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Abstract

In this thesis, we show for the first time how it is possible to calculated fully from
first-principles the diabatic free-energy surfaces of electron-transfer reactions. The
excitation energy corresponding to the transfer of an electron at any given ionic con-
figuration (the Marcus energy gap) is accurately assessed within ground-state density-
functional theory via a novel penalty functional for oxidation-reduction reactions that
appropriately acts on the electronic degrees of freedom alone. The self-interaction er-
ror intrinsic to common exchange-correlation functionals is also corrected by the same
penalty functional. The diabatic free-energy surfaces are then constructed from um-
brella sampling on large ensembles of configurations. As a paradigmatic case study,
the self-exchange reaction between ferrous and ferric ions in water is studied in detail.

Since the solvent plays an central role in mediating the process, studying electron-
transfer reactions requires us to first understand the structure and dynamics of the
solvent molecules (water molecules in our case). Therefore, we have also studied the
static and dynamical properties of (heavy) water at ambient conditions with extensive
first-principles molecular-dynamics simulations in the canonical ensemble, with tem-
peratures ranging between 325 K and 400 K. Density-functional theory, paired with
a modern exchange-correlation functional (PBE), provides an excellent agreement for
the structural properties and binding energy of the water monomer and dimer. On
the other hand, contrary to a long-standing belief, the structural and dynamical prop-
erties of the bulk liquid show a clear enhancement of the local structure compared
to experimental results; a distinctive transition to liquid-like diffusion occurs in the
simulations only at the elevated temperature of 400 K.

The local coordination and structure of water is still a very debated matter and
in collaboration with experimentalists at the European Synchrotron Radiation Fa-
cility in Grenoble, we have characterized the structure and the local environment
in water with a combination of inelastic X-ray scattering and first-principles calcu-
lations, under conditions ranging from the normal state to the supercritical regime.
The same temperature dependence of the Compton profile is observed in experiment
and simulation. A well-defined linear correlation is identified between Compton pro-



file differences and changes in the number of hydrogen bonds per molecule, that is
consistent with well-established structural models, and that confirms the prevailing
picture of hydrogen bonding under normal conditions. While close to the critical
point we observe a clear signature of density fluctuations, supercritical water is char-
acterized by a sharp increase in under-coordinated clusters, with a significant number
of dimers and trimers.

Last, we implemented a Hubbard U correction in our first-principles molecular
dynamics to improve the hybridization between a transition metal ion and its sur-
roundings. The implementation has been tested for ferrous and ferric ions solvation
in water. The effects of the Hubbard U correction on the electron-transfer reaction is
also studied.

Thesis Supervisor: Nicola Marzari
Title: Associate Professor, Department of Materials Science and Engineering
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Chapter 1

Introduction

Electron-transfer reactions are one of the most ubiquitous processes in organic and

inorganic redox reactions. They cover processes and applications as diverse as solar-

energy conversion in the early steps of photosynthesis, oxidation-reduction reac-

tions between a metallic electrode and solvated ions, and the I-V characteristics of

molecular-electronics devices [1]. According to the seminal work by Marcus [2], fluctu-

ations of the environment (solvent) are crucial in mediating the transfer of an electron

from the reactants to the products. The central role played by the structure and dy-

namics of the solvent (water in our case) requires also an extensive first-principles

characterization of water and aqueous systems.

Water, due to its abundance on the planet and its role in many chemical reac-

tions, has been widely studied both experimentally [3,4] and theoretically. Despite

the effort devoted to this, many questions remain unanswered or controversial down

to the average number of hydrogen bonds or the radial distribution functions of liq-

uid water. The peculiar interplay of hydrogen bonding, glassy behavior, electronic

structure, and of quantum-mechanical effects on the dynamics of the atomic nuclei

make computer simulations challenging, and a great effort has been expended to

build a comprehensive and consistent microscopic picture, and a link with observed

macroscopic properties [5-22].

Computational studies based on molecular dynamics simulations have a long his-

tory in the field. Simulations using force-fields models [5-10] have been successful at



reproducing many structural and dynamical properties of liquid water. However, em-

pirical models rely on parameters which are determined by fits to known experimental

data, or occasionally to ab-initio results. Their transferability to different environ-

ments, or the ability to reproduce faithfully the microscopic characteristics of hydro-

gen bonding, are often in question. Due to development of novel techniques [23-25]

and the ever-increasing improvement in computational power, extensive molecular-

dynamics simulations from first-principles are now possible. The increased accuracy

and predictive power of these simulations allow studies of many systems with excellent

quantitative accuracy, which had not been feasible before.

In this thesis, we first carry out extensive studies of the structural, dynamical

and electrochemical properties of water and of aqueous systems using first-principles

methods. The structural properties and binding energy of the water monomer and

dimer are studied in details using density-functional theory, paired with a modern

exchange-correlation functional (PBE). Although there has been a long-standing be-

lief that the structural and dynamics from first-principles molecular simulations of

water at ambient conditions are in excellent agreements with experiments, this pic-

ture has recently been revised by a number of investigations [26, 27] including our

own [28].

Our efforts have not been confined to studying water at ambient conditions. Due

to the potential applications of water at supercritical regime (e.g. as a solvent in

organic waste disposal), the microscopic properties of supercritical water are also of

central interest. Despite numerous efforts, the hydrogen bonding structure of water

at supercritical regime is also controversial. Neutron diffraction results have been

interpreted differently: some authors [29,30] conclude that nHB - 0 above the critical

point whereas others conclude that nHB is still sizable [31,32]. Other experimental

techniques, such as X-ray diffraction [33], infrared spectroscopy [34], or NMR [35]

point to a persistence of hydrogen bonds in supercritical water (SCW).

We combine here theoretical and experimental efforts to derive a robust measure

of the hydrogen bonding structures from the ground-state electronic structure of

the system, not from the ionic structure as it is done in the neutron and X-ray



Figure 1-1: Diabatic free-energy surfaces for a typical electron-transfer reaction.

diffractions. The electronic ground state can be unambiguously accessed in X-ray

inelastic (Compton) scattering experiments and straight-forwardly calculated from

our first-principles methods.

With these understandings of structure and dynamics of water, we then proceed

to study electron-transfer reactions in aqueous environments. The key quantities of

interest are the reaction rates (or, equivalently, the conductance) and the reaction

pathways. Reaction rates, in the general scenario of Marcus theory [19,36,37], have a

thermodynamic contribution (the classical Franck-Condon factor, broadly related to

the free energy cost of a nuclear fluctuation that makes the donor and the acceptor

levels degenerate in energy), and an electronic-structure, tunneling contribution (the

Landau-Zener term, related to the overlap of the initial and final states).

According to the Marcus theory of electron transfer, which we will discuss in

details in Chapter 5, electron tunneling would occurs only when the system is at the

crossing point of the two free energy surfaces. As indicated in Fig. 1-1, a free energy

barrier of AG* has to be overcome to reach the crossing point. In the limit of small



tunneling matrix element (diabatic limit), the reaction rate can be treated according

to Fermi's golden rule,
2ir

kET = -IHDAI 2FC (1.1)

where HDA is the electronic coupling matrix element between the donor and the

acceptor and FC is the Franck-Condon factor [36],

FC = exp(-(AGO + A)2/4AkBT)
(4?rAkBT)1/ 2

where A and AG o are the reorganization energy and the free energy of reaction as

indicated in Fig. 1-1. From the above equation, we can see that there are three

parameters defining the electron-transfer rate in the diabatic limit, namely HDA, A

and AG o

There have been numerous studies of electron-transfer reactions in the context

of Marcus theory. Most studies provide the correct qualitative picture but fail to

describe the reactions with quantitative accuracy. This discrepancy is due to the

inaccuracy of classical potentials in dealing with processes where there is a significant

change in the electronic structure. In order to provide a better quantitative picture

of electron-transfer reactions, we develop a novel approach to allow the study of

electron-transfer reactions from first-principles molecular dynamics. Our approach

involves extensive umbrella sampling of the solvent phase space and the introduction

of a novel energy functional to calculate accurately both the ground and first excited

state of electron-transfer reactions. With aqueous ferrous-ferric self-exchange as a

paradigmatic example, we show how accurate the diabatic free energy surfaces can

be obtained with excellent agreement with the experiments.

Last, in the appendix, we discuss a DFT + Hubbard U [38,39] approach targeted

at correcting the over hybridization of localized orbitals that takes place at standard

density-functional theory.

The thesis is organized as follows:

* Chapter 2, We describe the general computational techniques used in this re-

search.



* Chapter 3, We present in details the simulations procedure and results of first-

principles studies of water at ambient conditions.

* Chapter 4, X-ray inelastic scattering study of water at ambient and supercritical

conditions are presented. We also derive a robust measure of the hydrogen

bonding structure so that the average number of hydrogen bonds per molecule

can be easily obtain from Compton scattering spectra of water in experiments.

* Chapter 5, We present our approach to study electron-transfer reactions from

first-principles molecular dynamics. Using aqueous ferrous-ferric self-exchange

as a paradigmatic example, we present the full diabatic free-energy surfaces

calculations from first-principles.

* Chapter 6, The works are summarized in the conclusions.

* Appendix A, We discuss the DFT + Hubbard U studies of strongly correlated

systems and its implementation in Car-Parrinello molecular dynamics. We also

study the effects of the Hubbard U corrections on the ferrous and ferric ions

solvation in water.
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Chapter 2

Computational techniques

2.1 Introduction

In this chapter, we will provide a brief review of the theoretical approaches and the

approximations used in this research. Our work is based on the study of the properties

of matters from first-principles. A calculation is said to be from first-principles if

it relies on basic and established laws of nature without additional assumptions or

special models. In studying the electronic properties of matters, the established law of

nature is the Schroedinger's equation. Although the exact form of the Schroedinger's

equation is known, getting the exact solution is almost impossible in realistic systems,

due to the interactions between electrons. Many techniques have been developed to

solve this equation via various approximations. Density-functional theory (DFT),

which has become one of the most widely used first-principles techniques to efficiently

solve the Schroedinger's equation, will be discussed in this Chapter. Although density-

functional theory is, in principle, exact, in practice, its ability to describe correctly the

properties depends on the accuracy of the exchange-correlation functionals used. the

ability of the theory to correctly describe electronic properties of matters depends on

the accuracy of the exchange-correlation functional. We will review briefly the more

common approximations available.

In actual calculations, the wavefunctions have to be expanded in a basis set. One

of the set most commonly used is the plane-wave basis set and we will discuss its use



and its advantages over others. The concepts of norm-conserving pseudopotentials

and ultrasoft pseudopotentials to lower the computational costs in simulations will

also be explained. We will then review the Car-Parrinello method, which greatly

reduces the computational cost for finite temperature studies from first-principles

molecular dynamics. Moreover, we will mention an extension to the technique to

allow molecular dynamics at constant temperature.

2.2 Density-functional theory

In studying the electronic properties of matter, solving exactly the Schroedinger's

equation is all we would need. A physical observable (0) can be calculated from

the expectation value of a corresponding operator (0) through the relation, O =

(TI~II), where T is the many-body eigenfunction of the Schroedinger's equation.

For an isolated N-electron and M-atom system, the electronic wavefunctions can be

calculated and all the physical properties can be described by the Schroedinger's

equation,

HI({rs})'I({r,}) = E'({r,}), (2.1)
N 1  N M N

H({ri}) = T + Vne + Vee = V2) + ZI +Z (2.2)2i Iri -RII+ r&j

H is the many-body Hamiltonian and T is antisymmetric due to fermion spin statis-

tics. The ground-state wavefunction is the one that minimizes the energy and the

corresponding energy is the ground-state energy. Although the above equation can,

in principle, be solved exactly, the problem becomes practically unsolvable as the

number of electrons increases. A very successful reformulation of the problem was in-

troduced in 1964-65 by Hohenberg, Kohn and Sham [40,44] that provides a tractable

approach to deal with the many-electron problem.

In particular, the first Hohenberg-Kohn theorem [40] states that if the ground

state electronic density, no(3f, is known, the external potential acting on the elec-

trons (i.e. the potential due to the electrostatic interaction with the ions) is also



uniquely determined, at least for the case with non-degenerate ground state. Since

no(rj also determines the number of electrons in the system, the ground state many-

body wavefunction, 90 is then uniquely defined, in principle, from any given no(r).

Therefore, the total energy, besides being a functional of the ground state wavefunc-

tion, can be written as a functional of the electronic density itself. Hohenberg and

Kohn then introduced,

F[n(rj] (T It+ ~ee ~), (2.3)

E [n(rl] v(r--n(rdr + F[n(r-], (2.4)

where F[n(rl], which is an universal functional independent of the external potential,

contains the kinetic energy and the electron-electron interaction term, and Ev[n(rj]

is the total energy functional with the external potential included. In the above

formula, F[n(r)] is defined only with v-representable charge densities. A density is

v-representable if it is the density associated with the antisymmetric ground-state

wavefunction of the interacting Hamiltonian (Eq. 2.2) with some external potential.

The second Hohenberg-Kohn theorem [40] provides a variational principle,

Eo < E"[A((rj], (2.5)

for any trial v-representable electronic density such that f P(rjdr = N.

Note that many "reasonable" densities are not v-representable, but, as proposed

by Levy [41,42] and Lieb [43], density-functional theory can be reformulated so that

the electronic densities satisfy a weaker condition, of N-representability. A density is

N-representable if it can be obtained from some antisymmetric wavefunction (not nec-

essarily the ground state wavefunction in some external potential). N-representability

is satisfied for any reasonable density. With the Levy-Lieb constrained-search defini-

tion,

F[n(rj] = min_,n( (I( It + V~eel). (2.6)

The universal functional F[n(r-)] is now defined for any N-representable charge den-



sity. Note that there can be many I's that give the same N-representable n(F) and

F[n(rj] is defined as the minimum expectation value of T + Ve searching over all the

antisymmetric wavefunctions that integrate to n(r).

The determination of the ground state is in principle greatly simplified by Eq. 2.5;

instead of minimizing the energy functional with respect to the many-body wave-

function, we can now minimize the energy functional with respect to the electronic

density. However, the universal functional F[n(')] is unknown in practice and this

prevents any real applications. Kohn and Sham [44] provided a practical solution by

introducing the concept of a noninteracting-electron reference system,

N N

Hs = Z(- v) + Z v(r), (2.7)
i i

where the potential v,(ri) is such that the ground state density is exactly the same

as the interacting system. For the noninteracting system, the exact ground state

wavefunction is the Slater determinant,

1
9, = det['lI1 2 ... PN], (2.8)

where the 0i are the N lowest eigenstates of the noninteracting Hamiltonian. There-

fore, the problem is now shifted from finding the correct n(rj to finding the correct

noninteracting Hamiltonian. We can rewrite the universal energy functional as,

F[n(rl] = T,[n(l)] + EH[n(rl] + Exc[n(rj], (2.9)

where

Exc [n(rj] - T[n(rl] - T,[n(rl] + Vee[n(rl] - EH[n(rj], (2.10)

with T[n(r)] the kinetic energy of the independent electrons Hamiltonian, EH[n(r-)]

the Hartree energy and Eýc[n(r-] the exchange-correlation energy that contains the

difference between T and T, (presumably fairly small), and the non-classical part

of Vee[n(r1]. Functional minimization is performed according to the Euler-Lagrange



equation,

/i = ZAijy, (2.11)

where the right-hand-side comes from the orthogonality constraint on the Kohn-Sham

wavefunctions and

1 2 f n(r')
HT = [(---V) + v(r- + dr ' + vxc(rj], (2.12)

2 r -_r_

with the exchange-correlation potential

V 6 E c [ n ()rj ]vc(r = (2.13)6n (rj

Since the potential on the electrons depends on the charge density via the Hartree

and the exchange-correlation terms, the equation has to be solved self-consistently.

The Kohn-Sham approach is also, in principle, exact, but still requires the knowledge

of Exc. Finding more and more accurate E.c is an active field of research.

2.3 Functionals for exchange and correlation

The crucial quantity in the Kohn-Sham approach is the exchange-correlation energy,

which is expressed as a functional of the charge density Exc[n(rj]. As discussed in the

Kohn and Sham's seminal paper [44I, by explicitly separating out the independent-

particle kinetic energy and the long-range Hartree terms, the remaining exchange-

correlation functional Exc[n(r-] can be reasonably approximated as a local or nearly

local functional density. They pointed out that electrons in solid can often be con-

sidered close to the limit of the homogeneous electron gas. In this limit, the effects

of exchange and correlation can be treated as local in character, and therefore, the

exchange-correlation functionals becomes an integral over all space with the exchange-

correlation energy density at each point assumed to be the same as in a homogeneous



electron gas with that density,

EFcDA[n(rj] = d rn( c (n(I' ). (2.14)

This is the local density approximation (LDA). In the case of studying a magnetic

system, the spin densities nt (rj and n((rf are not equivalent at every point in the

system. An extension to LDA to study magnetic systems is the local spin density

approximation (LSDA) where,

EfsDA[n t (r), n(r)] = J d3 rn(r-rhzf (n t (r), nt(r-))

= d3rn(rfE* (nt (ri)n (r)) + Eahm(nft (rl, n (r).(2.15)

The exchange-correlation energy density can subsequently be separated into the ex-

change energy and the correlation energy density. The exchange energy of the homo-

geneous gas is given by a simple analytical form using the Dirac exchange formula [45],

Eh" (nt (r, n J(rj))=- (- 6 nt(r-) 1/3 - n (r ' ) 3. (2.16)T 4 i4 4 7r

On the other hand, the correlation energy density has been accurately calculated

for the homogeneous electron gas as a function of density using high precision using

Quantum Monte Carlo techniques [46].

The first step beyond the local approximation is a functional of the magnitude

of the gradient of the density IVnUI at each point. The term generalized-gradient

approximation (GGA) denotes various ways to include this dependence,

EGcGA [nt(?, n(f] = df rn(frExc(n ,'(rj, (I, Vn( l|, Vn(r'))l (2.17)

Numerous forms for the GGA exchange-correlation functionals have been proposed,

and among them, the most widely used functionals are B88 [47], PW91 [48], BLYP

[49, 50] and PBE [51]. The generalized-gradient approximations show improvements

over LSDA in many chemical problems, and therefore GGAs are widely adopted by the



chemistry community. However, every approximation has its limitations. Among the

most serious faults is the spurious self-interaction present in most exchange-correlation

functionals. In the Hartree-Fock approximation, the unphysical self-interaction term

in the Hartree interaction is exactly canceled by the non-local exchange interaction.

