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Abstract

The axisymmetric vortex-scalar element method is used to simulate the reactive flow in a com-
bustor in which a central fuel jet interacts with an annular air stream across a thick bluff body. The
vortex method is a Lagrangian scheme in which the vorticity of the flow field is discretized onto a
set of finite-area elements with overlapping cores. Convection is simulated by transporting these
elements, which are generated within numerical boundary layers, along particle trajectories.
Molecular diffusion is modelled by the random walk. Lagrangian elements are also used to trans-
port the species concentration fields in order to maintain the grid-free, self-adaptive nature of the
algorithm. The overlap between two scalar elements carrying different species, caused by
molecular diffusion, is used to compute mixing and in the fast-chemistry limit, the product forma-
tion. In the exothermic reactive-flow calculation, temperature nonhomogeneity is dynamically
modelled by volumetric sources.

Simulations reveal that the unsteady dynamics, mixing, and combustion depend strongly on the
inlet velocity ratio, the central-jet velocity spectrum, and the enthalpy of reaction. For steady
inflow, the complex flow structure in the near-wake region is a dynamically unstable system
involving two coexisting and coupled flow instabilities: the central-jet shear layer instability and
the outer-stream recirculation region instability. The jet shear layer instability leads to the forma-
tion of organized fuel eddies which merge with the air eddies of the outer stream, and a compos-
ite burning structure is shed from the recirculation region periodically. This quasi-periodic
shedding becomes less vigorous as the velocity of the central jet exceeds that of the annular
stream, leading to slower mixing and a longer combustion zone.

The periodic central-jet forcing study shows that a preferred-mode coupling exists between the
forced jet and the large-scale structures within the recirculation region. Time-averaged product
concentration indicates that the mixing rate enhancement depends on the forcing frequency,
as long as the forcing amplitude exceeds a minimum threshold to affect the stability of the jet
shear layer.

When the reaction is exothermic, volumetric expansion occurs within the mixing region. As a
result, the large-scale eddies become more diffuse, and their rotational rates decrease. Many of
the global characteristic flow features observed in the isothermal flow are also present when the
reaction is exothermic. However, lower unsteady fluctuation kinetic energy accompanying the
reduced vorticity within the eddies somewhat impairs the ability of these large-scale structures to
entrain fluid. Thus, large-scale entrainment is significantly decreased and the reaction zone is
longer in the exothermic reactive flow.
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1. INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

Nonpremixed turbulent combustion is of fundamental importance and is being utilized in
virtually all the modern energy conversion devices found in power generations, manufacturing
operations, and propulsion systems. In a nonpremixed combustion system, the reactants are
injected as separate streams into the combustion chamber. Thus, mixing of the reactants and the
chemical reaction process are required to take place concurrently in the reaction zone. In order
to achieve highest efficiency and complete combustion in a given volume, turbulence is usually
induced in the reaction zone to promote mixing among the chemical species. As a result, flow
fields inside the combustion chambers of nonpremixed combustion systems are usually time-
dependent and highly turbulent, involving complex Interactions and coupling of fluid mechanic,
thermodynamic, and chemical processes. It is well-known that the mixing rate in the reaction
zone is usually increased by turbulence, thus, greatly enhancing the overall chemical reaction.
On the other hand, the release of thermal energy and concomitant density changes from com-
bustion can significantly affect the flow dynamics and the turbulence level in the flow field. Thus,
a thorough understanding of the complex turbulence dynamics within the reaction zone and the
flow-combustion interaction are necessary in order to be able to improve the efficiency and to
optimize the burning process.

Nonpremixed turbulent reactive flows have been the subject of a large number of exper-
imental, analytical, and numerical studies in the last century [55, 63, 86, 117, 119, 120, 147]. Owing
to the complex interaction between the flow and the chemistry, a thorough understanding of
nonpremixed turbulent reactive flows requires detailed analyses of the chemical reaction mech-
anisms, the production and the interaction of the chemical species in the reaction zone, and the
flow-combustion interaction. On one hand, the combustion process is greatly influenced by the
hydrodynamic field through such effects as strain rate, flame elongation, and curvature; on the
other hand, the hydrodynamic field is affected by the combustion process through volumetric
expansion and baroclinic vorticity generation. Detailed temporal and spatial distributions of
velocity, temperature, and species concentrations are generally required for a complete
description of a reactive flow system. However, such detailed information is difficult to obtain
from experiments due to the inherent unsteady and fully three-dimensional nature of the flow. As
for numerical investigations, despite extensive research effort and all the advances in computa-
tional ability in the last twenty years, no realistic solution of the complete governing equations for
nonpremixed turbulent reactive flows has yet been achieved, nor is it likely to be, in the foresee-
able future. The major difficulty in analyzing nonpremixed turbulent reactive flows numerically
comes from the fact that it involves a detailed examination of the convective and diffusive trans-
port processes, coupling with chemical kinetics and heat transfer. The fundamental problem is
that these processes occur over length and time scales as large as the confinement and as small



as the molecular mixing in a given flow. Unfortunately, in most practical cases of Interest, these
scales are separated by several orders of magnitude. It is this complex close coupling and feed-
back between the flow and the chemistry, and the wide range of length and time scales that
deter any earnest attempt at solving the complete set of governing equations, and making the
development of a sound theory from first principles for these flows next to impossible.

Over the years, theoreticians and numerical researchers have Instead devoted much
research effort to the development of numerical methods and the construction of turbulence
models that can accurately predict the structures of turbulent reactive flows [55]. To treat the
complex, unsteady behaviors of turbulent flows, statistical methods have been developed and
one of the two main approaches-the moment-equation methods or the probability-density-
function (PDF) methods-is generally followed. In the moment-equation approach, averages
(usually time-averages) of the relevant physical variables are introduced into the averaged gov-
erning equations. However, the procedure leads to a closure problem, introducing more
unknown quantities than equations available. This dilemma Is generally resolved by introducing
ad hoc assumptions relating the various unknown quantities to close the system of equations. The
main difficulty, however, is in proposing reasonable closure models, and it becomes even more
difficult when chemical reactions occur in the flow field. Despite all these problems, moment-
equation methods remain popular because they are relatively easy to use and to implement.
Most models suggested in the literature can easily be implemented into computer codes devel-
oped for solving laminar flows [14]. This allows engineers to economically obtain approximations
to various idealized reactive flows for different sets of flow conditions. The numerical results
obtained in this way have, in many cases, exhibited relatively good agreements with experimen-
tal measurements [23, 24, 69, 77, 86, 106, 123, 137, 138, 139]. Over the years, moment-equation
methods have been improved significantly as a result of extensive research, as well as due to
their frequent use in many industrial applications. It appears that these methods will remain popu-
lar for engineering applications for the foreseeable future.

The second approach, using the probability-density-function methods, relies on the equa-
tions of the joint probability functions for the relevant physical variables. The advantage of these
methods is due to the fundamental property of the PDF; namely, functions of the scalars, includ-
ing the mean reaction rate, can be obtained directly from their PDFs. Closure based on the PDF
methods has proven very useful in the theoretical description of turbulent flows since the original
work of Howthorne et al. [66]. The main idea behinds this approximation is to consider the flow
quantities as random variables, and the PDFs of these variables are being transported in the solu-
tion procedure Instead of their finite moments. In flow simulations using PDF methods, the mod-
elled transport equations for the two moments of the scalar fields are solved, and the shapes of
the probability distributions are approximated based on the first two moments. In this way, all the
higher-order moments required for the equations appeared in closed form. Extensive experiment
studies have been conducted to obtain measurements of the PDFs for the scalar quantities for a
wide range of flows including jets, wakes, recirculating flows, and mixing layers [54, 86]. Based on
these experimental data and the numerical results obtained from simulations using moment-



equation methods, researchers have had some success using this approach in obtaining numeri-
cal results for some idealized cases which have shown good agreements with experimental mea-
surements. Although results obtained from the PDF approach are encouraging, this approach still
cannot account for the complex PDF distributions of the flow which are frequently observed in
the mixing zone of practical combustors. Another more systematic way of evaluating PDFs has
also been developed in recent years. It involves the obtaining and solving of a transport equation
governing the evolution of the PDF, rather than approximating its distribution from its moments.
Nevertheless, models are again needed for the closures of certain fluctuation quantities [55].
Details of the different closure models and further discussion on recent progress of the PDF meth-
ods for turbulent reactive-flow simulations can be found In [86, 114].

Despite all the advances in developing better and more sophisticated turbulence models
over the years, simulations using the two approaches just described can yield satisfactory results
only if the flow is dominated by homogeneous turbulence [8, 63]. Unfortunately, the reaction
zones of most nonpremixed combustion systems are usually dominated by large-scale turbulent
coherent structures [85, 117, 119, 120]. It was pointed out by Libby and Williams that when coher-
ent structures are present in a flow, the accepted theory of turbulence dynamics involving the
cascading of large-scale eddies into small dissipative scales must be modified to account for the
evolution of the coherent structures which may increase in size, by pairing and merging, in the
downstream direction. The existence of coherent structures in a flow implies that unconditional
averaging of the flow quantities overlooks and disregards an important physical phenomenon
[86]. Currently, no known turbulence closure model has taken into account the contribution of
the coherent structures. Thus, in general, it is inappropriate to use the two approaches just
described to simulate the reactive flow field in most practical nonpremixed combustion systems.

Recent advancement in supercomputer technologies, especially in the last two
decades, have had a major impact on turbulence research. As mentioned earlier, owing to the
complex nonlinear interaction between the flow and the chemistry, it is still far from possible to
simulate nonpremixed turbulent reactive flows with realistic governing parameters given the cur-
rent state-of-the-art computational technologies. However, significantly Improved efficiency, stor-
age capability, and speed of supercomputers over the last twenty years have made it possible
for researchers to solve the appropriate unaveraged transport equations governing turbulent
flows over a limited range of flow parameters. Nonetheless, to simulate nonpremixed turbulent
reactive flows, modellings are still required and assumptions must also be made concerning other
aspects of the simulations in order to make the solution procedure feasible, despite the fact that
modelling of certain fundamental properties of the turbulence phenomena is no longer abso-
lutely necessary.'

For this research, we would like to select a unique combustor geometry of which the flow

1. One should always keep in mind that this is only true for extremely limited range of Reynolds num-
ber.



dynamics encompass as many as possible of the distinctive characteristic flow features in the
reaction zones of practical nonpremixed combustion systems, and yet is simple enough to allow
us to study the problem numerically by solving the unaveraged governing equations after the
application of certain simplified assumptions. The flow of two axisymmetric coaxial jets separated
by a thick bluff body is one configuration satisfying this requirement under a restricted range of
flow Reynolds number.

The unsteady dynamics of axisymmetric, coaxial-jet, confined bluff-body flow (Figure
1.1a) have commonly been used as a generic model for the studying of turbulent mixing and
flow-combustion interactions [85, 117, 119, 120]. This is due to the fact that the wake region down-
stream of a bluff body is usually dominated by coherent vortical motions, and the unsteady flow
dynamics contain many of the complex features which are commonly observed in the flow fields
of practical combustors. (See, for example, Davies' experimental study of a D-shaped cylinder
[31], Owen and Johnson's circular cylinder experiment [107], and the three-dimensional wake of
an ellipsoid study of Perry and Watmuff [112].) Considerable effort has been devoted to the
development of numerical models for simulating this type of flows [84]. Unfortunately, the wake
region downstream of the bluff body is highly unsteady, three-dimensional, and contains a wide
spectrum of length scales when the flow Reynolds number is high. Introducing chemical reaction
into the flow further complicated the problem. The excessively large amount of computer time
required to simulate the post-transitional, reactive recirculation zone behind a three-dimensional
bluff body taking into account In detail of all the fluid-chemistry interactions in the flow renders
the numerical approach non-practical. However, it has been confirmed experimentally that
although the small-scale fluctuations In post-transitional, axisymmetric bluff-body flows are three-
dimensional, the primary flows usually consist of toroidally-shaped large-scale eddies which are
quasi axisymmetric, provided that the flow Reynolds number doesn't greatly exceed the critical
Reynolds number [84, 85, 119]. It has also been shown that although the small-scale eddies are
responsible for the final stage of mixing, the process is initiated by the large-scale structures in the
flow since they entrain fluids from the reactant streams into the mixing zone [86, 117, 119, 120].
Thus, understanding the dynamics of axisymmetric, coaxial-jet, confined bluff-body flows is impor-
tant and is of great interest from both practical and fundamental considerations. Significant
research effort has been devoted to the unsteady simulation of reactive bluff-body flow in the
last two decades [31, 52, 53, 71, 85, 93, 94, 117, 119, 120]. Results obtained from this extensive
effort have shed much new light on the unsteady dynamics of the flow and the overall charac-
teristics of the reactive field in the wake region of the bluff body.



1.2 OBJECTIVES

The primary objective of this work is to study the flow dynamics and the large-scale
entrainment and mixing in the near-wake region of a two-stream, coaxial-jet, axisymmetric bluff-
body combustor (Figure 1.1). Owing to the fact that most diffusion flames in practical nonpre-
mixed combustion devices are mainly limited by mixing and diffusion of the various chemical
species in the flow system [86], the aerodynamic aspects of the flow are emphasized in this
research rather than the chemical kinetics or the reaction mechanisms. Specifically, the research
will attempt to (1) understand and quantify the evolution, interaction, and the breakdown of the
large-scale vortical structures generated at the inner and the outer edges of the bluff body within
the recirculation region as a function of different inflow boundary conditions, both steady and
time-dependent, and under the assumption of isothermal as well as exothermic reaction; (2)
investigate how the large-scale entrainment and mixing are affected by the fluctuation intensity
in the flow field and by the inflow boundary conditions; and (3) study the effects of the expansion
velocity field on the flow dynamics and quantify the effects of the thermal energy released from
combustion on the large-scale entrainment and mixing.

In order to simplify the solution procedure to the point where detailed parametric studies
are possible at reasonable computational costs, the axisymmetric-flow assumption will be
invoked in all the numerical simulations throughout this research. Admittedly, the axisymmetric-
flow assumption is in strong conflict with the fact that all turbulent flows are three-dimensional,
especially at the small-scale level. However, the resulting errors, in terms of the large-scale
entrainment and mixing in the near-wake region, are expected to be acceptable. This presump-
tion is supported by many experimental and numerical studies on this confined, bluff-body flow
configuration [52, 93, 117, 119]. It has long been observed from experimental studies that
although the small-scale fluctuations in this confined, buff-body flow configuration are three-
dimensional, within a limited range of Reynolds number the primary flow consists of toroidally-
shaped large-scale vortical structures which are quasi axisymmetric [85, 119]. Therefore, it is antic-
ipated that the axisymmetric model is able to capture the unsteady dynamics of these large-
scale structures and is capable of predicting the initial stage of entrainment in the near-wake
region of the bluff body accurately.



1.3 APPROACH AND ORGANIZATION

The Lagranglan Vortex-Scalar Element Method is used in this research as the numerical
tool to perform the simulations. The vortex method is an adaptive Lagrangian scheme in which
the vorticity of the flow field is accurately discretized by a set of finite-area vortex elements with
overlapping cores [19, 20]. Lagrangian scalar elements are also used in the simulations to trans-
port the species concentration fields in order to maintain the grid-free, self-adaptive nature of the
algorithm [50]. Furthermore, different sets of scalar elements can be used to transport the con-
centration fields of different species with different diffusivities. Thus, a wide disparity in diffusive
length scales can be accommodated naturally without posing any particular difficulty.

The remainder of the dissertation is organized as follows. The general governing equa-
tions, the formulation of the analytical model, and the simplified governing equations are pre-
sented in Chapter 2. The numerical schemes used in this research are briefly discussed in Chapter
3. Chapter 4 presents results of the isothermal reactive-flow study, and the investigation of the
exothermic reactive flow with low heat release will be presented in Chapter 5. A summary of the
work performed in this research as well as conclusions and suggestions for future work are dis-
cussed in the final chapter.
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Figure 1.1 Geometry of the two-stream, coaxial-jet, axisymmetric bluff-body combustor used in this
research. (a) Schematic drawing of the combustor. (b) Axisymmetric computational domain. All the dimen-
sions in (b) are normalized by the annular diameter (= 0.1 m).
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2. GOVERNING EQUATIONS FOR TURBULENT REACTIVE FLOWS

Turbulence is the most common and the most complicated kind of fluid motion in nature.
Unfortunately, it is notoriously difficult to predict and peculiarly resistant to mathematical treat-
ment. Chemical reactions occur in a turbulent flow, such as in combustion, increases the difficul-
ties of the problem many folds. Nonetheless, turbulent reactive flows are still described by the
conservation equations. Thus, the starting point of simulating turbulent reactive flows should be
the conservation equations for mass, species, energy, and momentum for a multi-component,
reactive mixture. Since these governing equations provide the necessary frame work for all sub-
sequent discussions, establishment of these equations and their exploitation are critical for the
numerical simulation of turbulent reactive flows.

In this chapter, the governing equations for a multi-component, reactive, perfect-gas
mixture first will be presented and discussed, followed by the normalization and the application of
the low-Mach-number assumption to the equations. Although certain characteristic flow features
of real reactive flows can no longer be captured by the equations after the application of the
low-Mach-number assumption, the simplified governing equations have the computational
advantage that acoustic waves are filtered out, thus relieving the time step size constraint but at
the same time, still allowing the flow field to have significant density nonuniformities. Therefore, we
are still able to study the effects of the thermal energy released from combustion on the flow
dynamics and the large-scale entrainment in the near-wake region using the simplified equa-
tions. In Section 2.2, we will obtain the set of approximated equations that is asymptotically valid
for small Mach number. The final set of governing equations, describing the unsteady dynamics
of a reactive flow of perfect gases in an open axisymmetric flow domain with zero swirl, will be
presented in Section 2.3.

A fixed convention on notations will be adopted throughout this dissertation. When we
are considering a dimensional quantity, we label the variable with an asterisk. When we are deal-
ing with a dimensionless quantity, no asterisk is used in the variable.



2.1 GOVERNING EQUATIONS FOR A MULTI-COMPONENT REACTIVE GAS MIXTURE

All analyses concerning the dynamics of fluid flows should begin, either directly or indi-
rectly, with the statements of the three fundamental laws. These laws, which are independent of
the nature of any particular fluid, are 1) conservation of mass, 2) Newton's second law of motion,
and 3) the first law of thermodynamics. Obviously, no process in nature is possible unless the sec-
ond law of thermodynamics is also satisfied in addition to the conservation equations. The three
unknowns which must be obtained simultaneously from the three governing equations are the

velocity u*, the thermodynamic pressure p*, and the absolute temperature T*. Since the final
forms of the conservation equations usually contain two more thermodynamic variables, the fluid
density p* and the specific internal energy of the fluid e*, as well as the two transport coefficients

i* and K* (the absolute viscosity coefficient and the thermal conductivity of the fluid), additional
equations are required to relate these thermodynamic variables and transport coefficients. From
classical thermodynamics and the kinetic theory of gases, it is known that if the flow is assumed to
be in local thermodynamic equilibrium, then the two thermodynamic variables and the two
transport coefficients mentioned above are uniquely determined by the values of p* and T*.
Thus the complete system of equations is closed by assuming knowledge of four state relations

P*= P*(P*T*) e*= e*((PT*)

* = *(t(P*T*) K*= K*(P*T*). (2.1)

Finally, in order to specify a given problem uniquely, proper conditions for u*, p*, and T* at the
boundaries of the flow domain must be established.

