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Abstract

The present work looks into the concept of learning curves to decipher the underlying
mechanism in cost evolution. The concept is not new and has been used since last seven
decades to understand cost walk down in various industries. The seminal works defined
learning in a narrower sense to encompass reduction in man hours as a result of learning.
The work done later expanded this concept to include suppliers, long term contracts,
management and some other economic and technological factors. But the basic
mechanism in all these study was to look at manufacturing cost in an aggregate sense and
use the past data to predict the cost walk down in future.

In the present work the focus has shifted from looking at cost in an aggregate manner and
understanding it more at a manufacturing level using process based cost modeling. This
would give a new perspective to the age old problem of cost evolution. Besides it would
also give the line engineers and managers a better insight into the levers which eventually
lead to cost reduction at manufacturing level. This is achieved by using learning curves to
define the manufacturing parameters based on previous observations.

The work further looks at cost evolution for new and non-existent technology for which
historic data does not exist. This is achieved by building a taxonomic classification of
industry based on certain parameters which can be easily guessed.
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1. Introduction

1.1 Study of cost evolution with time

In the 20™ century, industries of every form have had to deal with a number of
externalities which drove a nearly continuous change in technology. There have been
significant changes in policies and consumer demand over the last three decades that
have resulted in advances in material and manufacturing process. The policies pertaining
to the environment have become more stringent and consumer demand has shifted to
more personalized products. In response to these changes, industries were forced to adopt
newer and more effective technology, or else they feared the chances of being left behind.
In this context, firm decision-makers repeatedly face critical questions of what
technologies to select and when to apply them. Similarly there might be issues with
making production strategy decision, for example, will it be more effective to produce a
part in house or to outsource its production. Making a decision based on present time cost
data will lead to misleading results, similarly making a decision on some speculated
future ball park number might be wrong. For savvy decision-makers a key element of
answering these questions depends upon their understanding or projection of how new
technologies would evolve and develop over time. The focus of this thesis is to present an
analytical framework that allows decision makers to better incorporate information about

technology evolution into their technology decisions.

For an outside observer, it is pretty simple to point out that whenever a new product or a
new technology is launched its initial cost of manufacturing is usually quite high, but

with the passage of time the cost of production goes down. The driving force behind this
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observation has been the focus of a various researchers over the past seven decades. This
began with a study by Wright (Conway and Schultz 1959) who observed a simple
phenomenon: the man hours involved in airframe manufacturing decreased as the
cumulative number of frames increased. Wright concluded that the decrease in man hours
and its resulting decrease in cost were due to experience gained by the workers as more
parts were produced. This led Wright to propound the now-famous learmning curve
concept in which a process improves by some percent as the volume of production is
doubled. Inspired by this work, researchers began to apply the knowledge of learning
curves to a variety of different industries in an attempt to decipher their learning trends

and predict their future costs.

The evolution of cost for different industries has been shown to be very different from
each other and varies with product, technology, and capital investment. Grubber (1992)
studied this phenomenon for various semiconductor memory chips. According to his
observations, the cost curves for EPROMs are mainly determined by the cumulative
output, confirming the learning curve hypothesis. However, for DRAMs, economies of
scale were more important than learning. Baloff (1967) made similar observations in steel
startups. Even though the processes involved in steel production are very similar across
companies, they exhibit significantly different learning parameters. Baloff also compared
the learning parameters for 17 different startup firms and demonstrated how the learning
pattern varied with industry. These differences present a new challenge for decision
makers looking to estimate learning patterns and cost trends for different types of

industries.
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One of the major motivating factors for the study of learning curves has been to
understand the cost evolution trends of the past and try to use them to guide decisions
about the future. The use of learning curve may provide a mean for better estimate in this

direction.

Researchers in the past have used the concept of a learning curve as a tool for formulating
future strategies (Amit 1986). Much of the work has focused on relating the reduction in
average cost to the cumulative output of the process (Alchian 1963; Baloff 1971;
Stobaugh and Townsend 1975). This work has largely relied on the use of regression
analysis of historical price data without addressing the mechanisms by which costs
decrease and the specific driving forces behind cost reduction. There are some cases
where it would be interesting to know where costs were going even if one can’t influence
it, although admittedly, it is obviously better to know how to influence it as well. But
there’s another point. Predicting future costs for new products or processes through the
use of historical data is only justifiable if the cost drivers for these products are
structurally similar to those of the existing product. Consequently, understanding the

mechanisms by which costs evolve is a necessary part of this type of analysis.

This thesis will look at the problem of cost evolution by breaking down the
manufacturing process and studying both the major underlying cost drivers and the
mechanisms by which learning within these drives cost change. In particular, this thesis
will address how learning influences process variables such as cycle time, down time,
reject rate and material cost and in turn, how these variables interact to yield cost
reductions. This approach provides not only an understanding of how cost is expected to

evolve with time but also understanding of the manner by which this occurs.. This will
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not only help industry with future cost estimates, but will give guidelines as to how to

best achieve these cost reductions in the most timely fashion.

1.2 Previous Work

The learning curve theory is based on the observation that the cost of an item depends on
cumulative volume produced which is a function of the production rate and the time
frame over which production has or will occur. This theory is usually attributed to J. P.
Wright, who introduced a mathematical model (1.1) describing a learning curve in an
article published in The Journal of Aeronautical Science titled "Factors Affecting the
Cost of Airplane." (Wright 1936) Wright showed that the cumulative average direct labor
input for an aircraft manufactured on a production line decreased in a predictable pattern.

The decrease was related to the increased proficiency (i.e., learning) of the manufacturing
laborers on the line as they performed the various repetitive tasks. The model described

the learning as an exponential function which is as follows.

h=av (L.1)

V' = production count

h, = labor hour required for the V" unit

a = labor hour required for the first unit, hence a=h,
b = exponent of learning

The rate of progress is given by the complement of reduction that occurs with doubling of
production volume. In the learning literature, a learning curve is referred to as an ‘80%

learning curve’ if the cost reduces by 20% every time the cumulative volume is doubled.
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That is;

hy a2v)™

Y =0.8 1.2
h, av (-2
% =27=08 =5=0.322 (1.3)

For an 80% learning curve the value of b will be 0.322

Arrow (1962), cited a Swedish iron plant (Hordal iron works) which had witnessed a 2%
productivity increase in output per man hour even though there had been no new capital
investment in past 15 years. He attributed the increase in productivity to the experience
gained ‘learning by doing’ by the plant workers. The ‘learning by doing’ aspect of the
learning curves was further expanded by Bahk etal (Bahk and Gort 1993), who tried to

decompose it into organizational, capital and manual task learning.

The learning curve propésed by Wright had cumulative volume as the only factor
responsible for a reduction in labor hours. Conway and Schultz (i959) pointed out that
the method of manufacturing is also influenced by the rate of production and the
estimated duration of production at this rate which gives the cumulative volume.
Similarly Carrington (1989) pointed out that total cost is a function of cumulative output
as well as the firms rate of output. Carrington also pointed out that marginal cost must be
rising in general for the firm to be a part of competitive industry but most econometric

studies of cost functions (1.1) fail to substantiate this implication.
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Boston Consulting Group (Henderson 1972) added a new dimension to the concept of
learning curves in late 1960s when it demonstrated that learning curves not only
encompass labor cost but also administrative, capital and marketing costs. These analyses
have included studies of refrigerators in Britain, polystyrene molding in USA, production
of integrated circuits, direct cost of long distance telephone calls in the United States, and
motorcycle production in Japan and Britain. This led to further recognition of the wide

applicability of learning curves.

Hartley (1965; Hartley 1969) applied the concept of learning in the aircraft industry.
Similarly, Baloff showed how the concept could be applied to labor intensive industries
like automobile assemblies, apparel manufacturing and production of large musical
instruments (Baloff 1971). Dudley (1972) soon followed and showed that a similar trend
existed in the metal products industry. Zimmerman (1982) and Tan et al. (Tan and Elias
2000) showed that learning curves could even be used in the construction industry.
Lieberman (1984) and Sinclair et al (Sinclair, Klepper et al. 2000) showed how the
learning concept could be extended to chemical manufacturing plants. Other studies in
this direction have been made by Preston et al. (Preston and Keachie 1964) for radar
equipments, Grubber (1992), Chung (2001), Grochowski et al (Grochowski, Hoyt et al.
1996), Dick (1991) and Hatch (Hatch and Mowery 1998) for semiconductors, Sultan
(1974) for steam turbine generators, Jarmin (1994) for the rayon industry, Argote et al.
(Argote and Epple 1990) for manufacturing, and Tsuchiya (2002) to predict the cost of

fuel cells.

Stobaugh et al. (Stobaugh and Townsend 1975) studied the price change for eighty-two

petrochemical products over a time period of one, three, five and seven years as a
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function of number of competitors, product standardization, experience and static scale
economies. They concluded that by the time a petrochemical has three or more

competitors, experience has a much larger effect on price than the other three factors.

Liebermann (1984) also observed similar trends after he analyzed the three year price
change for thirty-seven chemical products. He examined several other candidate
explanatory variables of learning such as time, cumulated industry output, cumulative
industry capacity, annual rate of industry output, average scale of plant, rate of new plant
investment, rate of new market entry and level of capacity utilization. After analyzing all
of the parameters he concluded that the cumulative industry output is the single best

proxy for learning.

In most real-world cases, experience curves reflect the convolved effects of learning,
technological advances, and economies of scale. Generally, it is difficult to distinguish
between the contributions of economies of scale and learning because both tend to occur
simultaneously. Learning generally results in better utilization of resources which leads to
higher and more efficient production. Efficient production means higher potential
volumes which if realized result in economies of scale. Few studies have tried to
decouple the effects of learning and economies of scale. In one study, Hollander (1965)
analyzed the sources of efficiency increase at a DuPont rayon plant and concluded that
only 10-15% of the efficiency gains were due to scale effects, whereas the rest were
accounted for by technology and learning. Hollander found that a large part of the cost
reduction from technology improvement could be attributed to a series of minor technical
changes. This could be justified to some extent as learning by observation because

generally, over time, engineers in a production facility “learn” to tweak the machinery in
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a way to give maximum production efficiency. Sinclair (Sinclair, Klepper et al. 2000)
also looked at cost reduction in specialty chemical divisions and observed that technology
triggered cost reductions were largely the result of small technological changes in

production and manufacturing based on R&D and related activities.

Significant work has also gone into using learning curves to develop firm operational
strategies. Spence (1981) developed a model of competitive interaction and industry
evolution in the presence of a learning curve. He concluded that, under certain conditions,
if a firm can lower its future costs by increasing current production, then the firm should
produce parts even if this is not the short term profit maximizing strategy. By doing so,
the firm achieves higher profits in the long run by moving further down the learning
curve faster than its competitors. The learning curve also creates entry barriers and
protection from competition by conferring cost advantages on early entrants and those
who achieve large market shares (Spence 1981; Porter 1984; Lieberman 1989). Spence’s
analysis also showed that the largest barriers to entry occur when there are moderate rates

of learning rather than when there is either very slow or very fast learning.

The form of the learning curve has been debated by many researchers and practitioners.
However, Wright’s learning curve is, by far, the most widely used and accepted
(Henderson 1972; Lloyd 1979; Day and Montgomery 1983; Lieberman 1987). The
method that is commonly used by most of researchers is to look at the industry data and
try to find a relationship between various parameters. This regression analysis of the
industry data gives a relationship between various parameters which can be extrapolated
to predict future cost trends. All these analyses result in different patterns for a set of

industries without indicating how to influence the trend.
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1.3 Learning Curves and Concept

A variety of functional forms have been used for learning curves. The choice of a

functional form depends on the way costs decline over time. Some suggest that doubling

the cumulative volume results in decrease of cost while others argue that this decline in

cost cannot be sustained forever and should reach some saturation.

