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Abstract
In part I of the Thesis charge ordering and transport in arrays of coated semiconductor
nanocrystals (quantum dot arrays) are studied.

Charge ordering in dot arrays is considered by mapping the electrons on the dots
onto the frustrated spin model on the triangular lattice. A number of phases is
identified for this system. Phase diagram is studied by means of the height field order
parameter. Novel correlated fluid phase is identified, in which transport of classical
charges exhibits correlated behavior. Freezing transitions into commensurate ground
state configurations are found to be of the first order.

A novel model of transport in disordered systems is proposed to account for ex-
perimentally observed current transients in dot arrays at high bias. This transport
model yields a non-stationary response in a stationary system. The model proposes a
particular power law noise spectrum that is found to be consistent with experiments.

In Part II of the Thesis novel effects in Carbon nanotubes are predicted. These
effects can be manifest in transport measurements.

First, it is shown that a strong electric field applied perpendicularly to the tube
axis can fracture the Fermi surface of metallic nanotubes and significantly reduce
excitation gap in semiconducting nanotubes. The depolarization problem is linked to
the chiral anomaly of 1+1 dimensional Dirac fermions.

Second, coupling between a surface acoustic wave and nanotube electrons is pro-
posed as a means to realize an adiabatic charge pump. Incompressible states are
identified in the single particle picture, and the corresponding minigaps are found.
Conditions for pumping experiment are identified.

Third, electron properties of a nanotube in a periodic potential are considered. It
is shown that when the electron density is commensurate with the potential period,
incompressible electron states exist. Electron interactions are treated in the Luttinger
liquid framework, and excitation gaps corresponding to incompressible states are
found using the phase soliton approach.

Thesis Supervisor: Leonid S. Levitov
Title: Professor of Physics
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Chapter 1

Review of Experiment and Theory

I would like to describe a field,

in which little has been done,

but in which an enormous amount

can be done in principle.

R. P. Feynman,

"There is plenty of room at the bottom"

Our understanding about the microscopic world has been moving forward by study-

ing systems that nature created. This progress has gradually led to discovery of

chemical elements, then to the structure of atom, nucleus, and nucleons. In a recent

decade or so, a new way to study microscopic systems emerged. Recent progress in

the nanoscale fabrication opened up a possibility to design matter by designing the

elementary building blocks rather than just use what nature has to offer. These so-

called "artificial atoms" [3], or quantum dots, can consist of a handful of real atoms

of a metal or a semiconductor and be tuned and controlled to have desired properties.

The aim of the present Part of the Thesis is to study in detail a particular system

made entirely of such artificial building blocks. This system, which is a closely packed

array ("solid") of nearly identical coated semiconductor nanocrystals put together

by self-assembly, can be considered the simplest of its kind. Despite their seeming

simplicity, quantum dot arrays appear to be rich systems that exhibit a variety of

physical phenomena.
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An important feature of dot arrays is their tunable properties. The composition,

size, and coating of individual quantum dots can be adjusted, which makes it possible

to create novel nanoscale systems with a control of the Hamiltonian by the system's

design. Advancements in colloidal chemistry has allowed one to produce such quan-

tum dots in large quantities. It has led to a possibility to create novel solids composed

of a macroscopically large number of semiconducting nanocrystals. These materials

possess a great potential both for basic research and applications [4].

In this Part of my Thesis I will focus on charge ordering and transport in quasi-

two-dimensional quantum dot arrays (QDAs) [5, 6, 7]. An example of such an array

is shown in a TEM image, Fig. 1-1. The outline of the present Part is as follows.

First, in the present Chapter, I will describe basic properties and synthesis of the

QDAs, as well as review experiments on dot arrays. In reviewing the experiments I will

mostly focus on transport phenomena, as transport is a natural and powerful probe for

nanoscale systems. Moreover, as I will show in this Chapter, transport measurements

done so far yield a rather unexpected outcome. In the present Chapter I will also

review appropriate theoretical models of transport, namely hopping conductivity and

dispersive transport.

Charge ordering in dot arrays will be studied theoretically [1] in Chapter 2. There

we will see that an interplay between the long range Coulomb interaction and the

triangular geometry of an ideal two dimensional array (Fig. 1-1) can lead to a rich

phase diagram even though the system is essentially classical at realistic temperatures.

I will show that electrons on the array can exhibit collective behavior, and will study

phase transitions that correspond to freezing into commensurate configurations. It

will also be shown that transport measured at a low bias can serve as a probe of

charge ordering in the ground state, with singularities of conductivity corresponding

to ordering phase transitions.

Transport in QDAs will be analyzed in detail in Chapter 3. The novel transport

model [2] that I will present in that Chapter accounts for anomalous transport in

QDAs measured at a high bias. It will be shown how a non-ohmic, non-stationary

current can arise in a stationary system. This transport model will be based on a
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stationary Levy process.

1.1 QDA properties, synthesis and transport

In the present Section I will first briefly describe existing artificial nanoscale systems,

such as epitaxially grown quantum dot arrays, as well as Josephson junction arrays.

I will contrast them with the novel colloidal quantum dot arrays that are the focus

of the present Part of the Thesis. I will then briefly touch upon the synthesis of indi-

vidual dots and their self-assembly on a substrate. Next I will describe the results of

transport measurements on the dot arrays. These experiments show that, in response

to a voltage step, a remarkable power law decay of current over five decades of time

is observed. This effect has not been understood, and the purpose of the Chapter 3

of the present Thesis is to propose a phenomenological model for its explanation.

Dot arrays currently used for transport measurements are rather disordered (Fig. 1-

2). In Section 1.2 I will review existing theoretical models of transport in disordered

systems and show that they fail to explain the observed transport effects.

1.1.1 QDAs versus other artificial systems

First quantum dot arrays have been made by applying epitaxial techniques [8]. Such

arrays (either regular or irregular) are made of InAs or Ge islands embedded into the

semiconductor substrate. The dot size in a typical array can be tuned in the 10-100

nm range with the rms size distribution of 10-20%. Progress in fabrication stimulated

a number of experimental [9, 10, 11, 12] and theoretical [13] works on the electronic

ordering and transport in these arrays. Infrared [9] and capacitance [10] spectroscopy,

as well as conductivity measurements [11] show the quantized nature of charging of

the dots. Recently interesting effects have been observed due to interactions of the

two dimensional electrons with dot arrays [12]. A common feature of the epitaxially

grown dot arrays is a relatively small role of electron interactions on the dots. Indeed,

the interdot Coulomb interaction in such systems is an order of magnitude weaker

than the dot charging energy and the offset charge potential fluctuations.
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Another class of artificial sytems characterized by the control of the Hamilto-

nian during the system design are the Josephson arrays. There have been extensive

theoretical [14] and experimental [15] studies of phase transitions and collective phe-

nomena in Josephson arrays. In both dot arrays and Josephson arrays experimental

techniques available for probing magnetic flux or charge ordering, such as electric

transport measurements and scanning probes, are more diverse and flexible than

those conventionally used to study magnetic or structural ordering in solids. How-

ever, Josephson arrays at present are rather difficult to produce and to control, and,

besides, they require liquid Helium temperatures to operate.

In the present Thesis we will focus on a different system that has been fabricated

recently [5, 6, 7]. This system is based on nanocrystallite semiconductor quantum dots

that are synthesized by the means of colloidal chemistry. The individual nanocrystals

(typically made of CdSe or CdTe) can be made with high reproducibility, of diameters

rv 1.5 - 15 nm tunable during synthesis, with a narrow size distribution (down to 5%

rms). One should keep in mind that a 5% deviation in size at such a small scale

corresponds to a thickness of a single atomic layer.

These semiconductor quantum dots can be forced to assemble into ordered three-

dimensional closely packed colloidal crystals [6], with the structure of stacked two-

dimensional triangular lattices. Due to higher flexibility and structural control, these

systems are expected to be good for studying effects inaccessible in the more tra-

ditional epitaxially grown self-assembled quantum dot arrays described above. In

particular, the high charging energy of nanocrystallite dots comparable to or larger

than room temperature, and the triangular lattice geometry of the dot arrays [6, 7],

Fig. 1-1, are very interesting from the point of view of exploring novel kinds of both

charge ordering and transport [1, 16, 17, 18, 19, 20].

The physics of colloidal quantum dot arrays becomes even more complex if one

considers randomness in interdot couplings and the offset charge, time fluctuations of

the above leading to the 1/ f noise, effects of the environment, aging, and so forth.

In the present Section I will first briefly touch upon the synthesis and selection

procedures for the quantum dots as well as their self-assembly into arrays. After that
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Figure 1-1: TEM image of a quantum dot array. Courtesy Bawendi group, MIT
Chemistry Department

I will present a review of transport measurements on CdSe arrays.

1.1.2 Synthesis of nanocrysal arrays

Recent progress in colloidal chemistry has allowed one to produce semiconducting

nanocrystals in macroscopic quantities, to select them according to their size with an

accuracy up to 5% rms, as well as to make two- and three-dimensional synthetic mate-

rials [5, 6, 7]. Below I briefly outline the main stages of the nanocrystal array synthesis

following the works of C.B. Murray, C.R. Kagan, D.J. Norris and M.G. Bawendi, as

described in Refs. [5, 6, 7].

Monodisperse semiconducting nanocrystals are prepared by an injection of metal-

organic precursors into a flask containing a hot (rv 150 - 350 C) coordinating solvent,

as described in Ref. [7]. This process is based on the framework for production of

monodisperse colloids laid by La Mer and Dinegar [21]. According to the latter, pre-

cursor concentration has to be just above the nucleation threshold so that only a small
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fraction of reagents participates in the nucleation stage. In this case, as shown by

Reiss [22], the size distribution of colloids during a subsequent slow growth stage in

an undersaturated solution becomes more narrow. Further growth of semiconducting

nanocrystals is dominated by the Ostwald ripening [23]. During this stage smaller

nanocrystals dissolve due to higher surface tension, and the material is being rede-

posited on the larger nanocrystals. For the II-VI semiconducting nanocrystals this

stage lasts for minutes or even hours. Such a slow growth enables one to obtain the

nanocrystals of a desired size by controlling the growth time [7]. The size distribution

at this stage can be below 15%. It can be further reduced down to 5% by size selective

procedures [7].

After being isolated and size-selected, nanocrystals are capped by either inorganic

or organic layer of about 1nm thick. For that they are brought to a fresh solution of

solvents and stabilizers, in which the corresponding capping precursors are gradually

added at a certain temperature [7]. Capping prevents nanocrystals from a direct

electrical contact with each other.

Finally, capped nanocrystals form tWQ- or three-dimensional arrays when de-

posited on a substrate from a solvent. As the solvent evaporates, nanocrystals re-

arrange themselves and self-assemble into regular structures like the one shown in

Fig. 1-1, as described in Refs. [6, 7].

1.1.3 Transport in nanocrystal arrays

There has been a number of transport measurements on the colloidal CdE dot arrays,

with E=S, Se, or Te. One class of experiments [19, 20, 24] have been devoted to

the "vertical transport" geometry, in which a film (typically rv 200 nm thick) of

nanocrystals is sandwiched between metallic source and drain. The results of these

experiments are somewhat contradictory. On the one hand, a steady state current

that is a power law of the applied voltage is observed [20, 24]. On the other hand,

Ginger and Greenham [19] observe a slow decay in time of a de current under a

constant applied bias.

In the present Thesis I will focus on the results of the transport measurements
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performed on the quasi-two-dimensional CdSe quantum dot arrays [17, 18] in the

field effect transistor geometry, as schematically shown in Fig. 1-2. In such a setup

a dc current is measured between a negative source and a grounded drain, with a

gate voltage controlling electron density on the array. Measurements are done in the

cryostat at 77 K.

In experiments [17, 18] a film of nanocrystals about 200 nm thick is deposited on

oxidized, degenerately doped Si wafers with oxide thickness ~ 200 nm (see Fig. 1-2).

Gold electrodes, fabricated on the surface before deposition of nanocrystals, consist

of bars 800 /-lm long with separation of 2 /-lm.

With a typical nanocrystal size of 5 nm (including the capping layer), the dot array

in the space between electrodes is about 400 dots across and 40 dot layers thick. In

experiments [17, 18] dot arrays possess a local closely-packed order. However, the

arrays are imperfect on a larger scale, having practically no long range order, as

illustrated by the TEM image in Fig. 1-2.

Prior to electrical measurements samples are typically annealed at 300 C in vacuum

inside of the cryostat. Annealing reduces the distance between the nanocrystals and

enhances electron tunneling [17, 18].

For QDAs made of coated CdSe dots the zero bias conductance has been found to

be immeasurably small [17, 18]. Therefore electron transport in dot arrays has been

studied using strong applied fields of the order of 100 V between source and drain.

This large bias regime corresponds to the voltage of several hundred me V between the

neighboring dots, which is of the order of the dot charging energy (about 200 me V)

and the interdot Coulomb energy (about 50 meV) [17, 18].

Below we summarize the results of Refs. [17, 18J. When a negative voltage step

is applied to the source at time t = 0, with the drain grounded, the following are

observed:

(i) A power law decay of the current

I = 10 t -0, a < a < 1

23
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is always found. The law (1.1) has been verified to hold for up to five decades in time,

from hundreds of milliseconds to tens of hours (Fig. 1-3).

(ii) This is a true current from source to drain, rather than a displacement current,

since the net charge corresponding to (1.1) diverges with time. Already for observa-

tion times rv 103 s, the transported charge is orders of magnitude greater than that

capacitively accumulated on the array, as shown in Fig. 1-3.

(iii) The exponent a is non-universal. It depends on temperature, dot size, capping

layer, bias voltage and gate oxide thickness.

(iv) The system has a Memory effect: Suppose the bias is off for tl < t < t2• The

current measured as a function of a shifted time i= t - t2 is of the form (1.1) with an

amplitude fo < fo. This is illustrated in Fig. 1-3, in which the transient for long times

is recorded after that for the shorter time, giving rise to a smaller amplitude. The
- -amplitude fo is restored, fo 4- fo, by increasing the off interval t2 - tI, by annealing

at elevated temperature, or by applying a reverse bias or bandgap light between tl
and t2•

To explain the current decay (1.1) it has been suggested that this time-dependent

current is the result of the time dependence of the state of the system, either because

trapping of electrons slows further charge injection from the contact [19] or because

of Coulomb glass behavior of the electrons distributed over the nanocrystals [17].
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Device Structure
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Figure 1-2: Experimental setup used for transport measurement in the films of QDAs.
Reproduced with permission, courtesy N.Y. Morgan, Ref. [18]
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26



1.2 Theoretical models of transport in disordered

systems

In the previous Section transport measurements on the quantum dot arrays have

been reviewed. We have seen that dot arrays are extremely resistive, with the ohmic

conductivity being inobservably small. Also, in experiments [17, 18] both a non-

universal power law decay in current and memory effects are observed.

Let us consider possible mechanisms of transport in dot arrays and the reasons of

their very large resistance under experimental conditions [17, 18].

We can safely assume that at Nitrogen temperatures, transport in this system

occurs by electron hops between the neighboring dots via quantum mechanical tun-

neling through potential barriers introduced by the capping layers. Energetics of

the system suggests that this hopping is incoherent, and is assisted by some sort of

relaxation mechanism, e.g. phonons.

An inobservably small ohmic conductivity under such conditions can be due to

strong interdot potential barriers, as well as due to a possible phonon bottleneck for

energy relaxation.

The effect of disorder in QDAs can playa significant role. Let us name several

types of disorder that are present in dot arrays. First of all, the triangular lattice

symmetry on the large scale is broken, as it is evident from Fig. 1-2. Second, there

most probably is a strong randomness in the tunneling hopping amplitudes between

the neighboring dots, since the barrier amplitude and thickness enter the tunneling

amplitude in the exponential. Third, an offset charge can also contribute to the

disorder.

Disordered electronic systems are characterized by unusual transport phenomena.

Some of these, such as variable range hopping conductivity [25], are time indepen-

dent, whether or not they involve electron-electron interactions [26]. However, when

the many-body ground state is determined predominantly by electron-electron inter-

actions, such as in the Coulomb glass, relaxation to the ground state can be slow;

memory effects in conductivity have been attributed to this relaxation [27]. Another
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situation in which the time dependence of the state of the sytem leads to time depen-

dent transport is when the charge carriers distribute themselves among localized states

as time progresses. This leads to a power-law time decay of the current after excitation

with a light pulse, for example, and is called dispersive transport [28, 29, 30, 31].

In the present Section I will review standard theoretical models of transport in

disordered systems, namely hopping conductivity (Sec. 1.2.1) and dispersive transport

(Sec. 1.2.2).

1.2.1 Hopping conductivity

Hopping conductivity is a standard transport mechanism in doped semiconductors

[25, 26]. In such systems electron wave functions are localized on donors that are

randomly placed in a bulk semiconductor. Such localized electron states are assumed

to be hydrogen-like. In the case of a small donor concentration, this assumption yields

an exponentially small overlap between states on different impurity sites.

The Coulomb energy dominates ground state properties of a doped semiconductor,

since in the absence of free carriers the Coulomb interaction is unscreened. In the

ground state the configuration of electrons on the donors is determined by minimizing

the sample's Coulomb energy.

Now let us ask, What happens if a small bias is applied across a sample. In

this case, due to interactions with phonons, electrons can incoherently tunnel, or

hop, on the unoccupied impurity sites. By calculating the hopping rates using the

Golden Rule, one arrives at the random resistor network of Miller and Abrahams [32].

According to the latter, a sample can be represented by a set of resistors ~j between

the nodes i, j, ... that correspond to the impurity sites. The resistances between these

nodes are given by

D .. - RO e~ij
.I. LiJ - ij . (1.2)

The pre-exponential factor R?j in Eq. (1.2) is a slowly varying function of the distance
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rij between the donor sites, and

c .. _ 2Tij Eij
~lJ - TO + kT . (1.3)

In Eq. (1.3) TO is the scale on which the wave function of a localized state decays

exponentially, and

(1.4)

Here Ei is the time-averaged electronic level energy of site i in the field of all other

impurities and electrons, and J-L is the chemical potential.

The resistance of the Miller-Abrahams network (1.2) can be estimated in the

following cases .

• High temperature regime: In this case one discards the second term in Eq. (1.3)

and calculates the resistance of the random network of bonds using the percolation

theory (a review of which is given e.g. in Chapter 5 of the book [26]). According to

the latter, the resistance of the strongly inhomogeneous sample is dominated by that

of the infinite cluster penetrating through the sample,

R = Roef.c , (1.5)

where ~c is related to the percolation threshold in a given spatial dimensionality .

• Variable range hopping regime: In this case the temperature T is so low that

typical resistances between neighboring sites can become larger than those between

certain remote sites whose energies happen to lie very close to the Fermi level. Hop-

ping in this limit happens in a narrow band near the Fermi energy, provided that the

density of states v(J-L) -I 0, and, as shown by N.F. Mott in 1968, the sample resistance

has a universal temperature dependence (Mott's Law) [25]:

R(T) rv e(To/T)1/4 .
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Here

(1.7)

• Coulomb gap regime: At yet lower temperatures the Coulomb correlations in

the variable range hopping regime yield a vanishing density of states at a Fermi level

[26], which in three dimensions

(1.8)

and in two dimensions

(1.9)

This, according to Efros and Shklovskii [26], yields the steeper temperature depen-

dence in the exponential:

(1.10)

Here

(1.11 )

where e is the electron charge and c is the dielectric constant of the sample.

In all of the considered cases, hopping conductivity picture corresponds to an

ohmic transport, with a self-averaging resistivity of the sample. Therefore this mech-

anism cannot describe an essentially non-ohmic transport observed in Refs. [17, 18].

1.2.2 Dispersive transport

Dispersive transport has been first observed in photocurrent measurements [33, 34]

in amorphous materials (As2Se3, a-Se and others). In a typical experiment, a film of

an amorphous material is sandwiched between the semi-transparent source and drain

contacts that are held at a constant bias. A short light pulse photoexcites pairs of

charged carriers on one surface of the film, and the source-drain voltage pulls charge

carriers to the other side of the film resulting in a current jc(x, t), where 0 < x < L,
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with L being the film thickness. The resulting photo current

1 (L
I(t) = L io dx jc(x, t) (1.12)

is measured. It has been observed [33, 34] that the current (1.12) in this case decays

as a power law of time,

(1.13)

The dispersive behavior (1.13) is in contrast to the normal (Markoffian) diffusion

picture, in which jc(x, t) is the Gaussian packet of charge density that moves with a

constant velocity. In this case the photo current (1.12) should be constant at t ~ tL

and zero at t ~ tL, where tL is the transit time across the sample. Switching of the

photo current from a constant to a zero value occurs around t = tL on the time scale

that is determined by the variance of the Gaussian packet jc(x, t).

A phenomenological explanation of the transient photo current (1.13) has been

proposed by Scher and Montroll [28] and others [29]. In these works it is assumed

that (i) the diffusion of carriers in amorphous films can be described in the single

particle picture, i.e. carriers do not interact with each other; (ii) such diffusion is

modelled by a continuous time random walk on the one dimensional lattice. The key

assumption of the models [28, 29] is that the time distribution of the hops between

the neighboring sites has a power law tail

a
ljJ(r) rv r1+/L' a < J-L < 1 . (1.14)

The distribution (1.14) is an example of the Levy walk [35]. Continuous time random

walks of the Levy form are thoroughly reviewed in the recent article by Bouchaud

and Georges [36]. Below we show that in the dispersive transport model described

above the current (1.12) has an asymptotic behavior (1.13).

We start from a slightly more general problem, introducing the notation that we

will need later in Chapter 3. Consider a random walker at the origin at time t = a that

makes hops to the right, x -+ x + l, with a probability w, and to the left, x -+ x - l,
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with a probability iiJ = 1 - w. We assume that these hops happen at random times

tn, with the distribution of times between successive hops given by Eq. (1.14). In

this case the probability distribution function P(x, t) of the random walker obeys the

following master equation:

P(x, t) = ldt' <jJ(t- t') {wP(x -I, t') + wP(x + I,t'n + <lx,o [O(t) -l <jJ(t')dt']

(1.15)

Here the first term in Eq. (1.15) governs the probability for a walker to be at a site x

due to incoming hops from the site x -l and outgoing hops to the site x + l, whereas

the second term defines the initial condition, x = 0 during the time interval before

the first hop has been made. Fourier transforming Eq. (1.15) we obtain

P
k

- 'l • 1- lj>(w)
,w - w + iO 1 - 'lj;(k)lj>(w) .

Here

lj>(w) = roo dtcj>(t)eiwt = 1- (-iw)JL ,
Jo AJL

where
J-t

AJL = ar(1 - J-t) ,

and

'lj;(k) = we -ikl + iiJeikl

is the characteristic function for a single hop.

(1.16)

(1.17)

(1.18)

(1.19)

Eq. (1.16) is an expression for the anomalous diffusion propagator. It can be easily

generalized both to the case of a continuous medium and multiple dimensions. Now

let us focus on the specific case considered by Scher and Montroll [28].

In the works [28, 29] it is assumed that at t = 0 all carriers are located at x = 0

(corresponding to photo exciting a layer much thinner than the film's thickness L),

and the hops are unidirectional, w = 1, since the pulling voltage across the sample is

large. In this case

'lj;(k) = e-ikl .
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The probability distribution function P(x, t) given by the inverse Fourier transform

of Pk,w is determined by the pole of the expression (1.16),

k rv wJL • (1.21 )

We are interested in how the position x of an "average carrier" of the packet propa-

gates with time. For that one could use an estimate

(1.22)

that follows from Eq. (1.21). The current (1.12) is proportional to the velocity of the

average carrier [28],

(1.23)

Therefore we obtain the power law (1.13) for the photocurrent with the exponent

(1.24)

In the work [28] it has been also derived that the dispersive transport regime switches

at the transit time t = tL, when the average carrier hits the other end of the film:

(1.25)

In this case the boundary condition at x = L results in a steeper power law,

(1.26)

where

(1.27)

The prediction of the Scher-Montroll model

(1.28)
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has been validated in a variety of amorphous materials [33, 34, 37]. The class of

stochastic processes governed by the propagator (1.16) with the long tail in the hop-

ping distribution (1.14) is called anomalous diffusion.

Let us now discuss the microscopic origin of the power law tail in the distribution

(1.14). Continuous time random walks with power law distributions (1.14) generally

arise when the system's dynamics is determined by a broad distribution of time scales.

In the case of dispersive transport, these are the trap escape times in amorphous solids.

Consider a simple trap model [29, 30], in which the escape time depends on energy

€ via an activation exponential,

(1.29)

In such a system, the density of states of a form

(1.30)

yields the hopping time distribution of the form (1.14) with

b
(1.31)J-l=-{3

and
J.1.VOTO (1.32)a=p.

The latter model appears to be generally valid for amorphous materials, and it has

been used to determine their spectral properties from transport measurements [29, 37].

Finally, let us discuss the dispersive transport mechanism in the context of the

power law current decay (3.1) observed in the CdSe quantum dot arrays [17, 18].

Naively, one could notice a strong analogy between the power law decay of the

photo current in amorphous solids, and current in the QDAs. However, such analogy

is superficial, since the experimental conditions for these two classes of phenomena are

in fact very different. In the photocurrent measurements, the amount of photoexcited

charge is finite. Therefore the current decays with time as the carriers are absorbed by

the drain electrode. In the QDA transport measurement setup used in [17, 18], charge
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carriers (holes) are constantly injected from the source. When such a permanent

supply of carriers is used in conductivity measurements in amorphous solids, the

resultant current in fact grows with time [38, 39] when a constant bias is applied.

This is explained by gradually filling in of the traps and smoothing the trapping

potential for the carriers, effectively reducing the sample "resistance" with time.

To conclude this subsection, we have reviewed the dispersive transport model of

Scher and Montroll and showed that it does not provide a satisfactory explanation

for the transport measurements [17, 18] in the quantum dot arrays.

1.2.3 Disscussion

As we have demonstrated above, conventional transport scenarios in disordered sys-

tems fail to explain the transport measurements reviewed in Sec. 1.1.3. The hopping

conductivity picture yields an ohmic sample resistance, whereas the dispersive trans-

port yields a power law decay in current under very different assumptions.

In the present thesis in Chapter 3 below we propose a novel non-ohmic transport

model [2] that bears a certain similarity to the dispersive transport picture reviewed

above. In particular, our model is also based on the Levy statistics. In contrast

to the Scher-Montroll mechanism, our model does not rely on time-varying sample

properties (such as filling in of the traps in amorphous solids). In Chapter 3 we

show that it is possible that the system can remain truly stationary, but nonetheless

exhibit a transient response. Our model leads to a specific prediction about the noise

spectrum of the system. In Chapter 3 we present measurements on CdSe QDAs that

give results consistent with our predictions.

Meanwhile, in the following Chapter 2 we will focus on the charge ordering in the

ground state of a perfect triangular array of dots.
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Chapter 2

Ground State

... we can see how the whole

becomes not only more than

but very different

from the sum of its parts

P. W. Anderson,

"More is Different"

In the present Chapter we study charge ordering and equilibrium hopping dynamics of

electrons in a nanoparticle array [1]. Our major finding will be a collective behavior

of essentially classical electrons in a large system due to an interplay between the

geometric frustration of the array and Coulomb interactions.

For simplicity, in this Chapter we view the nanocrystal array as a regular two

dimensional triangular lattice, where sites correspond to individual dots, like the

ones shown in Fig. 1-1. The assumption we make by idealizing the lattice is valid at

least locally, since the dot arrays maintain a local orientational order. In general, for

a large enough sample, the long range orientational order is broken. Our assumption

can be justified by noting that due to large tunneling barriers between the dots,

electron hopping dynamics in the real system is dominated by charges hopping onto

the neighboring sites. In this case it is the local coordination (the number of nearest

neighbors) that matters most, and it is preserved in the real system.

Another major assumption that we make through the entire Chapter is that we
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are not allowing multiple occupancy for a lattice site. Since the Coulomb energy of

adding a second electron to the dot is much larger than both the interaction energy

between charges on neighboring dots and the temperature, this assumption is also

justified.

Below we study charge ordering on a triangular lattice by making a connection to

earlier studied frustrated spin problems. A novelty of our system is in its long range

Coulomb interaction between electrons on the dots, in contrast to a typically short

range exchange interaction between spins in spin models. We show that a number of

phases arises due to an interplay between frustration in a triangular array geometry

and the long-range character of the interaction.

In particular, we identify a novel correlated fluid phase that exists in a range of

densities and at not too low temperatures. Ordering in this phase is described in

terms of a height field variable and unbound dislocations that are the topological

defects of the height field.

We demonstrate a relation between the dynamical response (zero bias conductiv-

ity) and ordering in the charged system. At low temperature the system freezes into

a commensurate, or solid phase. We explicitly study this freezing for a set of simplest

densities. We show that at the densities n = 1/3, 2/3 and n = 1/2, freezing occurs

via a first order phase transition.

The outline of the present Chapter is as follows.

In Section 2.1 we introduce the main means of studying ordering and dynamics,

namely the Monte-Carlo model of charges hopping on the neighboring sites of a

triangular lattice. We construct the spin-charge mapping, write the Hamiltonian and

introduce the Boltzmann hopping dynamics for the system, as well as define a zero

bias conductivity.

In Section 2.2 we draw the phase diagram for the system as well as describe its

charge ordering in various phases. To describe charge ordering we introduce the

height field order parameter. It is shown that a description in terms of the height

field is valid when the temperature is of the order of or below the nearest neighbor

interactions. We discuss the topological defects of the height field that are present
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in the system at intermediate temperature. Fluctuations of the height variable are

studied by means of a phenomenological continual model. The effective rigidity of

the height surface is calculated from the stochastic dynamics. Rigidity is found to

be smaller than its upper bound derived from the phenomenological model by means

of scaling arguments. This rules out a possibility of the Berezinskii - Kosterlitz -

Thouless defect binding phase transition in the correlated fluid phase. In this section

we also relate equilibrium height field fluctuations to the charge dynamics. The

corrections to conductivity and compressibility of the charge system are found to be

local everywhere in the correlated fluid phase.