The above discussion applies only to fluid flows of assumed uniform, homogeneous com-
position (chemical reactions and diffusion of the species are not considered). For a multi-compo-
nent reactive mixture, the variables in (2.1) are also functions of the mole fraction X, and we must
consider at least two more basic relations, conservation of species and the laws of chemical
reaction, plus additional auxiliary relations such as knowledge of the multi-component molecular

diffusion coefficient d1i = di*(PT *) (13], chemical equilibrium constants K * = K* ( T*), reaction

rates r* = i * (C,*, T *), and the heats of formation H* of the different species in the reactive mix-

ture. In the following section, we will briefly present the fundamental governing equations for a
multi-component, reactive, perfect-gas mixture. These equations supply a complete description
of most reactive flow systems under the imposed assumptions when the equations are derived.
However, owing to the complexity of these equations and the limitations on current supercom-
puter technologies, it is not possible to simulate reactive flows using these equations directly. Thus,
after the presentation of these equations, additional assumptions will be applied in order to
obtain the set of approximate governing equations which is valid for the special flow situations
considered in this research. Detailed derivations of the equations presented in this chapter can
be found in many standard references [3, 7, 13, 20, 125, 129, 146].



2.1.1 THE CONTINUITY AND THE SPECIES CONSERVATION EQUATIONS FOR A MULTI-COMPONENT REACTIVE GAS
MIXTURE

The principle of conservation of mass for species i, when applying to a mixture of N com-
ponents passing through an infinitesimal, fixed control volume within which species i may be pro-
duced or destroyed by chemical reaction at a rate f,* (mass rate of production of species i per

unit volume), yields the following mass conservation equation for the species:'

at*at ( P'u*) = ri*-V" p'*(u' -u*) (i= 1,2,....N). (2.2)

The first term on the left-hand side of Equation (2.2) represents the time rate of change of the
mass (per unit volume) of species i in the control volume, the second term represents the net rate
of mass flux (of species i) passing out of the control surfaces per unit volume2 , and pI* (u* - u*) is

the mass flux of the ith species relative to the local mass-averaged velocity u*. In a multi-compo-
nent reactive mixture of N species, there exists a system of N equations of this kind for the mixture.
The summation of these N equations yields the overall continuity equation,

ap*t +V- (p*u*) = 0, (2.3)

which is seen to have the same form as that for a pure nonreactive fluid. In Equation (2.3), u * and
p* are the local mass-averaged velocity and the local mass density of the fluid, respectively.
Notice that in order to obtain Equation (2.3), we have made use of the relation

N

P*u = p*u* (2.4)
i=1

as well as the law of conservation of mass in the form

N

fi*= 0. (2.5)

Before proceeding any further, it should be pointed out that since only N-1 of the N mass frac-

tions, Y . P p*/p *, in the mixture are independent in any given problem, we can replace any one

of the N equations given in (2.2) by the overall continuity equation given in (2.3) for the mixture
[13].

1. Pressure diffusion, forced diffusion, and thermal diffusion components of the mass flux vector
have been neglected in this equation [13].

2. p* and u* are the mass density and the velocity with respect to a stationary coordinate system
of the i th species, respectively.



The mass conservation equations for the species, as given in Equation (2.2), are fairly gen-
eral and are not useful for obtaining the concentration profiles when they are being applied in
numerical calculations. To make the equations more convenient for computation, Fick's law of
diffusion is generally employed and the flux of species due to molecular transport is replaced by
the appropriate expression involving the concentration gradients. Carrying out the substitution,
the following more restricted diffusion equation for species i In a perfect-gas mixture is obtained
[13]

*+ V (P,*u*) = ir* + V * M M* dM VX (i = 1, 2 ... , N). (2.6)

1=1

In Equation (2.6) C * is the molar density of the mixture, M,* and M * are the molecular weights of

species i and j, respectively, d * is the multi-component diffusion coefficient (the diffusivity of the

pair i-j in a multi-component mixture; in general, d * is not equal to d '), and X, is the mole frac-

tion of species i in the mixture.' For an N-component ideal-gas mixture, the relation is known

between the d*' (the diffusivity of the pair i-j in a multi-component mixture) and the D * (the diffu-

sivity of the pair i-j in a binary mixture). Since the d * are concentration-dependent, Equation (2.6)

is also inconvenient to use in a simulation. It has been shown by Curtiss and Hirschfelder that the

concentration gradient VX, can be related to D ý by the Stefan-Maxwell equations [64]. More-
over, if the mole fraction of species i is small in a mixture, it is possible to define an effective binary

diffusivity D *, in analogy of the binary diffusion coefficient, for the diffusion of species i into the
mixture. By combining the definition of the effective binary coefficient and the Stefan-Maxwell

equations, Curtiss and Hirschfelder had obtained an expression relating D*, the diffusivity of the

pair i-j in a binary mixture, and D*, the effective binary diffusion coefficient for the diffusion of

species i into the mixture. Detailed discussion and derivation of these equations can be found in

[64]. In general, the Di~ are found to be position-dependent. However, the dependency is quite

small under most situations and can usually be neglected.

As will be discussed in Section 2.1.5, a simplified chemical equation of the form

F + aO + PD --a oP + PD is used in all the simulations for calculating the amount of thermal energy

released from combustion, where F, O, D, P represent the fuel, oxidizer, diluent, and products
respectively; a and a are the stoichiometric coefficients, per mole of fuel, of the oxidizer and
products, respectively; and p is the total number of moles of diluent per a moles of oxidizer.
Since the mole fraction of the diluent used in the simulations is much greater than the mole frac-

1. The expression given in Equation (2.6) is the generalized Fick's law of diffusion for a perfect-gas
mixture.



tions of the fuel, oxidizer, or products, the mixture essentially consists of pure inert diluent with
traces of the reactants and products. Furthermore, if the mixture Is at low density and the total
amount of thermal energy released from chemical reaction is small, we can neglect the varia-
tion of the fluid density and reduce Equation (2.6) to

+u*VP* (i= 1, 2,..., N). (2.7)
at* IM

It should be pointed out that in arriving at Equation (2.7), we have made the assumption

V u* = 0 and D* is constant. The condition V - u* is identically zero only when the fluid is
incompressible. Thus, strictly speaking, the species continuity equation as given in (2.7) is applica-
ble only for an incompressible flow. (Equation (2.7) is generally used for diffusion in dilute liquid
solutions at constant temperature and pressure.) However, as a first-order approximation, many
combustion problems have been successfully formulated using Equation (2.7) as the species con-
tinuity equation [50, 51, 80, 101]. For the sake of simplicity and tractability, we will also assume the
species continuity equation can be approximated by Equation (2.7) in this research. However,
one should always keep in mind that the underlying assumptions in which Equation (2.7) is arrived,
especially in the process of choosing flow parameters for a simulation.

Notice that Equations (2.3) and (2.7) were derived using the Eulerian approach. In the
alternative Lagrangian approach, the changes to the properties of a fluid element are recorded
by an observer moving with the fluid element. The transformation of an equation from the Eule-
rian to the Lagrangian description can easily be accomplished by using the definition of the sub-
stantial derivative [3],

D a=D +u* V. (2.8)
Dt* at*

Expanding the divergence term of Equations (2.3) and (2.7) and using Equation (2.8), the continu-
ity and the species conservation equations expressed in terms of the substantial derivative are

DP* + p*(V .u*) = 0 (2.8)
Dt*

and

DP* = D*V 2 * (i = 1 2, ..., N), (2.9)
Dt* IM I I

respectively. When Equation (2.9) is divided by the molecular weight of species i, we get the spe-

cies continuity equation in terms of the molar concentration Ci*:

DC,* 2 * (i = 1, 2, N) (2.10)
Dt*- DiM C, + i

Dt* m



where r,* is the molar rate of production of species i per unit volume. As discussed earlier, in this
study the chemical composition of the flow is assumed to consist of mainly inert diluent with
traces of fuel (F), oxidizer (0), and products (P). Thus, only three species conservation equations
or two species equations and the overall continuity equation are needed for a simulation. If three
species equations are used, we have N = 3 in Equation (2.10) and the index i will imply F, O, or P. In

this case, the diffusion coefficients Di~ are the effective binary diffusion coefficients of these

traces of elements diffusing into the mixture consisting mostly of the inert diluent.

2.1.2 THE MOMENTUM EQUATION

Applying Newton's second law to a fluid passing through an infinitesimal, fixed control vol-
ume, the following momentum equation is obtained [3]:

a(* + V - (p*u*u*) = V II'. (2.11)
at*

The first term on the left-hand side of the equation represents the time rate of change of momen-
tum per unit volume inside the control volume, and the second term represents the net rate of
momentum flux per unit volume passing out of the control volume. Notice that since we are
investigating low-speed reactive flows in the absence of electric and magnetic force fields, all
body forces have been neglected in the above equation. Applying the following vector identity

V - (p*u*u*) = p*u* • Vu* + u*(V. p*u*) (2.12)

to Equation (2.11) and simplifying the resulting expression using the continuity equation, the
momentum equation expressed in terms of the substantial derivative is

Du *
p* = V - I* (2.13)

Dt* ij

The term on the right-hand side of Equation (2.13) represents the surface forces per unit volume.
The surface forces are those applied by external stresses on the surfaces of the fluid element.
These stresses consist of normal and shear stresses and are represented by the stress tensor ri.

Note that the momentum equation, as given in Equation (2.13), is fairly general. It is only when
approximate expressions are inserted for the stress tensor that the equation loses its generality. For
all gases which can be treated as continuum and certain liquids, it has been observed that the
stress at any given point in the flow is linearly dependent on the rate of strain of the fluid. A fluid
which behaves in this manner is known as a Newtonian Fluid. For a Newtonian fluid, the stress ten-
sor is given by [3]

au* au* 2 auk
T = (-P*) I * +ax* 3 axk) (i, j, k= 1, 2, 3) (2.14)

aXj* Xi *



where 6 is the Kronecker delta (6,j = 1 if i = 1, and Ny = 0 if I * j) and p* is the static pressure.
Note that in expressing the stress tensor in the form of Equation (2.14), Stokes' hypothesis has been
implicitly assumed. Thus, the coefficient of bulk viscosity is neglected in the equation and the sec-
ond coefficient of viscosity g*' is given by

-2
S= 3 C. (2.15)

For convenience, the stress tensor is usually separated in the following manner

S= -P*6pil + (2.16)

where t~ represents the viscous stress tensor given by

= u,* +u 1* 2 Ouk*
= * -+a-- * i ax- (i, j,k = 1, 2, 3). (2.17)

aux axi* 3 ilaxk

By substituting the expression in Equations (2.14-2.17) into (2.13), we obtain the well-known Navier-
Stokes equation:

Du* a( u,* +au* 2 aUk*
p* D = -Vp* + *- + 6 = -Vp* + V - ,. (2.18)

Dt* ax axl* ax1* 3 11 ax k *i

It should be noted that, since body forces have been neglected in the derivation, Equation (2.18)
has exactly the same form as the momentum equation for a nonreactive Newtonian fluid. Fur-

thermore, if the flow is either anelastic' or incompressible with constant coefficient of viscosity [0*,
Equation (2.18) will reduce to the much simpler form

Du* = -Vp* + l*V2U*. (2.19)

2.1.3 THE VORTICITY TRANSPORT EQUATION

The momentum equation, as given in Equation (2.18) or (2.19), is expressed in terms of the
primitive variables p*, p*, and u*. It is well-known that for certain high-Reynolds-number flows it is

advantageous to describe the flow field in terms of the spatial distribution of the vorticity Q*,

where Q* = V x u*, rather than in terms of the primitive variables, especially if the flow is barotro-

1. The anelastic-flow assumption removes acoustic phenomena from theoretical consideration,
while still allowing an accurate accounting for (1) the buoyancy and inertial effects of variable
density, (2) the modification of viscous forces and heat conduction by the variation of transport
properties, and (3) the velocity Induced by moderately slow expansion or contraction of the par-
ticles. Note that the term anelastic applies to the flow, rather than to the fluid [129].



pic' [20, 129]. The main reason is that a barotropic flow starts from rest under the influence of con-
servative body forces, and only those fluid elements that have been subjected to viscous torques
ever acquire angular velocity, which is equal to one-half of the vorticity. The rest of the fluid
moves in accordance with the relative simple laws of irrotational flow [129]. Moreover, for many
real flows the regions where vorticity is other than zero is usually small, even if the flow is not baro-
tropic. This is especially true for flows at high Reynolds numbers. Thus by describing the flow field in
terms of the vorticity, it is possible to develop interesting and useful numerical schemes which can
be used to analyze the generation of vorticity on a no-slip boundary, and the subsequently
motion of the vorticity by convection and diffusion with significant reduction in computational
requirements [7, 19, 20]. In this section, we will demonstrate the procedure of applying vector
operations on Equation (2.18) in order to obtain the vorticity transport equation.

The divergence and the curl of a vector function of position are fundamental differential
operators in vector analysis which yield quantities independent of the coordinate system. The
equation describing the transport of vorticity in a flow can be obtained simply by performing
vector operations on the momentum equation. Taking the curl of Equation (2.18) we get

VxDu = Vx - Vp* + V( X-(V.•) .* (2.20)
Dt* P* p* ij

From the following two vector identities

Vx (A -VA) = -Vx [Ax (Vx A)] (2.21)

Vx (AxB) = (B V)A-(A V)B+A(V B)-B(V A) (2.22)

we see that the first term in Equation (2.20) can be expressed as

Vx Du* r u * u, ,]Vxt - Vx Lat +  .*vu
Dt* I at*

_a (v X u*) - V x [u* x (Vx u*)]
at*

= Vx [u* x Q*]
at*

Sa* [ (* V) u* - (u* - V) Q*+u* (v - *) - *(v *)]. (2.23)at*

Since V - V* = V - (V x u*) = 0 for any vector field, Equation (2.23) is reduced to

1. A barotropic flow is one in which surfaces of constant pressure and surfaces of constant density
coincide, that is, Vp*x Vp* = 0.



Du* a*,
vx t* at + (u* . V)O* + *(v-u*) - (* .v)u*Dt + ) - ( ) u

=t

Next, the first term on the right-hand

give

Vx (vp*)

side of Equation (2.20), V x (Vp*) can be expanded to

1
= VP*x Vp*

P*
(2.25)

Note that the second term on the left-hand side in the above equation vanishes because of the

fact that V x V is identically zero. Finally, for the last term in Equation (2.20), V x 2(V -r* ,

we have

xV * +-1 [VxV-* ]
ij p• ij

1I -v.,r* XVp*]
P* i

+ - [V x V ]
p* ](

+ [VxV X ]

By substituting Equations (2.24-2.26) into (2.20), we obtain the three-dimensional vorticity transport
equation

DQ* 1
Dt- +*(V U*) -Q*" Vu* = Vp*
Dt* P*2

1 1x Vp*+-[v.-r* Vp*]* + -[vv.* ].
xIp + Ij,

An alternative form of Equation (2.27) can be obtained as follows. Since

= p, 1 Dt*L p*Dt*
E* DP*1

p*2Dt*j
D Q* Q*DP*
Dt* p* Dt*

and from the continuity equation we have

Dp*
D -p*(V u*),

Dt*

(2.24)

= -v( x Vp*+ ,(V x vp*)

(2.27)

(2.28)

(2.29)

(1 (V'•*V
V p* )

(2.26)

p* D *Ft*p;

V( 1 )



thus, Equation (2.27) can alternatively be expressed as

Dt* [•p * Vu*] = 1 Vp*x Vp*+ {- [V - x Vp*] + [VxV ]}. (2.30)

Equation (2.27) or (2.30) is the general vorticity transport equation. Both equations are valid for a
three-dimensional flow which does not necessary have to be barotropic. The vorticity transport
equation is greatly simplified for an anelastic flow or an incompressible flow with constant density
and viscosity coefficient. Under the later assumption, the equation is reduced to

DO*- Q* Vu*- 1 = (v*V 2 *) (2.31)Dt* P*

where v* m= L*/P* is the kinematic viscosity.

2.1.4 THE ENERGY EQUATION

The first law of thermodynamics for a system relates the changes of state experienced by
the system to the energy interactions between the system and its surrounding. Consider energy in
the forms of heat and work only, the first law of thermodynamics for a system is

dE* = 8Q*-6W* (2.32)

where 6 Q* and b W* are energy crossing the boundaries of the system in the forms of heat and
work, respectively, and E* is the total energy of the system. For a moving system, such as a flow-
ing fluid element, we assume that only the internal energy and kinetic energy are significant.
Thus,

E* = p* e* + (u*" u*) (2.33)

where e* is the internal energy of the fluid per unit mass. Similar to the conservation of mass and
momentum, applying the first law of thermodynamics to a fluid passing through an infinitesimal,
fixed control volume yields the following energy equation

aE* *
at*• +V (E'u*) =a -Vq*+V" (II u*). (2.34)

The first term on the left-hand side of Equation (2.34) represents the time rate of change of total
energy per unit volume in the control volume; the second term represents the net rate of total
energy per unit volume leaving the control volume through the control surfaces. The first term on
the right-hand side of the equation is the rate of heat produced per unit volume inside the con-
trol volume, and the second term, V -q *, is the rate of heat loss by conduction (per unit volume)
through the control surfaces. For most gases under normal conditions, the heat transfer is accu-



rately described by Fourier's law of heat conduction. Thus, the heat flux vector q* can be
expressed as

q* = -K*VT*, (2.35)

where K* is the coefficient of thermal conductivity and T* Is the absolute temperature. Finally,
the last term on the right-hand side of Equation (2.34) represents the work done on the control
volume, per unit volume, by the surface forces.

