-labeled alanine-based peptides (45). Rohl and
Baldwin observe greater protection from hydrogen exchange for residues in
the middle of the peptide than for residues at the end, consistent with the
predictions of helix-coil transition theory.

To compare our method with other techniques, we also examined the

changes in AS in a 21-residue helical peptide that is substantially folded at the

N-terminus. Diagnostic NOEs indicate that the N-terminal four residues of

Suc-A5(A3RA)3A-NH2 are helical (46, 47). Nonetheless, there is a difference

in AS for the middle and ends in this peptide, and the difference is

comparable to that described above for the 22-residue peptide (data not

shown--AS for the N-terminal alanine is -60% of that for the central alanine).

However, it is unclear what fraction of the population must be helical

in order to give rise to helical NOEs. Sequential NOEs have been observed
for the first four residues in two salt-bridge-stabilized helical peptides, termed
"EAK" and "ELK", which are not as streamlined as the alanine-based peptides

(41). However, unlike studies of the 21-mer Suc-A 5(A3RA)3A-NH 2, which

were limited by extreme spectral overlap, in the EXK peptides NOE intensities
were measured for the middle residues as well as the ends. The intensities of
NOEs in the middle of these peptides are 3-4 times greater than NOEs
between end residues. The differences in NOE intensity and position-
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dependent differences in J-coupling constants indicate that the ends of the
EXK peptides are frayed (41). Thus, residues at the termini of frayed helices

can give rise to NOEs that are diagnostic for helical structure.

We show here that for helical alanine-based peptides, A8 for each

alanine increases progressively from the end to the middle. In addition, the

ends undergo a less cooperative thermal transition than the residues in the
middle of the peptide. These data not only agree with previous experiments
suggesting that the ends of helices are frayed, but also demonstrate that the

ends and middle undergo different unfolding transitions.

Helix-coil transition theory predicts the behavior of helical peptides

The simplest statistical mechanical model of the helix-coil transition is

the "zipper model" (30), which assumes that only one stretch of helix can be

found within a given peptide. Only the statistical parameters of the Zimm-

Bragg theory ("a" for nucleating a helix and "s" for adding a new helical unit

to the end of an existing helix) (31) are required for describing helix formation

in this model. Thus, the partition function for a chain of n units is:
n

q = 1 + X kosSk,
k=1

where Ok is the number of ways of putting k helical units together in one

sequence in a chain of n residues (30). The fraction-folded for each residue in

a helical peptide can be predicted from the zipper model as described below.
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Given our observation that the changes in AS upon unfolding depend
on the position of a residue within the peptide, we compared the properties of
AS with the residue-specific properties of helical peptides predicted with the
zipper model. Fig. 7 shows that the position-dependence of AS at 50C is
similar to the position-dependence of helix content predicted by the zipper
model.

In addition, although temperature is not an explicit parameter in this
model, "s", the equilibrium constant for adding a residue to a pre-existing
helix, in principle depends on temperature (30). Thus, a temperature
dependent transition can be represented by a transition as a function of s. On
a qualitative level, the observed temperature dependent behavior of the
middle and the end agrees strikingly well with theoretical predictions (Fig. 8).
Although likely to be an oversimplification, the zipper model predicts
relatively accurately the position- and temperature-dependent behavior of AS
for short alanine-based peptides.

Conclusions

The temperature-dependent changes in alanine methyl proton
chemical shift appear to reflect changes in helical structure in isolated
alanine-based peptides. Both the magnitude and the nature of the thermal
transition differ for the central and end residues. These differences are
predicted by a simple helix-coil transition theory.
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Figure Legends

Fig. 1: CD spectrum at 00 C for the 22-residue peptide Ac-WA(RA 4)4-NH 2.

Fig. 2: NMR spectra at 50C of two 17-residue alanine based peptides shown to
scale. (A) The peptide Ac-WARAAAARAAAARBAAB-NH 2 gives rise to 13
methyl resonances between 1.54 and 1.36 ppm. All of these methyl
resonances except that of Ala 2, which is ring-current shifted upfield by Trp 1,
are overlapping. (B) The peptide Ac-AA(RA 4)3-NH 2 contains 14 alanine
methyl groups. However, in this peptide, every alanine has a deuterated side
chain except for Ala 7, Ala 14, and Ala17, which are easily identified because
they are labeled to an extent of 50, 100 and 25 percent, respectively, with
normal, protonated L-alanine.