However, this cancellation is only approximate in most exchange-correlation func-

tionals. This self-interaction effect is negligible in the homogeneous gas but large in

cases with localized charge density, for example the d-electrons in transition metals.

In Appendix A, we will actually look into a DFT + Hubbard U approach and discuss

how it can better describe the physical properties of transition metal complexes.

2.4 Plane-wave basis set

In solving for the Kohn-Sham wavefunctions, it is necessary to expand them in a

basis set. Many choices are possible, including atomic orbitals, Gaussians, linearized

augmented plane wave (LAPW) and plane waves. The plane-wave basis set is most

commonly used in extended systems with periodic boundary conditions. The use of a

plane wave (PW) basis set has a number of advantages over other choices, including

the simplicity of the basis functions, which make no assumptions regarding the form of

the solution, the absence of basis set superposition error, and the ability to efficiently

calculate forces on atoms. Moreover, full convergence of the forces acting on the ions

with respect to the basis set is easily achieved with plane waves, and no Pulay forces

arise in the dynamics, since the basis set is independent of the atomic positions.

Despite the advantages of using plane-waves, plane-waves with continuous values

of the k-vector are, in principle, needed to fully represent a wavefunction. However,

the use of periodic boundary conditions together with the Bloch theorem allow us

to simplify the expansion. According to Bloch theorem, the wavefunctions can be

written as Bloch wavefunctions,

?iE)= cj~(dei~k f (2.18)



In order to satisfy periodic-boundary conditions, the Bloch wavefunctions with quan-

tum number k can be expanded in a discrete set of plane waves with k-vector (k+G),

where G is the set of reciprocal lattice vectors. The set of values of k-vectors needed

to represent a wavefunction now changes from continuous to discrete, but still infinite.

In practice, the set of plane waves is restricted to a sphere in reciprocal space most

conveniently represented in terms of a cut-off energy, Ect, such that for all values of

G used in the expansion,
<h Ecut 

(2.19)
2me

The choice of Ect depends on how structured wavefunctions are. Usually, to represent

accurately the wavefunctions near the ionic cores, a large number of plane waves would

be needed, making simulations very expensive computationally. The pseudopotential

approximation, which we discuss in the next section, provides a solution to smooth

the wavefunction around the core region and, therefore, requires a significant smaller

number of plane waves.

2.5 Pseudopotential

Electrons in matter can be broadly categorized into two types - core electrons, which

are strongly localized in the closed inner atomic shells, and valence electrons, which

exist also outside the core. Since the potential in the region close to an atomic

nucleus varies as 1 , which diverges as r -- 0, an extremely large number of plane

waves would be needed to expand the core electron wavefunctions and the valence

electrons wavefunctions around the core region. This large number of plane waves

would make the computational cost extremely high.

The use of pseudopotential approximation is a way to solve this problem, by re-

moving the core electrons and replacing the interaction between the core and the

valence electrons (vi"o(rf)) by a weaker pseudopotential with core electron screen-

ing (vPS(rf) [52] (Fig. 2-1). Since most physical properties are determined by the

valence electrons, this treatment is able to greatly reduce the computational cost,
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Figure 2-1: An illustration of the concept of pseudopotential approximations.

while describing physical properties with high accuracy. With this treatment, the

valence pseudo-wavefunctions are smoother and nodeless in the core region and are

identical to the real wavefunctions outside the core region. The computational cost

in calculations using pseudopotentials is reduced in two ways. Firstly, the number of

wavefunctions needed in a calculation is reduced by removing the core electrons. Sec-

ondly, the valence wavefunctions are smoother within the core region and fewer plane

waves are needed to adequately describe the valence wavefunctions. To ensure that a

pseudopotential calculation reproduces the same energy differences as an all-electron

calculation, it is necessary for the normalized pseudo-wavefunctions to be identical to

the normalized all-electron wavefunctions outside the core. This condition is called

'norm-conservation'.

2.6 Ultrasoft pseudopotential

Ultrasoft pseudopotentials, developed by Vanderbilt [53], further relax the norm-

conserving constraint. With this flexibility, ultrasoft pseudopotentials attain much

smoother (softer) pseudo-wavefunctions and therefore can use considerably fewer



plane waves for calculations with the same accuracy. In this scheme the total va-

lence density n(rJ is partitioned into hard and soft contributions,

n(ri = Zr 5n(rJ;12 + Qij(rJ (On I ýj) (AI n) 1 (2.20)

where ýi's are projector functions that depend on the ionic positions, and the aug-

mentation function Qij(r) are given by

Qi,(r) = Oi* M 10i M - Of* M j (I (2.21)

where #i(i) are the all-electron wavefunctions, and 0i( ) are ultrasoft wavefunctions

constructed without satisfying the norm-conserving condition Qi (j( = 0 . Also, the

orthonormality condition takes on a generalized form

(<i S({R,})i¢>) = 6ij, (2.22)

where S({RI}) depends on the ionic positions through I/i) and is defined as,

S({RI}) = + E qij 1i) (j ,

with,

qij = f Qij(rdr.

2.7 Car-Parrinello molecular dynamics

In performing molecular dynamics simulations, the motion of the atoms are described

by the Lagrangian

C = T- - V. (2.25)

(2.23)

(2.24)



T and V are the kinetic and potential energies of the atoms. The Newton equations

of motion can be obtained by minimizing the action (S = f £dt),

d (O& 0
dt ORI ORI

d2 R I  dV
mI dt 2  d (2.26)dt2 'dRI

where R, is the position of atom I. In actual simulations, the trajectories of the atoms

are obtained from the numerical integration of the equations of motion with a finite

timestep 6t. The forces of on atoms, i.e. the right hand side of the equation of motion,

are calculated in classical molecular dynamics from classical force-fields. However,

classical force-fields usually contain experimentally fitted parameters to a particular

condition, and the transferability and accuracy are usually in questions. A more

accurate approach to obtain forces on atoms would be to calculate them quantum-

mechanically (i.e. from first-principles). In the Born-Oppenheimer approximation,

the ions move on the potential energy surface of the electronic ground state V =

(IF lHI I), where H is the Hamiltonian. The right hand side on the equations of

motion now becomes

dV d( -I ')
dRI dRI

ORFI •RI oRI
EOft 'a'> <'o fR

-E0 ' ' s' IF)OR, ORI

= -(~ I I) = -( )'I ), (2.27)

where V is the operator for the external potential acting on the electrons, which is

the only RI-dependent term in Hf. This is the Hellmann-Feynman theorem, which

makes the calculation of forces a lot simpler, since the forces on atoms can now be

calculated without the computation of the derivative of the wavefunction with respect

to the positions of atoms and all is needed is the analytical form of d. Despite this



simplifications, the calculation of forces on atoms quantum-mechanically is still very

time-consuming since it requires the computation of the ground state wavefunction

at every timestep.

In 1985, Car and Parrinello [23-25] introduced a different approach to significantly

lower the computational costs in performing first-principles molecular dynamics simu-

lations. In this method, the ground state wavefunctions (i.e. the Kohn-Sham orbitals)

are allowed to evolve simultaneously with the ions and the computation of the ground

state wavefunctions is not needed at every timestep. The dynamics of the ions and

the wavefunctions are described by the extended Lagrangian:

£cP = P fi Jdr Ii (r)+ 2 MIR - EKS [{'i}, {RI}]
i I

+ Aij (f dr'V* (r) j (r) - 56ij) , (2.28)
ij

where EKS[{bi}, {RJ}] is the DFT energy functional and the 'i are the Kohn-Sham

orbitals. The equation of motions for the ions and wavefunctions are, respectively,

dEKS[10i i JRIJ]
MIR = dE [{ , {R(2.29)

dRI
S 6EKs[{ i}, {RI}]

PIAi = - 6¢* + E Aijoj. (2.30)

The Kohn-Sham orbitals are allowed to evolve as classical degrees of freedom with

the inertial parameters pi. The Lagrange multiplier Aij restricts the evolution of the

wavefunctions to preserve the orthonormality. In performing Car-Parrinello molecular

dynamics, the wavefunctions are relaxed to the ground state at a fixed set of ionic

positions and then the ions are allowed to move according to the equations of motion.

The electronic wavefunctions adiabatically follow the motion of the ions, with some

small oscillations about the electronic ground state (Born-Oppenheimer surface). The

electronic wavefunctions will have a "fictitious" kinetic energy associated with their

motion and the fictitious mass pi. By choosing a small enough pi, the motion of the

wavefunctions will be very fast relative to the motion of the ions and the wavefunctions



will stay very close to the instantaneous ground state.

Moreover, to ensure the wavefunctions stay close to the ground state in the course

of the simulation, the ionic degrees of freedom need to be adiabatically separated

from the electronic degrees of freedom so that the ionic dynamics would not heat up

the "fictitious" electronic dynamics. This is achieved by ensuring that the frequency

spectra of the electronic wavefunctions and the ions are well separated from one

another; this condition can always be satisfied if there exists an energy gap between

the occupied and unoccupied Kohn-Sham orbitals. Within a harmonic approximation,

the lowest frequency of oscillation of the wavefunctions about the ground state may

be written as

W= 2(- = ) (2.31)

where Ei and ej are the eigenvalues of the highest occupied and the lowest unoccupied

orbitals respectively. Therefore, a small enough pi is chosen so that wo is significantly

larger than the highest ionic vibrational frequency so that the exchange of energy

between the ionic and the electronic degrees of freedom is practically zero. However,

a small pi requires a small timestep to correctly integrate the equations of motion

for the wavefunctions. Special care is needed to choose the value of ui to obtain an

optimal balance between the accuracy and the speed of the simulations.

2.8 Extended Lagrangian methods for molecular

dynamics in different ensembles

In the above discussion of the Car-Parrinello extended Lagrangian, the system is

implicitly assumed to be in the micro-canonical (NVE) ensemble. Often, it is more

convenient to fix the temperature rather than the total energy throughout the sim-

ulation. While the temperature is an intensive quantity, it is related to its extensive

counterpart (kinetic energy of the ions) by

2 Pi
T = -EkinNkB = 3 B p (2.32)3 3NkB mi

i=1



In this work, we adopt the integral thermostat method (or Nose-Hoover thermo-

stat [54-57]) to control the temperature on the ions. The Nose-Hoover thermostat

introduces additional degrees of freedom into the system's Hamiltonian, that becomes,

N 2 2

H = + V(r") + + (3N + 1)kBTln(s) (2.33)
i=2ms 2Q

where s is the additional degree of freedom and T is the target temperature. The

equation for the additional degree of freedom evolves together with original spatial

coordinates and momenta. Physically, the Nose-Hoover thermostat acts as a heat

reservoir, with which the system can exchange energy, so that temperature (i.e. the

total kinetic energy of ions) fluctuates around a target value. In some systems with

small HOMO-LUMO gaps that it is not practical to choose a small enough "fictitious"

mass to adiabatically separate the ionic and electronic degrees of freedom, a thermo-

stat can be! applied to the electronic degrees of freedom so that the wavefunctions do

not heat up and stay close to the Born-Oppenheimer surface.



Chapter 3

Static and dynamical properties of

heavy water at ambient conditions

from. first-principles molecular

dynamics

3.1 Introduction

Water, due to its abundance on the planet and its role in many of the organic and

inorganic chemical processes, has been studied extensively and for decades both at the

theoretical and at the experimental level [3-18,58]. In the last two decades, numerous

ab-initio simulations on water have appeared [11-18], showing good agreement with

experiments for the structural and dynamical data. However, this good agreement

has recently been challenged by a number of investigations [26, 27] including our

own [28, 59].

We have undertaken an extensive investigation of the static and dynamical prop-

erties of water, to ascertain its phase stability around ambient conditions as predicted

by first-principles molecular dynamics. Particular care has been given to the statis-

tical accuracy of the results, assuring that the time scales and length scales of the



simulations were chosen appropriately for the given conditions.

In this chapter, we will first detail all the technical aspects of our simulations.

Then, we will surveys the static and vibrational properties of the water molecule and

the water dimer in vacuum, at the GGA-PBE [51] density-functional level. We will

also discuss the extensive liquid water simulations, performed with Car-Parrinello

molecular dynamics, in the temperature range between 325 K and 400 K. Moreover,

we will discuss the limitations of this approach, and some of the possible reasons to

explain the remaining discrepancies with experimental results.

3.2 Technical Details

The structural and vibrational properties of the water monomer and dimer and the

binding energy of the dimer have been calculated using density-functional theory in

the generalized-gradient approximation and the total energy pseudopotential method,

and density-functional perturbation theory [60], as implemented in PWscf of our

electronic structure package [61]. We performed separate calculations using either

norm-conserving pseudopotentials for both the hydrogen and the oxygen, or ultrasoft

ones. These same pseudopotentials were also used for the norm-conserving or ultra-

soft molecular dynamics simulations. In particular, the O Troullier-Martins norm-

conserving pseudopotential [62] was generated using the FHI98PP package [63] with

core radii for the s, p and d components of 1.25 a.u., 1.25 a.u., and 1.4 a.u. re-

spectively. The Troullier-Martins hydrogen pseudopotential was generated using the

Atom code [64] with a core radius for the s component of 0.8 a.u. The ultrasoft pseu-

dopotentials were taken from the standard PWscf distribution [65]. The Kohn-Sham

orbitals and charge density have been expanded in plane waves up to a kinetic energy

cutoff of 25 and 200 Ry (respectively) for the ultrasoft case, and of 80 Ry and 320 Ry

for the norm-conserving case. A cubic supercell of side 30 a.u. was used; interaction

with periodic images is negligible [66] with this unit cell size.



Table 3.1: Structural properties of the water monomer and dimer and binding energy
of the dimer, as obtained in DFT-PBE using ultrasoft or norm-conserving
pseudopotentials, and compared to available experimental and theoretical
results.

PBE US PBE NC PBE NC Experiments BLYP
(This work) (This work) (Ref [71]) (Ref. [67-70]) (Ref. [66])

ZHOH 104.60 104.20 104.20 104.50 104.40
doH(A) 0.98 0.97 0.97 0.96 0.97
ZOHO 1730 1720 1740 1740 1730
doo(A) 2.89 2.88 2.90 2.98 2.95
Edimer -23.2 -23.8 -21.4 -22.8 -18

(kJ/mol)

3.3 Water monomer and dimer: Structural and

Vibrational Properties

The equilibrium structures and energetics are summarized in Table 3.1. We have

included published results [66] using the BLYP functional for comparison. Both

ultrasoft and norm-conserving PBE density functionals show very good agreement

with experimental values. In particular, the PBE results have a dimer binding energy

in closer agreement to the experiments than BLYP; the binding energy in this latter

case is too weak by 4 kJ/mol, and exhibits a longer 0-0 distance.

Table 3.2 and 3.3 show respectively the vibrational frequencies of the water monomer

and dimer in vacuum. In this calculation, a hydrogen mass of 1 a.m.u. was used

(as opposed to the 2 a.m.u. mass used for the dynamical simulations of heavy wa-

ter). The calculations of the vibrational frequencies were performed using density

functional perturbation theory using a cubic cell of size (30 a.u.)3 . To achieve a con-

vergence of a few cm-1 in the frequencies, cutoffs of 35 Ryd and 420 Ryd were used

for wavefunctions and charge densities, respectively, in the ultrasoft case and, in the

norm-conserving case, 100 Ryd and 400 Ryd were used. As shown in Table 3.2 and

3.3, the PBE functional gives intramolecular stretching modes that are in general

blue-shifted compared to BLYP and experimental results. In the calculations for the

dimer, the libration modes are also higher for the PBE functionals then those given



Table 3.2: Vibrational frequencies of water monomer: vy, v 2 and u3 are the symmetric
stretching, bending and asymmetric modes, respectively.

PBE (US) PBE (NC) Expt [67] BLYP [66]
v, (cm- 1) 3781 3704 3657 3567
v2 (cm- 1') 1573 1599 1595 1585
u3(cm-1) 3908 3816 3756 3663

Table 3.3: Vibrational frequencies of water dimer: vj, v2 and v3 are the symmetric
stretching, bending and asymmetric stretching modes, respectively. Proton
acceptor and donor molecules are denoted as (A) and (D). v(Hb) are the
two libration modes between molecules and v(O- O) is the hydrogen-bond
stretching mode.

PBE (US) PBE (NC) Expt [67-70] BLYP [66]
v, (A)(cm - 1)  3778 3695 3622 3577
v2(A)(cm -' )  1570 1596 1600 1593
v3 (A)(cm - 1) 3901 3804 3714 3675
v (D) (cm - ') 3601 3532 3548 3446
v2(D)(cm- 1) 1593 1616 1618 1616
v3(D)(cm- 1)  3871 3781 3698 3647
v(Hb)(cm-1) 666 644 520 600
v(Hb)(cm - 1)  379 378 320 333

v(O - O)(cm-1) 202 196 243 214

by experiments and BLYP. We note in passing that the errors

(especially the low energy ones) are slightly larger than usually

We will return to this point in a later section.

on these frequencies

expected from DFT.

3.4 Liquid water simulations

3.4.1 Liquid water simulation at 325 K

Simulation Details

In this first simulation, we used a body-centered-cubic supercell with 32 heavy water

molecules, periodic boundary conditions, and the volume corresponding to the exper-

imental [72] density of 1.0957 g/cm3 at 325 K. A body-centered-cubic supercell strikes



the optimal balance, for a given volume, in the distance between a molecule and its

periodic neighbors, and the number of these periodic neighbors. Ultrasoft pseudopo-

tentials were first used, as detailed in the previous section, with plane-wave kinetic

energy cutoffs of 25 Ry (wavefunctions) and 200 Ry (charge densities). The deuterium

mass was used in place of hydrogen to allow for a larger timestep of integration. It

should be noted that for classical ions this choice does not affect thermodynamic

properties such as the melting temperature (the momentum integrals for the kinetic

energy factor out in the Boltzmann averages). Of course, dynamical properties such

as the diffusion coefficient will be affected by our choice of heavier ions. Extensive

experimental data for deuterated (heavy) water are in any case widely available.

The wavefunction fictitious mass (p) is chosen to be 700 a.u.; this results in a

factor of -14 between the average kinetic energy of the ions and that of the electrons.

