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Abstract

This thesis is concerned with the commercial applications of MEMS (Micro-
Electro-Mechanical Systems) manufacturing processes to advanced energy tech-
nologies. This field of engineering has come to be known as Power MEMS. Four
such technologies are singled-out for detailed consideration, based on the ef-
forts that have gone into demonstrating the benefits which MEMS has to offer
them. The first are micro engines or turbines which generate of order 10-100
Watts of power by driving an electric generator, as exemplified by the famous
MIT microturbine. The second are micro fuel cells, electrochemical devices
which air oxidize chemical fuels, particularly the direct methanol fuel cell
which operates at modest temperatures and hence is suitable for use in port-
able electronics. The third are solid-state devices which convert heat into elec-
tricity via either the Seeback (thermocouple) or photovoltaic effects, or else via
thermionic emission. Finally, we consider devices which scavenge vibrational or
electromagnetic energy from their environment, and are an attractive means of
powering remote autonomous sensors or medical implants such as pacemakers.

Following a survey of recent commercial activity in these technologies, we con-
sider the markets they may serve, the economics of their MEMS-based produc-
tion, and possible business models for their commercialization. Detailed case
studies are presented of two recent startups, one of which is developing a heat-
to-electricity conversion system based on the photovoltaic effect, and the other
of which is studying a novel MEMS device which would use springs made out of
carbon nanotubes to store energy. The conclusion is that the time is ripe for a
power MEMS technology roadmap which can inspire energy technology compa-
nies to work together towards an industrial ecosystem like that now seen in the
semiconductor industry. Specifically, we propose that by using MEMS as a uni-
fying technology, it will become possible to easily buy, sell and trade knowl-
edge, personnel, components and foundry services, facilitating experimentation
with new products and business models and greatly accelerating the develop-
ment of power MEMS itself. This may in turn lead to solutions to some of the
pressing energy and environmental problems which society now faces.

Thesis Supervisor: Charles H. Fine
Chrysler Leaders for Manufacturing Professor
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Chapter One: Energy,

Technology, and Civilization

The best way to predict the future is to invent it.

Alan Curtis Kay, 1971

This work considers the possible long-term social and economic consequences

of a particular application of micro-electro-mechanical systems (MEMS). This

application is known as power MEMS, which broadly speaking is the use of

MEMS technology for the purposes of producing electricity from other forms of

energy, storing electricity by converting it into other forms, transmitting energy

from one place to another, and reducing the amount of energy wasted in ac-

complishing these tasks. This initial chapter describes the author's motivation

for the project, and attempts to place it in context of its times.

Standards of living and the intensity of energy use have been rising more or

less in parallel since at least the dawn of civilization. Indeed some have equated

the agricultural revolution with the harnessing of animal power, and the indus-

trial revolution with the harnessing of fossil fuels. In light of its importance, it

is worth considering a little more closely what we mean when we speak of

"using energy." For, in contrast to common rhetoric, energy per se is not a rare

commodity. Indeed, there are about 30 Watt-hours of energy in every cubic me-
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ter of air at atmospheric pressure, which you could extract if only there were a

good vacuum nearby. Similarly, the energy contained in the form of heat in

your body is about the same as that released on burning two liters of gasoline,

which is also about 1% of the energy needed to put you into orbit (neglecting air

resistance and the mass of your spaceship).' Alternatively, we can say that the

speed of the atoms in a room-temperature gas is about 10% of the escape veloc-

ity of the earth, assuming those atoms have the same masses as those com-

monly found in your body.

The only physical difference between your frozen corpse flying skywards and

your normal good health is that in the former case all the atoms happen to be

moving with the same speed and in the same direction, while in the latter their

motions are random so that they never get very far before they collide. Thus it

is that the usefulness of energy is intimately tied to the information we have

about its embodiment. Information (or more precisely, the lack thereof) about

how energy is stored in a material is a form of entropy, and its study is the

branch of science known as thermodynamics.

When we talk about "using" energy, all we are really doing is converting it from

one form to another. To do this, we know something about how it is embodied

within the physical system of interest. When you drive your car, for example,

I To say nothing of the earth-shattering explosion that would result from converting your
body's mass into energy according to Einstein's mass-energy relation.
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you are converting (a small portion of) the energy contained in the chemical

bonds of gasoline into heat and pressure, a (once again small) portion of which

is converted into the motional energy of the car. Although thermodynamics

places strict limits on how much of the heat released by burning gasoline can

be converted into motional energy, far less actually goes into accelerating the

payload, namely you. In fact about 99% of the energy is used to accelerate the

mass of your car, which weighs well over 10 times what you do, or is lost to

friction before it even reaches the wheels.2 Clearly, we do not make efficient use

of even what we do know about the energy we've got!

The foregoing discussion serves to show how deeply misconceptions about the

physical nature of energy are embedded in the very language commonly used to

describe it. Other examples may be found in such phrases as "generating" or

"conserving" energy, both of which are oxymorons since the first law of ther-

modynamics states quite clearly that energy is never either created or de-

stroyed, but is always conserved. What then do people really mean when they

say such things? A little thought shows that "generating" energy really means

finding and capturing it in some useful (i.e. nonrandom) form, and that energy

is "used" once it has been lost again, generally in the form of heat. The term

energy "conservation" simply means that we lose less energy as heat before get-

ting useful work out of it than we otherwise would have.

2 "Reinventing the Wheels" by Amory B. Lovins & L. Hunter Lovins, The Atlantic Monthly, Jan.
1995.
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The most widely useful form of energy is electricity, since this form is so read-

ily converted into other forms (heat, light, motion), and can even be transmitted

over long distances almost instantaneously and with only moderate loses.

There is just one thing that cannot be done with electricity, which is to store it

directly and compactly.3 Of course electricity can be stored compactly by con-

verting it into some other form, e.g. chemical bonds in the case of batteries, but

devices for doing this are expensive (compared to the cost of the energy they

store) and energy is inevitably lost in the process. Much of today's energy tech-

nology is devoted, in one way or another, to dealing with this basic problem,

and accordingly it will receive considerable attention in the present work.

Let us now turn from the physics of energy to its economics. Mankind's first

use of energy, other than its own muscular force, was fire. Fortunately, wood

was fairly abundant in most places where people were inclined to live, so that a

little muscular work was all that was needed to gather enough to cook a meal,

fire a pot, or smelt iron. After a good meal cooked in said pot, a man was ready

to use his iron axe to cut down more trees. A second early form of energy use

came by domesticating animals, or enslaving humans, who were often used to

grow the self-same food needed to sustain them - plus a little added value. In

more recent times we learned to mine coal, drill for oil, and to split atoms of

3 Capacitors, of course, do store electrical energy directly and efficiently, but even ultra-
capacitors take up 25 times more space and weight than a comparable lithium ion battery.
Other forms of low-density, large-scale energy storage include thermal phase transitions, fly-
wheels, compressed air, pumped water and superconductors, but they are only economical
when located in places where the large amounts of space required is almost free.
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uranium. We have even learned how to make plutonium from the hot neutrons

produced by nuclear fission, getting more fuel out than we put in (up to a

point). In all cases we see a rather remarkable feature of energy as a commod-

ity: it takes energy (in some useful form) to harvest energy (again in some use-

ful form). So, in some sense, energy is its own precursor!

This odd situation leads not to a value chain, but to a value loop: part of the

cost of each unit of useful energy harvested is due to the energy that went into

harvesting it. This includes of course not only the energy consumed in operat-

ing the machines used to collect and transport it, but also the energy that went

into collecting and processing the materials of which these machines are com-

posed, the food that fed the machines' operators, and all the vast infrastructure

of civilization needed to support them in the style to which they have become

accustomed. Although I have never seen a serious, let alone convincing, analysis

of the econo-physics of energy harvesting, it is clear that it can work only when

one gets more useful energy out than one has to put in to get it. Considerably

more, in fact, given all the other overheads involved.

Throughout most of history, this positive feedback loop has been operating in

our favor, in that each new energy source we have exploited has provided us

with the means to go after harder-to-get, but still profitable, energy sources.

Positive feedback, however, works both ways. As long as new profitable energy

sources can be found and exploited more rapidly than energy is being used to
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get at them, there will be a steadily accelerating shift towards a more energy in-

tensive economy, but once that is no longer the case the shift back to a less en-

ergy intensive economy could begin to feed on itself. In its most benign form,

this will happen gradually as the market forces people to find ways to do more

with less - which as indicated above is certainly possible. There remains never-

theless the possibility of an abrupt and profound shift in the physical basis for

our economy.

There are reasons to believe that such a shift is already starting to occur. For

some time the rate at which new oil and gas reserves are being discovered, or

technological developments have rendered them economically feasible to re-

trieve, has just barely kept up with the growth in demand - which in turn is

destined to skyrocket if China and India continue to make rapid economic

progress.4 Although there is certainly plenty of coal available, the specter of

global warming would also seem to be upon us, and its risks and potential

costs will hopefully soon become apparent even to the president of the United

States. A massive increase in coal use can only be contemplated in conjunction

with gasification and carbon sequestration, the costs of which are not yet fully

understood but which are certainly not negligible. Cellulosic ethanol is likewise

under development, and in due course could probably largely replace gasoline

for transportation, but biomass alone cannot power the entire economy of even

4 See e.g. "Winning the Oil Endgame" by Amory B. Lovins, E. Kyle Datta, et al., The Rocky Moun-
tain Institute, 2004.
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the United States let alone more densely populated countries with less arable

land. Other renewable energy sources such as wind, tidal and solar are likewise

coming along quite nicely, but the question is "soon enough?"5

The only other non-renewable energy source that is seriously being considered

as a near-term replacement for cheap oil is nuclear fission. Even though the

technology is there to operate reactors safely and economically, the best part of

a decade in the MIT Department of Nuclear Science and Engineering has failed

to convince this author that this is a desirable course of action. The main rea-

son for this lies in the dangers of nuclear proliferation, which no foreseeable

technological advance can really overcome (even given the political will to use

it). Any intense source of neutrons (including nuclear fusion) could be used to

convert unenriched uranium into plutonium, which can then be extracted and

used to make a bomb. It is not simple but, as long as you don't value people's

lives or the environment, it is straightforward. 6

Another serious problem with the nuclear option, at least in the United States,

lies in the fact that the Nuclear Waste Policy Act Amendments of 1986 dictate

that all nuclear waste must be disposed of at the Yucca Mountain repository in

Nevada. It is the only repository under consideration anywhere on earth that

s See "Making Technlogy Work" by J. M. Deutch & R. K. Lester, Cambridge Univ. Press, 2004,
"Energy in the 21 st Century" by J. R. Fanchi, World Scientific, 2005, or "Sustainable Energy:
Choosing among the Options" by J. W. Tester, E. M. Drake, M. J. Driscoll, M. W. Golay & W. A.
Peters, MIT Press, 2005.

6 The purification of fissionable isotopes from natural uranium ores is much more difficult by
comparison.
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would be located above the water table and in porous tuff (solidified volcano

ash) rather than crystalline rock, and after 20 years of trying the Department of

Energy is still unable to argue convincingly that it will contain the actinide

components of the waste for the millions of years that are necessary. Until the

United States Congress repeals the Nuclear Waste Policy Act Amendments and

permits the waste problem to be solved according to the science rather than the

politics, it would be irresponsible to build more nuclear power plants.7 Rightly

or wrongly, this seems unlikely to happen any time soon, if ever.8

I conclude that, with the possible exception of coal gasification plus carbon se-

questration, nonrenewable energy sources will hopefully play a rapidly dimin-

ishing role in the world's future energy mix. Instead we are going to have to

learn to do more with less, and in addition to harvest renewable forms of en-

ergy more efficiently than we now do. The greatest single challenge we face in

this regard stems from the intermittency of most renewable sources of energy.

This in turn requires the conversion of energy from such sources into other

forms of energy that can be transported and/or stored cheaply, safely and with

low loses overall. It is here that new and in most cases underdeveloped or per-

haps even unimagined energy technologies are likely to play a key role. The

7 This author favors drilling deep boreholes in the formation of crystalline rock nearest to each
nuclear facility, so as to minimize the need to transport the waste for large distances.

8 For further information, see "Understanding Radioactive Waste" by Raymond Leroy Murray &
Kristin L. Manke, 5th edition published by Battelle Press, 2003, or "The Future of Nuclear
Power," an interdisciplinary MIT study, http://web.mit.edu/nuclearpower, 2003.
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market pull may not be there just yet, but it is coming, and fortune will favor

the prepared!

The rest of this work will consider the applicability of micro/nanotechnology in

general and MEMS in particular to these challenges. In closing these preliminary

remarks, I would like to consider briefly what the coming energy transition may

mean to the paradigm widely known as "distributed generation." This was in

fact Edison's original vision of how to electrify the United States, but it did not

survive the economies of scale associated with large thermal and hydroelectric

power plants, combined with Steinmetz and Tesla's development of high-

voltage alternating current power transmission.

Renewables, especially solar and wind, lend themselves naturally to distributed

power generation, in that such facilities are relatively maintenance-free once

properly installed so that there is no big advantage in terms of labor costs from

putting many of them in the same place. 9 In addition, the relatively large

amounts of land they require can most cheaply be obtained by co-locating them

on land which primarily serves some other purpose - e.g. rooftops in the case

of solar, or in farmers' fields in the case of wind. This also naturally eliminates

the costs associated with long-distance power transmission, providing enough

power can be stored locally to get through a rainy or windless week or two.

9 It turns out that most of the economies of scale associated with centralized power plants can
be attributed to the fact that they enable the variable costs of labor to be replaced by the fixed
costs of machines which can largely automate their operation.

-16-



This leads naturally to the widely-touted "hydrogen economy", in which all or at

least most energy used by mankind is stored and/or transported in the form of

hydrogen. Unfortunately, present technologies for storing and transporting hy-

drogen are neither extremely safe, cheap or maintenance-free, and a number of

fairly significant technological advances must be made before the hydrogen

economy is likely to become a reality. Moreover, there are a wide variety of

other forms in which energy can be stored, and over moderate distances (say

less than a thousand miles with no ocean in between), high-voltage power

transmission is pretty hard to beat. At this point in time it is not clear that hy-

drogen is destined to play a key role in our comparatively inevitable transition

to distributed energy generation from renewable resources.

Even given the present large-scale power grid, huge improvements in reliability

and simplicity would be attained if electrical energy could be stored cheaply

and efficiently. This is because electric power lines must be capable of handling

their peak, rather than average, loads. If every home could store a day's worth

of energy, a steady trickle of electricity would suffice for every household.

Compressed air energy storage could easily provide this capability today, and

would probably become economical if time-of-day pricing were introduced.

Most of the market pull driving the development of advanced energy technolo-

gies today comes instead from the need for better remote or mobile power

sources, which brings us at last to power MEMS.

-17-



We begin in Chapter 2 with an overview of the most important power MEMS ap-

plications, which are microgenerators driven by microengines, micro fuel cells,

solid-state systems which convert heat to electricity directly, and energy scav-

engers which convert vibrations or radio-waves into electricity. In Chapter 3 we

first assess the level of scientific and commercial activity in these same four ar-

eas of application of power MEMS, and then consider the markets at which

products based on these technologies could be targeted. The economic issues

involved in the production of MEMS-based products generally are then consid-

ered, followed by examples of business models with which one could actually

generate returns from each of our four main applications. Chapter 3 closes with

two case studies of nascent companies based on power MEMS.

Finally, in Chapter 4 we lay out our proposal for a Power-MEMS Roadmap, start-

ing with the purpose of roadmapping, the main kinds of technology roadmaps,

and the MEMS-wide roadmaps that currently exist. The justification, objectives

and tasks needed to initiate the proposed Power-MEMS Roadmap are then pre-

sented, emphasizing that it is intended to be not merely a technology roadmap,

but a value-chain roadmap. This is followed by a simplified model of innovation

dynamics which helps explain why we expect that such a roadmapping exercise

will contribute to the birth of an industrial ecosystem for power MEMS. In clos-

ing, we propose some technological challenges as a means of inspiring the fu-

ture development of the power-MEMS industry.
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Chapter Two: An Overview of

Power-MEMS Applications

While MEMS has not yet lived up to the optimism of the 1990's, en-

hanced understanding of scale-dependent physics is helping us to

make progress toward the buoyant expectations voiced during those

times. We are moving from the early, relatively unenlightened days

of "making macro solutions smaller" to doing things in a new way,

through "microscale enabled solutions." ... MEMS is here to stay,

and it will transform the future.

From "MEMS from the Nanoscale Up" by A. C. Ratzel III,

Mech. Eng. 129, 24-29, Mar. 2007

This chapter will begin with a brief introduction to MEMS technologies, and

then survey the most important kinds of power MEMS devices currently under

development, namely microengines/turbines, micro fuel cells especially the di-

rect methanol fuel cell, thermoelectric, thermionic and thermophotovoltaic de-

vices, and finally vibrational and electromagnetic energy scavengers. It will con-

clude with a discussion of the impact that the commercialization of these de-

vices is expected to have on solving the electrical energy storage problem.
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1. MEMS = Micro-Electro-Mechanical Systems

MEMS is an offshoot of VLSI (Very Large Scale Integrated) circuit technology,

which uses photolithography to simultaneously mass produce and connect to-

gether millions of microscopic electrical components on a silicon wafer. In the

course of developing VLSI it was gradually realized that various kinds of sen-

sors could also be made by the same processes and integrated on the same chip

with the microelectronics needed to amplify and/or analyze the output signal.

The first significant such product was a pressure sensor based on the piezo-

resistive properties of silicon, which was mass produced by National Semicon-

ductor starting in 1974. Actuators, which are essentially sensors operated in

reverse so that an electrical signal produces a desired effect, soon followed.

Commercial sensors and actuators made by MEMS now include accelerometers,

gyroscopes, ink jet printer nozzles, optical switches, and many others.

As in VLSI, the most important technique used in MEMS manufacture is optical

photolithography. The wafer is coated with a thin layer of a photosensitive ma-

terial called the "photoresist," and light (usually in the near ultraviolet) shone

upon it through a photomask with a pattern of transparent regions on it. This

projects the pattern onto the wafer and changes the chemical structure of the

photoresist in the illuminated areas. In the case of a positive photoresist, the

unilluminated photoresist is subsequently washed off by a suitable chemical

bath, whereas with a negative photoresist the illuminated areas are removed. In

-20 -



either case the surface exposed after washing is often subjected to an etching

process, which removes a controlled thickness of the underlying wafer and re-

sults in the desired three-dimensional contour. The etching process may be wet,

in which the wafer surface is removed by strong aqueous acids or bases, or dry

in which case ion bombardment or a plasma is used.

A variety of methods (spin casting, sputtering, chemical vapor deposition, etc.)

are available to deposit thin films of diverse materials with desired physical

properties (mechanical, electrical, thermal, optical, chemical, etc.) on the wafer,

after which they may be covered with a photoresist which is patterned by pho-

tolithography, and then etched as above. By repeating this process many times,

both geometrically and functionally complicated three-dimensional structures

may be created. This is often called as surface micromachining, as opposed to

bulk micromachining when the wafer itself is etched. Although not fundamen-

tally different from VLSI, in MEMS one often goes all the way to sacrificial lay-

ers, which are totally removed at a later date leaving any additional layers pre-

viously supported by them standing free. The flexibility of such free-standing

structures is one of the main sources of mechanical degrees-of-freedom in

MEMS devices. Additional three-dimensional structure may be obtained by

micromachining both sides of a wafer, or bonding multiple wafers together.

A great many variations on this basic scheme are widely used, and a number of

rather different approaches are also regarded as "MEMS." For example, in the
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LIGA technique synchrotron x-rays are used to create very deep but precise

structures on a thick layer of positive photoresist, which are then filled in by

electroplating and removal of the photoresist. The resulting pattern may be

used as a template for micromolding other materials. A simpler approach to

creating such deep, high-aspect ratio structures uses an epoxy widely known as

SU-8 as a negative photoresist. Finally, deep reactive ion etching (DRIE) uses cy-

cles of ion bombardment and passivation of the etched regions' sidewalls to

achieve high-aspect ratios directly in silicon wafers.