Fig. 3: Position dependence of AS (from 278K to 353K) for the 17-residue
peptide Ac-AA(RA 4)3-NH2 and the 22-residue peptide Ac-AA(RA4)4-NH 2.
For the 17-mer, Ala 9 is the central alanine. For the 22-mer, Ala 12 is
considered to be 0.5 residue from the middle of the peptide.

Fig. 4: The temperature dependence of AS (8 at a given temperature - 8 at
353K) for three residues in the 22-residue peptide Ac-AA(RA 4)4-NH 2. Filled
symbols show the changes in chemical shifts in aqueous buffer (150 mM
NaC1, 10 mM sodium phosphate, pH* 7.0). Open symbols show the changes
in chemical shifts in the presence of 7.8 M deuterated urea.

Fig. 5: The thermal melts by CD of the peptides Ac-WA(RA 4)3 or 4-NH2 are
compared with thermal melts by NMR for the peptides
Ac-AA(RA 4)3 or 4-NH 2. The overall fraction helix is estimated for the NMR

melts as follows. The AS value at -50 C for the central residue in the 22- and
27-residue peptides is nearly identical (-.156 ppm). Thus, it is assumed that
(.156*the number of residues, 17 or 22) is equal to 100% helix. The fraction of
helical structure at a given temperature was determined by: 1) fitting the
position-dependence data for each temperature to a fourth order polynomial
(which recapitulates the overall shape of the curve), 2) integrating under the
curve for the length of the peptide, and 3) comparing the area of AS with the
value for 100% helix.

Fig. 6: Comparison of the temperature dependence of AS (8 at a given
temperature - 8 at 353K) for the middle and the terminal alanines of the 17-,
22- and 27-residue peptides, Ac-AA(RA 4)3-5-NH 2. The values of AS for the
end residues (squares) are normalized to the scale observed for the central
residues (circles). The difference in the transition for the middle and the end
residues of a peptide increases with peptide length.
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Fig. 7: A) The fraction folded for different positions in the 17-residue peptide
Ac-AA(RA 4)3-NH 2 is estimated by comparing A8 with the value of A8
observed for the central residue in the 22- and 27-residue helices (0.156 ppm is
considered as the value for 100% helix.) B) The fraction folded for different
positions in a 17-residue helical peptide as predicted by the zipper model for
the helix-coil transition (30). Values of a (0.0029) and s (1.56) obtained for
alanine were taken from (44).

Fig. 8: The s-dependence of the site-specific equilibrium constant for the
center and end positions of a 17-, 21-, and a 27-residue peptide as
approximated by the "zipper model" for the helix-coil transition (30). The
value for a is 0.0029, determined for alanine-based peptides by (44). All
residues are assumed to contribute the same values of a and s when in the
helical conformation. The value for s of 1.56 is used for low temperature (44).

Materials and Methods

The peptides were synthesized using solid-phase t-Boc methods (for
review, see (48)) on an Applied Biosystems Model 430A peptide synthesizer
and were cleaved from the resin using TFMSA (49, 50). The peptides were
desalted on a Sephadex G-10 column in 5% acetic acid and purified by
reversed-phase HPLC on a Vydac C18 preparative column using a linear
water/acetonitrile gradient containing 0.1% TFA. N-t-Boc L-Alanine [3,3,3,-
D3] was obtained from Tracer Technologies (Somerville, MA). Peptide
identity was confirmed by mass spectrometry (M-scan, Westchester, PA).

CD experiments were performed on an AVIV Model 60DS CD
spectometer using a 1 cm path-length cell. The peptide concentrations for CD
were determined by absorption of tryptophan under denaturing conditions
(51), and were -30 jiM, in 150mM NaCl and 10 mM sodium phosphate, pH
7.0.

NMR spectroscopy was performed on a Bruker AMX spectrometer
operating at 500.1 MHz for 1H. Free induction decays were averaged over 2048
scans with 8 K complex data points. Data were acquired using a spectral width
of 5556 Hz. Samples were -3 mM peptide in D20, with 150mM NaCl and 10
mM sodium phosphate, adjusted to pH* 7.0. (pH* refers to pH-meter
readings uncorrected for isotope effects.) Chemical shifts were determined
relative to an internal (trimethylsilyl) propionate (TMSP) standard (52).
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