The energy equation can be recasted into a more useful form
as follows. Notice that

for numerical calculations

D (E*/P*) I= -1 DE* E* Dp*
Dt* P*Dt p* Dt* I

(2.36)

and from the continuity equation we have

Dp*D -p* (V u*).
Dt*

(2.37)

Combining Equations
be expressed as

(2.36) and (2.37) we see that the left-hand side of Equation (2.36) can also

D (E*/p*)
p*D

Dt*

1 DE* E*
p*--+ - (V u*)
P*Dt* P*

D E*= +E* (V u*)
Dt*

- *+ u* VE* + E* (V u*)
at*

a E*
- E +V (E* u*).

at*

Therefore,

D (E*/p*)
Dt*

De* D[ (u* u*)/2] a E*
p* + p* + V V (E*u*)
Dt* Dt* at*

since E* = [e* + (u* - u*)/2] p* by assumption. Now, forming the scalar dot product of the
momentum equation (2.18) and the velocity vector we get

(2.38)

(2.39)



p* . u* = --Vp*u*+ (V .¶*) "u*. (2.40)

Since

D[(u* u*)/2] p* Du* 2 Dv* 2 Dw* 2

p* +- +
Dt* 2 Dt* Dt* Dt*

(Du* Dv* Dw*

p* u* - v v* + w* (2.41)
Dt* Dt* Dt*

and

Du* Du* Dv* Dw*
P D+ + w* , (2.42)Dt* Dt* Dt* Dt*

therefore, combining Equations (2.39-2.42) we get

D (E*/p*) = p*DeVp* u*+ (V .l* ) u*, (2.43)
Dt* Dt*

or equivalently as

a E* De*+ V ( E* u*) p* -Vp* u*+ (V'T* ) u*. (2.44)
at* Dt*

Substituting the above equation and Fourier's law of heat conduction (2.35) into Equation (2.34)
and simplifying the result, we get

Dt*

The last group of terms on the right-hand side of Equation (2.45) is known as the dissipation func-
tion and is generally given the symbol cv*. It represents the heat equivalent of the rate at which
mechanical energy is expended in the process of deformation of the fluid due to viscosity. Rewrit-
ing Equation (2.45) using the definition of the dissipation function, we get the following form of the
energy equation:

pDe* + p* (V u*) = * + V - (*V T*) + *. (2.46)
Dt*

The energy equation, as given in (2.46), uses the internal energy of the fluid as the princi-
pal variable. Since only low-speed reactive flow of perfect gases will be investigated in this study,
the thermal conductivity K* can be approximated as constant [13] and the energy equation
expressed in terms of the static temperature is the most compact and useful. We can reformulate



Equation (2.46) using the static temperature of the fluid as the principal variable as follows. From
the definition of the enthalpy we have

h* a e* + p*v* = e* + (2.47)
P*

where v* = l/p* is the specific volume of the fluid. Differentiating the above equation with
respect to time, we see that

Dh* De* D (P*/P*)
Dt* Dt* Dt*

De* [ P*(DP*/Dt*) - p*(DP*/Dt*)1
Dt* p*2

De* 1 DP* P* DP*- + . (2.48)
Dt* P*Dt* p* 2 Dt*

By substituting the continuity equation,

DP -P*(V -u*), (2.49)
Dt*

into Equation (2.48) we get

De* Dh* 1 DP* P*
= D* P* *(V u*). (2.50)

Dt* Dt* P* Dt* P*

Finally, by substituting the above equation into (2.46) and simplifying the resulting expression, we
get the energy equation in terms of the specific enthalpy:

P*Dh* DP* _= Q+ 2 2Tt +. (2.51)
Dt* Dt*

Notice that in Equation (2.51) the thermal conductivity is assumed to be constant. In general,
without specifying the form of the function explicitly, the specific enthalpy can be written as

h* = h*(P* T*). (2.52)

Differentiating the function we get

dh* = ah* + h*dP* - dT* = p,*dT* (2.53)FT* aP* IT*

where



ah* * = N C* Y= + R* (2.54)
aT* p i P

(Zp* is the mixture-averaged specific heat at constant pressure). Note that the second equality in

Equation (2.53) holds because of the fact that for a perfect gas the internal energy per unit mass
e*, hence h*, is a function of temperature only. Thus,

ah*- 0 (2.55)
T*

identically and

Dh* DTDh* - DT* (2.56)

Substituting Equation (2.56) into (2.51), we obtain the energy equation in terms of the static tem-
perature:

DT* - 1 DP* -
p* = - [ H* f*+ K*V2T*+*]. (2.57)
Dt* YR* Dt* YR*

In Equation (2.57) y = Z,*/ C* is the ratio of the specific heats, Q* H*iF* where H* is the heat

of reaction per unit fuel burned and iF* is the time rate of fuel consumption per unit volume,' and

R* R*/w * is the gas constant where R* is the universal gas constant and

--* 1
W N (2.58)

i (Y,/W,*)
i=1

is the mixture-averaged molecular weight of the working fluid (Y, and Wi * are the mass fraction

and the molecular weight of species i, respectively).

2.1.5 THE CHEMICAL EQUATION

In practical combustion devices, fuels are normally burned with air. Dry air is a mixture of
gases that has a representative composition by volume of 20.95% oxygen, 78.09% nitrogen, 0.93%
argon, and traces amount of carbon dioxide, neon, helium, methane, and other gases [61]. In a
combustion process, oxygen is the main reactive component of air. It is usually sufficient to

1. Note that ir* is the mass rate of fuel consumption per unit volume, which is differ from RF*, the
molar rate of fuel consumption per unit volume, by a factor of 1 / W*.



assume air as consisting of 21% oxygen and 79% inert gases taken as nitrogen (commonly know
as atmospheric nitrogen). For the purpose of computations, we can assume that there are
approximately 3.773 moles of atmospheric nitrogen for each mole of oxygen.

In combustion, it is possible to oxidize a hydrocarbon fuel completely if sufficient amount
of air is provided. The carbon in the fuel then will be converted to carbon dioxide and the hydro-
gen will be converted to water. The nitrogen in the air is generally not affected significantly by the
combustion if the products of reaction are at relatively low temperature. In that case, the nitro-
gen serves as a diluent and the overall single-step, irreversible reaction equation for a general
hydrocarbon fuel of average molecular composition CaHb with air is [61]

b b b
CaH b + (a + -) (O2 + 3.773N 2) -- aCO2 + 2 H20 + 3.773 (a + f ) N2 . (2.59)

Notice that Equation (2.59) only relates the elemental composition of the reactant and product
species for complete reaction, it does not indicate the process by which combustion proceeds,
which is much more complex. Nonetheless, the use of Equation (2.59) in reactive flow simulations
is usually sufficient and can be justified when there is a slow rate-determining step in the combus-
tion process, which is clearly the case In the present study.

As mentioned in the Introduction, the main emphasis of this research is on the aerody-
namic aspects of the flow, rather than the chemical kinetics or the reaction mechanisms. The
main reason for including a chemical equation in the simulations is for calculating the thermal
energy released from combustion. Thus, it is unnecessary for us to consider the fuel and air com-
positions in detail, and the following generic chemical equation can instead be used in the simu-
lations:

F + aO + PD --* oP + D (2.60)

where F, O, D, P represent the fuel, oxidizer, diluent, and products, respectively; a, and a are the
stoichiometric coefficients, per mole of fuel, of the oxidizer and products, respectively; and P is
the total number of moles of diluent per a moles of oxidizer.' Using Equation (2.60) in numerical
simulations, the effects of the thermal energy released from chemical reaction on the flow
dynamics can conveniently be investigated without having to worry about the complex details
of the chemical species and the reaction mechanisms.

1. Note that in all the simulations performed in this research, the mole fraction of the diluent is
always much greater than the mole fractions of the reactants and the products.



2.2 NONDIMENSIONAL FORM OF THE GOVERNING EQUATIONS AND THE LoW-MACH-NUMBER APPROXIMATION

The governing
been presented in the
the primitive variables,

Continuity

Species conservation

Momentum

Energy

Equation of state

Reaction

equations for a multi-component, reactive, perfect-gas mixture have
last section. For convenience, the final forms of the equations, in terms of
are summarized in Table 2.1 below'

DP*Dt + P*(Vu*) =0

DC,* ,_2C* *L- D *V C, liDt* m

Du*
pDt* = -Vp*+V i

P*DT* y-1 DP*

Dt* YR* Dt*

p* = P*R*T*

(2.61)

(I = F, O) (2.62)

(2.63)

(2.64)=( [ H*F *+ K*V2T * + Q*]YR*

(2.65)

(2.66)F + aO + PD -- aP + PD

Table 2.1 General governing equations for a multi-component, reactive, perfect-gas mixture.

It should be pointed out that the governing equations as given in Table 2.1, although somewhat
general, are strictly valid only under the imposed assumptions when these equations were
derived. In general, for numerical computations, it is more convenient if all the governing equa-
tions are nondimensional. The main advantage of nondimensionalizing the governing equations
is that the characteristic parameters of the flow such as Reynolds number, Mach number, Prandtl
number, etc., can be altered independently and their effects on the flow field be investigated
separately. Furthermore, by normalizing the equations, it is possible to perform order-of-magni-

1. Note the we have neglected the species equation for the diluent and the products. Since the
diluent is assumed to be nonreactive, the purpose for including it in the chemical equation is for
diluting the reactants and to act as a heat sink when the reaction is exothermic. Thus, the species
conservation equation for the diluent is DCD*/Dt* = 0 since DD = D•D = 0 and ri = 0. As for
the products, since only N-1 of the N mass fractions in the mixture are independent in any given
problem, we can use either N species equations or N-1 species equations plus the overall conti-
nuity equation. In this case, we have chosen the later.



tude analysis on individual term in the equations and to discard terms that are identically zero or
physically negligible in order to obtain simpler equations for the special situation under consider-
ation. Many nondimensionalizing procedures are possible by selecting the appropriate reference
quantities. To carry out the normalization procedure, let's Introduce some dimensionless vari-
ables:

r*
r

D

Tr* p*
P *' R *T *

t*U*t a
Da*

C*
C i

Ig
~

*RL =-- t

H H*
H- * TrP r

where pr*, Tr*, p*, ,*I C, p * are the reference pressure, temperature, density, dynamic viscos-

ity coefficient, thermal conductivity, and specific heat at constant pressure taken at the appro-
priate reference condition; Ua*, D* are the magnitude of the annular inflow velocity and the

diameter of the combustor, respectively. A straightforward substitution of the above dimension-
less variables into the equations and simplifying the results, the following nondimensional govern-
ing equations are obtained

Continuity

Species conservation

Momentum

Energy

Equation of state

Reaction

DP+p(V.u) = 0Dt

DCi  1 V2
D = Fe CLV - AFW

P = PT

F + aO + PD -* aP + PD

Table 2.2 Dimensionless governing equations for a multi-component, reactive, perfect-gas
mixture.

(2.67)

(i = F, O) (2.68)

(YDM2 ) P u -Vp( Y M21I (V I)
S Dt Re j

DT •-1 DP 1 V2 (Y- 1)M2
Dt Y Dt Pe ReDa

(2.69)

(2.70)

(2.71)

(2.72)

u*Uu --
U*



The dimensionless parameters appearing in these equations are the Lewis number, Le = Pr/Sc,
where Pr = ( ,p* p*) /K* is the Prandtl number and Sc = Rt*/D* is the Schmidt number, the Rey-

nolds number based on the combustor diameter, ReDo= (p* U* D*)/pý*, the Peclet number,

Pe = ReDaPr, the Mach number M = U*/JYRiTr*, and the rate of product formation per unit

time, AFWv, where AF is the frequency factor.

The normalized governing equations, as presented in Table 2.2, are valid for a flow of
reactive, perfect-gas mixture at arbitrary Mach number. This set of equations contains highly non-
linear coupling of the vorticity, entropy, and acoustic modes, a fact that can be established by
analyzing the linearized equations [34, 88]. Detailed numerical solutions using this set of equations
are prohibitively expensive, if possible, due to the existence of a wide range of length and time
scales associated with the evolution of the flow described by these equations. Furthermore, the
existence of high-frequency acoustic waves in the flow places a severe restriction on the size of
the time step that can be used to integrate the governing equations. Thus, it is advantageous to
filter out the influences of the acoustic mode from the equations If possible. It is well-known that
for flows where the convective flow time scales are large with respect to the pressure wave prop-
agation, that is, the Mach number is small compared to unity, and the length scales relevant to
the convective dynamics are either compatible or significantly larger than those relevant to the
propagation of the pressure wave, the acoustic mode is generally concentrated in a frequency
band which is much higher than the other two modes. In the asymptotic limit as the Mach num-
ber approaches zero, the energy in the acoustic waves is negligibly small compared with both
the energy of the fluid convection velocity and the thermodynamic internal energy [92]. Conse-
quently, it is possible to apply the regular perturbation techniques to the governing equations in
order to obtain a set of approximate equations that is asymptotically valid for small Mach num-
ber. Although certain physical features of real reactive flows will not be able to be captured by
the simplified governing equations, we are still able to study in detail of the effects of heat release
on the large-scale structure, the mixing field, and the vorticity dynamics of the reactive flows with
the simplified governing equations.

Starting with the nondimensional equations presented in Table 2.2, the set of approximate
governing equations can be obtained by performing asymptotic expansions on the gas

dynamic variables in terms of a small perturbation parameter '9, where n yM2 [143]. Let t
denotes any nondimensional gas dynamics variables p, T, p, or u and assume that for small but
finite ,, all the variables can be expanded in terms of a perturbation series in the form

t(x,t) = Wo(x,t) + T•1 (x,t) + r125 2(x,t) + ... (2.73)

A straightforward substitution of these expansions into the conservation equations and collecting
all the terms in the equations which are independent of rj, we get the following set of zeroth-
order equations:



Continuity DP + Po (V -u0 ) = 0 (2.74)

D C -A 0) (2.75)Species conservation Dt -A (i = F, O) (2.75)

Momentum Vpo = 0 (2.76)

DT0  y-l1 DP0 _ 1 2
Energy Po--t -_) = HAF +  V To (2.77)

Equation of state P0o = PoTo (2.78)

Table 2.3 Governing equations for a reactive, perfect-gas mixture with the low-Mach-number
assumption and constant thermodynamic pressure po.

Notice that the momentum equation has been reduced to a description of the spatial variation
of the thermodynamic pressure po from the small-parameter expansion procedure. This is due to
the fact that although the thermodynamic pressure po is small enough to have no significant
influence on the variation of density or temperature under the low-Mach-number assumption, it is
of the same order of magnitude as the acceleration of the fluid elements. Thus, it cannot be
neglected in the momentum equation [129]. In order to obtain an equation for the complete
description of the velocity field, the first-order momentum equation in the expansion must be
retained. The equation is given by

poDu = -VP+ (+ ( -T 0). (2.79)

As discussed in Section 2.1.3, it is advantageous to describe the flow field in terms of the
spatial distribution of the vorticity field for high-Reynolds-number flows. Applying the same vector
operations to the simplified momentum equation (2.79), we obtain the corresponding zeroth-
order vorticity transport equation

- o(V-uo)- -VUO= VPo x vpi+ V 'X vp0 o VPo]+ Vx-.0]}. (2.80)Dtu 0 - Vu0= P 0  ReDa) 2

It should be note that all the dependent variables in the approximate equations
appeared only to the zeroth-order except the pressure, for which both po and p1 appeared in
the equations. The distinction between the two pressures is essential both from a theoretical point
of view and in the numerical solution procedure. As mentioned above, the zeroth-order pressure,
Po, is commonly known as the thermodynamic pressure. The second component of the pressure,
pl, appeared in the Tl-component of the expansion of the momentum equation, is generally



referred to as the hydrodynamic pressure. It Is generated in the flow field to balance the changes
in momentum and does not participate directly in the thermodynamic processes. The zeroth-

order momentum equation VPo = 0 simply states the fact that, under the low-Mach-number
assumption, the largest component of the pressure in the flow field po is uniform in space but may

vary with time due to the addition of thermal energy. Essentially, it means that the speed of sound
is infinitely fast compared with the convection speed of the fluid so that disturbances in the ther-
modynamic pressure caused by combustion are felt instantaneously throughout the whole flow
field. For an open flow domain, such as the one used in this research, the thermal energy
released from exothermic reaction alters primarily the fluid temperature and density. The tempo-
ral and spatial variations of Po is usually small due to the low level of thermal energy released

from the combustion process [93, 101, 128]. For the sake of simplicity, we will assume Po is approx-

imately constant. In that case, the second term on the left-hand side of Equation (2.77) is identi-
cally zero.

Before proceeding any further, we should emphasize that in order for the low-Mach-num-

ber approximation to remain valid, the rate of thermal energy production H Af w must be

restricted. This can easily be seen from the energy equation. If this condition is not met, signifi-
cantly large local expansion velocity will be generated from the combustion and the low-Mach-
number assumption will cease to be valid. The above approximate equations, obtained from the

low-Mach-number assumption, are summarized in Table 2.4 (with the momentum equation
replaced by the vorticity transport equation). For clarity, all the subscript "o" on the gas dynamic
variables have been removed except for the pressure term, which we retain to distinguish the dif-
ference between Po and pi. Notice that the set of approximate equations, as presented in Table

2.4, has the computational advantage that acoustic waves are filtered out, thus relieving the
time step size constraint but at the same time, still allowing the flow field to have significant den-

sity nonuniformities.



Continuity

Species conservation

DP+ (V u) =0

DC 1
Dt PeLeV2 C --A

Vorticity transport

+ 9 (V -u) -Q Vu = PVpxVp1 + 11I[v Th xVp]+ I[VxV v CJ}
Dt pReDa P p

Energy

Equation of state

Reaction

pD= V2T T+HAFvW

Po = PT = constant

F + aO + PD -- aP + 3D

(2.83)

(2.84)

(2.85)

(2.86)

Table 2.4 Governing equations for a reactive, perfect-gas mixture with the low-Mach-number
assumption and constant thermodynamic pressure po.

(2.81)

( = F, O) (2.82)



2.3 GOVERNING EQUATIONS FOR AN AXISYMMETRIC FLOW DOMAIN EXPRESSED IN TERMS OF VORTICITY AND

STREAM FUNCTION

The governing equations given in Table 2.4 provide a complete description of a three-
dimensional, reactive, perfect-gas mixture of three species under the assumptions of low Mach
number and constant thermodynamic pressure po. As discussed in Chapter 1, the focus of this

research is on the investigation of the dynamics of the quasi-axisymmetric, large-scale flow struc-
tures and the large-scale entrainment and mixing in the near-wake region of a confined, axisym-
metric bluff-body combustor. The study will be carried out in the context of an axisymmetric flow
with zero swirl. Under this assumption, the motion of the fluid in any longitudinal plane passing
through the axis of symmetry is identical, and the variations of all flow properties in the azimuthal
coordinate direction, a/ae, are zero (8 is the azimuthal coordinate in a cylindrical polar coordi-
nate system). Thus, the equations given in Table 2.4 can further be simplified considerably with the
additional assumption. Furthermore, the numerical scheme used in this research is the vortex-sca-
lar element method, which is a Lagrangian scheme employing vorticity-stream function formula-
tion. Therefore, in this section we will reformulate the governing equations given in Table 2.4 using
vorticity and stream function as the primary variables and to apply the additional assumptions in
order to obtain the final set of equations used in the simulations of this research.