A timestep of 10 a.u. was used to integrate the electron and ionic equations of

motions. This combined choice of parameters allows for roughly 25 ps of simulation

time without a significant drift in the kinetic energy of wavefunctions and the constant

of motion for the Lagrangian (2.28). Our choice of fictitious mass is consistent with

the ratio p/M < 1 for heavy water molecules suggested by Grossman et al. [26]

and assures that the physical properties are not influenced by the electronic degrees

of freedom. Our initial configuration was obtained from a comparatively short 1.2 ps

simulation at twice the value of the target temperature (650 K instead of 325 K); a

restart with zero initial velocities was then performed at 325 K, with the temperature

controlled by a single Nose-Hoover thermostat on the ions (no electronic thermostat

is applied in any of the simulations).

Results

The thermostat stabilizes quickly (-1 ps) the temperature around the target value

of 325 K, with the usual fluctuations due to small size of the system. However, the

system is still far from equilibrium; this can be clearly observed by looking at the

time evolution of the radial distribution function (RDF) and mean square displace-

ments (MSDs). We plot in Fig. 3-1 the MSDs of the oxygen atoms as a function of



time. For the first 10 ps, the water molecules diffuse with a velocity comparable with

experimental data; after 10 ps, a sharp drop in diffusivity is observed, accompanied

by a distinctive sharpening of the features in the oxygen-oxygen radial distribution

function (see Fig. 3-2). The radial distribution functions was calculated from the

infinite bulk system by repeating the unit cell in all directions. This means that

molecules up to 5.5 A in a 32-molecule cell are inequivalent. As we move beyond this

cutoff distance, the radial distribution functions will include both molecules that are

inequivalent, and some that are equivalent. The statistical accuracy is going to be

gradually, but slowly, affected. In this graph, and most of the latter figures, we plot

radial distribution functions only up to 5.5 A(but see e.g. Fig. 10 for a discussion of

the finite-size effects).

The potential energy for the dynamics (Fig. 3-1) also drifts downward in these

first 10 ps, and stabilizes afterward. We calculated the self-diffusion coefficient (Dself)

from the Einstein relation (in 3 dimensions):

6Delf = lim (Iri (t) - ri (0)12). (3.1)

The structural and dynamical properties before and after this 10 ps mark are sum-

marized in Table 3.4; experimental values at 298 K are included for comparison. All

these observation conjure to a picture in which the system takes at least 10 ps to

reach a reasonably thermalized state, in a process somewhat reminiscent of a glass

transition. Although the time needed for equilibration will be dependent on the initial

conditions, these preliminary result suggests that simulation times in the order of ten

of picoseconds might be need to calculate well-converged thermodynamic observables.

Once the initial thermalization trajectory was discarded from our averages, we

obtained a self-diffusion coefficient one order of magnitude smaller than the experi-

mental value measured at room temperature. This result, combined with the clear

over-structuring of the oxygen-oxygen radial distribution function goo(r), indicates

that our system has reached a "frozen" equilibrium state very different from what

expected for liquid water (strictly speaking, a system with a finite and small number
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Figure 3-1: Mean square displacement and potential energy as a function of time for
our first 32-water molecules simulations at 325 K. A: Diffusive region in
the first stage of the simulation. B: After about 10 ps diffusivity drops
abruptly.

Table 3.4: Structural a
compared wi

nd dynamical parameters before and after the 10 ps mark,
th the experimental results at 298 K.

g(r),maz D (cm /s)
Before 2.82 1.5 x 10- 5

After 3.21 0.14 x 10- 5

Expt [4, 72] 2.75 2.0 x 10- 5

of inequivalent atoms or molecules will never undergo a phase transition).

These considerations indicates the need to assess accurately the phase stability of

liquid water as obtained from first-principle molecular dynamics. At the same time,

they point out the requirement of long simulation times, and a careful analysis of the

technical details of the simulations.
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Figure 3-2: 0-0 radial distribution function before (A) and after (B) the equilibrium
is attained.

3.4.2 Extensive water simulations in the region between 325

K and 400 K

Simulation details

In order to find out the temperature at which our system would move from a glassy to

a liquid-like state, we decided to perform a series of extensive simulations at increas-

ing temperature, from 325 K to 400 K. We first performed f 25 ps simulations at 325

K, 350 K, 375 K and 400 K, using /l= 7 00 a.u. and 6t=10 a.u. . We used at every

temperature the experimental densities [72], with the caveat that the 400 K value

was obtained by extrapolation. 25 ps is approximately the maximum time allowed

for a simulation with these parameters before the drift in the kinetic energy of the

wavefunctions becomes apparent. We thus used these simulations as efficient "ther-

malization" runs, to be followed by production runs that will be described below. It

is interesting to monitor during these thermalization runs the evolution of the MSDs;
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Figure 3-3: Mean square displacements as a function of time of our initial equilibration
runs for 32 water molecules at 325, 350, 375 and 400 K.

these are shown for all four temperatures in Fig. 3-3. An abrupt drop in diffusivity

is observed for all cases but one (predictably, the one at the highest temperature of

400 K). The onset of this drop in diffusivity varies, but broadly speaking is again of

the order of 10 ps.

With these trajectories, now well thermalized in configuration space, we started

our four production runs at 325 K, 350 K, 375 K and 400 K, and each of them starting

from the last ionic configurations of the previous simulation at the corresponding tem-

perature, but with zero ionic velocities. These four runs, lasting between 20 ps and 37

ps, were performed using p= 4 50 a.u. and 6t=7 a.u. This choice of mass and timestep

allows for an excellent conservation of the constant of motion, and negligible drift in

the fictitious kinetic energy of the electrons, for the simulation times considered. The

ratio between the kinetic energy of the ions and that of the electrons was a 22 for

the whole production time. Although a small enough fictitious mass decouples the

electronic and ionic degrees of freedom, Tangney et. al. [73] pointed out that there

I
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Figure 3-4: Potential energy and constant of motion in a production run at 400 K.
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Figure 3-5: Kinetic energy of the ions and the electrons in a production run at 400
K.
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Figure 3-6: 0-0 radial distribution functions calculated from the first and the next
12 ps of the simulation at 400 K.

is a fictitious mass dependent error that is not averaged in the time scale of ionic

motions. Schwegler et. al. [71] studied this effect comparing closely Car-Parrinello

and Born-Oppenheimer simulations finding a larger self-diffusion coefficient in the

Car-Parrinello simulation. However, the structural and thermodynamical properties

were not affected.

We show in Figs. 3-4 and 3-5 the case of the 400 K simulation; we stress that

no periodic quenching of the electrons was needed, and the simulations were single

uninterrupted runs. Since the initial configurations were already at equilibrium at

their respective temperature, and thermalization in momentum space is fast, we found

that "production time" can start early in the simulations. We discarded from each

trajectory the initial 1.2 ps that were needed to allow the ions to reach their target

kinetic energy. As a measure of the good thermalization reached in the simulations,

we show in Fig. 3-6 the 0-0 radial distribution function obtained from the first 12

ps of our 400 K trajectory, and the following 12 ps.

k
v

hi)



Table 3.5: Details of the production runs.

Pseudo- T(K) Density p 6t Production
potentials (g/cm3 ) (a.u.) (a.u.) time (ps)

US 325 1.0957 450 7 37.6
NC 325 1.0957 300 5 22.1
US 350 1.0815 450 7 22.9
US 375 1.0635 450 7 21.1
US 400 1.0554 450 7 32.5
NC 400 1.0554 300 5 20.2

To rule out any spurious effect in our simulations coming from the use of pseu-

dopotentials, or an extended Lagrangian, we also performed two simulations using

norm-conserving pseudopotentials (as described in Section 3.2). These require larger

plane-wave basis sets (80 Ry for the wavefunctions and 320 Ry charge densities, cor-

responding to 40000 plane waves vs 7000 for the ultrasoft case), and discrepancies, if

any, with the ultrasoft calculation will provide an approximate estimate of the effects

of the pseudopotential approximation and of the dynamics of the fictitious degrees

of freedom. For the runs involving these norm-conserving pseudopotentials, we used

p =300 a.u. and 6t=5 a.u [74]. These parameters results in a factor of - 13 between

the kinetic energy of the ions and that of the electrons. Details of all these simulations

are shown in Table 3.5.

Results

The oxygen-oxygen and oxygen-deuterium radial distribution functions for the differ-

ent conditions considered in this work are shown in Fig. 3-7 and Fig. 3-8 respectively.

We find that at temperatures of 375 K and below both goo and gOH show considerably

more structure than found experimentally at 300 K. For this range of temperatures

the height of the first peak of goo(r) is roughly between 3.2 and 3.4, and significantly

larger than the experimental value of 2.75 (also measured at 300 K). However, when

the temperature in our simulations is increased to 400 K, a distinct drop of the first

peak to - 2.5 is observed, the radial distribution function goo(r) and goH(r) show a

sharp change in their structure, and the water molecules start diffusing much faster,



as reflected in the MSDs curves for the oxygen atoms shown in Fig. 3-9. To provide

cleaner statistics, the MSDs curves shown have been calculated as an average over

individual MSDs curves, each obtained from our trajectory by shifting - for each in-

dividual MSDs curve - the starting configuration by 0.017 ps (in this way, a 17 ps

trajectory would provide 1000 progressively shorter MSDs curves that are then aver-

aged). The self-diffusion coefficient Dse,,f is calculated from the slope of the respective

MSDs curve in the range of 1 to 20 ps using Einstein's relation (3.1). Negligible differ-

ences are observed between simulations performed with ultrasoft or norm-conserving

pseudopotentials, ruling out any role of the pseudopotential details in this observed

result.

The structural and dynamical results are summarized in Table 3.6. As seen in this

table, there is an eight-fold increase in Dself when increasing the temperature from

375 K to 400 K. Price et. al. [75] reported the experimental self-diffusion coefficient of

supercooled heavy water at different of temperatures. At 276.4 K, which is just below

the freezing temperature of heavy water (277.0 K), the experimental value for Ds•lf is

0.902 x 10-Scm 2/s. Dself for our simulations at 325 K, 350 K and 375 K is 0.16, 0.25

and 0.26 x10-5 cm2 /s, respectively. These numbers are significantly smaller then the

experimental value below the freezing point. On the other hand, Dse,,f at 400 K in

our simulations is comparable to the experimental value at 300 K. These observations

suggest that the theoretical freezing point for water at the DFT-PBE level is between

375 K and 400 K, and water below 375 K is in a glassy/supercooled state.

The hydrogen-bond structure can be studied calculating the number of hydrogen

bonds per molecule: we identify a hydrogen bond is identified when two oxygen

atoms are closer than 3.5 A and the ZoHO angle is greater than 140 0 (consistently

with Ref [76], and at slight variance with Ref [77]). The results are shown in the last

column of Table 3.6. Between the temperatures of 325 K and 375 K there are only

small changes in the number of hydrogen bonds in the system, going from 3.86 per

molecule to 3.72 per molecule. An abrupt decrease to 3.37-3.45 bonds occurs when

the temperature increases from 375 K to 400 K. The experimental value of 3.58 at 300

K lies between our values at 375 K and 400 K, further suggesting that the freezing
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Figure 3-7: 0-0 radial distribution functions calculated from the production runs
at 325 K, 350 K, 375 K and 400 K for ultrasoft and norm-conserving
pseudopotentials. Experimental result is taken from Ref [4].

point in our simulations is between 375 K and 400 K.

In summary, we found clear liquid-like signatures in the structure and dynamics of

(heavy) water, as described by DFT-PBE and Car-Parrinello MD, for temperatures

reaching at least 400 K. At temperatures of 375 K and lower water is found to be in

a glassy state, more structured and with much lower diffusivity. This discrepancy of

more than 100 K between experimental and theoretical results is obviously relevant,

given the enormous important of water in the description of systems ranging from

electrochemistry to biology, and it is investigated further in the next section.
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Figure 3-8: O-D radial distribution functions calculated from simulations at 325 K,
350 K, 375 K and 400 K for ultrasoft and norm-conserving pseudopoten-
tials. Experimental result is taken from Ref [4].

Table 3.6: Summary of structural and dynamical properties of water. D,,lf is self-
diffusion coefficient. gma is first peak height and R[gma,] is location of
first peak. The last column is the number of Hydrogen-bond per molecule.

Dself gmax R[gmax] no.of H-bonds
10-5cm2/s per molecule

325 K (US) 0.07 3.38 2.67 3.86
325 K (NC) 0.16 3.25 2.73 3.79
350 K (US) 0.25 3.25 2.73 3.77
375 K (US) 0.26 3.10 2.71 3.72
400 K (US) 2.03 2.50 2.73 3.45
400 K (NC) 1.66 2.55 2.75 3.37

Expt [72, 78] at 300 K 1.80 2.75 2.80 3.58
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Figure 3-9: Mean square displacements calculated from simulations at 325 K, 350 K,
375 K and 400 K for ultrasoft and norm-conserving pseudopotentials.

3.5 Overestimation of the freezing temperature of

water

There are several possible reasons for the overestimation of the freezing temperature

of water, and several of them could play a significant role. We discuss here some of

the possibilities.

3.5.1 Finite-size effects

Since our simulation cell contains only 32 water molecules, finite-size effects could

obviously play a role even if periodic-boundary conditions are used. The interactions

of water molecules with their periodic images could be considerable due to the long-

range hydrogen-bond network. On the other hand, when zero correlations are found

between a molecule and its periodic image we can safely assume that the unit cell is

for all practical purposes large enough, and every molecule feels the same environment

r\



that it would have in an infinite system. In our case, the distance between a molecule

and its eight periodic images is - 11 A and at this distance all radial distribution

functions look very flat and unstructured. In any case, to study the finite-size effects

we carried out another extensive simulation (40 ps total, with 15 ps of production

time following 25 ps of thermalization) for a system composed of 64 heavy water

molecules at 400 K. We used the same parameters for this simulation as in the 32-

molecule, 400 K ultrasoft simulation. The oxygen-oxygen radial distribution function

goo(r) is shown in Fig. 3-10 for both the 32- and 64-molecule systems. As mentioned

previously, the radial distribution functions was calculated by repeating the unit cell

in all directions. The molecules up to 5.5 A in the 32-molecule cell, and 6.9 A in

the 64-molecule cell are inequivalent. We indicate in the graphs with two arrows, the

radii of the spheres completely inscribed by in BCC simulation cells.

Differences between 32- and 64-molecule systems are negligible, and within the

variance for simulations of the order of 10-20 ps (as estimated from uncorrelated clas-

sical simulation data [26]); the 64-water simulation shows a marginally more struc-

tured g(r) where the first peak height is at about 2.6 (compared to 2.5 for the 32-water

case). Larger ab-initio simulations would be too demanding; for this reason, we per-

formed two classical simulations at 300 K using the SPC force field [79) for water,

and comparing the case of 64 and 1000 water molecules (each simulation lasting 1000

ps). The goo(r) calculated from these two runs are shown in Fig. 3-11, and again we

do not find any significant differences between these two curves. These results help

ruling out finite-size effects as the major cause of the discrepancy observed with the

experimental numbers.

3.5.2 Exchange-correlation functional effects

While density-functional theory is in principle exact, any practical application re-

quires an approximated guess to the true exchange-correlation functional. In this

work, we have used the GGA-PBE approach [51]. As it was observed in Sec. III, the

structural properties for the water molecule and dimer are in excellent agreement with

experiments, as is the binding energy for the dimer. On the other hand, the vibra-
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Figure 3-10: 0-0 radial distribution function for a Car-Parrinello simulations with 32
or 64 molecules. The arrows indicate the radius of the sphere that is com-
pletely inscribed by the BCC simulation cells with 32 or 64 molecules.

tional properties show larger discrepancies with experiments than usually expected,

in particular for some of the libration modes in the dimer. This result certainly points

to the need for improved functionals to describe hydrogen bonding. The dependence

of the melting point on the exchange-correlation functional chosen is more subtle;

below 400 K, PBE water displays solid-like oxygen-oxygen radial distribution func-

tions that are only slightly affected by the temperature, and that are similar to those

obtained with a fairly different functional such as BLYP [26]. The similarity between

these radial distribution functions is just a reminder that the structural property and

the geometry of the intermolecular bonds are well described by different functionals;

once water is "frozen", all radial distribution functions will look similar. The tem-

perature at which this transition takes place could be affected by the use of different

functionals [80] and the magnitude of the contribution of any one of them to the

melting point temperature is still open to investigation.
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Figure 3-11: 0-0 radial distribution function for a classical (SPC) simulation with 64
or 1000 water molecules.

3.5.3 Quantum effects

In first-principles Car-Parrinello or Born-Oppenheimer molecular dynamics simula-

tions the ions are most often treated as classical particles, which is a good approxi-

mation for heavy ions (path-integral simulation can describe the quantum nature of

the ions [81-83], but their computational costs, when paired with a first-principles

DFT descriptions of the electrons, preclude at this moment simulations with the sta-

tistical accuracy needed). However, for light ions like hydrogen or deuterium, the

effects of a proper quantum statistics can be very significant; tunneling of the nuclei

can also affect the dynamics [84, 85]. In the case of water, all the intramolecular

vibrational modes and some of the intermolecular modes are much higher in energy

compared to room temperature. We show in Fig. 3-12 the power spectrum for the

deuterium atoms as calculated from the velocity-velocity correlation function of heavy

water molecules for our simulations at 400 K (ultrasoft, 32 molecules). The distinc-

tive peaks of the intramolecular stretching and bending modes are centered around

2.,
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Figure 3-12: Power spectrum of deuterium atoms calculated from the velocity-velocity
correlation function. For comparison, we also show the power spectrum
as obtained with a larger fictitious mass of 700 a.u (dotted line) instead
of 450 a.u.