Rather than attempting a more complete survey of all the variations here, we

will simply introduce them as needed in what follows. A nontechnical introduc-

tion to MEMS by Franck Chollet and Hao Bing Liu is available on-line,' and com-

plete accounts may be found in recent textbooks.2

2. The Main Kinds of Power-MEMS Devices

The term "power MEMS" was introduced by Alan Epstein and Steve Senturia

from MIT, and was intended to cover any MEMS device which generated power

or pumped heat.3 A more general definition due to Dr. Richard Paur, a grant

1 F. Chollet and H.B. Liu, "A Not-So-Short Introduction to MEMS," version 2, August 2006, avail-
able from "http://memscyclopedia.ora/IntroMEMS.htmI".

2 See "Microsystem Design" by Stephen D. Senturia, Springer Verlag, 2000, "Modeling MEMS and
NEMS" by John A. Pelesko & David H. Bernstein, CRC Press, 2002, or "Fundamentals of Microfab-
rication: The Science of Miniaturization" by Marc J. Madou, CRC Press, 2nd ed., 2002.

3 A. H. Epstein, S. D. Senturia, et al., "Power MEMS and Microengines," Transducers '97, the 9th
International Conference on Solid-State Sensors and Actuators, Chicago IL, June 1 997.
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manager at the U.S. Army Research Office who funded much of the early work

in the field, extends the term to any MEMS device with a high power or energy

density.4 We will stick to the former, function-based definition here, since it

would otherwise be necessary to cover a wide variety of micromotors, microre-

actors and the like that are not directly relevant to the social problem of transi-

tioning to a renewable energy economy, which is the ultimate motivation for

this work. It should further be noted that while a variety of small power sources

are available or under development, we will be limiting ourselves to those for

which MEMS manufacturing processes like those introduced above have dem-

onstrated value. A general review of all the technologies currently being consid-

ered for powering portable electronic devices has recently been published.5

2.1. Microengines and Microturbines

The progenitor of all power-MEMS devices is the MIT microturbine.6 This pro-

ject was conceived of by Prof. Alan Epstein in the MIT Dept. of Aeronautics and

Astronomics in the mid-1990's, initiated with funds from MIT's Lincoln Labora-

tories, and then funded at about a million dollars a year for five years by Rich-

ard Paur at the U. S. Army Research Office (ARO). Additional funding for Lin-

coln Laboratories part in the project was obtained from the Defense Advanced

4 Richard Paur, personal communication, December 2006.

s "Personal Power Systems" by D. Dunn-Rankin, E. Martins Leal & D. C. Walther, Prog. Energy &
Combustion Sci. 31, 422-65, 2005.
6"Millimeter-Scale Micro-Electro-Mechanical Systems Gas Turbine Engines" by Alan H. Epstein, J.
Eng. Gas Turbines & Power 126, 205-26, 2004.
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Research Agency (DARPA), and the project continued as part of a nation-wide

Collaborative Technology Alliance in Power and Energy (CTAPE), funded again

by the ARO under the direction of Dr. John Hopkins at the Army Research

Laboratories, with Dr. Mukund Acharya at Honeywell as the Consortium Lead.

While the term "microturbines" has been widely misused for small gas turbines

capable of a few tens of kilowatts, the MIT microturbine is truly micro in that it

is little more than a centimeter across and capable of only a few tens of watts,

with many features too small to discern by the naked eye. It is also extremely

thin, since MEMS intrinsically makes planar structures, and it needs to spin far

more rapidly than larger turbines because the power of a turbine scales with

the square of its rotor's peripheral speed. Since the stress also grows as the

square of the peripheral speed, the rotor has to be able to take incredible

stress, and since the combustion temperature is of order 15000C the tempera-

ture gradients are also very high. Fortunately at small scales it becomes possi-

ble to manufacture single or fused crystal components that are essentially free

of defects and hence able to withstand these extremes. Finally, the high surface-

area-to-volume ratio (and hence low weight) of the rotor allows it to be sup-

ported almost without friction on a cushion of air siphoned off from the com-

pressor stream. Initially it was thought that an electrostatic induction generator

was most suitable for use with the microturbine, but the narrow gap between

the rotor and the stator this required caused prohibitive frictional losses due to
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Figure 2.1. Cutaway through an early prototype of the MIT microturbine (top left), a

blow-up of a more recent version's compressor rotor (top right), a wafer of microtur-

bines in the process of manufacture (bottom left) and a conceptual drawing of a com-

plete portable power supply based on a microengine (bottom right). Reproduced with

permission from Alan H. Epstein, J. Eng. Gas Turbines & Power 126, 205-226, 2004;

@ 2004 American Society of Mechanical Engineers.
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the viscosity of the air cushion, or jamming due to thermal expansion of the

rotor itself. These problems were ultimately solved by switching to a com-

pletely different, electromagnetic generator designed in collaboration with the

Georgia Institute of Technology, but capable of only about 10 Watts of power.

The initial reaction from the MEMS community, and indeed from some of the

team's members themselves, to the idea of a dime-sized turbine driven by

15000C gasses to spin at two million RPM was "It'll take ten miracles to get this

thing to work." Today, the situation seems to be "OK, we've gotten ten miracles,

but now we have to get them to all happen simultaneously." According to a re-

cent interview with Prof. Epstein by the "The Future of Things" webzine,7 this is

currently expected to happen during the Summer of 2007. A company devoted

to commercializing the technology as a portable means of power generation,

suitable perhaps even for consumer electronics, may be expected to follow.

Within a few years of the MIT microturbine project's inception, several other re-

search projects aimed at demonstrating MEMS-based microturbines as well as

other kinds of microengines for power generation were initiated. Both Tokyo

and Tohoku Universities in Japan launched microturbine projects, and Honda

initiated another in collaboration with Stanford University. On the microengine

side, Al Pisano, David Walther and their groups at the University of California

7 "Engine on a Chip: The Dream of a Personal Turbine" by Iddo Genuth, The Future of Things,
Feb. 2007, see "http://www.tfot.info/content/view/i 14/58/".
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Berkeley proposed MEMS-based rotary engines with rotor sizes ranging from

1.0 to 2.4 millimeters. 8 With funding from DARPA, a substantially larger (13

millimeter) prototype was built and demonstrated using wire EDM (electro-

discharge machining) rather than MEMS, but the smaller MEMS versions have

yet to be built - perhaps because funding was discontinued. In another DARPA-

funded project (apparently separate from CTAPE), Honeywell Inc. and the Uni-

versity of Minnesota collaborated on a piston-based "Knock" microengine which

used a novel "micro-homogeneous charge compression" ignition mechanism

and a magnetic piston to generate electricity. 9 Eventually it was concluded that

MEMS could not attain the component precision required, so the group turned

to wire EDM, and the effort gradually petered out. At the time of writing the

MIT microturbine project seems to be the only MEMS-based project of its kind

still active.10 An interesting review of these and several related projects is avail-

able in a conference proceedings," and a very readable overview of the MIT

microturbine project has just come oUt.1 2

8 "Design and Fabrication of a Silicon-Based MEMS Rotary Engine," by Kelvin Fu, A. J. Knobloch,
F. C. Martinez, et al. in the Proc. of the 2001 ASME Intnl. Congress and Exposition, Nov. 2001.

9 "Miniature Free-Piston Homogeneous Charge Compression Ignition Engine-Compressor Con-
cept" by H. T. Aichlmayr, D. B. Kittelson, and M. R. Zachariah, Chem. Eng. Sci. 57, 4161-86,
2002.

10 A relatively low-power MEMS microengine, based on a very different principles, also remains
under active development. This so-called "p3 microengine" uses a convection-driven piezoelec-
tric generator, see "Design, Fabrication and Testing of the P3 Micro Heat Engine" by S. Whalen,
M. Thompson, D. Bahr, C. Richards & R. Richards, Sensors and Actuators A 104, 290-8, 2003.

ii "A Review of Micro Propulsion Technology" by Norman Chigier and Tevfik Gemci, in the 41st
Aerospace Sciences Meeting and Exhibit (Amer. Inst. Aeronautics and Astronautics), Jan. 2003.
12 "The Little Engine" by Michael Abrams, Mech. Eng. 129, 30-3, Mar. 2007.
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2.2. Micro Fuel Cells

A fuel cell is essentially a battery which stores its reducing agent in a compart-

ment separate from its electrodes and electrolyte, so that it can be readily refu-

eled rather than recharged; it usually uses atmospheric oxygen as its oxidant.

The power density grows with the area of the fuel cell's electrodes while the en-

ergy density grows with the volume of the fuel tank, making it fairly straight-

forward to trade off between these performance criteria. From a technical

point-of-view, the main advantages of fuel cells over microturbines and micro-

engines are first, that fuel cells are not Carnot cycle limited and hence do not

absolutely require high temperatures for high efficiency, and secondly that fuel

cells do not require high-speed moving parts.13 Unfortunately low-temperature

fuel cells require expensive catalysts and the delicate control of temperatures,

fluid flows and chemical concentrations within the narrow range needed for

good performance. In addition, microengines and microturbines can be tailored

fairly easily to burn a variety of fuels, whereas fuel cells can directly use only

hydrogen, methanol or perhaps formic acid. Nonetheless, far more research has

been devoted to micro fuel cells than to microengines and microturbines as a

means of small-scale power generation.

Just as this section was being written, two extensive reviews of micro fuel cells

emphasizing the role of MEMS and MEMS-like technologies appeared in a spe-

13 Although the resulting tribological challenges were overcome in the case of the MIT micro-
turbine project.
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Table 2.1. Operating Characteristics of the Main Kinds of Fuel Cells

Kind of Fuel Cell Catalyst Temperature Potential Fuels

Solid Oxide (SOFC) Nickel (-) & 800 - 10000C Almost anything
Perovskite (+)

Molten Carbonate (MCFC) Nickel 600 - 7000C Almost anything

Phosphoric Acid (PAFC) Platinum 180 - 2000C Hydrogen

Alkaline (AFC) Nickel, 65 - 2200C Hydrogen,
Platinum Hydrazine

Proton Exchange Platinum 60 - 80 0C Hydrogen,
Membrane (PEMFC) Methanol,

Formic Acid

cial issue of the International Journal for Energy Research devoted to Micro and

Nano Energy Systems, 14 which are a major source for what follows. There are

essentially five different kinds of fuel cells, which are shown along with their

operating characteristics in Table 2.1.

Due to the caustic chemicals and/or high temperatures utilized in other types

of cells, most micro fuel cell research has been directed towards PEM fuel cells,

particularly using methanol as the fuel without prior reformation to hydrogen

(the so-called Direct Methanol Fuel Cell, or DMFC). Nevertheless, solid-oxide mi-

cro fuel cells are under development by a number of groups who are as un-

daunted by the challenge of containing the high temperatures these cells re-

14 "Recent Advances in Microdevices for Electrochemical Energy Conversion and Storage" by G. J.
La 0, H. Jin In, E. Crumlin, G. Barbastathis & Y. Shao-Horn, Intnl. J. Energy Res. 31, 548-75,
2007; "Micro-Fuel Cell Power Sources" byJ. D. Morse, Intnl. J. Energy Res. 31, 576-602, 2007.
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quire as the MIT microturbine group. There are roughly three levels at which

MEMS technologies can play a role in fuel cells: (1) individual fuel cell compo-

nents can be built using MEMS to make them smaller or more efficient, and

then assembled using more conventional methods; (2) various combinations of

related fuel cell components, and in particular a microreactor which produces

hydrogen gas from more easily stored liquid fuels, can be integrated on a single

chip; (3) a complete fuel cell, or even an entire fuel cell stack, can be integrated

together with all the microfluidic channels, sensors and actuators needed to

keep it functioning optimally.

At the first level, a MEMS methanol concentration sensor is widely used in

DMFCs to feed methanol to the anode at just the rate at which it reacts so that

none has a chance to diffuse across the proton-exchange membrane to the

cathode unreacted. In addition, the power produced by fuel cells under a load is

often limited by the rate at which reactants or conducting ions diffuse to and

from the electrodes, and these rates may be enhanced by microstructuring the

electrode assemblies using MEMS. Another approach to this same problem en-

hances the rate of gas diffusion to and from the catalyst with a layer of micro-

porous silicon, which makes diffusion one-dimensional while maintaining inti-

mate contact of the catalyst with a current collector (as seen in Figure 2.2 (a)).

In the most common instance of the second level of MEMS integration, microre-

actors are used to generate hydrogen from hydrogen-rich chemicals, rather
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than storing it as a gas at high pressures or cryogenic temperatures. This sub-

stantially simplifies the operation and reduces the amount of catalyst needed in

a PEMFC over one that operates directly on methanol, although some of these

reactions require temperatures so high that one might just as well use a micro

SOFC. Table 2.2 gives a list of the most important chemical reactions that have

been used to this end. With the exception of sodium borohydride hydrolysis

(which is relatively costly), all these reactions involve elevated temperatures

and, with the further exception of hydrocarbon partial oxidation, they also con-

sume heat. In such cases the heat is supplied by burning a portion of the fuel or

resulting hydrogen. The partial oxidation and steam reforming reactions also

have the drawback of producing some carbon monoxide, which poisons the

catalyst in PEM fuel cells unless thoroughly scrubbed, as does any unreacted

ammonia from ammonia cracking.

An example of a MEMS-based microreactor capable of either hydrocarbon steam

Table 2.2. Common Chemical Reactions for Generating Hydogen

Common Reaction Name Catalysts Temperature AH (kJ/mol)

Hydrocarbon Partial Oxidation various 800-1200"C -77 for CH4

Hydrocarbon Steam Reforming Rh, Ru, Pd 700-1000°C +165 for CH4

Ammonia Cracking Cu, Ni, Ru 400-9000C +46.4

Alcohol Steam Reforming Cu, Zn, Pd 200-4000C +49 for CH30H

Sodium Borohydride Hydrolysis Ni, Co, Ru 10-100°C -250 (approx.)
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reforming or ammonia cracking is shown in Figure 2.2 (b). It consists of two

parallel thin-walled U-shaped tubes embedded at their turns in a suspended

silicon block, all contained within a vacuum-sealed insulating chamber. In one

tube fuel is burned to supply the necessary heat, which is conducted via the

silicon block to other tube which is packed with the catalyst, where the hydro-

gen is produced. The steady state temperature gradient along the tubes is of

order 2000"C/mm. For steam reformation, a second microreactor is used to re-

move any residual carbon monoxide from the hydrogen stream.

The third category is perhaps the most interesting, because even though fuel

cells manufactured using MEMS generally produce less power per unit electrode

area than do cells made by conventional means, they can also be made nearly

three orders of magnitude thinner than conventional cells. This means that one

can produce a considerably greater amount of power from a given volume. Re-

alizing this potential, however, requires a form of MEMS that can conveniently

assemble three-dimensional structures such as fuel cells stacks with a mini-

mum of wasted space. Even though wafers produced by conventional MEMS can

be bonded together, unlike MEMS this is an inherently serial process, and in ad-

dition the interconnects between wafers are relatively difficult to arrange.

Table III in La 0 et al. (see footnote 14) presents a variety of three-dimensional

fabrication methods developed for electrochemical capacitors, along with an

extensive discussion of their merits for micro fuel cell construction. Another
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Figure 2.2. Examples of the use of MEMS in micro fuel cells. (a) Microstructured PEMFC

(Fig. 13 from J. D. Morse, Intnl. J. Energy Res. 31, 576-602; @ 2007 John Wiley & Sons,

Ltd.); (b) Microreactor for hydrogen production (Fig. 3 from K. F. Jensen, MRS Bulletin

31, 101-7; @ 2006 Materials Research Society); (c) Ceramic MEMS DMFC (Fig. 11 from D.

L. Wilcox et al., MRS Symp. Proc. 687, B7.1.1-18; @ 2002 Materials Research Society).
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method also developed for three-dimensional capacitors is however not men-

tioned in that table, probably because it lies a bit to one side of what most peo-

ple regard as "MEMS." This method is known as Low-Temperature Cofired Ce-

ramics (LTCC), and utilizes thin sheets of an organic binder impregnated with

glass and metal particles. These sheets can be patterned with various materials

on scales as small as 25 microns, and more importantly holes nearly that small

can be drilled in them either mechanically or using lasers at rates of several

hundred per second. These holes will form the fluid channels or, if filled with

metal, interconnects between the layers. In the final step, up to 100 such layers

are precisely positioned on top of one another, compressed and then fired at

850"C, leaving behind a ceramic block with the desired structures embedded in

it. The main drawback of this approach is that no active electrical elements can

survive such temperatures, but these can be added to the surface after firing if

need be. Figure 2.2 (c) shows a DMFC produced by LTCC at Motorola Labs. 15

2.3. Thermoelectrics, Thermionics and Thermophotovoltaics

Thermoelectrics are solid-state devices which produce electricity in the pres-

ence of a temperature gradient (the Seebeck effect), or heat flow when a current

is driven through them (the Peltier effect). Thermionics convert heat to electric-

ity by boiling electrons off a heated surface, exactly as in an old-fashioned vac-

15 "Add Ceramic MEMS to the Pallet of MicroSystems Technologies" by D. L. Wilcox Sr., J. W. Bur-
don, R. Changrani, Chia-Fu Chou, D. R. Koripella, M. Oliver, D. Sadler, P. von Allmen and F. Zen-
hausern, MRS Symp. Proc. 687, B7.1.1-18, 2002.
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uum tube. Thermophotovoltaics use a low-band-gap "solar" cell to convert the

infrared light emitted by a hot object into electricity. Physically these three

processes are quite different, but since they are functionally similar we treat

them together here. None of them absolutely require MEMS for fabrication, but

we shall see that in all cases there is a great deal to be gained by including

micron-scale structures in them, which can be accomplished and adapted to

mass production via MEMS.

The best materials for thermoelectrics have a low thermal conductivity but high

electrical conductivity.16 Alloys of (semi)metals from columns IV & V of the pe-

riodic table with those from column VI have these features and have been

widely used in thermoelectrics, e.g. Bi/Te or Si/Ge. Their performance is typi-

cally summarized by a dimensionless figure of merit ZT, where T is the average

of the hot and cold side temperatures in Kelvin. This figure of merit is usually

less than one, in which case the efficiency of the power generation device can

be at best about 20% of the Carnot limit. The efficiency rises to about 30% of

the Carnot limit at ZT = 2 and to 50% for ZT = 10. Recently materials which en-

able a ZT > 2 have been formed by depositing thin films of thermoelectric ma-

terials with mismatched lattice structures, using much the same methods as are

used to deposit thin films in MEMS. These materials are called superlattices.l7

16 "Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View" by T. M. Tritt, M.
A. Subramanian, MRS Bull. 31, 188-94, 2006.

"1 "Aspects of Thin-Film Superlattice Thermoelectric Materials, Devices and Applications" by H.
B6ttner, Gang Chen & R. Venkatasubramanian, MRS Bull. 31, 211-17, 2006.
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Illustrations are shown on the left, and optical and SEM images on the right. Reproduced

with permission from "Thermoelectric Microdevice Fabricated by a MEMS-like Electro-
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ture Materials 2, 528-31, 2003; @ 2003 Nature Publishing Group.
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The efficiency of a thermoelectric device is not determined solely by the mate-

rial, however, but also by how high the temperature of the hot side can be

raised, by how effectively the other side can be cooled, by the electrical resis-

tance of the thermopiles (blocks of thermoelectric material), and by the general

requirement for good impedance matching. Because the voltage produced by

any one thermopile is quite low, alternating blocks of n- and p-type thermopiles

connected electrically in series but thermally in parallel are commonly used.

With typical materials the individual thermopiles usually produce maximum

power at a thickness of about 500 microns, which allows thermoelectric mod-

ules to be constructed by DRIE-style MEMS. An example of such a module is

shown in Figure 2.3.

In practice, the susceptibility of semiconductor junctions to heat has limited

thermoelectric generators to modest temperature gradients of at most a few

hundred Kelvin. This is quite adequate for scavenging the waste heat produced

by many industrial processes, and this becomes economical if the devices can

be engineered to produce enough power per dollar invested, with efficiency per

se playing only a secondary role. 18 One interesting example is a wristwatch

thermoelectrically powered by body heat, which was developed by Seiko and is

now a collector's item. In conjunction with a radio-isotope heat source thermo-

electric systems also provide perhaps the most reliable and long-lived portable

18 "Recent Concepts in Thermoelectric Power Generation" by Gao Min & D. M. Rowe, Proc. of the
IEEE 21st Intnl. Conf. on Thermoelectrics, 365-74, 2002.
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power supply available, which was used for example to power the Apollo Pro-

gram's lunar landers.