Finally, in Section 2.3 we study freezing into commensurate states at charge den-

sities n = 1/3,2/3 and n = 1/2. We employ both the symmetry arguments and the

stochastic dynamics to determine the order of the freezing phase transitions. For the

type B dynamics the derivative of the transport coefficient with respect to temper-

ature has the same singularity as the heat capacitance, (T - Tc)-a [42]. Hence we

expect the conductivity to behave similarly to the average energy near the freezing

phase transition. Such similarity is discussed in the end of Section 2.3.
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2.1 Monte-Carlo model of charge dynamics

The aim of the present Section is to introduce a hopping dynamics of charges on the

two dimensional triangular lattice. We model the system as a set of classical charges

that incoherently hop on the neighboring sites according to the Boltzmann dynamics.

In Section 2.1.1 we make a connection between the charge problem and a classical

Ising problem with long range antiferromagnetic interactions. We also outline novel

experimental and theoretical issues of the charge ordering problem compared to the

spin problems.

In Section 2.1.2 a model Hamiltonian is introduced for the system of electrons on

the quantum dot array. After that we describe the stochastic dynamics and provide

a mapping between the charge and spin problems.

Charge ordering at different temperatures is studied in Section 2.1.3 using the

dependence of density on temperature at a fixed gate voltage (cooling curves).

Finally, in Section 2.1.4 we consider the zero bias dc conductivity as a function of

temperature and electron density. The calculated conductivity agrees with the classi-

callimit of the fluctuation - dissipation theorem. We use conductivity to characterize

different domains in the phase diagram and to identify transitions between them.

2.1.1 Charge and Spin Problems

Theoretical analysis of the charge problem can benefit from making connection to the

better studied Ising spin problems. In the situation when charging energy enforces

single or zero occupancy of all dots, one can interpret occupied dots as an 'up spin'

and unoccupied dots as a 'down spin.' This provides a mapping between the problem

of charge ordering on a triangular lattice of quantum dots and spin ordering on a

triangular lattice. Since the like charges repel, the corresponding spin interaction is

of an antiferromagnetic kind. The charge density plays a role of a spin density, and

the gate voltage corresponds to external magnetic field, as summarized in Table 2.1.

Besides, one can map the offset charge disorder (random potentials on the dots) onto

the random magnetic field in the spin problem.
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There are, however, both theoretical and experimental aspects of the charge -

spin mapping that make the two problems not entirely equivalent. First, charge

conservation in the problem of electrons hopping on a dot array implies the total

spin conservation in the corresponding spin problem. This leads to an additional

constraint, namely forbidding single spin flips. Microscopically, spin conservation

requires the Kawasaki (or type B) dynamics [40] as opposed to the nonconserving

Glauber (or type A) dynamics [41]. This makes no difference with regard to the

thermodynamic state at equilibrium, since the system with the conserved total spin

is statistically equivalent to the grand canonical ensemble. However, order parameter

conservation manifests itself both in a slower dynamics [42] and in collective transport

properties of the correlated fluid phase discussed below.

Another important difference between the charge and spin problems is the form of

interaction. Majority of spin systems are described in terms of nearest neighbor ex-

change couplings. In particular, the relevant spin problem for us here is the triangular

Ising antiferromagnet (6IAFM), which was exactly solved in zero field [43]. It was

found that there is no ordering phase transition in this case at any finite temperature.

In the charge problem presented here the long range Coulomb interaction makes the

phase diagram more rich. We find phase transitions at finite temperature for certain

charge filling densities.

Let us also summarize novel experimental issues of the charge ordering problem

compared to spin problems:

• Transport measurements in a charge system is a novel means of studying both

equilibrium and nonequilibrium properties. Spin systems are usually studied by

Table 2.1: Charge-spin mapping

Charge model
q=l
q=O

Vij
Vgate
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Spin model
s =t
s =.!-

Jij, AF sign
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means of thermodynamic measurements. In the present Chapter we utilize and nu-

merically confirm the similarity [42] in critical behavior of the conductivity and of

the average energy. In Section 2.3 below we use both dynamic and thermodynamic

quantities to investigate the phase diagram .

• As shown in Chapter 1, the quantum dot array is potentially a more complex

system if one considers a variety of other factors that we have left behind in the

present Chapter, namely randomness in interdot couplings and the offset charge,

time fluctuations of the above leading to the 1/ f noise, effects of the environment,

and so forth.

2.1.2 The model

The Hamiltonian 1iel of the electrons on the quantum dots describes the Coulomb

interaction between charges qi on the dots and coupling to the background disorder

potential cjJ(r) and to the gate potential ~:

(2.1)

The position vectors ri run over a triangular lattice with the lattice constant a, and

rij = ri - rj. The interaction V accounts for screening by the gate:

(2.2)

Here E is the dielectric constant of the substrate, and d/2 is the distance to the gate

plate. The single dot charging energy ~V(O) = e2/20 is assumed to be high enough

to inhibit multiple occupancy, i.e. qi = 0,1.

The exponential factor in (2.2) is introduced for convenience, to control conver-

gence of the sum in (2.1). Below we use ,-1 = 2d. In the case of spatially varying

€ the interactions can be more complicated. If the array of dots is placed over a

semiconductor substrate, one has to replace € by (€ + 1)/2 in the Eq. (2.2).

In a real system electron tunneling occurs mainly between neighboring dots. The
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tunneling is incoherent, i.e. assisted by some energy relaxation mechanism, such as

phonons. Since the tunneling coupling of the dots is weak we focus on charge states

and ignore effects of electron spin, such as exchange, spin ordering, etc.

Our approach in the present Chapter is based on the stochastic Monte-Carlo (MC)

dynamics. The states undergoing the MC dynamics are charge configurations with

qi = 0,1 on a N x N patch of a triangular array. Periodic boundary conditions are

imposed by the Hamiltonian (2.1) using the N x N charge configurations extended

periodically in the entire plane. Periodicity in the MC dynamics is respected by

allowing charges to hop across the boundary, so that the charges disappearing on one

side of the patch reappear on the opposite side.

Charge conservation gives additional constraint, L qi = const. The presence of

such a conservational constraint slows down the dynamics yet it is irrelevant for the

statistical equilibrium properties. Thus when studying ordering we extensively use the

nonconserving A dynamics, where the natural parameter to control is the gate voltage

Vg, whereas the charge conserving B dynamics is used to investigate conductivity at

fixed charge filling density,

(2.3)

The classical Boltzmann (kB = 1) stochastic dynamics is defined differently for

the A and B cases. In the A case, the occupancy of a randomly selected site i is

changed or preserved with the probabilities Wi and Wi respectively:

A: (2.4)

This happens during a single MC "time" step. Here

<I>i = L V(rij)qj + ~ + 1(ri) ,
rrf.ri

(2.5)

and Tel is the temperature in the charge model.

In the B case, we first randomly select the site i. At each MC "time" step, we

attempt to exchange the occupancies qi and qi' of a site i and of a randomly chosen
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site if neighboring to i. Me trials continue until qj =1= qi for a particular j = if. Then

the occupancies of the sites i and j exchange with probability Wi~j, and remain

unchanged with probability Wi~i:

(2.6)

The model (2.1,2.2,2.4,2.6) possesses an electron-hole symmetry. To make it man-

ifest, it is convenient to introduce a "spin" variable (in accord with charge-spin map-

ping described above in Sec. 2.1.1),

Si = 2qi - 1= :f:1 ,

and to replace (2.1) by an equivalent spin Hamiltonian

(2.7)

(2.8)

Eqs. (2.7) and (2.8) map the charge system with charges qi onto the spin system with

long range interactions (2.2). The sign of the coupling (2.2) is positive, which coincides

with the sign of the antiferromagnetic nearest neighbor coupling. To preserve the form

of interaction in (2.8), we rescale the temperature, defining the "spin" temperature

and introduce the chemical potential

T = 4 Tel , (2.9)

(2.10)

representing external field for spins Si. Here Vk the Fourier transform of the interac-

tion (2.2). In terms of spin variables the charge density (2.3) is given by

(2.11)
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In our discussions below, unless explicitly stated, we consider a system without

disorder, cp(r) = O. The distance to the gate which controls the range of the interaction

(2.2) is chosen to be a ::; d/2 ::; Sa, whereas the limit d « a corresponds to the

6IAFM problem [43, 44, 45] with nearest neighbor interaction. The temperature T

is measured in units of the nearest neighbor coupling V(a). To reach an equilibrium

at low temperatures, we take the usual precautions by running the MC dynamics

first at some high temperature, and then gradually decreasing the temperature to the

desired value.

2.1.3 Ordering at fixed gate voltage

Using the type A dynamics algorithm described above, we study T -+ a ordering

at fixed chemical potential J.l. Cooling curves show the temperature dependence of

electron density n(T) for d = 2a (Fig. 2-1), and for the 6IAFM problem realized at

d « a (Fig. 2-2). Due to electron-hole symmetry n f-t 1 - n, it is enough to consider

only the region a ::; n ::;1/2. There is a qualitative similarity between the two plots,

both in the character of cooling curves (slowly varying at large T, followed by a strong

fluctuations region before finally converging to the zero temperature density), and in

the cooling features for the densities n = a and n = 1/3,2/3.

However, the long range interacting case shows some additional features. The most

obvious one is that values of n at T -+ a form an infinite set, n being a continuous

function of~. Contrarily, for the 6IAFM case n(~) discontinuously jumps between

its four allowed values, n(T -+ 0) = {a, 1/3, 2/3, I}. The latter correspond to the

incompressible states (plateaus in n(~)).

Features that are typical in the long range case and are absent in the 6IAFM

also include ordering at other simple fractions, such as n = 1/2, which is an at-

tractor for the family of curves at small J.l (curves are shown for the values of

J.l = 0.05, 0.1, 0.2, 0.3). Ordering into n = 1/2 incompressible phase is weaker

than into n = 1/3 and n = 2/3, since it is controlled by the next-to-nearest neighbor

interactions. Ordering at simple fraction phases like n = 1/4, though not pronounced

in cooling curves, manifests itself in the conductivity features discussed below. All
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such orderings correspond to certain types of freezing phase transitions which we

study in Section 2.3 for the cases of n = 1/3, 2/3, and n = 1/2. We also notice

that in the system with long-range interactions freezing occurs into a number of in-

termediate densities, and in general depends on the cooling history, especially near

incompressible densities.
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Figure 2-1: Cooling curves for d = 2a. Due to the electron - hole symmetry, only
the density domain 0 ~ n ~ 1/2 is shown. The values of J-l are given to the right of
the curves. Not shown are values of J-l = 0.1,0.2,0.3 for the curves converging to the
density n = 1/2
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2.1.4 Conductivity

We focus on the conductivity of the charge system because of the two reasons. First,

this quantity is experimentally accessible in the dot arrays [16, 17]. As we have

mentioned in Chapter 1, currently dot arrays are extremely resistive and the zero bias

conductivity is unmeasurably large. One could expect, however, to have novel dot

coatings that could reduce interdot tunneling barriers and make the conductivity at

low bias possible to measure. Secondly, as we shall see below, zero bias dc conductivity

as a function of density and temperature distinguishes between different phases of the

system.

In the present Chapter we consider electron hopping conductivity in presence of

a small external electric field. Electron hops in a real system are realized by inelastic

tunneling assisted by some energy relaxation mechanism, such as phonons. The latter

adds a (non-universal) power law temperature dependence to the total conductivity

atotal = a(T) TO . (2.12)

In this Chapter we assume for simplicity that the energy relaxation mechanism is

such that a = O. A generalization of this model to arbitrary a presents no problem.

The conductivity temperature dependence a(T) for several densities is shown in

Fig. 2-3. The MC simulation is made on a 18 x 18 patch using the conserving dynamics

(type B). The external electric field E is applied along the patch side. The field

is chosen to be large enough to induce current exceeding the equilibrium current

fluctuations, and yet sufficiently small to ensure the linear response

j = aE . (2.13)

The linearity holds if the external field is much smaller than both temperature and

the next-to-nearest neighbor interaction strength. In our numerics we use the field
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values E such that

Ea rv (1 - 5) . 10-2 V(a) ~ min{V( V3a), T} . (2.14)

The conductivity a is obtained from (2.13). During stochastic dynamics of type

B described in subsection 2.1.2, the potential difference between the adjacent sites is

calculated as

(2.15)

Here the charge carried during a single hop is Sj - Si = 8s = :1:2 since electrons and

holes in our model carry the "charges" Si = :I:1, and a is a vector along the direction

of the hop, lal = a. In the present Chapter we employ the field E along the height

of the elementary lattice triangle, so that lEal = Ea cos ~. The current density is

calculated as

(2.16)

where N-J:. is the number of hops along (against) the direction of E, and N is the total

number of MC trials at each temperature step.

As seen from Fig. 2-3, there are three temperature regions for the conductivity a.

These regions correspond to different phases of the system that are described in the

following Section and depicted there in Fig. 2-6.

The high temperature disordered phase conducts via spatially and timely uncor-

related hops of individual electrons. Conductivity in this phase can be evaluated

analytically, see Eq. (2.18) below.

At T -+ 0 the system freezes into its ground state configuration, and the conduc-

tivity vanishes (solid phase). Both the ground state configuration and the freezing

temperature Tn depend on the density n. Near rational n the ground state is commen-

surate. At temperatures below freezing, T < Tn, conductivity is zero. The behavior

of a(T) near freezing temperature is singular (Fig. 2-3). Singularities near rational

n are also present in the conductivity dependence on the density, a(n). They are

indicated by arrows in Fig. 2-4.
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Finally, for any density 1/3 ::; n ::;2/3 there is an intermediate temperature

region, where the conductivity is finite and has a collective character (correlated fluid

phase). Below in Section 2.2 we study the correlated fluid properties using the height

field order parameter approach.

An independent consistency check for the validity of our Me dynamics can be

provided by the fluctuation-dissipation theorem. This theorem [46] relates current

fluctuations with conductivity:

(2.17)

We find that our simulations are in accord with (2.17) in all temperature regions.

In the correlated phase we explicitly evaluate the integral in the right hand side of

(2.17) by numerically averaging in T and t the product jp.(t + r)jv(t), and compare

the result with the conductivity obtained directly from Eqs. (2.13,2.16) to make sure

that the system is indeed at equilibrium.

At large temperature T ~ V(a), one can evaluate the left hand side of (2.17)

explicitly and find the universal high temperature asymptotic behavior of the con-

ductivity,
2n(1-n)

a=a ---.
T (2.18)

To obtain (2.18) we note that for a high enough temperature the current is delta-

correlated in time,

The amplitude

(P) = ~.2n(l - n) . (OS)2 . (acos ~D2 • W

(2.19)

(2.20)

does not depend on temperature since the hops are equally probable, Wi~j = Wi~i =
W = 1/2 at T » V(a). Since the field E is aligned along the height of the elementary

lattice triangle, only four out of possible six bond directions contribute to conduc-

tivity. Each bond is selected with a probability 2n(1 - n) of choosing the electron

and the adjacent hole. The conductivity tensor is isotropic, ap.v = a 8p.v. One can
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explicitly check this by doing a similar high temperature calculation with the field E

along any other direction. Fig. 2-3 shows that the results of our Me dynamics are

consistent with the universal conductivity behavior (2.18), where we set a = 1.

The change in conductivity character while cooling down from the disordered

into the correlated and solid phases can also be seen in Fig. 2-4. Here we plot

the product a . T as a function of the electron density n for several temperatures.

We show the results only for the interval a ~ n ~ 1/2 utilizing the electron-hole

symmetry. The screening length was taken to be d = 2a. The high temperature curve

is clearly consistent with the n(l-n) dependence (2.18). The low temperature curves

show that conductivity vanishes at a number of densities that are simple fractions

(n = 1/4,1/3,1/2). This indicates freezing of the system into a commensurate state

at these values of n. The commensurate state at n = 1/3 is shown in Fig. 2-5 (A).

Below in Section 2.3 we consider the freezing phase transitions at n = 1/3, 2/3 and

n = 1/2.

At densities near these simple fractions, the system conducts via hops of excess

electrons or holes moving in the frozen crystalline background. Such a situation is

shown in Fig. 2-5 (B), for the case of n = 1/3+£. Since the conductivity is proportional

to the excess charge density, a(n) in Fig. 2-4 has cusps near incompressible densities

(simple fractions n = 1/4, 1/3, 1/2).
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Figure 2-3: Temperature dependence of the zero bias dc conductivity a(T). Shown
are the curves a/n(l- n) for n = 1/3, n = 1/2, and for a typical intermediate density
(taken here n = 3/7), calculated for the N = 18 patch with the screening length
d = 2a. Dashed line indicates the asymptotic large temperature behavior (2.18).
Dotted line corresponding to N = 12 patch for the density n = 1/2 shows that finite
size effects are negligible. The correlated conductivity part for n = 1/2 (lower curve),
for which the hops that create dislocation pairs are forbidden (Section 2.2), is a small
fraction of the total conductivity at large T, and becomes important at T rv V( V3a).
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temperature limit n(l - n), Eq. (2.18).
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Figure 2-5: A: Commensurate charge configuration at n = 1/3. Electrons are shown
as circles on the sites of the triangular array. Pairing of the triangles is revealed by
erasing all frustrated bonds connecting sites with equal occupancy (see Sec. 2.2.1 for
explanation). B: Typical Monte Carlo charge configuration for n = 1/3+€. There are
three excess charges in the system (€ = 3/144) hopping over the honeycomb network
of unoccupied sites in the commensurate J3 x J3 state. The excess carriers, dilute
at € « 1, are moving nearly independently on the background of the frozen J3 x J3
state. C: Typical charge configuration obtained in a Monte Carlo simulation for the
filling fraction n = 1/2 in the correlated fluid phase. Two elementary cubic cells
corresponding to a free charge are shown in bold. D: Typical charge configuration
for the filling fraction n = 1/2. In this case, the temperature is higher and there
are several topological defects ("triangles") present in the system. Following a loop
around oppositely directed dislocations gives zero Burgers vector.

55



2.2 Phase Diagram

In the present Section we discuss the central result of this Chapter, namely the

system's phase diagram (Fig. 2-6). This Figure shows the phase diagram of the

system in the J-l, T plane. Due to the particle-hole equivalence it is symmetric with

respect to J-l +-+ -J-l. For a generic value of the chemical potential we find three distinct

temperature phases: the disordered state at high temperature, the correlated fluid

phase at intermediate temperatures, and the commensurate (solid) phases at low T.

In Fig. 2-6 we show only the most pronounced solid phase regions, corresponding to

principal fractions n = 1/3, 2/3, and n = 1/2. As T -+ 0 we expect in Fig. 2-6

tiny domains of incompressible phases for any electron density n given by a simple

fraction.

Phase diagram of the system is studied by means of a useful geometric construction

that is called the height field. It is introduced in Sec. 2.2.1 below.

After outlining the parameter range (called correlated fluid) where the height field

description is adequate, we study equilibrum properties and dynamics of the height

variable in the rest of the present Section. In particular, we employ scaling arguments

confirmed by the Monte-Carlo calculations to prove that unbound topological defects

are always present in the correlated phase.

2.2.1 The height variable

To describe various ordering types we employ the height field order parameter origi-

nally introduced in the context of the 6IAFM problem [44, 45]. The ground state of

the 6IAFM model (i.e. the model (2.1, 2.2) with the nearest neighbor interactions

d «:: a), can be obtained by minimizing energy on each elementary triangular lattice

plaquette. Given only two kinds of charges, it is impossible to avoid the frustrated

bonds between the like charges. In any optimal configuration of charges the number

of frustrated bonds has to be as small as possible. This is achieved by pairing the

elementary triangles in such a way that they share frustrated bonds, as illustrated

in Fig. 2-7. Erasing all such bonds from the picture one obtains a covering of the
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range d (drawn not to scale)
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Figure 2-7: Covering of a frustrated lattice by diamonds for a spin problem. A
triangular lattice is frustrated since each elementary triangle has at least one bond
that connects like spins. In the ground state triangles share frustrated bonds. Erasing
these bonds from the picture, we obtain a covering of a 2D plane by diamonds

2D lattice by diamonds [44, 45], as shown in Fig. 2-5 (A - C). One can view such a

covering as a projection along the (111) axis of a 2D surface in a cubic crystal. After

this procedure each site ri of the 2D lattice acquires the scalar number h(ri), which

is the height of the auxiliary surface in a 3D cubic crystal. The field values hare

multiples of the distance between the cubic crystal planes

(2.21 )

Here f is the main diagonal of the unit cell in the cubic crystal. The mapping of the

charged 2D system onto the height surface can only be realized if

(2.22)

with charge density n defined in Eq. (2.3), since for other densities the covering of the

triangular lattice by diamonds described above does not exist. We are considering

only the density range (2.22) in the present Chapter.

The height field h is defined globally and uniquely (modulo an overall sign) for

any of the degenerate ground states of the 6IAFM model. For T > 0, however, the

height is defined only locally due to the presence of screw dislocations. Positions of
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the dislocations are seen as large triangles in Fig. 2-5 (D). After going around any

single triangle, one obtains a mismatch [47] in h equal to

b~ = 2£ = 6b , (2.23)

which defines the Burgers vector of the dislocation. The dislocations of the height

field are topological defects. They originate and disappear only in pairs.

Electron hopping dynamics can change the total number of dislocations. Each

pair of triangles costs an energy of two frustrated bonds. Therefore at sufficiently low

temperatures the probability of creating a pair of dislocations in the MC dynamics

is exponentially suppressed. One can also expect that, even if the interaction is not

of the nearest neighbor kind, the qualitative picture remains similar: the probability

of creating a dislocation pair is exponentially small in V (a) IT. Electron hops that

do not produce or destroy dislocations cost no energy in the ~IAFM model. In the

problem with a long range interaction such hops generally cost finite energy which is

determined by the strength of the next-nearest neighbor interaction.

Let us return to the phase diagram in Fig. 2-6. At T ~ V(a) the height field

does not exist due to the abundance of topological defects. In this high temperature

state hopping of different electrons is completely uncorrelated. This regime is marked

disordered phase in Fig. 2-6.

As the temperature lowers, the fugacity of a single defect scales as e-V(a)/T, and the

number of defects becomes exponentially small. In this case the height field is defined

locally in the entire plane apart from rare defects. The conductivity is primarily due

to "free charges" that hop without creating defect pairs. Hops of the free charges

correspond to adding or removing two elementary cubic cells of the fictitious 3D

crystal surface, as shown in Fig. 2-5 (C).

It is important that for electron densities 1/3 ::; n ::;2/3 considered here, there

is a temperature interval in which the height order parameter is well defined, and

simultaneously the fraction nf of free charges is large. During MC simulations we

accumulate a histogram for nf and find that this is a nonconserved quantity with a
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broad Gaussian distribution. The mean nj is of the order of 10 - 50% of the total

electron density n for temperatures V( J3a) «: T «: V(a).

Conservational constraints and a rough potential landscape yield a sophisticated

dynamics for electrons at intermediate temperatures. However, the Ohmic conduc-

tivity remains finite (Fig. 2-3) since it is the free charges that provide the means for

conductivity in the correlated phase. For the free charges the height field fluctua-

tions provide an effective nonconserving (type A) dynamics (correlated fluid phase in

Fig. 2-6).

To study a role of disorder on the dynamics is a challenging problem. For a rel-

atively small disorder we find that the qualitative features of the dynamics do not

change. We considered the zero bias dc conductivity in presence of the random po-

tentials on sites, 4J(ri) in the Hamiltonian (2.8). The random potentials distributed

homogeneously in the interval -4Jo ~ 4J(ri) ~ 4Jo, with 4Jo rv V( J3a) yield con-

ductivity fluctuations that are larger than those in the clean system. However, the

qualitative features of the conductivity temperature dependence are the same. In

particular, the zero bias conductivity remains finite in the correlated fluid phase in

the presence of disorder. We attribute the robustness of conductivity against the

small random potential variations to the nonconserving dynamics of free charges.

The correlated nature of transport in the fluid phase can be revealed by modifying

the MC dynamics to inhibit the MC moves that create new dislocation pairs. Altering

the dynamics in such a way drastically changes the conductivity, as shown in Fig. 2-

3. Now even at high temperature the dislocations are absent, since creating the new

ones is explicitly forbidden. The height variable is then globally defined. In this case

the only conductivity mechanism is the correlated motion of free charges. At high

temperature such "correlated conductivity" is a tiny fraction of the total conductivity.

However, at small T the relative contribution of the correlated conductivity increases.

At T rv V( J3a) nearly all the conductivity in the real system is due to the correlated

hops of the free charges. This is manifest in Fig. 2-3, where at high temperature

the "correlated conductivity" curve for n == 1/2 is much lower than the regular

conductivity for this density, and at T rv V( J3a) these curves coincide.
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At lower temperature the correlated fluid freezes into the T = 0 ground state.

The equilibrium charge ordering can be mapped [44, 45] onto the classical roughening

transition [48]. Such transition in principle can be either of a finite order or continuous

[49, 50, 51].

We study the charge system at equilibrium and discuss the corresponding freezing

scenario in Section 2.3. In the present Section we consider equilibrium properties and

dynamics of the correlated fluid phase.

2.2.2 Gaussian Fluctuations and the Rigidity

As it has been shown by Blate and coworkers [44, 45], the height field fluctuations for

the b.IAFM model at T ~ 0 can be described by the Gaussian partition function

(2.24)

The quantity", is a stiffness, or rigidity of the height surface, which has been found

[45] from the exact solution of the b.IAFM model [52] to be

7r
K,b.IAFM = 9b2 • (2.25)

Below we adopt a usual convention to incorporate temperature into the effective

rigidity and other parameters. Therefore temperature does not explicitly appear in

the statistical sum, Eq. (2.24). The height surface fluctuations at equilibrium were

studied numerically [53, 54] in the case of the nearest neighbor interactions, confirming

the result (2.25) for the b.IAFM .

One expects that in the case of a long range interaction (2.2) and not too low tem-

perature, qualitative features of the height surface fluctuations would remain similar

to those of the b.IAFM case. Below we phenomenologically describe the correlated

fluid phase by the partition function (2.24) with the effective rigidity K, which is a

function of the density and temperature. As the temperature decreases, other terms

in the in the effective free energy can become relevant. This issue is addressed in

61



subsections 2.2.3 and 2.2.4.

We numerically observe that the height field fluctuations in the correlated phase

are Gaussian for a generic form of interaction, Eq. (2.2). To study height fluctuations

and rigidity we employ an algorithm (see below) to assign height values h(ri) to all

points of a two dimensional lattice.

Assigning the height to each lattice point is a well defined procedure at T = o. At

finite temperature, the height is defined only locally due to the presence of disloca-

tions. As we will see below, the dislocations are always present in the correlated phase,

since there is no dislocation binding phase transition. Therefore, strictly speaking,

the height field (and hence its effective rigidity) can be globally defined only at T = o.
This difficulty can be circumvented since in the correlated phase the number of dis-

locations is exponentially small. We expect that by defining the height locally with

a small number of dislocations present we do not obtain large errors while measuring

the rigidity ~.

Without dislocations any algorithm that assigns height to lattice sites gives the

same height field values (modulo constant and overall sign). In the presence of dislo-

cations one can only define the height field locally, by moving from one site to another.

Different prescriptions can in principle lead to different height definitions for some

fraction of the sites. Below we describe a particular algorithm of assigning the height

field values to the 2D lattice sites used in the present Chapter.

To calculate the height h(rm) for every point rm = (xm, Ym) of the 2D triangular

array we first assign the auxiliary 3D coordinates

R(rm) = L Rs(rm) es
s

(2.26)

to each rm. Here the unit vectors es, s = 1,2,3, are the basis vectors of the auxiliary

3D cubic lattice.

We work with an N x N rhombic patch of the 2D triangular array, using the

coordinate system aligned with the array. The sites are labeled by integer coordinates

(i,j), i,j = 0, ... , N - 1. We place the origin in the upper left corner of the patch.
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The first component, i, is the site number counted along the horizontal axis (upper

edge of the patch). Numbers i increase as we go from left to right. The second

component, j, is the site number along the axis which makes the angle 1r/3 with

the first one. Numbers j increase as we go from the origin down and to the right,

with j = N - 1 defining the lower edge of the patch. The conventional Cartesian

coordinates rm = (xm, Ym) of the site (im, jm) are given by

.. a
Xm = 2m a +Jm 2" ' .V3

Ym = -JmaT . (2.27)

To obtain the 3D coordinates for a particular charge configuration, we start from

the upper row (j = 0) and move along the rows from left to right. The 3D coordinates

R(im" jm') are assigned to the sites {rm,} connected with the current one (im, jm)

by the following rules. Define R(i = 0, j = 0) = o. Then, a bond (i,j) - (i + 1,j)

yields c5+R1(i + 1,j), a bond (i,j) - (i,j + 1) yields c5_R2(i,j + 1), and a bond

(i,j) - (i - 1,j + 1) yields c5+R3(i - 1,j + 1). Here c5:i: means increase (decrease) of

the corresponding component of R with respect to its value at (i, j) by the amount b

given in Eq. (2.21).