2400 cm- 1 and 1200 cm- 1 respectively, much higher than the room temperature of

kBTroom - 200 cm- 1. The peak at 500 cm- 1 corresponds to the intermolecular vibra-

tional modes, also larger than kBToo. When ions are treated as classical particles,

as in our ab-initio molecular dynamics simulations, all vibrational modes obey Boltz-

mann statistics. In reality, modes with frequency higher than kBT,,oo are frozen in

their zero-point motion state, and their exchange of energy with the lower-frequency

modes ("the environment") is suppressed - in other words their contribution to the

specific heat is zero, in full analogy with the low-temperature discrepancies from the

Dulong-Petit law in solids. This effect could significantly affect the dynamics of water-

water interactions, and it has long been argued that treating each water molecule as

a rigid body could actually provide a closer match with experimental conditions. In

fact, recent ab-initio simulations [86] in which the water molecules are constrained

to maintain their equilibrium intramolecular bond lengths and bond angle result in



a more diffusive and less structured description of water, that remains liquid at a

temperature of 326 K. Path-integral simulation [87] for water described with classical

potentials did find as well a significant difference due to the quantum effects (i.e. the

freezing of the high-energy vibrational excitation), of the order of 50K.

3.6 Conclusions

We performed extensive first-principles molecular dynamics simulations of heavy wa-

ter at the ]DFT-PBE level. Equilibration times are found to be comparatively long,

and easily in excess of r 10 ps at ambient temperature. At ambient temperature,

water is found to be over-structured compared to experiments, and with a diffusivity

that is one order of magnitude smaller than expected. An abrupt change in the struc-

ture and dynamics is observed when the the temperature is raised from 375 K to 400

K; even at this high temperature, where a liquid-like state is reached, water shows

more structure and less diffusivity than found experimentally at room temperature.

These results are broadly independent of some of the possible errors or inaccura-

cies involved in first-principles simulations, including in this case finite-size effects,

insufficient thermalization or simulation times, or poorly designed pseudopotentials.

Our simulations suggest that the freezing point is around 400 K - this discrepancy

is at variance with the good agreement for the structure and energetics of the water

monomer and dimer with the experimental values, and could originate in the neglect

of quantum statistics for the many high-frequency vibrational modes in this system.
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Chapter 4

Compton scattering study of water

at normal and supercritical

conditions

4.1 Introduction

The average number of hydrogen bonds per molecule nHB in liquid water has recently

become a subject of controversy [88-91]. Wernet et al. [88] have compared the X-ray

absorption spectra (XAS) of bulk ice, an ice surface and water and concluded that

the liquid contains significantly more broken hydrogen bonds than previously thought;

Smith et al. disagree with these conclusions [89-91]. Prendergast and Galli [92] have

shown that established 4-fold coordination models withstand XAS data, but they

also noted that the interpretation of XAS is complicated due to different final-state

effects.

On the other hand, under high-temperature and high-pressure conditions, around

and beyond the water critical point (647 K, 220.6 bar), the hydrogen bond network

dissociates in a very rapid evolution, leading to density inhomogeneities over meso-

scopic distances around the critical state and beyond. The degree of persistence of the

hydrogen bonding in the region beyond the critical point has also been controversial.



Neutron diffraction results have been interpreted differently: some authors [29, 30]

conclude that nHB - 0 above the critical point whereas others conclude that nHB is

still sizeable [31, 32]. Other experimental techniques, such as X-ray diffraction [33],

infrared spectroscopy [34], or NMR [35] point to a persistence of H-bonds in super-

critical water (SCW).

In collaboration with Abhay Shukla and Christophe Bellin (Jussieu, Paris VI,

and the the European Synchrotron Radiation Facility in Grenoble), we combined

theoretical and experimental efforts to derive robust measures of hydrogen bonding,

not taken from the ionic structure (as in neutron and X-ray diffractions) but from the

ground-state electronic structure of the system. Compton scattering (i.e. inelastic

scattering of photons by electrons) [931 is one of the few spectroscopies capable of

directly probing the bulk electronic ground state in materials, through the relation

that is established between the energy loss of the photon and the projection of the

initial electron momentum along the scattering vector k. Formation of chemical bonds

by valence electrons, leading to localization in real space, can thus be detected in

momentum space as a broadening of the corresponding Compton profile. This unique

sensitivity to outer electrons and thus to intermolecular interactions and to chemical

bonding is in contrast with X-ray diffraction, which is principally sensitive to the

core-electron signal. Compton scattering has already revealed the quantum nature of

the hydrogen bond in ice [94], and recent investigations [95-97] have suggested that

it might be also suitable for liquid water. In this chapter, we present state-of-the-art

first-principles calculations together with X-ray Compton scattering experiment [98]

to provide an extremely consistent picture for nHB in the normal and supercritical

regimes.

4.2 What is Compton scattering?

Compton Scattering is the inelastic scattering of an X-ray photon by an electron.

As shown in Fig 4-1, during this inelastic scattering process the momentum and the

energy transfer from the photon to electron are k = 2 - i and energy transfer



Figure 4-1: A schematic diagram of inelastic X-ray scattering by an electron: a photon
with energy hwl and momentum kI hits an electron with initial energy El
and momentum pl. The photon is scattered away with energy hw2 and
momentum k2-

hw = E2 - El, respectively, where pl, El, and p2, E2, are the initial- and final-state

momenta and energies for the electron. The scattering cross-section can be obtained

from Fermi's golden rule [99]:

ddw2d2a ( w (2 ei1•?l ) 12 6(E 2 - E l - huW). (4.1)

The summation is over all the possible electronic final states and Ic and hw are the

momentum and energy transfer during the scattering process. (2) = (•)•4 1 ±

Cos20) is the Thomas scattering cross-section, where / is the scattering angle.

In the Compton limit [100] (assuming the electron is free after scattering) the elec-

tronic final state wavefunction '2 can be expressed as a plane wave with wavevector
P2!

r

P2, 12 2 e- .Then, the scattering crossing section can be written as

d2 o IJ 2 #2d2c -( T W1 f ei z 4e,'|1) 2 3(E2 - El - hw). (4.2)
dgdw2  \d , w I

By writing the summation over final states as a fI integration, where 1 = - h/c,

4



we obtain

d2c d_ (2 ~\w f d l(g) 12 6( +2 2 + -k rk )
dQdw2  dQ 2m m

_ da ( W2) d j(')6(g.+ - hk2
S) n()( mw) (4.3)

dQ , wJ hk 2

where 41 (1i) is the initial state electronic wavefunction in momentum space and

n(f) = |/(pf) 2 is the electronic momentum density. Note that the electronic mo-

mentum density, being the square of the wavefunction in the momentum space, is

different from the Fourier transform of the charge density in real space defined as

nFT (p = f ei'rin(rdp.

Owing to the presence of a 6-function, the integral in Eq. 4.3 is taken over a plane

in momentum space perpendicular to k, where p = - is the distance of this

plane to the origin of momentum space. The scattering spectrum can be further

simplified to

d d22  da ( IT()(jM) fd d'(g)126(p - ) iid~dw2 2 T

d -)J(p, ). (4.4)

J(p, ui) is called the Compton profile and U' is the unit vector in the direction of the

momentum transfer k. This one-electron formula can be straight forwardly extended

to the multi-electron case in condensed phase, in the context e.g. of density-functional

theory. The one-electron wavefunction is replaced by the set of Kohn-Sham orbitals

{bij}, and the momentum density is given by

n(p = -m(p(P 12. (4.5)

In our studly, we analyze the changes of the Compton profiles as state conditions for

water are changed, and we relate them to changes in hydrogen bonding. With a

combined compared theoretical and experimental effort, we show how the Compton

profiles can be an accurate measure of hydrogen bonding in these systems.



4.3 Calculating Compton profiles in a Car-Parrinello

molecular dynamics simulation

In Car-Parrinello molecular dynamics, F-point sampling is employed since large su-

percells are used. For our typical supercells, this sampling procedure is sufficiently

accurate for most physical properties (e.g. energies and forces). However, because of

this, J(p) can only be calculated on a very coarse-grained grid in reciprocal space.

The resolution is limited to 27r/a, where a is the unit cell side-length. In order to

improve the resolution of the calculations with experiments, we adopt here the inter-

polation scheme already used in Ref. [101] replacing the 6 function with it exponential

form 6(p - u.- p') = - f dAeix(P - 'y0). The Compton profile now becomes

J(p, d) = 'rdAeA(Ai), (4.6)

0

where h(Ati) is the Fourier transform of n(p). Again, this ii(Ail) is different from

the charge density in real space. Instead, it is the convolution of a wavefunction in

real space with itself, h (Ail) = F, f dF'ip(fi(irj(Aiu - Fr. In molecular systems, the

Kohn-Sham wavefunctions are expected to be localized in real space and so are the

convolutions of the wavefunctions. Utilizing the fact that A(AUi) is a localized function

in real space, the integration in Eq. 4.6 can be performed with a cutoff Ac in the upper

limit and a J(p, i!) with arbitrary q can be calculated. In this treatment, the Compton

profile calculated is direction (i7) dependent. Considering the way the real-space grid

is arranged in Car-Parrinello molecular dynamics, it is straight forward to calculate

J(p, 7t) along the x, y and z directions. In the calculations of the Compton profiles

of water in this chapter, all Compton profiles are calculated by averaging the values

along the special axes for better comparison with experimental data and J(p)'s are

normalized to the number of electrons per a water molecule in the region p=[-0o,oo] in

both simulations and experiments. We note in passing that since a liquid is studied,

averaging over different directions would not be needed in infinitely large simulations.



4.4 Molecular contributions to the Compton pro-

files

Wannier functions [102] can be constructed from Kohn-Sham orbitals; in the multi-

band case, the Wannier transformation is

WUn'i (il = I" z f E (4.7)

where om,k(r) is the Kohn-Sham orbital of band m with Bloch quasi-momentum k.

V and t is a vector in the Bravais lattice. Uk, is a unitary transformation on the

Kohn-Sham orbitals; All physical properties are invariant under any choice of this

unitary transformations. For the special case of F-point sampling, Eq. 4.7 can be

simplified to:

Wn,,(r) = Un,m?/ m (r -). (4.8)

Due to the gauge freedom in choosing the unitary transformation Un,m, the definition

of Wannier functions is not unique. Marzari and Vanderbilt [103] defined an unique

way to construct "maximally-localized" Wannier functions from the Kohn-Sham or-

bitals by minimizing the total spreads of the Wannier functions

N

Q= E((wn 2 Wn) - (W r Wn) 2) (4.9)
n=l

Wannier functions can be a powerful tool in studying the electronic and dielectric

properties of materials, and can also provide an insightful picture of the chemical

bonding nature. Moreover, the "centers of charge" of the Wannier functions can

provide a classical correspondence for the "location of an electron". Using the "cen-

ters of charge", a set of Wannier functions belonging to a particular molecule can be

selected and the molecular contributions to the Compton profile due to that partic-

ular molecule can be computed. We employed this technique to study the relations

between hydrogen bonding and Compton profiles in Section 4.9.



Table 4.1: Temperatures and densities used in ab-initio simulations
modynamics state points studied

77 oC, 200 oC, 300 oC, 397 oC,
1 atm 300 bar 300 bar 300 bar

(Ambient) (Subcritical) (Subcritical) (Near critical point)
0.97 g/cm3 0.89 g/cm3 0.76 g/cm3 0.40 g/cm3

for different ther-

430 oC,
300 bar

(Supercritical)
0.19 g/cm3

4.5 Rigid water simulations at ambient and super-

critical conditions

In this section, we discuss our extensive Car-Parrinello molecular-dynamics simu-

lations of water at ambient and supercritical conditions. It has been shown that

ab-initio molecular dynamics simulations of water at room conditions gives an un-

physical glassy-like state [26, 27]. Liquid-water characteristics appear only when the

simulation temperature is raised to 127 OC [28,71]. This discrepancy is believed to be

due, at least in part, to the quantum effects of high-frequency intramolecular modes

at room temperature. Those high-energy modes are expected to be frozen in their

zero-point motion and the exchange of energy with other degrees of freedom is very

unlikely. Ab-initio molecular dynamics simulations with rigid water molecules, which

partly mimic these intramolecular quantum effects, has been shown to produce a bet-

ter description of liquid water at room conditions [86]; and rigid water shows indeed

liquid-like properties down to a temperature of 77 GC. In view of this, all the Car-

Parrinello simulations in this work were done with 32 rigid water molecules, using the

SHAKE algorithm.

We performed extensive simulations of normal water at ambient, subcritical and

supercritical regimes at 77, 200, 300, 397 and 430 'C. The simulations were done at

constant volume with the density fixed at the experimental density at 300 bar (at 77

0C, the density is the one at 1 atm and differs by less than 4% from the one at 300 bar).

Simulation conditions are summarized in Table 4.1. In all the simulations, ultrasoft

pseudopotentials and PBE-GGA (described in Section 3.2) were used. Plane-wave

energy cutoffs of 25 Ryd and 200 Ryd were chosen to expand the wavefunctions and



the charge density, respectively. A fictitious mass p of 1100 a.u. and a timestep of

10 a.u. were used to integrate the equations of motions. Each simulation gathered

about 17 ps of production time after more then 15 ps of "flexible" water simulation

at the same conditions. At each temperature, the Compton profiles were calculated

from the average of 10 configurations equally spaced apart.

4.5.1 SHAKE algorithm

In Car-Parrinello molecular dynamics, the ions are moving according to the forces

derived from the Car-Parrinello Lagrangian and, therefore, there is no restriction

on molecular structures. In order to perform molecular dynamics with rigid water

molecules, we imposed structural constraints using the SHAKE algorithm [104]. In

the SHAKE algorithm a constraint g(r)=0 is added to the Lagrangian and the equa-

tions of motion for ions are altered by the constraint

£ = T- V+ Ag(r), (4.10)

mi = -1V/(r) 
a g (r) (4.11)

Or Or

For our water simulations, two O-H bond lengths and the H-O-H angle are fixed

by these constraints. The bond angle constraint can be more straight-forwardly im-

posed, in this case, by fixing instead the H-H distance in each molecule. To choose

appropriate bond lengths and bond angles for the rigid water molecules, we calculated

the average bond lengths and angles from simulations with flexible water molecules

at various conditions. The average bond lengths and angles do not vary significantly

from ambient to supercritical conditions, and doH=0.995 A and ZHOH = 105.00 were

taken as the reference geometry to be imposed to the rigid water molecules. With

three constraints on each molecule, the total number of degrees of freedom for a sys-

tem with mn water molecules (i.e. 3m atoms) is now 3(3m) - 6 - 3m = 6m - 6.

The number of degrees of freedom is important in calculating the temperature of the

system when a (Nose-Hoover) thermostat is used during the simulations.
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Figure 4-2: 0-0 radial distribution functions from simulations at different thermody-
namic state points and comparison with the experimental data at ambient
condition.

4.6 Structural and dynamical properties

Fig. 4-2 shows the 0-0 radial distribution functions for the simulations at the thermo-

dynamic state points described in Table 4.1. On the same figure, we have included the

experimental 0-0 radial distribution function at 25 oC [3]. The first peak for the the-

oretical radial distribution functions of rigid water molecules at 77 'C agrees well with

the experimental data at ambient conditions. Unfortunately, there is no experimen-

tal radial distribution functions at the same conditions for the other thermodynamic

state points. We have instead compared the self-diffusion coefficients between simu-

lations and experiments (Table 4.2). The self-diffusion coefficients in the simulations

are calculated from the slopes of the mean square displacement curves.

From Table 4.2, the agreement between simulations and experiments at higher

temperatures is very good and progressively better as the temperature increases.

This can be understood by the fact that the discrepancies between simulations and



Table 4.2: Comparison of self-diffusion coefficients between simulations and experi-
ments at different thermodynamic state points.

Simulations Experiments [105,106]
(10-5 cm 2/s) (10- 5 cm 2/s)

77 OC (Sim.), 30 OC (Expt.), 1 bar 1.5 2.6
200 oC, 300 bar 9.5 27.7
300 OC, 300 bar 26.0 37.4
397 oC, 300 bar 69.1 82.5
430 OC, 300 bar 163.3 174.4

experiments are believed to be due to the poor descriptions of hydrogen bonding

interactions (either because of the ionic quantum effects or the choice of exchange-

correlations functionals). As temperature increases, hydrogen bonding becomes less

significant and, therefore, the agreement in self-diffusion coefficient is expected to

improve.

4.7 The effects of hydrogen bonds on the Compton

profile

When a hydrogen bond is formed, the lone-pair orbital of one of the water molecules

approaches the other molecule, and the lone-pair orbital, forced be orthogonal to the

orbitals of the other molecule, becomes more structured in real space. This structuring

leads to a broadening of the electronic momentum density in reciprocal space, and

the Compton profile is, therefore, broadened. As shown in Fig. 4-3, the Compton

profile calculated from the simulation at 77 oC, which is expected to have a stronger

hydrogen-bonding structure, is more broadened than that of 430 OC. However, this

broadening is not very pronounced. Instead of looking at the absolute profile, it

becomes useful to plot the difference in Compton profiles with respect to a reference

state.
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Figure 4-3: The absolute Compton profiles for the simulations at 77 'C and 430 OC.
Water at 77 °C, having stronger hydrogen bonding network, shows a more
broadened Compton profile than that of water at 430 OC.

4.8 Compton profile differences

We now show in Fig. 4-4(a) the experimental AJ(p) for all the state points considered,

and contrast it with the one obtained from the first-principles molecular dynamics

simulations (Fig. 4-4(b)). AJ(p) is defined as

AJ(p) = Jreference(P) - J(p), (4.12)

with respect to the liquid reference state. The reference state in the experiments is

taken at 30 0C, while in the rigid-water, first-principles simulations, at 77 oC, for the

reasons mentioned above. The simulation data are convoluted with a Gaussian of

o=0.218 a.u. (1 a.u. in momentum space equals ) to match with the experimen-

tal resolution. Since the reference state is expected to have the strongest hydrogen

bonding (i.e. largest broadening in the Compton profile), the Compton profile differ-

I I I I '

-77 TC, 1 bar
- 430 C, 300 bar

-
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(a)Experimental Compton profile difference AJ(p) (in electrons per
atomic unit of momentum) with respect to the experimental reference
state as a function of temperature. The curves are polynomial fits which
act as guides for the eye; the experimental data (with error bars) are given
by the solid circles. (b)Theoretical Compton profile difference AJ(p) (in
electrons per atomic unit of momentum) with respect to the theoretical
reference state as a function of temperature. The temperature of refer-
ence state is 30 OC for the experiments, 77 'C (and density 0.97 g/cm3 )
for the theory.

Figure 4-4:



ences are negative in the small p region, and become positive and attain their peak

at around p=1 a.u.