The most common form of experience curve is given by

C,=C,n* (Wright's Learning Curve) (1.4)
This can be writtenas InC,=InC,-AInn (1.5)

This equation implies a constant decline in unit cost each time n units are produced

(Figure 1)
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Figure 1: Wright’s learning curve

21



Wright’s model describes the learning of a new product ‘start-up phase’. It is based on
the idea that the decreases in labor hours can be sustained forever. However, in practice,
the decrease cannot continue indefinitely and eventually saturation would be expected to
take place. As a result of this saturation production reaches a kind of steady state where

the direct labor hours remain constant.
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Figure 2: Cumulative average S-shaped learning curve proposed by Carr (1946)

Carr (1946) argued that shape of the learning curve should be S in nature rather than a
straight line. He explains the concavity in this curve (Figure 2) by first assuming that
each worker in all the production crews hired for a particular job produces along an 80
percent curve. However, the crews are not all hired at the beginning of the program but

are hired one at a time during the acceleration period. Hence the crew works at different
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points of their individual linear cumulative average progress curves at the same point of
time. This would lead to concavity in the learning curve. While Carr does not explicitly
state the saturation effect in his approach, his proposed learning curve incorporates the

essence of saturation at the later stages of production.

Baloff studied this plateauing phenomenon (Figure 3) and found it to be extensively
present in machine intensive manufacturing. He studied twenty eight separate cases of
new product and new process startups that occurred in four different industries and
observed plateauing in twenty of the cases. In a subsequent study, while analyzing data
for musical instrument manufacturing and automobile assembly firms (both of which
were labor intensive in nature), Baloff (1971) found that some sets of firms within these
industries reached steady state in the long run. However, the time to reach the steady state
was higher for labor intensive industries. Yelle (1979) postulated that the reason for this
observation could be smaller progress ratio for machine intensive learning or

management’s unwillingness to invest more.

Another likely reason the saturation effect is often not included in the learning curve is
that the life cycle of the product might be short, and thus the production may never reach
the steady state during the time of observation. Past analyses have often focused on
product rather than manufacturing processes used in the industry. Long term study of

manufacturing process data would be more likely to show the saturation effect.

However, Wright’s approach can be easily modified to include the saturation effect as

shown in Figure 3.
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Figure 3: Learning curve with steady state phase (saturation) (Baloff 1971)

Other notable learning models include
1. The Stanford-B model

This model derives its name from Stanford Research Institute, where an early study
commissioned by US defense department led to this model. This model was found to
be more representative of World War II data compared to log linear learning curves.

The model is represented as:
Y,=Cx+B) (1.6)

Y, :direct cost of producing x™ unit
C, :direct cost of first unit
B :constant (1<B<10), equivalent unots of previous experience at start of a process

It is noted that when B=0, then this model reduces to the log normal model
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2. DeJong’s learning formula

This model uses a power functions which incorporates parameters for the proportion
of manual activity in a task. DeJong’s formula introduces an incompressible factor,
M, into the log linear model to account for the man-machine ratio. The model can be

expressed as follows:
MC, = Cll:M +(1 —M)x"’] (1.7)

MC, =Marginal cost for producing x™ unit
M =Incompressibility factor (constant)

When M=0 the model reduce to the log-linear model, which implies a complete
manual operation. If M=1, then unit cost becomes equal to C; which suggest that

there is no cost improvement possible in machine controlled operations.
3. Levy’s adaptation function

Levy recognized that the log linear model could not account for the leveling off of
production rate and the factors that might influence learning. In light of this

observation he proposed the following model:

Mcx{i_(i_ﬁjk-ﬂ 0.8
B \B C

B :production unit for the first unit
k :constant used to flatten the learning curve for large values of x

The flattening constant k causes the curve to reach a plateau instead of continuing to

decrease or turning in the upwards direction.
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4. Knecht’s upturn model

Knecht observed the divergence of actual cost from those predicted by the learning
curve theory at higher production volumes. He modified the basic functional form of
the learning curve to avoid zero limit unit costs at large volumes. He altered the
expression for curve to allow an upturn in the learning curve at larger values of
cumulative production volume. The form suggested by him is as follows:

C,=Cx’e” (1.9

¢ =constant
5. Glover’s Learning Formula

This model is based on a bottom up approach which uses individual worker learming
results as the basis for plant wide learning curve standards. The functional form of the

model is expressed as:

Zn:yi+a=Cl l:ixijl (1.10)

v, : elapsed time of cumulative quantity

: cumulative quantity or elapsed time

R

: commencement factor
: index of curve (usually 1+b)

I X 8

: model parameter

6. Pegel’s exponential function

Pagels learning curve has an exponential functional form and it is represented as:

MC,=aa ™ +p (1.11)
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a, [, a:parameters based on emperical data analysis

7. Multipicative power model (Cobb-Douglas)

The multiplicative model can be used to represent various factors which might
influence the cost of production. The independent variables can vary from to include

both tangible and intangible parameters which might affect future costs.
C=kxtx2x>. . x"e (1.12)

: estimated cost
: model constant

KO

: i" independent variable

S

: exponent of i" variable

: error term

™

These formulas have differed in their functional forms and can be seen below (Figure 4).

Stanford-B8 Model

Delong Model

Cumulative average cost per unit

Plateau Mode! Log-linear Model

I | 1
! 1 1 T

1 10 100 1000
Cumulative production units

Figure 4: Comparison of learning curve models (Badiru 1992)
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1.4 Application of learning to industry

Learning curves have been extensively used in industry in various forms and with
different perspectives. It has undergone a wide transformation in its understanding and
application since it was first coined by Wright in 1936. Initially, researchers had used
learning curves as a tool to predict how the labor hours for manufacturing would evolve
over time. With time, the scale of measurement changed from labor per hour to labor cost

per unit and finally to cost per unit produced.

On similar lines the various factors used to justify the learning trends also increased and
became more comprehensive in nature. Wright believed that learning happened due to
repetition of task alone, but later researchers have included many other factors to justify

the learning curves.

Some of the learning processes can be listed as follows (Badiru 1992; Malerba 1992;

Goldberg and Touw 2003)

1. Learning by doing: This form of learning is internal to a company and depends upon

the production activity.

2. Learning by using: This form of learning is also internal to a company and is related to

the use of resources, machinery and other inputs

3. Learning from advances in science and technology
a. Basic Science

b. Applied Science
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c. Engineering

This form of learning can be internal or external to a company and depends upon

development or adoption of new technology.

4. Learning from inter-industry spill over: Acquiring technical knowledge developed by

the competitor.

5. Learning by interacting: This form of learning is external to a company and depends
upon the level of interaction with upstream or downstream sources of knowledge within
or outside the firm. The outside knowledge can come from the suppliers or with

knowledge sharing with other firms in the industry.

6. Learning by searching — Internal to a firm and related to activities aimed at generating

new knowledge base (like R&D).

Similarly, other researchers have also tried to incorporate the effect of management
decisions, industry structure, competition, etc. into the learning curve. This has
undoubtedly shown the power of learning curves and their importance to the industry, but
has made their application very cumbersome and often quite difficult. In the literature
learning has been shown to be pervasive. However, as the next section will detail, there

are limits to how learning curves can be used to guide technology selection decisions.
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2. Current approach and proposed methodology

2.1 Shortcomings of the current approaches

Until recently, most of the research done in this field has taken a top down approach to
understanding cost reductions over time. Researchers have taken an aggregate outlook
towards this problem. The general approach has been to regress data of cost per unit
against cumulative volume (Tsuchiya 2002) and to understand the patterns followed by
different industries and products. Figure 5 shows the work done by Tsuchiya et al. In this
work, the cost of fuel cells has been calculated over time for nine different scenarios
depending upon the power density of fuel cell (L, M and H for Low, Medium and High)
and cost reduction speed for material(A, B and C for fast, medium and slow) used to
make the fuel cell. It has been assumed that cost would be reduced by some fixed
percentage for different scenarios, based on some speculations. Using different assumed

rates of learning, the cost of fuel cells has been calculated over a period of time.

This study is based on an underlying assumption that the cost reductions observed for
existing technologies can be applied to future products/technologies, such as fuel cells.
Such an assumption must be made with great caution and only with deep understanding
in the related field of technology. Otherwise such a speculation might make the learning

curve look like self fulfilling prophecies.

Secondly, it can be difficult to explain cost reduction for a technology based on just a
single variable, i.e. cumulative production by applying some pre determined learning rate

to it.
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Figure 5: Effect of learning rate on cost evolution of fuel cells (Tsuchiya 2002)'

Finally, this approach also neglected the effect of changes in technology which gave an

impression that this technique is technology blind.

While learning curves are valuable for estimating future costs, an additional significant
contribution should be to help managers and engineers make decisions. The decision
should be based on a technical understanding of the learning effects on production, not

Just the resulting cost reductions.

The current method of analysis, based on regression just tells the managers to produce

some quantity of parts before their cost can be expected to go down to a certain level. It

"In the figure, H, M and L stand for high, medium and low power density. A, B and C represent scenario of
fast, medium and slow cost reduction for the cost of material used.
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does not probe deeper to understand the reasons that actually caused the cost of
production to go down. If the managers and engineers could be given a perspective about
the factors actually affecting the cost of production, and their contribution in bringing
down the cost, they would be in a better position to decide future strategies for

production.

For example, suppose a regression analysis of a data set gives a result that a product
follows an 80% learning curve (Wright 1936). This result provides a variety of
information. First and foremost, it indicates that the cost of production goes down by
20% each time the production volume is doubled. Second, it indicates the cumulative
production volume needed to achieve a given cost target. However, an engineering
perspective about the production improvements that will lead to these cost reductions is
missing. There is no way to know if the same cost reductions could be achieved through
specific technical advances instead of increased production. A method that decomposes
the cost analysis into smaller parts would allow the engineer to pinpoint the factors that
influence cost and thus provide other means to achieve cost savings besides increased

production.
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2.2 Proposed methodology: A process based cost modeling approach

To analyze the affect of learning curves on production it is essential to break down a
production process into its constituent sub-processes and understand how learning applies
to each of these sub processes. It is much simpler to understand the learning process at a
sub-process level compared to aggregate level. Furthermore, it gives engineers and
managers insight into the causation factors. The break down of a specific production
process and its analysis is achieved by using a technique developed at MIT’s Materials

Systems Laboratory entitled Process Based Cost Modeling.

Process Based Cost Modeling (PBCM) (also know as Technical Cost Modeling) is a
powerful analytical tool that integrates elemental costs derived from technical and
operational drivers to estimate the total cost of production (Kirchain and Field 2001).
PBCMs allow one to predict manufacturing costs for new designs, using well
characterized processes, by relying on engineering fundamentals of the manufacturing

process rather than historic data.

A specific manufacturing process can be looked at with respect to some factors such as
reject rate, down time, cycle time, equipment cost, tool cost, and material cost; and the
concept of learning curve can be individually be applied to each of these factors. These

factors can then be passed into the PBCM to get the cost per part being produced. (2.1)

$ = f(cycletime, downtime, reject, labor, energy, equipment, tools...) 2.1
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This decomposition of cost into these tangible factors allows for insight into causation
talked about earlier. However to use the process variables like (cycle time, down time and
reject) one still needs to make separate predictions. In this case uncertainty of forecasting
still exists, but it is focused around tangible technology and operational aspects. This
gives the engineers a scope to apply their subject matter expertise to build confidence

around the predictions made.
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3. Structured cost modeling approach

3.1 Process based cost modeling

Process based cost modeling (PBCM) is a method for analyzing the cost of
manufacturing technologies by capturing the key engineering and process characteristics
which relate to the total production cost of a component. PBCM is an improvement over
the previous cost estimation techniques which relied on rules of thumb, past experience

and accounting practices.

Product
_Description
Processing
Requirements
Resource
Requirements

Operating Factor
Conditions Prices

Figure 6: Illustration of Process Based Cost Modeling

For practical purposes, the PBCM can be broken down into three sub-models as shown
above (Figure 6). The first one describes the processes needed to produce the part. The
next model considers the operations of the manufacturing facility. The final model

applies financial considerations to the operation.
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3.1.1 Process Model

The process model is built on strong pillars of science and technology. It uses the
principles of engineering and science to calculate the processing parameters (Figure 6).
The process model requires inputs for the size, shape and material of the final product.
Depending upon the technology and material inputs, the process model calculates the
total cycle time for the process. The model also gives output for the equipment capacity
(for example, size and tonnage in case of press) and tools which might be required to
carry out the process. Since the process model is governed by the engineering principles,
it also addresses the constraints on cycle time and reject. For example, for a deformation
process there is a limit on maximum strain rate at which a defect free part can be
produced. The cycle time for such a process cannot be lower than that calculated by this
maximum strain rate. Similarly for semiconductor industry there is a minimum number of
reject that will be produced depending upon the thermodynamics of the processing
technique. In no situation the reject rate can be lower than this value. The processing
requirements augmented with the operating conditions including the shifts schedule,
working hours, desired annual production volume, etc., are passed into the operations

model.