As shown by Majda and Sethian [92], for reactive-flow calculations using the vortex
method, a more convenient form of the continuity equation can be obtained by combining
Equations (2.81) and (2.85). First by differentiating Equation (2.85) we get

DPo DpT+ DTSDT + p 0 (2.87)
Dt Dt Dt

since po is assumed constant in this study. Substituting Equation (2.87) into the overall continuity
equation, the following equation is obtained:

1 DT
V u - DT (2.88)T Dt'

Equation (2.88) describes the hydrodynamics-combustion interaction in terms of the volumetric
expansion produced by the release of thermal energy from chemical reaction. The second part
of the dynamical role of combustion, baroclinic vorticity generation due to the variable density
field, is captured by the vorticity transport equation (2.83). For an axisymmetric flow with zero swirl,
only one component of the vorticity vector has non-zero value and this component has a unit
vector in the azimuthal coordinate direction: Q = (1, o, ,) = (0, w, 0). Thus, the vorticity transport

equation can significantly be simplified. Specifically, the third term on the left-hand side of Equa-
tion (2.83) is equal to

Vu = [u + w -%)+ L ( u. (2.89)



Since u = (v, w, u), thus

[av ae, aw aeo au aez

QVu= -er+v-+-+ w-+-ez + +S or or oer or •or

S[v oe, aW aeoe au aezl
-- e +v-+ -e+w-+-ez+ +r dae r aoe a e  a aeO

r[av aer aw aee au aezl
La +v- + -e+w +-ez+u . (2.90)aZ az z 0z az z z

Note that since C, 5, w, and a/ao are all equal to zero, hence, Q -Vu = 0 for an axisymmetric
flow with zero swirl, and the vorticity transport equation becomes

-+ (V u -) = -)Vp xVpi + [V- C x Vp]+ [Vx V- j]}. (2.91)
Dt p P p

Again, for an anelastic flow or an incompressible flow with constant coefficient of viscosity, we
can further reduce the vorticity transport equation to

= 2Vp xVp + R V2D . (2.92)

The two modes of hydrodynamics-combustion interactions, volumetric expansion and
vorticity generation, can be analyzed separately using the Helmholz-Hodge Decomposition The-
orem [20]. The theorem states that any vector field s on a domain D can be uniquely decom-
posed in the form

s = x + Vý (2.93)

where x and V4 represent a divergence-free and an irrotational vector field, respectively. From
classical hydrodynamics, it is known that the instantaneous relative motion of the fluid in a small
neighborhood of any point in the flow field is a combination of (1) an isotropic expansion such
that the rate of increase of volume of a material element, per unit volume, is e (V - u = E), (2) a
pure straining motion without change of volume of the fluid element, and (3) a rigid-body rota-
tion with an angular velocity equal to one-half of Q. Denoting these three quantitatively different
vector fields by u,, u , and u,, respectively, the total velocity field u can be synthesized using

these three vector fields as

u = UE + U + U(. (2.94)

Notice that the three vector fields used to synthesize u have the following general properties

Vx u, = 0 (irrotational)V'u = 2 , (2.95)



Vu = 0, V x u = 0 (solenoidal and Irrotational) (2.96)

V u(O = 0, V x u,, = (solenoidal and rotational) (2.97)

where s and Q are the local divergence and curl of u, respectively. uW, is generally known as the
velocity induced by vorticity and u, is known as the velocity induced by divergence. It should be
pointed out that the two velocity fields u, and u, are generally defined in an infinite domain and
contain no information about the boundaries of the flow domain. In particular, the flow field rep-
resents by (u, + u, ) would pass through a solid wall of the enclosure, and would have vanishingly

small velocity at points which are sufficiently far away from the region containing the dilation and
the vorticity. To correct this problem, u, is prescribed on the boundaries of the flow domain; it

provides the required corrections to have the (u,0 + u ) velocity field to conform to a specified

normal velocity at the domain boundaries. That is, for the boundaries of the flow domain dD we
have

U 'n = (u f n) - (u, + u,) -n (2.98)

where n is the unit normal on a boundary of the enclosure and u - n is the prescribed velocity on
that boundary. For a fixed, solid-wall boundary, u • n = 0 and the boundary condition becomes

u " n = -(UE + u.) • n. (2.99)

As discussed earlier, since both uT and u, are irrotational, an irrotational vector field v = u. + u,

can be defined. In addition, there exists a velocity potential cp such that v = Vcp. Moreover, the
equation governing the velocity potential can be obtained by substituting the total velocity,

u = u, + uT + u, = u, + v = u, + Vip, into Equation (2.88)

2 1DTV ' u = V - (u,+ Vqp) = (V - uo) + V2q =- D (2.100)

Since u0, is solenoidal by construction (that is, V -u0, = 0) and V -(V(p) = V - (u, + u )= V - U = El

Equation (2.100) is reduced to

2 1DT
Vu -= V - Dt- E, (2.101)T Dt

1 DTwhich is the classical Poisson equation with a source term E - on the right-hand side of theT Dt
equation. Notice that by using the velocity potential, the computational effort is reduced consid-
erably by transforming the problem from one with two independent variables (the two compo-
nents of the potential velocity) to a problem with only one unknown function p.



Consider next the vector field u>. Since u,r has zero divergence but whose rotation is not
zero, a velocity potential cannot be defined for u(,. However, for axisymmetric flow there exists a
function known as the Stokes stream function. This function can be defined for a rotational flow
field which can used to relate the velocity components v and u [81]. Furthermore, it is also possi-
ble to derive a governing equation relating the stream function to the vorticity in the flow
domain. As shown by Lamb [81], a stream function V can be defined for an axisymmetric flow
such that

pv = pu =- (2.102)r az r ar

Since the relationships between v, u and the derivatives of the stream function are based on the
principle of conservation of mass, the continuity equation is automatically satisfied by the stream
function. Now, taking the cross product of the total velocity u we get

Vxu = Vx (u + U + u•) = V X (ur + u,) + V X U,. (2.103)

Because (uE + u.) is irrotational, therefore, V x (u, + u ) = 0 and we have

Vxu = VxuO = O (2.104)

since V x u, = Q = (0, o,0). If the flow is anelastic or incompressible with constant density, we
can combine Equations (2.102) and (2.104) to obtain a Poisson equation relating the stream
function and the vorticity:

V2W  -(. (2.105)

The final set of governing equations for an axisymmetric flow domain, arrived at the low-Mach-
number assumption with constant thermodynamic pressure, is presented in Table 2.5. These
equations will be used throughout this research. The numerical schemes use in this research will
be developed in the next chapter.
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Table 2.5 Axisymmetric governing equations for a three-component, reactive, perfect-gas mix-
ture with the low-Mach-number assumption and constant thermodynamic pressure.
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3. NUMERICAL SCHEMES

Numerical analysis of post-transitional flow has traditionally been carried out using finite
difference discretization of the averaged Navier-Stokes equations, supplemented by eddy-vis-
cosity turbulence closure (see the discussion in the Introduction). Results obtained from these sim-
ulations have proven that this approach is able to quantitatively capture most of the mean flow
features. However, its success at predicting the fluctuating scalar quantities, such as the unsteady
temperature or the product concentration field, has been limited [22, 40]. It is speculated that the
correct prediction of the mean flow properties, such as the velocity, is due to the fact that over
most of the flow domain the inertia terms in the governing equations dominated over the fluctua-
tion terms. Correct evaluation of the fluctuating flow properties, on the other hand, is critically
dependent upon and limited by the effectiveness of the turbulence model employed in the sim-
ulation. It is well-known that a simulation employing the time-averaged Navier-Stokes equations is
adequate for an engineering problem where the flow is dominated by homogeneous turbu-
lence; however, the approach is inappropriate for a flow which is dominated by large-scale
coherent structures. It was pointed out by Libby and Williams that when coherent structures are
present in a flow, the usual picture of turbulence dynamics involving the cascading of large-scale
eddies into smaller dissipative scales must be modified to account for the evolution of the coher-
ent structures which may increase in size, by pairing and merging, in the downstream direction
[86]. The existence of coherent structures in a flow implies that an unconditional average over-
looks and disregards this important physical phenomenon. Currently, no known turbulence clo-
sure model has taken into account the contribution of the coherent structures. Thus, a closure
model optimized for a given type of flows is usually not adequate for predicting the behaviors of
the flow in other configurations. Furthermore, if most of the interesting turbulence dynamics of a
flow is modeled a priori, the outcome of the numerical computations based on these turbulence
models cannot substantially advance our understanding of turbulent flows. Since the Navier-
Stokes equations describe flows in both the laminar and turbulent regimes, a better way to inves-
tigate post-transitional flows numerically is to solve the Navier-Stokes equations directly without
employing any of the conventional averaging procedure and closure models. Such an
approach, in comparison with calculations using turbulence models, has the advantage that
modelling of the physics is kept to a minimum, and most of the turbulence dynamics can be
recovered directly from the computational results. Thus the results can further be used to under-
stand many important mechanisms of turbulent transport and their direct coupling with chemical
kinetics in turbulent reactive flows.

Owing to the presence of the bluff body and the confinement, confined bluff-body flows
always carry vorticity. Moreover, the vortical structures being generated in the flow field can
often grow to the same size as the enclosure of the flow [93]. Thus, from the above discussion, it Is
clear that conventional numerical schemes with eddy-viscosity turbulence closures are unsuit-
able as the numerical tools for this research. It has been suggested and demonstrated that this



class of confined, axisymmetric bluff-body flows can best be analyzed in terms of the semi-deter-
ministic vortical structures since their dynamics are relatively insensitive to the small-scale turbu-
lence [43, 44, 93]. Therefore, the axisymmetric vortex-scalar element method, a Lagrangian
numerical scheme employing finite-area vortex and scalar ring elements to discretize the vorticity
and the scalar field, respectively, is proposed to be used as the numerical tool for this research.

The axisymmetric vortex-scalar element method is an extension of the two-dimensional
vortex method developed by Chorin for solving high-Reynolds-number nonreactive flows [19, 20].
The method has been used successfully by Ghoniem et al. for obtaining numerical solutions to the
unsteady Navier-Stokes equations at relatively high Reynolds numbers [46, 47, 48, 52, 93], and has
been used to reveal the unsteady development of intrinsically unstable flow discontinuities [45,
46].

The classical two-dimensional vortex method divides the flow domain into an interior and
a wall region. The wall region is a relatively thin numerical shear layer within which Prandtl's
boundary layer approximation is applied to the governing equations. Inside the wall region, vor-
tex sheets are used to discretize the vorticity; whereas desingularized vortex elements are used to
discretize the vorticity in the interior of the flow domain [20]. In both regions, the viscous splitting
technique [9] is used to decompose the vorticity transport equation into an advection and a dif-
fusion component. While advection is expressed in terms of a set of coupled ordinary differential
equations and is solved using a second-order predictor-corrector method, molecular diffusion is
simulated stochastically by random-walking the vortex elements according to Gaussian statistics
[19, 20, 40, 42, 43, 93]. During the course of a simulation, the flow field in each region is solved con-
secutively and the solution in the wall region is matched to the interior solution at each time step
in order to obtain the complete solution. At each time step, vortex sheet elements are generated
at the solid wall boundaries to satisfy the no-slip wall boundary condition and a fraction of these
elements are being carried out into the flow domain by molecular diffusion (random walk). A
major advantage of this approach is that the method bypasses some of the difficulties associ-
ated with the convective nonlinearity substantial derivatives of the Navier-Stokes equations.
Another advantage of the scheme over other numerical methodologies is its self-adaptive capa-
bility. During a simulation, the vortex elements discretizing the vorticity field tend to migrate to
regions of high velocity gradients, resulting in an efficient adaptive solution scheme which is
capable of capturing serve and rapid distortions of the flow map, while concentrating the com-
putational effort in zones of finite gradients. Using this scheme to investigate high-Reynolds-num-
ber flows, minimum computational effort is required for a given numerical accuracy [17, 19, 41,
42, 93].

A rigorous convergence proof has been presented by Beale and Majda [9] showing that
viscous-splitting algorithms converge to solutions of the Navier-Stokes equations in all space, at a
rate which Improves as the fluid viscosity decreases. A complete convergence proof for the vor-
tex method, in which the boundary conditions of a viscous flow are satisfied by vorticity genera-
tion on no-slip walls, is not yet available. Nonetheless, many analyses of related schemes and sub-



algorithms have been performed. Hald [58] was first to prove that in an infinite domain, the solu-
tion obtained by an inviscid vortex scheme converges to the solution of the Euler equation pro-
vided that all the numerical parameters are chosen appropriately. In his analysis, it was shown
that the rate of convergence of the scheme depends on 1) the form of the interpolation or core
function, and 2) the ratio between the core radii and the initial separation between vortex ele-
ments. Based on this analysis, Beale and Majda [10] were able to constructed a class of core
functions that produces arbitrary high-order schemes. In all these studies, however, the flow was
assumed to occupy an infinite domain, the total vorticity was assumed constant, and the time
integration of the ordinary differential equations governing the convective motion of the vortex
elements was assumed to be exact. Anderson and Greengard [2] extended this analysis to
include the effect of a finite-order time integration scheme. Numerical experiments were con-
ducted by Nakamura et al. [102] to verify these results for an inviscid flow in Infinite domain. The
accuracy of the two-dimensional vortex method has been checked against well-documented
experimental data by Ghoniem, Gagnon, Najm, Givi, Ng, and Martins [42, 45, 46, 47, 50, 51, 93].



3.1 THE AXISYMMETRIC VORTEX-ELEMENT METHOD

For this research, the flow is assumed to be axisymmetric with the motion of the large-
scale flow structures approximately the same in every longitudinal plane passing through the axis
of symmetry. The numerical scheme used to integrate the hydrodynamic equations is the axisym-
metric vortex-element method first used by Martins to study high-Reynolds-number, confined axi-
symmetric flows [93]. Similar to the two-dimensional vortex method, the viscous-splitting
technique is applied to the vorticity transport equation in order to decompose the equation into
a convection and a diffusion component. Within the interior of the flow domain, the vorticity field
is discretized by a set of finite-area vortex ring elements whose configuration is updated every
time step according to the flow governing equations. For the molecular diffusion, an additional
deterministic displacement is added to the radial component of the random-walk displacements
of the vortex rings [93]. Numerical diffusion is minimized by eliminating the need of having to have
a set of grid points in the interior of the flow domain for the discretization of the velocity gradients.
Notice that a minimum resolvable length scale is imposed when the continuous vorticity field is
discretized by a finite number of discrete vortex ring elements, while the size of the time step used
in the numerical integration of the governing equations imposes a minimum time scale.

As discussed earlier in Chapter 1, isothermal reactive flows with different inflow boundary
conditions, both steady and time-dependent, first will be investigated. Thus, the dynamics of the
quasi-axisymmetric large-scale flow structures and the large-scale entrainment and mixing can
be studied in a simpler environment without having to worry about the effects of the thermal
energy released from combustion on the flow field. In this case, the Incompressible viscous fluid
flow model used by Martins is applicable, and the energy equation can be excluded from the
solution procedure. For exothermic reactive-flow calculation with low heat release, we will use a
model in which the only knowledge about the burning comes from the expansion velocity field
generated at the reaction regions in the flow, and from the changing Reynolds number due to
the variation of the density field. As will be discussed in Chapter 5, owing to the fast-chemistry
assumption and the unique mixing pattern of this bluff-body flow, a large fraction of the fuel
reacts completely within the recirculation region a short distance downstream of the jet exit and
quickly diluted by the excess air before leaving the recirculation region. In this case, compared to
the volumetric expansion term, the effect of the baroclinic vorticity generation is mostly localized
and has little impact on the overall vorticity dynamics. The flow field in the near-wake region is
affected most significantly by the nonhomogeneous density distribution caused by the thermal
expansion of the fluid. For the sake of simplicity, baroclinic vorticity generation will be neglected
in the exothermic reactive-flow calculation. Under these assumptions, the hydrodynamic field is
decoupled from the scalar field and the formulation of the axisymmetric vortex method can be
proceeded without much regard for the effects of the combustion on the vorticity field.
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Figure 3.1 Axisymmetric computational domain (geometry not to scale). Ua = annular inflow velocity, U1 =
jet inflow velocity, Do = duct diameter, Db = bluff-body diameter, and D, = jet diameter.

3.1.1 SOLUTION FOR THE VORTICAL VELOCITY FIELD IN AN AXISYMMETRIC, UNBOUNDED, SIMPLY-CONNECTED FLOW
DOMAIN WITH A SPECIFIED VORTICITY DISTRIBUTION

As shown by Sherman [129], for a flow with nearly constant density and transport proper-
ties, or an anelastic flow, the governing equations can be simplified considerably. Under this
assumption, the equations governing the time-evolution of the vortical velocity field are [93]

-lav18 lprUm = V = az' rar ) = (vN.,u ) (3.1)

V = r 2 r - = -ow(r,t) (3.2)rar ar' az2 -

D( 1 V2. (3.3)
Dt -ReDa

Recall that u,, is the inviscid velocity field due to a specified distribution of vorticity in an

unbounded, simply-connected fluid domain at rest at infinity. In this case, no boundary condi-
tions will be imposed on the Poisson equation given in (3.2) for the solution of the stream function.
The solution to the equation can be given in term of the Green's function of the Poisson equation
[6], and the vortical velocity can be obtained, by integration, from the Biot-Savart integral [122,
129].

As shown by Lamb [81] and Martins [93], the solution to the Poisson equation (3.2) can be
expressed as the sum of the complete elliptic integral of the first and second kind



vi(r,z) = (SI +S2) [K () -E(X)],2n

S = (z-z') 2 + (r-r') 2 ,

S2 = (z- ') 2 + (r+r') 2 ,

S2 -S1

S 2 +S,

Vortex ring with core radius a

Os X 1

Figure 3.2 Schematic drawing of a vortex ring.

and the complete elliptic integral of the first and second kind are given by

K (2) = 1 d2 r
Jo (1- j 2 2 2)

where
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and

1 -2E (;) = d- d, (3.9)

respectively. Since

-182 182
u, = (v,u) = ( az' r ar)' (3.10)

differentiating Equation (3.4) with respect to z and r we get

_- (z-z')(S 1 +S2) E K( ) E( S 2 +S
v.(r,z) - S1 S2 (3.11)

t [(r-r' r+r' S S r+r' r-r'u)(r,z) = Si + H (K(,) -E(k)) + 2 22 2S2 )E() . (3.12)

Equations (3.11) and (3.12) are the radial and streamwise velocity, respectively, induced by a
vortex ring filament at any point (r, z) in the flow domain. However, a constraint on the size of the
vortex filament's cross sectional area is needed before these equations can be used in a simula-
tion. It has been shown that for a vortex ring filament with infinitesimal core radius a and cross
sectional area bA, the axial velocity component diverges to infinity at a rate proportional to

log [ (r - )2 + z2], as the vortex ring is approached from any direction by another vortex ring fila-
ment [7, 81]. To remove this singularity, we introduce a finite smoothing core for the vortex ring
elements. Following Martins, the Rankine core function distribution is assumed [93]. By modelling a
vortex ring filament with finite-area core, we have introduced a small but finite amount of viscos-
ity into the vortex filament. The vorticity of the element, Instead of concentrating in an infinitesi-
mally small area, is allowed to diffuse away from the center of the ring. Note that since this effect
is not cumulative and there is a finite cut-off core radius, the viscosity introduced here is artificial
rather than physical. The core radius a is the free parameter controlling the amount of artificial
viscosity being introduced into the flow solution. For a finite-core filament with Rankine core func-
tion, we have a uniform distribution of vorticity w = wo inside the core but zero everywhere else.