It can be seen that the overall agreement between experiments and simulations

is excellent - with the caveat that the theoretical amplitudes overestimate the ex-

perimental values by -40%. However a single rescaling factor of 0.73 brings all

theoretical curves for all p in quantitative agreement with experiment. The existence

of this rescaling factor has been discussed in the literature, e.g. for the Compton

profile anisotropy of ice [94, 101] and it allows us to make a significant advance as

shown below.

J(p) is sensitive, especially in the low momentum region, to the valence electronic

wavefunctions. AJ(p) is non-zero precisely in this region and measures changes in

the bonding brought about by breaking or formation of hydrogen bonds. Inspired by

these considerations and the fact that the area under the Compton profile corresponds

to the amount of scattering electrons, we propose an electronic measure of hydrogen-

bonding in water. This is the amount of electrons whose momentum space wave

function changes in going from a reference state (chosen here as water under normal

conditions) to the one being measured and is obtained directly from the Compton

profile difference for the two states:

ne - IAJ(p) I dp. (4.13)
2 oo

This sum-rule measures the number of electrons affected when hydrogen bonding is

altered and in our case tracks the progressive breaking of hydrogen bonds as the

temperature is raised from ambient conditions (the 1 is to take into account double

counting). The experimentally-determined ne, and the one obtained from the simula-

tions (after rescaling the latter to 73% of the original values, as mentioned above), are

plotted in Fig. 4-5 as a function of temperature. The excellent agreement reflects the

striking similarity in the shape of the experimental and theoretical AJ(p) in Fig. 4-

4(a) and (b). It should be noted that ne(T) in Fig. 4-5 does not saturate, indicating

that even at the highest temperatures considered hydrogen bonds remain.
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Figure 4-5: The integration of the absolute value of the profile difference, ne, (see
Eq. 4.13) as a function of temperature for simulations (squares), after
scaling down to 73% of the original values, and experiments (diamonds).

4.9 The relation between ne and hydrogen bonding

In the preceding section we have linked ne to the variation in hydrogen bonding as

expressed through the temperature of the system. In the following we make the direct

connection between ne and nHB by studying a model system: a cluster containing

five water molecules, one at the center and the other four surrounding it in a tetra-

hedral arrangement. A single hydrogen bond can then be formed or broken simply

by removing, one at a time, the four outer molecules. This model was already con-

sidered in Ref. [96]. At variance with the previous studies, we can actually resolve

the Compton profiles of the individual molecular contributions, taking advantage of

the decomposition offered by the maximally-localized Wannier functions technique.

Thus, we can compute the Compton profile of the central molecule only, as the hy-

drogen bonds with its neighbors are broken, one at a time. The number of hydrogen

bonds formed by the central molecule nHB is clearly defined within this framework.

* Experiments
• Simulations

S I I I



Figure 4-6:

n+3

Procedure to calculate the Compton profiles at different nHB using a
model structure of 5 water molecules. An hydrogen bond can be formed
or broken by changing the 0-0 distance between the center oxygen with
its four oxygen neighbors. n•B is defined as the number of hydrogen
bonds formed by the center molecule. The Compton profile for each value
of nHB is calculated by averaging over possible configurations having the
same nHB-

The corresponding Compton profile has been calculated by averaging over all the

possible clusters with a given nHB, as shown in Fig. 4-6.

With 77 0C as the reference state, we plot in Fig. 4-7 the Compton profile dif-

ferences for different nHB. Then, we can compare nHB with the computed ne from

Fig. 4-7. The nHB dependence as a function of ne can then be obtained and rescaled

by the factor determined experimentally (Fig. 4-8, squares) and is clearly seen to be

linear. The slope of this variation gives the number of electrons involved in one hydro-

gen bond. Most remarkably, the water simulations - ranging from normal conditions

to the supercritical regime - obey the same identical trend, and fall on this universal

straight line, as shown by the circles in Fig. 4-8. For these points, the average number

of hydrogen bonds per molecule is measured according to the structural criterion of

+ 4x v+ ...O

n=2

I I

-- 1 I
n=1 II
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Figure 4-7: Compton profile differences for different nHB calculated from different
clusters with 77 OC as the reference state.

Ref. [88]. This is the central result of this work, demonstrating a linear relationship

between ne and nHB under a wide variety of conditions, ranging from the normal

to the supercritical regime, and establishing Compton scattering as an accurate and

direct probe of hydrogen bonding in water. It is worthwhile to notice that the central

water molecule of our cluster is surrounded only by its first coordination shell and

that in the bulk liquid, longer range interactions exist, mostly mediated by dispersion

and electrostatic forces. However, even in the liquid the linear relationship between

ne and nHB holds indicating that the overwhelming contribution to the sum rule for

ne is from the first coordination shell.

The slope of the line in Fig. 4-8, as mentioned earlier, provides directly an absolute

measure of the number of electrons involved per hydrogen bond - the universal relation

above, assigns a value of 0.013 electrons per molecule for every bond that is broken

(or formed). The bonding and coordination picture that emerges from this results

remains in close agreement with the established understanding of coordination in
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Figure 4-8: ne as function of the number of H-bonds per molecule (nHB) (liquid water
at ambient condition as the reference state) . Square: ice clusters (the
Compton profiles are only calculated from the center molecule). Circle:
rigid water simulations.

water. Our final estimates for all state points measured are summarized in Table 4.3,

where we can see that in going from the normal state to the supercritical regime and

beyond, nHB decreases from 3.4 (compared to the value 3.58 from Ref. [78]) to 0.34.

4.10 Connectivity of hydrogen-bond network

We now examine the connectivity of the hydrogen-bond network as we move from

the normal to the supercritical regime. Fig. 4-9(a) shows three snapshots from our

simulations which illustrate the hydrogen bond connectivity at different conditions.

Since the ,density changes considerably the volume considered for the simulation also

varies as is seen by the change in size of the molecules across the different panels. In

a snapshot from 200 OC, blue molecules are those networked with more than 5 other

molecules while the very few red ones are non-networked monomers. Simulation at 300



Table 4.3: Experimental and theoretical (after scaling of 0.73) ne, and theoretical nHB
at different state points. The first column shows the experimental temper-
ature and pressure at each state point. The theoretical temperatures and
pressures are the same as the experimental ones except in the first and the
last state points shown below, which are (77 OC, 1 bar) and (430 OC, 300
bar). respectively.

Temperature ne(10 - 2) ne(10 - 2 ) nHB
and pressure (experiment) (theory) (theory)

30 oC, 300 bar 3.40
200 OC, 300 bar 1.27 ± 0.19 1.28 2.46
300 OC, 300 bar 2.03 ± 0.19 1.96 1.71
350 OC, 300 bar 2.58 ± 0.20
397 OC, 300 bar 3.07 ± 0.21 3.09 0.73
416 oC, 300 bar 3.30 - 0.21 3.60 0.34

OC shows sizeable amounts of green (networked with between 2 and 5 other molecules)

as well as some red molecules. Finally, a snapshot from the 430 oC simulation has

a large monomer population but also a few clusters of less than 6 molecules. To

quantify these observations, we show in Fig. 4-9(b) the distribution of cluster sizes

at a given simulation - n molecules belong to a cluster if they all have hydrogen

bonds with each other. At normal conditions almost all the water molecules are

connected to each other. The percolation transition occurs between 300 OC and 397

°C as shown in Table 4.3 and is consistent with the well known percolation threshold

nHB = 1.53 - 1.55, [108, 109]. This is also reflected in the bimodal in distribution

at 300 oC and the distributions at 397 OC and 430 OC showing a dominating amount

of monomers but also a substantial amount of dimers and trimers, indicating that

hydrogen bonds is still non-negligible in supercritical conditions: in experiment, we

found nHB=0.74 ±0.16 at 416 OC, while theory predicts nHB= 0 .34 at 430 0C.

4.11 Conclusions

In conclusion, Compton scattering data provide a stand-alone and absolute measure-

ment of the number ne of electrons per water molecule involved in the hydrogen bond.
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Figure 4-9: (a) snapshots of simulations at 200 OC, 300 OC and 430 OC. The color

code represents water molecule connectivity. Blue: molecules networked
with more than 5 other molecules; green: molecules networked with 2 to 5
other molecules; red: monomers. (b) Number of water molecules (y-axis)
distributed in clusters of different sizes (x-axis) for various temperatures.

By using state-of-the-art first-principles simulations we demonstrate that n, provides

a measure of coordination and a rigorous definition for the average number nHB of hy-

drogen bonds per water molecule over a large temperature range. Our study supports

the existence of quasi-tetrahedral coordination in ambient conditions and the obser-

vation that hydrogen bonding persists above the critical point. This approach should

prove valuable in the future to address many issues in hydrogen bonded networks and

chemical bonding in general.
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Chapter 5

Study of electron-transfer reactions

from. first-principles molecular

dynamics

5.1 Introduction

Electron transfer is one of the most important processes in nature [110]. Despite its

simplicity, electron-transfer reactions are central to molecular events in inorganic and

organic redox chemistry. For example, electron transfer has been recognized as crucial

in biological metabolism where small molecules such as water, nitrate, dioxygen, etc.

are converted to composite biomolecules. Moreover, it is the primary event which

follows light absorption in the photosynthetic system and in the mitochondrial events

leading to dioxygen reduction in respiratory metabolism.

In studying electron-transfer reactions, the free energy barrier and the transfer

matrix element are two key parameters to look at. In particular, there have been

numerous calculations aiming at accurately obtaining free energy barriers (or equiv-

alently the reorganization energy in some cases) with classical molecular dynam-

ics [19, 20, 111-114] or static first-principles calculations [115]. While studies with

classical potentials usually produce the correct qualitative picture, the values of the



reorganization energies (the free energy cost to move from the equilibrium configu-

rations of the product to those of the reactant without the transfer of electron) and

the free energy barriers, can not be accurately obtained. On the other hand, static

first-principles calculation has been shown to give correct quantities in some simple

reactions [115], but whether the same level of accuracy can be attained in complex

reactions is questionable because of the neglect of the entropic effects. In order to con-

struct an universal approach to accurately describe electron-transfer reactions both

qualitatively and quantitatively, we decided to combine molecular dynamics and first-

principles techniques. To our knowledge, no one has ever performed first-principles

molecular dynamics studies of full electron-transfer reactions because of some funda-

mental and conceptual problems in density-functional approaches (see Section 5.9).

5.2 Marcus theory of electron transfer

The theory of electron transfer in polar solvent was developed by R. A. Marcus in the

1950s [2,36,37,116,117]. Since its introduction, the Marcus theory has become the

framework for the study of electron-transfer reactions and Marcus, in recognition of

his contributions to the field, was awarded the Nobel prize in 1992. In this section, we

will give a brief introduction to the electron-transfer mechanism in Marcus scenario.

Consider an electron transfers from a donor species Dm + to an acceptor species

A"+ in solution. First, Dm+ and An+ must diffuse through the solution and come into

proximity to form a complex Dm+A"+, in which the donor and acceptor are separated

by a distance at which the electronic coupling matrix element is significant. In the

Marcus scenario (Fig. 5-1), when the complex is formed, the system has two states,

corresponding to the two relevant electronic states (reactant and product states)

Dm+An + and D(m+1)+A(n- 1)+. The potential energy of the reactant state (or the

product state) and the surrounding medium is a function of all of these nuclear

coordinates, and defines a multi-dimensional potential energy surface.

In order for the electron transfer to occur, two principles have to be satisfied,

1) the Franck-Condon principle and 2) the conservation of energy. According to the



Figure 5-1: Schematic diagram of the electron-transfer process. The solvent fluc-
tuations mediate the transfer process and the transfer occurs when the
reactant and the product states are degenerate.

Franck-Condon principle, the electron, being a light particle, transfers from the donor

site to the acceptor site instantaneously so that the ions do not have time to change

either their positions or momenta. The conservation of energy requires that the

product and reactant are degenerate during the transfer process. Since the ions are

stationary during the transfer process, the conservation of energy requires, in a picture

of independent electrons, degeneracy for the transferring electron to be at the donor or

the acceptor site. This degeneracy is usually achieved with thermal fluctuations of the

solvent and of the donor and the acceptor molecules. This temporary reorganization

creates a situation where the electron resonates between the sites. If there were a finite

coupling between the two electronic states, transfer could occur, and relaxations of

the solvent molecules would then localize the electron on the new site.

Like other chemical reactions, it is important to define a reaction coordinate to

characterize the role of ionic configurations on electron-transfer reactions. However,

the solvent fluctuation effects on the reactant and product energies is a collective

quantity depending on all the ionic coordinates of the solvent. In order to capture

these collective contributions, the reaction coordinate (E) of a particular ionic con-

figuration is defined as the potential energy difference between the product and the

reactant state at that configuration [20] and this choice of the reaction coordinate is

also called the Marcus energy gap.

2+ 3+~ ~~0
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Figure 5-2: Diabatic free-energy surfaces for a typical electron-transfer reaction.

Fig. 5-2 show a simplified diagram of the free-energy surfaces of an electron-

transfer reaction as a function of this reaction coordinate. As mentioned above, the

electron transfer occurs when the reactant and product are degenerate, i.e. when

f = 0. Once the system reaches the intersection of the two curves in Fig. 5-2, the

probability of going from the reactant to the product free-energy surface depends on

the extent of coupling of the electronic orbitals for the two reactants, which in turn

depends on the separation distance r of the reactants.

The electron-transfer rate constant can be written as

kET = Rate of the system reaching the free-energy surfaces intersection

x Probability of electron tunneling at the intersection. (5.1)

The rate of the system reaching the intersection depends on the solvent relaxation

time and the temperature, and the electron tunneling probability is directly related to

the electronic coupling matrix element between the reactant and the product states.



Depending on the electronic coupling magnitude, the electron-transfer reaction can

be classified into adiabatic and diabatic processes.

In adiabatic reactions, the coupling is large so that the time for tunneling to occur

is small compared to the time needed for the system to reach the intersection of the

free-energy surfaces. Therefore, electron tunneling occurs whenever the interaction

is reached. Therefore, probability of electron tunneling = 1. In this regime, the rate

constant can be written as

kET = Rate of the system reaching the intersection of the curves

= Ae-AG*/kBT, (5.2)

which is the Arrhenius probability of reaching the intersection from the bottom of

the reactants' free-energy surface, where G* is the free-energy barrier. An adiabatic

process usually occurs when the donor and the acceptor are in close contact, as in

the case of some inner-sphere electron transfer processes.

In the diabatic limit, the tunneling matrix element is small and the system has to

diffuse up to the intersection several times before the electron tunnels. Such a weak

coupling case can be treated quantum mechanically using Fermi's golden rule. In the

diabatic case, kET can be written as

27r
kET = -iIHDA 2FC, (5.3)

where HDA is the electronic coupling matrix element between the donor and the

acceptor. FC is the Franck-Condon factor and is equal to (4-(G*kT)/2 in the classical

case. Diabatic electron transfer usually occurs over long distances.

If we assume the free-energy surfaces to be parabolic (see Section 5.3), AG* can

be written as
(AGO + A)2aG* = (5.4)4A

where A, the reorganization energy, is the free energy cost to change from the equilib-

rium configurations of the product into the equilibrium configurations of the reactant



without the electron transfer having taken place.

5.3 Spin-Boson model for electron transfer

When studying a quantum-mechanical system with a limited number of degrees of

freedom in contact with a dissipative environment, we can look into a simple model

which can capture all the essential physics. The Spin-Boson model has been widely

used to investigate these kinds of problems of a quantum system interacting with

the environment. In this section, we will discuss the use of the Spin-Boson model

to study electron-transfer reactions and its implication on the properties of the free-

energy surfaces.

For the simplest model, which is a two-state quantum system totally isolated from

the environment, we can write the Hamiltonian as,

H = Eoaz - Ka., (5.5)

where we used the notation of the Pauli matrices:

=x ( = , (5.6)
1 0

oz = . (5.7)
0 -1

The diabatic states (OR and 4p) are defined as the eigenstates of uz, whose energies

are ±E0, and K is the coupling strength between the two diabatic states. When the

diabatic states have the same energy (Eo=0O), the system shows a dynamical behavior

which has no classical analog. In this case, the eigenstates of Eq. 5.5 become the linear

combinations of the two diabatic states (40 = (R + - p) and 41 = -- (OR - Op)).

Since the diabatic states are not eigenstates of the system, if we prepare the system



in one diabatic state, the probability to find the system at time t in the other state

is P(t) = sin2 1 t. This tunneling occurs because the phase of the two eigenstates

changes with different frequencies, according to their eigenenergies, and the coupling

term K dictates the tunneling frequency.

This two-state model (Eq. 5.5) is exactly solvable for any value of E0, but it is

the simplest of systems with no interaction with the environments. In reality, almost

every two-state system (as in the case of the electron-transfer reactions) interacts

with the environment, and the interactions can be so strong that the system is altered

both quantitatively and qualitatively. The interactions with the environment can be

introduced in the Hamiltonian through a term azu, where 0 is some operator of the

environment. The environment can be regarded as an "observer" to the system and

the system is observing the value of z,, from the form of this extra term. As we expect,

the act of observing the system will destroy the phase coherence between the diabatic

states, meaning the temporal behavior of the system is no longer P(t) = sin2 't. In

general, the spin-boson Hamiltonian can be written as,

H = Eoa- Kao

+ az Ca, + Hb((mj }, {w,}). (5.8)

Hb({ma}, {w(}) is the Hamiltonian for the bath. Given that the coupling between

the environments and the system is sufficiently weak, it is most convenient to write

the Hamiltonian for the bath as a set of harmonic oscillators [118]:

H = Eooz - Ka

+ E CaX +p( maw2X2 +Pf /2ma). (5.9)

The first two terms corresponds to the original Hamiltonian describing the isolated

quantum system-the spin system. The environment, which is modeled by a set of

harmonic oscillators, is represented by the forth term - the boson system. The third

term represents the interactions between the quantum system and the environment,



which is taken as the linear coupling of the spin system with the boson system. The

frequencies wa and masses ma of the harmonic oscillators are independent of the

quantum system and the constant Ca's define the coupling strength between the two

systems. This simple form to describe the environment and a linear coupling preserves

a richness of behavior, which is controlled by the values of Ca and K, and by the

form of the density of states (the ensemble of frequencies) for the oscillators. As

depicted by Chandler [119], the Spin-Boson Hamiltonian is a good theoretical model

to investigate electron-transfer reactions. The two diabatic states of the quantum

system corresponds to the the two electronic states, Dm+An+ and D(m+l)+A(n-l)+.