3.1.2 Operating Model

The next part of the PBCM is the operating model, which determines the time required to
meet a given target production volume (required operating time). Once the time is
calculated, number of parallel lines can be determined based on the total time available

(uptime) in a year and therefore the scale of the production facility. This information is
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then used to calculate the total amount of equipment, labor and other resources needed to

achieve the desired product output.

a. Annual Available Operating Time and Uptime

The calculation of annual available operating time involves the integration of several
available metrics. The line utilization for a day can be divided primarily into available
and unavailable time. The available time includes the time when the plant is
manufacturing and also the idle time when the plant is staffed and running but is not
producing due to a lack in of demand. The unavailable time includes unplanned

breakdown, worker breaks, maintenance time and the time when the facility is not

operating (Figure 7).
Line Utilization for a 24 hour day
L Uptime ] Downtime |
r Ld rl
A"g';;ed g;':t‘: e Unplanned | Paid | Unpaid | On ShiR| |
Mfg. Time Mfg. Time Breakdowns | Breaks| Breaks | Maint.
[ Available T Unavailable 1

Figure 7: Available operation time based on a 24 hour day clock (Fuchs 2006)

The available line time can be calculated as:

AT = DPY.(24—- NS -UB - PB-UD) 3.1
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AT : Available line time
DPY :Days per year

NS :No Shift

UB : Unplanned breakdown
PB :Paid break

UD : Unpaid break

Finally, the uptime for the line can be calculated as the time when the line is running and

actually producing the desired parts.
UT = AT - Idle
b. Annual Required Operating Time

Annual required operating time is the total time required to produce the target number of
parts and is defined as the product of cycle time and number of parts required annually
(3.2). Since target volume of production for a given year is known, equation (3.3) can be
used to determine the actual number of parts which is required to be produced based on

the reject rate.

t=ZC7}*",~ (3.2)
no=—i (3.3)
1-reject;

CT, = Cycle time for process 1
n, =number of parts at the i™ sub process
reject; =reject rate in fraction for the i™ sub process

n, = Target Volume
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Annual available operating time tells us the amount of time a single line would be
running in a year. This can be used to calculate the number of lines that would be
required to attain the target production volume. The number of lines can be calculated by
dividing the annual required operating time by the uptime (3.4)

t

nl=|—
ur

34

nl = Number of parallel lines

Annual paid time equation (3.5) is used to calculate the time for which the labors are
paid. It is defined separately from annual available time to account for paid breaks and

unplanned downtime for which labors are paid.

APT =(24—- NS -UB).nl (3.5)

3.1.3 Financial Model

The final part of the PBCM is the finance model which works in conjugation with rest of
the model to eventually calculate the unit cost of the product. The role of the financial
model is to apply unit prices to the levels of resources consumed as determined by the
operations model and to correctly allocate the costs over time and across products. The
cost element can be broken down into material, labor, energy, building, equipment, tool
and overhead cost. Each of these cost are calculated separately using the information

from the previous models to give the total cost (Fuchs 2006)

C

total —

C

material

+C,, +C +C

labor energy building

+C, +C,.+C

equipment tools overhead (3 6)

The cost of material, labor and energy are considered to be variable costs and therefore

can be directly applied to the cost of the product. However, some allowance is needed to
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account for the variable costs associated with downtime, rejected parts, etc. The financial
model is also used to sum the individual cost elements to determine a fully accounted unit

cost of production(3.6).

Material cost is the product of number of parts produced, weight of the product and the
price per unit mass of the product. The scrap which is produced is sold as at scrap rate

and is credited from the material cost

C

material

=mW.P—(n—n)W.E,,, 3.7

n, : Total number of parts produced to meet the demand
n, —n, : Number of scrap

W : Weight of product

P :Price of material per unit mass

P___:Price of scrap per unit mass

scrap

Labor cost can be specified in three separate classifications — technician, skilled and
unskilled labor. The annual cost can be calculated as the product of annual paid time,
wage rate and fraction of line for which the production was carried out.

L
AT

C

labor

=Y 4PT,.P,

J

(3.8)

Jj : technician, skilled, unskilled labor
APT; : Annual paid time
P.: Wagerate

L : Fraction of line
AT
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Energy cost can be calculated in many different ways. Generally the energy cost can be
calculated based on specified energy consumption rate for each machine. The energy cost
is given as a product of annual required line time and the energy consumption rate for the

equipment (3.9) .

But some time the energy consumption can be tackled in a more comprehensive manner
by using energy balance. This is generally used for process involving heating and the
energy cost might be calculated on the basis of the thermal content supplied to the
material and the thermal losses involved in maintaining the temperature for some fixed

amount of time (3.10).

Corerg = D L-E; (3.9)

E; : Energy consumption rate for equipment i

C.,...., =Energy absorbed by material + Rate of heat loss.Time (3.10)

energy

Building, tool and equipment are considered to be capital investment. The capital
investment is treated as fixed cost that must be spread over years of production. The
financial model amortizes these investments over their useful lives to determine a series
of equal annual payments equivalent to the initial investment. Time value of money is
also factored into this calculation to ensure that the full costs of these investments are

taken into account in the unit cost or production.

The opportunity cost of associated with capital investment is calculated using standard

capital recovery factor (de Neufville 1990).
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_r(l+r)”
CRF, _——(l+r)” > (3.11)

CRF; : Capital recovery factor
Jj :Building, Equipment, Tool
r : Interest rate

n: Number of years

The annual amortized cost for building, equipment and tool is the investment times the

capital recovery factor equation(3.12). This is the amount of money which needs to be

paid annually for using the resources.

AC, = CRF,.El, (3.12)

AC; : Annual cost for j
CRF; : Capital recovery factor for j

EI,; : Capital investment made in j

The production cost obtained from process based cost model can be analyzed in different
ways. Fixed costs versus variable costs can be examined, or these costs can be further
broken down into the contribution to cost attributed to capital, labor, material, energy etc.
Costs can also be explored by process step and each of the previous cost elements can be
examined by process step as well. This type of model also provides a means to run
sensitivity analysis with respect to various parameters which gives a more complete

picture about how different parameters might affect the final price.

Such a detailed level of sensitivity analysis based on process variables is possible because
the models are constructed to derive cost from the process level, and therefore do not use
statistical methods to derive cost from the part description (Although statistical models

are sometimes used within the process model to derive process conditions from part

42



descriptions). This makes this method a powerful tool to study the effect of various
operational parameters on the cost of the part produced. The cost can be analyzed in
different ways to understand how each of the parameters interacts with each other and the
final cost. It can also be used to identify the primary drivers which affect the

manufacturing cost.
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3.2 Dynamic/Time Dependent Cost Model

In the previous section the power and usefulness of PBCM was demonstrated. However,
these models provide cost estimates only at a fixed point in time. In this section, a
method for expanding the use of PBCMs to address the question of cost evolution with

time will be presented.

As discussed in the previous section, the process model portion of a PBCM is used to
determine production parameters based on inputs related to final product. There are many
process parameters which are included in a typical PBCM and each has their own impact
in determining the final cost. Some of the common process parameters are shown in

Figure 8, but this is not an exhaustive list and there might be others.

In a typical, static process based cost model, best case values for these variables are
determined, often based on theoretical minimums. In practical situations, the values of
these process parameters are often higher than those predicted by the model. This is due
in part to an inability to ever achieve theoretical limits, but also reflects the fact that in
some cases learning with respect to these variables is not complete, and therefore these
variables have not yet reached their long term steady state values. Representing the
values of the process parameters as a function of time or cumulative volume provides a
good way to investigate the cost improvements possible over time. Compared to the top
down approach of learning where total cost is treated as a function of time or cumulative
volume, this method provides insight into the mechanisms that lead to cost reduction.

Process engineers and technical specialists may be able to provide reasonable estimates
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for improvements in production parameters thus leading to a better perspective on how to

further improve the cost.

3.2.1 Using learning curves for process variables

As suggested in the previous section, the process variables can be expressed as a function

of cumulative volume or time in the dynamic PBCM.

Process variables are likely to have several different phases of learning and therefore a
learning curve approach which comprehends these concepts must be employed. These
learning phases can generally be categorized as an initial transient phase, followed by a

learning phase and finally a saturation phase.

The initial transient takes place just after the implementation of a new process. During
this phase the improvements in the process parameters are slow. Initial transients are
observed because just after implementation of a new process, it takes some time before

line workers and engineers begin to understand the practical intricacies and details.

The second phase is the learning phase, which is characterized by major improvements in
the process parameters. The improvements in this phase can be attributed to (Carrington

1989):

a. Job familiarization by the workmen, which results from repetition of

manufacturing operations.

b. General improvements in tool coordination, shop organization, and engineering

liaison
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c. Development of more efficient sub assemblies, part-supply systems and tools.

After spending some time understanding the practical intricacies of the line, the line
engineers are in a better position to apply their knowledge to improve the overall line

performance.

The final phase is the saturation phase where improvements in the process parameters
plateau. The saturation effect illustrates the fact that some of the parameters cannot be
improved indefinitely and are constrained by laws of nature. Cycle time provides an
excellent illustration of this concept. The cycle time will initially be high but may come
down with time due to learning at an operational level. However, cycle time cannot go
below a theoretical minimum value. This theoretical minimum could be related to
physical limits based on scientific principles involved in the manufacturing process. For
example, limits to how quickly cooling can be accomplished will be based on principles
of heat transfer. While there are often opportunities to reduce cooling times, eventually
the laws of physics regarding heat transfer will limit any further reduction. Similarly, for
processes involving chemical reactions, theoretical limits for reaction kinetics will result
in a minimum possible cycle time. Once this minimum is achieved we can assume that
the learning process is fully completed and there is no scope for further improvements

with regard to this variable.

3.2.1.1 Selection of process variables

There are a number of process variable which can be represented as function to time or
volume to showcase the effect of learning which can be used to determine the cost

evolution. But the choice is based on the impact the variable is bound to make in the final
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outcome. While there are many process parameters included in a typical PBCM, three
variables in particular often have a strong impact on cost and are likely to improve with

time as the process matures: cycle time, downtime and reject rate.

3.2.1.2 Trade off between S curves and log linear learning curves
The log linear learning curves (1.5) are based on the concept that learning takes place

indefinitely over time and can be represented by a logarithmic function.

The positive aspect of using this curve is that only two parameters (initial value of
process parameter and learning rate) need to be specified to obtain the learning curve.
The major drawback of this type of curve is that it cannot account for the initial transient
or the saturation phases appropriately. The log linear curve does attain some kind of
saturation effect but since the saturation value cannot be specified, it generally occurs at

values much lower than the theoretical limit (Figure 9).

The learning rate of log linear curves does not explicitly state whether the observed
learning is fast or slow. It is very much dependent on the production volume of the
product. For example, a learning rate of 95% might be a fast rate for a semiconductor
company producing millions of chips annually, but it might be a slow learning rate for a

turbine manufacturing company producing just thousands of units annually.

Even with these shortcomings, log linear curves have found widespread acceptance in the
learning literature. The plausible reasons these issues are seldom raised in the learning
literature could be that the life cycle of the product under observation is so short that the

saturation level is never reached.
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Figure 9: The comparison in learning trends shown by s curves and log linear curves

The initial transient is generally not observed because the transient phase generally
occurs in the R&D stages and the initial period of production, which is often not included
in data collection. Data collection is generally started once the product is fully under

production.