Once the positions R(rm) in the auxiliary cubic crystal are defined, the height at

each site r m is obtained as
3

h(rm) = L Rs(rm) .
s=1

(2.28)

In order to study fluctuations of the height surface in the correlated fluid phase

at fixed temperature, we accumulate the histograms P[h(rd] of height values for a

number of points {ri} in the N x N patch. Were the distribution P[h(ri)] Gaussian,

the dependence logP[h(ri)] versus h(ri)lh(ri) I would have been piecewise linear and

symmetric. By plotting logP[h(ri)] versus h(ri) Ih(ri) I we confirm that the fluctua-

tions of the height variable in the correlated fluid phase are Gaussian when the fluid

is far from freezing.

As the temperature approaches V(V3a), dependence logP[h(ri)] versus h(ri)lh(ri)1

deviates from symmetric piecewise linear, which indicates that non quadratic terms

in the free energy of the system become relevant. Such terms can yield a freezing
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transition of a finite order (Section 2.3). In the present Section we consider another

kind of a phase transition in the correlated fluid, namely that of topological defects

binding [49]. Such a phase transition between the disordered and correlated fluid

state would realize the 2D melting scenario proposed in [50]. It will become clear

below that this scenario does not take place in the present model, as indicated by a

crossover line in the phase diagram, Fig. 2-6.

2.2.3 Phenomenological Free Energy

In the correlated state, electrons on the sites of the array are described in terms of the

height variable h(r) and charge density n(r). Microscopically the state of the system

is defined uniquely by specifying either the height variable or the charge density.

However, as we will see below, at large length scales height field and density decouple

in the correlated fluid phase. Therefore we describe the system by a partition function

of the form

Here the free energy

Zcorr = f1)h(r)Vn(r) e-.r[h, n] .

F[h, n] = Fh + Fn + .1int

(2.29)

(2.30)

is a sum of the contributions of the height field, charge density, and the term .1int
describing their interaction. The temperature T is incorporated into F in accord to

our convention.

We write the phenomenological free energy Fh associated with the height field in

the following form:

(2.31)

Here the first term describes the Gaussian dynamics of the height surface with K

being its rigidity. The second term assigns higher statistical weight to the field con-

figurations that pass through the points of the 3D cubic lattice. The period b in

height is given by Eq. (2.21). The last term in (2.31) describes the coupling to the
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gate voltage. Since positive and negative charges occupy two different sublattices of

the 3D lattice, the gate voltage term has a period of 2b [55]. One can conjecture

already at this point that the coupling f becomes more relevant than 9 as the system

is driven into its low temperature solid phase. We will see below that this is indeed

the case, and that the second term in (2.31) being less relevant does not significantly

affect the dynamic and thermodynamic properties of the system.

Consider now the charge density nr. Electrons interact with each other and with

an external electrostatic potential q>ext(r), which gives

(2.32)

Here we use the interaction Ur-r, of the form (2.2).

Finally, we need to account for the interaction between the height variable and

the density. Such interaction distinguishes between positive and negative charges

and therefore should be periodic in 2b for the same reason as for the last term in

Eq. (2.31). Phenomenologically we write the interaction part J1nt as

I 2 7rhrJ1nt = A d r nr cos -b- (2.33)

with A being an appropriate coupling. Below we perform a scaling analysis of the

problem (2.30) at one loop.

2.2.4 Renormalization and Scaling

The nonlinear terms in Eqs. (2.31, 2.33) acquire nontrivial scaling dimensions due to

the fluctuations of the height surface. At one loop, from the standard renormaliza-

tion group procedure for the sine-Gordon model [56], the scaling dimensions of the

couplings f, A and 9 are correspondingly

(2.34)

(2.35)
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where we define
* _ 7r

K, = 8b2 • (2.36)

Comparing the above scaling dimensions with the scaling of the gradient term, we

obtain that the gate voltage interaction becomes relevant when Xf < 2, or

*K, > K,f = K, •

The g-term becomes relevant at a larger rigidity:

(2.37)

(2.38)

The coupling ,.\ between the density and height fields is relevant when the scaling

dimension of the gradient term is larger than the sum of scaling dimensions of ,.\ and

n. The field n is not renormalized since its free energy is quadratic. From (2.32), the

scaling dimension Xn = 3/2. Hence the height-density interaction is relevant when

(2.39)

The nonlinear terms in (2.31) do not renormalize the rigidity K, at one loop. How-

ever, rigidity may obtain a one loop correction ~K, due to the interaction with the

density, Eq. (2.33). Below we consider such a possibility.

Since the free energy Fn is Gaussian, we integrate out the field nr in (2.29) and

obtain an effective free energy for the height field:

- ,.\2 ( 7rh) 1 ( 7rh)Fh = Fh - - Leos - - cos -
2 k b -k Uk b k

Consider the case of the screened Coulomb interaction of the form (2.2),
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At length scales larger than the screening length, kd « 1,

1 1
- ~ - (A+Bk)
Uk 21r

(2.42)

with A = l/d, B = 1/2. For the unscreened Coulomb interaction, (Uk)-l has the

same form (2.42) with A = 0, B = 1. The local term A/21r corrects the coupling

constant g and does not contribute to the rigidity. The correction to rigidity 81'\,

arises from the nonlocal part of (2.40) with Uk1 ~ Bk/21r. Expanding cos 1rh/b =
(ei7rhjb + e-i7rhjb) /2, we note that the terms (ei7rhjb)_k( ei7rhjb)k + c.c. have a larger

scaling dimension than the cross terms, (e-i7rhjb)_k(ei7rhjb)k + c.c .. Neglecting the

former and expanding the latter, we arrive at the following rigidity correction:

(2.43)

where we introduced a new dimensionless coupling

(2.44)

Note that the screening length d does not contribute to the rigidity correction. Screen-

ing of the Coulomb potential by the gate only changes the coefficient B in (2.44). The

coupling J is renormalized via integrating out the fluctuations of the height field hk

at the scale l/lr < k < 1/10:

(2.45)

Eq. (2.45) yields a natural result: The rigidity correction (2.43) due to the height-

density interaction is relevant when the condition (2.39) holds, i.e. when the interac-

tion term .riot is relevant.

As we have described in subsection 2.2.2, in the correlated phase far from freezing

the fluctuations are Gaussian. This means that all the nonlinear terms considered

above are irrelevant, and the rigidity I'\, is smaller than any of the fixed point rigidities
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found above:

(2.46)

As the temperature lowers, the height surface becomes more rigid. The system could

freeze into the smooth phase due to the last term in (2.31) when"" approaches ""I from

below [55]. Such a transition would be of an infinite order, i.e. with no singularities

in any finite order derivative of the free energy. During the MC dynamics we observe

the first order freezing phase transitions into incompressible states with n = 1/2 and

n = 1/3, 2/3 (Section 2.3). Hence the rigidity in the correlated fluid phase is always

less than ""I, and jumps to the infinitely large value at the freezing transition.

The density and height fields effectively decouple, since the condition (2.46) yields

that the coupling A never becomes relevant in the correlated phase. This justifies our

phenomenological approach of writing the free energy as a sum of the height and

density contributions in Eq. (2.30).

With the MC code at hand, we check that "" < ""I in the correlated fluid. To

calculate the rigidity we fit the height correlation function ((h(r) - h(O))2) to the one

that follows from (2.24):

( () ()) 2) 1 Irij I(hri -hrj =-In--,
7r"" TO

(2.47)

where TO is of the order of a lattice spacing. We tested our procedure by calculating the

rigidity for the purely nearest neighbor interacting system (d « a) at n = 1/2. The

MC dynamics gives the value ""~IAFM (Eq. (2.25)) within several per cent accuracy.

When the interaction is beyond the nearest neighbor, the calculated rigidity is always

smaller than ""I. In particular, when we turn on the long range interaction, the

rigidity steeply drops from ""~IAFM to a value several times smaller, consistently with

The absence of the phase transition between the correlated fluid and the high

temperature disordered phase can be now explained using (2.46). Our argument is

similar to the one given in Ref. [55]. The dislocation pairs unbinding [49] as a possible
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2D melting scenario [50] imposes a lower bound [55, 57] on the correlated fluid rigidity,

87r 27r
~KT = bi = 9b2 '

(2.48)

with the Burgers vector bb,. of the dislocation given in (2.23). Since", < "'I < ~KT, the

bound (2.48) is never reached. The dislocation pairs are present at any temperature

in the correlated fluid phase with the exponentially small probability rv e-2V(a)/T.

During the Me dynamics we often observe no dislocations at low temperature due to

the finite system size.

Similar considerations also explain why the negative correction to the rigidity

given by (2.43) is not important. The fixed point "'>. beyond which the rigidity could

flow to smaller values is never reached in the correlated fluid phase.

2.2.5 Dynamics

Above we showed that at equilibrium the coupling of the height and density fields

is irrelevant. Below we discuss how the interplay between the hand n fields affects

the system's dynamical properties. We obtain corrections to the conductivity and

compressibility due to the height field fluctuations using the Langevin dynamics.

The type A Langevin dynamics for the height field is defined by

8:F
8th(r, t) = -'TJ 8h + ~r,t ,

where ~ is the stochastic force,

(~r,t~r',t') = (~2) 8(t - t') 8(r - r') .

Its amplitude obeys the Einstein relationship

(2.49)

(2.50)

(2.51 )

The type B Langevin dynamics for the charge density n is defined using the continuity
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equation

where the current j has a stochastic part jL:

- ~ of -L
J = -a v r On +J ,

(j{;(r, t)j~(r', t')) = ((jL)2) oJjvo(t - t') o(r - r') .

(2.52)

(2.53)

(2.54)

The conductivity a is related to the stochastic current amplitude by the Nyquist

formula

Eqs. (2.49, 2.53) and (2.31, 2.32, 2.33) yield

(
2 21rg. 21rh 1rA . 1rh) ( )8th(r, t) = 'TJ K\7 h + -b- SIn -b- +b n SIn b +~ r, t ,

(2.55)

(2.56)

(2.57)

where we write the stochastic contribution to the current due to the height field

fluctuations in the form
-h( ) 1rhrJ r, t = - Aa \7r cos -b- . (2.58)

The height field fluctuations provide an additional contribution oah to the con-

ductivity, which is determined by the classical limit of the fluctuation-dissipation

theorem:

(2.59)

The contribution to the conductivity that arises from the height field fluctuations is

purely longitudinal:

(2.60)

Here a1(w, k) is the longitudinal part of the total conductivity a, and F(w, k) is a
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Fourier transform of the correlator

(
1fhr,t 1fhO,o) 1 {1f2 / 2) }F(r, t) = cos -b- cos -b- 0 = 2 exp - 2b2 \ (hr,t - ho,o) 0 (2.61 )

Averaging in (2.61) is done with respect to the noninteracting system, A = g = 0 in

Eq. (2.56). The height field correlator in this case reads

/(h - h )2) = ~ (c;2) 11 _ eikr-iwtl2
\ r,t 0,0 0 ~ ( k2)2 + 2

k,w 1]K, W

= _T (l/dk _1_-_e_-_1J_Kk_21_tl_Jo_(_kr_) .
1fK, Jo k

Since at small It I and k2

for the correlator (2.62) we have

/ 2) T ( r
2

1]K,ltl)\ (hr,t - ho,o) 0 = 21fK In 4a2 +7 .

Therefore Eq. (2.61) yields

(2.62)

(2.63)

(2.64)

(2.65)

Since K, < K,* in the correlated phase, the time correlations of the current jh (r, t) have

short memory and are local, i.e. one can approximate its correlator as (j~(r, t) ji(O, 0)) rv

c5JLvc5(t) c5(r). Hence one may treat jh(r, t) as a Johnson - Nyquist noise, and the ap-

plication of Eq. (2.59) is justified.

A correction to compressibility v can be obtained directly from the statistical

averaging with respect to the canonical distribution. Given that

(<I>-k ih) = K, with <I> = ~: '
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the correction to the density-density interaction can be obtained from (2.33),

2! 2 Ok / 1rhr 1rho )8Vk = A d r e-z r \ cos -b- cos -b- 0 .

The latter correlator is given by Eq. (2.65) with t = o. If

(2.67)

(2.68)

the correlator in (2.67) is local, i.e. it can be approximated by the 2D delta func-

tion. Since (2.68) always holds in the correlated phase, Eq. (2.67) yields a finite

compressibility

2.2.6 Conclusions

1v---
- 8Vk=o . (2.69)

In the present Section we have outlined a phase diagram of the sysem, shown in

Fig. 2-6. We considered in detail the charge system at intermediate temperatures

T rv V (a). The correlated nature of charge dynamics allowed us to map the charge

ordering problem on a triangular lattice onto the statistical mechanics of the height

surface with nonlinear interactions. We have identified the correlated fluid phase of

the charge ordering problem (Fig. 2-6) that corresponds to an almost freely fluctuating

height surface. We have found the upper bound '"f for the effective rigidity in the

correlated phase. The value", f rules out the possibility for the Berezinskii - Kosterlitz

- Thouless phase transition for the dislocations pairs binding. Contributions to the

conductivity and compressibility of the charged system due to the correlated nature

of charge dynamics appear to be local everywhere in the correlated fluid phase.

In the next Section we study freezing of the correlated fluid into the T = 0

commensurate states.
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2.3 Freezing Phase Transitions

In the present Section we consider charge ordering of the system into the T = 0 ground

state. We have already seen in Sec. 2.1.3 that ground state ordering is different for

the systems with short range ("Ising") and long range interactions.

Indeed, an Ising system has only a finite set of commensurate ground state config-

urations, as outlined in Sec. 2.1.3. When such a system is gradually cooled down at

a fixed chemical potential, its density n approaches either 0 or 1/3 (or their particle-

hole symmetric counterparts 1 or 2/3). These densities are attractors for the cooling

curves shown in Fig. 2-2. In this case the only nontrivial ground state is a commen-

surate V3 x V3 lattice shown in Fig. 2-5 (A), corresponding to the density n = 1/3

(or n = 2/3 via particle-hole symmetry).

The case of a charge system ineracting via a long range potential V (r) (as in

Eq. (2.2)) is less trivial. Indeed, cooling at a fixed chemical potential J-L leads to the

freezing into a particular ground state depending on the value of J-L, as shown in Fig. 2-

1. For a generic value of chemical potential a finite system freezes into a glassy, or

disordered ground state. In principle, an infinite system with an ideally regular lattice

should find its true ground state which is a commensurate charge configuration. In

reality only configurations with simplest rational densities, such as n = 1/2 or 1/3

are pronounced. This is illustrated in the phase diagram in Fig. 2-6.

Below we shall focus on the system with a long range interaction (2.2) in the

density range 1/3 ~ n ~ 2/3. We will study freezing of the correlated fluid present

at 1/3 ~ n ~ 2/3 into a commensurate, or solid phase. We will consider freezing into

the two most pronounced commensurate states: at n = 1/3, 2/3, and at n = 1/2.

First, we use the symmetry considerations based on the Landau theory [46] to

argue that both phase transitions at n = 1/2 and at n = 1/3, 2/3 are of the first

order. After that we calculate the equilibrium energy distribution of the system in the

vicinity of the transitions using the Me dynamics. The singularities in the moments

of the energy distribution are used to characterize the freezing phase transitions. We

also compare the critical behavior of the conductivity and of the average energy near
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the freezing point.

Ground state ordering at 1/3 ::; n ::; 2/3 can be characterized by a tilt t of the

height surface. The 3D cubic crystal surface in Fig. 2-5 (A - C) is represented by the

three kinds of diamonds (paired elementary triangles). Each diamond is normal to

one of the unit basis vectors {es, s = 1,2, 3} of the 3D crystal. We define the normal

vector to the height surface,

3

m = A-I L rses, A = rl + r2 + r3 ,
s=I

(2.70)

where rs is the number of diamonds normal to the vector es. The tilt t of the height

surface is a projection of the vector m onto the 2D array,

(2.71 )

The average in (2.70) is performed locally over a domain with the number of diamonds

1 « A « N2 for the N x N patch. In this case the vector t(r) is proportional to the

local height gradient \lr h(r). One can also define an average tilt of the patch with

A = N2 in (2.70).

When the interactions are of the nearest neighbor (d «: a), the height surface

fluctuates freely at T = 0 since hops of free charges cost no energy (as discussed

in subsection 2.2.1). The numbers rs for the N x N patch fluctuate around their

expected value of N2/3, and the average tilt is t = O.

The long-range V(r) lifts the exponential degeneracy of the ground state and

yields ordering into commensurate phases. Average tilt t in each of the commensu-

rate phases can take only a finite number of values allowed by the symmetry of the

triangular lattice. The ground state has a finite entropy. Freezing temperature is

determined by the strength of the next-nearest neighbor interactions.

Below we study the most pronounced ordering types when the interaction (2.2) is

long-range. Due to electron-hole symmetry n H 1 - n it suffices to consider only the

density interval 1/3 ::; n ::;1/2.
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2.3.1 Freezing Transition at n = 1/3, 2/3

The ground state for n = 1/3 is a V3 x V3 configuration shown in Fig. 2-5 (A),

with zero average tilt t = o. In this state, electrons can occupy one out of the three

sublattices of the triangular lattice. To define an order parameter for the freezing

transition at density n = 1/3, we introduce average electron densities ni, (i = 1,2,3)

for each of the three sublattices, with their sum being the total density:

(2.72)

In the ground state one sublattice is fully occupied, and the other two are empty:

nil = 1/3, ni2 = ni3 = 0, which corresponds to a triple degeneracy. Above the

transition temperature the occupation numbers ni are equal: ni = 1/9.

Consider the set {oni},

1On. = n. --
Z Z 9' (2.73)

(2.74)

The symmetry of {oni} in the high temperature phase is the permutations group 53.

The three dimensional representation of 53 in the space of vectors (onl on2 on3)T is

reducible. Physically it follows from the charge conservation, Eq. (2.74), which yields

that only two components of the set {oni} are independent.

Under the linear transformation

<PI 0 I I onlv'2 -v'2

<P2 -If I I on2 (2.75)v'6 v'6

<P3 I I I on3V3 V3 V3

the component <P3,which is zero due to Eq. (2.74), decouples. The two dimensional

representation of the group 53 in the space of vectors <P= (<PI, <P2)T is irreducible.

We choose the two dimensional vector <P as an order parameter of the phase transition

at n = 1/3.
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The free energy :Fl/3 in the vicinity of a transition is written in terms of the

invariant polynomials of the symmetry group. According to the Hilbert theorem the

invariant polynomials of 53 can be represented as linear combinations of symmetric

polynomials
3

()"s = L(8ni)s, S = 1, 2, 3....
i=l

(2.76)

Using the transformation (2.75), we obtain the following invariants of cp: the quadratic

(2.77)

the cubic

(2.78)

and the quartic invariant

(2.79)

Hence the free energy near the freezing transition can be written as

(2.80)

The existence of the "symmetric cube" /(3) yields that the freezing phase transition

at densities n = 1/3, 2/3 is of the first order.

2.3.2 Freezing Transition at n = 1/2

In the n = 1/2 ground state the height surface is flat, with an average tilt t introduced

above having a maximum absolute value, It I = J2/3. In Fig. 2-5 (C) one can see

a snapshot of the n = 1/2 state slightly above the freezing point. It has a domain

structure with all the three possible domain types of maximum Itl, as well as a small

number of free charges present at the domain boundaries. In any flat domain of

maximum It I electrons occupy one out of the two sublattices. Three orientations of

the tilt t and two possibilities for the sublattice occupancy at each value of t yield

the total six fold degeneracy of the ground state at n = 1/2.
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To characterize the ground state, we fix an elementary lattice triangle T. The

tilt t in the ground state can be aligned with either of the edges of T. Let ni

be the electron density on the sublattice i that passes through the i-th edge of T.
Define Si = 2ni - 1, i = 1,2,3 to be the corresponding "spin" density. In the high

temperature phase all Si = O. In the ground state, one of the spin densities is nonzero:

ISjl = 1, Si = 0, i i= j. We take the set {Si} as an order parameter for the freezing

transition at n = 1/2.

The symmetry group P6mm of the lattice consists of the point group C3v of the

unit triangle T, combined with translations Ti, i = 1,2,3 along the three directions

(edges of T). Below we study the three dimensional representation of the group

P6mm [58] in the space of vectors {Si}.

Consider first the point group operations of the unit triangle T. There exist three

inversions {a~i), i = 1,2, 3} in the vertical planes which pass through the heights of the

triangle T. Inversion a~iI) interchanges the components Si2 and Si3' i2, i3 i= il. Two

rotations Cj= by :i:21T /3 around the center of T correspond to the cyclic permutations

of the elements of {Si}, (Ct)2 = Ci. Neither of the C3v point group operations

changes sign of any Si.

The signs of any two Sil' Si2 are changed by applying the translation Ti3 along

the edge i3 i= iI, i2 of the unit triangle. Three translations combined with the six

point group operations of C3v give the total 24 group elements of P6mm. The three

dimensional representation of P6mm in the space of vectors {Si} is irreducible.

Similarly to the treatment in the previous subsection, to determine the order of

the transition we consider invariant polynomials of the group P6mm. There is one

quadratic invariant

(2.81)

one cubic invariant

(2.82)
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and two quartic invariants

(2.83)

The phenomenological free energy up to the fourth order in Si reads

(2.84)

We expect the first order phase transition at n = 1/2 due to the existence of the cubic

invariant 1(3) in the expansion (2.84).

2.3.3 Phase Transitions via the Me Dynamics

With the MC algorithm defined in Sec. 2.1, we study the charge system near the

freezing phase transitions at densities n = 1/3 and n = 1/2 numerically. We focus

on the equilibrium energy distribution p(E), which is calculated from the MC dy-

namics (see below). We relate the moments of p(E) to the thermodynamic quantities

(average energy, heat capacity and its temperature derivative) in the vicinity of a

phase transition. The plot of these quantities as functions of temperature provides

information about the order of a freezing transition, and tells how close the system

is to equilibrium during the MC dynamics.

We calculate the energy distribution p(E) the following way. Let E be the energy

of the system per one electron,
E = Etot

nN2 ' (2.85)

where the total energy Etot is given by the first term of the "spin" Hamiltonian (2.8),

(2.86)

The energy distribution p(E) is obtained as an energy histogram accumulated during

the MC dynamics (Figs. 2-8, 2-9) for each value of temperature T. The functions
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peE) in Figs. 2-8, 2-9 are normalized by the total number of the MC trials

(2.87)

We utilize the type B conserving dynamics in the case of n = 1/3, Fig. 2-8. As we shall

see below, at density n = 1/2 the freezing transition features are less pronounced.

The type A dynamics in the zero field (J-L = 0) is employed in this case (Fig. 2-9) to

accumulate larger statistics by ensuring faster thermal equilibration.

If the system is at equilibrium, the energy distribution function pC E) / N calculated

from the MC dynamics should coincide with the canonical distribution. Consider the

first three moments of peE), defined as

M1 = (E) ,

M2= (E - (E) )2) ,

M3 = (E - (E) )3) ,

where the average with respect to peE) is calculated as

(2.88)

(2.89)

(2.90)

(2.91 )

If p(E)/N indeed coincides with the canonical distribution, its moments Mi are re-

lated to each other and to the observed thermodynamic quantities in a certain way

that can be determined from the Gibbs partition function

(2.92)

Namely, in the case
peE)
N

e-E/T

Z
(2.93)

the average energy (E), the heat capacity C, and its logarithmic derivative ac /a In T
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are given respectively by

(E) = M1,

G
_ a (E) _ M2

-aT-T2'
aG M3 - 2TM2

alnT T3

It is important that Eqs. (2.94, 2.95, 2.96) yield relations

between the combinations of moments (2.88, 2.89, 2.90) only at equilibrium.

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

The way to characterize each freezing phase transition is the following. First, we

determine how well the system is at equilibrium during the MC dynamics. We do this

by plotting the right hand sides of Eqs. (2.94, 2.95, 2.96) as functions of temperature

(Fig. 2-10) and checking that the relations (2.97, 2.98) are well satisfied. This yields

that the set of normalized histograms p( E) / N calculated for the temperature region

near the transition serves as a good approximation to the canonical distribution. This

allows us to use Eqs. (2.94, 2.95, 2.96) to calculate the temperature behavior of the

average energy (E) and its derivatives G, TaG/aT at the transition. The order of

a freezing phase transition is determined from the MC dynamics by examining the

singularities in the temperature dependencies of the quantities (E), G and TaG/aT

in Fig. 2-10.

Consider freezing into the n = 1/3 ground state. The energy histogram p(E) in

Fig. 2-8 is a Gaussian above freezing. It widens significantly at the freezing tempera-

ture Tl/3 (Tl/3 = 0.63 V(a) for the screening length d = 2a), and rapidly shrinks to a

delta function for T < Tl/3. From Fig. 2-10 (left column of plots), one can see that the

relations (2.97, 2.98) are well satisfied. We conclude that the system is ergodic and

is at equilibrium during the MC dynamics. We observe a step in the average energy

and a peak in the heat capacity, whose width is around 10% of the transition temper-
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ature T1/3• The finite width of the singularities is due to the finite system size, and

it decreases when the size N increases. The quantities e and ae / a In T calculated

from the distribution p(E) both have the same width. The features of the curves in

Fig. 2-10 agree with the statement that the freezing transition at n = 1/3, 2/3 is of

the first order in accord with the mean field arguments presented in subsection 2.3.1.

At density n = 1/2 the energy histogram p(E) in Fig. 2-9 evolves similarly to

that of the n = 1/3 case. At the transition the probability distribution p(E) has two

peaks, which points at the coexistence of the high- and low-temperature phases. The

observed fluctuations in the successive moments of p(E) (Fig. 2-10, right column)

are substantially larger than for the case of n = 1/3. These fluctuations average out

with increasing the system size N, as seen by comparing the curves for N = 12 and

N = 24 systems. On average, the relations (2.97, 2.98) hold numerically despite the

large fluctuations. This suggests that the system is at equilibrium during the type

A stochastic dynamics, even though the freezing temperature Tl/2 = 0.20 V(a) for

d = 2a is considerably lower than T1/3• The singularities in temperature behavior

of the quantities (E), e and Tae/aT are less pronounced due to fluctuations,

especially in the derivative of the heat capacity (lowest plot in the series). The

transition features of a smaller system (N = 12) are sharper because it is possible to

freeze it into a perfect ("flat") n = 1/2 ground state with a maximum average tilt Itl,
whereas the larger system (N = 24) always freezes into a state which has a domain

structure with all three possible orientations of the tilt t.

The behavior of the average energy and the heat capacity at n = 1/2 agrees with

both the first and second order phase transition scenarios. Taking into account both

the existence of a cubic invariant in the free energy expansion (2.84), and the double

peaked distribution p(E) in Fig. 2-9, we conclude that freezing into n = 1/2 ground

state occurs via the first order phase transition. This transition is quite weak, which

suggests that the coefficient B3 in Eq. (2.84) is small.

Finally, let us compare the plots of the conductivity (Fig. 2-3) and average energy

(Fig. 2-10) as functions of temperature for both n = 1/2 and n = 1/3 near the corre-

sponding freezing transitions. There is an apparent similarity in the functional form
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as well as excellent agreement in the transition temperatures between the two plots.

This is in accord with the argument about the similarity of the critical behavior of

average energy and kinetic coefficients [42]. Provided that conductivity is experimen-

tally accessible in the quantum dots arrays, we suggest looking into singularities of

the zero bias dc conductivity as a means of studying charge ordering in such systems.
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Figure 2-8: Energy histogram p(E) for n = 1/3. The total number of trials N =
25.106 for each step in temperature. The type B dynamics was employed. Calculations
were done for the screening length d = 2a. Histogram in bold corresponds to the phase
transition at Tl/3 = 0.63 V(a).
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Figure 2-9: Energy histogram p(E) for n = 1/2. The total number of trials N =50.106 for each step in temperature. The nonconserving type A dynamics was used.

Screening length was taken to be d = 2a. Histogram in bold corresponds to the phase
transition at Tl/2 = 0.20 V(a).
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Figure 2-10: Phase transitions at n = 1/3 (left) and n = 1/2 (right). Given as a
function of temperature: average energy (E) (above), heat capacity C (middle), and
its derivative ec/e In T (below), calculated as combinations of moments of the energy
histograms p(E) (Figs. 2-8, 2-9) according to Eqs. (2.94, 2.95, 2.96). For n = 1/3, the
N = 24 patch is frozen into the ideal J3 x J3 ground state, Fig. 2-5 (A). The n = 1/2
N = 24 patch (fine curve in the right column of plots) is frozen into a polycrystalline
state made of domains with different directions of the tilt t, with It I = J2/3 in each
domain. It has higher energy per electron and less pronounced transition features
than the N = 12 patch (bold curve), which is frozen into the perfect ground state
with the maximum tilt It I = J2/3. The curve corresponding to N = 12 patch has
more noise due to the smaller system size.
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2.4 Conclusions

To conclude, in this Chapter we considered charge ordering and dynamics of electrons

on the triangular 2D array of quantum dots by mapping this system onto the tri-

angular classical Ising spin model. The interactions between such "spins" are of the

long range antiferromagnetic type due to the screened Coulomb repulsion between

electrons on the dots. We have demonstrated that the long range nature of interac-

tion yields the phase diagram which is more rich than that of the .6.IAFM system. In

particular, at electron density in the range 1/3 :::;n :::;2/3 there exists a temperature

interval where the classical system of electrons exhibits collective behavior (correlated

fluid phase).

The correlated fluid properties are described in terms of a height field order pa-

rameter. We have studied the height field dynamics by numerically calculating its

effective rigidity. We have proven both numerically and by scaling arguments that

the dislocation pairs binding phase transition does not take place in the correlated

fluid. Scaling arguments show that the height order parameter is decoupled from the

electron density at the large spatial scale, and that the corrections to the dynamics

of the charged system due to fluctuations of the height field are local everywhere in

the correlated fluid phase.