This artificially smoothing of the distribution of vorticity within the core guarantees a finite velocity
at the center of the vortex ring filament [93]. For an assumed Rankine vortex core function, it is
found that within the core of element i, the velocity (v,, u,) induced by element i on another
vortex ring element j varies linearly with the radial position from the center of element i. The veloc-
ity varies from the finite self-induced velocity u, (to be discussed later) at the center of element i,



to the convection velocity calculated from Equations (3.11) and (3.12) at the edge of the core
radius of element i.

During the course of a flow simulation, the continuous vorticity distribution in the flow field
is approximated by a linear combination of discrete vortex ring filaments with small but finite core
radii. The vortex ring elements are convected across the flow domain by the velocity field
induced by the vorticity distribution according to the vorticity transport equation (3.3). This dis-
cretization procedure replaces the partial differential equation governing the motions of the
Lagrangian fluid particles by a system of ordinary differential equations which can be integrated
in time using conventional numerical integration scheme. Thus, instead of solving a set of cou-
pled nonlinear partial differential equations, the trajectories of the N vortex elements are
obtained by solving a system of N ordinary differential equations. Notice that the numerical
scheme, as implemented in this work, has also made the assumption that the cross sectional
areas of the vortex ring filaments are not distorted by the strain field and remain circular at all
time.

Unlike the two-dimensional vortex elements, a curved vortex ring filament with a finite
cross-sectional area has a small but finite self-induced velocity [81]. In the case of an axisymmet-
ric vortex ring, the direction of this self-induced velocity is parallel to the streamwise coordinate

(the z-axis of the vortex ring). For a vortex ring of small cross section a a2 with core radius a and
ring radius a, under the condition (a/a) << 1 and with a Rankine core function, the self-induced
velocity in a perfect fluid is given by Kelvin's formula [81, 93]

u1(t) = [In(8a + 0 ( )]. (3.13)4na a 4 a

Note that the value of the error term in Equation (3.13), O (o/a), has been shown to be negligibly
small [81] if the ring radius, a, is much greater than the core radius, a. Nonetheless, Martins has
shown in his numerical studies that even for the limiting case a - a, Equation (3.13) can still be
used as the first-order approximation to the self-induced velocity of the ring elements [93].

As mentioned earlier, the flow is simulated by approximating the continuous vorticity field
by the superposition of a set of vortex ring filament each with circulation F•. Thus, the continuous

vortical velocity field u,, is approximated by

u,(r,t) - u,(r,t) +u, (t) (3.14)

where u, = (v, uv) is the discrete convection velocity given by Equations (3.11) and (3.12), and
u, is the self-induced velocity. (The self-induced velocity has a zero radial component and a



streamwise component given by Equation (3.13).) In a simulation, the streamwise vortical velocity

of the ith vortex ring element u (t) is the sum of the vortical velocity induced by all the other vor-
tex elements in the flow domain at the centroid of the element, plus its self-induced velocity

u'(t) = (t) + u1 (t) (3.15)
j=1
ieI

where uv is the streamwise vortical velocity induced by the jth element at the centroid of the ith

element, ul is the self-induced velocity of element i, and N is the total number of vortex ring ele-
ments in the flow domain. From Equation (3.12) and the definition of the Rankine core function
[93], it is clear that the streamwise velocity induced by the jth element at the centroid of the ith
element is given by

I [( r -i - r, + r, i S S r, + r r, -r-S i

u -(t) 2+S 1 S-r i 21.i (K (X21 ) - E (XI)) + 2  , E (i,i) (3.16)u J(t) 21,

if the distance between the centers of the two elements, Ir, II = j(r,- )2 + (z- z )2, is greater

than the core radius, oa, of the jth element. In Equation (3.16), S1.1 = (r,-rj)2 + (zJ-zj) 2

S2J j = (ri + ri)2 + (Z,- Z ) 2 , and Xl = (S2.11 - S1.1j) / (S2 + S1,11) . When the distance between the

centers of the two elements is less than the core radius of the jth element, the streamwise velocity
is given by

ul(t) = u, + ( u -u ) [( ~ (r-r1 )2 + (zi -z) 2 )/ 1 ], (3.17)

where
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(rj, z ) is the point on the circumference of the core a, along the radius vector rlj containing the

centroid of the ith element (r1 , z), and uJ = uJ (rj,z,) is the self-Induced velocity of the jth ele-



ment. Note that the self-induced velocities in Equations (3.15) and (3.17) are given by Equation
(3.13).

Similarly, the radial vortical velocity of the ith vortex ring element is the sum of the vortical
velocity induced by all the other vortex elements in the flow domain at the centroid of the ith ele-
ment

N

v (t) = v (t)
j=1
jsi

(3. 19)

where, according to Equation (3.11),
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if I1rj II oj . Finally, the vortical velocity at any given field point r =

induced by a system of N vortex ring element is given by
(r,z) in the flow domain

Uv(r,t) = (vv(r,t), uv(r,t))

where

N

v,(r,t) = •vr(t)
j=1
rj =r

and

(3.22)
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N N
u,(r,t) = ur (t) + u,r (r-r) (3.24)

1 =1 j=1
r ( r

where 6 is the delta function.

3.1.2 SOLUTION FOR THE IRROTATIONAL VELOCITY FIELD IN A BOUNDED FLOW DOMAIN

As discussed in the last chapter, the vortical velocity field, as given in Equation (3.22), is
defined in an infinite domain and contains no information about the boundaries of the enclosure.
An irrotational field u , prescribed by the domain boundaries, provides the necessary correction

to have the total velocity field u conforming to a specified normal velocity at the boundaries. Fur-
thermore, for exothermic reactive flows, the total velocity field u consists of an additional velocity
component u., where u, is also defined in an infinite domain and contains no information about

the domain boundaries. Since both uy and u, are irrotational, a vector field v = uT + u can be

defined and the solution of v can be obtained from a velocity potential qp such that v = Vq. The
equation governing the velocity potential is given by the Poisson equation

2 1DTV 2- D- = (3.25)T Dt

with the boundary condition

U.'n = (u r n) - (u,+ u,) * n (3.26)

where u - n are the prescribed velocities at the boundaries of the flow domain. Equation (3.26) is,
again, the classical Poisson equation with Neumann boundary condition. The solution of the
equation with the imposed boundary condition provides a velocity field v = uT + u, that satisfies

the continuity equation, is irrotational, and on the boundaries of the flow domain exactly cancel
the normal velocity component induced by the vortex ring elements (and also the expansion
sources for exothermic reactive flows). Adding v to ut produces the required velocity field in the
domain interior. The Poisson problem with Neumann boundary condition is a well-known classical
problem. Many different solution methods have been developed to solve this problem. Instead of
solving the partial differential equation directly, a popular solution procedure is to apply the vari-
ation principle to the problem in order to obtain the extremal formulation of the Poisson equation,
and use the finite-element form of the Rayleigh-Ritz method to reduce the equation to a system
of n equations with n unknowns [26]. In the following section. we will demonstrate the procedure
of applying the variation principle in order to obtain the weak formulation of the Poisson equa-



tion with Neumann boundary condition.

3.1.2.1 EXTREMAL FORMULATION OF THE POISSON EQUATION

From classical physical mathematics, it is known that a partial differential equation
describing a physical phenomenon can often be formulated equivalently as a variation prob-
lem. A partial differential formulation of a problem is to find an unknown function which satisfies a
relation between the function itself and its partial derivatives and which is, moreover, subject to
given boundary conditions. A variation, or extremal formulation is a problem of the type: find a
function that minimizes, maximizes or make stationary a functional subject to given boundary
conditions. The two formulations are called equivalent if both problems admit the same unique
solution. A functional is mapping from a set of admissible functions into the real numbers. The set
of admissible functions consists of those functions for which the functional takes finite values and
which satisfy imposed boundary conditions. Functional formulations are commonly known as the
weak forms of stating the governing equations of the problem and the differential equations
themselves comprise the strong forms. The weak form enforces conditions in an average or Inte-
gral sense, whereas the strong form enforces them at every point.

It follows from the calculus of variations that a necessary and sufficient condition for a
functional to be extremized or made stationary is that the Euler-Lagrange equation is satisfied for
the sought solution together with boundary conditions [26]. This Euler-Lagrange equation is pre-
cisely the partial different equation of the problem. The variation formulation often has the
advantages over the partial differential formulation, especially from the numerical point of view.
This is due to the fact that the functional contains derivatives of lower order than the differential
problem. Consequently, an approximate solution can be sought in a larger class of functions. Fur-
thermore, the variation formulation treats in a simple way complicated boundary conditions,
such as, for instance, Dirichlet, Neumann, or Robbins boundary conditions in non-rectangular
domains.

Consider a bounded open region D belonging to an n-dimensional domain Rn , DC Rn,

with smooth boundary aD where aD is subdivided into four disjoint parts dDo, d ,, aD2, and aD, .
Given the following minimization problem:

- Find a function cp = q (r), r E D U aD with q) (r) = go (r) for r E aDo , that minimizes the func-
tional

J (w) = ,wl2do - fwd -f g1 wdr + af lwl2dr (3.27)
dD I aD3



over the class of functions which are equal to go on dDo for given functions f = f (r), r E D, and

g, = g, (r), r E aDo i = 0,1, and a 0. To solve the problem, we assume that a solution

cp E C 2(D) fl CI(D + dD) exists (C' and C2 stand for the function is once and twice differentia-

ble, respectively). The set of admissible functions is defined as the subset of C2 (D) n CI (D + aD)

containing functions that are equal to go on aDo . Let u E C2(D) f Ci(D + dD) with UldD = 0,
and substitute the family of admissible functions

w = (p+ k (3.28)

with parameter X into Equation (3.27), we get

J(w) = j((P + Xv) a K (X)

K () = IV (y +% Xu) do - ff (P + k-)
2D D

do - 91 (~v +v) d + f I+X 2dr,
gD I OD3

(3.30)

From basic calculus, a necessary condition for minimization of K (X) is

d K () = 0dX =~h 0

at X = 0 for all v E C2(D) f C (D +aD) with •aD, = 0.Carrying out the procedure we get

d 2
d K(k) 1,= 0 f 2 [ V •) ] V dQ -((pf)u)da f d 0 -

(3.31)

(3.32)f (g)(u) dr + af2 ( ( + Xu) udr = 0
aD1 OD3

where

(3.29)
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Using Green's first identity

f(-v2 )ud = f(Vp) - (vvu) do
D D

we can transform the first integral of Equation (3.33) to

f[vq- vu] do = (-v2c)udo +
D D

f (Vcp) -n dr.
00

Therefore, Equation (3.33) becomes

f (-V2q') doa + f (vy) -n dr-(f) (u) do - (g1 )(v) dFr+ a ((p) () d = 0,.

[-V2-f] do + f vudr-f(g1)(u) dr+ f a((p)(u)dr = o

since Vp - n = . Note that also OD = ODo + aD, + dD 2 
+ dD,, we have

an

f aLdr+
D 0 07D

ua'dr+ F vi-dr+an an
002

The first integral on the right-hand of Equation (3.38) is identically zero since by construction

Uo I = 0. Substituting the above equation into (3.37) we get

f2(anf [-Vlp-f]vdo +f(i -g 1)(v)dr+ an
02

f
003

S +a)p dr = O.

(3.33)

-f(vvy) -ndr, (3.34)

(3.35)

(3.36)

(3.37)

andD an
D 3 a n

(3.38)

(3.39)



Since v E C2(D) fl Ci(D +a D) with VIOD = 0, but otherwise is an arbitrary function, in order for
the above equation to be true, we must have

-V2p - f =0 in D (3.40)

and -gL = 0 on aD, (3.41)

= 0 on aD2  (3.42)
an

a + p = 0 on aDD (3.43)
an

with cp = go on aDo. (3.44)

Notice that the nonhomogeneous Dirichlet condition on aD o is essential since it was imposed on

the solution of the extremal formulation. The nonhomogeneous Neumann boundary condition on
dDI, the homogeneous Neumann condition on aD2, and the homogeneous Robbins condition

on aD( are natural since they are automatically satisfied by the variational formulation. Note that

the above derivation relates the Poisson equation (with all boundary condition except on aD,)
to the minimization problem. Since the natural conditions for a minimization problem are satisfied
automatically by the solution, we only have to prescribe the essential boundary conditions. For
the three types of boundary conditions: Dirichlet, Neumann and Robins, only Dirichlet conditions
are essential, the other two are natural conditions.

As discussed earlier, the variation formulation often has the advantages over the partial
differential formulation, especially from the numerical point of view. This is due to the fact that the
functional contains derivatives of lower order than the differential problem. Consequently, an
approximate solution can be sought in a larger class of functions. Furthermore, the variation for-
mulation treats in a simple way complicated boundary conditions. We have also demonstrated
that the equivalency of solving the integral given In Equation (3.39) and the partial differential
equation for the Poisson equation (3.40-3.44). Given the advantages of the extremal formulation
of the problem, we will solve the problem using the functional approach. The method we will use
to solve the equation is known as the finite-element form of the Rayleigh-Ritz method. The first
step of the method is to subdivide the domain into K finite elements. After the subdivision of the
domain, a basis (shape) function N, is defined for each nodal point in the flow domain. The basis



functions NJ, i = 1, 2, 3.... M where M = total number of nodes in D U aD. The basis functions have

the following three properties:

1) N,(xl) = 68i.

2) N. is continuous on D U dD.

3) NJ has a prescribed behavior on each subregion (for example, linear or quadratic).

The approximate solution of the minimization problem is now assumed to take the form

M

W(x) = I NI(r) (3.45)
j=1

where ý, is the unknown value of ,p at r = r . Note that the approximate function given in Equa-

tion (3.45) must satisfy the essential (Dirichlet) boundary conditions on dD o. In this case, we have

p (r) = 0 for r E Do, therefore, we take ,i = 0 for those values of j for which rE Do . A

renumbering of the nodal points now leads to the following general form of an approximate solu-
tion

L
N(r) = • N1 (r) (3.46)

1=1

where L is the total number of nodal points which do not belong to aDo . Now, substituting equa-

tion (3.46) Into (3.27) we get

D == .  [ . D I= 1

I = 1 D3



Now, applying the stationary principle, we take the derivative of K (n,), n = 1, L with respect to ýn
and set it to zero,

a(P )
Ocp1

n =1, L I= 1,L, (3.48)

2 j=1VNVN do

ODI j I D3 ,

Since
Since dcp. =

j= 1

D j==
ýj N)'dr= 0.

L
JVNJ = VN, and - ( I jNj) = N, therefore

j= 1

ýVVN~do- ffN~do2-fg1 NdF+af N, N~dF=0.
f f fD
Dl j"" · 1"~6l D O'.D[ I*"-

Note that we can interchange the order of integration and summation in the first and the last
integral of the above equation:

L LiJ (VN" V NI)d9a + NNidr= f fNid +f• f Ndr
= j =1 O 3 D I

for all j E L, where L denotes the set of indices corresponding to those nodal points which do not

belong to ODo . The integral given in Equation (3.51) can be split up into a sum of integrals over the

subregions. Doing so gives

K L Q L K P

jf (VNj, VN,) do +a~ , (N,N,)dr = •fN,do+ f gN, d (3.52)
k=lj=1 Dk q=1J=1 = D3q k= Dk p=ldDt p

(3.49)

(3.50)

(3.51)



where Dk = volume of finite element k (the domain is being discretized into K discrete parts),

aD,, is the discrete boundary element of aD, (aD, is being discretized into P boundary ele-

ments), aD,, is the discrete boundary element of aD, (dD, is being discretized into Q boundary

elements). In the potential problem we are solving, aD,,q = 0. Thus, Equation (3.52) becomes

K L K P

f (VNJ*VNIVN,) d = f N, do + f g9N, drd .
k=lj=1 Dk k= Dk p=I dDp

(3.53)

Note that Equation (3.53) is a set of linear algebraic equations and is exactly identical to the
equation obtained from using the finite-element weighted-residual Galerkin method [93]. This is
due to the fact that for a given problem, if differential equations and a variational principle are
both available, then the finite-element Galerkin method and the finite-element Rayleigh-Ritz
method yield identical solutions when both use the same approximate function ý. Thus, the inte-
gral equation given in (3.27) yields an approximate solution to the same potential problem given
by the following Poisson equation

V2 ( = -f in D (3.54)

with boundary conditions

on dDo (3.55)

on 0D,= g91an (3.56)

where dD = dDo + aD,. In the following section, we will demonstrate the procedure of using lin-

ear triangular elements to solve the integral equation (3.53).

3.1.2.2 FINITE-ELEMENT SOLUTION OF THE IRROTATIONAL VELOCITY FIELD

As demonstrated in Section 3.1.2, the following Poisson equation governing the irrota-
tional velocity field of the problem

V2CP = -E in D (3.57)



ap=n

an =

on aDo

on aD,

(3.58)

(3.59)

where aD = dDo+ 0D, and E = (1/p) (Dp/Dt) = (-1/T) (DT/Dt) is the expansion source term,

has an equivalent weak formulation:

K L

I(VNJ" VNI) dod
k=lj=1 Dk

K P

= f N, do+ g 1NldF.
k =Dk p= IdDp

(3.60)

As discussed before, the variation formulation often has the advantages over the partial differen-
tial formulation, especially for problems with nonrectangular domains with Neumann boundary
conditions. In this section, we will demonstrate the solution of Equation (3.60) using the classical
finite element method.