The polar solvent, in this case, is the environment and the electrostatic interactions

with the electronic states become the coupling. Within the Spin-Boson model, if

the environments couple with the system linearly and the random variables {xa}

describing the environments are independent of each other, the reaction coordinate

obeys Gaussian statistics and the free-energy surfaces are parabolic as will be shown

below.

The Hamiltonian can be generalized as,

ER -K 1 0H = ( + E•-•ZG
-K Ep a 0 -1

+ (maw2w2z + p 2 /2m) ( 02 0 1

HR -KHp (5.10)

E and Ep are the energies of the diabatic states ( and p) in the absence of the

ER and Ep are the energies of the diabatic states (OR and Op) in the absence of the



environments, respectively. The reaction coordinate can be written as,

= Hp - HR = Ep - ER + 2 E CXaz (5.11)

Therefore, e, being a linear combination of a large number of random variables {x}),

obeys Gaussian statistics (i.e. the probability distribution P(c) , e- O 2 ) according

to the central limit theorem. The free energy for the fluctuation in the reaction

coordinate, which is related (upon a constant) to the probability distribution by:

F(6) = -kBTln[P(e)] will therefore be parabolic. This treatment works whether or

not {x.} are Gaussian variables. The only criterion is that the environment couples

linearly to the system. In the context of electron transfer reaction in polar solvent,

this linear coupling regime corresponds to a system with a dielectrically unsaturated

solvent, and therefore, the solvent will respond linearly to any change of the electronic

states of the quantum system.

5.4 Relation between the reactant and product free

energy surfaces

From the previous section, we know that the reaction coordinate (energy gap) obeys

Gaussian statistics and the free energy surfaces are parabolic, in the limit of linear

environments. Beside this parabolic nature of the free-energy surfaces, the free-energy

curves were shown to obey a simple relation due to this unique definition of the

reaction coordinate. It implies that, once we calculated the reactant free-energy

surface as a function of the reaction coordinate, the product free-energy surface can

be easily obtained. In this section, this simple relation will be presented.

Free-energy profiles as a function of the reaction coordinate for reactant and prod-

uct can be written as

FR(CO) = AR-kBTln[PR(Eo)] (5.12)

Fp(EO) = Ap- kBTln[Pp(co)], (5.13)



where FR(fo) is the free-energy profile for the fluctuation of the reaction coordi-

nate, AR is the total free energy for the reactant electronic state and PR(Co) is the

probability distribution evaluated from the reactant potential surface. Similar set of

definitions applies to the product case. The total free energy for the reactant and the

product state can be obtained by phase space integration,

AR = -kBTln e - H R({RI})/kBT dR (5.14)

Ap = -ksTln J e- HP({R})/kBT dR. (5.15)

From the above formulas, we can derive the relation between the free energy of reac-

tion (AGo) and the Marcus energy gap statistics,

E({Ri}))
AG O = Ap - AR = -kBTln(exp(- k ))kBT

= kBTln(exp( k )) (5.16)
ksT

(... )R and (... )R correspond to the canonical average according to reactant and

the product potential surface, respectively. e({RI}) = Hp({RI}) - HR({RI}) is the

Marcus energy gap for the ionic configuration {RI}. The above relation shows that

the free energy of reaction can be obtained without performing a full phase space

integration, which is impossible in any sampling methods.

On the other hand, the free-energy profile difference between the product and

reactant equals

PP (eO)Fp(co) - FR(co) = Ap-AR- kBTnPP(• )
PR(Eo)

S-kBT~n f 6(F({RI}) - Eo)e HP({R.I)IkBT 11 dR,
f 6(E({RI}) - .o)e- H R({RI})/kBT 1 dR,

= 6(e({RI)) - Eo)e-EOlre-HR({RI})/k•T T -I dR= -kBTln f 6(i({R1}) - io)e`o/kTTeHR({RI})/kBT H dR1f 6(E({RI}) - Eo)e-HR({RI})/kBT H dRI
= o (5.17)

Equation 5.17 shows that the product and the reaction free-energy surfaces differ by



co at any value of fo. It means that once we get the reactant free-energy surface, the

product free-energy surface can be easily obtained from the above relation. It also

implies that the curvature of the two free-energy curves are identical at the same co-

Eq. 5.17 together with the parabolic approximation of the free-energy curves make the

reorganization energy A particularly important in studying electron-transfer reactions

because the free-energy barrier AG* of a reaction is related to the reorganization

energy and the free energy of reaction AGO by,

AG* =(AGO + A)2  (5.18)4A

5.5 Previous studies of electron-transfer free en-

ergy surfaces using classical molecular dynam-

ics

As already shown, the free energy surfaces are parabolic [116] and the energy gap,

resulting from a combination of effects from the ions and the water molecules, obeys

Gaussian statistics if the environment responds linearly to the electric field. There

have been a number of classical molecular dynamic studies [19,20,111-114] supporting

this assumption in the case of reactions between aqueous metal ions. For example,

Fig. 5-3 shows the free-energy surfaces of ferrous-ferric self-exchange reaction taken

from Ref. [114], using classical molecular dynamics with umbrella sampling.

Despite the qualitative consistency, quantitative agreement has not been achieved

with classical force fields. The reorganization energy A (i.e. the free energy cost

to move from the equilibrium configurations of the product to those of the reactant

without the transfer of electron) for the aqueous Fe2 +-Fe3 + self-exchange reaction was

found to be 83.2 kcal/mol or 3.6 eV for ions 5.5 A apart [114], while experimentally

[115] (at the slightly shorter separation of 5.32 A) it is found to be 2.1 eV. Although

there have been studies of electron-transfer reactions including electronic polarization

in classical force-field potentials [112, 113], full first-principles studies are required to
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Figure 5-3: Diabatic free-energy surfaces for Fe2+-Fe3+ electron transfer reaction cal-
culated using classical molecular dynamics simulations when the ions are
5.5 A apart. The figure is taken from Ref. [114]

describe realistically and quantitatively these reactions. Recently, an elegant grand-

canonical density functional approach has been introduced to address this class of

problems [21,22]. This approach is, however, targeted at half-reactions for a donor or

an acceptor in contact with an electron reservoir, and the free energy surfaces and free

energy barrier cannot be calculated using this approach. The need to qualitatively

and quantitatively describe electron-transfer reaction has prompted us to explore the

possibility of performing first-principles molecular dynamics studies of full electron-

transfer reactions.

5.6 Static density-functional calculation of reorga-

nization energy

In Marcus' original paper of electron transfer [2], a dielectric continuum treatment

was suggested to calculate the reorganization energy contributions from the solvent

(outer sphere contributions ,,o), assuming linear response of the environments to



the electric field. This original dielectric continuum treatment is in widespread use

and can be sufficiently accurate, with the knowledge of the effective radii of the

reactants. However, this method does not take into account the reorganization of

the reactant molecules (inner sphere contribution Ai,) due to a change of oxidation

states during electron transfer and this contribution can sometimes be significant.

Theoretical approaches to estimate Ai, are surprisingly few, and the best approach is

still a matter of debate. In a recent paper by Klimkans and Larsson [120,121], it was

suggested that As, could be calculated in a convenient way from the total energies

of the isolated reactant molecules in their ground and excited electronic states. In

this section, we adopt this method to calculate Ajs, and together with the dielectric

continuum treatment to obtain A,,, we are able to compute the total reorganization

energy for the ferrous-ferric self-exchange reaction.

In the case of iron ions solvated in water, the inner sphere can be taken to consist

of the ion and the first solvation shell water molecules. As shown Fig. 5-4, the

reorganization energy contributions are divided into the inner sphere (shaded regions)

and outer sphere (the remaining region). Aj, is calculated using the isolated clusters

of the iron with six water molecules, as it has been suggested experimentally [122,123]

that both ferrous and ferric ions are six-fold coordinated in the first solvation shell

by water molecules when solvated in water.

Fig. 5-5(a) shows schematically the procedure to calculate Ais from first-principles.

First, the ionic geometry of hexa-aqua ferrous cluster is optimized in vacuum. One

electron is then removed from the system and we calculate the total energy of ferric

ion in the optimized geometry of the ferrous ion cluster. A similar procedure is

performed with the hexa-aqua ferric cluster and one extra electron is added to the

system after ionic geometry optimization. Ai, can then be obtained from:

A, = EFe3+ [Fe2+] + Ee 2+ [Fe3+] - EFe2+[Fe2+] - EFe3 +[Fe3+] (5.19)

where EFe2+ [Fe2+] ad EFe2+ [Fe3+] are the total energies of ferrous or ferric ion in

the optimized geometry of the ferrous ion cluster. Similar notations are used for



Figure 5-4: Schematic diagram showing the division of the reorganization energy con-
tributions into inner and outer sphere.

EFe3+ [Fe2+] and EFe3+ [Fe3+]. In most plane-wave codes employing periodic bound-

ary conditions, comparing energies between systems with different charges always

give errors due to the finite Coulomb interactions between periodic images. However,

in the above procedure, these Coulomb interactions cancel out when calculating the

difference in energies.

We performed these calculations in PWscf [61] using ultrasoft pseudopotentials for

iron, oxygen and hydrogen atoms at PBE-GGA level. The ultrasoft pseudopotentials

for O and H are from the standard PWscf distribution (H.pbe-rrkjus.UPF and O.pbe-

rrkjus.UPF). We generated a 16-electron iron ultrasoft pseudopotential (Fe.pbe-sp-

vanmit.UPF) using the Vanderbilt code [124]. Plane-wave cutoffs for wavefunction

and charge density are 25 and 200 Ryd, respectively. The ion cluster is in a unit cell

of side length 15.9 A. Using the described procedure, the inner sphere contribution

(Ai,) equals 0.50 eV.

The contributions to the reorganization energy from the outer solvent molecules

can be estimated from the dielectric continuum model [2,116]. In this model, the ions

and the first solvation shell water molecules are replaced by the conduction spheres

with volumes approximately equal those occupied by the hexa-aqua iron clusters as



E Fe2+ [Fe3+]

Ee3+ [Fe3+]

E '~3+ [Fe2+]

EFe2+ [Fe2+]

Fe3+

Fe2+

Fe2+

Ionic coordinates

a) (upper panel) Procedure to calculate the inner sphere contributions to
the reorganization energy using four separate first-principles calculations.
b) (lower panel) Procedure to calculate the outer sphere contributions to
the reorganization energy using the dielectric continuum theory. rl and r2
are the radii of the sphere occupied by the ferrous and ferric ion clusters,
respectively, taken as approximately the distance between the ion and
the hydrogen atoms in the first solvation shell. R is the center to center
distance between the two clusters.
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shown in Fig. 5-5(b). A,, can be calculated as,

e2  1 1 1 1 1
Ao = (• -  )( ) (5.20)

4E~0 o 2r 1  2r2 - 0R , Estatic

where r, and r2 are the radii of the sphere occupied by the ferrous and ferric ion

clusters, respectively, taken as approximately the distance between the ion and the

hydrogen atoms in the first solvation shell. R is the center to center distance between

the two clusters. eoo and 6static are the optical and static dielectric constant of water.

Taking r =2.66 A, r2=2.66 A, R=5.5 A, Eoo=1.8 and ,tatic= 78 , respectively, the outer

sphere contribution, Ao,=1.54 eV.

The total reorganization energy (A=Ai,+A,,) equals 2.04 eV, which is in good

agreement with the experimental value of 2.1 eV. However, this static calculation

does not take into account the entropic effects. We cannot obtain the free energy

surfaces of the reaction and therefore we cannot get the free energy barrier of reaction.

Despite the deficiency of static calculations, it is a good indication that first-principles

calculations can provide a better quantitative agreement to the experiments. In the

next few sections, we will present a novel technique to calculate the electron-transfer

free energy surfaces from first-principles molecular dynamics simulations and show

the results of self-exchange reactions between aqua ferrous-ferric ions.

5.7 Calculating diabatic free energy surfaces from

first-principles molecular dynamics

We argue in the following that state-of-the-art first-principles molecular dynamics

calculations, together with several algorithmic and conceptual advances, are able

to describe with quantitative accuracy these diabatic processes, while including the

realistic description of the complex environment encountered. In this section, we

present a novel technique to study full electron-transfer reactions from first-principles

molecular dynamics, with ferrous-ferric self-exchange as a paradigmatic example. In

all the molecular dynamics simulations discussed in this chapter, we use Car-Parrinello



molecular dynamics [23-25] and spin-polarized DFT in the PBE-GGA approximation.

The ferrous and ferric ions are both in the high-spin states as confirmed by the

literature [136, 137] and our own calculations. The ultrasoft pseudopotentials for

Fe, O and H are the same pseudopotentials used in Section 5.6. The wavefunctions

and charge density cutoffs are 25 and 200 Ryd, respectively. The deuterium mass

was used in place of hydrogen mass to allow for a larger timestep of integration.

The Car-Parrinello fictitious mass (p) and the timestep are 450 a.u. and 5 a.u.,

respectively. A Nose-Hoover thermostat was used on the both electrons and ions.

The ionic temperature was set at 400 K.

Fig. 5-6 shows schematically the sampling procedure used, following the lines

of Ref. [114] for classical simulations. An ionic trajectory is first generated with

the ions in the (2+r) and (3-r) states of charge, respectively. r is an "umbrella-

sampling" parameter used to explore different regions of the phase space. We then

perform two separate runs with the electronic state constrained in the reactant or in

the product electronic configuration, and with the ions following the afore-generated

ionic trajectories. The reaction coordinate e at every timestep is thus given by the

difference between the energies of the product and the reactant state. The probability

distribution P(E) is then calculated as:

E 5,(--),,exp{-f-[Er(r) - ES(T)]}
P(e) = E exp{--[Er (T) - E,(r)]} (5.21)

where e'(r) = Ep(T) - Er (T) is the reaction coordinate at time -; Er (T), Ep(r) and

E,(,r) are the energies of the system in the reactant, product and sampling oxidation

states, respectively, at time T, and 6,(,),e is the Kronecker delta. The exponential

term in the expression above restores the correct thermodynamical sampling accord-

ing to the energy surface Er. The free energy F(E) is derived from the probability

distribution P(e) as F(e) = -kBTln(P(E)).

It is of central importance to note that due to the lack of self-interaction correction

in common exchange-correlation functionals, the transferring (3d minority spin) elec-
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Figure 5-6: Procedure used to calculate the diabatic free energy surfaces for electron
transfer from first-principles molecular dynamics: The reaction coordinate
at each timestep is calculated from the energy difference between the
product and reactant states in the ionic configuration provided by the
sampling run. The phase space is explored via the umbrella sampling
parameter r, determining the oxidation state of the ions.

tron will unphysically split between the two ions. Moreover, to calculate the energy

gap, we need to accurately calculate the total energy when the minority spin electron

localizes at either reactant or product site at any given ionic configuration. In order

to address these central problems, we will consider two cases: 1) the case when two

ions infinitely apart; 2) the two ion at a finite distance with the help of a penalty

functional.

5.8 Special case when two ions infinitely apart

We first consider the simple case when oxidation states can be controlled trivially.

This happens when two ions are infinitely apart; the two ions can be studied in sep-

arate simulation cells and the oxidation states are controlled by simply changing the
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total number of electrons. For this special case, we performed runs using Fe(2+r)+ and

Fe( 3- r)+ (with r=0.0, 0.25, 0.50, 0.75 and 1.0), each solvated with 31 water molecules

in the unit cell. We then carried out one Fe2+ and one Fe3+ run in the trajectory gen-

erated with Fe( 2+r)+, and one Fe2+ and one Fe3+ run in the trajectory generated with

Fe(3- )+ . Due to the symmetry of the reactant and product, the sampling ensembles

of r=0 and 1 were from the same trajectories; similarly for r=0.25 and 0.75. (Also

mentioned in Section 5.6, when calculating energies of charged systems in periodic-

boundary conditions, the Coulomb interaction of charges with their periodic images

should be removed [125]. In practice, these errors cancel out when calculating the

energy gap, which is the difference in energy between systems with the same charge.)

The initial configuration for each simulation was prepared by replacing seven

water molecules from the last configuration of a well-equilibrated 32 water molecules

simulation at 400 K with an hexa-aqua iron ion. A re-scaling of the unit cell volume

to 95% of the original size was needed to take into account of the difference in volumes

occupied by seven water molecules and an hexa-aqua iron ion. A 5 ps equilibration

run with the 31 water molecules and a ferrous ion was then carried out. The last ionic

configuration of this equilibration run was taken as the initial configuration for each

simulation with difference oxidation states for the ion. Each simulation has about 5 ps

production. run after 1 ps of thermalization. To access whether the systems prepared

this way are well-equilibrated, Fig. 5-7 shows the Fe-O radial distribution functions

for simulations with different ionic oxidation states. The black and the red curves

show the radial distribution functions calculated from, respectively, the first and the

second half of the 5 ps production runs. As seen in the figure, the solvation structures

do not change significantly after 1 ps of thermalization. This observation is in good

agreement with Bader et. al. [126] suggesting that a full relaxation happens within 1

ps after the change of oxidation state of aqueous iron ion.

Fig. 5-8 shows the resulting diabatic surfaces; the final result is obtained by inte-

grating [12:7] C Fr (c) gr()
F(E) = rg (E) (5.22)
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97



Figure 5-7:
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The Fe-O radial distribution functions for Fe(2+ r)+ solvated in water with
r=0, 0.25, 0.5, 0.75, 1. Each simulation lasts about 5 ps after dropping
the first 1 ps. The black and the red curves show the radial distribution
functions calculated from, respectively, the first and the second half of
different simulations.

where Fr (E) is the slope of the free energy curve in the different sections, each char-

acterized by an umbrella-sampling parameter r, and the weighting factor g,(C) is

(6(C - C(7)))r. For this special case, the trajectories generated with Fe(2+r)+ and

Fe(3- r)+ are independent; since each of them provides n data points, there will be

n 2 energy gaps, providing high statistics and a very smooth free energy curve that

fits accurately a parabola, with a coefficient of determination (R 2 ) of 0.9996, and a

reorganization energy of 1.77 eV. Note that at the tail ends of each sampling region

the statistical accuracy becomes lower - this explains the slight deviations from a

parabola seen in Fig. 5-8.