At low temperatures the correlated fluid freezes into the commensurate (solid)

phase. Ordering in the ground states depends on the electron density n. We study

the most pronounced phase transitions into the commensurate states at n = 1/3, 2/3

and at n = 1/2, and show that they are of the first order.

From the experimental standpoint, the novel feature of the charge ordering in

the quantum dot array is the possibility for the conductivity measurements. We

have shown that the zero bias dc conductivity singularities at the phase transitions

are similar to those of the average energy of the system. This relates the system's

dynamics with its charge ordering properties and suggests zero bias conductivity as

an experimental probe of charge ordering.
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Chapter 3

Transport

You do not know anything until you have practiced.

R. P. Feynman

In the previous Chapter we have found a phase diagram (Fig. 2-6) for an idealized lat-

tice model of the nanocrystal arrays. We have also shown that conductivity measured

at a low bias can be a probe of the system's properties in the ground state. In par-

ticular, we have related the singularities of conductivity to ordering phase transitions

in Sec. 2.3.

In the present Chapter we study transport properties of the nanocrystal arrays in

greater detail. As we have pointed out in Chapter 1 (Sec. 1.1.3), transport measure-

ments are currently performed at a high bias, since the dot arrays appear to be very

resistive. Such measurements always yield a power-law decaying current transient

1 = 10 t -0:, 0 < a < 1 (3.1)

(Eq. (1.1), Sec. 1.1.3). This transient behavior has been previously explained by

time-varying system's properties [17, 18, 19].

The aim of the present Chapter is to propose a novel model of transport in order

to explain the behavior (3.1). Our phenomenological model of transport (described

in Sec. 3.1 below) is based on a stationary Levy process and therefore requires no

time dependence of system's properties.
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An important outcome of our model is a particular form of the noise in current.

We calculate this noise in Sec. 3.2 below and show that it is given by a certain power

law as a function of frequency. This power law is deterministically related to the

power law (3.1) observed in current.

In Sec. 3.3 we analyze current and noise measurements performed on the nanocrys-

tal arrays and show that they are consistent with the predicted non- Poissonian fluc-

tuations in transport.

Finally, in Sec. 3.4 we discuss possible microscopic mechanisms that could result

in the anomalous transport governed by the Levy statistics.

3.1 Continuous time random walk model of trans-

port

In the present Section we suggest an explanation for the transient response (3.1)

without invoking any time dependence of the properties of the system. The key idea

of the phenomenological model proposed below is that a non-stationary current (3.1)

can arise in a system described by a stationary stochastic process.

Let us formulate our model of transport. We view the nanocrystal array as a host

of N ~ 1 identical independent conducting channels switched in parallel. We assume

that each channel is almost always closed (non-conducting). It opens up at random

for a microscopically short interval 70 to conduct a current pulse that corresponds to

a unit charge passing through, Fig. 3-1. Such a channel is completely characterized

by the waiting time distribution (WTD) p( 'I) of time intervals between successive

pulses. We postulate this WTD to have a long power law tail:

a
p(T»70) ~ T1+JL' 0 < J-l < 1 . (3.2)

The form of the distribution (3.2) is similar to the one given in Chapter 1 above in

Eq. (1.14) for the dispersive transport. The short time behavior p(7 r-..J TO) does not

affect the long time dynamics and will not be discussed here. The crucial observation
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..

t
Figure 3-1: Current in a single conducting channel with a wide distribution of waiting
times. Short current pulses are separated by very long waiting times 7 ~ 70

is that all moments of p(7) diverge,

(3.3)

In Sec. 3.2 below we show that the WTD (3.2) yields a power law decay (3.1) with

a=l-j.L (3.4)

for the expected value of a current in a single channel. Qualitatively, the decrease

in current with time can be undestood as follows: The expected value of the waiting

time for a process (3.2) is infinite since it is given by the first moment of p( 7), n = 1 in

Eq. (3.3). Thus if the stochastic process governed by the WTD (3.2) started infinitely

early in the past, the expected value of the current is zero. Turning the bias on at

t = 0 sets the clock for the process (3.2). Now for the measurement interval t waiting

times 7 rv t can occur, as shown in Fig. 3-2 (note the double log scale). Observing the

current over a longer time effectively increases the chances for a channel to be closed

for larger time intervals, yielding the decay in current, the latter approaching zero in

the infinite future. It is essential that in this transport picture the system's properties

are time independent: the process (3.2) is stationary, i.e. p( 7) is independent of the

measurement time t.

Continuous time random walks with long power law tails as in (3.2) (the so called
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Levy processes [35]) arise in various fields [36], from dispersive transport in amorphous

semiconductors [28, 29, 30, 31] reviewed in Sec. 1.1.3 to the stock market fluctuations

[59]. The main feature of such processes is that, as we show in the next section, due

to divergent moments they violate the central limit theorem.

For a particular case of current in a conducting channel considered in the present

Chapter, we will show that the Levy statistics yields a large, non-Poissonian noise in

current. In the next section we derive the noise spectrum that in this case is given

by a power law of frequency, and find how the exponent of this law relates to the

exponent a in the average current (3.1).
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Average charge <Q>
Charge in a single channel

- - - - Power law fit

o
0.5 1

time t, a.u.
Figure 3-2: Net charge Q(t) in a single channel and charge (Q(t)) averaged over
N = 100 channels simulated according to the waiting time distribution (3.2) with
J.L=0.5 (plotted in the double log scale). Dashed line is a power law fit Q ex: tJ1..
Inset: Same plot in the linear scale. Charge in a single channel has extremely large
noise and lacks self-averaging due to a wide WTD. It does not at all resemble the
average (Q).
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3.2 Calculation of current and noise

In the present Section we obtain expressions for average current and noise in a system

of parallel conducting channels introduced in the previous Section. We first focus on

the average current and noise in a single channel governed by an arbitrary waiting time

distribution p(r) between the current pulses. After that we study the case of a Levy

walk (3.2) and contrast it with the case of a conventional channel whose statistics is

governed by the Poissonian process. Finally, we comment on the average current and

noise in a system that consists of a number of identical independent parallel channels.

3.2.1 Single channel with an arbitrary WTD

Consider first the case of a single channel in which the probability for a waiting time

r between short current pulses to fall in the interval [r, r + dr] is given by p(r)dr.

The waiting time distribution p(r) is assumed to be normalized,

10"" p(r)dr = 1 . (3.5)

To derive current and noise in this channel, it is convenient to consider the current

00

I(t) = L 8(t - ti) e->.t
i=1

defined with a soft cutoff corresponding to a measurement time interval

.\-I»ro,

(3.6)

(3.7)

where ro is the microscopic channel opening time introduced in the previous Section.

Consider the Fourier component Iw of the current (3.6):

00

Iw =!dt I(t) e-iwt = L e-ztn ,
n=1
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where

and

Z = A - iw , (3.9)

(3.10)

We obtain the expected value of current in a single channel by averaging Eq. (3.8).

Since waiting times Ti are independent random variables distributed according to

p( T), this average is given by a geometric series:

(1)= pz
wI' -pz

where the characteristic function

The noise is defined as a reduced second moment,

The current correlator
00

(I-w1w) = L (e-itn,-ztn)
n,n'=l

(3.11)

(3.12)

(3.13)

(3.14)

can be averaged using (3.10) and the fact that all the waiting times Ti are independent

random variables. This averaging yields

(3.15)

The last formula is obtained by splitting summation into domains n =n' and n > n'

with m=n-n'. After performing the geometric series summations in Eq. (3.15), for

the noise (3.13) we obtain

(3.16)
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3.2.2 Current and noise in the case of a Levy walk

Current average (3.11) and variance (3.16) obtained in the previous subsection are

valid for any waiting time distribution. Consider now the power law WTD (3.2),

whose characteristic function is

zJ1.
pz = 1- A' IzITO« 1,

J1.

A - tt
J1. - ar(l - tt)

(3.17)

(3.18)

Here TO is a microscopic opening time for the WTD (3.2). In this case Eq. (3.11)

yields average current

(3.19)

Fourier transforming Eq. (3.19) gives the average current as a function of time:

where A-I is the measurement interval according to (3.6),

a=l-tt,
To = tt sin 1ftt .

1fa

(3.20)

(3.21 )

(3.22)

Expression (3.20) is exactly the transient response (3.1) with the exponent (3.4).

For the noise, substituting the characteristic function (3.17) into Eq. (3.16) derived

in the previous subsection, we obtain

(3.23)

We are interested in the noise spectrum on the time scale much greater than the pulse

width TO:

(3.24)
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Keeping only the leading terms in the numerator of (3.23), we obtain

(3.25)

The limits of Eq. (3.25) are

(3.26)

Let us discuss our results (3.19), (3.20), and (3.26), contrasting them with the

case of a conventional conducting channel governed by a Poissonian WTD

(3.27)

For the average current in a single channel governed by the Levy WTD (3.2) we

have indeed obtained a power law decay (3.19) with a power a < 1 given by (3.21),

as it was anticipated in Sec. 3.1. The result (3.20) corresponds to the net charge

(3.28)

increasing sublinearly with the measurement time t. We are going to show that this

result is in sharp contrast with a conventional system. Consider a Poissonian WTD

(3.27), whose characteristic function is given by

where

Poiss. 1
Pz = 1+ ZfPoiss. '

fPoiss. = '"'(-1

(3.29)

(3.30)

is the finite expected value of the waiting time. Eq. (3.11) in this case yields average

current

(3.31 )
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This current taken at zero frequency corresponds to the net charge that has passed

through the channel between t = 0 and t = A-I. The latter grows linearly with time,

(Q)poiss. t
= fPoiss. '

corresponding to a constant current

(1) = d ~~) = canst.

(3.32)

(3.33)

As for the noise, let us first consider the Poissonian channel. For the Poissonian

WTD (3.27), Eq. (3.16) yields the white noise spectrum

(3.34)

for any frequency w « TOI.

Let us first focus on the zero frequency limit of noise. In this limit the noise is just

a variance of the charge that has passed through the channel during the time interval

between t = 0 and t = A-I. The Poissonian result (3.34) means that this variance is

proportional to the mean charge:

In other words, the relative fluctuation

((( Q2)) POiss.) 1/2

----.-- ex t-1/2(Q)POlSS.

(3.35)

(3.36)

of the transported charge decreases with the measurement time. That is precisely

what one obtains from the central limit theorem.

In the case of the WTD of the Levy form (3.2), the w « A limit of (3.26) yields
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that the dispersion in the charge Q transported through the channel

(3.37)

is proportional to the net charge. Hence the relative charge fluctuation fj"Q / (Q) does

not decrease with the measurement time t, violating the central limit theorem. In

other words, the zero frequency noise in the net charge is extremely large when the

channel is governed by the Levy statistics. Fig. 3-2 shows that transport in a single

channel is indeed dominated by large fluctuations.

It is possible to illustrate from a different perspective the fact that the noise in

net charge in the case of the Levy statistics is very large.

Consider a probability Pn(t) for exactly n current spikes occuring in a channel

between 0 and t. For this quantity we may write an integral equation

(3.38)

where

(3.39)

The integral in (3.38) is dominated by the singularity of the kernel (3.2). Thus

(3.40)

where the normalization JdT p( T) = 1 has been employed. We obtain that configura-

tions with

O~n<N (3.41)

current spikes are all approximately equally probable in the case of a WTD given by

Eq. (3.2). The maximum number N of spikes for which this statement is valid can

be found from the normalization L:Pn = 1:

(3.42)
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Finally, let us comment on the noise (3.26) in the case of a finite frequency.

In the limit w » A the noise spectrum is proportional to the Fourier transform of

the mean current, (Iw), and is given by a power law in frequency, in contrast to a

white noise (3.34) for a Poissonian channel. This "colored" noise that is divergent at

small frequencies once again underlines the difference of the Levy statistics from the

conventional Poissonian one.

3.2.3 The case of many channels

Having found the statistics of charge in a single channel, let us consider the case of

a system with a large number N ~ 1 of independent parallel conducting channels.

Although in our model any given channel lacks self-averaging, the current through a

system with a large number of channels is a smooth power law. This is illustrated

in Fig. 3-2, where the average charge is plotted as a function of time in the case of

N = 100 independent channels. Fluctuations in the total current through a system

with N parallel channels are reduced by a factor of N-l/2. This noise reduction

follows from the central limit theorem which is now applicable since we consider an

ensemble of independent channels.

Furthermore, we have proven that the average current obtained from the model of

independent channels is unchanged even if the channels are not completely identical,

corresponding to spatially varying system properties. A simulated flat distribution of

the exponent 0.45 < J-l < 0.55 over a hundred channels yields average charge that is

numerically very close to that in Fig. 1-3 for J-l = 0.5.
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3.3 Comparison with experiment

In the previous Section we have shown that the current measured between time 0 and

t in the model described in Sec. 3.1 leads to a non-Poissonian noise,

(3.43)

(3.44)

Here

Iw = ldt'I(t')eiw!'

is a Fourier transform of current. The noise (3.43) is proportional to (Iw)2 when

w -7 0, and has a characteristic power law spectrum for large frequencies.

For the comparison with experiments that we consider in the present Section, it

is crucial to note that the Levy process (3.2) guarantees the same power law for the

noise (3.43) and for the current (3.19),

(3.45)

in the limit wt » 1. The exponent J-L relates to the power law exponent in current

(3.1) via Eq. (3.4).

Moreover, as we have pointed out in Sec. 3.2.3, averaging over N ~ 1 independent

channels in our model simply reduces the noise by a factor of N-1/2• It is important

that the presence of many channels does not alter the power laws in current and noise,

in particular preserving the relationship (3.4).

3.3.1 Current and noise

Let us now describe the current and noise measurements [2] performed on a single

sam pIe of a nanocrystal array.

We start from briefly describing the sample. The QDAs studied in Ref. [2] have

been obtained by the procedures described in Chapter 1, Sec. 1.1.2 above, as well as

in Refs. [17, 18]. This included self-assembly of an approximately 200nm thick film of
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nearly identical CdSe nanocrystals, 3 nm in diameter, capped with trioctylphosphine

oxide, an organic molecule about 1 nm long. The measurements have been performed

in the field effect transistor geometry as described in Sec. 1.1.3. The sample has been

annealed at 300C in vacuum inside of the cryostat prior to the electrical measure-

ments. As discussed in Chapter 1, sample annealing reduces the distance between

the nanocrystals and enhances electron tunneling [17].

The above sample parameters correspond to a QDA consisting of ca. 50 mono-

layers of quantum dots, with each layer ~ 1.6. 105 dots wide and 200 dots across.

In this case one expects the effective number of effective conducting channels to be

large, and observed fluctuations in current to be small, in accord with the discussion

in Sec. 3.2.3.

To measure the noise, 200 current transients have been recorded, each t = 100 s

long. Measurements have been made on a single sample continuously stored in vac-

uum, inside of a vacuum cryostat in the dark at 77K. Each current transient has been

recorded for 100 s with a negative bias of -90 V. These periods of negative bias are

separated from each other by a sequence of zero bias for 10 s, reverse pulse of +90 V

for 100 s, and zero bias for 10 s, to eliminate the memory effects [17]. The current

and noise measured for a substrate without the QDA yield that the typical current

fluctuations are several orders of magnitude smaller than measured with the QDA.

Noise ((I-w1w)) and average current (Iw) are found by performing an average over

recorded current transients, treating them as independent experimental realizations.

Before analyzing the measurements performed in [2], it is important to note the

following. An error in the average current (Iw) can yield an error proportional to

(Iw)2 ex w-2p. in the noise spectrum. At the beginning of our measurement the current

transients change from one to the next because of the memory effects described above

in Sec. 1.1.3. For this reason we have discarded the first 150 transients. The noise

(Fig. 3-3) has then been deduced from the remaining 50 transients, whose average

current is nearly unchanged from one to the next. To further compensate for residual

memory effects, we have normalized each transient by mutiplying it by a factor ~ 1

to have the same net integrated charge.
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Figure 3-3 shows the noise spectrum and the average current obtained in the way

described above. The quantities have a similar power law behavior with J.-l ~ 0.72

for wt ~ 1, t = 100 s. In Fig. 3-3 only finite frequency results are shown. The zero

frequency noise that has been eliminated due to transients' normalization described

above is not shown in this Figure. The measured power law spectrum differs from

the 1/ f noise usually found when conductivity is measured at these low frequencies

[60]. We conclude that the results of Fig. 3-3 are consistent with the charge transport

model based on the system's stationary properties proposed above in Sec. 3.1.

3.3.2 Memory effect

Based on our model the memory effect described in Sec. 1.1.3 can be explained as

follows: Because of the very large typical waiting times 7 » 70, any given channel

is most likely non-conducting when the voltage is turned off at t = t1• In addition,

the very slow dynamics of a channel means that the channel's state may remain

unchanged by the time the voltage is turned back on at t = t2• In this case the

channel conducts current as if the voltage had not been turned off. However, there is

some chance that the channel changes its state (resets) while the voltage is turned off,

with a probability W12 = w(t2 - td. The function w(t) monotonically grows between

w( 70) = a and w( (0) = 1. The current at t = t2 as a function of a shifted time

i = t - t2 is a sum over all channels:

(3.46)

This has a singular part at i = 0 with amplitude

(3.47)

determined by the reset probability W12 < 1. For t2 » 70, the first (regular) term

in Eq. (3.46) is negligible compared to the second one. The current (3.46) is domi-

nated by the second term, yielding an apparent suppression of the measured current
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transient amplitude.

Experimentally it has been verified [61] that the reset probability defined as an

amplitude ratio
10w(t2 - td =-10 (3.48)

is indeed a monotonic function of the time t2 - t1 with voltage off. Indeed, for waiting

times from 10s to 104s between 100s long transients, we measure W12 in the range 0.65

to 0.85, as plotted in Fig. 3-4. The function W12 approaches unity when applying a

reverse bias, exposing the dots to the bandgap light [18], or waiting for longer times.
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Figure 3-3: Current (Iw) and noise spectrum ((I-w1w)). Averages are performed over
50 measurements on the same sample.
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Figure 3-4: Reset probability w(t) defined in Eq. (3.48) measured as a function of the
"off" time t = t2 - t1
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3.4 Discussion

In this Chapter we have suggested a novel phenomenological model of non-ohmic

transport in the disordered system. This model, based on the Levy statistics, yields

a non-stationary transport in a stationary system.

We have shown that our model predicts a large non- Poissonian noise, and, in

particular, a certain power law noise spectrum. In Sec. 3.3 we have used this prediction

to test our model by analyzing current and noise measurements performed on the

sample of semiconducting quantum dots.

We have found that the noise measurements on the QDA sample are consistent

with our transport model. Based on that we suggest that the current transients that

are observed in the QDAs [17] correspond to a stationary system of electrons on the

array.

In the remaining part of this Chapter we discuss possible microscopic origins of

the Levy process governing conductivity of the dot arrays.

In Chapter 1 we have mentioned that the dot arrays are extremely resistive. This

results in the failure of the standard picture of a (stationary) ohmic hopping conduc-

tivity based on the phonon relaxation mechanism.

It is reasonable to assume at this moment that the inobservably small ohmic

conductivity in the dot arrays points at a possible phonon bottleneck for energy re-

laxation. Thus, we speculate that hops responsible for the observed current transients

occur only between aligned energy levels of the neighboring dots. The assumption of

having a WTD (3.2) requires that the energies of these levels fluctuate in time. We

suggest two reasons for these fluctuations.

First, the energy (rv O.leV) dissipated per hop may provide the levels with the

necessary energy reservoir for the fluctuations. Second, current-induced fluctuations

in the electrostatic environment in the absense of screening may result in a random

time-dependent chemical potential for each dot.

With dot energy levels strongly fluctuating, the waiting time for the electron to

hop between the nearest neighbor dots is the time between successive alignments of
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their levels. The level diffusion in energy itself can be governed by a continuous time

random walk. If the latter is described by the WTD of the type (3.2),

(3.49)

and the distribution of hops in energy is

it is possible to obtain (see Appendix) the corresponding power law exponent

V(K, - 1)
J.l=---

K,

(3.50)

(3.51)

for the nearest neighbor hopping WTD (3.2). The Gaussian diffusion in energy yields

J.l= 1/2, as conjectured in Refs. [62, 63] to explain the Levy statistics of a single dot

fluorescence intermittency observed in [62, 64, 65, 66, 67].

So far in this Discussion we have found that a stationary energy level diffusion of

the two neighboring nanocrystals can result in a waiting time distribution of the form

(3.2) with the exponent (3.51) for the hops between them. Let us comment on what

happens when a chain of such sites with fluctuating energy levels forms a conducting

"channel". In this case the WTD for the channel has the same power law tail as the

WTD for the nearest neighbor hops in the absense of Hubbard on-site correlations.

The latter are believed to be unimportant since in experiments [17, 18] the estimated

electron density per dot is small, of the order of rv 10-2 - 10-1.

To conclude, we have proposed a mechanism for a non-ohmic conductivity in a

disordered system. In particular, we have showed that a non-stationary current re-

sponse can arise in a stationary system governed by the Levy statistics. The model

is consistent with current and noise measurements in arrays of coated semiconduct-

ing nanocrystals. We believe that measurements of the fluorescence intermittency

statistics and of the noise in current in the same nanocrystal array would help to

understand the microscopic origin of the described effects.
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Conclusions to Part I

In this Part of the Thesis I have considered charge ordering and transport in novel

colloidal solids that are made of arrays of semiconductor nanocrystals. These arrays

are shown to be a rich tunable system that can be used to study a variety of physical

phenomena.

Charge ordering in triangular two-dimensional QDAs has been considered in Chap-

ter 2 by mapping this system onto the triangular classical Ising spin model with an-

tiferromagnetic couplings. An interplay of the geometrical lattice frustration with

the long range nature of interaction yields a rich phase diagram (Fig. 2-6). A novel

correlated fluid phase has been identified, in which hopping dynamics of classical

electrons on a triangular lattice exhibits collective behavior. At low temperatures the

correlated fluid freezes into the commensurate (solid) phase via the first order phase

transition. System's dynamics have been related to its ordering types by relating the

singularities of zero bias conductivity to freezing transitions.

Transport in QDAs has been considered in Chapter 3. There, a novel mechanism

of non-ohmic transport in disordered systems has been suggested in order to explain

current transients measured in recent experiments [17, 18]. Our transport model is

based on the stationary stochastic process that is governed by the Levy statistics.

As a result it has been shown that a non-stationary current can arise in a stationary

system. The proposed transport model predicts a power law noise spectrum that is

consistent with recent measurements [2].
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Chapter 4

Introd uction

In the present Part of this Thesis I will focus on another promising class of artificial

systems that can be building blocks of novel materials and devices, as well as be

utilized to study new physical phenomena. Carbon nanotubes comprise a broad class

of chemically similar molecules composed of a very large number of Carbon atoms.

It is remarkable that the chemically similar structure of nanotubes gives rise to an

extreme diversity of their properties. In fact, nanotubes whose cicumferences differ

by a single Carbon atom can have opposite electronic properties, corresponding to

those of a metal and of a semiconductor [10].

During a bit more than a decade since their discovery in 1991 [4], Carbon nan-

otubes have attracted a great deal of attention of researches in a variety of fields

[10, 11]. Besides their potential technological applications [5, 6, 7, 14, 9], nanotubes

are a testing ground for novel physical phenomena involving strong electron correla-

tions [31, 28, 29, 32, 34].

In the present Part of the Thesis I will focus on a set of physical effects in nan-

otubes that can be manifest in electron transport. These effects will include the ones

that appear already at the single electron level, as well as those specific to electron

interactions.

I will start this Part by briefly reviewing selected experiments and outlining basic

nanotube properties in Chapter 4. The main goal of the present Chapter will be to

develop a single particle description of nanotubes in terms of the Dirac fermions.
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In Chapter 5 I will demonstrate that interesting nanotube properties arise already

at the level of noninteracting electrons due to the Dirac nature of the low energy

spectrum. In particular, I will consider a theory [1] of a field effect and screening of

the external electric field by nanotube electrons. This screening will be linked to the

chiral anomaly that is inherent to the Dirac fermions.

In Chapter 6 I will describe a proposal to realize adiabatic charge pump based on

the coupling of a semimetallic carbon nanotube to a slowly moving surface acoustic

wave.

Finally, In Chapter 7 I will consider correlation effects in a nanotube in an ex-

ternal periodic potential. I will demonstrate that due to electron interactions, novel

interaction-induced incompressible states exist when the electron density is commen-

surate with the potential period.

4.1 Basic properties of nanotubes

In this Thesis I will consider only single wall carbon nanotubes (NTs). Any such

tube can be envisioned as a two-dimensional honeycomb lattice of Carbon atoms

("graphene sheet") rolled into a hollow cylinder [10, 11]. In this system all chemical

bonds are satisfied and are very strong. This yields very high thermal, chemical and

mechanical stability [14].

The purest nanotubes are currently grown using electric arc [42] and laser ablation

[43] methods. High quality of the tubes obtained by these means is due to their

creation at very high temperatures (rv 2000 C) [11]. Another method to grow NTs

is based on the chemical vapor deposition techniques using catalyst particles and

hydrocarbon precursors [44]. This method is very promising in terms of scalability of

NT production.

The most remarkable feature of carbon nanotubes is their diversity. As it will be

shown in the following Section, depending on a particular way of rolling the graphene

sheet into a cylinder ("chirality"), a nanotube can be a semiconductor, a semimetal,

or a metal [10]. This theoretically predicted property has been recently observed
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experimentally using the STM techniques. Semiconductor energy gaps have been

measured in Refs. [12, 13], and much smaller energy gaps in semi-metallic tubes have

been observed in Refs. [19].

In addition to STM measurements, the information about the nanotube structure

can be obtained by using the Raman spectroscopy [15]. This method, pioneered

at MIT by the group of M.S. Dresselhaus and reviewed in Ref. [16], is capable of

completely identifying the nanotube chirality.

Such a variability of NT properties stems from a semimetallic nature of the

graphene sheet reviwed below in Section 4.2. A possibility of having nanotubes with

drastically different properties is very attractive in many fields. However, this same

feature can be vicious from the practical standpoint. Indeed, all the existing nan-

otube synthesis methods do not give any control on the resulting tube chirality and,

therefore, produce all sorts of tubes at random.

Let us now briefly focus on transport properties of nanotubes. Transport in a

nanotube is determined by the NT type.

The semiconducting nanotube properties have been demonstrated in the field

effect geometry [41]. These experiments have shown that a semiconducting nanotube

can be utilized as the thinnest field-effect transistor.

Metallic nanotubes are shown to be the purest one dimensional conductors [40, 35]

with their conductance approaching the theoretical limit 4e2 / h [39]. These tubes

also exhibit Luttinger liquid properties of a strongly interacting ID metal [28, 29].

Luttinger effects in nanotubes have been observed in the tunneling measurements

reviewed in Ref. [34].

Research efforts in the area of nanotubes are stimulated by a wide range of poten-

tial NT applications [5, 6, 7, 14, 9]. The latter range from prospects of using NTs in

molecular electronics as the wires and logic gates in the smallest chips [5, 6, 14, 9] to

making the strongest composite materials [7]. In the same range one can name usage

of NTs as single molecule sensors and probes [17], as well as applications in flat panel

displays using electron field emission [8].
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4.2 Single electron description

The goal of the present Section is to develop a single particle treatment of the elec-

tronic NT spectrum. We will derive a low energy description of NT properties in

terms of the Dirac fermions [10]. This will allow us to desrcibe qualitatively different

classes of NTs, as well as will serve a basis for the rest of this Part.

In Sec. 4.2.1 we will review the basics of the theory of electron states of the 2D

Carbon monolayer, making a connection with the 2D Dirac equation. This will pro-

vide a good starting point for the following discussion of nanotubes in external fields

in the rest of the Thesis. We shall start with the tight-binding description of the Car-

bon 1f band (Sec. 4.2.1), following the approach of DiVincenzo and Mele [27], remind

how the Dirac equation arises in this system and then consider electron coupling to

external electro-magnetic fields.

After that, in Sec. 4.2.2 we will discuss the single electron NT spectrum obtained

from the effective ID Dirac equation. We will classify nanotubes with respect to the

values of the gap at the band center, as well as study the effect of a parallel magnetic

field on the NT properties.

4.2.1 Tight-binding model for a Carbon monolayer

The tight-binding Hamiltonian on a honeycomb lattice of Carbon atoms with hopping

amplitude t between adjacent sites has the form

E'ljJ(r) = -t L 'ljJ(r1
),

Ir'-rl=acc
(4.1)

where r1 are the nearest neighbors of the site r, and ace is interatomic spacing. In

Carbon, t ~ 3 eV, ace = 0.143 nm. For simplicity, and because the electron spectrum

is E ---t -E symmetric, from now on we shall ignore the minus sign in (4.1).

Zero chemical potential in (4.1) describes the half-filled 1f band, i.e., the density

of one electron per site. For an infinite system, the states of the problem (4.1) are
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plane waves and the spectrum is given by

E(k) = xtl :L eikori I ,
i

(4.2)

where ri are the nearest-neighbor bond vectors. This is a spectrum of a semimetal

with the conduction (E(k) > 0) and valence (E(k) < 0) subbands touching each other

at two points K and K' in the Brillouin zone (Fig. 4-1).

The tight-binding band width 6t ~ 18 eV is much larger than the energies of

the states close to the band center considered below. Because of that it is useful to

project the problem (4.1) on the subspace of states with lEI «t and derive an effective

low energy Hamiltonian for such states. To carry out the projection, we note that

there are only four independent states with E = o. These states form two complex

valued conjugate pairs which we denote as u(r), v(r), u(r), v(r). It is convenient to

choose the states u and v to be zero on one of the two sublattices of the honeycomb
•• 211" 0 211" •

lattIce. On the other sublattIce each state takes the values 1, w = eT'& and w = e-T'&

(see Fig. 4-2). The states u(r) and v(r) have the same quasimomentum of a value

41r/3V3acc, opposite to that of the states u(r) and v(r). Each pair of states u(r),

v(r) and u(r), v(r) forms a basis at the points K and K', respectively.