To overcome these problems, S shaped learning curves have been proposed. These
curves provide more power and flexibility to capture the observations made with regard
to the initial transient and saturation phases. The figure above (Figure 9) shows an S
shaped learning curve. It can be seen from the shape of the curve that it can be used to
represent the initial transient as well as the saturation effect, in a very effective manner.
Compared to log linear curve it has a shortcoming in terms of number of parameters

required to specify the curve. For S curves four parameters are required to be specified to
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completely define the learning curve, as compared to log linear which requires just two.
The tradeoff between the accuracy of curve representation and easy of collection data
often determine the choice of the learning curves. It is left to the discretion of the user to

make a decision between the two curves.

For the current study S curves were chosen over log linear curves to represent the

learning behavior.

3.2.1.3 Benefits of using non dimension learning variables

Traditionally the S-curves (Carr 1946; Yelle 1979) were specified as process variable
versus cumulative volume. The process variables learn and improve over a period of
time. The improvement in the process variables can be expressed by using a non
dimensional learning variable (y*) (3.13) which could be mapped to different process
variables.

. PV-PV,

__PV PV, 3.13
Y TP PV 3.13)

PV = process variable

The non dimensional learning variable (y*) varies between 0 and 1, (Figure 10) where 1
corresponds to its maximum value and O can correspond to its minimum value. The
normalization increases the ease of application of learning curves to different process

parameters.
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S-shaped Learning curves
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Figure 10: Learning curve in terms of dimensionless learning parameter y*

The learning curve can further be normalized with respect to the cumulative volume axis
(Figure 11). The normalization of the curve with respect to volume makes it a powerful

tool to compare learning across industry with varying annual production.

For example, if we compare the manufacturing of an airplane industry with that of an
automobile industry, then the volume produced annually would be quite different. For the
airplane industry it might be somewhere in thousands whereas for auto manufacturer it
would be somewhere in millions. Normalizing volume makes it simpler to compare both
these industry and puts them on same page. This answers the problem faced using log
linear learning curve where 95% learning could have a different implication for both

these industries
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S-shaped Learning curves
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Figure 11: Normalized learning curve (normalized with respect to learning parameter and
cumulative volume)

The normalization of the cumulative volume axis is brought about by diving it by
‘equivalent volume’. The term equivalent volume needs to be defined and used
consistently across the model to avoid errors. Equivalent volume can be defined in many
ways, but for this study it has been defined as the number of parts which could be
produced by the equipment if it was operated for 24 hours a day for 365 days, throughout

its life time.

Vo= (ijcle t:r(z)e (in) J 24 hour.365days.Equipment Life (Years) (3.14)

Cumulative Volume (V')

Normalized cumulative volume (V") = (3.15)

Equivalent Volume (V)

52



The volume produced by the equipment is dependent on cycle time, which varies with
time and learning. To overcome this problem, the cycle time used in the calculation is the

theoretical minimum cycle time CTp, which can be attained for the process.

3.2.2 Example of application
In this section examples will be presented to explain the use of S-curves in representing

the set of data for different process variables.

3.2.2.1 Defining a normalized S curve
Normalized S curves are a powerful way of representing learning data for different

process parameters and comparing it across industries with different production volumes.

The normalized S curve can be defined as follows:

. 1
Y T 1x exp(aV’ + B)

(3.16)

a, f = constant
V* = Normalized cumulative volume

y" =leamning fraction,

The parameters « and (3, defines the shape of the learning curve. In particular, o conveys
the rate of learning, while 3 represents any initial transient phases if present during
learning. A high value for  is associated with fast learning and means that a low value
of volume fraction V* would be required to attain a certain fraction of learning (y).
Similarly, a low value of « suggests slow learning, and a higher value of V" will be

required to attain the same value of y'.
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(8 causes the graph to shift along the V" axis, and hence represents the initial transient in
learning. If the transient phase is very long then it would be reflected by a higher value of
B and vice versa. Based on the value of @ and 8 a process can be defined to be slow,

medium or fast.

3.2.2.2 Derivation of alpha o and beta g8 for the S curves

Alpha and beta are the parameters which are necessary to define the S curves. To
determine alpha and beta (2 unknowns), at least two points are required to be defined on
the S curve. For the current study the two points that have been used are 5% learning and
95% learning points. The cumulative volume fraction can be chosen with respect to these

points which would determine the value of alpha and beta respectively.

For example, a fast learning process can be defined as one where 95% learning is
completed within half equipment life and 5% of learning is completed within 0.01

equipment life (Figure 12)
This leads to the following values:

a=11.801 and 8 = -2.956 (3.17)
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Figure 12: Derivation of alpha and beta for fast learning s-curve

Similarly, a slow learning process can be defined as one where 95% learning is
completed within one full equipment life and 5% of learning is completed within 0.01

equipment life.

This leads to the following values:

o= 5.948 and B = -3.004 (3.18)

The value of alpha and beta can also be calculated by regressing given set of data and

will be demonstrated in later chapters (chapter 4.1.2.1)
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3.2.2.3 lllustration of using normalized S curve to determine learning
parameters (cycle time) versus cumulative volume

It is assumed that the cycle time starts at some value of CTy,.x and evolves with time to
attain a final value of CTmin. CT represents the cycle time for any intermediate time of
interest. The fraction of learning at any instance of time for the cycle time can be defined

by y* as shown in equation (3.19).

* CT - CTmm

Y =cr. —cr

min

(3.19)

CT=CT, +y (CT,. —CT.) (3.20)
The value of y* defined by equation (3.19) is analogous to y* shown in equation (3.16)
The full cycle time learning curve equation can be found by plugging the value of y*

from the S-shaped learning curve equation (3.16) into equation (3.20) to obtain

1
1+exp(aV + B)

CT = CTmm +I: :|*(CTmax _CTmin) (3'21)

Thus the cycle time can be calculated as a function of the normalized cumulative volume
and will lie between the maximum and theoretical minimum value. It should be noted
here that it is not necessary for every process variable to reach its saturation point. This

would be governed by the value of alpha and beta in the above equation.

A similar analysis can be done in terms of cumulative volume instead of normalized

cumulative volume.

oV

=— From equation (3.15)
Ve
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1

CT=CT,, + *CT,, —-CT.) (3.22)
14
1+exp [a —+ ,BJ
. , o
By defining o’ =— then,
eq
CT=CT,, + ! - *(CT,,, —-CT.) (3.23)
1+exp(a'V + B)

In equation (3.23) the learning in cycle time has been expressed as a function of

cumulative volume rather than normalized cumulative volume.

Numerical Illustration

For a process the cycle time and equivalent volume has been defined as following:
CTmax =20

Veq = 500,000

Both fast and slow learning rates can be applied to understand how the cycle time will

reduce with volume as learning is achieved (Figure 13).

CT =12+ - *(20-12) &
1+ ex V+
p(500000 'B)

a=11.801 and 8 = -2.956 for fast learning from (3.17)

"V represents cumulative volume and not normalized cumulative volume
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o= 5.948 and 3 = -3.004 for slow learning from (3.18)

Cycle Time learning vs Cumulative volume
22

—a— Fast Learning
—e— Slow Leaming

Cycle Time

T

T T L
0 200 400

Cumulative Volume (thousands)
Figure 13 : Evolution of cycle time with volume for fast and slow learning rates

The evolution of process parameters demonstrated in this chapter using the S learning
curves would be used as inputs to the process based cost model (chapter 4) and
taxonomic classification model (chapter 5) to calculate the production cost as a function

of volume.
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4. Case of Tube hydroforming

In the previous chapter it was shown how PBCM along with the S-curves could prove to
be a powerful method to predict cost evolution for a product. It also touched upon the fact
that using S-curves to define process parameters gives a more causal insight into cost
reduction. In this chapter a case study involving the process of tubular hydroforming will

be used to illustrate the idea.

Tube hydroforming came as a natural choice for looking at cost evolution because it is a
relatively new process which was developed in last couple of decades. The data collected
for hydroforming should be able to represent the leaming associated with the process
since its inception. The data for tube hydroforming was gathered from a reputed company

for the purpose of this study.

4.1 Dynamic tube hydroforming model

The dynamic tube hydroforming model was constructed by using the MSL tube

hydroforming model and augmenting the S curve learning model to it.

4.1.1 Tube hydroforming model

Tube hydroforming is a metal forming process in which a work piece is deformed by a
pressurized liquid (usually water based) into complex shapes in a die cavity, with added

compressive axial forces applied.

A process based cost model was developed to understand and analyze the economics of
manufacturing for tube hydroforming by the Materials Systems Lab at MIT. The process

based cost model for tube hydroforming is a comprehensive model capable of evaluating
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all the different sub-processes which might be involved in tube hydroforming; starting
from de-coiling and slitting of coil to roll forming, bending, annealing, pre-forming,

hydroforming, and finishing of the final part (Constantine 2001).

The same model structure has been used in this study, but the learning model has been
applied only to the hydroforming sub process of tube hydroforming. This is because the

data collected pertains to only this sub process.

4.1.2 Incorporating S curve learning model into hydroforming model

The learning curve model has been used to represent the process parameters in form of S
curves. The S curves for the learning model has been generated from the data collected
for tube hydroforming. The data primarily captures the cycle time and downtime for the
hydroforming step as a function of time and volume. The cycle time and downtime of the
hydroforming step has been modeled as S curve and passed into the hydroforming model

to get cost as a function of volume and time.

4.1.2.1 Determination of S curves from the data

To determine the S curve for a process variable, at least four parameters (max value, min
value, alpha and beta) are required to be defined. Looking at a given set of data the
maximum value and long term saturation or the minimum value can be determined by
simple inspection. But determination of alpha o and beta § requires some kind of
regression analysis over the data. The method which was used to determine .a and @ for
this analysis is shown with cycle time as an example, and this method could be extended

to determine « and 3 for any process variable.
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Analysis to determine « and 8 for cycle time:

CT=CT, + L *(CT.. ~CT. )
1+exp(a'’V + B)
, (CT.. —CT..)
V+ B)=tmax ~ ~min) g
PV +B)="cr —cry
CT., -CT
V4 B)=tn| Cmx —CT
(aV+F) (CT—CTm)

(@V+B)=K(®¥)

where, K(¥) =1In [M)

CT-CT,,

Linear regression analysis can be carried out over equation (4.3) to determine « and S for

the given set of data. For the present work the linear regression was done using the least

square analysis.

The sets of data obtained for cycle time and downtime are shown in Figure 14 and
Figure 15, respectively. The data was collected on weekly basis for a single
hydroforming line. The analysis was carried out on the data set to determine the

maximum value, minimum value and values of & and 3 for given process variable and the

results have been tabulated below.
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For cycle time data:

CTImax [1.32 o 1.24E-06
CTmin [0.63 B 0.283

For downtime data:

DTmax 0.49 o 2.02E-07
DTmin ]0.03 J¢; 0.59
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Figure 14: Down time vs. cumulative volume
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Cycle time vs Cumulative Volume
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Figure 15: Cycle time vs. cumulative volume

The data fitted S curves shown in Figure 14 and Figure 15 looks more like a linear curve

but its functional form is that of an S curve.

The data collection for the hydroforming line was started some years after the process
fully came into commercial application. This could be a reason why the initial transient is
missing and only the linear portion is seen. The saturation value of each of the process is
shown in form of dotted line and would be achieved in future years. Since both the initial

transient as well as the saturation portion of the S curve is missing, it looks more like a

linear curve.
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Figure 16: Total cost for tube hydroforming as a function of volume

The S curves obtained using the learning rates (o and ) were passed into the process
based cost model for tube hydroforming, which was run for a part which was 1.5m long,
weighed about 2.8 kilogram and had 8 bends. The final cost which was obtained as a

function of cumulative volume (

Figure 16) included the cost of the raw material and the processing cost (labor, equipment
and tools) on a per part basis. For the list of general inputs and assumptions, see appendix

A.