The finite-element method is a systematic procedure for generating a basis function on
arbitrary region D which will give rise to a sparse matrix A. It is clear that the matrix A will be
sparse If the basis functions have small support. The support of a function defined on D is the clo-
sure of the subregion of D on which the function differ from zero. It is evident that the matrix ele-
ment ANj equals zero whenever the support of %, and (pi have empty intersection. Note that

Equation (3.60) can be written In matrix notation as

A~ = F (3.61)

where A is an L x L matrix, , is an L x 1
terms, and

(unknown) vector, and F is an L x 1 vector of forcing

A, =f (VNI -VN,) do
e
k

(3.62)

is the element stiffness matrix (L is the total number of nodal points not belonging to aDo). On a lin-

ear triangular element, only the basis function Ni , N2, and N3 a 0. This implies that for each

k = 1, 2, 3, ... , K the Integral in Equation (3.62) gives rise to a 3 x 3 element matrix



LNJ = LN1 N2 N3] (linear element) (3.63)

(3.64)N1 = 1I N2 = 2' N3
= 3

= (24'e)

2 e)

2 = ( )

[ (Z2 r3-z 3 r2 ) + (r2 - r3) Z + (Z3 - Z2) r]

[(z 3 r, -zr 3 ) + (r3- r) Z + (Z1 -Z 3) r]

[ (z3 r -z 1 r3 ) + (r3 - rl) z + (Z1 -Z 3) r]

(3,65)

(3.66)

(3.67)

aN 1  _ •j r2 - r3= = (3.68)
az az 2Ae

aN 1  a8 1  z3 - z2- (3.69)
ar ar 2Ae

N2  2 r3 - riS- = (3.70)
az az 2Ae

aN 2  a 2  z 1 - Z3- (3.71)ar ar 2Ae

aN 3  aý 3  ri - r2 - (3.72)
az az 2Ae

aN 3 a_3 Z2 - z1- (3.73)ar ar 2Ae

For each finite element, we have a 3 x 3 elemental stiffness matrix with each component in the
matrix given by

where

and



A= - + do
Al JLz az az ar ar

ek

1 2 aNj aN aNj aNj-• - + - r rdr dodz i,j= 1,2,3
4Therefore, for each finte element a at ar ix is

Therefore, for each finite element the elemental stiffness matrix is

+ (Z3-z 2)2 (r 3-r) (r 2-r 3) + (z1-z 3) (z3 - z2 ) (r1-r 2)(r 2 -r 3)+(z 2-z) (Z3- Z2)

)+(z 3 -z 2)(z 1-z 3) (r3 -r 1 ? +(Z1 - 3)2  (r-r 2) (r3 -r 1)+(z 2-z 1)(z 1-z 3 )

+ (z3- 2) (z2- ) (r3 -r1) (r1 - r2) + (z1-Z3) (z2- I ) (r1 -r2 + (z-l2

e
k

k=1, 2, ..., K.

Now, we can calculate the load vector on the right-hand side of the equation. Notice that the
integral over ek of the first term on the right-hand side of Equation (3.60) is differ from zero when

the shape function N, corresponds to one of the three nodal points of ek. For ek with nodal

points x1 , x2, and x3, this leads to a three-component element vector Fek where

Fek =

f Ni do
e
k

f fN 2d
ek

fN3do
4ek

k=1, 2, 3, ..., K. (3.76)

If we assume f = constant = f* in element e k , then

(3.74)

(3.75)



ff 2%r deodrdz
k

ff 2 •2r dedrdz

2ff 2 x 3r dedrdz
k 0

Sf rdA
ek

f2rdA
ek

f3rdA
ek

LAef2r + r2 + r3
6 6 I+ r2+2r2+r3  (3.77)

Lr1 + r2+ 2rJ

The last term on the right-hand side of Equation (3.60) gives rise to the line element vector

gf Ndr

F =p NIp

r1p

f g dr
, rp

f g1, 2dr
.Ipd

2nf0 gýrdldo g1, 1rdl

ff2= o J dldeo 9i 2 r di

If g, is assumed to be constant along I, then
analytically to give

the integrals in the above equation can be solved

(3.79)F 1gl1 [2ri + r21
rip 3 i+ 2r2

Once the velocity potential ý has been obtained by solving Equation (3.61), the poten-

tial velocity field v = u, + u, can be evaluated using the equation Vý = (vp,up). For a generic

field point r, within a finite element e, the potential velocity is given by

(e -e 3 0Ne 6N e

v (ri) = (VpUp) I ) ez
ar az ar

i= 1

(3.80)

where Ne is the shape function of the element as given by Equations (3.63-3.67).

3.1.3 UPDATING THE VORTICITY FIELD IN THE INTERIOR OF THE FLOW DOMAIN BY ADVECTION AND SIMULATION OF

MOLECULAR DIFFUSION

Each vortex ring filament in the interior of the flow domain is advected by the velocity field

Fek = fek

ek

f 2d -Ž

ek

ek

(3.78)

= 2nf*



induced by all the other vortex ring filaments in the flow domain, plus its self-induced velocity and
the potential velocity

- uv+ U+ v (3.81)at adv

with the two components of uv given by Equations (3.15) and (3.19), u, is given by Equation
(3.13), and the potential velocity v is given by Equation (3.80). Notice that Equation (3.81) simply
states that the vortex ring filaments are advected along the trajectories of material particles.
Numerically integration of Equation (3.81) is done using the second-order modified Euler method
[93]. With At equal to the discrete time step size, for the ith vortex element in the flow domain, the
discrete analogue of Equation (3.81) is

r = r + t(u+ u1*)/2 (3.82)

where

u1  v, + u U + v,(r ) (3.83)

ui* = Uv,i (ri*) + u ,i + v,(r*) (3.84)

and

r, = (r,(nAt),z,(nAt)) (3.85)

Equations (3.81-3.85) give the transport of the vortex filaments by the advection velocity
only. For viscous flows, an additional transport of the vorticity is due to diffusion. In the random-
vortex method, the second fractional step, diffusion, is simulated by the dispersion of the vortex
elements' coordinates using a set of (two) independent Gaussian random number (l,,rlz)
according to the two-dimensional Gaussian statistics. These two Gaussian random numbers each

has a zero mean and a standard deviation a = (2At) /ReD .Thus, the diffusion of the vorticity

o = V2 (3.86)at



is simulated by

n+1 n
ri = r + 11jr

n+1 nzi = ZI + Y1 ,jz.

As mentioned earlier, in addition to the conventional diffusion component, an additional
diffusion component in the radial coordinate is applied to the displacements of the vortex ele-
ments. From the differential equation

_(W/r) / 1 (o/r)
at ReD rar

(3.89)

and using the transformation of variable given by

= 0
--

r;
(3.90)

Equation (3.89) becomes

ar eDr a = 0.t
a r at

(3.91)

The left-hand side of Equation (3.91) is exactly the expression we would use to calculate

d at aDdtS[(r,t (r))] L + ~ -- where t (r) satisfies the equation dt/dr = -r ReD . That is,
dr ar atdr' a

-1Rer 2
t = --2ReD +01 (3.92)

along any of the family of curves and the total derivative of ý with respected to the spatial coor-
dinate r vanishes:

- [ý(rt(r))] = 0, (3.93)dr

and

(3.87)

(3.88)



where C, is a constant. The family of curves defined by Equation (3.93) are the characteristic

curves of the differential equation (3.91). Hence, along any characteristic curve we have

= = constant,
r (3.94)

which means that t is conserved along the characteristic curves. In that case, it is required that

ý(r(t+dt),t+dt) = 1(r(t),t) (3.95)

and this would be true if and only If

2 t+dt
r (t + dt) + 2

ReD a
Sr2 (t) +2 t

ReD

r(t +dt) = r2(t) -2(dt/ReD). (3.97)

Therefore, Equation (3.89) is approximated by

rn = (r )2- (2At)/ReD, (3.98)

and the incremental radial displacement, (Ar1 )diff' due to this diffusion component is equal to

r =r +I i (r ) - (2At)/ReD (3.99)

In summary, given the position of N vortex ring filaments at time t = nAt, their position at time

t = (n + 1) At is given by the combination of Equations (3-82), (3-87), (3-88), and (3-98). Thus, the

algorithm

n+1 n+1rin radv + lj.r+ (Iri)diff 30

Hence,

(3.96)

(3.100)



n+l n+l
zi = Zi,adv + .z (3.101)

approximates a subset (incompressible) of the axisymmetric Navier-Stokes equations as given in
Table 2.5 for the interior of the flow domain.

3.1.4 VORTICITY DYNAMICS IN THE WALL REGION

As discussed at the beginning of this chapter, the wall region is a thin numerical shear
layer with thickness A., within which Prandtl's boundary layer approximation is applied to the

transport equations. Vorticity is generated on the solid walls in order to satisfy the no-slip boundary
condition. This vorticity generation algorithm first was used by Chorin [19] in the random-vortex
method to study a two-dimensional slightly viscous flow. In the original two-dimensional algorithm,
the vorticity generated along a solid wall is discretize into vortex sheet elements separated by a
distance h. In order improve the boundary layer resolution, the required circulation generated at
each wall point to satisfy the no-slip boundary condition is distributed among several sheets such

that each sheet has a certain maximum circulation Im. After being generated, these sheets

leave the numerical boundary layer by diffusion to become part of the interior vorticity. As soon
as a vortex sheet enters the interior of the flow domain, it is converted to a vortex element of
appropriate core radius in order to satisfy compatibility between the Interior and the wall region.

In the wall region of the axisymmetric domain, the numerical boundary layer thickness is
assumed to be small compared to the longitudinal as well as the lateral radius of curvatures. Fur-
thermore, since the walls of the flow domain used in this research are either zero or 90 degrees
with respect to the axis of the combustor, Martins [93] has shown that the two-dimensional sheet
generation algorithm developed by Chorin can be used for the vertical walls with no modifica-
tion. For the horizontal walls, Martins also showed that if the shear layer thickness is much smaller
than either the longitudinal or lateral radius of curvature, the same two-dimensional sheet gener-
ation algorithm can also be used in this axisymmetric flow domain. Following Martins, we will also
use the two-dimensional vorticity generation algorithm on the solid wall as a first-order approxi-
mation. Detailed descriptions of the two-dimensional sheet generation algorithm can be found in
[93, 101].

In order to match the interior and the wall solution, it is necessary that we calculate the
tangential velocity at the no-slip check points on the solid walls induced by the vortex ring ele-
ments and the associated potential velocity field. Using this tangential velocity as an approxima-
tion for the freestream velocity as seen at infinity by the flow within the wall region. This procedure
allows the interior flow to affect the production of vorticity within the wall region. Vorticity is trans-
ferred from the wall region into the interior region by converting those vortex sheets located at a

local vertical distance greater than A from the wall to become vortex rings. Conservation of cir-

culation allows the determination of the initial core radius of a vortex ring element given the
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length of the vortex sheet h [93].



3.2 SIMULATION OF NONPREMIXED COMBUSTION WITH Low HEAT RELEASE

For the exothermic reactive-flow simulation with low heat release, Lagrangian scalar ele-
ments are being used to transport the species concentration fields in order to maintain the grid-
free, self-adaptive nature of the algorithm. Furthermore, different sets of particles can be used to
transport the concentration fields of different species with different diffusivities. Thus, a wide dis-
parity in diffusive length scales can be accommodated naturally without posing any particular
difficulty. The method solves the appropriate scalar transport equations which describe the reac-
tive field directly without making restrictive assumptions about the structure of the reaction zone.
The application to two-dimensional reactive shear layer simulation using the vortex-scalar ele-
ment method with low heat release has been reported by Ghoniem and Givi [47, 50]. The scalar-
element method used in this research has been modified and is capable of resolving the reactive
field in more detail than the original scheme used by Ghoniem and Givi. The method, as imple-
mented in this study, is relatively simple and robust. It is capable of handling a variety of initial and
complex boundary conditions and is not limited to simple flow domains. It also allows simulations
of flows with high Reynolds number and Peclet number.

The infinite-rate kinetics chemical model is used for the reactive-flow simulations in all the
studies. Under this assumption, the reactants are assumed to mix and react instantly as soon as
they are in contact with one another. Since the primary objective of this research is to study the
effects of the large-scale structures on the mixing and the burning rate, all simulations to be per-
formed in this research are limited to low-Mach-number flows only. For reactive-flow simulations,
only low-heat-release cases will be studied.

3.2.1 THE SCALER-ELEMENT METHOD

The scalar-element method used in this study incorporated a combined mixing and reac-
tion model, which is an improved version of the original model used by Ghoniem and Givi [47,
r37]. The method uses a set of finite-area scalar elements to discretize the inflow fuel and oxidizer
concentration field. These elements are conceptual computational elements originated at the
inflow boundary where the inflow temperature and species concentration fields are being dis-
cretized. Each element, with circular cross section and an initial temperature, is assumed to carry
a concentrated point mass at the geometric center and has a volume associated with it whose
value depends only on the initial spatial discretization at the injection boundary. Within the vol-
ume of an element, species concentration is assumed to be a step function whose strength
depends on the initial discretization of the species concentration field. That is, the species con-
centration carries by an element is assumed to be finite and uniform within the volume, and is
zero elsewhere. Thus, the discrete scalar field is given by

s(r, t) = oS (r-ri) (3.102)



where s is the scalar field; as is the strength of scalar element i, defined as the amount of the sca-

lar carries by the element; a is the Dirac delta function; and ri is the geometric center of scalar
element i. The elemental strength is given by

as = fs(r, t) dV (3.103)

where

0 = (2ar) (Ar)(Az) (3.104)

is the volume of the fluid element; and Ar, Az are the radial distance between the centers of two
consecutive elements and the length of the elements in the streamwise direction, respectively.
After the discretization, the transport equation for the scalar element osa is then solved in the

same Lagrangian manner as that used in the random-vortex method for the transport of the vor-
ticity elements. Note that Equation (3.103) gives only the discrete local species concentration at
a given point in the flow field. For displaying purpose, a set of grid is used to discretize the flow
domain and the moving-average method commonly known as the Kriging algorithm [33] is used
to interpolate the data onto the grid in order to obtain the continuous scalar field.

It should be noted that the elementary volume, 0, as defined in Equation (3.104), is the
discrete material volume of the incoming fluid element carrying the species concentration os,

with meridian cross sectional area (Ar)(Az). The cross section of the corresponding scalar ele-

ment is assumed to be circular, and the maximum initial core radius of the element, bs, is
obtained from the equation

s = . (Ar)Az) (3.105)

where Y is a user-input resolution parameter equal to or slightly greater than one in order to
ensure that the material volume is being enclosed by the scalar element at all time, and the initial
overlapping of the scalar elements used to discretize the concentration field. At each time step,
the local velocities at the centers of the injection points are computed. The discrete volume of
fluid with cross sectional area (23ar) (Ar) and axial length (u • n) At, where At is the flow time step
size, is then discretized by a number of scalar elements as shown in Figure 3.3a. Notice that in this
setup, the specified radial discretizatlon also limits the maximum streamwise length of the mate-
rial volume of each scalar element.
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Figure 3.3 (a) Injection of the scalar elements into the flow domain. (b) Schematic drawing showing the
the intersection of a fuel and an oxidizer element.

Once in the flow domain, the transport of the reactive scalar elements is governed by

-+ u. Vs = -s + DsW (3.106)at xs

where

Ds = -Da

Ds = Da

Ds = (Pe) (H)

ks = (Pe) (Le)

ks = Pe

and

if s= C, and Co

if s = C,

if s = T

if s = CF, Co, or Cp

if s = T

and Da is the Damk6hler number. In the solution procedure, Equation (3.106) is split into three
fractional steps: advection, diffusion, and reaction [42]. For the advection step, the positions of
the scalar elements are updated by integrating the equation

r A

L



t + u- Vs = 0. (3.107)

The second component of motion, diffusion, is implement by solving

os 1 2s 1 Vs. (3.108)

Convection and diffusion transport of the scalar elements are implemented in a similar
fashion as In the vortex method. That is, for the advection step the scalar elements are trans-
ported across the flow domain along particle trajectories. The diffusion step is performed by using
a set of Gaussian random variables with zero mean and a standard deviation equal to

(2At)/(N ks). The flow solver was constructed such that N diffusion and reaction steps are per-
formed for the scalar elements per flow time step in order to obtain higher temporal and spatial
resolution of the scalar field; therefore, At/N, which is the combustion time step size used in the
simulations, is used in the calculation of the standard deviation for the scalar elements instead of
the flow time step size, At.

In this study, two diffusion and reaction steps were performed after each convection step
in all the simulations. That is, we compute the random-walk displacement rl, = (r, 7Iz), using a

time step size equal to At/N, where N = 2 in the simulations. Chemical reaction changes the
amount of scalar carry by the elements. Since infinite-rate kinetics model is used in this study,
instead of modifying the amount of scalar carries by an element using the equation

as= DSW, (3.109)

the chemical equation (2.114) is used directly in the calculation. The procedure for modifying the
amount of scalar carrying by an element is as follow. Reaction between a fuel and an oxidizer
element is allowed to occur only when these two elements intersect. Given any two intersecting
elements carrying non-zero amount of reactants with radii 6s,i and 6,, 2 (Figure 3.3b), with

8s, I rs,2 (1 can be a fuel element and 2 can be an oxidizer element or vise versa), whose cen-

ters are a distance d apart, the area of intersection A is given by

In 2 s,1 for d <8s, 2 - s,1
0Ao = (3.110)
0 for d 68s,2 -6s, I



2 2 2 2
A- a2,1-a(S,6 s,1 ) +a(S+d,6s, 2 ) for d 2 <, 2 s 2

A =2 (3.111)
a (X i, s,1) +a(X 2, 6s,2) for d s,2 -6 s,

where

d2+ 62dI-62'2 (3.112)

2 2 2d + s,2-6 s,1 (3.113)
2d

d + 6s, 2-,1 - d (3.114)
2d

and

a (x, 6) 62 - x 2  - ,2 asin ) (3.115)

At every reaction step, the distance between the centers of each pair of fuel and oxidizer
elements d,, = I1r, - rll is computed. The area Ai for each pair of intersected elements is calcu-

lated according to Equations (3.110-3.115). Since chemical reaction is assumed to occur infinitely
fast, whenever a fuel and an oxidizer element intersect, the intersected volume is assumed to
behave like a well-stirred reactor. The reactants contained within the intersected volume are
assumed to mix and to react instantly according to Equation (2.114). Products generated from
the reaction are then distributed between the two elements based on conservation of mass. One
should note that since the effect of the heat of reaction on the hydrodynamic field is neglected
and the fluid density is assumed constant in this study, the scalar elements will never intersect
without the random-walk step if the simulations were performed on a machine with infinite preci-
sion. Thus, the intersection of two initially non-overlapping scalar elements in this case should be
considered as caused by the diffusion velocity of the fluid elements.



4. ISOTHERMAL REACTIVE-FLOW SIMULATIONS

In this chapter, the vortex-scalar element method developed in Chapter 3 will be used to
investigate the dynamics of the near-wake region downstream of the bluff body as well as the
isothermal large-scale entrainment and mixing in a two-stream, coaxial-jet, axisymmetric bluff-
body combustor. The investigation of the underlying flow dynamics under the assumption of iso-
thermal reaction, excluding the effects of the thermal energy on the mixing field, is a good pre-
lude to the more complex exothermic reactive-flow study to be presented in Chapter 5. For this
isothermal reactive-flow study, the dynamics of the recirculation zone and the large-scale
entrainment and mixing will be investigated under both steady and time-dependent inflow
boundary conditions.