Projecting the wave function 'l/J(r) on u(r) and v(r) and, respectively, on u(r) and

v(r) defines Dirac spinor components for each of the two points K and K'. We focus

on the u, v pair and write the states near the point K with small energies lEI « t as

linear combinations

(4.3)

with the envelope functions 'l/JI,2(r) varying on the scale much larger than the in-

teratomic spacing acc. By substituting the wave function (4.3) in the tight-binding

Hamiltonian (4.1) we have

E 'l/Jl(r) = t {'l/J2(r - a) + W'l/J2(r -wa) + W'l/J2(r -wa)}

E 'l/J2(r) = t {'l/JI(r+a) + W'l/JI(r+wa) + W'l/JI(r+wa)}
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where a is a shorthand notation for acc. Here the products za with unimodular

complex numbers z = 1, w, w in the arguments Of'lj;l,2 are understood in terms of 2D

rotations of the vector ax by arg z.

Expanding slowly varying 'lj;l,2(r), we obtain

E'lj;l(r) = -liv( 8x - i8y )'lj;2(r)

E'lj;2(r) = liv(8x + i8y)'lj;1(r)

where
3t accv=2,h.

(4.6)

(4.7)

The Hamiltonian (4.6) defines massless Dirac fermions with the linear spectrum

E(k) = :f:livlkl . (4.8)

In Carbon, the velocity v = 8 .107 cm/s. Similar relations hold for the point K'.

Eqs.(4.6) can be cast in the conventional Dirac form E'lj;= 1l'lj; with

(4.9)

for the two-component wave function 'lj; = ('lj;1, 'lj;2), with al,2 given by the Pauli

matrices:

(4.10)

The Hamiltonian near the K' point can be derived in a similar way. The result has

the form (4.9) with a sign change in the second term:

(4.11)

In the present Thesis we shall consider electrons in the presence of external electro-

magnetic fields. The minimal form of the coupling to external fields follows from the
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gauge lnvanance:

1£ = va. (p - ~A) + ecp , (4.12)

where cp and A are the scalar and vector electro-magnetic potentials. The effect of

electron spin, ignored here for simplicity, can be included in (4.12) via a Zeeman term.

The equation (4.12) describes the lowest order approximation in the gradients of

'l/;1,2 and the potentials cp and A. Here we consider the exact tight-binding equations

in the presence of external fields:

€1/h(r) =t ( L _zei-rr,r-za'l/;2(r-Za))
z=l,w,w

f.,p2(r) = t C=t;,w zehr.r+<".,pl(r + za))

(4.13)

(4.14)

where the phases /r,r/ are the integrals of the vector potential along the nearest-

neighbor bonds,
2 r

/r,r/ = i.p'Tr J A(x) . dl .
o r/

(4.15)

Eqs. (4.13, 4.14) can be used to obtain the gradient terms of higher order along

with the coupling to external fields. One can check that expanding the exponents in

Eqs. (4.13, 4.14) and keeping the lowest nonvanishing terms gives the Dirac Hamil-

tonian (4.12). Expanding Eqs. (4.13, 4.14) we could obtain higher order corrections

to Eq. (4.12).

4.2.2 Electrons in a nanotube

To apply the above results to nanotubes, we consider electrons on a 2D Carbon sheet

(also called a graphene sheet) rolled into a cylinder, as shown in Fig. 4-3. There are

many ways to make such a cylinder. These ways correspond to different nanotube

chiralities.

A nanotube chirality can be specified by the chiral vector connecting the sites

of the graphene sheet that are identified with each other on a cylinder. According

to the adopted notation [10], a (m, n) nanotube is defined in terms of the following
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representation of the chiral vector

(4.16)

Here el,2 are the basis vectors on a hexagonal lattice, as shown in Fig. 4-3. The angle

e between the chiral vector and the zig-zag axis is called the chiral angle.

The transformation of the tight-binding problem (4.1) to the Dirac problem (4.6)

based on the representation (4.3) is valid provided that the cylinder circumference

C = 21T R is much larger than the interatomic spacing ace. Since for typical NT radii

the ratio

(4.17)

can be between 10 and 20, the approximation (4.3) is entirely adequate.

The NT electron properties, depending on the nanotube structure, can be either

metal like or dielectric like. Which of these situations takes place depends on the

manner the cylinder is obtained from Carbon monolayer. In the Dirac approach,

the condition for the metallic behavior can be formulated directly in terms of the

functions u(r) and v(r): The nanotube is metallic if and only if one can define on the

NT cylinder the two functions u(r) and v(r) according to Fig. 4-2 without running

into a mismatch of the function values upon the cylinder closure.

To demonstrate this, let us suppose that the functions u(r) and v(r) on the cylinder

exist. Without loss of generality we choose the x axis along the cylinder and the y

axis along the circumference. The problem (4.6) has periodic boundary conditions in

the y direction, and thus the wave functions can be factorized as

(4.18)

where

(4.19)

Then the dispersion relation for the ID problems describing motion along the x axis
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with fixed kn is

(4.20)

In this case the subband with n = 0 has metallic properties and the subbands with

n i= 0 are dielectric.

Now let us consider the other possibility when the cylinder is constructed in such

a way that the functions u(r) and v(r) cannot be defined without a value mismatch.

In this case, upon rolling the Carbon sheet into the cylinder, the sites with different

function values shown in Fig. 4-2 are glued together. However, since all values of the

functions u(r) and v(r) are powers of w = e2;i, one notes that Eqs. (4.6) can still be

used here if they are augmented with quasiperiodic boundary conditions,

or

'l/;1,2(X, y + C) = W'l/;1,2(X, y) (4.21 )

(4.22)

Factoring the wave function as above, one obtains 1D subbands with the dispersion

of the form (4.20), in this case with

k _ (n:l: ~)
n - R .

Note that in this case all spectral branches have dielectric character.

(4.23)

In the present Thesis we mainly focus on the NT properties in the vicinity of the

band center. These properties are determined by the form of the electron dispersion

E(p) near half filling. The latter is given by the lowest spectral branch of Eq. (4.20),

(4.24)

where the momentum p along the tube is measured with respect to the K or K' point.

It is remarkable that depending on the tube chirality a wide range of values for the
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Dirac "mass" ~o is avaliable [10]. Let us now briefly classify the nanotubes according

to the values of the gap term ~o in Eq. (6.1). For a thorough treatment of this topic

one can refer to the book [10].

As we have already seen above in Eq. (4.23), there exist semiconducting nanotubes

that have a large gap

~ (semic.) = liv I'.J 0 18 VIRo 3R -. e [nm] (4.25)

due to the value mismatch of the basis functions u and v. It is possible to show

[10] that these are all (m, n) tubes for which m - n is not a multiple of 3. The

semiconducting gap (4.25) is inversely proportional to the NT radius R.

Metallic NTs are the ones [10] for which m - n mod 3 = o. They can be of two

kinds. The (n, n) tubes are "truly" metallic, having a zero gap at half-filling, ~o = 0,

as follows from Eq. (4.19). These tubes are sometimes called armchair NTs. Any

other nominally metallic tube has a small gap that appears due to the curvature of

the graphene sheet [18, 19]. This gap is inversely proportional to the square of the

NT radius, and is numerically given by

~o ~ 10 meV .1 cos 3811 R[nm] (4.26)

for a nanotube with a chiral angle 8 [18, 19]. The maximum value of the gap (4.26)

is achieved for the zig-zag tube (3l, 0), for which 8 = 0 (see Fig. 4-3). The curvature

induced gap (4.26) is much smaller than the ID bandwidth

liv
D = Ii = 0.53 eV IR[nm] . (4.27)

Finally, consider a nanotube in the presence of a parallel external magnetic field.

In this case, electron properties are described by the Dirac equation (4.12) with c.p = 0

and the vector potential A with just the y component,

<I>
Ay=C'
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where

(4.29)

is the magnetic flux. The boundary conditions in the y direction are periodic for

the metallic case and quasiperiodic for the dielectric case. In the presence of parallel

magnetic field the problem remains separable and thus the wave function can be

factorized in just the same way as above. One again finds 1D subbands with the

spectrum (4.20), where

metallic

semicond.
(4.30)

for the metallic and semiconducting NT, respectively, with

<1>
(4.31 )~II =-<1>0

and
<1> _ he (4.32)0-- •

e

Thus in the presence of a parallel field the gapless n = 0 branch of the metallic nan-

otube spectrum (4.20) acquires a gap [20, 21, 23]. Interestingly, there is no threshold

for this effect, since the gap forms at arbitrarily weak field. The gap size is 2.6.4>,

where

(4.33)

One notes that the field-induced gap appears not at the Fermi level but at the center

of the electron band. Thus it affects the metallic NT properties only for electron

density sufficiently close to half-filling.
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Figure 4-1: Energy dispersion for a 2D Carbon monolayer obtained in a tight-binding
approximation. Hexagonal symmetry of the Brilloin zone reflects the underlying
symmetry of the graphite honeycomb lattice. Graphite is a semimetal with the pairs
of opposite Fermi points (K and K') corresponding to the band center. Near each of
the Fermi points the linearized dispersion follows from a 2D massless Dirac Equation
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u(r):

Figure 4-2: Shown are two plane wave basis states u(r) and v(r) of the problem (4.1)
• 211' • 211' •WIth E = o. Both u(r) and v(r) take the values 1, w = eT1 and w = e-T1 on one

sublattice and vanish on the other sublattice of the honeycomb lattice. The states
u(r) and v(r) have the same quasimomentum and form a basis of the Dirac problem
(4.10) at the point K. The independent basis states at the point K' are u(r) and
v(r).
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zlg-zag chiral

Figure 4-3: (m, n) nanotube as a graphene sheet rolled into a cylinder by identifying
the points connected by a chiral vector C = me! + ne2. Angle e between C and the
zig-zag axis is called chiral angle. Chiral vectors that connect cites in bold correspond
to metallic nanotubes, for which n - m = 3l, l integer. Armchair NTs are truly
metallic, whereas other nominally metallic NTs have a small curvature-induced gap
(4.26) at the band center
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Chapter 5

Field effect, polarizability and

chiral anomaly

In the present Chapter we will show that single electron properties of Carbon nan-

otubes described in Section 4.2.2 can change qualitatively in a strong electric field

applied perpendicularly to the tube axis. In particular, in Section 5.2 we find that in

metallic tubes the sign of Fermi velocity can be reversed in a sufficiently strong field,

while in semiconducting tubes the effective mass can change sign. These changes in

the spectrum manifest themselves in a breakup of the Fermi surface and in the en-

ergy gap suppression, respectively. The effect is controlled by the field inside the tube

which is screened due to the polarization induced on the tube. The theory of screen-

ing developed in Sec. 5.3 below links it with the chiral anomaly for 1D fermions and

obtains a universal screening function determined solely by the Carbon 7r-electrons

conduction band [1]. In Sec. 5.4 we consider the connection between anomaly and

universality of screening in detail.

5.1 Introduction

The possibility to change electron spectrum of Carbon nanotubes by external field

is of interest for basic research as well as for nanoscale device engineering. As we

have seen above in Sec. 4.2.2, a Carbon nanotube (NT) can be either a metal or
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a semiconductor depending on the chiral angle [10]. We have also shown that the

metallic behavior of a NT can be suppressed by both the intrinsic curvature of a

graphene sheet [18, 19], as well as by a parallel magnetic field [22]. Both effects can

induce a minigap at the band crossing.

In the present Chapter we examine the changes induced in the NT electron spec-

trum by the perpendicular electric field £ strong enough to mix different NT subbands:

nv
e£R ~ D = R' £ [MVIcm] ~ 5.261 R2 [nm2], (5.1)

where R is the tube radius and v is electron velocity. In such a field the effect on

electron spectrum is dramatic: in metallic tubes the electron velocity v = dEl dp

can be reduced and even reverse the sign, causing Fermi surface breakup, while in

semiconducting tubes the effective mass sign can change, which is accompanied by

strong suppression of the excitation gap (Fig. 5-1).

The NT electron system in this regime can be a host of intriguing many-body

phenomena. In the absence of the field, the dimensionless electron interaction in a

nanotube is

(5.2)

The reduction of electron velocity in metallic tubes leads to an increase of the inter-

action (5.2) that controls the Luttinger liquid properties [28, 29, 30, 31]. One expects

this to enhance the intrinsic, interaction-induced energy gap predicted to be small in

pristine NTs [28, 29, 30, 31].

Even more peculiar is the negative v state with intertwining electron and hole

Fermi surfaces (Fig. 5-1 top). This system provides a realization of a metallic state

unstable with respect to electron-hole pairing into excitons. Such an instability, long-

envisioned [24] by Mott, Keldysh and Kopaev, and others, is especially interesting

for the mirror symmetric electron and hole bands, described by an analog of the BCS

theory. The chiral gauge symmetry (5.6) of the NT electron Hamiltonian discussed

below eliminates the interband matrix elements of particle density. This makes the

phase of the excitonic order parameter a gapless Goldstone field, similar to the BCS
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order parameter. Despite its simplicity, no system with such properties has been

unambiguously identified so far, and it is thus possible that nanotubes in a transverse

field present a unique opportunity to study this phenomenon.

The field (5.1) required to create this state is to be achieved within the tube where

the external field is partially screened [25]. However, because of the discrete bands

with relatively large interband separation (4.27), the transverse field penetrates in the

NT fairly well. In Sec. 5.3 we will find the screening factor to be R-independent and

close to 5 (in accord with [25]), for both metallic and semiconducting tubes. With

the screening taken into account the numbers for the required field remain feasible.

Unexpectedly, the problem of transverse field screening has a relation with the

chiral anomaly. A significant part of electron energy in an external field, in the

effective Dirac model considered in Sec. 4.2.2, arises from the effects at the Fermi

sea bottom, where a regularization of this model is required. However, the anomaly

links the regularized energy with the properties near the Fermi level (the number

of fermion species and their velocity), and thereby generates a universal screening

function determined only by the Carbon 1f-electron band.

5.2 Field effect
We consider the nanotube at half-filling subject to a homogeneous electric field that

is perpendicular to its axis. Below we ignore charge accumulation due to gating.

Gating in itself will not modify the transverse field within the tube, since a uniformly

charged cylinder is equipotential. Charging may affect the inner NT field indirectly

via changing screening, but this effect should not be significant at moderate gating.

As it has been shown in the previous Chapter, the NT states with small energies

lEI « t calculated from the band center are described, separately at each of the K

and K' points, by a massless Dirac Hamiltonian

(5.3)
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where the velocity v is given in Eq. (4.7) in terms of the tight-binding integral t. For

a NT in the presence of a transverse electric field £,

110 = 1iv (iax8y + ayk) - e£Rcos(yj R) (5.4)

with k the (conserved) longitudinal momentum and R the NT radius. The boundary

conditions are quasiperiodic:

metallic

semicond.
(5.5)

The effects of NT curvature [18] as well as of a parallel magnetic field [22] described

above in Sec. 4.2.2 can in be included by slightly shifting 8 away from the ideal values

(5.5).

We employ a chiral gauge transformation

e£R2

1(y) = r;:;;- sin(yj R) (5.6)

which preserves the condition (5.5) and turns Eq. (5.4) into

(5.7)

The transformed Hamiltonian reveals that, in particular, the spectrum at k = 0 is

totally independent of the transverse field (Fig. 5-1).

The spectrum of a metallic NT near the band crossing at kR « 1 can be found

by employing the degenerate perturbation theory. We project the Hamiltonian (5.7)

on the two states I t), I .!-) degenerate at k = 0, and obtain

€(k) = :f: [1ivJo(2u)] k ,
e£R e£R2

u=J]=r;:;;-. (5.8)

Electron velocity changes sign at the roots of the Bessel function Jo, first at 2u =
f.-ll ~ 2.405 (Fig. 5-1). At u above critical the Fermi surface fractures: an additional
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small pocket appears for each spectral branch.

The level shifts in semiconducting NT at small k are given by the second order

perturbation theory in the k-term of the transformed Hamiltonian (5.7):

(5.9)

(5.10)

For 8 = 1/3 the curvature of the lowest band Ao changes sign at Uc ~ 0.6215 (Fig. 5-

1). This leads to a singular behavior of the excitation gap which is constant at u < Uc

and sharply decreases at u > Uc (Fig. 5-1 inset). This occurs because of the lowest

excitation energy shifting from k = 0 at u < Uc to k i= 0 at u > Uc. The threshold-like

suppression of the gap can be detected by a transport measurement in a thermally

activated regime.

The chiral gauge symmetry (5.6) that protects the spectrum at k = 0 is a distinct

feature of the Dirac model (5.3), (5.4). The 7f-electron tight-binding problem, in the

next-lowest gradient order, generates a correction to the Hamiltonian (5.3) violating

the symmetry (5.6):

(5.11)

with A= !acc1iv and 8 the NT chiral angle [10]. The transformation (5.6) applied to

(5.11) gives a minigap [26]

~E = I sin381 (acc/81iv) (e£R)2 (5.12)

Since 8R » ace, the minigap (5.12) is too small to alter the behavior at the energies

of interest, € ~ D.
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semiconducting NT in a perpendicular electric field
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5.3 Screening and chiral anomaly

The main effect of electron interaction is screening of the inner field that couples to

the electron motion. Here we derive the relation between the inner and outer fields.

We first show how the screening problem is reduced to the calculation of the NT

electron energy in the presence of an external field. Hereafter we measure all energies

in the units of D = livl R and use dimensionless field u = e£RI D. From Gauss'

law, the fields inside and outside the tube are related with the induced surface charge

density per one fermion species (spin and valley) by

£ext = £ + ~.47f . 4a , (5.13)

where the factor 112 accounts for depolarization in the cylindrical geometry. In

Eq. (5.13) we projected the actual charge density on the cos cp harmonic as a( cp) -t

4a cos cp, ignoring the higher order harmonics. (Here cp = y IR.)

To obtain the cos cp harmonic of the induced charge, we evaluate the dipole moment

per unit length as
p = _dW(£)

d£ '
(5.14)

where W (£) is the energy of one fermion species as a function of the inner field.

Combining this with the relation
p

a = 7fR2 (5.15)

and with the Gauss' law (5.13), and passing to dimensionless Uext, U, we obtain

(5.16)

After the dipole moment P(u) is known Eq. (5.16) can be solved for the inner field u

in terms of the outer field Uext.

We consider the general problem of electron energy in a transverse field in a free

particle model. The electron levels En,k perturbed by the field can be easily found

numerically at each value of the longitudinal momentum k by using a transfer matrix
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for Eq. (5.7). The level shifts 8En,k = En,k(U) -E~~~ decrease at large Inl, and the series

the total change of the occupied states energy

+00
Eo(k) = L 8En,k (such that En,k(U) < 0)

n=-oo

rapidly converge at n -+ :f:oo.

(5.17)

There are two basic problems with Eq. (5.17): (i) Due to an upward shift of the

filled levels (Fig. 5-1), Eo is positive and also has positive derivative dEo/du. Hence

Eq. (5.17) leads to the dipole moment Po = -dEo/du opposite to the field, i.e. to an

unphysical "diamagnetic" polarization sign instead of the expected "paramagnetic"

effect. (ii) The dependence of the energy Eo on the longitudinal wavevector k leads

to an ultraviolet divergence in the integral

(5.18)

because Eo(k) increases with IkJ, saturating at IklR ~ 1 at an asymptotic value ~U2.

Both difficulties are resolved by taking into account a fundamentally important

contribution to the energy that arises due to the effects at the Fermi sea bottom.

Physically, the finite electron band width invalidates the massless Dirac approxima-

tion at large negative energies. This contribution, however, depends solely on the

number of Dirac fermion species and their velocity v, and is totally insensitive to any

other details including the longitudinal momentum k value. We find that

E 1 2
anom = -'2u (5.19)

for each fermion species. Remarkably, Eq. (5.19) can be obtained without detailed

discussion of the behavior at the interatomic length scales - the universality of

Eq. (5.19) is rooted in the physics of the chiral anomaly in the 1 + 1 dimensional

Dirac fermion problem. The resulting total energy integral

w = i:(Eo(k) + Eanom) ~
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converges after Eo(k) is offset by Eanom (Fig. 5-2).

A general proof of the formula (5.19) for the energy anomaly will be given in

Sec. 5.4, where it will be seen that this result is regularization-independent and holds

for arbitrary external field. In this section, to gain intuition in the origin of this

surprising effect, we focus on a relatively more simple case of weak field u « 1.

Let us evaluate the energy (5.17) and derive the anomaly (5.19) using perturbation

theory in weak field. The NT bands at u = 0 are

(5.21)

In a half-filled system with just the €;; (k )<0 bands filled, the external field u changes

the Fermi sea energy by

(5.22)

Here the superscript in ~' indicates regularization by truncating the interaction with

the external field at a certain large negative energy. We check that this contribution

to the energy is independent of the details of truncation and obtain the anomaly

(5.19) by choosing a convenient truncation scheme.

The level shifts O€;; (k), in the second order of the perturbation theory in the

external field V=-e£Rcosc.p, are

(5.23)

where the superscript ::l:indicates the electron and hole branches and the k dependence

is suppressed. Due to the integration over c.pwith V ex: cos c.p in the matrix elements

the only nonzero terms in (5.23) are those with m = n::l: 1.

We now show that the sums over €~ and €~ in (5.23), respectively, give the regular

and the anomalous contributions to the total energy W = ~~o€;;. Different behavior

of the two sums under regularization stems from their different convergence type.

Individual terms in the sum over E~ decrease rapidly at large m, so that the series for

W is absolutely convergent. On the other hand, in the sum over €~ the terms do not
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Figure 5-2: Dipole moment P(k) = -d(Eo(k) +Eanom)/du per one fermion species in
a semiconducting NT as a function of k. Note that the energy anomaly (5.19) cancels
with Eo(k) at kR » 1, assuring convergence of Ptotal = J P(k)dk/21r. Note also that
P(k -+ 0) is dominated by the anomaly, since Eo = 0 at k = 0 due to the chiral gauge
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change at large m and thus the corresponding contribution to W is given by poorly

convergent and regularization-sensitive series.

Taking from (5.23) just the terms with €~, evaluating the matrix elements (m+ IVln-)

and summing over n yields

(5.24)

with n' = n + 1. The sum (5.24) rapidly converges at large n ~ :1:00 and can be

easily evaluated numerically.

Now we consider the sum of the level shifts W = :E~8€;; taking into account only

the second term in (5.23). At the first sight this sum is identically zero. Indeed, due

to the symmetry (m-IVln-) = (n-IVlm-), in the sum over n with m = n:1: 1 all the

terms cancel in pairs. However, truncation of the interaction at a large negative energy

compromises the cancellation and yields a finite result. If one sets (m-IVln-) = a
for alllmi or Inl exceeding a large number N, there will be just two terms in the sum

over n that do not cancel:

(5.25)

with N' = N -1. Evaluating the matrix elements and energy levels is straightforward

because at large N ~ Ikl one can set k = O. The result, coinciding with (5.19), is

robust under a change of the regularization.

The expression (5.19) for the energy anomaly, derived above for the weak field, is

in fact more general. To illustrate this we consider a special case of zero longitudinal

momentum k = a and derive (5.19) from bosonization, without using perturbation

theory in u « 1. After the problem (5.4) is bosonized in the standard way [64], as

described in Appendix Busing 'l/JL,R ex: ei(h, e-il/JR, we obtain a quadratic Hamiltonian

(5.26)

The second term in (5.26) representing interaction with the external field U(y) can
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be decou pled by a shift
, 1 (Y (') ,

c/>j -t c/>j - liv 10 U y dy . (5.27)

The Hamiltonian for c/>j takes the form (5.26) with U = 0, while the ground state

energy

(5.28)

is nothing but the anomaly (5.19) scaled by D = liv / R.

After adding the energies (5.24) and (5.19) we obtain a contribution to the dipole

moment of states with specific longitudinal momentum k (see Fig. 5-3). Integrating

in (5.20) over k numerically, we have

a 2W=--u2 '
a = { 0.196 .

0.179 ..

for 8 = 1/3

for 8 = 0
(5.29)

Eq. (5.13) with the dipole moment (5.14) and the charge density (5.15) yield the

screening function

(5.30)

With e2/liv = 2.7 this gives £ext/£ = 5.24 for 8 = 1/3, and £ext/£ = 4.87 for 8 = o.
The outer-to-inner field ratio ~ 5 (see Ref. [25] for another derivation using ab-initio

calculations) renders the required fields (5.1) feasible. Interestingly, the screening

(5.30) is independent of the tube radius R and is almost the same in the metallic and

semiconducting NTs. The latter is not surprising, since the screening is absent in a

single 1D mode approximation: the polarizability is related with dipolar transitions

between different subbands.

The radius-independence of (5.30) resembles an effect of a dielectric constant. We

note, however, that the change of the inner field due to individual Carbon atoms

polarizability is small in acc/21r R « 1. The result (5.30) reflects the semimetallic

character of the Carbon 1r-electron band with the density of states vanishing at the

band center.
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obtained as P = -dW/du with W given by (5.20). The weak field result obtained
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5.4 Energy anomaly for ID Dirac fermions

In the present Section we consider an energy anomaly, a counterpart of a chiral

anomaly, for a general infinite three-diagonal matrix of the form

-2 a-I 0 0

a-I -1 ao 0 0

0 ao 0 al 0 0
1-£= (5.31 )

0 0 al 1 a2 0

0 0 a2 2 a3

0 0 a3 3

and then comment on the relation with the NT problem.

We start with the case of constant off-diagonal elements am = a. In the Fourier

representation 1m) = eim(} the operator 1-£ has the form

1-£ = -i8(} + 2a cos () .

Eliminating the term 2a cos () by a gauge transformation

'lj;((}) = e-2iasin(};J;((}), 1-£ = -i8(}

(5.32)

(5.33)

brings us back to the problem with a = 0 and proves that in this case the eigenvalues

of the operator 1-£ are integers independent of a. [We point to the similarity with the

above discussion of the chiral gauge transformation and robustness of the NT electron

spectrum with k = O. Note that a = 2u.]

What we are really interested in is the problem (5.31) with am asymptotically zero

at large negative m and non-zero at large positive m, for example

am = {O,
a,
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Although in this case the energy levels depend on a, only a relatively small cluster

of levels with Iml rv 1 depends on a strongly, while the level shifts at large Iml are

exponentially small in Iml. This is the case because far away from m = 1, where

switching from a to a occurs, the sequence am is constant, which allows one to use

the above argument of integer eigenvalues robustness.

We are interested in the sum of all level shifts

(5.35)

One can make a general argument for the insensitivity of this quantity to the character

of switching from am = a to am = a as follows. To show this let us truncate the matrix

(5.31) at some large negative and positive row and column m = :l:.M and consider

the spectrum of this finite size matrix. The truncation may shift the levels only near

the top and the bottom of the spectrum, m ~ :l:.M. However, the lower levels with

m ~ -M are not affected by truncation since the matrix is diagonal at m -+ -00.

Only the upper levels with m ~ M will be sensitive to the value of a. This group of

levels is far away in m from the group near m ~ 1 contributing to 8 tr 1-l in Eq. (5.35).

One notes that the sum of all the upper levels shifts 8 tr 1-lupper satisfies an identity

8 tr 1-l + 8 tr 1-lupper = a . (5.36)

This is true because the sum (5.36) is nothing but variation of the trace of the finite

(2M + 1) x (2M + 1) matrix upon a change of am. However, the trace of a finite

matrix does not depend on the off-diagonal matrix elements.

The relation (5.36) of the sum of the shifts of the levels with m ~ 1 and m ~ M

demonstrates that each of them is a universal number insensitive to the exact rule for

switching from a to a is the sequence am. Indeed, the group of the upper levels is so

far from the place where the switching occurs that 8 tr 1-lupper cannot possibly depend

on am with m ~ 1. But then the identity (5.36) guarantees that the value 8 tr 1-l is

also completely universal. This result can be used to compute 8 tr 1-l by choosing a

convenient sequence am for which individual level shifts can be evaluated explicitly.
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Since the levels are unperturbed by constant am = a, the level shifts will be small

for any slowly varying am such that Idam/dml «laml. This enables one to obtain the

shifts by a perturbation theory in small dam/ dm. Performing a gradient expansion

for am in the vicinity of m = mo one finds

am = ii+ b( m - mo), ii= amo,

The Hamiltonian is

b !fum.1- dm m=mo. (5.37)

1-l = -i8o + 2(ii - b) cos B + b ( -i8oe-iO + h.c.) . (5.38)

The gauge transformation 'ljJ(B) = e-2i(a-b)sinO~(B) brings the Hamiltonian to the

form

1-l = -i8o + b [(-i8o - 2(ii - b) cos B)e-iO + h.c.] . (5.39)

The energies Em with m near mo obtained in the lowest order of perturbation theory

are

Em = (ml1-llm) = m - 2b(ii - b) .

The sum of level shifts (5.40) is

8tr1l = L -2b(a - b) =!((~t -2am ~) dm = -a;,I~: = a2 .
m

(5.40)

(5.41)

The first term in the integral is quadractic in da/dm and thus can be ignored for

slowly varying am, while the second term, being a full derivative, gives a result that

depends only on the asymptotic behavior of am.

To relate the above calculation with the fermionic anomaly we note three things.