In cases in which expense remains an issue and the source of heat costs money

but can achieve high temperatures, as for example with propane generated

power for remote dwellings, thermionic 19 and thermophotovoltaic 20 systems

become more attractive options. For small-scale power generation, MEMS finds

a natural application in the form of microreactors to efficiently and safely gen-

erate the requisite temperatures of 500"C and above.21

Thermionic power convertors were first proposed in the early twentieth cen-

tury, but it was not until the pioneering work of George N. Hatsopoulos while a

graduate student at MIT in 1956 that the first practical devices were built.22 The

main problems to be overcome in making such devices are developing low

"work function" electrodes which easily lose their electrons, and preventing

"space-charge" effects in which the field from the electrons already in the gap

19 "Direct Energy Conversion: Fundamentals of Electric Power Production" by Reiner Decher, Ox-
ford Univ. Press, 2006.

20 "Microscale Radiation in Thermophotovoltaic Devices - A Review" by S. Basu, Y.-B. Chen & Z.
M. Zhang, Intnl. J. Energy Res. 31, 689-716, 2007.

21 See e.g. "A Thermophotovoltaic Microgenerator for Portable Power Applications" by O. M.
Nielsen, L. R. Arana, C. D. Baertsch, K. F. Jensen & M. A. Schmidt, Proc. 12th Intnl. Conf. Solid
State Sensors, Actuators and Microsystems, pp. 714-7, IEEE, 2003, or "Microscale Combustion
Research for Application to Micro Thermophotovoltaic Systems" by W. M. Yang, S. K. Chou, C.
Shu, H. Xue, Z. W. Li, D. T. Li, J. F. Pan, Energy Conversion & Management, 44, 2625-34, 2003.

22 The company Hatsopoulos founded to commercialize his invention, Thermo Electron Corpo-
ration, expanded into environmental and other energy products with revenues of more than two
billion dollars before it merged with Fisher Scientific in 2006. Although the company worked on
thermionic power conversion for over twenty years, it made little or no money from it.
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between the emitter and collector inhibits the emission of additional electrons.

This latter problem may be alleviated in one or both of two ways: (1) by inject-

ing positive ions, usually of alkali metals, into the gap which neutralize the

charge, or (2) by placing the electrodes very close together so that emitted elec-

trons are rapidly collected. In the extreme case of an interelectrode gap of order

10 nanometers, quantum mechanical tunneling may also lower the effective

work function. At least one example of an integrated combustor and thermionic

generator built using MEMS is available,23 and nanostructures which allow

nanometer inter-electrode gaps have recently been proposed.24

Thermophotovoltaic power generation, in contrast, converts the blackbody ra-

diation emitted by a hot object into electricity using a photovoltaic cell. Such a

photovoltaic cell should absorb radiation in the infrared, and semiconductors

with band gaps down to almost a tenth of an electron volt are available. This

corresponds to a wavelength of about 20 microns, which is squarely in the mid-

infrared. The efficiency may be optimized first, by using specialized materials

which selectively emit radiation at a frequency which matches the photocell's

band gap, for example rare earth oxides, and second by using a filter which re-

flects other frequencies back onto the emitter where the energy may subse-

23 "Micro Combustion - Thermionic Power Generation: Feasibility, Design and Initial Results" by
Chunbo Zhang, K. Najafi, L. P. Bernal & P. D. Washabaugh, Proc. 12th Intnl. Conf. Solid State
Sensors, Actuators and Microsystems, pp. 40-4, IEEE, 2003.
24 "Thermionic-Tunneling Multilayer Nanostructures for Power Generation" by Taofang Zeng,
Appl. Phys. Lett. 88, 153104, 2006.
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quently be reemitted with the right frequency. Both the emitter and the filter

may be made more selective by microstructuring them on a scale comparable to

the desired wavelength to obtain "photonic bandgap materials," a task is well-

suited for MEMS technologies. 25

These measures to improve efficiency will nevertheless tend to decrease the

power output. This in turn is limited by the so-called critical angle with the sur-

face normal of the emitter, beyond which radiation is reflected at the surface

back into the emitter. It turns out, however, that when a radiation emitting

body is separated from an absorbing body by a distance less than the wave-

length of the radiation, new mechanisms of energy transfer come into play

which circumvent this limit and can increase the emitted power tenfold. Placing

a photocell within microns of a hot emitter without destroying it is something

of a trick, which MEMS promises to play a key role in making not only doable,

but affordable. One of our case studies in Chapter 3 will be devoted to a com-

pany which aims to do precisely this.

2.4. Vibrational and Electromagnetic Energy Scavengers

Energy scavenging is also called energy harvesting, but as argued in Chapter 1

all forms of energy "generation" are better regarded as energy harvesting, so we

prefer the term "scavenging" here. This differs from our use of the term "har-

25 "The Challenge of High-Performance Selective Emitters for Thermophotovoltaic Applications"
by A. Licciulli, D. Diso, G. Torsello, S. Tundo, A. Maffezzoli, M. Lomascolo & M. Mazzer, Semi-
cond. Sci. Technol. 18, S1 74-83, 2003.
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vesting" in that the energy is obtained as a by-product of some human activity

that would otherwise just waste it. The production of electricity from waste

heat using thermoelectrics, which was discussed in the previous subsection, is

therefore an example of scavenging, as is the use of photovoltaic cells to extract

energy from indoor light.

The reason that energy scavenging has recently received widespread interest

lies in the fact that small MEMS-based sensors require very little power, while

MEMS actuators may only need power for brief periods and so can be powered

by MEMS-scale thin-film lithium ion batteries the charge of which is maintained

by an energy scavenger. Self-organizing networks of such sensors and actuators

communicating wirelessly are rapidly coming into widespread use to monitor

the condition of infrastructure such as bridges, to turn off unneeded lights or

maintain a constant temperature in buildings, and the like. The devices them-

selves are often referred to as "smart dust,"26 and a discussion of various ap-

proaches to powering them was published a few years back.27 Energy scaveng-

ing is also being studied as a means of powering medical implants.28

One thing our civilization's infrastructure is very good at is making noise. The

threshold for hearing is about one pico-Watt applied to the ear drum, which is

26 "Sizing Up Smart Dust" by Pam Frost Gorder, Comput. Sci. Eng. 5, 6-9, Nov.-Dec., 2003.

27 "Power Sources for Wireless Sensor Networks" by S. Roundy, D. Steingart, L. Frechette, P.
Wright &J. Rabaey, Lec. Notes Comput. Sci. 2920, 1-17, 2004.

28 "MEMS Inertial Power Generators for Biomedical Applications" by P. Miao, P. D. Mitchenson, A.
S. Holms, E. M. Yeatman, T. C. Green & B. H. Stark, Microsyst. Technol. 12, 1079-83, 2006.
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used as the reference for the measurement of noise levels in decibels (ten times

the logarithm of the ratio with that reference). The level of noise next to a free-

way averages about 80 decibels, and the noise of a jet taking off can exceed 120

decibels - one Watt to your ear drum. Painful though that may be, it is hardly

enough to power a small flashlight.

A comprehensive recent review of vibrational energy scavengers has recently

been published. 29 These devices typically consist of a "proof mass" or weight

attached to an elastic element such as a cantilever, the resonant vibrations of

which in turn drive a generator of some sort. As with microengines, the genera-

tor itself is usually electromagnetic, electrostatic or piezoelectric in nature. The

randomly varying current it produces may be rectified, filtered and used di-

rectly, though it would more commonly be used to charge a capacitor or thin-

film battery to compensate for its intermittency. The power densities thus ob-

tained are usually less than milli-Watt per cubic centimeter, which is neverthe-

less sufficient to power many MEMS devices. Although vibrational energy scav-

engers can certainly be made without MEMS, it is most economical to integrate

a MEMS scavenger directly on the same chip as the device it powers.

Energy scavengers can attain somewhat higher power densities by utilizing the

fact that the spectral density of noise is often greatest at very low frequencies,

29 "Energy Harvesting Vibration Sources for Microsystems Applications" by S. P. Beeby, M. J. Tu-
dor and N. M. White, Meas. Sci. Technol. 1 7, R1 75-95, 2006.
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ZrO2
membrane
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Figure 2.4 (a). A vibrational energy scavenger based on a cantilever coated with the pie-

zoelectric ceramic PZT, and with an SU-8 proof mass (sticking up from center of device

in the lower left panel). Reproduced with permission from "MEMS Power Generator with

Transverse Mode Thin Film PZT" by Y. B. Jeon, R. Sood, J.-h. Jeong & S.-G. Kim, Sensors

and Actuators A 122, 16-22, 2005. @ 2005 Elsevier B.V. All Rights Reserved.

Figure 2.4 (b). A vibrational energy scavenger using an electrostatic generator based on

an "electret" material exhibiting a permanent electric dipole. Reproduced with permis-

sion from the powerMEMS 2006 paper, "Micro Seismic Electret Generator for Energy

Harvesting" by T. Tsutsumino, Y. Suzuki, N. Kasagi, K. Kashiwagi & Y. Morizawa, avail-

able on-line from http://www.thtlab.t.u-tokyo.ac.jp/Doc/for web pmems2006.pdf.
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as in a self-winding wristwatch for example. Unfortunately, these are difficult to

make via MEMS simply because the resonance frequency of a structure in-

creases as its size decreases, all else being equal. Another design constraint

stems from the fact that the output power is generally maximized when the

output impedance matches the damping coefficient of the elastic element,

whereas the range of frequencies that can be utilized increases with damping.

Figure 2.4 illustrates some recent MEMS-based vibrational energy scavengers,

including a piezoelectric device developed by Prof. Sang-Gook Kim's group at

MIT (a), and an electrostatic device utilizing a ferroelectric "electret" material

which possesses a permanent electric dipole, which was developed by Prof.

Nobuhide Kasagi's group at the University of Tokyo (b).

Another form of energy scavenging uses a rectifying antenna to extract energy

from the radio-frequency electromagnetic radiation that permeates urban envi-

ronments today.30 Alternatively one may use a small radio transmitter of one's

own, tuned to the device's resonance frequency, whenever power is needed.

This is in fact how RFID chips work - although this is really energy transmis-

sion rather than scavenging. Because such devices have usually been built using

conventional microelectronics processes without the use of MEMS per se, we

will not discuss electromagnetic energy scavenging/harvesting in much detail

30 A particularly rich source of the latter are the high-voltage power lines which crisscross our
countryside, although the electric utilities would rather you didn't know this!
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here. 3' We note however that "RF-MEMS," the use of mechanical resonators,

switches, variable capacitors and the like has become important in making effi-

cient, high-quality, high-power single-chip transmitters and receivers for cell

phones and many other devices, and these components should also be useful in

building efficient broadband electromagnetic energy scavenging systems.32

3. Implications for Electricity Storage

The attentive reader may have noticed that none of the technologies introduced

above are concerned with the storage of electricity per se. Energy scavenging

just recovers some small amount of energy as electricity that would otherwise

be dissipated, while microengine-driven generators and micro fuel cells convert

chemical fuels into electricity, as do thermoelectric, thermionic and thermopho-

tovoltaic devices when driven by a combustor. Indeed the chief impetus behind

all these technologies is to produce relatively modest amounts of electricity in a

portable fashion or in a remote location. In this capacity they threaten to

largely displace rechargeable batteries, which are presently much more widely

used for these purposes and are genuinely capable of storing electrical energy.

What then is the connection to compact, cost-effective electricity storage?

31 See e.g. "Recycling Ambient Microwave Energy with Broad-Band Rectenna Array" by J. A.
Hagerty, F. B. Helmbrecht, W. H. McCalpin, R. Zane & Z. B. Popovic, IEEE Trans. Microwave The-
ory & Techniques 52, 1014-24, 2004; "RF Energy Harvesting with Multiple Antennas in the Same
Space" by Minhong Mi, M. H. Mickle, C. Capelli & H. Swift, IEEEAntennas & Propag. Mag. 47,
100-5, Oct. 2005.

32 See e.g. "MEMS for Wireless Communications: 'from RF-MEMS Components to RF-MEMS-SiP"'
by H. A. C. Tilmans, W. de Raedt & E. Beyne, J. Micromach. Microeng. 13, S1 39-63, 2003.
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The most obvious connection lies in the fact that nearly all of the devices we

have considered can use hydrogen as a fuel, and electricity can be converted

into hydrogen by the electrolysis of water with an optimized efficiency of about

80%. A fuel cell, also optimized for maximum efficiency, can convert the hydro-

gen back into electricity with about the same efficiency, so the net efficiency

can be as much as 64%. Although cost considerations make it unlikely that one

would ever operate such devices to maximize efficiency rather than through-

put, this is already less than the 80% or so that could be achieved using batter-

ies, flywheels, compressed air storage or even just pumping water uphill, let

alone the 95% or more that can be achieved by ultra-capacitors or superconduc-

tors. More important, perhaps, is the fact that at this time we do not know of a

more cost effective means of storing hydrogen in a portable device than can

currently be achieved using lithium ion batteries to store the electricity directly

- and much more efficiently. We conclude that, barring some fairly significant

breakthroughs, none of the foregoing power-MEMS devices will be used with

hydrogen for electricity storage purposes any time soon.33

The reasons we believe that power MEMS has a key role to play in solving the

electricity storage problem actually have more to do with the history and soci-

ology of technology than with the technology itself. The literature that we refer

33 This is not to imply that MEMS-like processes have not been widely applied to other kinds of
energy storage devices. For example, TPL Inc. in Albuquerque NM (http://www.tplinc.com) has
a patent held jointly with Northrup Grumman and CalTech on a supercapacitor built using bulk
micromachining (#6,621,687), and CYMBET Corp. in Elk River MN (http://www.cymbet.com)
sells thin-film lithium ion batteries produced by a plasma-enhanced CVD process.
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to builds upon the concept of disruptive technologies, which include any techno-

logical development which qualitatively changes the dynamics of the market-

place, whether by creating new markets or enabling new value propositions.

The most important authors behind the following discussion are Prof. Jim Ut-

terback at the MIT Sloan School of Management and Prof. Clayton Christensen

at the Harvard Business School.34

Almost by definition, a disruptive technology is one with an impact which most

people do not see coming, with the result that it significantly changes the bal-

ance of power across one or more major lines of business. The best example

from recent times is of course the internet, which spawned a plethora of new

companies that came and went with dizzying speed. History, however, is re-

plete with many other examples, including the telegraph, the railway system,

the automobile, commercial aviation, the transistor and the integrated circuit it

enabled, and even such seemingly staid businesses as the plate glass and ice

making industries. In all cases the technological foundations for a radically new

way of doing business were under development for a long time, during which

they got relatively little attention because their "killer app" had not yet been

discovered. In most cases this killer app was not the first application, nor was

the first company to use the technology in a product necessarily the one that

became dominant.

34 See "Mastering the Dynamics of Innovation" by James M. Utterback, HBS Press, 1996, and
"The Innovator's Dilemma" by Clayton M. Christensen, HBS Press, 1997.
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I believe that power MEMS will prove to be a rich source of such disruptive

technologies, and that the cost-effective storage of electrical energy will be its

ultimate killer app. I do not know, and do not care to predict, what form the

dominant design will ultimately take, let alone the exact path by which it will

evolve into that form. But I can say a bit more about why I believe it.

Chemistry and electrical engineering appear to be on a collision course. The

former has always been nanoscopic, but still lacks any systematic means of de-

signing large supramolecular structures with desired functional properties.

Electrical engineering, in contrast, has been designing and building devices with

specified functions all along, but has lacked the control needed to build nano-

scopic systems. These two disjoint fields are now within an order of magnitude

of operating on the same scale, but the cross-fertilization between them that

will be needed to realize the best of both approaches has hardly even begun.

Once it does, a merger of "top-down" and "bottom-up" approaches to nano-

technology will take place that will completely change both fields.

Of course the ability to design molecular structures with known functional

properties would have a huge impact on every branch of engineering and the

applied sciences, but this will not happen all at once. The exquisite balance of

direct and entropic forces that dictates the structures of biological macromole-

cules, for example, may not ever be reduced to a predictive theory. It turns out

however that the differences between the total energies of not very different
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molecular structures can be predicted quite well from first principles, at least if

these energy differences exceed the energy of the interactions between the

molecules and their environment. 35 Thus it is reasonable to expect that better

ways of storing electrical energy will be one of the first things to come out of

the on-coming top-down, bottom-up merger. In one of our case studies we will

look at a specific example where this may already be within reach, in the form

of a MEMS device which stores energy in the mechanical deformation of carbon

nanotubes, much as a wristwatch stores energy in a steel main spring.

The first commercial applications of power MEMS, however, will probably be in

the portable and/or remote power arenas, where it will simply displace tradi-

tional chemical batteries for many if not most purposes. While this may drive a

few of the conglomerates that presently make most of the world's batteries out

of the market, by and large it will be an example of a sustaining, rather than a

disruptive, technological transition. The important point is that once it happens

investment will begin to flow towards power MEMS in a big way. This in turn

will create a critical mass of engineering talent and infrastructure, which will

enable further research and development. At the same time the chemists will

respond to this challenge from electrical engineering by finding new materials

for better batteries, following the bottom up approach - and these will ulti-

mately also find a use in power MEMS.

35 See e.g. "Toward Computational Materials Design: The Impact of Density Functional Theory
on Materials Research" by J. Hafner, C. Wolverton & G. Ceder, MRS Bull. 31, 659-68, Sep. 2006.
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In order to gauge the impact which such an industrial ecosystem could have on

how energy is used by the human race, let us make an analogy with the classic

case of an industry that has been through many successive waves of disruptive

innovations over the last half century: digital mass storage.36 The first disk

drive, the IBM RAMAC from 1956, stored about 250 bits per square inch, while

today's disk drives are approaching a terabit per square inch, nearly four billion

times the RAMAC. This remarkable pace of technological evolution is illustrated

by the experience curve for the disk drive industry shown in Figure 2.5.
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Figure 2.5. Experience Curve for Disk Drive Industry, 1981 - 2000 (source: Fig. 1.3 of

Christensen, footnote 34, through 1987 and a Salomon, Smith, Barney Brokerage Re-

port thereafter, both of which obtained their data from Disk/Trend Report).

36 This is extensively discussed in Christensen, footnote 34.
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At one terabit per square inch, the distance between adjacent bits is on the or-

der of 25 nanometers. In order to gain some feeling for how far the degree of

miniaturization attained in information technology might take us in the field of

energy storage, let us suppose we can build a device of that size which stores

energy by ionizing a hydrogen atom. This energy is 13.6 electron volts, or

2.18x10 -18 Joule. If we now fill space with a cubic lattice of such energy storage

devices, we obtain about 6.4x10' 9 devices per liter, for an energy density of 140

Joule per liter, or about 0.04 Watt-hours per liter. This is less than a thousandth

of what can be obtained from chemical batteries, which is essentially why bat-

tery technology is still considered part of chemistry rather than electrical engi-

neering. For now!
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Chapter Three: Power MEMS

Markets, Production and

Business Models

... visionary scientists and engineers such as [Norbert] Wiener and

[John] Diebold were essentially right fifty years ago when they

foresaw the many potential applications of electronic computers ...

Where some forecasts went badly wrong was in their estimation of

the time scale. Wiener failed to take account of the long time lags in

building up a capital goods supply industry and a component

industry on a sufficient scale ... he underestimated the time scale

needed to educate and train millions of people in the design,

redesign, operation and maintenance of a huge variety of processes

incorporating the new technology. Finally, he took insufficient

account of the relative costs of the new technology which was still

unattractive in purely economic terms for many potential

applications.

From The Economics of Industrial Innovation by Chris Freeman and

Luc Soefe, p. 185, The MIT Press, Cambridge MA, 3rd edition, 1997
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We begin this chapter with a survey of academic, inventive and commercial ac-

tivity in the main technologies to which power MEMS is applicable, as identified

in Chapter 2. We then move on to consider the markets for such advanced

power supplies, the infrastructure, standards and cost structures associated

with the production of MEMS-based devices generally, and consider some pos-

sible business models for the commercialization of power MEMS in each of

these four main technologies. We close with two case studies, one of a company

developing a MEMS-based thermophotovoltaic power supply, and the other de-

voted to a novel energy storage device based on MEMS and carbon nanotubes.