For consistency in extrapolation as well as for meaningful comparison of the results
present in this chapter to the results of exothermic reactive flow with low heat release to be pre-
sented in Chapter 5, only high-Reynolds-number flows will be simulated in all studies. That is, flows
with ReDa = (Ua* D) /v* > 2000, where U* is the magnitude of the annular flow, D* Is the diame-
ter of the combustor, and v* is the kinematic viscosity of the fluid. The main reason for imposing
this restriction is to limit the study to the high-Reynolds-number range so that the complication of
the Reynolds-number dependency of the flow can be avoided'. It has been observed that the
shear layers as well as the recirculation region generated by the bluff body are highly unstable at
high Reynolds numbers. This instability of the near-wake region causes quasi-periodic shedding of
large-scale vortical structures from the recirculation region at distinct characteristic frequencies
which are relatively independent of the Reynolds number, especially for velocity ratios UI/Ua
which are less than unity [52, 93]. At low Reynolds number (say ReDo - 0 (100)), however, the
unsteady flow dynamics are highly Reynolds-number dependent. Moreover, the flow tends to be
stable due to the high viscous dissipation, which damps the shear layer instability and diffuses the
vortical structures before they have the chance to grow to any significant sizes to affect the sta-
bility of the recirculation region. From numerical experiments, it was found that the unsteady
large-scale dynamics vary insignificantly with Reynolds number for ReDa > 2500, as is expected
for high-Reynolds-number flows. In addition, it was observed in numerous experimental studies
that when the flow Reynolds number based on the combustor diameter is in the range of
0 (1000), the recirculation region and unsteady motions of the large-scale structures are quasi-
axisymmetric [85, 120]. Thus, it was decided that all simulations for the isothermal reactive-flow
study will be performed with ReDa = 3000. This Reynolds number is high enough such that the
large-scale flow dynamics is relatively independent of the flow Reynolds number, and yet is still

1. Although the Reynolds-number dependency of the flow is also of high interest, however, we
would like to limit the study to the high-Reynolds-number range in this research.



low enough for the axisymmetric approximation to remain valid.

The geometry of the computational domain employed in the numerical simulations to be
presented in this chapter is given in Figure 1.1, repeated here in Figure 4.1 for convenience. One
important aspect of this bluff-body configuration that has been shown to be relevant in terms of
determining the unsteady dynamics of the near-wake region is the bluff-body-to-jet diameter
ratio, Db/D I As showed by Martins and Ghoniem [97], combustors with small values of Db/D i

exhibit unsteady dynamics which are quite different from those with large values of Db/Dl. For

geometries with large values of Db/D i, there are two significant instability mechanisms dictating

the unsteady behaviors in the near-wake region of the bluff body. These are the shear layer insta-
bility (between the jet and the recirculation bubble and between the recirculation bubble and
the outer annular flow) and the recirculation region instability. For large values of Db/Di coupling

with inflow velocity ratios' Uj/Ua which are less than unity, the dynamics of the near-wake region

are dominated by the recirculation region instability manifested by the shedding of large coher-
ent structures from the region at distinctive frequencies [91]. As the ratio of Db/D i is decreased,

the size of the recirculation region diminishes and the shear layer instability dominates the
unsteady dynamics of the near-wake region. In that case, the flow behaves very much like a sim-
ple axisymmetric shear layer.

The governing equations and the numerical schemes used in the simulations have been
presented in Chapters 2 and 3, respectively. In this study, owing to the assumption of isothermal
reaction, the expansion velocity field u, is identically zero and the flow Reynolds number based

on the combustor diameter is constant throughout the whole flow field (ReDa = 3000). As men-

tioned earlier, one of the main characteristics of turbulence is the three-dimensional vortex
stretching. The axisymmetric-flow model and the low-Mach-number assumption obviously restrict
the physics of the flow that can be captured by the simulations. Notably, the suppression of cer-
tain flow instability modes as well as the vortex stretching in the third dimension. Nonetheless,
results from the simulations are still useful for the investigation of the unsteady flow dynamics and
the large-scale entrainment and mixing in the near-wake region. This presumption is supported by
a number of previous experimental and numerical studies of two-dimensional and axisymmetric
shear layers and recirculating flows [85, 86, 93, 134, 119], which have shown that the approximate
model used in this research is able to reproduce most of the important large-scale flow features
accurately under a restricted range of flow Reynold number.

We will begin the discussion of the present investigation by a survey of previous studies on

1. Actually, the relevant parameter is the momentum flux ratio, (PU))/ (paUa), rather than the
velocity ratio. However, if the fluid densities are approximately the same and remain constant
with time, the velocity ratio is directly proportional to the square root of the momentum flux ratio.



this bluff body flow, both experimental and numerical. Results from this study will then be reported
and conclusions will be drawn.
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Figure 4.1 Geometry of the two-stream, coaxial-jet, axisymmetric bluff-body combustor used in this
research. (a) Schematic drawing of the combustor. (b) Axisymmetric computational domain. All the dimen-
sions in (b) are normalized by the annular diameter (= 0.1 m).



4.1 BACKGROUND

Many of the unsteady flow dynamics of nonpremixed turbulent combustion processes in
practical energy conversion devices can be modelled by double concentric jets separated by
an annular interface, similar to the axisymmetric flow configuration we are studying in this
research. It is well-known that in nonpremixed combustion processes, under most conditions, the
chemical time scales are much smaller than the flow time scales. Thus, the aerodynamics of mix-
ing usually plays a very important role in ignition, flame stabilization, and the overall combustion
processes in these systems [80, 84, 85]. The aerodynamics of confined bluff-body flow, both iso-
thermal and exothermic reacting, have been extensively studied by Roquemore and coworkers
of the Wright Aeronautical Propulsion Laboratory [117, 119, 120]. From their experimental studies,
it was shown that downstream of the bluff-body recirculation region the flame consists of large,
discrete fireballs, or flame turbules, separated by axial regions where no flame is visible [119].
These so-called flame turbules are shed from the recirculation region quasi periodically and are
found to retain their identity for very large distance downstream of the recirculation region. The
structures of these flame turbules were found to be quasi axisymmetric under certain Reynolds
number range, as can be seen in the high-speed Schlieren photographs presented in Figure 4.2a
and the simultaneous time recordings of the flame intensity by the photo detectors presented in
Figure 4.2c, The axial velocity of the flame turbules was observed to govern by the annular air jet
velocity, for almost all the air and fuel flow conditions they have studied. The characteristic fre-
quency of the flame turbules at a given axial location near where they are being formed was
also found to increase with an increase in fuel flow rate.

The shedding frequencies of confined bluff-body flows have also been investigated
extensively in experimental studies. works by Kiya and Sasaki [73], Parker and Welsh [109], Kenwor-
thy [71 ], and Cherry et al. [18] all have reported that the Strouhal number based on the diameter
of the bluff body, S, in the range from 0.1 to 0.2. The Strouhal numbers for unconfined cylinders
with different diameters at various flow Reynolds numbers have also been extensively measured
by Roshko [121], as shown in Figure 4.3. It was observed from the experimental data that the

Strouhal number is a function of the Reynolds number for ReD < 0 (103), and remains approxi-

mately constant at S = 0.21 for higher Reynolds numbers. This value of S was found to prevail up to

a Reynolds number ReD = 2 x 105. These experimental studies suggest that the shedding fre-
quency of the bluff body is an important parameter governing the unsteady dynamics of the
near-wake region of the confined bluff-body flow we are studying.



(d)
Figure 4.2 Experimental study performed by Roquemore and coworkers (119). (a) High-speed (3000 frames/s)
Schlieren photographs of the flame observed through a window of the experimental combustor with a camera
using a wide-angle lens showing the symmetrical shedding of a large-scale reactive flow structure from the
recirculation region. (b) Schematic drawing showing the setup of the experimental study. (c) Simultaneous time
recordings of the flame intensity as observed by the photo detectors located at the top and the bottom edges
of the bluff body. (d) Illustration of a proposed mechanism by Roquemore whereby shed vortices give rise to the
formation of flame turbules.
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Figure 4.3 The Strouhal number in terms of the Reynolds number for the flow past a circular cylinder as measured by
A. Roshko (125).
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Extensive visual experimental studies of isothermal and exothermic reactive flows over axi-
symmetric, unducted, vertically-mounted bluff-body combustors at low Reynolds numbers have
been carried out by Li and Tankin [85]. The flow visualizations in their studies were accomplished
by adding Ti CI4 vapor into the central gaseous propane jet for both nonreactive and reactive
flows, or by injecting Ti C14-N2 mixture into the flow field. Laser light sheets were used to illuminate

the flow for visualization. From their studies, they have found that the size of the recirculation zone
was significantly enlarged when a central jet was introduced into the flow. For exothermic reac-
tive flows, they found that the annular vortices in the recirculation region appeared to be more
organized, stationary and intense for attached flames as compared to the isothermal reactive
flows, and the size of the recirculation region as well as the height of the central jet are reduced
by at least half. For detached flames, they found that the height of the central jet is greatly
reduced; whereas the length of the recirculation region is increased, when compared to the cor-
responding isothermal reactive flows.

Nonreactive bluff-body flow calculations using the two-equation K-E turbulence model
have been reported by Sturgess and Syed [137] and Sturgess, Syed, and McManus [139]. Axisym-
metric finite-difference discretization of the incompressible, time-averaged Navier-Stokes equa-
tions, with two-equation turbulence closure was used in the simulations. Results from the
simulations yield acceptable agreement with experimental data in many respects, however, they
are deficient in predicting the recovery rate of the central near-wake region. It was hypothesized
that the probable cause is the inability of the turbulence model to account for the effects on
Reynolds stresses due to the curvature of the streamlines in that region. Sturgess and Syed [140]
have extended their method to handle reactive flow using the fast-chemistry model similar to the
one being used in this research for the treatment of combustion. The same authors have, subse-
quently, extended their method for multi-species, variable-density flow [138].

Correa [22] applied a model based on the density-weighted averaged Navier-Stokes
equations with an eddy-viscosity turbulence closure based on a two-equation IK- turbulence
model. Comparisons with limited available experimental data have shown similar discrepancies.
While mean flow features were accurately predicted by the numerical simulation, turbulent
kinetic energy was significantly underestimated, as can be seen in Figure 4.4. Discrepancies
between predicted and experimental results were found to increase for higher jet velocities,
where the flow field was observed to be dominated by large-scale vortical structures. More
recently, Correa and Gulati [23] applied a model based on the Favre-averaged Navier-Stokes
equations to a bluff-body stabilized flame of 27.5% CO, 32.2% H2, and 40.2% N2 fuel mixture
injected into air. The model assumes partial equilibrium for the radical pool, assumed-shape prob-
ability density functions (PDFs) for the two thermochemical variables required, and a two-equa-
tion K-E turbulence closure. While the predicted mean and variance of mixture fraction,
temperature, and species concentration fields showed good agreement with the experimental
results, shortcomings in the turbulence model were again noted and suggestions for improved
modelling of the turbulence were proposed that included a PDF transport method.



Krishnamurthy and Park [77] examined the streamline curvature effects in an isothermal
bluff-body flow using CO2 as the jet fluid. Numerical simulations were carried out based on the
Reynolds-averaged Navier-Stokes equations with 1K-E turbulence closure. A comparison with
measured mean and fluctuating axial velocity and CO2 mole fraction has shown that the model
predicted the general flow features satisfactorily. Similar findings were obtained by Krishnamurthy
et al. [78, 79] and by Memering and Krishnamurthy [96]. In their studies, they found that calcula-
tions using modelling approach correctly predicted the observed flow similarity and the vortex
center characteristics with respect to various inlet flow variables.

Calculations described by Roquemore et al. [118], using similar time-averaged method,
showed agreement with experimentally measured mean axial velocity and CO2 concentration

within 15 percent. However, error in the predicted turbulence intensities was again found to be
considerably greater. In particular, the turbulence intensities were significantly underpredicted in
the stagnation regions of the jet flow.

The dynamics of the nonreactive flow inside several axisymmetric bluff-body combustors
similar in geometry to the one used in this study have been investigated numerically using the axi-
symmetric Random-Vortex method and were reported in the works of Martins and Ghoniem [52,
53, 93, 94]. Results from their studies have shown that the dynamics of this confined bluff-body
flow strongly depended upon the bluff-body-to-jet diameter ratio, Db/D i , the inflow velocity or

momentum ratio, Ui/U a , and the blockage ratio, Db/Da. For a given inflow velocity ratio, it was

shown that the level of unsteady fluctuations in the recirculation region and the frequency of
shedding increase with the diameter ratio. Stability of the recirculation region was found to
decrease as the velocity ratio approaches unity, but increase again as the velocity ratio
becomes >> 1. The fluctuation intensities were also found to increase significantly with blockage
ratio. In all their investigations, Martins and Ghoniem analyzed the flow field by studying the
instantaneous streamline contours, vortex-element trajectories, mean velocity profiles, and Strou-
hal numbers. The temporal and spatial distribution of the fluctuation kinetic energy, which is an
important flow quantity for the understanding of the unsteady large-scale mixing field, was not
explored. In addition, the combustor confinement used in their studies was assumed to have an
inviscid wall. Thus, interactions between the large-scale vortical structures shed from the recircu-
lation region and the wall boundary layer could not be captured in the simulations. It is known
from experimental studies that the presence of the wall boundary layer has a significant effect on
the aerodynamics of the recirculation region and the flame stability in exothermic reactive flows,
especially for combustor geometries with high blockage ratio. Therefore, it is important that these
issues be addressed and the effects of the wall boundary layer on the recirculation region be
investigated.

In this study, we supplement the results obtained by Martins and Ghoniem on the bluff-
body flow by investigating the unsteady fluctuation kinetic energy and the large-scale entrain-
ment and mixing as a function of the inflow velocity ratio. The destability mechanisms of the recir-



culation region and the interactions between the wall boundary layer and the recirculation
region are analyzed in terms of the local unsteady fluctuating kinetic energy. The results are then
used to quantify the dominant physical processes controlling the large-scale entrainment and
mixing in this flow. For this study, all the simulations were performed for a combustor with diameter
ratio Db/Da = 1/2, and bluff-body-to-jet diameter ratio Db/D I = 9.26 (Figure 4.1) at three inflow

velocity ratios: U,/U a = 0.62, 1.04, and 2.08.

The numerical parameters used in all the simulations in this study are as follows. The flow
time step size At = 0.01; the Reynolds number based on the annular diameter and the magni-
tude of the annular inflow velocity ReDa = 3000; the length of the vortex sleeves used to satisfy
the no-slip boundary condition on the solid walls, h = 0.009; the absolute value of the maximum
circulation assigned to each vortex element, Fm = 0.00225; and the numerical sublayer thickness
at each wall is one-and-a-half times the standard deviation of the random-walk displacement.
The stoichiometric coefficients (per mole of fuel) of the chemical equation a, 0, and a are equal
to 2, 0, and 3, respectively. Finally, the ratio of the oxidizer molar flow rate to the fuel molar flow
rate divided by their stoichiometric ratio is 1.5.



4.2 LARGE-SCALE DYNAMICS AND THE MIXING FIELD UNDER THE ASSUMPTION OF ISOTHERMAL REACTION

WITH STEADY INFLOW BOUNDARY CONDITIONS

In this section, results from the isothermal reactive-flow simulations with three different
(steady) inflow velocity ratios (0.62, 1.04, and 2.08) are presented and discussed. Before we begin
the presentation, we would like to point out that the region of interest in the flow under investiga-
tion is, mostly, the recirculation zone located between the face of the bluff body and the begin-
ning of the fully-developed region, which is approximately a couple of bluff-body diameters
downstream of the bluff-body face. The unsteady dynamics in this region and the large-scale
entrainment and mixing as a function of the inflow velocity ratio will be studied in detail. The flow
dynamics will be investigated under both steady and time-dependent inflow boundary condi-
tions. For all the simulations, fuel and oxidizer, both assumed to be diluted in an inert gas and with
the same molecular weight, are introduced into the reaction zone through the jet and the annu-
lar flow, respectively. Chemical reaction is assumed to be described by a binary, single-step, irre-
versible equation with infinite-rate kinetics and with negligible heat of reaction (Equation 2.80).
Under these assumptions, the flow is treated as isothermal and the fluid density can be approxi-
mated as constant. Thus, the transport equations of the hydrodynamic field and the scalar field
are decoupled. Since chemical time scales are much less than the flow time scales under the
flow conditions we are studying, the infinite-rate kinetics model is an acceptable first-order
approximation. It helps to eliminate the complication associated with higher-order model.
Together with the negligible heat-of-reaction assumption, it allows us to isolate the effect of the
mixing enhancement brought about by the quasi axisymmetric large-scale structures on the rate
of product formation, which is the primary objective of this part of the research. With the above
assumptions, the simulation yields an upper bound on the amount of products can be generated
and the most compact mixing zone possible for a given inflow velocity ratio.

4.2.1 The TIME-AVERAGED STATISTIC FLOW PROPERTIES

The time-averaged statistic properties of the flow first are presented and discussed in this
section. In analogy to performing experiments in the laboratory, since the unsteady evolution of
a spatially inhomogeneous flow is simulated, spatial as well as temporal averaging are necessary
in order to obtain the flow statistic properties. For the purpose of obtaining the flow statistics and
for visual presentation, a mesh with variable-size cells covering the region of interest was used for
the calculations. To obtain the continuous product mole fraction field, the concentration within a
given cell was computed by averaging the strength of the Lagrangian scalar elements located
within the cell over a large number of time steps after stationary state of the flow has been estab-
lished. The sizes of these cells were chosen to be larger than the average distance between two
neighboring elements in order to ensure that a good fraction of the scalar elements are located
in each cell at each time step, but is smaller than the relevant length scale of the smallest resolv-
able eddies in order to guarantee adequate spatial resolution.

All simulations performed for this study were started impulsively at t = 0.0 with different



(constant) inflow velocity ratios. Vortex elements are introduced on the solid walls in the flow
domain at the predetermined check points every time step to satisfy the no-slip wall boundary
condition, and they are deleted at the exit boundary of the flow domain. Figure 4.5 presents the
total number of vortex elements in the flow domain as a function of time for all three cases. As
can be seen from the figure, the total number of vortex elements increases rapidly from t = 0.0 to
approximately t =12.0. Within this time period, the flow inside the channel has gone through a
transient period from a start-up fully potential flow to a stationary shear flow in which the flow fea-
tures repeated themselves quasi periodically. After stationary state of the flow has been estab-
lished, the total number of vortex elements in the flow domain is seen to fluctuate weakly with
time due to the formation and the departure of the large-scale vortical flow structures in the
computational domain. The time beyond which the flow field has reached a stationary state is
clearly evident in this figure. Since all the time-averaged flow quantities are meaningful only
when the flow is statistically stationary, it is obvious from this figure that the flow data in the range
t < 12.0 for all three cases must be discarded for the purpose of calculating statistical quantities.
Thus, all the statistical properties of the flow presented in this study were obtained by averaging
the quantities of interest after t = 12.0 for a total of 7300 time steps, corresponding to a total of 73
units of dimensionless time.
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Figure 4.5 Total number of vortex elements in the computational domain as a function of time.