First, the transverse electric field £ does make the Hamiltonian (5.4) a three-diagonal

matrix with am = -~u in the plane wave basis 'l/Jn,o(Y) = einy/Rxo. Second, the

electron levels En,k grow infinitely negative at both n -t +00 and n -t -00. Thus the

regularization of the interaction performed by altering the sequence am as described

above will yield two identical contributions to the anomaly. Third, the electron levels
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have an asymptotic form

(5.42)

with the correction due to finite longitudinal k becoming small at large Inl. This

proves that the contribution of regularization Eanom = -2( _~U)2 per one fermion

species is identical to Eq. (5.19) independent of k.

5.5 Conclusions

In summary, in the present Chapter we have shown that nanotube electron states

undergo interesting transformations in the field effect regime, leading to novel phe-

nomena in both the single particle and many-body properties. The relation of the

applied field with the screened field within the tube, that controls electron properties,

is found. In the framework of 1D Dirac fermions, the screening arises mainly due to

the effect of the field on the states at the bottom of 1D band. However, due to an

energy anomaly, which is a counterpart of the chiral anomaly, this contribution is

expressed in terms of the properties of the states at the middle of the band, near

Fermi level. This makes screening properties of nanotubes universal and robust. We

find that screening properties depend on nanotube type, with a few percent difference

between metallic and semiconducting tubes, and practically do not depend on nan-

otube radius. The analysis of screening, performed using the theory of chiral anomaly,

indicates that the fields required for the observation of the proposed effects are in the

experimentally feasible range for nanutubes of sufficiently large radius.
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Chapter 6

Adiabatic Charge Transport

In the present Chapter we describe the proposal [2] for an adiabatic charge pump

based on a coupling of a semi-metallic Carbon nanotube to a surface acoustic wave

(SAW). In Sec. 6.2 below we demonstrate that electron backscattering by a periodic

SAW potential, which results in mini band formation, can be achieved at energies near

the Fermi level. Quantized SAW induced current is a function of chemical potential

(or gate voltage) and can be positive or negative, depending on the sign of doping.

The sign reversal is illustrated within a theory of the acoustoelectric effect when

the SAW potential is weak. In Sec. 6.5 we discuss the feasibility of the pumping

experiment.

6.1 Introduction

The mechanism of quantized adiabatic transport, as first conceived by Thouless [45],

involves a one-dimensional (lD) electron system in a periodic potential that, via

backscattering, opens a gap in the electron spectrum. If the potential varies slowly

and periodically in time in such a way that the Fermi level lies within a gap of

the instantaneous Hamiltonian, then an integer charge me is transported across the

system during a single period. This results in a quantized current j = mef, where f

is the frequency of the external field. If realized experimentally, such a device would

present an important application as a current standard.
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Although the quantized adiabatic transport mechanism is compelling in its sim-

plicity, is has proven difficult to realize experimentally: the goal is to find such a

combination of a host ID system and a sliding external perturbation to engineer a

miniband spectrum with minigaps sufficiently large that disorder, thermal excitations,

and finite size effects do not compromise the integrity of the quantization. Recently,

a surface acoustic wave (SAW) has been used to achieve quantized current in a split

gate point contact [49]. The SAW field can be strong enough to induce a bulk gap,

and the SAW wavenumber can be chosen to match 2p F to pin electrons. Among the

existing ID systems, one possibility is to use quantum wires which can be coupled

easily to the SAW. However, since the densities for which adiabatic transport is most

pronounced correspond to a few electrons per SAW spatial period (realistically, ca. a

few microns), one would need wires with low electron ID density of around 104cm-1.

The densities currently available in such systems are at least an order of magnitude

higher [51].

In this Chapter we argue that a surface acoustic wave (SAW) coupled to a semi-

metallic carbon nanotube presents an ideal system in which quantized transport can

be realized. The experimental arrangement is illustrated in Fig 6-1. A nanotube is

placed between two metallic contacts on the surface of a piezoelectric crystal, with

a gate electrode nearby to allow adjustment of the Fermi level in the tube. In a

piezoelectric substrate the SAW is accompanied by a wave of electrostatic potential

that can have an amplitude up to a few Volts [50]. The potential decays both into

the free space and into the substrate to a depth comparable to the wavelength ASAW.

We assume that the tube is suspended at a height « ASAW above the substrate, so

that there is no direct mechanical coupling and only the free space component of a

SAW potential matters. When a SAW is launched from a transducer (such as an inter-

digitated electrode array) its electric field penetrates the tube and electron diffraction

on the sliding SAW potential results in miniband formation. By positioning the Fermi

level within the energy gap, the conditions for current quantization are fulfilled.

High electron velocity in nanotubes, v ~ 8 X 107cm/s, makes it possible to create

large minigaps. The expected minigap size can be estimated in view of the obser-
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Figure 6-1: The low energy spectrum of a metallic Carbon nanotube (broken line)
acquires a minigap (solid line) in the presence of a symmetry breaking perturbation.
The backscattering transitions (6.23) induced by the SAW potential are shown. In-
set: proposed experimental arrangement consisting of a nanotube suspended between
contacts, with a gate on the side, and a SAW source.
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vation [40, 35] of resonant states formed as standing waves in a finite sample. The

resonances were found to be spaced by hv / L, where L the sample length. This gives

Egap = 0.6meV for L = 3/lm, which implies that a periodic SAW potential with

ASAW of several microns is sufficient to form large minigaps. A period of the SAW-

induced grating down to 200 - 300nm can be realized, so that minigaps as large as

10 meV are expected. For comparison, the same periodic perturbation acting on a

GaAs ID channel will induce minigaps of an order of magnitude smaller because of

a smaller VF ~ 107 cm/s. A further advantage of metallic nanotube system results

from its semi-metallic spectrum in which two pairs of oppositely moving spin degen-

erate states intersect exactly at the Fermi level (at half-filling). Thus despite the fact

that the SAW wavelength is always much larger than the lattice constant, principal

minigaps will open close to the Fermi level (Fig. 6-1) and moreover a minute doping

or gating is sufficient to align the chemical potential with one of the minigaps.

As it has been shown in Chapter 4, electron states in semi-metallic nanotubes

are described by the ID Dirac equation rather than the Schrodinger equation. We

shall show that a selection rule protects the integrity of the Dirac band structure

against backscattering due to a potential perturbation. Therefore in the arrangement

shown in Fig. 6-1, the SAW will not couple to the electrons at all. In order to realize

adiabatic charge transport, backscattering must be restored by applying an external

perturbation that lowers the symmetry of the Dirac system (by mixing left and right

states). In Sec. 4.2.2 we have shown that this can be achieved by applying a magnetic

field [22] along the nanotube axis. Also, as it has been pointed out there, in a number

of nominally metallic nanotubes such as the so-called "zig-zag" nanotubes, a matrix

element mixing the left and right states appears [18] due to the curvature of the 2D

Carbon sheet rolled into a tube. Both effects open a minigap at the band center, as

confirmed experimentally [23, 19].

To simplify our analysis, in this Section we consider adiabatic charge transport

in the non-interacting system. The effects of electron interactions on the electron

spectrum will be accounted for in Chapter 7 below. There we will demonstrate

that the electron interaction enhances the minigaps thus making adiabatic current
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quantization more pronounced.

6.2 Single particle spectrum

As it has been shown in Sec. 4.2.2, the single-particle NT spectrum near half-filling

in the vicinity of either K or K' points can be obtained from the massive 1D Dirac

system,

(6.1)

The Hamiltonian (6.1) is written in the Weyl basis where the components of the wave

function 'if; = ('if;R 'if;L)T represent the right and left moving particles. (11,3 are the

Pauli matrices and v ~ 8. 107 em Is is the NT Fermi velocity. The Hamiltonian (6.1)

yields the Dirac dispersion

(6.2)

where the momentum p is measured with respect to the NT Dirac points :l:ko, see

Fig. 6-1.

Consider now the nanotube in the presence of a periodic potential induced by a

SAW that propagates in the piezoelectric substrate as described above. We assume a

monochromatic SAW with a wavenumber kSAW and velocity s. This wave produces

harmonically varying potential which decays exponentially in the direction z perpen-

dicular to the surface: U ex e-kSAWZ cos kSAW(x - st). In principle, this requires adding

an extra dimension to the Hamiltonian (6.1). Practically, the SAW wavelength

27r
ASAW = -k-

SAW
(6.3)

is much greater than the tube radius R, and thus one can ignore the SAW-induced

potential variation over the tube cross-section. For example, for ASAW = l/-lm and

R = 0.5 nm, from the exponential factor e-kSAWZ one expects that the potential is

uniform over the nanotube circumference to within 0.5%.

The realization that the factor e-kSAWZ can be dropped amounts to a significant
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simplification since the problem with

U(x, t) == A cos kSAW(x - st) (6.4)

is separable. Focussing on the lowest (metallic) sub-band, the wave function satisfies

the following non-stationary Dirac equation in the Hamiltonian form:

ili8t'lj; == {1lD +U(x, t)} 'lj; . (6.5)

So far we have neglected the effects of the electron spin. In the present Chapter we

do not consider effects of a magnetic field. The SAW-induced potential (6.4) couples to

the total charge density and therefore does not distinguish between spin polarizations.

Also since we are focussing on the low energy phenomena near half-filling, we discard

interactions between the K and K' points in the Brilloin zone since these processes

involve a momentum transfer rv 1/ ace » kSAW. As a result we effectively have four

(2spin X 2valley) decoupled fermion types, which we call "flavors", each described by

the same Dirac equation (6.5). The resulting spin and valley degeneracy will be taken

into account in Sec. 6.3 by quadrupling the amount of carriers contributing to the

quantized current.

A further simplification to a problem (6.5) arizes when one utilizes adiabaticity

due to a small sound velocity:

s «v.

In this case one may study the spectrum of a stationary problem

{1lD + U(x)} 'lj; == €'lj; ,

where

U(x) == A cos kSAWx .

(6.6)

(6.7)

(6.8)

Below we analyze the energy spectrum of the problem (6.7). It is convenient to
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perform a gauge transformation

where we introduced the dimensionless SAW coupling

- A
A= -.

EO

The energy scale

EO = JikSAWv = 3.3 meV/ ASAW [JLm]

(6.9)

(6.10)

(6.11)

is a natural measure of the relevant energies and it will be utilized throughout this

work. After the gauge transformation (6.9) the Hamiltonian 1lD + U(x) becomes

(6.12)

One can readily see from Eq. (6.12) that in the absence of electron backscattering

(~o = 0) the external potential is gauged away and does not affect the spectrum.

In the presence of backscattering, the periodic system (6.12) is characterized by the

Bloch states 'l/;p(x) = up(x)eipx with a quasimomentum P taking values in the effective

Brillouin zone defined by the SAW period, -kSAW /2 < P < kSAW /2. The correspond-

ing energy spectrum E(p) can be obtained analytically [2] in the weak coupling limit,

~O « EO , (6.13)

by treating the last term in (6.12) as a perturbation. This perturbation mixes right

and left moving spectral branches at the momenta values

m
Pm = :i:"2 kSAW, m = :i:1, :i:2,
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Using the decomposition

00

e-izsinx = 2:: In(Z) e-inx ,
n=-oo

we obtain the minigaps 2~~) (A), where

(6.15)

(6.16)

are oscillatory functions of the SAW amplitude A, with zeros at the nodes of Bessel

functions Jm• In particular, for A « EO,

~o (A)lml
~m ~ Iml' EO

(6.17)

Minigaps (6.16) open at the energy values Em = mEo/2. We use the superscript (0)

in Eq. (6.16) to underline that the minigaps (6.16) are obtained in the single particle

model. In Chapter 7 we will find out how the result (6.16) is modified in the presence

of electron interactions.

As long as ~o « EO, the gaps (6.16) occupy only a tiny fraction of the energy do-

main. The strong coupling regime is reached at ~o 2:: EO, when the gaps become wider

than the sub-bands. With ~o arbitrary, the spectrum can be studied numerically [2].

This amounts to integrating the system of two first-order differential equations

1{,' 'ljJ' = E'ljJ' (6.18)

over the SAW period, which gives rise to a transfer matrix relating the wavefunction

values on the ends of the interval 0 < x < ASAW. The transfer matrix is unimodular,

with two eigenvalues exiT. The parameter, can be real or imaginary, depending on

the value of E. The former case corresponds to a Bloch state with a quasimomentum

p = ,kSAW /21r, whereas the latter case corresponds to E in the spectral gap. Examples

of the energy spectrum obtained in this way are shown in Fig 6-2 for the case ~o =
OAEo and in Fig. 6-3 for the case ~o = EO. We note the persistence of qualitative
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features of the spectrum derived above from the perturbation theory. Energy gaps

oscillate as a function of 2A taking zero values at particular A's. Gaps become wider

than the subbands already in the cae ~o = EO. The spectrum also possesses an

electron-hole symmetry, E -+ -E, characteristic of a Dirac system.

6.3 Adiabatic current

Having solved the electron spectrum problem, we now proceed with discussing adia-

batic transport. When electron density matches the SAW periodicity, the chemical

potential falls in one of the energy gaps separating filled and empty states. In this

case, moving SAW carries electrons as a conveyer, and so the current is integer in

the units of electron charge per cycle. Let us derive the condition for electron den-

sity corresponding to full occupancy of minibands. The number of filled minibands,

counted from the middle of the spectrum shown in Fig. 6-3, should be approximately

proportional to doping (or to gating potential).

We denote p to be the electron density measured from the half-filling. Its contri-

bution to electric current is j = eps, where s is the SAW velocity. Integer filling of

m minibands corresponds to the density

{mkSAw/2 dk 4m
p = 4 J-mksAw/2 27r = ASAW

(6.19)

of 4m electrons per SAW period ASAW, where the factor of four takes care of the spin

and valley degeneracy described above. The resultant adiabatic current is

Introducing the SAW frequency

. 4 sJ= em-,-.
"'SAW

I=_s_
ASAW'
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we obtain for the quantized current.

j = 4mef, m = :i:1, :i:2, .... (6.22)

The consequence of our result (6.22) is that there is no current in a nanotube doped

exactly to half-filling. Only the excess charge density p contributes to electric current

when the SAW is applied. This is because electrons in the half-filled (undoped) system

represent a solid state analogue of the Dirac vacuum: under the SAW perturbation,

the many-body state carries neither charge nor current. For a weak SAW potential

this follows from adiabatic continuity: quantized transport takes place when the

chemical potential f.-l falls in one of the minigaps. The value of the quantized current

will remain the same [45] within a whole range of values of f.-l and A that stay within

a gap. Since the spectral gap at the band center is adiabatically connected to the

minigap at A = 0 (induced by the symmetry breaking perturbation ~o), it is evident

that at half-filling the current is zero. The dependence of the energy gaps on A,

shown in Figs. 6-2 and 6-3, describes the width of the plateaus of quantized current.

6.4 Current in the weak perturbation limit

Below we show that, in fact, the sign reversal of the current at p < 0, as well as

its vanishing at half-filling, p = 0, are generic features unrelated to adiabaticity. To

illustrate this point, an alternative scheme can be developed to evaluate the current

when the SAW amplitude is small and the temperature is high, i.e. T:» ~1 rv A.

In this limit, the left to right backscattering (depicted in Fig. 6-1) is incoherent, and

transition rates are given by the Fermi Golden rule:
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Figure 6-2: Electron energy spectrum of Eq. (6.5) VB. the SAW field strength A,
scaled by EO = likv. Qualitative features of the perturbation theory (6.16) persist. In
particular, the energy gaps oscillate as a function of A vanishing at values close, but
generally not equal, to the roots of Bessel functions.
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Figure 6-3: Electron energy spectrum of Eq. (6.5) vs. the SAW field strength A/EO,
for ~o = EO. In the region A rv EO the mini bands become exponentially narrow

160



where nf = (e{3(f-JL) + 1)-1. For spatially periodic SAW the conditions of momentum

and energy conservation,

p' - p = mk, Er(P') - E}(p) = mhf , (6.23)

must be fulfilled. As a simple model of momentum relaxation, we consider the SAW

potential confined to an intervallxl < £/2 smearing the resonance condition (6.23) on

momentum conservation. Physically, £ = vr is associated with the scattering mean-

free path of the electron. Also, the transitions take place only for m = :1::1to lowest

order in the SAW strength. This gives

where

and, for ~o «EO,

Mm~,H(P,P') = ~(llr)Ap'-p-mk ,

2A . q£
Aq=qSln2,

(llr) = 2~ .
EO

(6.24)

(6.25)

(6.26)

At temperatures T ;:::li/r, hf, the smearing of Fermi step nf exceeds the smearing of

momenta, which allows the replacement

In this approximation, by evaluating the total induced current,

I = e L(dwp-tp' - dWp'-tp) ,
P,P'

one obtains

(6.27)

(6.28)

(6.29)1= eIAJ2£ (~O)2 hf sinh(Eo/2T) sinh(j.t/T) 2 .
21i v EO T (cosh( Eo/2T) + cosh (j.t/T) )

The current (6.29) is an odd function of J-L: indeed, the sign reversal at J-L = 0 can

be inferred directly from Fig. 6-1 since the transitions induced by SAW are left --+
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right at J-L > 0, and right -7 left at J-L < o. The dependence I vs. J-L in the weak SAW

regime is shown in Fig. 6-4. As the temperature is decreased (or the SAW amplitude

increased) the system moves out of the range of validity of the Golden rule estimate

and enters the regime of adiabatic transport A » max(1i/T, T).

6.5 Discussion

In this Chapter we have shown that a SAW-induced periodic potential opens minigaps

(6.16) in the NT single particle spectrum. With the chemical potential inside the

minigap, adiabatically moving SAW generates a quantized current (6.22) that changes

sign at half-filling.

The picture described in the present Chapter does not take into account electron

interactions that are important in one dimension. In the following Chapter we develop

a bosonized description of interacting electrons in a nanotube. This framework will

allow us to renormalize the noninteracting minigaps (6.16) in Sec. 7.3.1. There we

will see that the renormalized minigap values (7.78) are strongly enhanced by electron

interactions.

To complete our discussion, let us comment on the feasibility of the experiment

(Fig. 6-1 inset). Maximal values of the SAW induced minigaps in Fig. 6-3 are close to

~o, one half of the value of the central gap. If a longitudinal magnetic field is used to

open the central gap, then for a single-walled nanotube with a diameter 1.6 nm (such

as that grown by Ref. [52]), and a field B = 16 T, one finds ~o ~ 5 meV. Applied

to the spectra in Fig. 6-2 where ~o = O.4Eo (i.e. EO = 12 meV), it corresponds to a

SAW wavelength of ASAW ~ 0.25 J-Lm, frequency f = 13 GHz, and quantized current

of around 8 nA. In order to reach a maximum value of the principal SAW induced

minigap shown in Fig. 6-2 the SAW potential should be around A = 10 meV. This

value obtained in the single electron approximation should be corrected by the factor

K rv 10 to account for the screening in the ID system (Chapter 7, Eqs. (7.78) and

(7.23)). Thus a SAW potential of around several hundred meV may be required.

These values do not present a problem even when a weak piezoelectric such as GaAs
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Figure 6-4: Current vs. electron chemical potential J-L (with EO = 1ikv) as predicted
by the Golden rule (6.29) valid in the range A ~ lilT « T, where ~1 ~ A. The
peaks positions, J-L = :1:Eo, are defined by the resonance condition (6.23) for m = :1:1.
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A schematic plot of the quantized current plateaus in the adiabatic regime A »
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are centered at the values of J-L corresponding to the resonances (6.23).
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is used. [49] Moreover, for the experiments with nanotubes one can use a much stronger

piezoelectric such as LiNb03 as a substrate, which will make SAW potential in the eV

range available. A strong piezoelectricity of the substrate will also facilitate generation

of the high frequency SAW required for the proposed experiment (in LiNb03 the SAW

frequencies of ca. 17 GHz have been reported [53]). One could also use the "zig-zag"

nanotubes in which the central gap opens [18] due to the curvature of the carbon

sheet, Eq. (4.26). In this case the gap is predicted to be in a range up to 20 meV

for a tube diameter of 1.6 nm, and the magnetic field is not necessary. Thus a SAW

induced minigap as large as 10 meV could be obtained in this case.

To summarize, we have considered a metallic carbon nanotube in the field of a

slowly moving periodic potential. If the nanotube is subjected to a further pertur-

bation that mixes right and left moving states, the coupling between the electrons

and the SAW potential acts as a charge pump conveying electrons along the tube.

An estimate of the miniband spectrum induced by electron diffraction on the sliding

potential revealed that minigaps of ca. 10 meV are viable. We therefore conclude that

the carbon nanotube combined with the SAW provides a promising system in which

quantized adiabatic charge transport can be observed. As it will be demonstrated in

the following Chapter, the energy gaps, that can be detected experimentally through

quantization plateaux widths, are sensitive to the character of electron interactions.

We will see that quantized transport in this strongly interacting system can be viewed

as a novel probe of the Luttinger liquid physics.
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Chapter 7

Interaction Induced Ordering

In the present Chapter we consider a nanotube in an external periodic potential. We

show that such a potential can change NT electronic properties. Minigaps in the

spectrum open up at electron density commensurate with potential period, giving

rise to incompressible electron states.

As it has been shown in Chapter 6, in the single electron model such incompress-

ible states appear only at integer density. In contrast, in the presence of electron

interactions, incompressible states with fractional densities exist. This problem is an-

alyzed below in the Luttinger liquid framework. We use the phase soliton approach to

estimate the mini gaps at integer and fractional densities. The sensitivity of minigaps

to density and interaction strength opens new possibilities for controlling transport

properties [3].

7.1 Introduction

In the present Chapter we consider electron properties of Carbon nanotubes in an

external periodic potential with period Aext much greater than the NT radius a,

Aext »a. Such a potential can be realized using optical methods, by gating, or by

an acoustic field. In all three cases, realistic period Aext is of a micron scale. In the

previous Chapter we have studied an acoustoelectric effect in a NT in the presence

of a surface acoustic wave. This effect has been proposed as a vehicle to realize
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adiabatic charge transport [2]. In the latter proposal, a surface acoustic wave (SAW)

propagating in the piezoelectric substrate is accompanied by a wave of charge density

that results in the electric coupling between the SAW and the NT electrons. We have

shown that a number of incompressible electron states appear due to the SAW-induced

periodic potential. With a chemical potential inside the minigap corresponding to

such an incompressible state, a slowly moving SAW induces a quantized current

(6.22) in the nanotube.

In this Chapter we show that the coupling of an external periodic potential to

electronic NT system can be used to alter electrolic properties and as a probe of elec-

tron correlations and interactions. In the absence of interactions, electron diffraction

on the periodic potential results in minigaps opening at certain values of electron

energy. In the previous Chapter we have only considered incompressible states in

the single electron picture. In such states, the total electron density (counted from

half- filling) is
4m

p=-
Aext

(7.1)

with an integer m (cf. Eq. (6.19)). Here the factor of four corresponds to a number of

fermion flavors in a nanotube near half-filling due to spin and valley degeneracy, and

m is the number of fermions of each flavor per potential period Aext. Below we show

that in the presence of electron interactions, additional incompressible states arise at

any rational m = p/q.

In this Chapter we treat interactions in the Luttinger liquid framework. In the

bosonized picture, an incompressible state corresponds to a lattice of sine-Gordon

solitons of bose-fields that is commensurate with the external potential. Such a state

is characterized by an average number m of solitons of each flavor per potential period

Aext. In the noninteracting case, the Bloch theorem allows only integer m, while in

the interacting case m can be any simple fraction. Excitation gaps for such fractional

states depend on interaction strength and vanish in the noninteracting limit. We

estimate excitation gaps over commensurate states using a phase soliton approach

that describes a distortion of a soliton lattice over a length scale much greater than
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the potential period.

The method of treating an excitation in a commensurate state as a phase soli-

ton that we use below has been formulated in the works of Dzyaloshinskii [46] and

Pokrovsky and Talapov [47]. A novel feature of the NT electrons is the SU( 4) sym-

metry [31, 29, 28] of the NT Dirac Hamiltonian [10]. In the bosonized language this

results in two different phase soliton lengths, ich and ifl, with the first one correspond-

ing to the stiff charge mode, and another to three neutral flavor modes [33]. When

the interactions are strong, ich »lfl. Depending on the relation between lch, lfl, and

the external potential period Aext, in the presence of interactions we will consider

three qualitatively different regimes of coupling of the NT fermions to the external

potential:

(i) Weak coupling limit, when

Aext « lfl « lch . (7.2)

In this limit we will show that the minigaps are strongly enhanced by the electron

interactions [2]. We will also consider a novel interaction-induced incompressible

state with a fractional filling m = 1/2 in the limit (7.2). We will find its ground state

and the corresponding renormalized excitation gap, as well as briefly discuss other

fractions.

(ii) Strong coupling limit, when

lfl « Aext « lch . (7.3)

In this limit we will find that due to the large Coulomb repulsion, the four-flavor

NT electron system behaves as a system of single flavor fermions with a quadrupled

density. We will use this observation to estimate the interaction-induced minigaps in

this limit. We will show that the SU( 4) symmetry of NT electrons manifests itself in

a universal scaling power 4/5 of renormalized minigaps in the limit of large electron

interaction.
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(iii) Weak tunneling, or quasiclassicallimit

If! « lch « Aext (7.4)

corresponds to semi-classical electrons localized in the potential minima. In this case

the NT properties will be determined by a classical Coulomb energy of a chain of

localized electrons and holes.

The outline of the present Chapter is as follows.

In Section 7.2 we introduce and bosonize an effective SU( 4) Dirac Hamiltonian

for interacting NT electrons. We identify a stiff charge mode and fluctuating flavor

modes.

Weak coupling limit (7.2) is considered in In Section 7.3. First we renormalize the

minigaps (6.16) corresponding to the integer m incompressible states that we have

identified in the previous Chapter for a noninteracting system. We next focus on the

simplest interaction-induced incompressible state with a fractional filling m = 1/2.

The strong coupling limit (7.3) of interacting fermions localized in the potential

minima is described in Section 7.4.

In Section 7.5 we consider the weak tunneling limit (7.4) of classical electrons and

holes localized in the potential minima and plot a charge filling diagram.

In Section 7.6 we briefly discuss a possibility to measure interaction-induced mini-

gaps in the adiabatic current setup described in Chapter 6 and summarize the main

results of the present Chapter.

7.2 Bosonization

In the present Section we develop a many-body description of the nanotube close

to half-filling taking into account the Coulomb repulsion between electrons. This

treatment will be used later in Sections 7.3 and 7.4 to study the role of interactions

on the energy spectrum.

In the Appendix B we have outlined the key steps for bosonizing 1D spinless
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electrons. In the present Section we will bosonize the effective SU( 4) invariant Dirac

Hamiltonian that describes the NT properties close to half-filling.

Assuming spin and valley degeneracy discussed in Sec. 6.2, we introduce the Hamil-

tonian

1-l = 1-l0 + 1-lbs + 1-lext (7.5)

for the NT electrons. In Eq. (7.5), the first term is a massless Dirac Hamiltonian

Here

( 7/1~)7/10 = 7/1~ ' 1 ~ a ~ 4

is a two component Weyl spinor of a flavor a, and

4

p(x) = L 7/1t(x)7/1o(X)
0=1

is the total charge density.

(7.6)

(7.7)

(7.8)

The Hamiltonian (7.6) is written in the forward scattering approximation for

nanotubes [28, 29]. Under this approximation we have discarded the backscattering

and Umklapp processes between different Dirac points of the graphene Brilloin zone.

Since the ratio N = 21rR/ ace of the NT circumference to the inter-atomic distance

ace is large (ca. 10), backscattering and the Umklapp interactions are small scaling

as I/N [28]. The Umklapp amplitude is also shown to be small numerically [32]. The

long-range electron interaction in the spin- and valley-degenerate modes is symmetric

with respect to the four 'flavors'. In the Luttinger liquid theory of nanotubes [28, 29]

this interaction is described by the forward scattering amplitude V(k) with a form

that depends on the electrostatic environment. In the absence of screening,

I e2
Vo(k) = ~ eikxdx = e21n [1+ (kRr2]

169

(7.9)



The substrate dielectric constant c changes Vo(k) to

V(k) = €~1 VO(k) .

Backscattering in the model (7.5) is described by the term

(7.10)

(7.11 )

As discussed above in Sec. 4.2.2, such a term is present in semiconducting nanotubes,

and it can also originate in metallic tubes due to curvature of the graphene sheet or

due the external magnetic field.

Finally, the interaction with the external periodic potential is described by

llext = / dx pU(x) ,

where the potential U is defined similarly to the one in Eq. (6.8):

(7.12)

U = A cos kextx ,
27r

kext=~.
Aext

(7.13)

The Hamiltonian 1-l0 + 1-lbs + llA is bosonized in a standard way [64, 28, 29]. We

represent the fermionic operators (7.7) as nonlocal combinations of bose fields

(7.14)

similarly to the single flavor case discussed in the Appendix B. Here the conjugate

bose fields obey the commutation algebra

(7.15)
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As a result we obtain the Lagrangian

V! 4 1 (~ 4 )£:. = 27r dx]; (01'8,,)2 - 2 ~p-qVqpq - !dx 7r:]; cos28" + p(x)U(x) (7.16)

where the total particle density in terms of the bosonic variables is given by

4 4

p(X) = L Po = L~Oxeo .
0=1 0=1

(7.17)

The Lagrangian (7.16) corresponds to the classical sine-Gordon Hamiltonian for

the four interacting bosonic fields eo,

llcl[80] = n; Jdx {~E(Oxeo)2 + K;-l (Eox80)2 +
+90 E cos 2eo + n1

v E oxeo . (U(x) - Jl)}
Here the coupling

~o
90 = nvR '

(7.18)

(7.19)

J-L is the chemical potential calculated from the half filling, and the charge stiffness

4
Kq = 1+ ~ V(q) .

7rnV
(7.20)

Below we drop the (irrelevant) logarithmic dependence of the stiffness Kq on the

momentum, assuming a constant value K = Kkext.