1. Scientific and Commercial Activity in Areas to

which Power MEMS Is Applicable

At the time of writing there does not seem to be a single energy technology

product on the market wherein MEMS plays a central role. There are however a

couple of dozen startup companies out there dedicated to introducing such

products within the next few years, and that number is growing rapidly. In

addition, a number of well-established diversified companies are watching

these startups, ready to partner with or acquire them as soon as their path to

market becomes clear, or else supporting small in-house research teams which

they hope will figure that out for them in due course. Furthermore, the power

MEMS 2006 meeting held November 29 through December 1 at the University of
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California Berkeley included an evening roundtable on commercialization, and

the power MEMS 2007 meeting to be held November 28 through 29 in Freiburg,

Germany will be back-to-back with the Fraunhofer Institute's Micro Energy

Technology Symposium (aka "Power-to-Go") on November 27, which is directed

mainly at industry participants.'

Let us begin by considering the rate at which relevant scientific papers have

been published since 1990, which is plotted as a stacked bar graph in Figure

3.1. Here and in what follows, we have limited ourselves to the DMFC (plus one

variant that uses a different liquid fuel, formic acid), since the numbers for all

possible kinds of micro fuel cells would dwarf those of our other technologies.

Clearly there has been an enormous upsurge of interest in all our technologies

over this period, but even the DMFC is dwarfed in turn by the interest in lithium

ion batteries, to which over 1000 papers a year have been devoted since 1999

(data not shown).

Turning now to patent activity (Figure 3.2), we see a similar trend, save that the

DMFC does not come out nearly so far ahead of the other technologies, and is

actually behind the conglomerate of thermoelectrics/photovoltaics (and

thermionics). This is probably due to a much higher level of interest in the

DMFC from academia, where not nearly so many patents would be issued. The

abrupt decline in the number of patents starting in 2002 is due to the fact that

I See http://www.powermems.org.
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it becomes increasingly probable that a patent filed after this date will not yet

have been issued by the USPTO.

Finally, a good-faith effort was made to identify all companies that currently

offer products based on one of our four main classes of technologies, or are ac-

tively engaged in trying to bring such products to the market (Figure 3.3). Large

diversified companies were included only if their press releases and patent fil-

U
U

Microengines/turbines
Vibration Energy Scavengers
Thermoelectric/photovoltaic
Direct Methanol Fuel Cells

.... . ...... .....-....." ....:% ....... ... ........ ... .............. ...... .......... ......................... .. ... ... .... ... .. .. ... .... ..... .. . ......

I U 1
90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06

Figure 3.1. Publications in the main classes of power MEMS technologies 1990 - 2006.

Data were obtained via keyword searches of the Engineering Village INSPEC database

on March 6, 2007, save for the microengines/turbines data where since these keywords

were not specific enough, references were compiled from recent reviews and Ph.D. dis-

sertations in the area. Note searches were not specific to MEMS-based technologies.
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ings indicated that they were engaged in such efforts. The main sources here

were the Assignees of relevant patents, Dunn-Rankin et al.'s review (see foot-

note 4), the Thermoelectric News web site,2 repeated internet searches, and

word of mouth. No effort was made to restrict this list to those that are specifi-

cally focussed on MEMS, since this is difficult to do with certainty even for

120
Mirrna in es/tu rhine

100 1 Vibration Energy Scavengers
i Thermoelectric/photovoltaic
i Direct Methanol Fuel Cells

80
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0 .. . ... . .. . . .. . .. . .. . . .. ....
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Figure 3.2. Patents filed in the main classes of power MEMS technologies 1990 - 2006.

Data were obtained via keyword searches of the US Patent & Trademark Office's web

site in March 2007, save for the microengines/turbines data where since these keywords

were not specific enough, patents were obtained from cross-references to the MIT micro-

turbine patents plus a few others from Dunn-Rankin et al. (footnote 1). No pending pat-

ents included - that would have at least doubled the totals particular of the DMFC!

2 http://www.zts.com, accessed in March 2007.
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those products that are already out there. Nevertheless, when we list those

companies explicitly in Appendix A, we will indicate those that are clearly

known to be making essential use of MEMS. Thermoelectric companies include

only those with an interest in power generation; those that appeared to be fo-

cussed solely on Peltier cooling were not included even when they used MEMS

technologies.3 Similarly, none of the many companies which make small, gener-

ally internal combustion, engines for hobbyists were included.

AO

M icroen~ines/turhines
··-. - -. · ·---- --- -

Vibration Energy Scavengers
50 Thermoelectric/photovoltaic

M Direct Methanol Fuel Cells
* t. .... .

30

20

I n
I'v

VU
90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06

Figure 3.3. Number of companies known to be working on technologies to which power

MEMS is applicable 1990 - 2006 (see text for an indication of how these data were ob-

tained). No attempt was made to restrict these data to companies using MEMS.

3 See, for example, Nextreme (http://www.nextreme.com) and Nanocoolers
(http://www.nanocoolers.com).
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Taken together, these data indicate a substantial upswing in commercial activ-

ity devoted to small-scale electricity production even using such venerable

technologies as small engines and thermoelectrics, to say nothing of more re-

cent upstarts such as the DMFC. In many cases these activities are focussed on

the new opportunities created by the advent of MEMS, the applications of which

have also grown vastly since 1990. Let us now dig deeper into these issues.

2. Potential Power MEMS Markets

The market-pull behind most corporate interest in power MEMS today is the

need to power small electronic devices, which can be either hand-held or lap-

top consumer electronics, or else autonomous sensors, actuators and vehicles.

The reason is that nobody is very satisfied with existing battery technologies,

even lithium ion batteries, which are well on their way to becoming the "domi-

nant design" for this application. There remain, nonetheless, a number of po-

Table 3.1. Issues to consider in matching power supplies to markets

Performance Economics Convenience Others

Volumetric energy Initial cost per Degradation with Undesirable by-
density unit performance number of uses products like heat

Gravimetric Degradation with Environmental
energy density Cost of recharging time left unused issues

Volumetric power Disposal costs, if Degradation with Reliability under
density any temperature etc. normal usage

Gravimetric power Safety under Recharge time, Safety in fire, high
density normal usage form factor, etc. impact etc.
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tentially large, albeit perhaps less well-established, markets for better power

supplies of all sorts, each with its own particular requirements and preferences.

The features of power supplies which may be important to customers and in-

vestors are summarized in Table 3.1.

The performance of power supplies is typically compared using a Ragone plot,4

in which power and energy density are plotted against one another on a loga-

rithimc scale, as in Figure 3.4. In this Ragone plot, the diagonal lines are labeled

by the time the power supply would last without recharging, and the various

market requirements for performance are indicated by cross-hatched circles.

The "Personal Power Target" range defined by Dunn-Rankin et al. (footnote 4) is

indicated by the shaded parallelogram. The shaded regions correspond to each

of the four main classes of power MEMS devices from Chapter 2, as indicated by

the legend. It should be noted that the oval for vibrational energy scavengers

should actually be moved much further to the right, since the amount of energy

they deliver depends only on the amount of suitable energy in their environ-

ment and how long they last without wearing out. The thermoelectrics / photo-

voltaics (and thermionics) region includes that for vibration scavengers since in

that realm they too are assumed to be operating as heat scavengers, rather than

being fed heat from the combustion of a fuel as in the left-hand portion of the

yellow region. The upside-down "L" shapes for micro fuel cell and micro-

4 "Personal power systems" by D. Dunn-Rankin, E. Martins Leal & D. C. Walthur, Prog. Energy
Combust. Sci. 31, 422-65, 2005.
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Figure 3.4. Ragone plot of performance for power-MEMS technologies (colored regions),

with cross-hatched circles covering selected markets (see text for Personal Power Target).

engines / turbine regions stems from the fact that as one increases the amount

of fuel in their tanks, the energy density approaches a constant value (deter-

mined by the fuel and their efficiency) while the power density goes steadily

down. The upside-down "L" shape of the lithium ion battery region has to do
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with the fact that as one draws more power from such a battery, its efficiency

drops so that its energy density likewise falls. This same effect also applies to

micro fuel cells.

It is worth noting that none of the potentially MEMS-based technologies dealt

with in this work save micro-turbines and perhaps advanced solid-state heat

transducers overlap significantly with the Personal Power Target set by Dunn-

RIankin et al. (footnote 4) in the Ragone plot of Figure 3.4. In particular, baring

some fairly significant advances, micro fuel cells seem unlikely to make it, al-

though they may achieve their more immediate and modest goal of powering

cell phones and laptops for the better part of a day. Nonetheless, the invest-

ments made over the last ten years or so in various kinds of micro fuel cells,

particularly direct methanol fuel cells (DMFC), have far exceeded those going

into the other three classes of technologies combined. Adherents of micro fuel

cells even have their own annual conference, Small Fuel Cells for Portable Ap-

plications, now in its ninth year (which they've managed to schedule to conflict

with this year's main battery conference, Battery Power 2007). Similar concerns

regarding this allocation of resources have been expressed by Donald Sadoway

at MIT, although he would place all society's bets on lithium ion batteries.5

The Ragone plot above already goes a long ways towards segmenting the entire

"electricity upon demand" market for us into reasonably well-defined submar-

5 "The Lithium Economy" by Kevin Bullis, MIT Technology Review, Nov. 22, 2005.

-61 -



kets with respect to the performance criteria, which are relatively easy to quan-

tify. This already shows that no single technology is clearly ahead of all the

others even with respect to the gravimetric performance criteria. Ideally, we

would like to further segment the market with respect to all possible combina-

tions of the many different criteria shown in Table 3.1, in order to determine

which market niches each technology should initially target. Since very few of

the energy technologies under consideration have actually reached any markets

Performance, Convenience and Other Criteria

Low on Average High on Average

Present Cell Phone, PDA
& Laptop Power

Golf Carts

Sail Boat Power

Off-Grid Power Supplies

Camping & Motor Homes

All-Day Cell Phone, PDA
& Laptop Power

Personal Transport
(Segways, Wheelchairs,
Powered Bicycles, etc.)

Automobile Power

Ultra-light or Unmanned
Aircraft

Personal Climate Control

Military

Aerospace

Remote Power

Medical Implants

Figure 3.5. Businessman's matrix segmenting the market for electric power on demand.
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in the form of products, it is much more difficult to say very much about the

other classes of criteria, and we will content ourselves with a businessman's 2-

by-2 matrix which lumps all the economic issues into a single parameter, lumps

performance, convenience and all the other issues into another, and divides

each into two classes, high and low, as seen in Figure 3.5. The upper right-hand

region of this matrix probably includes most of the markets that would overlap

with Dunn-Rankine et al.'s Personal Power Target in the Ragone plot.

3. MEMS Foundries, Standards & Cost Structures

The energy technology companies tallied the histogram of Figure 3.3 are listed

explicitly in Appendix A, and are all either selling or developing products which

do or could make good use of MEMS processes. It seems, however, that only a

small fraction of them are actually doing so. A number of factors have probably

contributed to this unfortunate state of affairs. The first is that a somewhat

daunting knowledge base and physical plant are needed to design and manu-

facture devices based on MEMS. Yet there exists a substantial and growing fam-

ily of design houses and MEMS foundries which can take over much of this task.

Even though this fact does not completely eliminate the need for a basic under-

standing of how MEMS works, the availability of these services can greatly re-

duce the high costs of MEMS R&D and fabrication facilities in terms of time and

money, by spreading these fixed costs over a large number of customers.
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The MANCEF Roadmap, which is discussed in greater detail in Chapter 4, gives

a list of 38 foundries (dated 2004) together with their URLs from all over the

world. The Roadmap further noted that while most of the early foundries used

old equipment previously designed for standard integrated circuits, specialized

MEMS foundries were rapidly overtaking them. One of the best known is the

SAND # 5241130
Procure workstation

with AutoCAD

...... .................. ............... t ...... ......... ........ ....... .. ... ..
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SUMMiT VTM foundry at Sandia National Laboratories, which offers visualization

and design tools the output of which can be submitted directly to their web site

for manufacture (cf. Figure 3.6). A less integrated but more versatile service is

offered by the MEMS Exchange, a non-profit organization spun out of DARPA

which both offers design services and serves as an intermediary between its

Table 3.2. Process Hierarchy of the MEMS Exchange as of April, 2007.

Process Class Process Subclasses (total number of processes)

Wafer bonding Anodic bonding, Fusion bonding, Glass frit bonding,
Miscellaneous bonding (43)

Wafer cleaning No subclasses (46)

Thin film deposition Evaporation, Low-pressure CVD (aka Chemical Vapor
Deposition), Plasma etch CVD, Surface oxidation,
Spin casting, Sputtering, Low-stress SiN deposition,
Miscellaneous deposition (307)

Doping Diffusion, Ion implantation (18)

Wafter etching and Anisotropic etch, Deep RIE (Reactive Ion Etching),
resist stripping Isotropic etch, Stripping, Miscellaneous etch (182)

Lift off No subclasses (7)

Lithography Contact mask, Projection mask, Maskless,
Miscellaneous (74)

Mask making No subclasses (25)

Metrology Electrical, Geometric, Miscellaneous (104)

Packaging No subclasses (22)

Polishing No subclasses (6)

Thermal Annealing, Baking (32)

Unique capabilities Hot embossing, Shape memory alloy deposition,
LIGA, SiGe processes, Supercritical dry (17)
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customers and a number of foundries which can mass produce the resulting

product (see Table 3.2).6 In April 2007, the MEMS Exchange claimed to give ac-

cess to over 50 foundries in the USA alone.

The reasons why more startups are not making use of MEMS foundries include

the expense, intellectual property concerns, and the high switching costs asso-

ciated with changing designs or foundries. In addition many, or perhaps even

most, of the power MEMS devices that have been built to date were developed

in a university setting, where high yields and low production costs are generally

not of great concern. Thus these designs often use processes or materials that

are not widely available from foundries or other commercial facilities, so that

licensing them for commercialization can be problematic even for large compa-

nies with in-house MEMS capabilities. Nevertheless, it seems that even the large

Japanese and Korean electronics companies working on the DMFC are making

little use of MEMS, although they certainly have the resources to do so. This is

particularly striking in view of the fact that size is an issue for the DMFC.

The MANCEF Roadmap identifies an "MST basic toolset" consisting of the 37

processes most often found in MEMS manufacture (not all of which require an

apparatus specific to that process). This roadmap moreover groups the se-

quences of processing steps required for most commercially available MEMS

6 See http://www.mems-exchange.org; Honeywell also offers integrated design and fabrication
services, see http://www.memsservices.com.
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devices into 10 "process streams," which consist of the basic toolset plus at

most four additional stream dependent steps. This gives hope that standards

can ultimately be developed that will facilitate the use of MEMS foundries, as it

already has in the more mature in-

tegrated circuit industry. The

MANCEF Roadmap predicts this will

happen first for those processes

which are largely compatible with

existing integrated circuit foundries,

although it does not give a timeta-

ble. A number of industry organiza-

tions are trying to improve the

situation, including MANCEF's par-

ent organization SEMI (Semiconduc-

tor Equipment and Manufacturing

International), but at present each

MEMS foundry offers a somewhat

different set of services and a rather

distinctive customer service inter-

face. In other words, MEMS foun-

Figure 3.7. Development process for a
dries have not yet become a com-

MEMS-based product.
modity service.
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Those MEMS foundries which offer unique services, or are able to acquire such

capabilities in response to customer demand, are therefore able to charge a

significant but unpredictable premium. Moreover, the development of a novel

MEMS-based product involves a considerable amount of trial-and error, as indi-

cated in Figure 3.7, which makes the associated expense equally impossible to

predict. We expect therefore that almost all startup companies trying to com-

mercialize a MEMS-based product will be licensing their technology from a uni-

versity, thereby pushing their R&D expenses into their cost-of-goods sold.

With this assumption, we can assign a fairly generic cost structure to the pro-

duction of MEMS-based products, namely

Expected Unit Cost = (NM X CM + Nw X (Ns X Cs + Cc + ND X CP) + (Nw x ND)

where NM & CM are the number of photolithography masks involved in the proc-

ess and the cost per mask, Ns & Cs are the number of standard processing steps

(e.g. those needing only the MST basic toolset identified in the MANCEF Road-

map), Cc & CP are the costs of any custom steps needed and the cost of testing

and packaging each die (device), and Nw & ND are the number of wafers pro-

duced and the number of dies per wafer, respectively. Strictly speaking, the ex-

pected cost per unit (without packaging) should be divided by the probability

the die is defective, which is often non-negligible. Clearly one would like to

maximize the number of dies per wafer, although the increased cost of the
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equipment needed to produce larger wafers makes this option less attractive

than it otherwise would be. In any case the only fixed costs involved are the

masks, a set of which is generally produced during development anyway so that

additional copies are needed only if parallel production lines will be used.

Although the values of all these parameters will vary greatly, in practice the

fixed costs of MEMS foundries tend to be much less than those for state-of-the-

art integrated circuit foundries, while the variable costs of MEMS-based devices

are comparable to those for integrated circuits of comparable complexity.

4. Possible Business Models for Power MEMS

Having discussed the markets to which power MEMS is presently applicable,

and having discussed the main issues involved in the production of MEMS-

based devices generally, we are now ready to consider how a power-MEMS com-

pany might actually make money. Clearly this question has many possible an-

swers, which are to a large extent conditional on the capabilities of the particu-

lar technology in question. For this reason we will break down this section into

our four standard kinds of technologies to which power MEMS is applicable.

Our focus will be on how a small startup, assumed to have cutting-edge exper-

tise and intellectual property in power MEMS, could best acquire the generic

complementary assets needed to capture the full value of its innovation.7

7 As first elucidated in "Profiting from Technological Innovation: Implications for Integration,
Collaboration, Licensing and Public Policy" by David J. Teece, Res. Policy 1 5, 285-305, 1986.

-69 -



4.1. Microengines and Microturbines

The value proposition enabled by these devices lies in their high specific power,

together with the fact that their energy density will approach their efficiency

times the energy density of the fuel they burn as the size of the fuel tank

grows. Although the ultimate efficiency of these systems cannot yet be deter-

mined with confidence, 5% seems a safe lower bound, which with gasoline as

the fuel implies an energy density about three times that of the best lithium ion

batteries today. The first question is who would be willing to pay the most for

these unique advantages?

I believe the most immediate high-premium market for such a power source

would be the U.S. Army, specifically for personal climate control. A soldier to-

day typically carries between 60 and 100 pounds of gear in the field, including

several pounds of batteries. Particularly in hot climates, this can greatly limit

their effectiveness and endurance. If those batteries could be replaced by a

comparable weight in fuel plus a microengine or microturbine powered genera-

tor, the extra energy could be used to power a cooling system that helped to

keep heat exhaustion at bay.8 Although the noise some microengines produce

would have to be muffled for this application, the MIT microturbine at least

only produces noise at frequencies well above the audible range.

8 The best such system would be a solid-state thermoelectric device based on the Peltier effect,
which could also lead to a pleasant confluence of MEMS-based technologies. Such devices are
used, for example, to cool the seats in some luxury automobiles.
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This choice of target market has the following advantages:

> Initial product development could be funded by an Army SBIR (Small Busi-

ness Innovation Research) grant.

> There will be little or no marketing required, and only a small sales force.

> The customer can be expected to pay quickly and reliably upon delivery.

> The market is potentially quite large, so that it will not be saturated quickly.

One disadvantage will be the need for partnership with some other company

which could incorporate the cooling system into a soldier's uniform, but the

need for partnerships is likely no matter which market is targeted.

4.2. Direct Methanol Fuel Cells

Like microengines and microturbines, the energy density of these devices ap-

proaches their efficiency times the energy density of their fuel (methanol) as

the size of their fuel tank grows, but they will deliver considerably less power

per unit weight. Their greatest single advantage lies in the fact that their effi-

ciency runs around 25%, so that even though methanol has half the energy of

gasoline they still come out way ahead. As a result they also generate far less

waste heat.

Right now most companies actively trying to commercialize the DMFC are aim-

ing to provide all-day power to mobile consumer electronics such as laptops

and cell phones. Indeed, just about every large Asian OEM in this industry, from
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Hitachi to Toshiba (see Appendix A) has a major effort directed at the DMFC.