3

1

n

Reaction coordinate (eV)

Figure 5-8: Diabatic free energy surfaces for ferrous-ferric electron transfer in the
special case when two ions are infinitely apart. The solid curve has been
obtained from first-principles molecular dynamics. The dashed curves are
mirror images, and correspond to a parabolic fit of the data. Different
shades indicate portions of the diabatic surface sampled with r=0, 0.25,
0.5, 0.75 and 1.

5.9 Penalty functional in controlling oxidation state

As mentioned earlier, the self-interaction errors of most exchange-correlation func-

tionals result in a dramatic qualitative failure in describing ions in different oxidation

states when more than one ion is present. This failure can be exemplified by the

case of two iron ions in the 2+ and 3+ oxidation state in the same simulation cell.

When such a system is studied - e.g. using PBE-GGA - the HOMO electron will

split between the two iron centers, to decrease its own self-interaction, as exemplified

in the case of two hexa-aqua ions putting side by side (Fig. 5-9). This behavior takes

place irrespective of the chemical environment of the two iron centers; we observe it

for two isolated atoms, two hexa-aqua iron complexes, or two ions fully solvated.

We will show in the following that this failure can be corrected by adding a

-
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Figure 5-9: The HOMO orbital charge density distribution in the case when one hexa-
aqua ferrous and one hexa-aqua ferric ions in the same unit cell. The
minority spin electronic charge density (HOMO) splits between two ions
due to the self-interaction.

penalty cost to ground states with non-integer occupation of the ion centers [128].

This same approach is also used to calculate the Marcus energy gap, where for a

given configuration we need to determine both the correct ground-state energy (with

the transferring electron in the reactant electronic configuration) and the first excited

state (with the transferring electron in the product electronic configuration). We use

and validate the following penalty functional

Pi f- 1f0i) 2
E[{'}] --+ E[{'b}] + Zx exp(-_2)dx, (5.23)

I J-o

where ff•} is the largest eigenvalue of the minority-spin occupation matrix (n ,),a

on ion I (calculated by projecting the minority-spin Kohn-Sham orbitals on the 3d

atomic orbitals of iron in this work),

na= Y (I0)i ' ( 1J>p). (5.24)
i

2) are the Kohn-Sham orbitals and 'm are the 3d atomic orbitals of iron. fo0 is the

target value of f1',}. In the case of using ultrasoft pseudopotentials,

nI,I = -( S({RI})m(\S({RI})J R ), (5.25)
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Figure 5-10: The transferring electron can be localized at the desired location with
the appropriate sign of P' and value of foi.

where S({RI}) is related to the augmentation charge described in Section 2.6. There

is no unique way to define the occupation matrix and the choice should depends on

the systems studied. In this work, we chose to project the Kohn-Sham orbitals on the

localized d-orbitals because this definition works well in systems with the transferring

electron not taking part in any chemical bonding. Molecular orbitals, or Wannier

functions can, instead, be used if the donor or acceptor ion is chemically bonded to

the ligands.

Note that the definition of f } is independent of any unitary transformations on

0P's or any definitions of the 3d atomic orbitals by forming linear combinations of

€,. The penalty is in the form of a step function with the smearing relating to the

value of u. When P' > 0, a big penalty will be incurred on the total energy if ff{} is

smaller than fo0. Therefore, the ion is forced to have fI.} > fo. Similarly, if PI < 0,

ff(4 < fo. By changing the sign of P' and the target value fo on each reaction site,

the transferring electron, i.e. the minority spin d-electron in the case of ferrous-ferric

self-exchange, can be forced to localized at the desired site (Fig. 5-10). With the same

scheme, a fraction of the electron, instead of the whole one, can also be localized at

one site or the other and this fractional charge localization will be useful for umbrella

sampling.

In performing molecular dynamics, the wavefunctions and ions evolve according
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to the new equations of motion,

d2 R' Pz (fo - f )2 d (5.26)-m + e]p[- ](- +  (5.26•• 2) [ 1Rdt2  dRI + UJ 2or dR'

d2 dE[{}] P' (fod } ffI) ) d2 i
- +E exp[- (](- - (5.27)

dt2  d + I p  2(22 d)

ftIo} can be written as,

f Z 5=I U5m nmm',, Umr,, (5.28)
m,m'

where the unitary matrix Uhl diagonalized n,",' and the eigenvalues are arranged in

the ascending order. The forces on ions are calculated from the new total functional

from the Hellmann-Feynman theorem.

d2 l d!H PI (fo - I f ) 2H- + , )
-m dt2  -d-(-I + 2exp[ 2•• a2

S djS({Rj})jdI,) |S({Rj})
4x ( U Um ,5) | 4)). (5.29)

H is the Hamiltonian corresponding to the original DFT functional. In this ex-

pression, both the augmentation factor S({R1 }) and the atomic orbital q4 depends

analytically on R', the positions of the ions.

In practice, when the ions are solvated in water, the electronic structure as well

as the occupation numbers are expected to be altered by the solvation process. To

determine the optimal parameters used in the penalty functional, the reference states,

at which the electronic structure should resemble the case of full solvation, were

studied. In this case, we separately calculated the minority-spin occupation matrix

for either a ferrous or a ferric hexa-aqua ion embedded in a dielectric continuum

(e=78) [129]. Then, we determine the parameters in the penalty functional applied on

the ions so that the occupation matrices of the ferrous or ferric clusters are accurately

reproduced once the two are studied in the same unit cell. In this case, we got P'=0.54

eV, fo'=0.95 and ua=0.01 on the ferrous ion and PI=-0.54 eV, fo,=0.28 and aj=0.01

on the ferric ion. We note that the target occupations for the minority-spin are not
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chosen exactly one or zero, since the orbital hybridization between the iron 3d orbitals

and the lone pairs of the water molecules contributes to the projection onto atomic

orbitals. The contributions to the total energy from the penalty functional are close

to zero on the ferrous ion and close to -0.54 eV on the ferric ion. When calculating

the energy gap, these contributions are taken away from the total energy; in any

case, these effects are negligible since these contributions cancel out when calculating

energy differences. Different constraints or penalties have been recently implemented

in density-functional calculations [130-132]; we found our choice particularly robust,

but several variations on the theme can be envisioned.

5.10 Validations of the penalty functional

A first, qualitative validation of this penalty functional is performed examining the

charge density obtained by subtracting from a calculation with a ferrous and a ferric

hexa-aqua ion in the same unit cell that of an isolated ferrous hexa-aqua ion, and

that of a ferric hexa-aqua ion (the hexa-aqua ions were 10 A apart and a dielectric

continuum surrounds the two clusters to remove long-range electrostatic interactions

between them). The charge density difference is shown in Fig. 5-11.

As anticipated before, in the absence of a penalty functional, the transferring

electron splits between the two ions; once the penalty functional is applied, the charge

density around the ions reorganizes itself so that it produces a charge density that is

the exact superposition of that obtained from the two independent calculations.

We can make the validation quantitative by calculating the energy gap for the sys-

tem described, using two penalty-functional calculations that impose to the HOMO

electron to localize first on one, then on the other ion. This energy gap can also be

calculated exactly with PBE-GGA using the "4-point" approach [120,121], provided

again that all long-range electrostatic interactions are screened out. The four calcu-

lations involve Fe2+ in two Fe(H 20) 6 geometries (A and B), and Fe3+ in the same

geometries; the energy gap is [EA(Fe2 + ) + EB(Fe3+ ) - EB(Fe2+ ) - EA(Fe3+ )]. The

calculation follows the same idea as the computation of Ai, in Section 5.6. We choose
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Figure 5-11: Charge density difference compared to DFT ground state charge den-

sity (calculated from ferrous and ferric ion clusters in separate cells),
without (above) and with (below) penalty functional. The difference

is large without the penalty functional. With the penalty functional,
the difference compared to DFT ground state is minimal. The contours

are plotted at 70% of the maximum density difference of the one with

penalty functional. The maximum value with penalty functional is 8.8%

of that without penalty functional.

Table 5.1: The energy gaps calculated with the penalty functional
approach for different random cluster geometries.

Penalty functional (eV) "4-point" (eV)
I 0.632 0.622
II 0.569 0.542
III 0.769 0.769
IV 1.027 1.012

and the "4-point"

one configuration in which the hexa-aqua ions are fully relaxed, and three carved out

from random steps in the molecular dynamics simulations. Table 5.1 shows the en-

ergy gaps calculated with the penalty functional and with the "4-point" method. The

energy gaps obtained with the penalty are in excellent agreement with the "4-point"

values. It is worth mentioning that the energy gap is an excited-state property of the
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system, and thus in principle outside the scope of density-functional theory, which

is a ground-state theory. However, since charge densities of the HOMO and LUMO

do not overlap, we can argue that all that is required is a description of the charge

density that is locally correct (the excited state has an electron locally in equilibrium

around an iron, oblivious of the other iron ion where it could sit more favorably). A

more formal justification can be offered on the basis of "nearsightedness" in electronic

matter [133,134].

5.11 Diabatic free energy surfaces when two ions

at finite distance apart

With these tools, we determined the diabatic free energy surfaces for two iron ions

separated by 5.5 A and solvated in 62 water molecules, in periodic boundary condi-

tions. 5.5 A was suggested [37,135] to be the optimal distance for electron transfer.

The initial configuration for the simulations were prepared by carving out two spheres,

each containing seven water molecules, from the last configuration of a well equili-

brated 64 water molecules simulations at 400 K and replacing them by two hexa-aqua

iron ions, 5.5 A apart. An equilibration run of 7 ps was then performed without the

penalty functional. The sampling runs with different r were carried out from the last

configuration of this equilibration run. Each sampling run has about 4.5 ps produc-

tion time after 1 ps of thermalization. We show our results in Fig. 5-12, together with

a parabolic fit to the data. Different color shades indicate portions of the diabatic

surface sampled r=O, 0.5 and 1. The reorganization energy (A) that we obtain is 2.0

eV, in excellent agreement with the experimental value of 2.1 eV [115]. The energy

barrier AG P0.49 eV, about a quarter of A, as expected if the free-energy surfaces

are parabolic.
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Figure 5-12: Diabatic free energy surface for ferrous-ferric electron transfer when the
two ions are 5.5 A apart. Different color shades indicate portions of the
diabatic surface sampled r=0O, 0.5 and 1. The right dashed curve is the
parabolic fit of the data and the left dashed curve its mirror image.

5.12 Conclusions

In conclusion, we have demonstrated how it is possible to obtain Marcus diabatic

surfaces from first-principles molecular dynamics, where the entire system is treated

quantum-mechanically, with the accuracy and predictive power that this approach

entails. The case when two ions are at a finite distance requires special care in

dealing with self-interaction errors and excited-state energies. In response to these

challenges, we developed and validated a penalty functional that is able to control

the oxidation states of ions, and that describes accurately both the electronic ground

state and the first excited state where the electron is transferred to the other ion. This

approach can be successfully applied to a wide class of oxidation-reduction reactions,

in solution (as it often happens in electrochemistry or biochemistry) or in the solid-

state (intervalence charge-transfer).
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Chapter 6

Conclusions

In this thesis, we performed extensive studies of the structural and dynamical proper-

ties of water at ambient and supercritical conditions, and electron-transfer reactions

in aqueous systems from first-principles. At the DFT-PBE level, the structural,

vibrational and energetic properties of the monomer and dimer are found in good

agreement with the experimental results. In particular, the dimer binding energy

agrees very well with the experimental value, showing that the energy functionals

describe well the hydrogen bonding in water. Despite this excellent agreement, we

found that first-principles molecular dynamics simulations of water at room tempera-

ture and pressure produce water at glassy states after a careful choice of small enough

electronic fictitious mass and long enough equilibration of more than 10 ps [28].

Water starts to become truly liquid-like when temperatures reach 400 K. The

causes to this A100 K discrepancy in the freezing point can be various. The effects

of the finite cell size of the simulations were shown to be negligible in our simula-

tions with 32 water molecules. The two major causes are believed to be the choice

of the exchange-correlation functional and the quantum-mechanical nature of the in-

tramolecular (and of some high-frequency intermolecular) vibrational modes. Those

modes should obey Bose-Einstein statistics but are not well described in our first-

principles simulations, in which the ions are treated as classical particles.

We have investigated further the structure of normal and supercritical water with

combined experimental and theoretical efforts, studying the X-ray Compton scat-
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tering profiles. We proposed that the Compton profile difference with respect to a

reference state is a robust measure of the hydrogen bonding structure, and in par-

ticular the average number of hydrogen bonds per molecule. Formation of hydrogen

bonds by valence electrons leading to localization in real space is thus detected in

momentum space as a broadening of the corresponding Compton profile. This unique

sensitivity to outer electrons and thus to intermolecular interaction and to hydrogen

bonding is a special characteristic of Compton scattering. By studying a simple clus-

ter of five water molecules, we found that there is a linear relation between ne of the

profile differences and the number of hydrogen bonds per molecule. This relation is

also well-obeyed by the Compton profile differences computed from our first-principles

simulations with a scaling factor of 73% at various conditions (from ambient to super-

critical conditions). In particular, we found that the number of hydrogen bonds per

molecule at the supercritical condition is still significant, solving the long-standing

controversy of whether there is significant hydrogen bonding network at supercritical

conditions.

The study of structural and dynamical properties of pure water at ambient and

supercritical conditions has provided the basis to study electron-transfer reactions

in aqueous systems. We developed a novel method to calculate free-energy surfaces

from first-principles molecular dynamics using umbrella sampling, and by controlling

the oxidation states of ions. Due to the self-interaction problem in common DFT

functionals and the need to perform excited state calculations to sample the reaction

coordinate, no one, to our knowledge, has ever calculated the free-energy surfaces

of a full electron-transfer reaction from first-principles. We first considered the case

when two ions are infinitely apart, in which the oxidation states of the ions can be

controlled trivially. We found that the free-energy curves are parabolic, validating

the linear solvation model as first proposed by Marcus [2]. To study electron-transfer

reactions between the ions at finite distance apart, we introduced a penalty functional,

which solves both the self-interaction error and the excited state challenge.

With the ferrous-ferric self-exchange reaction as a paradigmatic example, we cal-

culated the free-energy surface, when the ions are at 5.5 A apart, fully from first-
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principles. The reorganization energy is in good agreement with the experimental

value, a great improvement in quantitatively describing electron-transfer reactions.

It is hoped that this approach will allow more and more studies of such reactions

from first-principles, since it can be successfully applied to a wide class of oxidation-

reduction reactions, in solution (as it often happens in electrochemistry or biochem-

istry) or in the solid-state (intervalence charge-transfer).
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Appendix A

DFT + Hubbard U

A.1 Introduction

In studying strongly correlated electronic systems, LDA functionals usually fail to

correctly describe the electronic structure due to the inhomogeneity of the electron

gas. Improvements can be achieved using GGA functionals which provide better

results on systems with inhomogeneous charge densities. Despite these improvements,

GGA functionals still fail to correctly describe several physical properties in transition

metal compounds, from magnetic order to metallic-versus-insulating behaviors [138].

The large correlations of strongly localized d-electrons cannot be correctly described

by GGA functionals.

The main idea proposed by the DFT + Hubbard U method is to correct the

standard DFT approach in order to be able to better describe strong electronic corre-

lations in the d or f-electrons. We have to go beyond the electron gas approximation

used to model electron-electron interactions. Strongly-correlated materials (usually

systems with partially filled d or f-valence shells) have their d or f-electrons feeling

strong Coulomb repulsions in the presence of another localized electron, and the elec-

tron motion is known to be "correlated" due to this Coulomb interaction. The band

structure calculations are not the best approach to observe this physical behavior, as

they are manifestation of a one body problem, whereas correlation is a many-body

property. Moreover, the exchange-correlation functionals, even in the case of GGAs,
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are built from the near-homogeneous electron gas so that interactions are treated in a

mean-field approach, which cannot accurately describe correlations between electrons.

The Hubbard model [139] has a long history in studying strongly correlated elec-

tronic systems in the condensed matter community. The Hubbard model is of the

form
v

HHub = t ti,jCCj,1' + 2 nii,', (A.1)
(ij,) 1,1' i 1,1'

which contains the hopping term and the on-site repulsion term. i and I are the site

and the orbital indexes, respectively. However, since the model is too simplified and

the hopping amplitudes t and on-site repulsion U are unknown, the model cannot

allow us to obtain accurate numerical results. Owing to the difficulties in the direct

use of the model, a number of methods were proposed [140-144]. The main idea they

all have in common is to use some hints from the many-body formalism to correct for

DFT and to go beyond the mean field approach. One of the most popular methods

in this family is the DFT + Hubbard U approach [38,39], which was shown to be a

simple and effective way to describe strongly correlated systems from first-principles.

In this appendix, the formalism of a simplified and rotational invariant DFT +

Hubbard U scheme developed by Cococcioni et. al. [145] is discussed. The Hub-

bard U value, which describes the strength of the correlation, can be obtained from

first-principles using a linear response approach [146]. We then discuss in details

our integration of this DFT + Hubbard U scheme in the Car-Parrinello molecular

dynamics. This implementation allows finite temperature studies of transition ma-

terials. With this tool, we investigate the effects of Hubbard U corrections on the

solvation structure of the ferrous and ferric ions and the energetics of the electron-

transfer reactions.

A.2 The Hubbard U term

The formal expression of the DFT + Hubbard U energy functional is adapted from the

Hubbard model that deals with strongly correlated materials. In this model, a small
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number of localized orbitals is selected and the electronic correlation associated to

them is treated in a special way. In order to account explicitly for the on-site Coulomb

interaction not treated faithfully within DFT, Anisimov et. al. [38, 39] proposed to

correct the standard functional adding Hubbard-like interaction Eu:

EDFT+U[n] -= EDFT[n] + Eu[n" ,], (A.2)m ,m

where EU[nUm,] is the Hubbard functional for on-site interactions, dependent on the

occupation matrix of the strongly correlated electrons.