As a next step we shift the displacement fields

(7.21)

This procedure is analogous to gauge transforming fermion operators (6.9). The

transformed Hamiltonian (7.18) is

1l~1[80]= n;: Jdx {~ E(oxeo)2 + K;-l (E ox80)2

+go E~=l cos (280 + 2j1,kextx-2A sin kextx)} ,
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where the dimensionless quantities

- A
A==-K 'EO

- J-l
J-l == K Eo '

Eo == hkextv (7.23)

are introduced in a way similar to Eq. (6.10). The difference between Eqs. (7.23) and

(6.10) is in additional screening (by a factor of 1/ K) of external fields U(x) and J-l by

the interacting NT system.

Finally, we diagonalize the Gaussian parts of the Lagrangian (7.16) and Hamilto-

nians (7.18,7.22) by the unitary transformation

81 1 1 1 1 ()o

82 1 1 -1 1 -1 ()1
- (7.24)83 2 1 -1 -1 1 ()2

84 1 1 -1 -1 ()3

In the new variables the total charge density (7.17) reads

(7.25)

Transformation (7.21) leaves ()a intact, and shifts

As a result we obtain the Lagrangian

£' == £0 + £:F

(7.26)

(7.27)

describing one stiff charge mode and three soft flavor modes, where (h == v == 1)

(7.28)

(7.29)
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3 3
F (ea, eO) = cos eO . IT cos ea + sin eO . IT sin ea.

a=l a=l
(7.30)

The Gaussian Lagrangian LO describes three flavor modes that move with a velocity

v, and one charge mode that has a strongly enhanced velocity

(7.31 )

This is a manifestation of a separation between charge and flavor in an excitation in

a strongly interacting system described by the Hamiltonian 1-£0.

We also note here that the Lagrangians (7.16) and (7.27) are SU( 4) invariant, as

is the original Hamiltonian 1-£. This invariance is not explicit in the adapted notation

and arises at a level of renormalization.

7.3 Weak coupling limit

As shown in Section 6.2 above, in the case of noninteracting electrons in the nan-

otube an external periodic potential opens minigaps in the electron spectrum. Such

minigaps correspond to an integer number m of electrons of each flavor per potential

period. The goal of the present Section is to consider the role of electron interactions

on the minigaps in the case of a small backscattering.

Below we treat the bosonized interacting problem (7.16) and (7.27) perturbatively

in small backscattering amplitude go defined in Eq. (7.19). As we will show below,

small backscattering corresponds to a weak coupling limit (7.2) for an interacting

system. This limit is defined in terms of the flavor soliton length that will be estimated

below. For now we assume that this is the limit when the perturbative treatment in

backscattering go is valid.

In the absence of backscattering (go = 0), the Lagrangian (7.16) describes a com-

pressible (Le. gapless) Tomonaga - Luttinger liquid. Thus, similarly to the nonin-

teracting case considered in Sec. 6.2, the external potential can be gauged away and

thus it does not affect the spectrum when the backscattering is absent. The total
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density (7.1) corresponds to the chemical potential

_ m
J-L=-2 . (7.32)

Here the screened value jl of the chemical potential is defined in Eq. (7.23) above.

The density (7.1) corresponding to a filling of m fermions of each flavor per potential

period varies continuously with jl when 90 = o.
Backscattering qualitatively changes the spectrum. As shown above in Sec. 6.2,

in the noninteracting system (corresponding to charge stiffness K = 1) a periodic

potential (7.13) opens energy gaps in electron spectrum f(p) near the momentum

values Pm = x.mkext/2. In the case of a small backscattering .6.0 ~ fO the mini gaps

are given by Eq. (6.16).

In Sec. 7.3.1 we will prove that electron interactions (K ~ 1) strongly enhance

the minigaps (6.16).

In Sec. 7.3.2 we will show that interactions result in existence of incompressible

states with a fractional number m of electrons of each flavor per potential period. We

will illustrate this point by considering the simplest case of the filling m = 1/2 in the

limit (7.2).

7.3.1 Integer filling m

In the present subsection we renormalize the noninteracting minigaps (6.16) for in-

compressible states with integer m due to the presence of interactions. For that we

utilize the bosonization picture developed in Section 7.2 above.

Our course of action will be a generalization of the phase soliton approach sug-

gested by Pokrovsky and Talapov and others [47] to the case of four boson modes.

First we will find a classical ground state of the Hamiltonian 1l~1 given by Eq. (7.22)

by decomposing the fields 8Q(x) in a series in the coupling 90,

(7.33)
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(7.34)

We will obtain the effective potential for the "slow" phase modes ea that are con-

stant in the commensurate state. Next we will renormalize this effective potential by

applying the canonical transformation (7.24) and integrating out the fluctuations of

the soft flavor fields (ja. Finally, we will estimate the excitation energy as that of a

classical phase soliton of a stiff charge mode governed by the renormalized effective

potential.

Below we find a classical ground state of the Hamiltonian (7.22) with the chemical

potential jj given by Eq. (7.32) with an integer m. For that we need to solve the Euler-

Lagrange equations
81-l~1 = 0
8eo

perturbatively in go. Using the decomposition (7.33), in the lowest order in go we

find the effective potential for the "slow" components

(7.35)

(7.36)

In the ground state the fields eo are all equal and constant, their value being 7r /2 or

o depending on the sign of Jm(2A).

An excitation over the ground state is a soliton configuration

(7.37)

in which the components eo acquire a coordinate dependence that is slow on the

scale of Aext. Such a configuration corresponds to adding fermions of each flavor

simultaneously. The minigap ~m is by definition an energy cost to add a single

fermion and thus it is given by a quarter of the energy of this configuration.

To find ~m we change the basis according to (7.24). In the new basis the excitation

energy 4~m is an energy of a charge soliton (jo ~ (jo + 27r with the flavor modes

fluctuating around (ja = o. Such a soliton adds the total charge of 4e and is a flavor
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singlet. Its energy can be estimated from a Lagrangian

(7.38)

for the "slow" modes (jo , (ja. Here the Gaussian part £0 is given by Eq. (7.28), and

- nv / -0 IT -£m = -- dx 4gA cos e. cos ea .
7r a

Integrating over the Gaussian fluctuations of (ja we obtain the scaling law

(7.39)

(7.40)

for the coupling (7.36) when K » 1. Quantum fluctuations of each of the three flavor

modes ea contribute by -1/4 to the scaling dimension of gA' In deriving Eq. (7.40)

we neglected fluctuations of the stiff charge mode (jo, contributing via K-l/2 « 1 in

the power laws.

Quantum fluctuations of flavor modes around (ja = 0 are important on the length

scales a < l < lfl smaller than the flavor soliton size lfl. The latter can be estimated

self-consistently from the balance of kinetic and potential terms for the flavor modes

in the Lagrangian (7.38),
1

gA(lfl) rv 2 .
lfl

From Eq. (7.41) we obtain the flavor soliton size

(
D )4/5

lflm rv a (0)-
~m (A)

Here the 1D bandwidth D is defined in Eq. (4.27), and "bare" minigaps

(7.41)

(7.42)

(7.43)

are given by their noninteracting values (6.16) with the screened potential amplitude

A defined in Eq. (7.23). Finally, we estimate the renormalized minigap ~m as an
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energy of a classical charge soliton from the Hamiltonian

(7.44)

that follows from the Lagrangian (7.38) with the flavor degrees of freedom integrated

out. From Eq. (7.44) we find the charge soliton size

(7.45)

and the corresponding charge soliton energy

(7.46)

Using (7.42) and (7.41), this gives an estimate for a renormalized minigap value

(7.47)

Let us briefly discuss the result (7.47). We notice that the qualitative features

of the noninteracting minigaps (6.16) persist in the interacting case. Namely, as

a function of a screened potential amplitude (7.23), the minigaps (7.47) oscillate,

collapsing to zero at particular values of A. However, minigaps (7.47) are strongly

enhanced in magnitude compared to (6.16) due to electron interactions. Also the

dependence of the minigaps on both the bare backscattering ~o and the periodic

potential amplitude A has a characteristic power law behavior which, in the limit of

strong interactions K » 1, is given by a universal power law 4/5. This power law is

a manifestation of the SU( 4) flavor symmetry in the nanotube near half filling.

Finally, let us define the applicability range of the result (7.47). The perturbative

renormalization group treatment of the flavor modes' fluctuations that has led to

Eq. (7.40) is valid provided the renormalized coupling 9A(lfJ) stays small,

(7.48)
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The above condition requires a renormalized potential energy of the flavor modes to

be smaller than their typical kinetic energy over the potential period Aext. In other

words, the weak coupling limit described above holds provided that the soliton scale 1ft

obtained in (7.42) is greater than the period of the potential, yielding the condition

(7.2). The opposite case 1ft < Aext of a strong coupling between the potential and

interacting NT electrons is studied in Section 7.4 below.

7.3.2 Fractional filling, m = 1/2

So far we have been studying incompressible states with an integer filling of m

fermions per potential period. Such states arise due to a single electron diffraction on

the periodic potential and their spectrum is qualitatively similar in the interacting

and non-interacting systems. However, as we will show in the present subsection, in

the interacting system (K > 1) additional incompressible states appear. This hap-

pens since in this case the restrictions due to the Bloch theorem are lifted, which

leads to incompressible states with fractional fermion density.

Existence of incompressible states with rational densities m = pi q follows from the

theory of commensurate states [47]. In this Thesis we generalize the approach [47] to

the case of four bosonic modes that correspond to four fermion flavors. Qualitatively,

each bosonic mode eo can be viewed as classical for a large stiffness K. In this

case a ground state with a rational filling m = plq corresponds to a commensurate

state where the density of every flavor ~axeo is qAext-periodic. An excitation in

this language is a configuration where this periodicity is distorted on the scale that

is much greater than the potential period Aext. Following the approach [47], for a

general rational fraction m = plq the excitation gap

(7.49)

in the classical system. In the case of electrons in the nanotube, additional renormal-

ization of this classical energy due to flavor fluctuations will be required.

Below we consider the simplest case of an interaction-induced state with a frac-
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tional filling m = 1/2. Our course of action will be similar to the one adopted in

Sec. 7.3.1 above. We first find a classical ground state of the Hamiltonian (7.22) for

the commensurate state which is characterized by the chemical potential

_ 1
J-L=-

4
(7.50)

in accord with Eq. (7.32). For that we solve the Euler-Lagrange equations for the

Hamiltonian (7.22) perturbatively in backscattering and identify the constant ground

state values of the "slow" components eo introduced in Eq. (7.33). Next we describe

an excitation over the commensurate state by allowing the phase fields eo to acquire

a slow coordinate dependence. We estimate the excitation gap in terms of the energy

of a phase soliton eO by utilizing the canonical transformation (7.24) and integrating

out fluctuations of flavor modes.

Below we find the classical m = 1/2 soliton configuration perturbatively in backscat-

tering go by minimizing the energy (7.22). In analogy to Sec. 7.3.1 above, we look

for an effective potential Vi/2[ea] for the "slow" fields eo defined in Eq. (7.33). The

Euler - Lagrange equations for the Hamiltonian (7.22) are

_ (1) K - 1S(I) __ go . (e- ! _ -. )
eo xx + 4 xx - 2 SIn 2 0+ 2kextx 2Asln kextx ,

where S = 2: ea. Integrating (7.51) we obtain

e(1) = 1- K S(1) + ~ e
ax 4 x k a,

ext

S(I) = ~ ""' e
x Kk ~ a,

ext

- ""' Jm(2A) (- 1 )eo = ~ 1 _ 2m cos 2ea + (2 - m)kextx .
m

(7.51)

(7.52)

(7.53)

(7.54)

Substituting (7.52) and (7.54) into (7.22), after somewhat lengthy but straightforward

algebra the slow mode potential follows:

- nvgl/2 J { - ""' -Vi/2= 16K dx (4-X:)Vl/2(2A)~cos4ea
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Figure 7-1: The functions Vl/2 and Ul/2 defined in Eqs. (7.58) and (7.59). We find
that Vl/2(Z) > Ul/2(Z) holds for all z. Zeroes of Vl/2: z = 0, :i:2.33, :i:3.80, :i:5.47 , ...

+ K, L (Ul/2(2A) cos(280 - 280,) - Vl/2(2A) cos(280 + 280'))}. (7.55)
o:j;o'

Here

91/2 = (:~y,
K-l

K,=--
K

(7.56)

(7.57)

and the functions Vl/2 and Ul/2 are defined as

( ) _ ~ Jm(z)J1-m(z)
Vl/2 Z - m~oo (2m _ 1)2 ' (7.58)

(7.59)

Here z is a shorthand notation for 2A. The functions Vl/2(Z) and Ul/2(Z) are plotted

in Fig. 7-1.

In the commensurate state we find that the minimum value

min Vi/2[E>Q] = 1i7;/2! dx {4Iv1/2 (2A) I + f;;U1/2(2A) } (7.60)
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of the potential (7.55) corresponds to {eo} being an arbitrary permutation of a set

of constant values {<PI <PI <P2 <P2}, with <Pl,2 = X-7r /4 for Vl/2(2A) > 0 and <PI = 0, <P2 =
7r /2 for Vl/2(2A) < o.

Let us now discuss the symmetry of the obtained commensurate classical state.

The ground state degeneracy in the noninteracting case (1l: = 0) is equal to 24• This

follows from the potential (7.55) in which only the first term is non-zero. We find

that in the presence of interactions (~ > 0), the other terms in (7.55) reduce this

degeneracy from 16 to six. This result could have been foreseen without any calcu-

lation since it is just a number of configurations where any two different fields eo
are placed in the same minimum of the external potential. In other words, effect of

fermion exchange manifests itself in the bosonized treatment by a stronger repulsion

between the solitons of the same flavor.

An excitation over the m = 1/2 state is described by allowing the components

eo to acquire a coordinate dependence that is slow on the scale of Aext, similarly to

our previous treatment in Sec. 7.3.1. To find an excitation gap we change the basis

according to the canonical transformation (7.24). The excitation gap fl1/2 is half an

energy of a soli ton

(7.61)

that carries two fermions. From the Gaussian Lagrangian (7.28) and the effective

potential (7.55) we obtain the effective Lagrangian

(7.62)

for the slow modes, where £0 is given by Eq. (7.28), and

- - Iiv! {4 - ~ -0 -a ~ ~ -a -O}£1/2 = -gl/2Vl/2(2A) -;; dx -4- :F(2() , 2() ) - 4" ~ cos 2() cos 2() . (7.63)

Here the function :F is defined in Eq. (7.30). The Lagrangian £1/2 is obtained from

the potential (7.55) by applying the canonical transformation (7.24) and dropping

the terms that are independent of BO•
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Quantum fluctuations of the flavor fields iJa in the problem (7.62) are treated in a

way similar to that described in Sec. 7.3.1. The first term in the Lagrangian (7.63) is

less relevant than the second one. We obtain the scaling dimension -1 for the second

term in l,1/2' the flavor soliton scale

l r-J a K 1 (~) 2
ft,1/2 - K - 1 IVl/2 (2A) I ~o '

and the renormalized minigap

K -1 - (~O)2
~1/2 ~ Vi< D IVl/2(2A) I ~

Here the ID band width D is defined in Eq. (4.27).

(7.64)

(7.65)

Let us discuss the result (7.65). The excitation energy ~1/2 is quadratic in the

backscattering amplitude ~o in accord with Eq. (7.49). It is strongly enhanced by the

band width due to fluctuations of the flavor modes. We also note that the m = 1/2

excitation is interaction-induced, since its gap (7.65) vanishes in the non-interacting

limit K -7 1, as required by the Bloch theorem.

The perturbation theory developed here is valid when the flavor soliton size (7.64)

is large,

lft,1/2 » Aext , (7.66)

in agreement to the condition (7.2) above. Practically, Eq. (7.66) requIres a very

small bare gap ~o. For typical values of parameters, Aext rv 1 J-Lm and ~o rv 10 meV,

the soliton scale lft,1/2 defined in Eq. (7.64) is small compared to the potential period

Aext and the condition (7.66) does not hold. Physically this suggests that there is a

more energy efficient way to excite the system with m = 1/2 when the backscattering

~o is not very small. This situation will be considered below in Section 7.4.

However, even for the above mentioned parameter values there are cases when the

result (7.65) is applicable. This happens when the flavor soliton size lft,1/2 becomes

large due to either small interaction strength K - 1 « 1, or for the certain potential

amplitude values that correspond to vanishing of the function Vl/2(2A), see Fig. 7-1.
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Later we will compare the result (7.65) with a strong coupling limit of the same filling

m = 1/2 considered below in Section 7.4.
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7.4 Strong coupling limit

In the previous Section we have considered interacting NT electrons in a periodic

potential in the limit of a small backscattering that corresponds to the condition

(7.2). In this limit we have shown in Sec. 7.3.1 that minigaps (7.47) are obtained from

their noninteracting values (6.16) by resealing both their magnitude and the external

potential amplitude. In this regard the limit of a small backscattering is qualitatively

similar to the noninteracting case of nearly free electrons whose spectrum is altered

by minigaps that open at certain energy values. Accordingly, we have called this

regime as a "weak coupling limit".

We have also seen in Sec. 7.3.2 that electron interactions lead to a qualitative

change in the NT spectrum. Namely, we have found novel interaction-induced mini-

gaps that correspond to a fractional amount m of electrons of each flavor per po-

tential period Aext. In discussion after the result (7.65) for the filling m = 1/2 we

have mentioned that our perturbative treatment is generally valid only for very small

backscattering. Indeed, the corresponding flavor soliton length iff,l/2 defined in (7.64)

is smaller than Aext for realistic parameter values. Due to this fact the correspond-

ing minigap l:i.1/2 obtained in (7.65) appears to be very large (proportional to the

bandwidth).

The above arguments suggest that a lowest energy charged excitation in the case

iff < Aext should be qualitatively different from the ones we considered above. In-

deed, in Section 7.3 we have dealt with charged excitations that carry more than

one electron. For instance, the soliton of the field (jo whose energy we have used to

estimate the renormalized gaps (7.47) for the case of an integer filling m carries [our

electrons of different flavors whose wave functions completely overlap. Clearly, such

an excitation becomes too costly in the case when electrons are not delocalized and

their repulsion is sufficiently strong.

The latter point can be best seen if one considers the extreme opposite limit (7.4)

in which the charge excitation is strongly localized, with a charge soliton length being

smaller than the potential period. In this limit, discussed in Section 7.5 below, the
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Coulomb energy determines ordering of essentially classical electrons in the ground

state. The corresponding incompressible charge states depend on the total charge

density (7.1) with the exchange effects being negligible. An excitation in this limit

corresponds to adding a single electron into a particular potential minimum without

significantly altering the charge configuration in the other minima. Such an excitation

cannot carry a multiple electron charge due to a very strong Coulomb repulsion.

In the present Section we consider an intermediate case (7.3) of a moderate

backscattering go and strong interactions K » 1, for which a flavor soliton scale

defined in Eq. (7.47) is small, but the charged excitation is delocalized over many

Aext. Below we will show that in this limit, the system of four flavors eo each of a

filling m behaves as a system of a single flavor ()o with a filling 4m. Such an effective

density quadrupling is expected since, when the repulsion between the particles is

strong, fermions both of the same and of different flavors avoid each other in a similar

way.

We illustrate this point by first reviewing the case [33] of the same system without

an external potential. We discuss the nature of a charged excitation over the Dirac

vacuum (J.l = 0) as well as compressible multisoliton configurations at finite chemical

potential J.l. Then we add the potential (7.13) and find the corresponding incompress-

ible charge states from the effective Hamiltonian for the charge mode ()o. Next we

estimate the (renormalized) energy gaps as an energy of a phase soliton of the charge

mode. We obtain that these gaps (given in Eq. (7.78) below) are a function of a total

filling 4m.

Before discussing the nature of charge excitations of the full problem (7.27), it

is instructive to first consider interacting NT electrons in the case of no external

potential, U(x) = 0 at half filling (J.l = 0). In this case the system is described by a

Lagrangian

(7.67)

with the function F given in (7.30). In writing (7.67) we dropped the x-integration
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for brevity.

Below we describe the lowest energy charge excitation of the system (7.67). As

it has been shown in Ref. [33], such an excitation is a combination of solitons of a

charge and flavor modes characterized by a presence of two length scales: flavor If!

and charge leh rv K1/2lf!. To illustrate this point let us consider adding an electron of

the flavor 1. This corresponds to a configuration where the field 81 is changed by 1['

and the other fields 82,3,4 are unchanged. According to the transformation (7.24), in

such a configuration all the fields (}O, (}a change by 1['/2. Since leh ~ lfl in the limit

of a large stiffness K ~ 1, solitons of the flavor modes (}a can be viewed as infinitely

sharp steps on the scale of leh. From the Lagrangian (7.67) it follows that such a sharp

"switching" of the flavor modes can optimize the potential energy F in Eq. (7.67)

if it happens at a point when (}o is changed by 1['/4, i.e. right in the middle of a

slow soliton of the charged mode. In other words, the lowest energy charge excitation

corresponds to a composite soliton configuration in which the flavor solitons adjust

themselves to provide an effective potential

(7.68)

for a soliton of the stiff charge mode.

The function :F((}O) is shown in Fig. 7-2 (bold). One can see that the period of

:F( (}O) is four times smaller than that of the original potential F( (}a, (}O) with fixed

(}a. Let us illustrate the meaning of this period reduction by considering an example

of a charge excitation.

First consider the noninteracting case K = 1, when the four Fermi systems that

correspond to different flavors are decoupled. Such a decoupling means that in the

rotated basis (7.24) the flavor modes (}a stay fixed with the potential F((}a, (}O) being

21['-periodic in (}o. In this case an excitation is a soliton (}O -7 (}O + 21['that is a flavor

singlet and carries four (noninteracting) fermions according to (7.25).

When the Coulomb repulsion is strong, K » 1, it becomes favorable to split such

a '21["excitation into four successive charge solitons (}o -7 (}o +1['/2 each corresponding
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Figure 7-2: Effective potential F(()O) (bold) for the charge mode in the case of K» 1,
Eq. (7.68)

to an electron of a particular flavor. Let us see how such a splitting occurs. Suppose

in the ground state ()a = 0 and ()o = -1f, Fig. 7-2. Excitation corresponding to

say, flavor 1, is a composite soliton in which the charge mode slowly changes as

()o = -1f ---t -1f /2 while the flavor modes rapidly switch as ()a ---t ()a + 1f/2 according

to the tranformation (7.24). Such a switching occurs at a point where ()o = -31f /4 in

a fashion described above. Since the problem is SU (4) symmetric, one can provide

a soliton of any type 80 by choosing an appropriate switching combination of the

fields ()a ---t ()a :l: 1f/2 according to the canonical transformation (7.24) at the points

when ()o = {:l:31f/4, :l:1f/4}, Fig. 7-2. The flavor of a resulting composite soliton 80

is confined to the region of size lfl inside the charge soliton width lch » lfl.

Consider now the case of a finite fermion density corresponding to nonzero chemi-

cal potential J.1 =1= o. Its ground state is a lattice of composite solitons described above

[33J. We assume a low density case, in which charge solitons overlap but flavor solitons

practically do not. In such a configuration all the charge states are compressible, with

the density following the chemical potential in a continuous fashion. If we adopt the

parametrization of the density (7.1) in terms of a filling of 4m fermions (or charged

solitons) per length Aext, the filling m is proportional to the chemical potential jj in

accord with Eq. (7.32).
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Now let us add the external periodic potential (7.13). In this case there appear

incompressible multisoliton configurations that are commensurate with the potential

period Aext. If the total filling 4m is integer, the charge density in the corresponding

configuration has a period equal to that of the external potential. If 4m = p/q is a

fraction, the density is qAext-periodic [47].

Let us illustrate the latter point by a following example. Consider a classical

ground state for the simplest fractional case of m = 1/2. This is a configuration where

solitons of the fields eo occupy every other potential minimum, as shown in Fig. 7-3.

This Figure is a result of a numerical minimization of the classical Hamiltonian (7.18)

with respect to the fields eo. For any rational filling m = p/q the period of each field

eo is qAext, with q = 2 in Fig. 7-3. The total density 4m = 2 is integer, its period

coinsiding with that of U(x) in accord with the above discussion. In the absence of

U(x), all the eo solitons would be equally separated from each other due to mutual

repulsion. The finite U configuration shown in Fig. 7-3 is a result of an interplay

between the mutually repelling solitons and a confining periodic potential. Fermionic

exchange of the original problem (7.5) is manifest in the fact that solitons of the same

flavor are located in different potential minima, similarly to the weak coupling case

m = 1/2 considered in Sec. 7.3.2.

A charge excitation over such a classical state would be a soliton of one of the

fields eo that is added to the configuration in Fig. 7-3. To minimize the system's

Coulomb energy, this soliton of a size smaller than Aext ("flavor scale") would push

the other solitons apart. This would result in a deformation of a soliton lattice on a

scale of many Aext ("charge scale").

Let us now turn from a particular example to the problem (7.27) with any given

filling m. We assume that the flavor solitons switch as described above on the scale

lfl smaller than the potential period in agreement with the condition (7.3). The

flavor scale lfl will be estimated below in Eq. (7.75) self-consistently. In this case

minimization (7.68) yields the following Hamiltonian

(7.69)
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for the charge mode, where the function P is plotted in Fig. 7-2, and the flavor modes

()a are adjusted to optimize (7.68).

Below we find the commensurate charge ground state of the Hamiltonian (7.69)

and estimate the corresponding minigap by finding an energy of a phase soliton of

the charge mode (jo.

The commensurate charge ground state follows from minimizing the energy (7.69).

For simplicity, let us first assume integer m. We minimize (7.69) perturbatively in

the coupling go similarly to our treatment in Section 7.3. Expanding the charge mode

in the powers of coupling similarly to Eq. (7.33),

(}o = (j0 + (}O(l) + ..., (}o(n) = O(g~) ,

we find in the lowest order the potential energy

- -0 41iv ! ~ -0V*[(} ] = - dx ~ g: cos(4n() )
7r n=l

(7.70)

(7.71)

for the "slow" charge mode in terms of the renormalized couplings g~ defined below

in Eq. (7.74). Their bare values

(7.72)

are given in terms of the Fourier coefficients of the charge mode potential P plotted

in Fig. 7-2:
00

P((}O) = L In cos(4n(}0) .
n=O

(7.73)

The quadrupling of the harmonics in the decomposition (7.73) is a manifestation of

the effective density quadrupling discussed above.

We integrate over Gaussian fluctuations of the flavor modes in analogy to our

treatment in Sec. 7.3.1. As a result we estimate the renormalized couplings g~ from
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the following scaling law:

(
l ) -3/4 1* fl,n

9n = 9n ~ rv -(l-fl-,n-)-2. (7.74)

The couplings 9n are renormalized by the fluctuations of iJa on the scale a < l < lfl,n,

where the flavor scale for each term in the sum (7.71) is estimated self-consistently

from Eq. (7.74). The flavor soliton scale lfl is determined by the largest term in the

series (7.71):

(7.75)

with lfl,n from (7.74).

Minimizing the potential (7.69) we find that in the commensurate state, the phase

mode iJo is constant.

An excitation over the ground state is an energy of a combination of the phase

solitons for the charge and flavor modes, in analogy to the U(x) = 0 case described

above. In the limit K » 1 this energy is dominated by that of the charge mode

soliton. The latter is described by the phase field iJo acquiring a slow coordinate

dependence on the scale much greater than Aext. We estimate the excitation energy

from the effective charge mode Hamiltonian

(7.76)

with the potential V* given by Eq. (7.71). In analogy to our previous treatment in

Sec. 7.3.1, Eqs. (7.44) and (7.45), the charge phase soliton size

(7.77)

In the case when the coupling 91 defined in Eq. (7.72) is nonzero, the corresponding

renormalized gaps are given by

(7.78)
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Here ~m(A) are the weak couplingminigaps (7.47). The coefficient 11 = -4V2/151f ~

-0.120. In general, the lowest non-vanishing harmonic would contribute to the gap

~:n, since the relevance of the successive terms in the sum (7.71) decreases.

Let us pause here to analyze the result (7.78). The 4m dependence in Eq. (7.78)

suggests that, in the limit of a strong coupling to the external potential and large

Coulomb repulsion between the NT electrons, the system behaves as if it had a

quadrupled density. This fact has a simple physical explanation. In the noninteracting

case, fermions of the same flavor avoid each other due to the Pauli principle. The

ground state wave function is then given by a product of four Slater determinants,

one for each flavor. However, when the repulsion between the fermions is infinitely

strong, fermions of all flavors avoid each other in a similar way, and the ground state

wave function is a Slater determinant of a four-fold size. The original SU( 4) flavor

symmetry of the problem reappears at the level of renormalization. It is manifest in

a particular scaling law of 4/5 of the renormalized minigaps (7.78).

It is notable that although the gaps in the strong coupling limit oscillate with

varying the potential amplitude, they never collapse to zero contrarily to the cases

(6.16) and (7.47) considered above. Indeed, if the coupling 91 = 0 for a particular

value of A, the corresponding energy gap would be determined by the next harmonic

in the expansion (7.71). The latter harmonic would not be zero at that very value

of A since the zeroes of the Bessel functions never coincide. Let us underline that

nonvanishing energy gaps are solely an effect of electron interactions. We shall see

a qualitatively similar effect of nonvanishing gaps due to interactions in the classical

limit of localized electrons in Section 7.5 below.

Finally, let us comment on the case of fractional fillings m. When the total filling

4m is integer, the excitation gap in the strong coupling limit is given by the result

(7.78). For example, in the case of m = 1/2 studied in detail in Sec. 7.3.2 above, the

weak coupling result (7.65) holds only for a very small bare backscattering ~o « E.