The total cost over time can also be further broken down into its elemental costs (tool,
equipment, labor and material) (Figure 17). This gives insight into how each of the

elemental costs evolves to bring down the cost with production volume. The cost of labor
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and equipment goes down with time, but the cost of tooling and material has remained
constant. It is pretty intuitive that cost of material remained constant because the material
cost is unaffected by the improvements in cycle time and downtime. The cost of material
is only affected by the reject rate and for the case study above the reject rates was

constant throughout the analysis.
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Figure 17: Cost evolution for tube hydroforming on elemental cost basis

The tools for a process are generally dedicated; hence the tool cost per part will remain
constant if the production volume is constant. In the above case it was assumed that the
production volume for the hydroforming process is constant, hence tool cost showed no
improvement with time. The tooling costs are not affected by learning and show

improvements only by economies of scale.
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4.2 Identifying critical learning levers

In the previous section time series production data for a tube hydroformed component
was used to estimate its cost evolution as a function of cumulative volume. The process
based cost modeling approach along with learning curves can also be used to understand
how these trends would be affected by changes in the learning rate for these same process
parameters. In the case study of tube hydroforming; cycle time and downtime were
passed to the cost model as a function of cumulative volume. For the analysis carried out
in this section the learning curve pertaining to cycle time and downtime would be used
from the previous study, the data for reject rate has been hypothetically created assuming
a fast learning rate. The learning curves for all the process variables are listed in appendix
A. The ways in which each of these variables changed with cumulative volume were
systematically altered and the resulting affects on the cost evolution were noted.
Understanding these relationships could help production managers, engineers and
researchers to target their efforts towards improvements in those factors which have the

largest and fastest impacts on cost.

Before looking into this issue it is important to understand the concept of scope of
improvement for a process. Scope of improvement communicates the room for
improvement in the parameter under consideration. Scope for improvement is high if the
process parameter can be improved by a large extent and it is low if not much
improvement can be brought to the process by any means. For a new technology, it is
sometimes difficult to predict the scope of improvement a priori, but knowledge and an in
depth understanding of the process facilitate the estimation of the scope in a more logical

manner.
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For the purposes of this study, several assumptions were made for the scope of learning.
High scope means that the specified parameter can be improved by 50%; while low scope
means that the parameter cannot be improved (assumed for this study). The combined
cost/learning model was run for different learning scope scenarios to determine the
effects of improvement in each process variable on the cost evolution. Table 1 shows
how the different combinations of learning scope that were explored. In the first
scenario, all three major process variables, cycle time, downtime and reject rate, had high
scopes of learning. The next scenarios consider having high scope for only one variable.
These analyses indicate the relative performance of each of the three variables. The final
scenario considers a low scope for all variables and is representative of a process for

which very little or no learning is possible i any of these process variables

Table 1 : Effect of scope on cost evolution

Scenario |Scope of  |Scope of |Scope of Down |Remark
Cycle Time|Reject  |Time

1JHigh High High High potential to observe the
effect of learning

2|High Low Low Observe effect of cycle time
learning over other learning

3|Low High Low Observe effect of reject learning
over other learning

4 Low Low  [High Observe effect of down time
learning over other learning

5|Low Low Low No effect of learning
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4.2.1 Case study for identifying critical learning levers

For the case study some initial and final values of cycle time, down time and reject have

been chosen (Table 2). The improvements in the process parameters are assumed to take

place due to learning at a fast rate (Chapter 3.2.2.2, and Appendix A).

Table 2: Initial and final values for the process parameter

Cycle Time]Down Time}Reject rate
Initial 2.8 min 57% 10%
Final value|1.4 min 28% 5%
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Figure 18: Effect of learning for different process variables on cost evolution
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Figure 18) shows that with combined learning the cost reduces by almost half the initial
value. Since this incorporates high scopes of learning for all variables, it represents the
maximum reduction in cost that is possible for this process (assuming only these process
variables are subject to improvement over time). Looking at each parameter individually
indicates that the cost reduction associated with cycle time learning is the greatest in the

long run.

69



[\
[=]

|—®— cumulative learning
18 {—®@— cycle time learning
# - downtime learning
16 4—w— reject learning
j
E 14 ./.’._._._.—l—l—l—l—l—l—l—l——l-l—l
% ]2—' ./ u
2 w
o
go 103 o 0000900000000 0
.= o~
> 81 ... Y. Iy R A Y T W YAy
S N S . -
2 6- /,g o /¥ | cross over point ~1.5 million
Qo ' |
© 44 . ‘/ :
| / |
24 /@ E
1 / v.v-v—y—v—v—v—v—v-v—v—v—v—v-v—v—v—v—v—v—v—{
0 -ir ' | B | v | S

o I 4
1000 2000 3000 4000 5000 6000
cumulative volume (thousands)

o

Figure 19: Cost saving per part pertaining to improvements in different parameters

Figure 19 above shows the cost savings per part which can be achieved with learning. It
shows that the saving per part produced associated with downtime learning is higher that
cycle time learning up to a cumulative volume of 1.5 million. This would give an
impression that if a plant plans to produce more than 1.5 million parts then it should
prioritize cycle time improvement rather than downtime improvement. In reality, to
answer this problem one needs to look at the cumulative cost saving achieved by the
plants over cumulative production volume before deciding which learning to prioritize.
The cumulative cost saving was calculated as a function of cumulative volume
(Figure 20). The graph shows that the cumulative saving achieved by cycle time learning

surpasses that of downtime learning only after 3 million parts. Thus cycle time learning
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should be given higher priority only if the plant plans to produce more than 3 million

parts and not 1.5 million parts, in the long run.
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Figure 20: Cumulative cost saving for cycle time and down time learning
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5. Process Variable Learning Cost Model Taxonomy

The previous chapter presented a case study using a time dependent or dynamic process
based cost model. The incorporation of learning curves for key process variables resulted
in a model which could estimate the cost reductions achievable as a result of learning as
well as the rates at which the costs are reduced. It also identified the major drivers
responsible for the cost reduction and the timing of the influence of each driver.
However, the analysis was performed on an existing technology, tubular hydroforming,
and relied on a considerable amount of time series data for each of the major process
variables as well as a detailed model of the tubular hydroforming process as it is used
today. Unfortunately, collecting this amount of detailed data for new processes and
technologies is difficult at best and is often impossible. At early stages of the technology
development, there is often only a basic understanding of how the manufacturing
processes will work and no time series data indicating the influence of learning on key
parameters. A practical method to generate time dependent cost estimates for new

technologies must recognize the limited availability of data.

Historical approaches to time based cost estimation used learning curves which directly
related costs to time or cumulative production volume for existing technologies (see
discussion in chapter 1). These curves were then applied to new technologies in similar
industries to create a cost versus time trajectory. Unfortunately, the application of
learning curves across all products and processes within an industry can often give
misleading results. The problem was that within an industry, processes could be quite

different. Furthermore, even if the technologies had some similarities to previous
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processes, they may only share some characteristics and could still be substantially

different with regard to key process variables and therefore costs.

The problem is to find some middle ground between the traditional simple cost learning
curve approach and the data intensive complete process based cost modeling approach. A
compromise can be found by generating cost evolution curves for major classes of
processes and within each of these for the different ways in which each key process
variable will change with learning. A classification scheme or taxonomy can be
developed and cost evolution curves generated for each element in that scheme. New
process technologies would then need only to be matched to its classification. Each
classification would have a basic process based cost model and learning curves for the
key variables which could be applied to the new technology to understand its cost
trajectory over time. Practical application of generalized learning curves to the process
variables requires these curves to be dimensionless so that they only need to be matched

based on issues related to learning such as its scope and rate and not based on magnitude.

A detailed discussion of a classification scheme or taxonomy as well as an approach to
the use of dimensionless learning curves is presented in this chapter. Specific scenarios
within the taxonomy are explored to show the ways in which learning impacts different
classes of processes. Finally, the tube hydroforming case is revisited using the taxonomy
learning curves and compared with the results obtained from the detailed analysis in

chapter 4.
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5.1 Taxonomy Categories

The first step in building this framework is to determine which process characteristics
might influence cost trends. Clearly this should include characteristics directly related to
the time/learning dependent process variables considered in the combined learning/cost
model, but must also include factors that affect the static portion of the process based cost

model.

5.1.1 Determination of Taxonomy Dimensions

For each of the variables modeled with s-curves, a classification is needed with regard to
the amount of improvement possible (scope) and the rate at which that learning occurs.
The ways in which these variables impact cost is also dependent on the nature of the

process.

An initial approach to this classification includes two key concepts. First, products with
different levels of materials intensity are likely to be impacted by learning in different
ways. This is because learning will have little impact on the amount spent on the
material, having only an indirect effect through the reduction in the amount of material
waste. Consequently, those products that have a high percentage of their cost arising from
materials are unlikely to see large cost reductions with learning. However, products with
a high percent of their costs arising from other factors have more room for cost
reductions from learning. Second, processes which are capital intensive are likely to be
impacted by learning differently than processes which are labor intensive. As discussed

in chapter 1 of this thesis, previous studies of learning curves have often shown that labor
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intensive industries are more greatly impacted by learning than capital intensive

industries (Adler and Clark 1991).

5.1.2 Taxonomy Dimensions Used in This Study

For this study, three process variables were considered to be directly impacted by
learning; cycle time, downtime and reject rate. While clearly other variables also under
improvements due to learning, these three were thought to have the greatest impact. For
each of these variables, there are two elements which impact cost reductions; scope of
learning and rate of learning. In addition, this study considered two more categories
related to the product and process; level of material intensity and level of capital (versus

labor) intensity. In all, this leads to eight dimensions for the categorization scheme.

1. Capital vs. labor intensity of the process
2. Material intensity of the product

3. Learning rate for cycle time

4. Learning rate for downtime

5. Learning rate for reject rate

6. Scope of improvement in cycle time

7. Scope of improvement in downtime

8. Scope of improvement in reject rate

5.1.3 Definitions of Taxonomy Categories

Having eight category dimensions means that there will be quite a large number of total

categories by which a user would define a new technology or process. If only two
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options exist for each category, there are already 2° =256 individual categories as shown

in Figure 21 below .

Figure 21 : Illustration of the framework based on the classification levers

In reality, across each of the eight dimensions a continuum of categories is possible. For
example, the process can have not only a very high or very low level of capital intensity,
but can take on all values in between. However, constructing a cost framework with that
level of granularity is both impractical and of little use to the end user. It is impractical
because the number of categories grows exponentially. It is of little use because it would
be impossible to specify the levels of each of the eight categories with such precision for

a new process or technology. A more reasonable approach is to use two to three
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categories for each dimension. For demonstration purposes for this study, this was limited

to just 2 categories per dimension.

The categorization scheme also requires a definition of each category within each
characteristic dimension. To fully develop the cost evolution results for each category, a
precise definition of the process variables associated with that category is needed. When
applying these categories to new technologies, a precise match is not necessary, but
rather it is important to find the category which most closely resembles the expectations

with regard to the new technology in that particular dimension.

5.1.3.1 Capital (vs. Labor) Intensity

Two categories in this space were considered in the taxonomy, capital intensive processes
and labor intensive processes. A process is defined to be capital intensive if the payment
on capital per year is more than twice the annual cost of labor. Currently, the capital cost
includes the cost of equipment and tooling, whereas the labor cost includes the amount of

money spent on labor and their benefits.

A process is defined as labor intensive if the annual cost of labor is more than twice the

capital cost incurred over a year’s period.

The capital cost, as already stated includes the cost of equipment and tool but resource
allocated between capital and tool depends upon the process which is being looked at.
The cost walk down for tool and equipment is different from each other; equipment cost
improves with learning in the process parameters whereas tooling cost improves only

with economies of scale. Thus different combinations of equipment and tool will lead to
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different capital cost walk downs. But for this analysis the ratio of resource allocation

between equipment and tool has been assumed to be constant.

5.1.3.2 Material Intensity

Again two categories were selected for this study; material intensive and non-material
intensive products. A process is defined as material intensive if the cost of material per

unit is greater than two-thirds of the total per part production cost.

A process is defined as non-material intensive if the cost of material per unit is less than

5% of the total per part production cost.

It is worth noting that with learning and improvement in process the ratio of capital, labor
and material changes. To account for this change in the present analysis the ratios are
calculated at the point where the process is completely learnt (saturated portion of s-
curves). There is no hard and fast rule that the calculations need to done using the data
points at the end of the curve and can be done using data at any point of the curve, but in

that case the ratios used for defining the taxonomy rule might change accordingly.