The consequent widespread publicity has done so much to pave the path to

user acceptance that it would probably be foolish to target any other market

right now, despite the fierce competition it promises. It should also be noted

that there remains a considerable amount of technological risk associated with

the DMFC, which always seems just one more year away from a product launch.

Among the large diversified electronics firms now developing a DMFC, only Mo-

torola seems to be making much use of MEMS (see Appendix A) even though, as

noted in Chapter 2, MEMS promises a higher power density by using many thin

cells in a fuel cell stack. For a startup seeking to take advantage of this fact, the

key will be choosing the right strategic partner to provide the marketing and

distribution resources needed to gain a first-mover advantage and so ensure

that the full value of the company's innovation is captured by itself. Given the

likelihood of encountering the "not invented here" syndrome at large consumer

electronics firms, the most likely partner would be a firm which produces con-

ventional batteries and can see the handwriting on the wall, when and if a good

DMFC should come along. Procter and Gamble now owns Duracell, for example!

Another important point concerning business models for the DMFC is that, un-

like microengines and microturbines, they are very fussy about their fuel. Not

only must it be methanol, which is poisonous and not readily available in shops

and stores, but in many cases it must have just the right amount of water in it
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with the right level of acidity. For these reasons the fuel will most likely be dis-

tributed in plugin canisters which work only with the manufacturer's own

DMFC. This opens the possibility of a significant recurring revenue stream

which could be used to compensate for the probable high cost of producing the

DMFC itself. This is, of course, exactly how the ink-jet printer market works.

4.3. Thermoelectrics, Thermionics and Thermophotovoltaics

These versatile technologies can either generate electricity directly from the

heat released on burning fuels, or scavenge waste heat and thereby make exist-

ing heat engines (like the MIT microturbine) more efficient. Given this versatil-

ity, it is a bit surprising that they have not been more widely utilized. Thermo-

electrics, in particular, is a proven and fairly well-established technology which

has recently been undergoing rapid improvements. In keeping with the results

of a recent article on the commercialization of thermoelectrics, 9 we believe that

using this technology to improve the efficiency of the automobile would be an

excellent place to start, both because of its volume and because the amount of

waste heat generated by today's automobiles is so incredibly large.

Since we are certainly not the first to have this idea, we must establish our

competitive advantage by other means. A promising route to this end is pro-

vided by the ability of MEMS technologies to drastically cut the costs of ther-

9 "Commercialization of Thermoelectric Technology" by Francis R. Stabler, MRS Symp. Proc. 886,
F01-04.1-9, 2006.
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moelectric modules, together with the fact that it seems no commercially avail-

able modules presently make any use of MEMS. Cost, of course, is of great con-

cern in the automotive industry, since most of the cars sold are low-end com-

modity vehicles. Even though automobile manufacturers already use many

MEMS-based components, they usually do not have in-house expertise and are

happy to buy from the cheapest supplier. Finally they are under great regula-

tory pressure to improve the efficiency of their products, and even hybrids

could profit from thermoelectric technology.

The MEMS advantage may not be sustainable for very long, but it should enable

a new startup company to establish itself if it acts soon. The most important

resource it will need is access to engineers in the automobile industry, which it

could get by hiring away one or more sales people from an automotive compo-

nents supplier which already has thermoelectric products out (such as the BSST

LLC owned by Amerigon, Inc.; see Appendix A). Once it has established a reve-

nue stream, the startup could turn towards commercializing efficient solid-

state generators based on advanced thermionic or thermophotovoltaic systems

for powering otherwise all-electric cars, which are beginning to appear on the

market.1' Unless the hydrogen economy actually comes to pass, these beautiful

solid-state systems are likely to outperform and cost less than fuel cells which

have to reform their fuels into hydrogen.

10 See e.g. http://www.teslamotors.com or http://www.apteramotors.com.
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4.4. Vibrational and Electromagnetic Energy Scavengers

Vibrational and electromagnetic energy scavengers are characterized by very

low power density but theoretically infinite energy density, limited only by the

lifetime of the device. For this reason they are being widely considered as a

means of powering wireless networks of autonomous sensors (see Chapter 2

and references therein). Although this MEMS application has great commercial

promise, there are few products out yet and it may take some time before a

large market for such sensor networks develops.

Right now, a more promising target market for a startup with expertise and in-

tellectual property in energy scavenging would seem to be implantable medical

devices such as pacemakers, drug delivery systems, and patient monitoring, to

which MEMS is now also being applied." Indeed several papers have been writ-

ten on these applications, 12 and the U.K. Dept. of Trade and Industry has re-

cently funded a consortium to develop such systems,"3 but no products have

yet made it to the marketplace. So the field seems relatively open, and since

'~ "A BioMEMS Review: MEMS Technology for Physiologically Integrated Devices" by A. C. Rich-
ards Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, Yawen Li, M. J. Cima & R. Langer, Proc.
IEEE 90, 6-21, 2004.

12 "Development of an Electrostatic Generator for a Cardiac Pacemaker that Harnesses the Ven-
tricular Wall Motion" by R. Tashiro, N. Kabei, K. Katayama, F. Tsuboi & K. Tsuchiya, J. Artif. Or-
gans 5, 239-245, 2002; "MEMS Inertial Power Generators for Biomedical Applications" by P.
Miao, P. D. Mitcheson, A. S. Holmes, E. M. Yeatman, T. C. Green & B. H. Stark, Microsyst. Tech-
nol. 12, 1079-83, 2006.

13 "Consortium Develops MEMS-Based Generator for Medical Implants" by staff writer, The Semi-
conductor Reporter, Dec. 1 8 2006; http://www.semireporter.com/public/1 5466print.cfm.
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nobody wants to have to go in for surgery every time their battery runs down,

the market is certainly there!14

Even though some MEMS foundries have considerable experience helping their

clients develop BioMEMS devices, a startup will still need to work through a

company that can shepherd its product through the stringent approval process

for implantable devices, and to provide the marketing and distribution re-

sources that will be needed. Medtronic, for example, already makes a MEMS-

based pacemaker, and recently invested in a startup spun out of the University

of California Berkeley, EndoBionics Inc. (now Mercator MedSystems), developing

a MEMS-based microsyringe catheter.15 A smaller MIT spinoff, which may be

more open to partnerships, is to be found in MicroChips Inc.,16 which is devel-

oping wirelessly powered and controlled implantable drug delivery systems

that might in some cases be better made fully autonomous using an integrated

energy scavenging system. Regardless of the size of the company and the na-

ture of its products, the key to favorable terms in such a partnership will be

strong patent protection on an energy scavenger with distinctive advantages for

the intended application.

14 One company, CardioMEMS Inc. (http://www.cardiomems.com), is close to commercializing
implantable sensors which obtain their power from a dedicated microwave transmitter in the
doctor's office; this is not really scavenging according to our definition.

15 "Sticklers for Accuracy: Tiny Needles Provide Better Treatment for Restenosis, Diabetes
and More" by B. Z. Powell, Acumen J. of the Sciences, May 20, 2003.

16 See httD://www.mchios.com.
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5. Case Studies

In the following we present case studies of two power MEMS startup companies,

one of which is funded by angel capital and private investors, the other of

which is merely an idea for a company that has yet to even be officially created.

These two companies were chosen because they illustrate the potential for dis-

ruptive innovations being created by power MEMS technologies, and because

the principals thereof are personally known to the author; in the latter case

they are in fact one and the same! So it behooves me to switch to first person at

this point in the narrative.

5.1. MTPV Corporation

I first got to know Bob DiMatteo when I joined the Sloan Fellows Program at

MIT in the Spring of 2005. At first all I knew about him was the he had come

into the program from the Charles Stark Draper Laboratory, a non-profit R&D

corporation spun out of MIT in 1973. It was only after he gave a lunchtime talk

to the class on his work six months later that I learned about his work on a

novel energy technology he called micron-gap thermophotovolatics (MTPV).

Bob tells me his interest in energy technology goes all the way back to the en-

ergy crisis of the late 1970's, when he read an article about a Ford Galaxy that

someone had modified to get 100 miles-per-gallon. After graduating in govern-

ment and social studies from Harvard, he worked briefly at Sikorsky Aircraft
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and the MITRE Cnornoration. then did

eight years in a startup working on

energy efficient homes and buildings

in the Boston area. At that time he

returned to school at MIT, where he

obtained a dual masters in Electrical

Engineering and Computer Science

and in the Technology and Policy

Program in 1996. His thesis was

about micron-gap thermophotovol-

taics and policies to promote the de-

velopment of such energy efficient Figure 3.8. Bob DiMatteo in the Sloan Fel-

lows Program in 2005.
devices. After graduating he moved

on to Draper Labs, where he continued to develop and demonstrate this tech-

nology over the next decade. 17 He obtained his MBA through the MIT Sloan Fel-

lows Program in 2006, and has since been working as the CEO of MTPV Corpo-

ration, the company he founded to commercialize micron-gap thermophotovol-

taic technology.

As was described in Chapter 2 of this dissertation, TPV converts the infrared

light emitted from a hot object into electricity using a low-bandgap PV (photo-

17 R. S. DiMatteo, P. Greiff, S. L. Finberg, K. A. Young-Waithe, H. K. Choy, M. M. Masaki & C. G.
Fonstad, Appl. Phys. Lett. 79, 1894-6, 2001.
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voltaic) cell. The heat can be obtained from concentrated solar radiation, fossil

fuel combustion or even nuclear reactions. In particular, TPV offers the tantaliz-

ing possibility of replacing the good old gasoline and diesel engines used in to-

day's automobiles, and perhaps even tomorrow's advanced hybrid vehicles,

with a solid-state device which silently converts these same fuels into electricity

to power an otherwise electric car with 100 mile-per-gallon efficiency. Although

TPV is simple in principle, a great deal of ingenuity is required to design a

complete system with a fuel efficiency, a level of power and a cost comparable

to existing power sources, be they large or small. In particular, the designer of a

conventional TPV system is confronted with a Faustian bargain between relying

on a large area of expensive PV cells to obtain sufficient power, or else operat-

ing at a very high temperature (1000-1500°C), which requires expensive insula-

tion and cooling. Of the three companies founded in the late 1980's to com-

mercialize TPV technologies, only the web site of JX Crystals Inc. indicates that

they are ready to sell such systems at all.18

The use of a sub-wavelength gap between the infrared emitter and the PV cell

greatly ameliorates this problem, by enabling a phenomenon known as "eva-

nescent radiation transfer" to improve the power-per-unit-area at moderate

18 TPV Corporation of Waltham MA, whose founder Robert E. Nelson took a job at the Quantum
Group in San Diego in the early 1 990's and continued to patent TPV technologies at that com-
pany, which now sells only carbon monoxide sensors; EDTEK Inc., founded by William E. Home
from Boeing, which currently does contract engineering on solar energy systems; JX Crystals,
founded by Lewis M. Fraas also from Boeing, which sells both ordinary and low-bandgap photo-
voltaic cells. See "A Brief History of Thermophotovoltaic Development" by R. E. Nelson, Semi-
cond. Sci. & Technol. 18, S141-3, 2003.
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(5000C) temperatures by an order of magnitude

or more (see Figure 3.9). The main challenge to

realizing this advantage is to obtain excellent

thermal isolation between the emitter and the

PV cell despite their small separation, which re-

quires a high vacuum. Although that is not it-

self a significant problem, it remains nontrivial

to keep two surfaces a precise, sub-micron dis-

tance apart while heating one, cooling the other,

and possibly enduring an occasional jolt from

the outside. The solutions Bob has developed

use MEMS technologies in an essential way.19 Figure 3.9. Experiment illustrat-

ing phenomenon of evanescent

The process is essentially one of surface mi-
radiation transfer when two

cromachining, whereby a sacrificial layer is used prisms are brought into sub-

to create a hexagonal array of emitters sup- wavelength proximity (drawing

ported on the surface of the PV cell by insulat- courtesy of MTPV Corporation).

ing (silicon oxide) "stand-offs," as seen in Figure 3.10. The sacrificial layer is

removed by a solvent which enters through numerous "weep holes" created on

their surfaces. The result is that the PV cell is almost entirely shielded from the

19 "Micron-gap ThermoPhotoVoltaics" by R. DiMatteo, P. Greiff, et al., Proc. 6th Conf. on Ther-
mophotovoltaic Generation of Electricity (A. Gopinath, T. J. Coutts & J. Luther, eds), CP738, 42-
51, Amer. Inst. of Phys., 2004.
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hot surface by this array of secondary emitters, which are individually small

enough, relative to the height of the stand-off, that their distance to the PV cell

is little affected if they warp a bit under the imposed thermal gradient. They are

also very light-weight and hence impervious to external shocks. Recent work

has shown that the emitters can be made quite selective for the PV cell's band

gap by making them out of thin silicon,20 which is also of course amenable to

MEMS. Finally it has been discovered that, contrary to initial expectations, the

frequency selectivity can be improved via a thin metallic filter, and that the

micron-gap need only be maintained between the emitters and the surface of

this filter layer, rather than with the PV cell itself. This allows an insulating

layer much thicker than a micron to be inserted between the filter and the PV

cell, reducing the need to cool it.

At present MTPV Corporation has seven full-time employees, including another

Sloan Fellow, Bernard Ho, who acts as sales manager. They have a demonstra-

tion device which they show to potential investors and customers, and are seek-

ing strategic partners to help them sell into the areas of remote or portable

power supplies, cogeneration, concentrating solar, and power for otherwise

electric automobiles. If they succeed, it will bring a great deal of recognition to

the field of power MEMS more generally, and may be just what is needed to

jump start the whole industry. I wish them extremely well with their enterprise!

20 "Semiconductor Silicon as a Selective Emitter" by D. L. Chubb, D. S. Wolford, A. Meulenberg &
R. S. DiMatteo, Proc. 5th Conf. on TPV Generation of Electricity, CP653 (Am. Inst. Phys.), 2003.
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5.2. Elastic Energy Systems

MTPV Corporation's current activities may be described as trying to get the en-

gine of an old-fashion crank-shaft automobile to turn over. The activities of

those involved in our next case study are more like trying to design and build

the automobile from scratch. My collaborator on this project, Prof. Carol Liver-

more in the Dept. of Mechanical Engineering, and myself have a concept, a few

back-of-the-envelope calculations which are consistent with its commercial

promise, and a small grant from the MIT Deshpande Center for Technological

Innovation which currently pays a graduate student to perform simulations of

our present ideas for functional embodiments. Assuming all goes well, we may

be ready to actually start raising capital for the company in less than five years.

Meanwhile, it must remain a laboratory project funded by grants and donations

from far-seeing companies or organizations such as the Deshpande Center.21

The concept itself is simple enough. According to Hook's law, the energy stored

in a mechanical spring grows as roughly one-half the product of the force ap-

plied to it and the displacement, i.e. the difference between its length and that

when no force is applied. The maximum energy that can be stored in the spring

before it bends or breaks therefore depends both on how stiff the spring is -

how quickly does the force increase with the displacement - and on how great

21 We are presently hoping to receive additional funds from the Swiss watch industry, specifi-
cally the Association Suisse pour la Recherche Horlog&re, which has been looking for a better
main spring for generations, and from Schlumberger, an oil drilling consulting company in need
of batteries that can tolerate the heat of a deep bore-hole.
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of a displacement it can tolerate. Steel is quite stiff, of course, but can tolerate

displacements of only about 1%, and hence the amount of energy that can be

stored in a steel spring per unit weight is less than a thirtieth that of a lead-acid

battery. Neoprene rubber, on the other hand, is less than a thousandth as stiff

as steel, but can be stretched by 500% or more without breaking, and hence can

achieve about the same energy density as steel springs can.

Carbon nanotubes differ from these macroscopic materials in that they are not

only about five times stiffer than steel, but are also about fifteen times more

flexible. It follows that they can store energy almost 100 times more densely

than a lead-acid battery, which is about an order of magnitude denser than lith-

ium ion batteries. The problem, of course, is that single carbon nanotubes, al-

though enormous as molecules go, are still invisible to the naked eye and can

individually store only insignificant amounts of energy. Methods of assembling

many nanotubes into much larger structures such as ropes or yarns are avail-

able,22 but the nanotubes in these assemblies are packed together in a largely

random fashion, with the result that they generally are a great deal less flexible

than are their constituent nanotubes. It is very likely that this problem can and

will be overcome, and we hope our work on mechanical energy storage in car-

bon nanotubes will inspire further research along these lines.

22 "Mechanics of Carbon Nanotubes" by Dong Qian, G. J. Wagner, Wing Kam Liu, Min-Feng Yu &
R. S. Ruoff, Appl. Mech. Rev. 55, 495-533, 2003; "Fundamental Mechanical Properties of Carbon
Nanotubes" by Min-Feng Yu, J. Eng. Mater. Technol. 126, 271-8, 2004; "Progress on Mechanics
of Carbon Nanotubes and Derived Materials" by J.-P. Salvetat, Sanjib Bhattacharyya & R. Byron
Pipes, J. Nanosci. Nanotechnol. 6, 1857-82, 2006.
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Single carbon nanotubes, nevertheless, are large enough to make it possible to

manipulate them inside MEMS devices, and it is also possible to make motors

and generators small enough to use them as "supersprings" to store and re-

cover electrical energy. 23 Besides potentially having a higher energy density

than chemical batteries, such a device could also in principle have a much

higher power density, a much shorter recharge time, a higher efficiency of stor-

age and recovery, and a longer lifetime both on the shelf and in constant use.

Of all the electrical energy storage devices presently under development, only

supercapacitors offer most of these other benefits, but they still have quite a

long way to go before they can match the energy storage density of batteries.2 4

Coincidentally, the use of dense mats of carbon nanotubes for supercapacitor

electrodes is one of the ways people are trying to increase supercapacitor en-

ergy density.25

The following are some of the technical challenges involved in trying to use

MEMS to make carbon nanotube superspring batteries a commercially viable al-

ternative to chemical batteries for the purposes of electrical energy storage:

23 "Experiments and Modeling of Carbon Nanotube-Based NEMS Devices" by C.-H. Ke, N. Pugno,
B. Peng & H. D. Espinosa, J. Mech. Phys. Solids 53, 1314-33, 2005.

24 "Ultracapacitors Challenge the Battery" by J. M. Miller, World and I, 1 30-1 37, Jun. 2004; "The
Supercap Communication Challenge" by staff writers, Batteries and Energy Storage Technology,
107-1 3, Winter 2005.

25 "MIT Researchers Fired Up About Battery Alternative: Nanotube Structures Key to Work" by
staff writers, Science Daily, Feb. 2006; "The Ultra Battery" by Kevin Bullis, MIT Technol. Rev., ar-
ticle 16569, Mar. 2006; "MIT Research May Spell End for the Battery" by Hiawatha Bray, Boston
Globe, Jun. 26, 2006.
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A supporting structure must be designed to balance the force exerted by the

supersprings in their fully charged state, which can be no more than two or

three times more massive than the superspring itself since the bigger it is,

the more it will dilute the energy density of the superspring. Due to the re-

markable strength of carbon nanotubes, this force will be greater than other

materials can withstand unless it is distributed over the surface of the struc-

ture in such a way that atomic repulsion, which becomes arbitrarily large as

atoms are brought closer together, can balance the forces exerted by the

chemical bonds of the superspring. This explains, for example, why a glass

sea float can be sunk in deep water and pulled up again uncrushed by the

hundreds of pounds per square inch of pressure it has endured, although it

can be broken by the tap of a hammer. Our ability to do this will be limited

by the presence of random defects in the structure, but fortunately defect-

free structures become easier to make as they get smaller, as illustrated for

example by the rotor of the MIT microturbine.

Although nanotechnology researchers have succeeded in making very small

motors approaching even molecular dimensions, it is much more difficult to

scale down electromagnetic or even electrostatic generators to the sub-

millimeter scale. This is in large part because frictional and ohmic losses be-

come prohibitive as the surface-to-volume ratio increases with decreasing

size. About the only kinds of generators that work well at very small scales

are piezoelectric generators, but even then daunting problems arise in wir-
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Figure 3.11. Drawing of the preferred embodiment from pending U.S. patent application
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ing micron-scale, high-power-density components together without serious

energy losses due to unwanted capacitive couplings. This implies one should

try to make the supersprings as large as possible, so that the associated

hardware needed to deform them and recover the energy thereby stored in

them as electricity can be built more easily. Unfortunately, the larger the su-

perspring, the more difficult it becomes to assemble its constituent nano-

tubes in a highly ordered fashion, and as previously mentioned the random-

ness present in most carbon nanotube assemblies greatly decreases their

flexibility and hence the amount of energy they can absorb. Hopefully a

"sweet spot" in the size of the supersprings can be found that will make it

possible to both make them highly ordered and large enough to be incorpo-

rated into an efficient electromechanical transducer - which once again must

not be much more massive than the superspring itself. One possible em-

bodiment, which is not expected to be commercially viable but could lead to

an experimental proof of concept, is illustrated in Figure 3.11.