A.2.1 Localized orbital occupations

In order to fully define how this approach works, we first have to select the degrees

of freedom on which the Hubbard U acts on. These degrees of freedom are described

by the matrix n I ' ,. Although it is usually straightforward to identify in a given

system the atomic levels to be treated in a special way (the d-electrons in transition

metals and the f ones in the rare earths and actinides series) there is no unique or

rigorous way to define the occupation of localized states in condensed phase due to the

possible bond formations. E.g., besides projecting on the normalized atomic orbitals,

it is equally legitimate to calculate n'~" , by projecting on Wannier functions on

Mullikan populations, or on integrated values in (spherical) regions around the atoms

of the angular-momentum decomposed charge densities. Taking into account the

arbitrariness in the definition of nI, m,, no particular significance should be attached

to any of them (or other that could be introduced). The usefulness and reliability

of an approximate DFT + Hubbard U method should be judged from its ability

to provide a correct physical picture of the systems under study irrespective of the

details of the formulation, once all ingredients entering the calculation are determined

consistently.

All the above-mentioned definitions for the occupation matrices can be put in the
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generic form

In ' f m ir I V(A.3)

where go is the Kohn-Sham wave function corresponding to the state i with spin a

of the system and fi is the corresponding occupation number. PM,, are generalized

projection operators on the localized-electron manifold. When using F-point sam-

pling (as in the case of Car-Parrinello molecular dynamics), the k-point dependence

of the Kohn-Sham wavefunction is discarded. In particular, P' = , P~,, is the

projector on the complete manifold of localized states associated with atom at site I

and therefore

WI"r = O fi (V) I P (A.4)
m i

is the total localized-states occupation for site I.

In the applications discussed in this work, we will define localized-level occupation

matrices projecting onto atomic wavefunctions. This particular choice has been shown

to accurately describe a wide range of transition metal materials [145, 150-152]. The

projector operators are therefore simply

PI,m, = S({RI}) m,})( / IS({RI}), (A.5)

where 0, is the valence atomic orbital with angular momentum component 1Im) of

the atom sitting at site I (the same wave functions are used for both spins). In the

case of iron ions, the valence orbitals are the localized d-orbitals of iron atom and 1=2.

Since we will be using ultrasoft pseudopotentials to describe valence-core interaction,

the augmentation charge operator S({RI}) (defined in Eq. 2.23) is needed to describe

the orthogonality in presence of charge augmentation.

A.2.2 A simplified rotationally invariant scheme

The Hubbard U functional (Eu[{n•,7, }]) is written as [145]

Eu[{n" m,} = EHub[{ m,}] - Edc[{nI"O}]. (A.6)
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EHub[nmmi }] corresponds to the on-site interactions between the correlated electrons.

Edc[{n m,}] is then subtracted in order to avoid double counting of the interactions

contained both in EHubL[{lmm}], and in some average way, in DFT. In Edc[{n'}], the

total, spin-polarized, occupation of the localized manifold is used: nl Z, = nI~.
m

To derive the expression of Eu[{nL'm,m}], we write the on-site interaction in terms

of the occupation number, Am (i.e. eigenvalues of the occupation matrix n ,),

U' U
EHub[{nm,} = A- I , AI( ; + - j AIDA5"I (A.7)

I,a m,m' I,a mOm'

In calculating EJ[{n" ' }], this interaction is expressed in a mean-field way by writing:N", =

Eac[(n"a}] = N2 N 1'-a + N"' (N " - 1) (A.8)
I,a I,a

Therefore, to calculate EU[n,a m, ] = EHubI{na }] - Edc[{n,a}], the first term in

EHub[I{n'a}] and Edc[{n"I}] cancels each other and it gives,

vp pr i o in te loca In oaU - mm MM]

I mnm I

U ZTr[n' (1 - n"°)] (A.9)

As seen from Eq. A.9, the Hubbard U functional introduce a penalty, tuned by the

value of the U parameter, for partial occupation of the localized orbitals and thus

favors full occupation (A=1) or empty orbitals (A=0). The obtained results strongly

depend on the definition of the localized orbitals and on the choice of the interaction

parameters used in the calculation, that should be determined in an internally con-

sistent way, instead of determining the value of the electronic couplings by seeking a

good agreement of the calculated properties with the experimental results in a semi-

empirical way. Cococcioni et. al. [146] proposed that the value of U can actually be
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calculated consistently from first-principles and we will devote the next two sections

discussing this.

A.3 Physical meaning of the Hubbard correction

Consider an atom in contact with a reservoir of electrons that can only exchange

an integer number of electrons with the reservoir. This means that intermediate

situations with fractional occupations of one (or more) of its orbital may only arise, in

the open atomic system, as time averages over states with integer number of electrons

on the atomic orbitals. In quantum mechanics an open system with a fluctuating

number of electrons is described not only by a pure-state wavefunction, but rather

by a statistical mixture so that, for instance, the total energy is given as:

E. = (1 - W)EN + wEN+l (A.10)

where EN and EN+1 are the energies of the systems with N and N + 1 electron

respectively, and w represents the statistical weight of the state with N + 1 electrons.

The average number of electrons will be N + w so that the total energy of this

open atomic system is represented by a series of straight-line segments joining states

corresponding to integer occupations of the atomic orbitals (Fig A-1). The slopes of

the line segments are the eigenvalues of the states getting filled,

dE= dE 
(A.11)

dn2

Density-functional theory with exact-exchange correctly reproduces this behav-

ior [147, 148], which is instead not well described by common DFT approaches that

reproduces a total energy with unphysical curvature for non-integer occupations and

spurious minima in correspondence of fractional occupation of the orbital of the

atomic system, as seen in Fig. A-1. The unphysical curvature is associated with the in-

correct treatment by DFT of the self-interaction of the partially occupied Kohn-Sham

orbital, that gives a nonlinear contribution to the total energy with respect to orbital
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Figure A-1: The total energy profile as a function of the number of electrons in the
system. The curve at the bottom is the correction due to Eq. A.9. The
correct potential profile consists of segments of straight lines that flavor
integral occupations. This figure is adopted from Ref. [145].

occupation (mainly a quadratic term coming from the Hartree energy that is not

canceled properly in the exchange-correlation term). However, it is well known [149]

that total energy differences between different states can be quite accurately repro-

duced by the DFT approach, if the occupation of the orbitals have integer values. We

can recover the physical situation of an approximately piecewise linear total energy

curved by adding a correction to the DFT total energy which vanishes for integer

number of electrons and eliminates the curvature of the DFT energy profile in every

interval with fractional occupations (bottom curve of Fig. A-1). This is exactly the

kind of correction that is provided by Eq. A.9 if the numerical value of the parameter

U is set equal to the curvature of the DFT energy profile. This understanding offers

a way to obtain the value of U from first-principles without resorting to fitting with

some experimental results.
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A.3.1 Calculation of U from the linear response approach

As discussed in the previous section, the Hubbard U functional corrects for the spu-

rious curvature due to the incomplete cancellation of the self interactions in the DFT

total energy with respect to the number of localized electrons. The second derivative

of the total energy (o2T ) corresponds to the effective curvature of the DFT total

energy. However this quantity does not equal the Hubbard U. In fact, if we perturb

a non-interacting system, we will still obtain a quadratic behavior of the total energy

as a function of occupation. It is because the imposed occupation variation changes

the kinetic energy of the system. This kinetic energy variation should not be included

in the calculation because it is not originated from the electron-electron interactions.

Because of this, the effective Hubbard U should be calculated as [145],

d2EDFT d2 EDFT
U d(noc)2 d(n,oc )2 (A.12)

where the second derivative of EoD FT is the above-mentioned independent electrons

contribution to be subtracted from the full curvature of the DFT functional. n[oc

is the total occupation of the localized orbitals, which can be calculated from the

trace of the occupation matrix. However, it is not convenient to constrain the total

localized orbitals occupation in actual calculations, and the occupation is forced to

vary by adding to the DFT functional a localized perturbation.

E[{fa}] = min{E[n•ij + anoc} (A.13)
n(r)

This new functional is a dependent and we can switch to an occupation-dependent

energy functional by a Legendre transformation,

E[{no} ] = min{E[a]- -an[,}. (A.14)
ao
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From this equation, the double derivative of the total energy with respect to the

occupation can be easily obtained,

dE[ nioloc

d2E[n[c] da[n] (A.16)
d(no )2 dn o•

In actual calculation, the quantity accessible is the response function: x =nL and

the Hubbard U value equals

da[n[oc] da[nfoc4] - .- 1U= dn + = ( x ) (A.17)

In Eq. A.17, the fluctuation of the localized orbital occupation, n , which de-

fines the bare response function Xo, is calculated without including the effects of the

electron-electron interactions. In practice, a well-converged DFT (U=O, a=O) calcu-

lation is first performed in PWscf. Starting from that self-consistent potential and

the corresponding electronic wavefunctions, a series of potential shifts (a) are added

on the localized orbitals, and then we let the system evolve to self-consistency each

time. The response functions Xo and X are obtained numerically from the variation

of ni, and n[a with respective to a. At the first iteration of the perturbed run only

the bare perturbation is included in the effective potential acting on the electrons. It

means that the density response obtained at the first iteration does not involve any

effects of the electron-electron interactions and we can obtain ni, and X0 from the

first iteration of the perturbed runs; the interacting response function X is instead

calculated at the self-consistent stage.

However, this value of U, calculated in the reference state at U=O eV, may not be

the true value we want, as suggested by Kulik et. al. [152]. They instead suggested

an internally-consistent approach to obtain the true U value. According to Ref. [152],

119



we can write out the quadratic part of the DFT + Hubbard U functional,

Eqd Utrue Uin
Equad I'a A'' - 1) + A,(1 - A,). (A.18)

i,a j i

The first term is the contribution already contained in the DFT functional in a mean-

field way, and the second term is the Hubbard U correction. Utrue is the true Hubbard

U value we want to get. Since the Hubbard U correction would alter the electronic

structure of the system, this may in-turn change the quadratic dependence of the

DFT functional in the mean-field way. Therefore, Utrue determined with different

Uin may vary. If we obtain a value of Utrue=A at Uin=O and apply the U correction

with Uin=A, Ut,re may become a different value under this correction. Because of

this, Ut,,ue should be determined at the reference state calculated from the DFT +

Hubbard U functional with Ui,=Utue (i.e. internally consistent).

When perturbing the occupation in the linear response procedure, for small shifts
I _a _

'  d2 I2 - I,a d2
in occupation, a*'= and = .a. a . Therefore, the curva-in occupation, a '  • andd(Na) 2 3 1d~i 3dXjl•

ture of the DFT + Hubbard U functional, from Eq. A.18, is

d2Equad Ui
Uout = d( •qua2 = Utu,, - --m (A.19)

Here, m = can be interpreted as an effective degeneracy of the orbitals

whose population is changing during the perturbation. In this internally consistent

procedure, calculations of Uout with a series of Uin are carried out and a Uot vs Ui,

curve is plotted. At different Ui,, we get a value of Utrue from the intercept of the

tangent at Uin of the curve to the y-axis. The correct Utrue is the one obtained with

Uin=Utrue-
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A.4 Effects of the Hubbard U term on the reorga-

nization energy in electron transfer

In this section, we first present the Hubbard U calculation of ferrous and ferric ions in

water. Then, we will discuss effects of the Hubbard U correction on the reorganization

energy of ferrous-ferric self-exchange reaction.

In the case of ferrous and ferric ions solvated in water, the Hubbard U functional,

being a localized functional, is expected to be little affected by the outside water

molecules except for those in the first solvation shell. For the same reason, this cor-

rection will have little effects on the physical properties beyond the first solvation

shell. Therefore, the Hubbard U term would only change the inner sphere contribu-

tion (Ai,) when the reorganization energy is separated into inner and outer sphere

contributions under the same scheme discussed in Section 5.6. In view of this, the

Hubbard U values for the simpler systems of hexa-aqua ion clusters are calculated and

these values of U are used to obtain to inner sphere contributions to the reorganization

energy.

As mentioned in the previous section, the Hubbard U term has to be determined

internally consistently. Fig. A-2 shows the Ut as a function of Ui, for the case

of ferrous and ferric hexa-aqua ions. In the case of the ferrous ion cluster (upper

panel), there is a linear relation between Uot and Uin and Ut,,e can be obtained as

the y-intercept of this straight line. It is more complicated for the case of ferric ion

cluster (lower panel), Utrue is clearly dependent on Ui, as implicated by the non-

linearity of the curve. As suggested in the previous section, Utrue should be evaluated

at Uin=Utrue. Therefore, a series of tangents to the curve are drawn and we obtained

the y-intercept for each tangent. Ut,,e is equal to the value of the y-intercept evaluated

with a tangent drawn at Ui,=Utue. With this procedure, we found that Utrue=5.6

eV also.

With these values of U's, we can obtain Aj, following the same procedure in sec-

tion 5.6. Ai,=0.75 eV, as compared to Ai,=0.50 eV as in the case of U=O eV, was

obtained when U=5.6 eV. These difference of 0.25 eV can be directly translated to
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Figure A-2 Ut as a function of Ui, for ferrous and ferric hexa-aqua ion clusters.
In the case of ferrous ion cluster (upper panel), Uot and Ui, obey a
linear relation and Utrue can easily be obtained from the y-intercept of
the straight line. In the case of ferric ion cluster, a series of tangents
were drawn and Utrue equal the value of the y-intercept evaluated with a
tangent drawn at Ui,=Utr,,e.

the total reorganization energy, and for the case when two ions are at 5.5 A apart,

the total reorganization energy, with the Hubbard U correction, is 2.25 eV.

This change in the inner sphere reorganization energy can be understood by the

changes in relaxed structures of the clusters with a finite U. Table A.4 shows the six

Fe-O distances for hexa-aqua ferrous and ferric ions with U=O and 5.6 eV. While

the optimum structure for Fe(H 20)2+ is altered significantly with U=5.6 eV, there

are minimal changes in the case of Fe(H 20) 3+. The larger elongations in dFe-O

in the former case means that a bigger reorganization is required upon a change in

oxidation state of the ions, and thus a larger reorganization energy. The elongation of

dFe-o can be explained by the fact that the Hubbard U functional penalizes fractional
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Table A.1: The dFe-O's of the relaxed structures for hexa-aqua ferrous and ferric ions
with U=0 or 5.6 eV.

U=0 eV U=5.6 eV
Fe(H 20)2+  dFeeO=2 .11 A 2.11 A dFe-O=2 .15 A 2.15 A

2.14 A 2.14 A 2.14 A 2.14 A 2.18 A 2.18 A 2.18 A 2.18 A
Fe(H20) 0 dFe-o=2.05 A 2.05 A dFe-o=2.06 A 2.06 A

2.05 A 2.05 A 2.05 A 2.05 A 2.06 A 2.06 A 2.06 A 2.06 A

occupations, thus weakening the hybridization between the lone-pair orbitals of water

and the empty d-orbitals.

A.5 Implementation of DFT + Hubbard U in Car-

Parrinello molecular dynamics

Due to the promising applications of the Hubbard U functional to studying systems

with transition metal ions, it will be of wide interest if we could perform finite temper-

ature studies using this Hubbard U functional. In view of this, we implemented the

Hubbard U functional in the Car-Parrinello molecular dynamics part of the Quantum-

espresso package [61]. We have also performed molecular dynamics simulations of

ferrous and ferric ions solvated in water with the Hubbard U functional and we will

present the results below.

By including the Hubbard U correction, the new extended Car-Parrinello La-

grangian can be written as,

£CP= LVfi dr i + M+MI 2 - EEDFT [{'hi}, {RI}]
i I

- Eu[n"m,i] + A i dr'i (r) 1 (r) - j , (A.20)

ij

With the new energy functional, the wavefunctions and the ions evolve according to
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the new equations of motion,

dEDFT'iO j I7 dEjRn"mI
MIRI =R}]_ dE (A.21)

dRI dRI
6EDFT[{ij}, {R,}] 6Eu[n•,,n,]
PA - -' + Aijjj. (A.22)

According to the Hellmann-Feynman theorem, forces on ions can be written as

F' = (Id(HDFT + HU) I ') (A.23)
dR I  IV

ia

where H/u is the potential due to the Hubbard functional,

H u = S({Rj}) )(6m,mt - 2n"' (, IS({R}). (A.24)
I,m,m'

A.5.1 Car-Parrinello molecular dynamics simulations of aque-

ous ferrous and ferric ions with Hubbard U corrections

We performed molecular dynamics simulations with the Hubbard U corrections both

to test the code and to study the effects of this functional on the dynamics. We

carried out two separate simulations with either ferrous or ferric ion solvated in 31

water molecules. In Car-Parrinello molecular dynamics simulations, the constant of

motion is usually the quantity to look at in order to determine the accuracy of the

implementation. The upper panel of Fig. A-3 shows the constant of motion and the

potential energy as a function of time of the molecular dynamics simulations produc-

tion run with aqueous ferrous ion and U=5.6 eV. In these simulations, a fictitious

mass (I) of 450 a.u. and timestep of 2.5 a.u. are used. The temperature is set at

400 K. This simulations was started from an ionic configuration from the end of a

11 ps of aqueous ferrous ion with U=0 eV and the first 1 ps of this simulation is

discarded. The constant of motion in Fig. A-3 has negligible fluctuation as compare

to the change in the potential energy. The lower left panel in Fig. A-3 shows Fe-O

radial distribution function for aqueous ferrous ion in the case with U=0 or 5.6 eV.
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Upper panel: The potential energy and the constant of motion of the
simulation with ferrous ion solvated in 31 water molecules. Lower left:
the Fe-O radial distribution functions of aqueous ferrous ion with U=O
and 5.6 eV. Lower right: the Fe-O radial distribution functions of aqueous
ferric ion with U=0 and 5.6 eV.

Consistent with the static calculation in Section A.4, the radial distribution function

with U=5.6 eV shows the first peak at a large distance. In the case of aqueous ferric

ion, there is no significant change in the radial distribution function.

A.6 Conclusion

A DFT + Hubbard U approach describing the strong correlations of transition metal

materials is introduced. It has been shown to produce significant improvement from

widely used DFT functionals in describing condensed systems with transition metal
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ions [145]. Using linear-response calculations [146], we calculated the value of U for

hexa-aqua ferrous and ferric ions. With this correction included, it is shown that the

reorganization energy is increased by 0.25 eV. Moreover, we have implemented the

Hubbard U correction in Car-Parrinello molecular dynamics of the Quantum-Espresso

package [61]. Using the simulations with the aqueous iron ions as a test, it is shown

that the implementation is working properly. The Fe-O radial distribution functions

for ferrous or ferric ions solvated in water are also shown.
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