5.1.3.3 Learning Rates for Cycle Time, Down Time and Reject Rate

For each of the three process variables, two categories for learning rates were used; slow
and fast learning. The learning rate provides a measure of how rapidly improvement takes
place for each process variable. Except in some very special functional forms, the rate of
improvement is not constant and therefore the learning rate cannot be represented by a
single value. The s-curves used in this study are based on four parameters, two of which
describe the rate of improvement, o and B (the other two describe the learning scope).

The value of o defines the slope of the learning curve whereas the value of 8 defines the

78



initial transient in the learning curve. A more complete discussion of these concepts has

already been provided in section 3.3.2.

It is difficult to envision the shape and position of the learning curve simply by looking at
the values for o and B. Instead, to define the categories for fast and slow learning rates,
two points on a dimensionless learning curve for each category were selected, and the
resulting values for « and 8, were calculated. The same definitions used in section 3.3.2
were also used in this categorization scheme. Recall that fast learning was defined as
experiencing a 5% improvement after just 0.1% of the normalized cumulative volume
and a 95% improvement after just 50% of the normalized cumulative volume. In contrast,
slow learning meant that it would require 0.1% of the cumulative volume before
achieving a 5% improvement and a full 100% of the normalized cumulative volume

before achieving a 95% improvement.

The concept of dimensionless s-curves and normalized cumulative volume is used here so
that the definitions of slow and fast can be made once and then applied to each of the
process variables using the appropriate scaling factors. A more complete treatment of

these concepts was given in section 3.3.2.
The resulting values for cand g are:

Fast Learning: «=11.801 and 8 =-2.956
Slow Learning: = 5.948 and 8 = -3.004

These values were applied to each of the three process variables that are considered to

experience learning; cycle time, downtime and reject rate. The method of applying the
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learning rates to a dimensionless s curve has already been discussed in chapter 3. Cycle
time is the amount of time, in minutes, to produce a single part or product. It is assumed
that with learning the cycle time improves; that is lesser time is required to produce a
part. Downtime is the time when the line is not producing. With learning and
improvement in process understanding, the downtime is assumed to decrease. Reject rate
is the percent of the parts produced which cannot be sold because they do not meet the

expected standards.

5.1.3.4 Scope of improvement in Cycle Time, Down Time and Reject
Rate

Scope of improvement communicates the room for improvement in the parameter under
consideration. Scope for improvement is high if the process parameter can be improved
by a large extent and is low if not much improvement can be brought to the process by

any means.

For the purposes of this study, two categories for learning scope for each of the three
process variables were considered. High scope was defined as having a 50%
improvement in the long term over initial value, while low scope was defined as having
no improvement. For example, a process with an initial cycle time of 2 minutes would
have high scope for learning in cycle time if eventually it could be reduced to just 1

minute

Scope of improvement is an important concept which should be treated in conjunction
with the rate of learning. Learning rate is relatively unimportant under conditions with

low or no scope for learning since the opportunities for improvement are minimal. On
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the other hand, even a slow learning rate might have a dramatic effect if there is an

extremely high scope of improvement.

5.2 Analysis of the Taxonomic Scenarios

The combined learning curve/technical cost model was run for all 256 taxonomy
categories to produce cost evolution curves for each case. In reality, this involved
modeling just four product/process combinations using each of the different learning

scenarios. The four product/process combinations are:

1. Material Intensive & Labor Intensive (ML)

2. Material Intensive & Capital Intensive (MC)

3. Non-material Intensive & Labor Intensive (NML)
4. Non-material Intensive & Capital Intensive (NMC)

64 learning categories were applied to each of these; slow and fast learning rate and high

and low scope for each of the three process variables under consideration.

5.2.1 Description of the Baseline Process Model

Analysis of the baseline scenarios used a generic process based cost model following the
principles outlined in chapter 3.2. This was a generic model in the sense that the process
specific details contained in the ‘process model’ portion of a conventional PBCM were
replaced by inputs. To simulate the various learning scenarios, the cycle time, down time
ana reject rate inputs were linked to s-curves that gave the value of these inputs as a
function of cumulative volume. The s-curve parameters, o and 8, were varied to model

the slow and fast learning rate scenarios; and the minimum and maximum values were
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varied to model the high and low learning scopes for each variable. Process parameter
inputs related to capital/labor intensity and material intensity were calculated to simulate
the four product/process scenarios described in the previous section. The remaining
model inputs, such as interest rate, energy cost, wage, etc. were held constant. A

complete list of process inputs are given in appendix B.

5.2.1.1 Calculating Capital and Labor Intensive Scenario Inputs

The relative importance of the impact of capital, labor and materials on cost is the result
of the interplay of a subset of cost model variables as well as the key process parameters
modeled by s-curves. The other major variables that influence the capital cost are the
investments in tools and equipment, the interest rate, equipment life and the annual
production volume. Unit labor costs are primarily influenced by the number of workers
per line and the wage. Material costs are influenced by the amount of material needed to

produce the part and the unit price of the materials.

Typical values for several of these variables (interest rate, equipment life, production
volume, wage and material price) were assumed in order to perform the analysis. In
addition, the initial unit cost of the product was assumed to be $100 for all scenarios.
This provided a single basis for comparison for all scenarios. By applying each
product/process scenario definition, the ratio of capital to labor costs and the ratio of
material to capital plus labor costs, the remaining model inputs can be found. Table 3
shows the inputs for equipment investment, workers per line and part weight for each

product/process scenario and the resulting long term cost breakdown.
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Table 3: Model inputs for different industry scenarios

MC ML NMC | NML
Investment $1.56M | $0.52M| $1.84M ] $0.62M
Workers/Line 2 6 4 7

Unit Material Cost| $66.67 | $66.67 | $3.75 | $3.75
Unit Labor Cost $8.33 $25 $24 | $72.25
Unit Capital Cost | $25 | $8.33 | $72.25] $24
Total Unit Cost $100 | $100 | $100 | $100

Material Intensity | Yes Yes No No
Capital Intensity Yes No Yes No

5.2.2 Impact of Learning on Different Types of Processes

All 64 learning scenarios were explored for the four process/product scenarios. Several
are highlighted to best explore the impact of learning in each process variable on the cost
evolution trajectory. Four main scenarios (Table 4) are investigated; one with all learning
rates and scopes high, the other three have high learning rates and scopes for just one
variable. In addition, there is a variant on the all high learning scenario that incorporates
the concept of growing demand or annual production volume. Generally in this study, the
production volume was held constant so that the effect of learning could be studied in
isolation, without the effect of economies of scale. However, it is also interesting to
understand how economies of scale affect the cost evolution along with the learning
curves. A scenario (scenario 1) was chosen with 20% growth in annual production, to

investigate the combined effect of learning and economies of scale.
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Table 4 : Scenarios based on the scope levers (rate of learning is high in all these
scenarios)

Scenario |Scope of Cycle Time |Scope of Reject  |Scope of Down Time
1 High High High
I High" High High
2 Hligh Low Low
3 Low High Low
4 Low Low High

5.2.2.1 Scenario 1: High Learning Rate & Scope for All Variables

Scenario one has both high scope as well as high learning rates; the scenario can be
further broken down into growth and no growth scenarios respectively. In the no growth
scenario, the annual production volume is held constant at 54,000 parts annually which
yields about 1.1 million parts over the observed period of twenty years. For the growth
scenario, the production volume started at 4,000 parts per year and a growth rate of 20%
annually was applied. This also yielded about 1.1 million parts over the 20 year

observation period.

Annual production volume = 54,000
Growth Rate = 0% (Growth rate has been put to zero to study the effect of learning

without the effect of economies of scale).

Figure 22 shows the cost evolution results for the four product/process scenarios for
scenario 1. In all cases, the initial cost per part is $100, but the cost reduction paths are
considerably different for each since the learning factors have very different impacts on

the different sources of cost.

il Scenario 1’ represents the scenario with 20% growth rate to understand the affect of economies of scales
apart from learning on the cost evolution
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Cost per part vs Cumulative Volume
for various different Scenarios
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Figure 22 : Cost per part vs. cumulative volume for no growth scenario for material and
Capital intensive (MC), Material and Labor intensive (ML), Non-material and Capital

Cumulative Production (Thousands)

intensive (NMC) and Non-material and Labor intensive (NML) industries.

The preliminary analysis shows that cost per part reduction for non-material, labor
intensive products is the highest and is the lowest for material, capital intensive products.
The other two scenarios fall in between. The cost has been further broken down with

respect to material, equipment, tools and labor to gain a better understanding of why

learning affects these industries differently.

Figure 23 shows the cost break down on a per part basis for the different industries with
respect to labor, material, equipment, and tool cost. It can be inferred from

Figure 23 that there is no learning with respect to tools. Learning does not happen with
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tools because the tools can only be used to produce the part of interest and therefore are
treated as dedicated investments. Consequently, any improvement in the process will not
lead to better utilization of tools. Per part tool costs would only change if the investment
in tools changes (no learning is considered in this respect) or if the production volume
increased to the point where additional tool sets were needed. Since, the production
volume is held constant in this scenario, the tooling cost per part produced will remain

constant over the observation period

Per part equipment costs are reduced with learning because improvement in cycle time,
down time and reject rates all impact the time needed for production. Since equipment is
treated as a non-dedicated investment (time the equipment is not used to produce the part
of interest can be used to produce other parts), its costs are spread z.icross the set of
products made on that equipment according to the percent of time used to produce each
part. The learning induced reduction in production time therefore leads to a lower

allocation of the equipment costs.

There is a direct impact of cycle time improvement on production time, but improved
downtime and reject rates have similar impacts. Improvement in reject rate means that
there are fewer unusable parts and therefore the fewer additional process cycles need be
run in order to make up for the rejected parts. Improvement in downtime means the
equipment can run for a longer time each day and therefore the fraction of time the
equipment is used to produce this particular product is also reduced. The result is that

less of the equipment cost is allocated to the part of interest.
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Figure 23 : Cost per part break down with respect to labor, material, equipment and tool
for (a) material and Capital intensive (MC); (b) Material and Labor intensive (ML); (c)
Non-material and Capital intensive (NMC) and (d) Non-material and Labor intensive
(NML) industries

The effect of learning on labor cost is similar to the impact on equipment cost. A
constant number of workers per production line is assumed. Consequently, the reductions

in production time that come with learning result in a lower labor hour content for the

part.
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The material cost is a direct function of the number of parts produced, both good parts
and those that have to be rejected. As a result, improvements in reject rates reduce the
per part material cost, but the other learning factors, cycle time and downtime, do not

affect this cost.

The reduction in equipment and labor cost is brought about by the improvement in all the
three learning factors, cycle time, down time and reject rate, whereas the improvement in
material cost is only the result of improvements in reject rate, and there is no cost
reduction for tooling. Figure 24 shows this trend; equipment and labor cost show the

greatest improvement, followed by material cost, then tool cost.

Labor and .
Equipment Material Tools
. Cycle Time
Learning Down Time Reject Rate None
Factors Reject Rate

Figure 24: Effect of learning on labor, equipment, material and tool (no growth scenario)

These cost reduction patterns can be used to understand the different impacts that
learning has on the different product/process scenarios. For the material and capital
intensive (MC) scenario, Figure 23 (a), the major components of the per part cost are the
material and tooling costs. (Note that in these scenarios most of the capital investment
was directed towards tooling rather than equipment). Since there is no learning induced
reduction in tool cost and limited improvement in material costs, there is on a small

overall cost improvement. On the other hand, for the non-material, labor intensive
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scenario (NML) Figure 23 (d), component costs are driven primarily by the labor cost.
Since learning has a significant effect on labor costs, the component cost for this scenario
are substantially reduced through learning. For the non-material, capital intensive
scenario, (NMC) Figure 23 (c), labor and equipment contribute roughly half of the initial
cost. While there are significant reductions in labor and equipment costs, the other half is
governed by tool cost. This limits the scope of improvement of this process. Finally, for
the material, labor intensive scenario, (ML) Figure 23 (b), the majority of cost is
attributed to material and labor. Since material is a large fraction of cost and its
improvement is due only to learning based improvements in reject rates, the overall
improvement of the material, labor intensive scenario (ML) is less than that of the non-

material, capital intensive, scenario (NMC).