Finally, methods for growing defect-free carbon nanotubes with well-defined

chemical structures, positioning them precisely on the surfaces of silicon or

other MEMS compatible materials, and fastening them firmly to these struc-

tures are really still in their infancy. In particular, in order to build the su-

perspring it will almost certainly be necessary to embed the ends of single

carbon nanotubes below the surface of crystalline silicon, and to form nu-

merous covalent bonds between the silicon atoms and the carbon atoms of
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the nanotube so as to attach these two components together very strongly.

Although the chemistry certainly allows this, the problem has not even been

studied theoretically as far as my literature searches have been able to de-

termine, let alone experimentally. This is somewhat surprising, given all the

proposals out there for incorporating nanotubes into silicon-based semicon-

ductor devices.

On the positive side, all of the above challenges lie squarely within the main-

stream of nanotechnology today, and as a result enormous effort is already be-

ing devoted to research with the potential to overcome these challenges. In the

next and final chapter of this dissertation we will consider the possibility of

constructing a roadmap for future work on power MEMS more generally.
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Chapter Four: Proposal for a

Power-MEMS Roadmap

It has been argued that the rate and direction of advance in pure

science must be considered as an autonomous factor in any theory

... of inventive activity ... [But] recall that the science of thermody-

namics was, in large part, called forth by the development of steam

engines, not vice versa ... [Similarly the great increase in] the pro-

portion of articles relating to solid-state physics ... was, in consider-

able part, due to the invention of the transistor and the consequent

spotlighting of the field.

Richard R. Nelson in The Rate and Direction of Inventive Activity:

Economic and Social Factors, Princeton Univ. Press, 1962

The key point is that in modern competitive equilibrium theory [of

economics], what can be done is objectively and clearly defined ... In

the Schumpeterian scheme, the limits of what can be done are never

fixed and never clearly in view. Discovering what can be done is

part of the problem for the individual actor ...

Richard R. Nelson & Sidney G. Winter,

Am. Econ. Rev. 67, p. 271, 1977
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After describing the purposes and kinds of technology "roadmaps" which have

been assembled in recent years, we review the trends and developments docu-

mented in this dissertation and argue that they point towards the conclusion

that an industry-wide, exploratory power-MEMS roadmap could do much at this

time to stimulate the genesis of power-MEMS industrial ecosystem. A set of

goals are then proposed for such a roadmap, along with a set of tasks by which

the roadmapping process could be set in motion. In order to help the Power-

MEMS Roadmap participants better understand the long-term goal of this proc-

ess, a conceptual framework is presented which attempts to pinpoint the feed-

back loop that has given rise to other major industrial ecosystems such as the

semiconductor industry. Finally some technological challenges are considered,

the solution of which could further advance the scope and long-term impact of

power MEMS.

1. Roadmaps in General and MEMS Roadmaps in

Particular

A roadmap is basically a tool to facilitate communication amongst a group of

diverse individuals who share a common interest. In this sense it is similar to a

blackboard or an audiovisual aid, but a roadmap is a bit more abstract in that it

constitutes an attempt to paint a picture of what the future could be, if those

concerned take appropriate actions in the present. Even if nobody can initially
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agree on what they should be doing together, participation in such an exercise

can give rise to a process or forum whereby agreement is reached. In addition,

the finished document can be used to help them communicate to other poten-

tially interested parties, outside of the initial group, what the participants are

doing and why.

A technology roadmap results when the common interest concerns a technol-

ogy or an application of the technology. The best-known technology roadmap

by far is the International Technology Roadmap for Semicondutors (ITRS).1 This

began as a national (US) technology roadmap in 1986, and by 1991 had forged a

path designed to take the industry to a 1 gigabyte SRAM memory chip by 2003,

a goal it actually achieved four years ahead of schedule. It is remarkable that

such a fiercely competitive industry should have adopted such a high level of

cooperation and communication regarding what the playing field should look

like. The semiconductor industry has in effect decided that the basic research

needed to keep it on the curve of Moore's law should be regarded as an innate

part of the commonweal, with raw competition relegated to the individual

firms' manufacturing and marketing capabilities.

The ITRS is the prime example of industry roadmapping for the purpose of

achieving technological innovations which sustain existing markets and busi-

i "Review of the Semiconductor Industry and Technology Roadmap" by Sameer Kumar and N.
Krenner, J. Sci. Edu. Technol. 11, 229-36, 2002.
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ness models. None of the firms involved in the ITRS expect to be put out of

business by the technological advances they are helping to create. On the con-

trary they hope it will help keep the total market for their products expanding.

Technology roadmapping can also be used within a firm, to help it decide how

to allocate its R&D resources, but whether firm or industry wide, roadmapping

to achieve sustaining innovations is known as target-driven roadmapping.

Such roadmaps tend to be prescriptive in nature, and if not updated constantly

can have the dangerous effect of limiting the assimilation of new information

or the exploration of alternatives, resulting in the premature lock-in of inferior

technology or standards.2 It is much more challenging to apply technology

roadmapping to potentially disruptive technologies, since these are unpredict-

able by definition. As a result, such exploratory roadmaps tend to be largely

descriptive in nature, and the exploratory roadmapping process is intended to

inspire rather than define the future.3 Significantly, the ITRS itself has included

multiple scenarios in its "forecasts" since 2000.

Although it is really more than a single technology and certainly has far more

than a single application, MEMS has been the subject of two major roadmaps,

plus an assortment of more limited roadmaps and attempts at standardization.

2 For an excellent example, see "Clio and the Economics of QWERTY" by Paul A. David, Am.
Econ. Rev. 75, 332-7, 1985.

3 "Technology Roadmapping a Future for Integrated Photonics" by E. J. Bruce and C. H. Fine,
preprint available on-line at http://www.hbs.edu/units/tom/seminarsO4-O5/cfine.html.
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Table 4.1. Main Working Groups for the Two Major MEMS Roadmaps

(an asterix indicates the group contributed to the 2004 MANCEF revisions)

The NEXUS Technology Roadmap

for Microsystems

MEMS Packaging

Design, Modeling and Simulation

Automotive

) Peripherals and Multimedia

) Telecommunications

) Pharmaceutical and Analytical

ý Medical Devices

ý Household Appliances

) Aerospace and Geophysics

) Lifestyle

The MANCEF International Micro-

Nano Roadmap

> Process and Equipment for MST*

> Equipment and Tooling for MNT*

> Simulation, Modeling and Design

) IC Compatible Manufacturing

) Non-IC Compatible Manufacturing

> Reliability, Testing and Metrology

> Packaging and Assembly*

> Integration

> Status & Future of MEMS Foundries*

> Cost Models

0 Standards, or the Lack Thereof

> Commercialization

) Market Forecasting

> Optical Microsystems

BioMEMS

) RF MEMS*

) Nanotechnology*

> MEMS Patent Analysis*
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Both of the major roadmaps have their origins in SEMI's (Semiconductor

Equipment and Materials International) initial study of the MEMS standardiza-

tion problem in the late 1990's.4 The Europeans involved in that study, then or-

ganized as the European Microsystems Network, were funded by the European

Commission to develop the NEXUS (Network of EXcellence in mUltifunctional

microSystems) Roadmap. This was announced at the COMS (Commercialization

of Micro Systems) meeting in 2000, and the first complete version was distrib-

uted at COMS 2003. It is a "technology/product-oriented" roadmap with the

"User Supplier Clubs" and "Methodology Working Groups" listed in Table 4.1

responsible for its various sections.5 A version of the NEXUS Technology Road-

map for Microsystems is distributed in the USA by the MEMS Industry Group. 6

A second group based in the USA was spun off from SEMI as MANCEF (Micro

And Nanotechnology Commercialization and Education Foundation), which

produced its own International Microsystems Roadmap in 2002 and a more ex-

tended version renamed the International Micro-Nano Roadmap in 2004. It dif-

fers greatly from the NEXUS Roadmap in that it starts from the technology,

moves on to the economics, and finally focuses on major areas of application.

Even more importantly, while the NEXUS Roadmap seeks to extrapolate the fu-

4 "MEMS Standards and Roadmaps Summary" edited by Lubab Sheet, Sr. Director of Emerging
Technologies at SEMI, Oct. 2006.

s See http://www.nexus-mems.com/userclubs.asp; the "Lifestyle" club is apparently no longer
active.

6 See http://www.memsindustrygroup.org.
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Figure 4.1. The three stages of roadmapping, as discussed in the main text.

Adapted with permission from the reference in footnote 3.

ture of MEMS within those industries wherein it plays a major role today, the

MANCEF Roadmap is fundamentally an exploratory roadmap for those inter-

ested in what industries MEMS might disrupt tomorrow.7 Moreover, the

MANCEF Roadmap seeks to illuminate the entire value network associated with

MEMS, rather than just its technologies and/or markets. This is particularly im-

portant if, as in the present case, one of the goals of the roadmap is to promote

the development of a value network. It is our hope that the proposed Power-

MEMS Roadmap will become an integral part of the broader MANCEF Roadmap.

Regardless of the nature of the technology, roadmapping is always a three-stage

iterative process, which is summarized in Figure 4.1. In the planning stage one

7 "Roadmapping a Disruptive Technology: A Case Study of the Emerging Microsystems and Top-
Down Nanosystems Industry" by S. T. Walsh, Technol. Forecast. Social Change 71, 161-85, 2004.
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decides what the roadmap is intended to accomplish, how it can best achieve

those goals, and sets up a framework for the ensuing discussions. As a rule it is

initiated by a relatively small group of people, who must subsequently get a

much larger group to put up the resources needed, consisting primarily of their

time and expertise, but also of course the funds needed to cover remote com-

munication and face-to-face meetings of all participants - which should occur

at least once in each iteration. Initial discussions can however take place via E-

mail or other electronic media, using for example the Delphi method to gener-

ate a preliminary list of issues to dig into at the face-to-face meetings.8 A vari-

ety of analytic tools may also help achieve consensus regarding the issues to be

dealt with and their resolution, including text and data mining,9 selected case

studies, negotiation and voting techniques, 10 statistical analysis of relevant

technical or economic data collated from the literature or the participants,"

and predictive modeling tools such as system dynamics. 12

Finally the results must be assembled in some easily assimilated fashion and

distributed for final approval. Often, especially in target-driven roadmaps, one

creates a single chart or diagram which displays the main results in a visual

8 "The Delphi Method: Techniques and Applications" edited by H. A. Linstone and M. Turoff,
Addison-Wesley, 1975; available on-line from http://www.is.niit.edu/pubs/delphibook.

9 "The Elements of Statistical Learning" by T. Hastie, R. Tibshirani &J. Friedman, Springer, 2001.

10 "Discrete Mathematical Models, with Applications to the Social, Biological and Environmental
Problems" by F. S. Roberts, Prentice-Hall, 1976.

11 "Technology Portfolio Planning and Management" by Oliver Yu, Springer, 2006.
12 "Business Dynamics" by John Sterman, Irwin-McGraw-Hill, 2000.
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Figure 4.2. Central graphic for a generic target-driven technology roadmap document.

fashion, as illustrated in Figure 4.2, followed by a more detailed written docu-

ment. Needless to say, such diagrams do not play such a big role in most ex-

ploratory roadmaps, though they may be used to display the results of scenario

analysis, and the participants in an exploratory roadmap must often be rather

creative in their choice of visual aids. The MANCEF Roadmap, for example,

sometimes replaces "time" in a diagram like that in Figure 4.2 by a logarithmic

measure of spatial scale, and often uses a topographic map with its features la-

beled by company, technology etc. to display the results of a cluster analysis.
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2. Justification, Objectives and Tasks to Initiate

the Power-MEMS Roadmap

In Chapter 1 of this work, we argued that society has an already poignant and

rapidly growing need for an entirely new generation of energy technologies. In

Chapter 2 we somewhat arbitrarily picked out four general kinds of advanced

energy technologies that are currently under intense development. This selec-

tion was based both on the demonstrated applicability of MEMS and on the po-

tential of these technologies to cause near-term disruptions in existing markets.

The latter in turn is due simply to their use of chemical fuels or scavenging to

enable energy densities well beyond even future generations of batteries. We

then discussed each of these four broad classes of energy technologies and

showed examples, taken largely from academic research, which illustrate the

applicability of MEMS manufacturing processes to each. In Chapter 3 we used

literature, patent and company database searches to show that innovative activ-

ity in these technologies has skyrocketed over the past decade, and then looked

at the most important markets which they could immediately target. We next

considered the economics of MEMS manufacturing with emphasis on how a

small-to-medium size firm could get into the game, and gave some examples of

applicable business models. Finally we presented two detailed case studies in-

volving real people working to overcome the market and engineering risks as-

sociated with innovation in power-MEMS technologies.
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This plot was meant to illustrate the theme of this dissertation, which is that

MEMS has the potential to become a unifying foundation for not only the four

broad classes of energy technologies that we chose to focus on, but for a com-

pletely new generation of energy technologies some of which we may glimpse

only dimly today.13 Such a unifying foundation is essential to the development

of a vibrant industrial ecosystem in which a new generation of technologies,

and their associated value chains, can be born and nurtured to maturity. The

advent of MEMS is already transforming many industries, and the NEXUS and

MANCEF Roadmaps are intended to help those industries realize the benefits

which MEMS has to offer. Unfortunately, both of these roadmaps cost money,

and no one is going to spend it unless they are already at least half-convinced,

by some other means, that MEMS is going to be useful to them. It is a classic

chicken-and-egg problem.

Thus it seems that the time is right for a meeting of the minds among represen-

tatives of energy technology companies with products that either do or could

make good use of MEMS manufacturing processes, along with researchers from

academic or government laboratories involved in the development of power

MEMS, and government or industrial organizations interested in improving the

availability and capabilities of advanced energy technologies. Of course this

does not have to be structured as a roadmapping exercise; one could, for ex-

13 See, for example, "Thermal Integral Micro-Generation Systems for Solar and Conventional
Use" by A. Kribus, J. Solar Energy Eng. 124, 1 89-97, 2002.
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ample, imagine creating an Energy X-Prize that could be won through the use of

MEMS and raise awareness that way.14 We have seen however that an explora-

tory roadmap is a proven means of establishing a formal process by which a di-

verse group of actors who do not necessarily know much about one another or

their capabilities can begin to develop mutually beneficiary business relation-

ships. This seems to be exactly what is called for at this point in time.

The four business sectors previously identified, i.e. microengines/turbines, mi-

cro fuel cells, solid-state devices for producing electricity from heat, and vibra-

tional or electromagnetic energy scavengers, would seem to be a good place to

start identifying the industrial participants. Certainly we hope that the forego-

ing chapters have made a convincing case that there now exists a real opportu-

nity for these players to gain competitive advantage in the wider business

world through the exchange of information and/or collaborating with MEMS

foundries or research institutes on power-MEMS products. Most academic re-

searchers now publishing in power MEMS are already known to one another

through the power MEMS conference series, so getting them involved should be

relatively straightforward. Representatives from non-profit organizations de-

voted to MEMS such as MANCEF and NEXUS should also be invited to partici-

pate, as should representatives from MEMS design houses and foundries. Fi-

14 See http://www.xprize.orq; perhaps the power-MEMS roadmapping committee will decide to
make this a priority, though we note that raising funds for the original Ansari X-Prize was an
extremely demanding task in and of itself.
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nally representatives from funding agencies, such as the NSF, DOE and DARPA

in the USA, should be urged to participate, along with some of the venture capi-

talists and other financiers who are now vigorously pursuing investments in

clean energy technology. 5i It would be appropriate to begin to contact possible

participants this summer (2007), develop the issues to be discussed via a suit-

able electronic forum or blog, and then all meet and get started at the upcom-

ing Power-to-Go / Power MEMS 2007 conferences which are being organized by

Christopher Hebling at the Fraunhofer Institute in Freiburg, Germany over No-

vember 27-29, 2007.16 This dissertation was written in large part to initiate a

Power-MEMS Roadmap organized along these lines.

The scope of the roadmap should conform to its objectives, which may be

summarized as promoting a wider understanding of what MEMS has to offer

and how best to take advantage of it among managers and engineers in compa-

nies working on advanced energy technologies, making their needs and con-

cerns better known to researchers, companies and other organizations within

the MEMS community, and alerting funding agencies and financiers to the op-

portunities thereby created. It is important emphasize that we are seeking to

develop a value-chain roadmap, rather than a mere technology roadmap. With

this in mind, I propose the following roadmap objectives:

15 See "New CleanTech Report: 700 Investors Can't Be Wrong" by N. Parker, Venture Capital J.,
pp. 54-5, Feb. 2006 or http://www.cleantech.com.

16 See http://www.powermems.org.
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1. To help key players in advanced energy technology companies to learn more

about the services available from MEMS foundries and how to make the best

possible use of them.

2. To promote a dialog between industry and academic participants, and in

particular to showcase some potentially valuable university patents which

may be available for licensing.

3. To assist recent university graduates in finding the best possible employ-

ment for their talents, and companies in finding the skills they need in order

to take advantage of power MEMS.

4. To make policy makers, grant managers and venture capitalists more aware

of the field of power MEMS and its capabilities, thereby encouraging further

support for power MEMS R&D.

5. To take the first steps towards establishing a power MEMS components and

services value network, and to begin the process of standardizing the inter-

faces between suppliers and producers.

6. To identify some outstanding technological challenges beyond the capabili-

ties of any one firm to solve, which may subsequently be tackled within a

university setting or via industrial consortia.

I will close this section with a brief discussion of intellectual property concerns,

which might otherwise dampen participation. The main thing to realize here is

that MEMS is a group of complementary enabling technologies with the impor-
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tant additional advantage of being well-suited to mass production. As long as

the discussion is restricted to the generic capabilities of MEMS and features of

advanced energy technologies which have already been published either as pat-

ents or in the engineering literature, and the fusion of these two fields is illus-

trated using only the many designs that have been developed in an academic

setting, there should be little to fear. On the contrary, the potential for losing

competitive advantage by staying out of the roadmapping process, in particular

the knowledge and ready access to the resources that it will give its partici-

pants, should generally be of greater concern.

3. A Conceptual Framework for the Process of

Creating a Power-MEMS Ecosystem

The attainment of the goals articulated above poses a useful and stimulating

managerial problem. The dissemination of this dissertation amongst the stake-

holders identified above may serve to kick it off, but the momentum needed to

keep it going requires a deeper understanding on the part of its participants of

the evolutionary process in which they are engaged. The management of tech-

nological knowledge and innovation is of course both a broad and a deep field,

which is generally regarded as having begun with the work of Joseph Schum-

peter over the first half of the last century.'7 It has really picked up over the

17 "Capitalism, Socialism, and Democracy" by Joseph A. Schumpeter, Harper & Brothers, 1942;
3rd edition, Harper & Row, 1950, reprinted in 1962, 1975.
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last couple of decades as mainstream economists came to the belated conclu-

sion that long-term economic progress depends more on technological ad-

vances than on capital investment per se.

I have been fortunate to have access to several of the main players in these de-

velopments during my sojourn at the MIT Sloan School of Management. It is of

course not possible for me to do justice to all that I have learned from them

here, but I think the following synopsis emphasizing the managerial and policy

implications of this field of evolutionary economics will help to structure and

enhance the roadmapping process for all its participants. 18 What follows ex-

tends our earlier discussion of disruptive technology (Section 2.4) to disruptive

innovation more generally.

Following early work by Abernathy and Clark,19 we begin by recognizing two

principal dimensions in business innovation. The first is the novelty of the

technology underlying the new product and its means of production, while the

second is the novelty of the customer value proposition thereby created and the

degree to which it opens new markets. Following subsequent work by Hender-

son and Clark,20 we will further split the technology/production dimension into

18 See "The Evolutionary Theory of Economic Change" by R. R. Nelson & S. G. Winter, Harvard
Univ. Press, 1982.

19 "Innovation: Mapping the Winds of Creative Destruction" by W. J. Abernathy & K. B. Clark, Re-
search Policy 14, 3-22, 1985.