For the realistic parameter values ~o rv 10 meV away from zeroes of Vl/2 (2A) the

excitation gap in the state with m = 1/2 is given by the strong coupling result ~i/2'
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Eq. (7.78) with 4m = 2. Switching between the two regimes happens when

(7.79)

When the total filling 4m = p/q is fractional, one needs to perform the Pokrovsky-

Talapov analysis as in Sec. 7.3.2 for a single charge mode described by the Lagrangian

(7.76). Namely, one would need to perform an expansion (7.70) to the order g8, solve

the corresponding Euler-Lagrange equations, and find the effective potential for the

"slow" charge mode (jo. The corresponding minigap can be estimated as an energy of

a (jo soliton and will be proportional to (~o)q. For a simplest case of 4m = 1/2, the

classical commensurate configuration has a total charge density with a period 2Aext.

An excitation over such a state is proportional to ~5. We will not proceed with a

renormalization of this excitation.
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Figure 7-3: Classical ground state of the Hamiltonian (7.18) for the fractional filling
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7.5 Weak tunneling limit

In the present Section we consider the regime (7.4) of fermions strongly localized in

the potential minima of U (x). Such a regime is characterized by exponentially small

overlap of both the charge and flavor soliton tails and negligible quantum effects.

This leads to the following classical treatment of the charge states in this limit.

The charge states (Fig. 7-4) are obtained by minimizing the classical energy func-

tional

with respect to positions Xi and Yi of electron and holes. Here

Eel = 2:: (~o +U(Xi)) + 2:: (~o - U(Yj))
i= 1..Ne j= 1..Nh

Ne e2 Nh e2 Ne,Nh e2
+2::--+2::---2::

i,j=l IXi - Xj I i,j=l IYi - Yj I i,j=l IXi - Yj I
i>j i>j i>j

(7.80)

(7.81)

is the Coulomb energy of electrons along the chain with N = L / Aext sites, where L is

the NT length. Screening by the underlying substrate with the dielectric constant c

is trivially accounted for by substituting e2 ~ 2e2/(c + 1).

In Fig. 7-4, regions with ne = Ne/N electrons and nh = Nh/N holes per SAW

wavelength are labeled by pairs (ne, nh), with total filling 4m = ne - nh. The

underlying Dirac symmetry makes the filling diagram symmetric with respect to

j..Lt-+ -j..L, ne ++ nh. Each border separating regions with different (ne, nh) is itself

comprised of incompressible states with larger fractions m, as shown by the domain

(1/2,0) between (0,0) and (1,0). The state (1/2,0) is characterized by a fractional

total filling 4m = 1/2 and has a charge in every other SAW minimum, similarly to

the strong coupling case of a fractional filling discussed above in the end of Sec. 7.4.

The results of numerical energy minimization (color in Fig. 7-4) can be fairly

accurately reproduced by plotting the minima of Ene,nh (A) - j..L(ne - nh), where

(7.82)
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The first term in (7.82) is an energy of ne electrons placed into each minimum and

nh holes into each maximum of U(x). It corresponds to the first two terms of (7.81).

The second term in (7.82) is the interaction energy of positive and negative charges

located in the extrema of U(x). Here

c = Aext

2In(L/Aexd
(7.83)

is a capacitance corresponding to the length Aext of a nanotube. The logarithm of

the system size enters since the overlap of charge solitons is negligible and thus the

Coulomb interaction is unscreened. Finally, Vn in (7.82) is the interaction energy of

n electrons (or n holes) minimized with respect to their positions inside the corre-

sponding potential well of the periodic potential (7.13). The Dirac symmetry yields

Enm = Emn.I I

In the case when the Coulomb interaction is small,

e2

~«A,
/\ext

(7.84)

the energy Vn(A) can be found by approximating each potential well of (7.13) by a

quadratic polynomial:

Mn2 2
U(x) ~ -A +minn-2- (x - (n + ~)Aext)

Here M is the "relativistic Dirac mass"

and

(7.85)

(7.86)

(7.87)

Minimizing the Coulomb energy of n charges in a parabolic potential (7.85), we obtain
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first several values of Vn:

(7.88)

(7.89)

(7.90)

The characteristic power law rv Al/3 due to the above expressions is illustrated in

Fig. 7-4 for small values of A.

Eq. (7.82) gives the width 8J.lne,nh of the incompressible state corresponding to

filling (ne, nh):

(7.91)

where

(7.92)

(7.93)

(7.94)

Here the "bare" compressibility XO is proportional to the NT capacitance. The regions

(ne, nh) and (ne + 1, nh + 1) of the filling diagram are separated by the vertical lines

of fixed A, with its value implicitly defined by

(7.95)

Let us discuss the main results of this Section. We have considered a limit of

strongly localized electrons. In this limit the system is classical and its filling diagram

can be obtained by minimizing the energy functional (7.81).

We have obtained a charge filling diagram that consists of the domains corre-

sponding to the incompressible states with ne electrons and nh holes with the total

filling 4m = ne - nh. Only the most pronounced states are shown in Fig. 7-4. Their

boundaries consist of the states with fractional fillings 4m = p/q and the correspond-
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ing energy gaps rapidly decay with increasing the fraction denominator q. Since we

discarded the kinetic energy, there are strictly speaking no compressible energy states

in the filling diagram Fig. 7-4.

We also note that energy gaps for the fixed fillings 4m = ne - nh oscillate as a

function of the potential amplitude A (as, for instance, regions (1,0) and (2, 1) that

correspond to the same filling of 4m = 1). Such oscillations are similar to the ones

observed in the quantum-mechanical cases for both noninteracting electrons (Sec. 6.2

and Figs. 6-2,6-3) and weakly coupled interacting electrons (Sec. 7.3) described above.

However, the energy gaps in Fig. 7-4 never collapse to zero, with their width deter-

mined by the strength of interactions. This is similar to the situation in strong

coupling limit considered above in Sec. 7.4. Conversely, in the noninteracting case

considered in detail in Section 6.2, minigaps are equal to zero for certain values of

A. We again see that the non-vanishing mini gaps arise in the system due to electron

interactions.

7.6 Discussion

In the present Chapter we have considered different regimes of coupling of interacting

NT electrons to the periodic potential. We have found novel interaction-induced

incompressible states that correspond to minigaps in the NT spectrum. We showed

that minigaps in an interacting system oscillate as a function of the amplitude of

the external potential but they never vanish. The value of these minigaps is a direct

measure of electron interaction strength in a nanotube.

We suggest that novel incompressible states with fractional m can be revealed

in a SAW-NT setup described in the previous Chapter with the adiabatic current

(6.22) quantized in fractions of 4ef. For that, the adiabaticity of transport should be

fulfilled:

hi «: ~m , (7.96)

where ~m is a corresponding (renormalized) minigap for the fractional m, and I is the

SAW frequency. This condition can be achieved since the substrate sound velocity is

197



much smaller than the Fermi velocity in the nanotube. For I = 10 GHz corresponding

to the SAW wavelength of the order of 1 /-lm, the phonon energy hi ~ 40 /-leV. Given

typical minigap values ~m in the me V range, the adiabaticity condition (7.96) can

be fulfulled.
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Conclusions to Part II

In the present Part of the Thesis we have considered a set of physical effects In

nanotubes that can be manifest in transport measurements.

In Chapter 5 we have developed a theory of a nanotube field effect. We have

shown that at sufficiently large electric field, single electron NT properties can change

drastically. In particular, the Fermi surface of a metallic tube can fracture, whereas

the gap of a semiconducting NT can be strongly reduced. These effects, although

require extremely strong fields, can prove useful in applications as well as in studying

strongly correlated phenomena.

From the theoretical standpoint, the depolarization problem considered in Chap-

ter 5 has been connected to the chiral anomaly of 1+1D Dirac fermions. We have

found a universal screening function that depends solely on the low energy NT prop-

erties.

In Chapter 6 we have proposed an experimental setup to realize adiabatic charge

pump of Thouless. For that, we suggest to use a semi-metallic nanotube coupled

electrically to a surface acoustic wave (SAW). We have identified incompressible single

electron states and found the corresponding minigaps. With a chemical potential

inside a minigap, a slowly moving surface acoustic wave can induce adiabatic current

quantized in the units of 4ej, where e is electron charge and j is the SAW frequency.

Finally, in Chapter 7 we have considered in detail the electron NT properties in the

presence of an external periodic potential. We have found novel interaction-induced

incompressible states that appear when the electron density is commensurate with

the potential period. We have treated interactions in the Luttinger liquid framework,

and used the phase soliton approach to estimate the spectral gaps. We have suggested
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to use the SAW-NT setup proposed in Chapter 6 to probe NT electron interactions.
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Appendix A

Calculation of the distribution of

return times in anomalous diffusion

Below we consider the following problem:

What is the distribution of the intervals between successive returns to the origin of

a random walker whose dynamics is governed by a generic continuous time random

walk?

Consider a random walker whose probability distribution function P(x, t) to be

at position x at time t is governed by the following master equation:

P(x, t) = l dt' 1>(t')!dx' 'I{;(x')P(x - x', t - t') + 8(x) [O(t) -l1>(t')dt'] . (A.I)

Eq. (A.l) defines a diffusion propagator P(x, t) in a most general case when the hops

in time are distributed according to the continuous time random walk cf>(t) and hops

in parameter space x (that can be a coordinate, energy, etc) by the probability dis-

tribution function 'ljJ(x). A similar equation has been already considered in Sec. 1.2.2

while reviewing the dispersive transport. In analogy to the discussion after Eq. (1.15),

from Eq. (A.l) we obtain the Fourier transform of the diffusion propagator:

P
kw

= 'l • 1- cf>(w)
I w+iO 1-'ljJ(k)cf>(w).
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To find a distribution of return times1 it is convenient to find a probability distribution

function P(x, t) of the particle that never comes back to the origin. For that we need

to modify the conditions of the random walk, demanding that the particle disappears

after it comes back to the point x = 0:

P(x = 0, t) = 0 after the first hop.

The condition (A.3) is equivalent to subtracting the term

l dt' <I>(t!) !dx' 'Ij;(x')P( -x', t - t')

(A.3)

(A.4)

that describes returns to the origin, from the master equation (A.l) written for the

function P(x, t). This results in the integral equation for the diffusion propagator

P(x, t), that in the Fourier space reads

The latter equation can be rewritten in the form

- !dq -'Pk,w = Pk,w + 'Pk,w 27f V(w, q)Pq,w ,

where
V( ) = iwq;(w)'lj;(q)

w,q 1- q;(w) .

(A.6)

(A.7)

Eq. (A.6) is the analog of the Dyson Equation for the Green's function in quantum

theory.

We are looking for a solution of Eq. (A.6) in the following form:

(A.8)

1In our treatment we are generalizing the case of the Gaussian diffusion on a lattice considered
in the book [68].
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Substituting (A.8) into (A.6), obtain

1 J dq 1
A(W) = 27r 1 - 'lj;(q)<jJ(w) . (A.9)

Having found the propagator P(x, t) for the particle that never returns to the origin,

we now consider the probability distribution of times p( r) between successive returns.

The probability Pt that a random walker never returns to the origin during the time

interval (0, t) is given by

Pt = {Op(r)dr .

The latter quantity can be obtained from the propagator P(x, t) as

Pt = Jdx P (x, t) = P (q = 0; t) .

(A.IO)

(A.II)

From the solution (A.8),(A.9) for the propagator P(x, t) we find that the Fourier

transform of Pt is given by

On the other hand, from the definition (A.IO),

'l
Pw = w + iO (1 - p(w)) ,

where

p(w) = 1000

eiWTp(r)dr .

(A.I2)

(A.I3)

(A.I4)

Therefore, the characteristic function p(w) of the waiting time distribution p(r) be-

tween successive returns to the origin is given by

with A(W) defined in Eq. (A.9).

p(w) = 1- A(W) (A.I5)

In the case considered in Sec. 3.4, when <jJ(r) is given by the Levy walk (3.49),

and 'lj;(x) is given by Eq. (3.50) with x = E, the corresponding asymptotic behavior
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of the characteristic functions is

q;(w) = 1- B( -iw)V ,

'if;(k) = 1 - D kK
,

(A.16)

(A.17)

where Band D are some coefficients. Plugging the latter into Eq. (A.9), for small k

and w we obtain

1 I dk 1 .
A(W) ~ 27r DkK + B( -iw)v rv (-'lw)-11 , (A.lS)

where tL is given by Eq. (3.51). Therefore from the inverse Fourier transform of

Eq. (A.15) we obtain the asymptotic behavior of the resulting waiting time distribu-

tion
1

p( 7) rv 71+11 • (A.19)

The case of a Gaussian diffusion in energy with a Poissonian waiting time distribution

q;(t) corresponds to f\, = 2, v = 1, tL = 1/2, yielding the WTD

1
p(7) rv 73/2 .
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Appendix B

Bosonization (single flavor)

Below we briefly review bosonization for the spinless fermions. We consider the

Tomonaga model, develop its Lagrangian formulation, as well as renormalize the

mass term for the interacting fermions.

A role of electron interaction strongly depends on the spatial dimensionality of the

system. Electron interactions in two or three dimensions lead to the Landau Fermi

liquid (for a detailed treatment and references, see the book [54], Chapter 4). The

main outcome of the Fermi liquid theory is that in 2D or 3D repulsively interacting

electrons behave qualitatively in the same way as an ideal Fermi gas, albeit with

renormalized parameters. Interactions do not qualitatively change the properties of

an electron system due to a restricted phase space for scattering in high dimensionality

[54] .

The case of one dimension is very different. Even an arbitrarily small electron

interaction drastically changes the spectrum. This happens because energy and mo-

mentum conservation laws mean essentially the same for 1D electrons. In this case

an excited electron and a hole are propagating coherently in the same direction with

the same velocity, and thus even a small interaction between them has a large effect.

This leads to a special excitation spectrum for 1D fermions. It turns out that the

neutral electron-hole excitations exhaust all of the low energy spectrum of the 1D
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metallic system, turning it into a so-called Luttinger liquid.

Since even small interactions change the properties of the system, one needs a non-

perturbative treatment of the interacting problem in one dimension. It is remarkable

that such a treatment (called bosonization) exists, allowing one to describe a strongly

interacting ID metal. Its main outcome is that in ID low energy excitations of

interacting spin less electrons can be parametrized in terms of a scalar boson field

with a linear dispersion

€ = n/uk , (B.1)

similar to that of acoustic phonons. The role of interactions is in renormalizing of the

plasmon velocity v.

Historically, the question of whether the low lying excitations of Fermi systems

can be approximated by the bosonic degrees of freedom has been first raised by Felix

Bloch in 1934. The bosonic algebra of density operators for 1D fermions was first

obtained by Pascual Jordan in 1935-1937 in a somewhat different context. A pivotal

point for bosonization was the work by S.-I. Tomonaga [55] in 1950 who applied the

Jordan formalism to 1D electrons and expressed their properties in terms of bosonic

density operators with simple commutation relations. A remarkable application of

this technique to finding the singularity in the X-ray emission spectra in metals was

demonstrated by K.D. Schotte and U. Schotte [56] in 1969. A perturbative treatment

starting from the ideal1D Fermi gas by summing all logarithmically divergent dia-

grams has been carried out by Dzyaloshinskii and Larkin [57] in 1973. They were the

first to realize that the Green's function of the 1D interacting electrons has a power

law singularity instead of a simple pole in a noninteracting case. They also found that

the step in the Fermi distribution disappears at arbitrary small interaction strength.

So far we have been discussing gapless electron systems. One dimensional electron

systems with an energy gap at a Fermi level can also be treated within the Luttinger

liquid framework. A major progress in this field occured when in 1974 simultaneously

A. Luther and coworkers [58] and S. Coleman [59] noticed the equivalence of the 1D

massive Dirac fermions to the sine-Gordon bosons. This equivalence suggested that a
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lump of a 1D fermion density corresponds to a quantum soliton of a sine-Gordon field,

and lead to the development of the renormalization group treatment of the electron

backscattering in the Luttinger liquid framework. The picture was completed by

S. Mandelstam [60] in 1975 who expressed fermion creation and annihilation operators

through an exponential of bose operators, obtaining relations now known as inverse

bosonization transformations. The full self-consistent treatment of Luttinger liquids

with a non-linear electron dispersion was outlined by F.D.M. Haldane [61] in 1981.

There are many excellent reviews of bosonization, with that by D. Senechal [62],

by L.S. Levitov and A.V. Shytov (Chapter 12 of the book [63]), a collection of reprints

by M. Stone [64], to name a few. Due to recent advances in a low-dimensional physics

there appeared numerous applications of the Luttinger liquid theory, some of which

are reviewed in Ref. [65].

B.l Tomonaga Model

Below we bosonize gapless spinless fermions and find the dispersion relation (B.1).

The Hamiltonian for 1D interacting fermions is 1l = 110 + 1lint, where

110 = L f.q c:cq ,
q

1
1lint = 2L L p-q Vqpq .

q

(B.2)

(B.3)

Here f.q = nv(lql - kF) is the electron dispersion relation linearized in the vicinity of

the Fermi points r.kF, and p is the total electron density. Below it is always implied

that the sum is dimensionless, Ep = L J*' ' L is the system size. The fermion

creation and annihilation operators c~, cq are also dimensionless in the momentum

representation, with their anticommutator

(B.4)
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where

(B.5)

Following the pioneering work of Tomonaga [55], we represent the total density p as

p = pR + pL ,

pR(k) = L C:-k/2 Cq+k/2 ,
q>O

pL(k) = L C:-k/2 Cq+k/2 ,
q<O

(B.6)

(B.7)

(B.8)

where the indices R, L correspond to the right and left fermion chiralities. The key

to bosonization are the following density commutation relations, which are obtained

by neglecting excitations with k rv kF:

[pR(k), pR( -k')] = k 8(k - k') ,

[pL(k), pL( -k')] = -k 8(k - k') ,

[pR, pL] = 0 .

Below we verify Eq. (B.9):

[pR(k), pR( -k')]

= L (ct-k/2Cp+k/2-k' - ct-k/2+k,Cp+k/2)
p>O

jk/2 dp ,
~ 8kk,L -2 = k8(k - k ) .

-k/2 7r

(B.9)

(B.IO)

(B.II)

(B.12)

(B.13)

(B.14)

In (B.14) we approximated the commuatator of fermion operators by its ground state

average. In coordinate space commutation relations (B.9,B.IO) look as

[ R R] Ip (x), p (y) = 27ri 8x8(x - y) ,

[ L L] Ip (x), p (y) = - 27ri 8x8(x - y) .

(B.15)

(B.16)

The idea of bosonization is that in one dimension all the low energy excitations are
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exhausted by the (bosonic) density fluctuations represented by the operators pR, pL.

Indeed, it is possible to show that the kinetic energy 1lo is quadratic in pR,L:

~nv ~ (R R L L)1lo = L L.J P-p Pp + P-p Pp
p

The interaction part is trivially quadratic in densities:

~1iv ~ ( R R L L
1lint = L L.J P-q 9l,q Pq + P-q 9l,q Pq

q

R L L R)+P-q 92,q Pq + P-q 92,q Pq ,

where dimensionless scattering amplitudes

and

(B.17)

(B.18)

(B.19)

(B.20)
1

V=--
~1iv

is the ID density of states. The forward scattering amplitude Vel) describes in-

teraction between fermions of the same chirality, whereas the dispersion amplitude

V(2) represents scattering of fermions of different chiralities. Both Vel) and V(2) re-

sult in a small momentum transfer, and in most cases can be regarded as constants,

V(l,2) = V(l,2)(q = 0). Below we will give the general bosonization summary assuming

that Vel) =1= V(2). In the present Thesis, for the case of electrons in a nanotube, these

amplitudes are set equal, Vel) = V(2) = V, where V(q) is the interaction potential in-

troduced in Eq. (B.3), as the difference between them is irrelevant [28, 29]. In writing

the interaction part we omitted the large (rv 2kF) momentum transfer processes, such

as backscattering and Umklapp. Backscatering will be considered in a greater detail

later, whereath Umklapp is irrelevant away from half-filling and will be neglected in

what follows. Extensive treatment of all scattering processes is given in the review

by D. Senechal, Ref. [62].

It is convenient to represent the bosonic densities pR,L in terms of canonical di-
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mensionless bosonic creation bt and annihilation b operators:

pf = Ak(bkOk + b~kO-k) ,

pt = Ak(bkO-k + b~kOk) ,

2 _ IklL [ t] _Ak - 27r ' bp, bq - 6p,q •

(B.21)

(B.22)

The operator pR annihilates and creates right-handed fermions, i.e. particles with

k > O. Similarly, pL only deals with particles with k < O. To diagonalize the total

Hamiltonian 1i = 1io + 1iint we use the Bogoliubov transformation

with

bk = cosh Ok ak - sinh Ok a~k ,

b~k = cosh Ok a~k - sinh Ok ak ,
(B.23)

(B.24)tanh 20k = g2,k
1+ gl,k

The transformation (B.23) is canonical, with operators ap and at obeying the bosonic

commutation relation

(B.25)

The result of diagonalization is a bosonic Tomonaga - Luttinger Hamiltonian with an

approximately linear dispersion relation:

1iTL = L Iklvk at ak .
k

Electron interactions renormalize the plasmon velocity,

(B.26)

(B.27)

Note that Eqs. (B.26,B.27) are exact for arbitrary interaction strength in the limit

of Ikl «kF.
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B.2 Lagrangian Formulation

The goal of the present section is to derive a Lagrangian for the Tomonaga model.

The action for the bosonized system is conventionally written in terms of the bosonic

displacement fields <pR,L, introduced as

L 1 L
P = 27r 8x<p . (B.28)

From (B.9,B.10,B.11) the commutation algebra of the displacement fields follows:

[<pR(X),<pR(y)] = i7rsign(x - y) ,

[<pL(x), <pL(y)] = -i7r sign(x - y) ,

[<pL(x), <pR(y)] = 0 .

(B.29)

From now on we discard the (irrelevant) momentum dependence of scattering am-

plitudes 91,2 defined in Eq. (B.19), treating them as constants. The total Hamiltonian

1i = 1io +llint , (B.30)

where 11.0 and 1iint given by Eqs. (B.17) and (B.18), can be written in terms of the

displacement fields (B.28) as

(B.31)

It is convenient to introduce the mutually conjugate density and phase fields

(B.32)

The field () is a displacement field for a total density,

(B.33)

whereas the field 4> describes the phase of the wave function. Their commutation
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relations follow from (B.29):

[0,0] = [4>,4>] = 0 ,

[4>(x), O(y)] = i;sign(x - y) .

Therefore the canonically conjugate momentum for the 0 field is

A 1no = -- 8x4> ,
1r

and that for the 4> field is

(B.34)

(B.35)

(B.36)

Using (B.35), the Lagrangian (in the Euclidean space-time) for the gapless spin less

fermions in terms of the density field 0 is

(B.37)

where fj is given by (B.27). Similarly, the (Euclidean) Lagrangian in terms of the

phase field 4> reads

(B.38)

The descriptions (B.37) and (B.38) are dual.

Finally, the Euclidean pairwise correlators of the fields 0 and 4> can be read out

from the Lagrangians (B.37) and (B.38):

(B.39)

(BAO)
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B.3 Inverse Bosonization Transformations

In the previous section B.2 we introduced the bosonic displacement fields cpR,L and

expressed them through the densities of right and left moving fermions. It is possible

to invert this procedure by representing the fermion operators through cpR,L. For

that, we introduce the slow chiral components 'lj;R,L of fermion operators c and ct:

VIc(x) = eikFX'lj;R(x) + e-ikFX'lj;L(x) ,

VIct(x) = e-ikFX'lj;Rt(x) + eikFX'lj;Lt(x) .

Following (BA), the commutation relations for the chiral components are

{'lj;R(X), 'lj;Rt(y)} = 8(x - y) ,

{'lj;L(X), 'lj;Lt(y)} = 8(x - y) ,

(B.41)

(BA2)

with all other anticommutators being zero. The inverse bosonization transformations

are then defined as [60]

(BA3)

Eqs. (BA3) are a highly non-local way of representing a 1D fermion via the bosonic

fields. These relations suggest that in one dimension the notions of the Fermi and

Bose statistics are in some sense relative, and one can go from one to another inter-

changeably to describe the same system. The factors

(BA4)

are related to the lattice cutoff a. Below we verify the expression for A R by computing

the equal time average ('lj;Rt(x)'lj;R(O)) for a non-interacting case gl = g2 = 0 directly

and using the bosonization representation (BA3). A direct calculation using the

causal1D Green's function GR(x, t) = -i (T'lj;R(X, t)'lj;Rt(O, 0)) yields
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.!dw dk eiwOeikx fO dk ikx i
= 'L 21T 21T w---k-v-+-iO-s-ig-n-k-= - J -00 21T e = 21TX .

Same quantity using the bosonization formulae (BA3) and (B.29) is given by

(1/1Rt (x )1/1R(O)) = IARI2 ( e-i(<P~-<pC)+H<p~,<pC])
R 2 1 (( R R)2) i7r. R 2 a=IA le-2 'Pz-'Po eTSIgnx=IA I .(isignx).-

Ixl
= IARI2 . 'La .

x

Here we used the value of the equal time correlator of bosonic fields,

( R R)2) !dwdk I ikxl2 )('Px - 'Po = 21T 21T 1- e (CP-k,-wCPk,w

ilIa dk Ixl= 2 -k (1 - cos kx) = 2ln - .
1/1xl a

(BA5)

(B.46)

(B.47)

(BAS)

In calculating it we utilized the correlator (BAO). The coefficient AL can be found

in a similar way. One may check in a similar way that operators (BA3) obey the

(anti)commutation relations (BA2). A more rigorous derivation of the above state-

ments can be found in Refs. [62, 63].

B.4 Massive Dirac Fermions

In the present Section we develop a renormalization group (RG) treatment of spin less

fermions in the presence of backscattering. We will show that the energy gap due to

backscattering is enhanced by repulsive electron interactions.

Consider massive interacting Dirac fermions described by the Hamiltonian

1i = 1io D +1iint + 1ibs .

Here the free Dirac Hamiltonian is
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(B. 50)



and the backscattering term

with ~o being a bare gap giving mass to Dirac fermions. The wave function

~(x) = ( :: )

(B.51)

(B.52)

is a two-component Weyl spinor in the basis of right- and left-movers, and (Ji are

the Pauli matrices. The Hamiltonian 1-lint describing electron interactions is given by

Eq. (B.3) with the Dirac fermion density p = 'ljJt'ljJ.

In the absence of interactions the Hamiltonian 1-l0 n+ 1-lbs describes free relativistic

fermions with a Dirac spectrum

(B.53)

Interactions can be taken into account by bosonizing the full Hamiltonian (BA9)

using the technique developed above. This yields [58, 59] the (Euclidean) sine-Gordon

Lagrangian

where £0 is given by Eq. (B.37) and the backscattering term

~OJ£bs = - dx cos 2() .
'Ira

(B.54)

(B.55)

The sine-Gordon problem (B.54) can be studied using the renormalization group

methods. Below we calculate the scaling dimension of the backscattering term ~o at

one loop. Performing the average of the cosine term (cos 2(})= e-2((P) we obtain the

RG flow for the backscattering (l is the length scale):

( l)-Q
Ll(l) = ~o ~
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(B.57)a=

Here the exponent
1+ 91 - 92
1+ 91 + 92 '

and the correlator (02) is found analogously to Eq. (BA8),

( 2) !dw dk a 1o = 27r 27r (CP-k,-w4Yk,w) = "2 In ~ . (B.58)

From the scaling behavior (B.56) we find that backscattering term is relevant

when

a < 2. (B.59)

In particular, this is the case for the free fermions, a = 1.

Finally, let us estimate the value of the renormalized charge gap due to backscat-

tering. Adding a fermion above the gap corresponds to a sine-Gordon soliton of the

bosonized model .co[O] + .cbs. The excitation gap is given by an energy of such a

soliton. The corresponding classical sine-Gordon Hamiltonian for the 0 field reads

1is-G = ~ !dx { ~ (i~x9)2 + Ao COB 29} . (B.60)

Here the coupling
~oAo = -,
liva (B.61)

and a charge stiffness

(B.62)

Quantum fluctuations renormalize the coupling,

( l)-O
A(l) = Ao ~ (B.63)

according to Eq. (B.56). These fluctuations are important at all length scales 1 be-

tween the lattice cutoff and the sine-Gordon soliton size l*, a < 1 < l*. At a scale

1 > l* beyond the soliton size the kinetic term in the Hamiltonian (B.60) is less im-
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portant than the potential one and the RG flow stops yielding the renormalized value

of the coupling

(B.64)

The soliton size l* is determined self-consistently from the Hamiltonian (B.60) with

a renormalized coupling, A*:

obtaining

where

K ,\*
(l*)2 rv ,

* (KD) 220l rva --
.6.0 '

(B.65)

(B.66)

(B.67)

is the cutoff energy (ID bandwidth). The excitation gap is the energy of a classical

sine-Gordon soliton with a renormalized size l*,

nv 1-0 _1_

.6. rv K z;: rv (K D) 2-0 .6.~-0

The excitation gap (B.68) is enhanced by a factor

(KD) ~=~- ~l
.6.0

(B.68)

(B.69)

in the case of an electron repulsion, 0 < a < 1. In the limit of an infinitely strong

repulsion a -+ 0, the charge mode fluctuations are suppressed, and the gap (B.68) is

given by the energy of a classical sine-Gordon soliton with rigidity K -+ 00. Finally,

in the noninteracting case a = 1 the gap (B.68) is not renormalized, .6. = .6.0 .
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