5.2.2.2 Scenario 1’: High Learning Rate & Scope for All Variables with
Growing Annual Production Volume

This scenario is the same as the previous, but the issue of production volume growth over
time is superimposed. Annual production volume is initially 4000 and increases by 20%
per year until it reaches 1.1 million cumulative production by the end of the 20 year
period of interest in this study. This was done to investigate the impact of economies of
scale along with learning in cycle time, downtime and reject rate. For new technologies,
learning is rarely observed on its own, but rather is usually seen in conjunction with

increasing product demand and therefore the improvements due to economies of scale.
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Figure 25: Cost per part vs. cumulative volume for 20% growth scenario for material and
Capital intensive (MC), Material and Labor intensive (ML), Non-material and Capital
intensive (NMC) and Non-material and Labor intensive (NML) industries.

Figure 25 shows the different cost evolution trajectories for the four different
product/process scenarios. The preliminary analysis shows that cost per part reduction for
the non-material, capital intensive scenario is the highest and is the lowest for material,
labor intensive scenario. The other two situations fall in between the two. This is different
than in the no growth scenario presented in the previous section. The capital intensive

scenarios now show far greater cost reductions than in the previous, no growth analysis.
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The costs have been further broken down with respect to material, equipment, tools and
labor to better understand the reasons for the greater impact on capital intensive processes

in this scenario.
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Figure 26: Cost per part break down with respect to labor, material, equipment and tool
for (a) material and Capital intensive (MC); (b) Material and Labor intensive (ML); (c)
Non-material and Capital intensive (NMC) and (d) Non-material and Labor intensive
(NML) industries
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Figure 26 shows the cost breakdown on a per part basis for different process/product
scenarios. The main difference with the previous no growth scenario (Figure 22 and
Figure 23), is that in this case, the cost of tooling decreases with volume. This is because
the set of tools are dedicated to the production of this part. Increases in production
volume means the cost of tools can be distributed over larger number of parts. Thus,
economies of scale, rather than learning play a major role in reducing the tooling cost

over time.

The behavior of equipment, labor and material follow the same trend as previous
scenario. The cost of equipment and labor, like in the no growth scenario, depends on
learning in cycle time, downtime and reject. The cost of material depends only on the
improvement in reject rates (Figure 27). Tools are not affected by any of the operation
parameters. However, tool costs improve due to economies of scale as indicated in this

scenario with 20% growth.

Labor and .
Equipment Material Tools
] Cycle Time Economies of
Leaming Down Time Reject Rate Scale
Factors Reject Rate

Figure 27: Effect of learning on labor, equipment, material and tool for growth scenario

The improvement in labor, equipment, material and tools is brought about by the
improvement in cycle time, down time, reject and economies of scale. It is evident that

the fraction of improvement in labor and equipment shall always be greater than material
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since it depends on three factors compared to material which depends on one. It is
difficult to compare the impact of reduction in tooling costs to the other improvements
since the mechanism behind these improvements are quite different, tooling cost
reductions due to economies of scale while the others are due to learning induced process

improvements.

An interesting result to note (Figure 26) is that the cost reduction followed by material,
labor intensive industry (ML) is very similar to material, capital intensive industry (MC).
Similarly, the cost reduction followed by non-material, labor intensive industry (NML) is
very similar to cost reduction followed by non-material, capital intensive industry
(NMC). This result implies that the cost evolution trajectory followed in this scenario is
dependent on whether the process is material intensive or not rather than the capital labor
ratio. This result is very different from the commonly held belief that labor intensive
industry should learn differently from capital intensive industry (Hartley 1965; Adler and

Clark 1991).

In this analysis, it was assumed that the number of workers required to run the production
lines are constant. Hence, the number of workers required maps one to one with the
number of production lines. Since the allocation of the equipment and labor costs both
scale with operating time, they will experience the same impact from learning. It could
be argued that this method of accounting for the labor cost might neglects “learning by
doing”. However, the perspective used for this work has been different from the previous
learning literature and explicitly considers learning only through improvements in cycle
time, reject rate and downtime. Learning by doing is considered only as an indirect effect

on these variables. The improvement in cycle time occurs partly as a result of
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improvement in labor skills achieved in the learning by doing sense. The workers have,
over a period of time, learned to run the lines in better fashion. Additional impacts of
learning by doing could effect the number of workers needed to operate a given
production system, thus further enhancing this effect. While not explicitly modeled in
this study, the impact of a reduction in workers per production line over time could easily

be included by including a time dependent relationship for this variable as well.

5.2.2.3 Scenarios 2, 3 & 4: High Learning Rate & Scope for One
Variable Only

Scenarios 2, 3 and 4 deals with the situation where the scope of learning and the learning
rate are high for cycle time reject rate and down time, respectively. The cost evolutions
for these scenarios are shown in Figure 28-31, for each of the four process/product

scenarios.

For material intensive industry Figure 28 and Figure 29, the reject learning rate was the
primary driver in bringing down the cost. This was evident because the material
constituted 67% of the total product cost for material intensive industries. With learning
in reject rates the cost of material improves because lesser number of rejects was
produced. Reject learning is also instrumental in bringing down the cost of labor and
equipment, because lesser number of rejects leads to higher equipment and labor
utilization. But the reduction in equipment and labor cost is an indirect effect of reject
learning and its impact in bringing down the cost is lower as compared to material cost

which is a major contributor in this case and is directly affected by reject rate learning.
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The cycle time was the second most important driver followed by down time in both the
cases. This is because cycle time and down time does not affect the material cost which is

the major cost contributor in this case.

Cycle time and down time learning only affect the labor and equipment cost, and they
showed a greater impact in labor intensive industry because a greater fraction of cost was
associated with labor and equipment cost compared to capital industry. In case of capital
intensive industry a high fraction of cost was tied to tools which showed no learning thus

reducing the impact of cycle time and down time learning.

Material & Capital Intensive Industry

—a— CT leaming (Scenario 2)
1 —a— Reject learning (Scenario 3)
—e— DT learning (Scenario 4)

105

100

95

90

Cost ($/part)

85

aoﬁ
——————————

0 200 400 600 800 1000 1200
Cumulative volume (thousands)

Figure 28 : Cost evolution for Scenarios 2, 3 and 4 for material, capital intensive industry
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Figure 29: Cost evolution for Scenarios 2, 3 and 4 for material, labor intensive industry
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Figure 31, cycle time was the primary driver in cost reduction because capital and labor
accounted for the major cost of part produced (96%), and both of them are directly
impacted by the improvements in cycle time. Again the improvement with cycle time
learning is lower for capital intensive industry because tools accounted for a major

portion of the cost and showed no improvement with learning.

Reject rate was the second most important driver followed by downtime, because reject
rate learning lead to improvement in material, equipment and labor cost, whereas the

down time lead to improvements only in labor and equipment cost.

Even though learning in reject rate leads to improvement in material, equipment and

labor cost its impact is lesser than cycle time learning which leads to improvement in just

Non-material & Capital Intensive Industry
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Figure 30 : Cost evolution for Scenarios 2, 3 and 4 for Non-material, capital intensive
industry
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Figure 31: Cost evolution for Scenarios 2, 3 and 4 for non-material, labor intensive
industry

equipment and labor cost, because cycle time directly affects the equipment and labor
cost which constitute a big portion of the total cost (96%) whereas reject and down time
learning have an indirect and much lower impact on the equipment and labor cost. A

detailed analysis of cost breakdown for scenario 2, 3 and 4 is given in Appendix C

5.3 Using the Taxonomy Model to Calculate Cost Evolution

Recall that the initial approach to this classification included two key concepts. First, was
to determine the level of materials intensity (material cost per part) and the capital
investment required compared to labor cost and, second was to decide the scope and
learning rate for the process variables (cycle time, down time and reject rates). For
evaluating a new technology the material and capital/labor intensity has to be decided,

based on the definition of material, capital and labor intensity (chapter 5.1.3). It might be

98



difficult to decide the parameters a priori for a new technology, but knowledge about the
sub processes can help in making a more informative decision. The level of granularity
for the model is limited to making binary choices (high/low) for material, capital/labor
and, scope and learning rate for the process variables which makes it easier to make a

decision.

Once all the eight parameters are decided the corresponding scenario can be chosen from
the taxonomic classification model. The model gives the trend for the cost evolution for
the chosen scenario. The output given by the model is normalized on $100 per part basis
and requires to be rescaled to the technology/product of interest. This is done by
multiplying the taxonomy model output with a factor which makes the initial cost output

of the model equal to that for the new product/technology of interest.

Similarly the normalized cumulative volume in the taxonomy model output has to be
converted back to cumulative volume. This is done by multiplying the normalized

cumulative volume axis by equivalent volume of the product/technology of interest.

5.4 Comparing the Taxonomy and Detailed Cost Modeling Approach
Using the Tubular Hydroforming Case

In the previous section it was seen how taxonomic classification could be used to probe
into the cost walk down of a technology which is very new and which has a very little
available knowledge base. To validate the approach of taxonomic classification we can
compare the cost evolution for tube hydroforming (Figure 16) with the scenario which

fits best with the hydroforming technology.

In the hydroforming analysis following trends was observed for the levers:
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e Non material intensive [10%)]

e Capital intensive [67%]

e CT (slow learning, high scope)

e DT (fast learning, high scope)

® Reject (no scope)

e Equivalent volume (V)= 12.3 million parts

The trend observed above matched with one of the taxonomic classifications. The output
given by the taxonomy model was normalized with respect to both cumulative volume
and cost. The rescaling in cumulative volume was done by multiplying it with the volume

equivalent of the hydroforming process (12.3 million)".

The output given by the taxonomic classification corresponds to the starting point of a
new technology whereas the data collected for hydroforming corresponded to a period
eight years down the line. Hence both the data sets were offset by a period of eight years.
During this period of time around 2 million parts had been produced using the
hydroforming technology. The results from the hydroforming analysis had to be shifted

by 2 million parts to take care of the temporal lag which was present.

The rescaling of the cost from the taxonomic output ($100 basis) had to be done with
respect to the cost of the 2 millionth part, because the cost of the 2 millionth part in the

taxonomic model corresponded to the first data point of the hydroforming data set. The

" For calculation of equivalent volume refer to chapter 3.2.1.3
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cost of first part in the hydroforming data set was $26.10 which was equivalent to the

cost of the 2 millionth part of the taxonomic model which was $92.97

To carry out the rescaling of the taxonomy model it was multiplied by a factor of

261 =(0.28. After this rescaling the data points for the 2 millionth parts matched each

92.97

other because they correspond to the same hydroformed part.
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Figure 32 : Comparison of cost evolution between hydroforming data and taxonomic
scenario

Figure 32 compares the result from the taxonomy model and the hydroforming model
after incorporating the time lag. The taxonomy model gives an output for the
hydroforming technology since its inception where as the hydroforming model data set

gives the cost output since the data set was collected (8 years, which roughly corresponds
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to 2 million parts). The comparison between the hydroforming analysis and taxonomic
classification shows that the classification method developed was able to predict the

trends pretty accurately.
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6. Conclusion

For several decades, the concept of experience based improvements in efficiency and
effectiveness and mathematical implementation in the form of learning or experience
curves have been used to characterize and project the cost walk down for various
industries. In the past couple of decades, this work and the application of learning curves
to firm decision-making has been expanded to comprehend not only improvements in

labor requirements to broader, firm-wide drivers for cost.

In the past, most of the work done looked at evolution of cost at a very macro level by
using log linear curves and relating cost to cumulative volume. The strength of this
method was that it was analytically inexpensive to use since it was not very data
intensive. And it also matched well with some of the industry cases. But the weakness of
the method lay in the fact that since it took an aggregate approach it neglected the
underlying technology involved in the process. This made the method look technology

blind, which implied that there was no element of causation present in the analysis.