20 "Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Fail-
ure of Established Firms" by R. M. Henderson & K. B. Clark, Admin. Sci. Q. 35, 9-30, 1990.
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two distinct dimensions. The first is the degree to which the innovation affects

the components, or core concepts, of a product, which we will somewhat arbi-

trarily identify with Abernathy and Clark's means of production. The second is

the degree to which the innovation affects how the components are put to-

gether, which Henderson and Clark call the architecture or linkages of the

product, and which corresponds more or less to the technology on which the

product is based. Finally, in addition to the customer/market novelty of the

product, we will also consider the impact the corresponding market's perform-

ance has on society, in particular society's ability or desire to develop new

technologies. Examples of markets with huge impacts on the intensity and di-

rection of research and development include pharmaceuticals, computers, and

higher education; examples of markets with relatively small impacts include

leisure, advertising, and clothing. 21

While we agree with Afuah and Bahram's assertion that one should consider

separately the effect of an innovation on each link in the value chain (or even

value network),22 we will simplify our analysis by looking only at the beginning

and end of the value chain, namely technology development (knowledge crea-

tion) and product development (commercialization), regarding everything in be-

tween as "components" in much the same fashion as Henderson and Clark. Fi-

nally, in keeping with the tenants of system dynamics, we will seek to charac-

21 Although these markets have obvious economic significance.

22 "The Hypercube of Innovation" by A. N. Afuah & N. Bahram, Res. Policy 24, 51-76, 1 995.
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Figure 4.3. The simplified model of innovation dynamics introduced in the main text.

terize a critical positive feedback loop which is created by a final, non-economic

and even rather intangible, link by which the markets dictate which technolo-

gies have demonstrable economic value and so get all that they need for further

development. Taken together, these considerations lead to the simplified model

of innovation dynamics illustrated in Figure 4.3.23

Let us further consider some important features of this model. First, by keeping

just those products which are sold directly to end users in the Consumer Prod-

ucts category, we essentially restrict ourselves to products which are targeted

23 Note that the flows in this diagram count the numbers of new processes, components and
products produced per unit time, not the number of times the process is used, nor the number
of components produced, nor the number of units of a product sold. In short, we are concerned
here with a value chain rather than a supply chain.
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at one particular Consumer Market, as indicated by the converging arrows in

Figure 4.3. Similarly, we will assume that Component Parts have been defined

such that each is enabled at the time it is first produced by just one Process

Technology (even though many more mature technologies may play a role in

producing it), as indicated by the diverging arrows in Figure 4.3. The complexity

of the dynamics thus arises in large part from the fact that the Component

Parts can be put together in many different combinations each corresponding

to a different Consumer Product, as indicated in Figure 4.3 by the non-parallel

arrows connecting these two categories. Note that Figure 4.2 was also designed

so as to be consistent with these observations and definitions.

The relations between Consumer Markets and Process Technology, on the other

hand, are not merely complex, but also diffuse and not completely understood.

This is indicated in Figure 4.3 by the use of a large grey arrow. Although almost

anything that enhances the economy tends to increase the quantity and quality

of Technology Development that can be done, there are (at least) three direct

mechanisms by which the performance or creation of Consumer Markets can

affect Technology Development.

1. The capital created by the Consumer Markets is used to support further

Technology Development, whether directly by the companies involved, via

joint ventures with or acquisitions of firms working in related areas, or con-

tracts with and grants to universities and research institutes.
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2. The publicity generated by the creation or dramatic expansion of a Con-

sumer Market inspires technologists from all walks of life to work on related

technologies, and financial or funding agencies to support them.

3. The products or components produced in response to the Market Pull some-

times serve as new tools which enable further Technology Development, in

addition to their uses in Consumer Products.

Considerable empirical work would be needed to say very much more about

these diffuse but important relations here.

It may now be seen that the four dimensions of innovation introduced above

correspond to the four links shown in Figure 4.3. Instead of the 2-by-2 busi-

nessman's matrix used by Abernathy and Clark and again in a rather different

way by Henderson and Clark to distinguish four kinds of innovation, we can

classify innovations as high or low along each of these four dimensions and so

obtain a 2-by-2-by-2-by-2 tensor which distinguishes sixteen kinds of innova-

tion - perhaps more than is useful. More importantly, we have interpreted each

of our dimensions as a characteristic of a flow in a dynamical system - a co-

flow in system dynamics terminology. In this regard it should be noted that

while there are significant delays, often many years in fact, involved in Tech-

nology Development, the delays involved in getting the Technology into new

Components is generally much shorter, while time required for Product Devel-

opment is shorter yet and the time to see a new Product accepted (or rejected)
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by the Market may be only a matter of days.2 4 In system dynamics it is well

known that diverse delays often lead to complex and non-intuitive behaviors.

Thus the qualitative conceptual model illustrated in Figure 4.3 can serve as the

starting point for the development of certainly inexact but at least quantitative

models of innovation dynamics. These presumably would generate the alternat-

ing waves of product and process innovation so often seen in practice, each

separated by the emergence of a dominant design. Although probably not ca-

pable of making long-term predictions such a model would be quite useful in

scenario analysis. In particular, in conjunction with the proposed Power-MEMS

Roadmap this model could both generate scenarios to stimulate the discussion,

and also by fitting the model to the roadmap's forecasts illuminate some of its

consequences and thereby sharpen the hypotheses laid out therein.

4. The Challenges of Today Are the Promises of

Tomorrow

The long-term goal of the Power-MEMS Roadmap, from my perspective at least,

is to establish an industrial ecosystem which will lead to a whole new genera-

tion of energy technologies, and thereby perhaps even a practical and timely

solution to some of the defects spelled out in Chapter 1 in our current energy

24 This is essentially the "clockspeed amplification" phenomenon discussed in the context of
supply chains in Clockspeed by C. H. Fine, Perseus Publishing, 1998.
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infrastructure. In this final section I wish to pose some technological challenges

the solution of which would facilitate attaining this goal, at least eventually. Of

course the first thing that needs to be done is to get a few good products out in

which MEMS, and down the road a bit perhaps even NEMS (Nano Electro Me-

chanical Systems), play an essential role. I hope, and fully expect, that my

thoughts in this area will evolve rapidly once the roadmapping process gets

underway.

Most of the power-MEMS devices that have been built to date are not doing any-

thing that absolutely could not be done without MEMS. It may still make sense

to use MEMS, since the variable costs associated with MEMS manufacture are

generally low enough to more than compensate for the high fixed costs of de-

sign and the equipment of a foundry, providing that the market for the product

is large enough. Still, greater value will be obtained if a better device can be

built using MEMS, and we fully expect that in due course products will come out

that are fundamentally enabled by one or more of the technologies now viewed

as part of MEMS.

In this regard it is worth noting that one thing MEMS does far better than any

other manufacturing method is to make thousands of very small, identical de-

vices in parallel. At present this unique capability is used mainly to decrease

the cost of not-so-small devices, by making at most a few hundred at one time

on a wafer which is then cut up into single devices to be packaged in a serial
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fashion for use. Not surprisingly, this latter "back-end" part of the process of-

ten costs more than the "front-end" manufacture of the device itself. A good

example of this is likely to be the MIT microturbine (see Figure 2.1).

In cases where the underlying physics allows a smaller device to achieve higher

levels of performance, it may instead be preferable to make thousands of such

devices on a wafer and then package it in one piece, perhaps after bonding it to

many other identical wafers, to obtain a three-dimensional array of millions of

devices. Micro fuel cells seem to be in this category, as may the carbon nano-

tube based energy storage device proposed by Elastic Energy Systems (Section

3.4.2), since no single carbon nanotube can store a macroscopically significant

amount of energy. A generic problem associated however with this approach is

that it is very hard to collect the power produced by many small electric gen-

erators and feed it into an external load without prohibitive losses along the

way due to stray capacitances or "parasitics."

I would like to propose a possible way around this problem, which would in-

volve having each generator deliberately radiating its power from one or more

antenna(e) integrated with them on the same chip, and packaging the wafer

stack in a resonant cavity which collects the power being radiated from all the

devices in parallel, without using any hardwire connections at all. It will be nec-

essary to see to it that all the individual devices are radiating synchronously in

order to avoid destructive interference, but this can be arranged by also con-
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trolling all the devices wirelessly at a difference frequency. All of this is physi-

cally possible,25 and the rest is therefore only a matter of engineering research

- which some of us try to make a living at.26

Another problem with making many things small lies in tribological challenges

that have been encountered in micron-scale mechanical systems.27 A great

many solutions to these problems have been proposed, including exotic lubri-

cants, diamond coatings and ultrasonic vibration, but the simplest thing which

could be done is to avoid high-speed moving parts by designing passive speed

regulation mechanisms into these devices. These could be either mechanical,

electrical or even thermal in nature. Other problems that need to be solved in

order to reach the nano scale include the difficulty of maintaining temperature

gradients due to surface-to-volume effects, and the need to design mechanical

systems which perform well even over substantial variations in the relative di-

mensions of their components.

Regardless of whether one uses the parallelism of MEMS to enable product or

process enhancements, it will be necessary to climb an experience curve to-

wards standardized designs for components with well-defined functions and

25 In the case of the carbon nanotube energy storage system, it will be necessary to use non-
conducting nanotubes, or perhaps boron-nitride nanotubes which are nearly as strong and elas-
tic but are always non-conducting.

26 It is also worth noting that this scheme can be turned around for MEMS sensors, which can
receive their power and transmit their information wirelessly, and which after suitable standards
have been adopted would allow a fairly generic package to be developed for such sensors.

27 "Tribology and MEMS" byJ. A. Williams & H. R. Le, J. Phys. D: Appl. Phys. 39, R201-14, 2006.
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diverse applications. 28 This will allow complicated devices to be designed and

assembled from modular components, rather than from scratch the way they

generally are today - more like a work of art than of engineering. Note that

these are component designs rather than actual physical components, which

would be incompatible with putting everything on a single chip - although the

ability to mix and match chip-level components may also be desirable. This

parallels the ongoing debate within the MEMS community about when and

which electronic components should go on the same chip as the mechanical

components. The availability of such standard designs would greatly simplify

the use of foundries, as well. Perhaps the main obstacle to the adoption of

standard designs will be the patents that are routinely taken out on each new

MEMS device, and it will take leadership and foresight on the part of the MEMS

community to adopt open standards.29 Power-MEMS components for which

standardized designs are needed include various kinds of electrical generators,

heat shields, mechanical power trains and resonators.

Even before any of the above challenges are solved, I believe there is real hope

that MEMS can serve as the foundation for an industrial ecosystem that will

lead to an experience curve as dramatic as that shown in Figure 2.5 for the disk

28 This experience curve, of course, will be greatly leveraged by the fact that the applications of
MEMS technologies are far broader than those in the domain of power MEMS.

29 Recall CBS' attempt to establish a color television monopoly through the imposition of stan-
dards; see "The General: David Sarnoff and the Rise of the Communications Industry" by K. M.
Bilby, Harper & Row, 1 986.
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drive industry. In Christensen's analysis of that industry, he notes that time

and time again a group of renegades has developed a smaller and relatively low

performance disk drive, which found a niche market to support its develop-

ment until its value, as measured in price-per-megabyte, exceeded that of larger

disks and put most of the dominant disk drives firms out of business. Chris-

tensen is focused on the organizational features of firms that prevent them

from responding to such threats before it is too late, and he never asks, let

alone explains, why making disk drives smaller kept allowing them to be made

better. It is my hope that in energy storage as well as information storage Fritz

Schumacher's observation that "small is beautiful" will again prove true.30

30 "Small is Beautiful: Economics as If People Mattered" by E. F. Schumacher, 25th anniversary
reprint from Hartley & Marks, 1999.
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Appendix A: List of Companies

with Technologies to which

Power MEMS Could Be Applied

1. Microengines and Microturbines

The following companies are or have worked on microengines/turbines to pro-

duce portable electric power based on various non-MEMS technologies, where

by "portable" we mean someone could carry it on their person while in use;

larger-scale fuel-powered generators are unlikely to ever be made using MEMS.

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Sunpower Corporation, Athens OH (private)

William Beale (1974); Lyn Bowman & Jarlath
McEntee (1997).

39 patents issued; only MEMS one is 5,941,079

Directly sells only engineering services

http://www.sunpower.com

Specialist in Stirling cycle engines and coolers;
not be be confused with Sunpower Inc., a much
more recent manufacturer of solar panels based
in Mountain View, CA (SPWR)

ICompany Name (TICKER): Honeywell International, Morristown NJ (HON)
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History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Wei Yang, Ulrich Bonne, Burgess R. Johnson &
Cleopatra Cabuz (circa 1996)

6,276,313; 6,397,793; 6,460,493

Many, but none related to Microengine project

http://www.menet.umn.edu/~haich/engine

Started as a DARPA contract to Honeywell, which
was continued as a subcontract to the Dept. of
Mechanical Engineering at the Univ. of Minnesota
where it became the Ph.D. project of Hans T.
Aichlmayr (2002) under the direction of Profs.
David B. Kittelson and Michael R. Zachariah

Aerodyne Research, Billerica MA (private)

Kurt D. Annen, David B. Stickler, Paul L.
Kebabian, Jaime Woodroffe (circa 1999)

6,349,683; 6,479,964

Product apparently makes no use of MEMS

http://www.aerodyne.com

Aerodyne web site claims "200-500 Watt proto-
type under construction" as of March 27, 2007

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Powerix Technologies, Ann Arbor MI (LLC)

Rhett Mayor & Stephen W. Dryer (2001)

Seem to be none

Product apparently makes no use of MEMS

http://www.powerixtech.com
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Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Micro Internal Combustion Swing Engine began
as the Ph.D. project of Kevin Mijit (2000) in
Mechanical Engineering at the Univ. of Michigan
in Ann Arbor under Profs. Jun Ni and Werner
Dahm, where Rhett Mayor was a Research
Scientist

AgilePower Systems, Bolton MA (private)

Jon Wade (circa 2004)

7,182,046 (Deformable combustion chamber-
based internal combustion engine and generator)

Patent does not mention the use of MEMS

None any longer

Little is known about this company save that its
former president Jon Wade subsequently joined
International Game Technology in Reno NV as
Executive VP of Engineering

Harris Corporation, Melbourne FL (HRS)

C. W. Sinjin Smith, Charles M. Newton, Richard
Gassman (2004)

6,987,329 (Fuel flexible thermoelectric micro-
generator with micro-turbine)

Patent claims generator could be used to power
MEMS devices, but not that it itself uses MEMS

None that I can find

Nothing on this has been published, according to
an Engineering Village search on every author's
name; it is not known if Harris Corporation will
commercialize it

Company Name (TICKER): Centro Ricerche FIAT / Societh Consortile per
Azioni, Orbassano ITALY (N/A)
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History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Piero Perlo, Gianfranco Innocenti, Gianluca
Bollito, Bartolomeo Pairetti, Alessandro Zanella,
Cosimo Carvignese (2003)

6,932,030 (Microgenerator of electrical energy)

Patent does not mention the use of MEMS or
micromachining

None that I can find

Nothing on this has been published, according to
an Engineering Village search on every author's
name; it seems unlikely Fiat will commercialize it

2. Direct Methanol Fuel Cells

In contrast to the microengine/turbine arena, where only a handful of compa-

nies have yet ventured, starting in the late 1990's micro fuel cells, and the

DMFC in particular, took off like a rocket. In the following, the numbers of

"published-but-not-yet-issued" DMFC patents was determined from a USPTO

search on Mar. 30, 2007 for all such patents with the indicated assignee name

including "fuel cell" and "methanol" but not "reform$" ("$" is USPTO web site's

wild card).

Company Name (TICKER): Hitachi Ltd., Tokyo JAPAN (HIT)

History and Principals: Hitachi had over a dozen patents on what
subsequently came to be known as the DMFC
before 1990, after which they slowed way down

Relevant Patent Numbers: 5,457,079; 5,788,821; 6,869,713; 7,105,244;
7,105,244; 7,108,939; 7,192,670
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Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

None of Hitachi's DMFC patents mention MEMS
or micromachining

http://www.hitachi.com

Hitachi Cable is working on the DMFC (Hitachi
Cable Review 23, 37-39, August 2004), while a
recent press release from Hitachi Maxwell touts
a micro fuel cell using hydrogen generated from
aluminum and water instead of the DMFC; there
are 22 published-but-not-issued Hitachi patents

Kabushiki Kaisha Toshiba, Tokyo JAPAN
(TOSBF.PK)

Toshiba's earliest DMFC patents date from 1993,
but their work took off only in 2000

5,364,711;
6,565,763;
7,189,472;
7,097,784;

5,432,023;
6,773,844;
7,026,066;
7,125,822;

6,416,898;
6,878,473;
7,147,950;
7,153,604;

6,447,941;
6,936,365;
7,097,781;
7,174,914

None of Toshiba's DMFC patents mention MEMS
or micromachining

http://www.toshiba.com

Rumored to be a passive device based only on
capillary action and diffusion; lots of press
releases but still no product yet; there are 65 (!)
published-but-not-yet-issued Toshiba patents

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

Sony Corporation, Tokyo JAPAN (SNE)

Koichiro Hinokuma, Minehisa Imazato, Toshiaki
Kanemitsu, Nobuaki Sato (2000)

6,635,377; 6,726,963; 6,824,908; 6,824,912;
6,841,289; 6,869,721; 6,890,676; 7,037,619;

None of the above patents mention MEMS or
micromachining
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WWW URL for Activity:

Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

http://www.sony.com

In 2001 Sony announced it had found a way to
make better DMFC electrodes from fullerenes,
but nothing has yet appeared; they have only
two published-but-not-yet-issued DMFC patents

Matsushita Electric Industrial Co., Ltd., Osaka
JAPAN (MC)

Hisaaki Gyoten, Hiroki Kusakabe, Eiichi Yasu-
moto, Osamu Sakai (2000); Toshihiko Ichinose,
Masahiro Takada, Katsumi Kozu, So Kuranaka
(2003); Hideyuki Ueda, Shinsuke Fukuda, Tetsuya
Osaka, Toshiyuki Momma, Jong-Eun Park (2005)

6,541,144; 7,129,674

None of the above patents mention MEMS or
micromachining, although one pending DMFC
patent does (USPTO publication 20070054174)

http://panasonic.co.jp/mbi

Matsushita Electric Industrial Co., Ltd. is better
known as Panasonic; in addition to their DMFC
they are also developing fuel cells for "home
cogeneration"

Futjitsu Ltd., Tokyo JAPAN (FJTSF.PK)

Nawalage Florence Cooray, Fumio Takei, Masao
Tomoi

7,037,614

None of the above patents mention MEMS or
micromachining

httD://www.fuiitsu.com

Seven published-but-not-yet-issued DMFC
patents
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Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Company Name (TICKER):

History and Principals:

NEC Corporation, Tokyo JAPAN (NIPNY)

Hidekazu Kimura, Suguru Watanabe, Tsutomu
Yoshitake, Sadanori Kuroshima, Shin Nakamura,
Yuichi Shimakawa, Takashi Manako, Hideto Imai,
Yoshimi Kubo (2002); Kunihiko Shimizu, Toshi-
hiko Nishiyama, Takashi Mizukoshi, Masayuki
Sasaki (2004)

7,115,337

No mention of either MEMS or micromachining

httD://www.nec.com

No news since their 2003 press release on a
carbon nanotube electrode DMFC; two published-
but-not-yet-issued patents to NEC Tokin Corp.

Sanyo Electric Co., Ltd., Tokyo JAPAN (SANYF.PK)

Shigeru Sakamoto, Hiroko Sanda, Hirosaku Na-
gano, Hidekazu Kuromatsu, Kiyoyuki Namura,
Yasunori Yoshimoto, Hirokazu Izaki, Akira Ha-
mada, Yugo Fukami

Relevant Patent Numbers: 7,011,905; 7,060,383

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

No mention of either MEMS or micromachining

http://us.sanyo.com

The EETimes reported in 2005 that Sanyo was
developing a DMFC for IBM's ThinkPad, which
IBM has since sold off; 16 published-but-not-yet-
issued patents

Company Name (TICKER):

History and Principals:

Samsung Electronics Co., Ltd., Seoul KOREA
(SMSN@LSE)

Hyuk Chang, Chan Lim, Kyoung-hwan Choi
(2000); Hae-kyoung Kim, Ju-hee Cho, Chan-ho
Pak (2002)
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Relevant Patent Numbers: 6,689,502; 6,743,541; 6,749,892;
6,916,764; 6,955,712; 7,037,950;
7,166,381; 7,169,500; 7,179,560

6,774,150;
7,132,385;

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

None of the above patents mention MEMS or
micromachining

http://www.samsung.com

Recent press releases say that Samsung is now
working closely with MTI Micro Fuel Cells on
their Mobion DMFC; there are 43 published-but-
not-yet-issued Samsung DMFC patents

LG Chem, Ltd., Seoul KOREA (LGCIF.PK)

Jong-Kee Yeo, President & CTO

None issued in the US at this time

None of the above patents mention MEMS or
micromachining

http://www.lgchem.com

The EETimes reported in 2005 that LG Chem
claimed it would bring a DMFC to market within
a year, which it has not; they do however have 5
published-but-not-yet-issued DMFC patents

Company Name (TICKER):

History and Principals:

Motorola, Inc., Shaumberg IL (MOT)

J. L. Davis (1997); C. R. Koripella, W. J. Ooms,
D. L. Wilcox, J. W. Bostaph, A. M. Fisher, J. K.
Neutzler, J. S. Pavio, D. S. Marshall (2000); B. D.
Landreth, S. D. Pratt, S. Muthuswamy, R. J. Kelley,
R. W. Pennisi, S. D. Pratt (2002)

Relevant Patent Numbers: 5,904,740;
6,503,378;
6,727,016;
6,942,939;

6,387,559;
6,660,423;
6,670,403;
6,986,957;

6,465,119; 6,497,975;
6,696,189; 6,696,195;
6,908,500; 6,936,361;
6,989,205
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Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Company Name (TICKER):

History and Principals:

Seven of the above patents mention MEMS or
micromachining

http://www.motorola.com

Recent prototypes have used "low-temperature
cofired ceramics" as a form of "3D MEMS"; only
one published-but-not-yet-issued DMFC patent

MTI Micro Fuel Cells, Albany NY (MKTY)

W. P. Acker, M. S. Adler, G. Beckmann, J. A.
Corey, S. Gottesfeld, G. C. McNamee, W. W. Dailey
(2000); Xiaoming Ren, J. J. Becerra, E. J. Brown,
M. S. DeFilippis (2001)

Relevant Patent Numbers: 6,460,733;
6,645,655;
6,761,988;
6,821,658;
6,890,674;
6,991,865;
7,179,501

6,566,003;
6,686,081;
6,794,067;
6,824,899;
6,890,680;
7,081,310;

6,589,679;
6,699,021;
6,794,071;
6,824,900;
6,908,701;
7,125,620;

6,632,553;
6,737,181;
6,808,837;
6,869,716;
6,981,877;
7,175,934;

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Only 4 of the 37 above
micromachining

patents mention MEMS or

http://www.mtimicrofuelcells.com

Now shipping prototypes of their Mobion DMFC
to selected customers (probably Samsung and
Gillette - now Procter & Gamble); only one
published-not-yet-issued DMFC patent

Company Name (TICKER):

History and Principals:

Viaspace Inc., Pasadena CA (VSPC), operating
through its majority-owned subsidiary Direct
Methanol Fuel Cell Corp. (DMFCC)

Dr. Carl Kukkonen, CEO of both Viaspace and
DMFCC (1998); no data available on scientific
staff since all patents are from universities
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Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

5,175,064;
5,945,231;
6,150,047;
6,254,748;
6,303,244;
6,420,059;
6,468,684;

5,599,638;
5,992,008;
6,221,523;
6,265,093;
6,306,285;
6,440,594;
6,485,851;

5,773,162;
6,136,463;
6,228,518;
6,277,447;
6,391,486;
6,444,341;
6,589,684;

5,795,496;
6,146,781;
6,248,460;
6,291,093;
6,399,235;
6,444,343;
6,680,139;

6,703,150; 6,740,434; 6,756,145; 7,125,621

None of the above patents mention MEMS or
micromachining

http://www.dmfcc.com

All the above patents obtained by exclusive
license from the Calif. Inst. of Technology save
one for the Univ. of Southern Calif., which have
16 published-but-not-yet-issued DMFC patents

Neah Power Systems, Inc., Bothell WA (NPWS)

L. J. Ohlsen, A. M. Cooke, J. C. Mallari, Chung M.
Chan, G. L. Rice, C. E. Nelson (1999)

6,641,948; 6,720,105; 6,808,840;
6,852,443; 7,105,245; 7,118,822;

6,811,916;
7,157,177

Four of the above patents mention micro-
machining

http://www.neahpower.mom

Competitive edge built on a "porous silicon"
rather than a proton exchange membrane;
reportedly heavily in debt and behind schedule;
no published-but-not-yet-issued DMFC patents

Company Name (TICKER):

History and Principals:

Polyfuel Inc., Mountain View CA (PYF@AIM)

C. Lawrence, A. Salamini, B. MacGregor, D. Bliven,
Shuguang Cao, Helen Xu, T. Jeanes, Kie Hyun
Nam, Jian Ping Chen (1999); J. D. Balcom, CEO
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Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional: Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

6,911,411; 7,005,206; 7,094,490

None of the above patents mention MEMS or
micromachining

http://www.polyfuel.com

Spun out of SRI International in 1999; has 11
published-but-not-yet-issued DMFC patents

Medis El Ltd., ISREAL (MDTL) and its wholly-
owned subsidiary More Energy, Ltd.

G. Finkelshtain, Y. Katzman (1992); Boris
Filanovsky, Nikolai Fishelson, Zina Lurie (2000);
Mark Estrin, Moti Meron, Eric Torgeman, Rami
Hashimshony (2003); R. K. Lifton, CEO

6,479,181; 6,554,877; 6,562,497; 6,730,350;
6,758,871; 6,773,470; 6,878,664; 7,004,207

None of the above patents mention MEMS or
micromachining

http://www.medistechnologies.com

Claims to now sell a single-use "power-pack" for
recharging batteries, which uses a mixture of
sodium borohydride and methanol; 16
published-but-not-yet-issued patents

Company Name (TICKER):

History and Principals:

STMicroelectronics, Inc., Geneva Switzerland
(STM)

S. Lo Priore, M. Palmieri, U. Mastromatteo, G.
D'Arrigo, S. Coffa, R. Corrado Spinella (2001)

Relevant Patent Numbers: 6,969,664; 7,029,781

Products Using MEMS:

WWW URL for Activity:

Though neither of the above patents explicitly
mention MEMS, STMicroelectronics is a major
manufacturer of MEMS products generally

http://www.st.com
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Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

No company press releases indicating a forth-
coming product; company has 4 published-but-
not-yet-issued patents

SFC Smart Fuel Cell AG, Brunnthal GERMANY
(privately held).

K. Colbow, M. Manmohan Kaila, Jiujun Zhang, J.
Miiller, G. Boehm (2000); Dr. Peter Podesser, CEO

6,884,530

No explicit mention of MEMS or micromachining

http://www.efoy.de (Energy FOr You)

Now selling DMFC's weighing "only" 7.5 kg; no
published-but-not-yet-issued patents

Antig Technology Co., Ltd., Taipei, TAIWAN (not
traded on any exchange, perhaps government
owed)

No information available even on web site.

No US patents yet issued

Product said to be made using "printed circuit
board" process, which does not seem to be MEMS

http://www.antig.com

Six published-but-not-yet-issued patents

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

CMR Fuel Cell PLC, Cambridge UK (CMF@AIM)

John Halfpenny, CEO since founding (2002)

No US patents at all

Unknown

http://www.cmrfuelcells.com
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Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Uses proprietary "flow-through stack," but no
products yet, or published-but-not-yet-issued US
patents either

Pure Energy Visions, Inc., Toronto CANADA (PEV)

Wayne Hartford, CEO; Joseph Daniel-Ivad, CTO

No US patents yet issued to this company

Unknown

httD://www.Dureeneryvbatterv.com

No published-but-not-yet issued patents

INI Power Systems, Inc., Morrisville NC (private)

Larry J. Markoski, Jeffrey S. Moore, Joseph W.
Lyding

6,713,206 (licensed from the Univ. of Illinois)

Unknown

htto://www.ininower.com

No published-but-not-yet issued patents

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Tekion Inc., Champaign IL (private)

R. I. Masel, Yimin Zhu, Zakia Khan, M. Man, R. T.
Larson, C. A. Rice, P. Waszczuk, A. Wieckwski
(2002); Neil Huff, CEO

7,108,773 (licensed from the Univ. of Illinois)

Unknown

http://www.tekion.com
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Additional Comments: Uses formic acid rather than methanol, which
simplifies the chemistry at the cost of a lower
energy density; 4 published-but-not-yet-issued
patents for this technology from the Univ. of
Illinois

3. Thermoelectrics, Thermionics and

Thermophotovoltaics

This, once again, is a very different field. It has been commercially active since

the 1960's, and although some large diversified companies use thermoelectrics

in their products, the companies that sell them as stand-alone products are

mostly rather small. They are also by and large profitable!

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Global Thermoelectrics, Calgary CANADA
(private)

Peter Garrett, CEO & Director (2003)

No patents save on solid oxide fuel cells, all of
which were acquired by Fuel Cell Energy, Inc.

Unlikely

http://www.globalte.com

Sells broad line of combustor/generator combin-
ations from 15 to 550 MW for remote power use

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Tellurex Corporation, Traverse City MI (private)

Charles J. Cauchy, President (1994)

5,448,109; 6,103,967
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Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Company Name (TICKER):

History and Principals:

Unlikely

http://www.tellurex.com

Sells small home-made TE modules and
consumer products based on same

Teledyne Energy Systems, Inc. of Hunt Valley,
MD, a wholly-owned subsidiary of Teledyne
Technologies, Inc. (TDY)

Dr. Robert Mehrabian, CEO (1999)

Relevant Patent Numbers: 6,410,842

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Unlikely

http://www.teledvnees.com

Has been selling thermoelectric generators since
the SNAP3 space generator in 1961

Marlow Industries, Inc. of Dallas TX, a wholly-
owned subsidiary of II-VI, Inc. (IIVI)

Raymond Marlow, CEO (1973)

4,467,611; 6,169,245; 6,188,011; 6,207,888;
6,369,314; 6,399,871; 6,492,585; 6,660,925

Unlikely

http://www.marlow.com

Web site mentions power generation, but like
most thermoelectric companies they focus much
more or cooling and heating

I Company Name (TICKER): Hi-Z Technology, San Diego CA (private)
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History and Principals: Norbert B. Elsner, John H. Norman (1990); Saeid
Ghamaty (1994); Frederick A. Leavitt, John C.
Bass (1996); Daniel T. Allen (1997); Nathan D.
Hiller (2003)

Relevant Patent Numbers: 5,248,639; 5,550,387; 5,856,210; 6,019,098;
6,096,965; 6,053,163; 6,096,964; 6,519,947;
6,624,349; 6,828,579; 6,914,343; 7,038,234

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Unlikely

httD://www.hi-z.com

Sells small home-made TE power generation
modules and consumer products based on same

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

BSST, LLC, Irwindale CA, a wholly-owned
subsidiary of Amerigon, Inc. (ARGN)

Lon E. Bell (2000)

6,539,725; 6,598,405;
6,672,076; 6,812,395;

6,625,990; 6,637,210;
6,948,321; 6,959,555

Unlikely

http://www.bsst.com

Develops custom solutions for parent company
and outside customers

Company Name (TICKER):

History and Principals:

PowerMEMS, Cupertino, CA (private)

Carl R. Schulenburg, CEO (2004)

Relevant Patent Numbers: None issued or published as of March 2007

Products Using MEMS:

WWW URL for Activity:

No products at all yet

httn://www.nowermems.com
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Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Plans to develop solar cell, thermoelectric and
vibration energy scavenger combo to keep thin-
film lithium ion battery charged for wireless
sensor networks

ENECO, Salt Lake City UT (believed privately
held)

Yan R. Kucherov, Peter L. Hagelstein (1999)

6,396,191; 6,489,704; 6,779,347; 6,906,449;
7,109,408

No mention of MEMS or micromachining in their
patents

httD://www.eneco.com

Developing a "Thermal Chip," or solid-state
thermionic device, which they claim will have a
much higher figure of merit than conventional
thermoelectric materials; four published-but-not-
yet-issued patents; Hagelstein is an associate
professor in MIT's EECS department

Company Name (TICKER):

History and Principals:

PowerChips PLC, Gibraltar (PWCHF.PK), a
majority-owned subsidiary of Borealis Technical,
Ltd., in turn owned by Borealis Explorations, Ltd.
(BOREF.PK)

J. S. Edelson, Isaiah Watas Cox, Rodney T. Cox,
Avto Tavkhelidze (1996); Artemy Martinovsky
Zaza Taliashvili, Rochel Geller, Leri Tsakadze
(2001); Stuart Harbron (2003)

Relevant Patent Numbers: 5,874,039;
6,214,651;
6,495,843;
7,166,786;

5,994,638; 6,064,137; 6,103,298;
6,229,083; 6,281,514; 6,531,703;
6,720,704; 6,876,123; 7,140,102;
7,169,006

Products Using MEMS: Four of the above patents mention micromach-
ining, which appears to play a key role
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WWW URL for Activity:

Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

http://www.powerchips.gi

Developing a "Power Chip," which also appears
to be a solid-state thermionic device projected to
achieve 70-80% of the Carnot efficiency; no
published-but-not-yet-issued patents

MicroPelt, GmbH, Freiburg GERMANY, a spin-off
of Infineon Technologie, AG (IFX)

Harald Bottner, Axel Schubert, Bruno Acklin,
Karl-Heinz Schlereth, Joachim Nurnus, Christa
Kunzel (1999); Martin Jagle, Holger Kapels,
Anton Mauder, Hans-Joachim Schulze, Helmut
Strack, Jenoe Tihanyi (2002)

6,815,244; 6,818,470; 7,084,502; 7,087,981

Products are based on structured thin-film
thermoelectric on silicon made via MEMS

http://www.micropelt.com

Now selling both Peltier cooling and Seeback
power generation chips; the latter is intended
mainly for energy scavenging at low temper-
ature differences; patent 7,084,502 is joint with
the Fraunhofer Institute in Freiburg

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

JX Crystals, Inc., Issaquah WA (private)

Lewis M. Fraas (1992); John E. Samaras (1993);
Lucia G. Ferguson (1995); James E. Avery (1996)

5,096,505;
5,403,405;
5,616,186;
6,091,018;
6,271,461;
6,489,553;

5,091,018;
5,439,532;
5,865,906;
6,177,628;
6,303,853;
6,538,193;

5,383,976;
5,512,109;
5,942,047;
6,218,607;
6,337,437;
7,196,263

5,401,329;
5,551,992;
6,05 7,507;
6,232,545;
6,353,175;

Products Using MEMS: No mention of MEMS or micromachining on any
of their patents
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WWW URL for Activity:

Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

http://www.jxcrystals.com

Sells both solar as well as TPV modules, which
all the above patents pertain to; no pending-but-
not-yet-issued patents

MTPV Corporation, Cambridge MA (private)

Robert DiMatteo, CEO (2003)

6,084,173; 6,232,546

Preferred embodiment in patent 6,232,546 uses
MEMS

http://www.mtpvcorp.com

Patents cover micron-gap TPV technology, which
they are working to commercialize; one pending-
but-not-yet-issued patent

4. Vibrational and Electromagnetic Energy

Scavengers

In addition to the following small companies, a number of large companies in-

cluding Seiko Epscon Corporation, The Boeing Company, Rockwell Automation,

General Electric, Schlumberger and Michelin have filed for patents on various

kinds of vibration energy scavengers. They have not been included explicitly

since they do not offer or intend to offer these as independent products, al-

though they are included in the bar graph of Figure 3.5.

I Company Name (TICKER): Kinetron BV, Tilburg NL (believed privately held)
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History and Principals: P. M. J. Knapen (1985); J. H. Wouterse (1987); P.
A. F. Maria Goemans, B. J. Meyer (1992); M. V.
Koningsberger (2002), Managing Director

Relevant Patent Numbers: 4,644,246; 4,908,808; 5,229,738; 5,923,619

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Not mentioned in any of their patents, although
company web site states that "micro systems"
are one of their key technologies

http://www.kinetron.nl

Company sells a variety of motional and fluid-
flow energy scavengers, micro generators, micro
motors and micro magnets

PMG Perpetuum, Southhampton UK (private)

Roy Freeland (2004), CEO; Stephen Roberts
(2005), Technical Manager

No US patents

Present devices do not use MEMS, but company
web site says they are developing one that is

http://www.perpetuum.co.uk/

Currently sells three scavenger models designed
for indoor use, automotive, and air transport
resp., all based on electromagnetic induction;
one published-but-not-yet-issued patent from
inventors at Southampton Univ. (20070007827)

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Ferro Solutions, Cambridge MA (private)

Jiankang Huang, R. C. O'Handley, D. Bono (2002)

6,984,902

MEMS probably plays only a minor role in their
device since it uses an electromagnetic generator

http://www.ferrosi.com
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Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Company is supported by SBIR/STTR from ONR,
and sells a ca. 75 cc scavenger which produces a
few milliwatts under freeway conditions

LV Sensors, Inc., Emeryville CA (private)

S. Roundy, J. Bryzek, C. Ray, M. Malaga, D. L.
Brown (2004)

Only one published-but-not-yet-issued patent

Device believed to be based on MEMS

httD://www.lvsensors.comn

Developing device to power automobile tire
monitoring sensors

Mide Technology Corp., Medford MA (private)

Marthinus van Schoor, CEO & Founder (1990)

No patents on energy scavenging per se

Scavenger probably does not use MEMS

http://www.mide.com

Sells 40 cc piezoelectric scavenger yielding a few
milliwatts at frequencies of order 100 Hz.

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Microstrain, Inc., Williston VT (private)

C. P. Townsend (1993); M. J. Hamel (2000); Steven
W. Arms (1987), President & CEO

6,529,127; 7,081,693

No mention of MEMS or micromachining in any
of the embodiments claimed

http://www.microstrain.com
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Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

They do not seem to sell their scavengers as
independent products, but only as part of their
broader line of sensors; 5 published-but-not-yet-
issued patents on scavengers

Elecsci Corp., Rochester NY (private)

Michael D. Potter (2004), President; Lawrence C.
Grumer (2004), CEO

6,717,488; 6,750,590

Web site says they are developing MEMS devices
at the Rochester Inst. of Tech. and the Infotonics
Technology Center in Canandaigua, NY

http://www.elecscicorp.com

No products as yet; patents under assigned to
Potter's previous company, Nth Tech Corp., and
propose to use electrets based on his Embedded
Electron technology

PowerMEMS, Cupertino, CA (private)

Carl R. Schulenburg, CEO (2004)

None issued or published as of March 2007

No products at all yet

httD://www.Dowermems.com

Plans to develop solar cell, thermoelectric and
vibration energy scavenger combo to keep thin-
film lithium ion battery charged for wireless
sensor networks

Company Name (TICKER): Polatis Inc., Cambridge UK (private), formed by
merger with Continuum Photonics, Billerica MA
which in turn subsumed Continuum Control
Corp. at the same address
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History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Company Name (TICKER):

History and Principals:

Relevant Patent Numbers:

Products Using MEMS:

WWW URL for Activity:

Additional Comments:

Nesbitt W. Hagood, Kamyar Ghandi (1999); David
Lewis (1998), CEO of Polatis

6,231,779; 6,580,177; 6,655,035; 6,909,224;
6,995,496; 7,105,982

Company does not seem to sell any energy
scavengers at this point in time

http:///www.polatis.com

Long chain of energy scavenging patents that
begins at MIT and end with a company that sells
only optical switches

Powercast LLC, Ligonier PA (private); formerly
Powercast LLC, Ligonier PA (private); formerly
Firefly Power Technologies LLC

J. G. Shearer, C. E. Greene, D. W. Harrist (2003)

One published-but-not-yet-issued patent

Company does not seem to sell any energy
scavengers at this point in time

http://www.powercastco.com

Univ. of Pittsburgh spin-off devoted to powering
mobile electronics wirelessly; pending patent is
for RF energy harvesting, not vibration
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