In the present work, a different perspective was taken on the application of learning
behaviors to the inform early-stage technology selection decisions. Fundamentally, this
different perspective was to move from analyzing the aggregate, resultant consequence of
manufacture in the form of price or cost, to the perspective of the cost-driving activities at
the level of the manufacturing line. Instead of using the learning curves to predict total
cost with time, they were used within a generative cost model to look at the direct
implications of some key operational levers like cycle time, down time and rejects on that

same measure of performance — cost. Process based cost modeling was used to convolute
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these parameters defined by S curves, to determine cost as a function of volume. Even
with the approach proposed in this thesis, the learning curves are based on historic data
and speculation, however, by moving from aggregate to operational behavior the
speculations are focused around tangible technological and operational characteristic.
This allows technical and physical knowledge to be applied to the question of future
evolution. Hopefully, negating some of uncertainty and definitely allowing for focused

debate.

Tube hydroforming data was used as a case study to establish the feasibility of this
approach. The positive aspect of this case study was that it demonstrated the method’s
ability to tackle the problem at a more causal level probing into the drivers which
eventually leads to cost reduction. It gives the line engineers a better picture of
understanding the mechanism of cost reduction, arming them with the tool to direct
effective cost reduction for a given technology. The case study has successfully shown
methods to identify the drivers of improvement, empowering them to prioritize particular

drivers over other.

While the model-based learning evaluation is powerful it requires detailed information
about processing characteristics. Information that may be difficult to acquire for novel
technologies or ones produced outside of the firm making a selection decision. In
response to this need, the final section of the thesis proposes a structured method to guide
the selection of probable learning behaviors for a technology under evaluation. In the
final part a taxonomical classification was developed which aimed to address very
nascent technologies with little or no historic data present. The classification was based

on eight characteristics — process attributes of material and capital and learning
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characteristics around downtime, rejects, and cycle time. By exercising this process-
based learning model against discretized values of these characteristics a catalog of non-
dimensionalized learning behaviors was developed. If thoroughly populated, any given
technology should be represented by one of the cost behaviors within the catalog. By
correlating this behavior with characteristics of the technology a feasible set of cost
evolution behaviors can be selected methodically. The hydroforming cost evolution was
compared to one of the taxonomic scenarios and it was observed that the evolution trend
matched well. The study suggests that it may be possible to successfully identify
expected cost evolution trends for technologies based on limited available knowledge
about those technologies. If this result can be demonstrated by application to other cases,
this approach would provide a powerful tool to improve the early-stage technology

decisions made across industries today.
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7. Future Work

The idea of looking at cost evolution at manufacturing level using S curves has produced
very promising outcomes. There were few shortcomings which can be addressed and

improved in future course of work.

As discussed in chapter 4, the manufacturing parameters were limited to cycle time,
down time and reject rate. It was assumed that these levers would be in a position to
capture major evolution trends, since their impact factor is high. It would be a good idea
to introduce some other parameters like engineering scrap, equipment and tool cost,
which are also subject to improvement over time. In chapter 5, the taxonomic
classification was based on material cost, and capital versus labor cost. The capital cost
was assumed to be distributed between equipment and tool in a fixed proportion. The
ratio between equipment and tool varies across the industry and a new lever (equipment

versus tool cost) can be introduced to account for this observation.

In chapter 4, the learning rates, scope, material and capital were assumed to be binary in
nature. They were either high or low in value. But in practice there might be situations
where these might fall some where in the grey area. It would be a good idea to introduce
three levels (fast, medium and slow) to define the levers. There is no hard rule to keep the
level down to three; it is very possible to introduce 5 levels (fast, fast-med, medium, med-
slow and slow). But with too many levels it would be even difficult for the experts to

speculate the appropriate levels.

It should also be kept in mind that linear increase in levers results in exponential increase

in the number of possible scenario combinations. There are two kinds of levers, process
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levers and learning levers. Material Intensive, Capital/Labor, Equipment/Tool will fall
into the first kind since these levers are used to define the industry and they are not
related to learning. Levers like cycle time, down time, reject rate, engineering scrap fall

into the category where learning is involved.

In calculating the number of scenarios, the levers which are not affected by learning have
just 3 states, for each of them. So if there are ‘m’ non learning levers then there are 3™
cases possible. For levers which are affected by learning, it is important to specify both
scope as well as rate of learning. There are 3 states possible for each of scope and

learning rate. So for ‘n’ learning levers there are (3.3)" possible cases.

Calculating the number scenarios with the new set of proposed levers:

Number of Scenario=3".(3.3)"

m : Number of levers which are not affected by learning
n: Number of levers which are affected by learning

For the above case m=3 (material, capital/labor, equipment/tool)

Table 5: Scenario possible for given number of learning levers

Possible scenarios
243

2,187
19,683
177,147
1,594,323
14,348,907
1.29E+08
1.16E+09
1.05E+10
10 [9.41E+10

\OOO\IIO\U]-PWN'-‘S
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Table 5 shows how the possible scenario combination scales up with the number of
variables. After some point a tradeoff has to be decided between the number of scenarios
in taxonomic classification and the granularity of the analysis. With n=5, there would be
approximately 1.5 million scenarios which would be really large. The level of granularity

for future analysis should be decided after looking into these numbers.

The taxonomic classification carried out in chapter 5, was based on 5 levers in which 2
were non learning viz. (material, capital versus labor). The combination of these 2 levers
leads to 4 primary classification. The hydroforming analysis fell into one of these
category (Capital intensive, material non intensive) and the data for the analysis was used
to verify the taxonomic classification. In future data should be gathered for the remaining

3 major classification and should be verified against the taxonomic classification.
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Appendix A

Modeling assumptions for hydroforming model

Annual Production Volume 500,000 Units
Low Volume Production 0 [0=No,1=Yes]
Batch Size 5,000 parts/batch
Product Life 2 Years
Multiple parts hydroformed simultaneously? 0 [0=No,1=Yes]
Number of parts hydroformed simultaneously? 2 parts
Multiple parts contained in each hydroforming? 1 [0=No,1=Yes]
Number of parts contained in each hydroforming 3 parts

Bt voccnous Variablcsl
Days/year (Plant Operation) 240 days/yr
Hours/Day 16 hr/day
Wage Rate (Including Benefits) 40 $/(person*hr)
Interest 10%
Equipment Life 20 yrs
Building Life 25 yrs
Building Cost 1500 $/m?
Fixed Overhead Rate 35%
Electricity Unit Cost 0.1 $/kWhr
Indirect workers/Direct Worker 0.2
Material Information: Dual Phase 600
Material Price 0.65 $/kg
Scrap Price 0.1 $/kg
Material Density 7860 kg/m?
Material Specific Heat 460 J/kgK
Material Yield Strength 300 MPa
Material Flow Stress at 20% Strain 450 MPa
Anneal Temperature 600 °C
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Part Length 1.5 m
Pre-Hydroforming Tube Diameter 0.09700 |m
Wall Thickness 0.00075 m
Number of bends 8
Outer dimensions of bent tube:
Length (Usually the largest dimension of the bent part) 5 m
Width (Usually the second largest dimension of the 0.3 m
bent part)
Height (Usually the diameter of the pipe.) 0.05 m
Stacking Dimension (1=Length, 2=Width, 3=Height) 3
Input for learning curves (Hydroforming)
Process 1 Hydroforming TYPE 1

LEARNING

CYCLE TIME
1-Fast 3 LC_CT_Tog_1 Maximum Time{min} 2.798 LC_CT_Max_1
2-Medium Minimum Time(min} 0.8543 LC_CT_Min_1
3-Slow
UNPLANNED A %
1-Fast 2 LC_DT_Tog_1 Maximum Time(min} 57% LC_DT_Max_1
2-Medium Minimum Time(min) 4% LC_DT_Min_1
3-Slow
REJECT
_1—Fast 1 LC REJ Tog 1 Maximum Reject% 51C REJ Max 1
2-Medium Minimum Reject% 1 LC_REJ_Min_1
3-Slow
TOOL
_ 1-Fast 2 LC_TOOL_Tog_1 Max Tool Cost 150000 LC_TOOL_Max_1
2-Medium Min Tool Cost 150000 LC_TOOL_Min_1
3-Slow
EQUIPMENT
b Guipnient 1-Fast 2 LC_EQP_Tog_1 Max Equipment Cost 6000000 LC_EQP_Max_1
2-Medium Min Equipment Cost 6000000 LC_EQP_Min_1
3-Slow
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Data input for cycle time, downtime and reject
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Figure 33: Evolution of cycle time, down time and reject with time for tube
hydroforming analysis (generated using the S-curves)
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Appendix B

Modeling assumptions for the baseline taxonomy model

NModel QuiputControlb

Number of readings per year 2 number/yr
Projected production per year 54,000 number
Dedicated N Y/N
Number of working days/yr 240 days
Labor Wage 30 $/hr
Interest Rate 12.0% percent
Building Unit Cost 400 $/sq.m
Building Area used 4,231 sq.m
Building Life 40 yrs
Cost of Tool 461,522 $
Number of parts produced by a single tool 1,000,000 number
Time to amortize the tool (yrs) 11 yIs
Cost of Equipment 153,841 $
Lifetime of the equipment (in yrs) 11 yrS
Cycles the equipment can last 1,000,000 yrs
IAverage Power consumption 1 kW
Idle Space 0 sq. m
Unit Energy Cost 0.1 $/kW-hr
Material not in the list [ I=TRUE, 0=FALSE] 0
Material Used 41 number
Some Material
Part Weight 2.1 kg
Growth 0%
Growth Toggle 0 [0=Fixed,1=Var]
Length of shift 8 hr
Number of Labor/unit 6.6
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Number of Shifts@8 hrs/shift 2

Indirect workers/Direct Worker 0.2

'Wage Rate (Indirect) 40 $/hr
Maintenance 0.01 hr/operation hr
Total time the plant is available 24 hrs

Time Slot for manufacture of A and B 16 hrs

Time for analyzed part manufacture A and B 11.2 hrs
Average plant utilization 70% percent
Break paid/unpaid 0.8 hrs

T

Cycle Time 10 min
aintenance 0.02 fraction
Reject Rate 0.06 fraction
Downtime 0.04 fraction
[Volume equivalent 1,156,320
Scenario Toggle 193
Material Intensive (0=No, 1=Yes) 0
Capital or Labor Intensive [C/L] L
CT Scope [1=High, 2=Low] 1
CT learning [ 1=Fast, 2=Slow] 1
DT Scope [1=High, 2=Low] 1
DT learning [1=Fast, 2=Slow] 1
Reject Scope [1=High, 2=Low] 1
Reject learning [1=Fast, 2=Slow] 1
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LEARNING CURVE EFFECT for A

1-Fast
2-Medium
3-Slow

1-Fast
2-Medium
3-Slow

I

2-Medium
3-Slow

1 CT_TOG

1 DT_TOG

1 REJ_TOG

CYCLE TIME
Maximum Time(min)
Minimum Time(min)

UNPLANNED A %
Maximum Time(min)
Minimum Time(min)

REJECT
Maximum Reject%
Minimum Reject%

10 CT_MAX
5'CT_MIN

30% DT_MAX
12% DT_MIN

40 REJ_MAX
16 REJ_MIN
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Appendix C

Detailed Analysis of Taxonomic Scenarios 2, 3 and 4
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Figure 34: Cost per part break down with respect to labor, material, equipment and tool
for (a) material and Capital intensive (MC); (b) Material and Labor intensive (ML); (c)
Non-material and Capital intensive (NMC) and (d) Non-material and Labor intensive
(NML) industries for scenario 2 (only cycle time learning present)
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Figure 35: Cost per part break down with respect to labor, material, equipment and tool
for (a) material and Capital intensive (MC); (b) Material and Labor intensive (ML); (c)
Non-material and Capital intensive (NMC) and (d) Non-material and Labor intensive
(NML) industries for scenario 3 (only reject learning present)
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Figure 36: Cost per part break down with respect to labor, material, equipment and tool
for (a) material and Capital intensive (MC); (b) Material and Labor intensive (ML); (c)
Non-material and Capital intensive (NMC) and (d) Non-material and Labor intensive
(NML) industries for scenario 4 (only down time learning present)
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