For a stationary random process, time averaging can be expressed mathematically as
[63]

1
i(rm) =li2-cm Lf T T((r,t) dt (4.1)

where 4 is any flow quantity and i is the corresponding time-averaged value. Obviously, for
practical reasons, we cannot carry out the averaging procedures for an infinite value of T. If we
take T to be a finite time interval, then this interval must be sufficiently large compared with the
time scale of the flow dynamics we wish to regard as belonging to the turbulent motion of the
flow before the statistical quantities are meaningful. On the other hand, the interval must be small
compared with any slow variations in the flow field that we do not wish to consider as significant
to the problem. Clearly, there is a certain arbitrariness in the choice of the fluctuations that we
think is relevant to the problem at hand. However, by taking samples at different values of T, it is
possible to determine the appropriate value of T to use such that all statistical quantities obtained
from the averaging procedures are meaningful. Furthermore, the average value should be inde-

pendent of the origin t of the averaging procedure. Thus, ad/at should be either zero or, in the
case of a slightly varying main flow, negligibly small.

Figures 4.6-4.8 show the time-averaged radial distributions of the axial velocity, the fluctu-

ation kinetic energy, u'ul + v' v', and the product mole fraction at axial station z = 0.7551 (this is
approximately the axial station containing the time-averaged centroid of the recirculation
region) as a function of the data sampling size for all three cases. The information provides by
these plots can be used to establish the value of T we should use in the time-averaging proce-
dure in order to obtain meaningful statistics for this study. From the figures, it is seen that both the
velocity and the product mole fraction mean profiles have high convergence rates, and the vari-
ations of the profiles from one sampling size to the next also remain small. However, the product

of the velocity fluctuations, u'u' and v' v', which are the second moments of the flow velocity,
converge much more slowly, especially in the shear layer regions. Nonetheless, it is clear from
these plots that a total of 7300 time steps are sufficient to establish stationary state for all the time-
averaged statistic flow properties.
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4.2.2 THE TIME-AVERAGED VELOCITY FIELD, THE PRODUCT MOLE FRACTION, AND THE FLUCTUATION KINETIC

ENERGY

The magnitude of the time-averaged velocity field and the product mole fraction field
are presented in Figure 4.9. Before we begin the discussion of this figure, it is necessary to point
out that the contour levels of the time-averaged velocity field (Figure 4.9a) were cut off at 1.25 in
this figure. Thus, detailed internal structures of the jet flow are not resolved for the two cases with

velocity ratio UI/Ua = 1.04 and 2.08. This is necessary in order to prevent the important flow fea-

tures in the main part of the flow domain from being washed out, and for meaningful compari-
sons among the three cases. From this figure, it is seen that the main feature of the flow field,
regardless of the inflow velocity ratio, is a narrow potential core at the center of the channel
where the annular velocity is being accelerated from a mean value slightly greater than 1.0
before the bluff body face, to approximately 1.25 over the recirculation zone. The flow is seen to
decay gradually back to 1.0 at a distance about three bluff-body diameters downstream of the
bluff-body face. The time-averaged wall boundary layer increases its thickness considerably near
the end of the recirculation region, and reaches to almost a constant thickness downstream of
the recirculation region regardless of velocity ratio. As will be shown later in the unsteady velocity
field, this sudden increase in boundary layer thickness is associated with the formation of large
vortices in the boundary layer, synchronizing with the shedding frequency of the large-scale vorti-
cal structures originated from the recirculation region. This strong interaction between the large
vortices and the wall boundary layer, which is highly prominent in the unsteady fluctuation kinetic
energy field, affects the dynamics of the near-wake region significantly and was not captured by
the simulations of Martins due to his assumption of inviscid-wall confinement [93]. Notice that a
well-defined shear layer between the jet and the outer flow and between the annular flow and
the recirculation region are clearly visible in these time-averaged velocity fields.

The effect of varying the inflow velocity ratio on the flow field development is also quite
noticeable in this figure. In qualitative agreement with the inferred flow field development
reported by Roquemore [117] and Namazian [103], when the jet momentum is weak relative to
the recirculating flow, the central jet penetrates only a short distance into the recirculation
region. This flow pattern gives rise to two stagnation points: the forward stagnation point which is
that of the central jet and an aft stagnation point, which defines the end of the recirculation zone
established by the annular-flow separation (Figure 4.9a-1 and Figure 4,10a). As the magnitude of
the jet velocity is increased, it penetrates the recirculation region completely and no stagnation

points exist along the centerline. This seems to be the flow pattern for both Ui/U a = 1.04 and 2.08

(Figures 4.9a-2, a-3, 4.10b and c). Notice that the time-averaged velocity fields presented in Fig-
ure 4.9a indicate that a well-defined recirculation region exists behind the bluff body regardless
of the velocity ratio. However, as will be seen in the Section 4.2.4 where we present and discuss
the unsteady results, the recirculation region of these three cases has very different unsteady
dynamical behaviors, and it is this strong dissimilar unsteady dynamics that gives rise to the very
different time-averaged mixing fields as shown in Figure 4.9b.



Flnw Dir•rtfinn

Figure 4.9 Time-averaged magnitude of the velocity and product mole fraction contours.(a) Magnitude of the velocity. (b) Product mole fraction.
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The bottom three pictures in Figure 4.9 show the time-averaged product mole fraction
contours corresponding to the three velocity ratios as shown in Figure 4.9a. In qualitative agree-
ment with the experimental results of Namazian [103], the distribution of the mean product mole

fraction varies substantially as a function of the velocity ratio. For the case UI/Ua = 0.62, the jet

fluid is being stagnated a short distance from the exit plane. Thus, mixing of the fuel with the oxi-
dizer and chemical reaction are mostly completed within the recirculation region. In this case,
highest product concentration is found within the recirculation region a short distance down-
stream of the exit plane. Hence the mixing zone is compact, having approximately the same
length as the recirculation region established by the bluff body. As the velocity ratio is increased
to 1.04, we see that the length of the mixing zone extended past the time-averaged length of the
recirculation region (Figures 4.9a-2, b-2). At this velocity ratio, a large fraction of the fuel has suffi-
cient momentum to penetrate into the flow field much further before reacting with the oxidizer.
Thus, a significant amount of reaction is seen to occur a short distance downstream of the recir-
culation region in this case. Notice that in this case the maximum of the product contour level
within the recirculation region is about 15 percent lower compared with the case UJ/Ua = 0.62.

Finally, for UI/Ua = 2.08, the momentum of the fuel jet is so much higher than the annular flow that

the latter has essentially no effect on the jet flow, and the fuel behaves almost like a free jet. Most
of the fuel elements are seen to remain close to the centerline of the combustor where mixing
and chemical reaction are most intense. In this case, much lower product concentration within
the recirculation region is observed, and the mixing zone extends many bluff body diameters
downstream of the recirculation region. The variation of the time-averaged product mole frac-
tion contours as a function of inflow velocity ratio presented in Figure 4.9 is consistent with the
experimental results obtained by Namanzian [103]. In his experimental studies, he found that for
low fuel-to-air velocity ratios, the flame is broad, short and blue, exhibiting more well-mixed fuel
and air within the recirculation region similar to Figure 4.9b-1. For very high velocity ratios, he
found that the flame is long and narrow, confining primarily near the centerline of the combustor
and has much lower product concentration within the recirculation region. This trend can also
clearly be seen in Figure 4.11 where we show the product flux, defined as1

f (puYY 2nr) dr, (4.2)
0

integrated across the combustor cross section as a function of the axial coordinate. From this fig-
ure, we see that the product flux at a given axial station within the recirculation region decreases
as the velocity ratio increases, indicating that mixing and reaction within the recirculation region
decrease with an increase in velocity ratio.

1. Yp is the product mass fraction.
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Figure 4.11 Product flux integrated across the combustor cross section as a function of the axial coordinate.

Figures 4.12-4.14 show the time-averaged radial distributions of the flow properties at axial
station z = 0.7551 for all three cases. Results at this axial station are presented since they are char-
acteristic representations of the distributions obtained within the recirculation region of the flow.
Notice that the corresponding radial profiles presented in these three figures are quite similar in
shape. All three velocity profiles show an inviscid core flow with steep velocity gradient at the top

wall. The radial distributions of u'v' and u'u' + v'v' exhibit significant Reynolds stress and fluctua-
tion kinetic energy within the shear layer between the outer annular flow and the recirculation

region, as well as within the shear layer between the recirculation region and the jet. The u'v' cor-
relations are seen to attain their maxima inside the two shear layers, corresponding to the regions
with highest mean velocity gradients and the most intense mixing. The direction of momentum
transfer hence, large-scale transport and mixing, within the shear layers is clearly evident in the

u'v' profiles. On the top shear layer, the axial velocity and the fluctuation are, on the average,

positive. A negative value of u'v' at this location indicates that momentum is being transferred
from the annular flow into the recirculation bubble. On the other hand, the axial velocity and the
fluctuations in the jet shear layer are, in general, in the negative streamwise direction. A negative

value of u'v' at this location indicates that the jet fluid is being transported upward radially across
the jet shear layer. Thus, the amplitude of the Reynolds shear stress gives a good measure of the
relative intensity of the large-scale mixing in these regions. One point of significance which should
be mentioned here is the value of u'v' at r = 0. A value of zero was predicted by the simulations.
This is contrary to many experimental results, which often show significantly large nonzero values
of Reynolds stresses near the centerline. However, this is to be expected since the numerical



results were obtained from axisymmetric simulations. By construction the radial velocity hence,
the fluctuations, at the centerline is identically zero under the axisymmetric assumption. However,
the motions of the eddies near the centerline are usually three-dimensional in real flows. Conse-
quently, it is not possible to precisely predict and quantitatively reproduce all the details as seen
in laboratory experiments using the axisymmetric model.

The experimental measurements of the (two-component) fluctuation kinetic energy

u'u' + v'v' and the Reynolds stress u'v' for the cases Uj/ Ua = 0.62 and 1.04, respectively, reported

by Namazian [103], are used to check the accuracy of the numerical solutions. The comparisons
of the radial profiles at axial station z = 0.3 are presented in Figures 4.15. When studying these
comparisons, one should keep in mind that the flow Reynolds number used in the experiments is
much higher than the one used in this numerical study. In addition, the combustor used in the
experimental studies was unducted. Thus, some discrepancies between the experimental and
the numerical results should be expected. Nevertheless, Figures 4.15 shows good agreement
between the computed profiles and the experimental results, except near the centerline and at

r - 0.5. As mentioned earlier, the eddies moving near the centerline in most real flows are usually
three-dimensional and contain irregular small-scale turbulence. Thus, the dynamics near the cen-
terline cannot be captured by our axisymmetric model. As for r = 0.5, our model has a viscous
confinement whereas the experimental studies were performed with an unducted combustor.
This dissimilarity in combustor configuration accounts for the discrepancies between the pre-
dicted and the experimental results at r - 0.5.
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Figure 4.15 comparisons of radial distributions between the measurements of Namanzian [103]
and the computed fluctuation kinetic energy and Reynolds stress for the two cases UI/Ua = 0.62
and 1.04, respectively. (a) Uj/Ua = 0.62. (b) U /Ua = 1.04.

4.2.3 PROBABILITY DENSITY FUNCTIONS OF THE VELOCITY DISTRIBUTIONS

In most classical turbulent flow studies, the investigations are usually centered around the
spectrum tensor because it is the statistical quantity which lends itself readily to the formation of
hypotheses about the mechanism of decay of turbulence [8]. However, there are many other
statistical quantities whose meanings are readily understood and are relevant to the basic
mechanical process of the motion. Almost all of these quantities can be determined by the prob-
ability distributions of the velocity or its derivatives at one point, or the joint-probability distribution

0.08



of the velocity at two points. Thus, the probability distributions of the velocity are important quan-
tities in studying high-Reynolds-number flows. In this section, we will present and discuss the repre-
sentative probability distributions of u' and v' in the near-wake region, and to assess the effects,
If any, of the inflow velocity ratio on the characteristics of the flow structure in terms of the proba-
bility density functions (PDFs).

The central-limit theorem states that the probability distribution of a continuous variable,
which is the sum of a large number of independent variables, is approximately normal or Gauss-
ian [12]. Nearly all the random processes occur in nature have Gaussian probability distribution,
including stationary homogeneous turbulence. The existence of an approximately Gaussian distri-
bution of the velocity in homogeneous turbulence has been known for many years [8], and was
one of the first experimental results concerning homogeneous turbulent motions to be estab-
lished. However, it is important to realize that this result is only valid for homogeneous turbulence.
For flows in which the dynamics are dominated by large-scale structures, similar to the flow which
is being investigated in this research, the velocity probability distribution functions are generally
skewed, and in some instances, bimodal. This fact has been observed in numerous experiments
[103].

Figures 4.16-4.21 show the normalized probability density functions (PDFs) of u' and v' for
all three cases at six spatial locations in the flow domain: (r, z) = (0.027, 0.6051), (0.25, 0.6051),
(0.027, 0.9051), (0.25, 0.9051), (0.027, 1.2051), and (0.25, 1.2051). These PDFs were obtained from
samples each containing 8400 data points, using 70 phase bins which are spaced equally over
the three sigma limits of the data. The axial coordinates of these points were chosen such that
they are located at a short distance downstream of the bluff-body face, approximately in the
middle, and at the end of the recirculation region. The radial coordinates of these points were
chosen to be located inside the shear layers of the recirculation bubble. This conditional spatial
sampling approach allows us to conveniently map out the characteristic behaviors of the flow in
the recirculation region.

The probability density for a single variable say u', at a single point, P(u'), is defined by

saying that P(u')du' is the fraction of the total duration of a long sample for which the variable

lies between u'- (1/2) du' and u'+ (1/2)du'. In all the plots presented in Figures 4.16-4.21, the

y-axis is dimensionless and the integral of Pdu' is unity. The distributions presented in these figures
resembled of those measured in two-dimensional shear layers separating two flows of different
velocities. Notice that the shapes of the PDFs vary greatly from one point to another for all three
cases, indicating that the flow is highly inhomogeneous. Since the flow is not homogeneous, obvi-
ously it cannot be isotropic [15]. This fact can easily be seen by comparing the PDFs of u' with
those of v' for the same velocity ratio. Overall, the PDFs of u' are far from a Gaussian distribution
and most of them are highly skewed. For points near the stagnation region, the probability den-
sity functions can exhibit bimodal distributions, as shown in Figure 4.16b.



In order to put the above discussion on a more quantitative basis, the skewness, a 3 , and
the flatness factors, a 4, of the PDFs have been calculated and presented in Figure 4.22. The
skewness, which is the third moment of the PDF, measures the symmetry of the distribution. It is
given by

n

a3 = i (4.3)

(x,- x)2

i=1

where x is either the axial or the radial velocity. When a distribution is asymmetric about the maxi-
mum and has one of its tails longer than the other, the measure of this asymmetry is described by
the skewness. If the longer tail occurs to the right, the distribution is said to be skewed to the right,
and if the longer tail occurs to the left, it is said to be skewed to the left. The measure of a 3 will be

positive or negative depending on if the distribution is skewed to the right or to the left, respec-
tively. Moreover, the PDF distribution may have its values concentrated near the mean so that the
distribution has a large peak, or the distribution may be relatively flat. The flatness factor, also
known as the kurtosis, is the forth moment of the PDF. It describes the degree of peakness of the
distribution and is given by

n

4 i=1 3. (4.4)

Y- (XI - 2

i=l

A Gaussian distribution has zero skewness and a flatness factor of three. With this in mind, we can
analyze the PDFs in terms of the skewness and the flatness factors in order to assess the degree of
departure of the PDFs from a Gaussian distribution. From Figure 4.22, it is interesting to see that
although the underlying unsteady dynamics of the three cases differ greatly, the variations of
skewness and kurtosis of both u' and v' with axial location follow approximately the same trend.
However, this alikeness should probably be expected since all three simulations have identical
Reynolds number. From Figure 4.22, we see that the skewness of p(u') for all three cases is almost
zero near the bluff-body face, indicating a symmetric PDF distribution, and varies greatly with
axial locations. For r = 0.027, the skewness of p(u') becomes more positive (skewing toward posi-

tive velocity) with axial location, while the skewness of p (u') becomes more negative (skewing
toward negative velocity) for r = 0.25. The kurtosis, however, has the same trend for both radial
locations, becoming more positive with z. Notice that the variations of both the skewness and the
kurtosis are greatest in the shear layer between the recirculation region and the annular flow. This
strong non-Gaussian behavior can be explained by considering the origin and the shedding of
the large-scale vortical structures from the recirculation region. In all three simulations, vortices
are being formed continuously at the edge of the bluff body. While at the early stage of their for-



mation, the sizes of these eddies are quite small and hence, disturbance to the local mean
velocity caused by these small eddies is less substantial and more Gaussian-like. These eddies
entrain fluid and continue to grow in size while being convected down stream along the shear
layer. Near the end of the recirculation region, the eddies have grown sufficiently in size. Some
eddies might even have merged with the eddies originated from the central jet for cases with
lower velocity ratio. Since the velocity of the fluid convected by the large-scale structures
departs more radically from the mean velocity than the velocity variation due to small-scale
eddies, these large-scale eddies affect the local velocity distribution much more significantly and
abruptly, causing greater deviation of the PDFs from a Gaussian distribution.

One should also note that the magnitude of the skewness and kurtosis variation for all
three cases are all very similar up to the second station. However, near the end of the recircula-
tion region, the magnitude of the skewness and the kurtosis increased considerably for the case
Uj/Ua = 2.08. Since the kurtosis of a Gaussian distribution has a value of three, greater values indi-

cate that the distribution decreases faster than a Gaussian distribution. The sharp increase of kur-
tosis at the third station for the case Ui/Ua = 2.08 means that the PDF at this station is highly

concentrated in a small range of velocity and has a very steep drop-off rate. Checking Figure
20f, we see that it is indeed the case. Notice that in this case the PDF is concentrated around zero
and highly skewed toward left. This distribution of the PDF suggests that the local velocity field is
relatively uniform in this region, and disturbances cause by the passage of the eddies are quite
significant (up to one-and-a-half times the local mean speed) but very infrequent.

Another interesting feature of the skewness of u' one should note is that the instanta-
neous velocity of the flow in the shear layer between the jet and the recirculation region is, on the
average, negative. However, the fluctuations at this location are positive. The same kind of oppo-
site trend is observed in the shear layer between the recirculation region and the annular flow. (In
the outer shear layer, the mean velocity is positive but the fluctuations are negatively skewed.)
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4.2.4 VORTICITY DYNAMICS AND THE UNSTEADY PRODUCT CONCENTRATION FIELD

In a turbulent diffusion flame, chemical reaction occurs primarily on the surfaces where
the ratio of the reactant fluxes is in stoichiometric proportion [80]. Therefore, combustion pro-
cesses are highly time-dependent and are expected to be very sensitive to the instantaneous
local species concentration and local fluctuations. The time-averaged flow properties presented
earlier, while providing a global description of the steady flow dynamics and the mixing field, do
not yield sufficient information required for detailed assessment of the large-scale entrainment
and mixing and flow-combustion interaction. In this section, we will present the time-dependent
solutions and to study the unsteady large-scale dynamics and their effects on the instantaneous
mixing field and the rate of product formation.

We begin the analysis of the unsteady dynamics of the near-wake region and the mixing
field by looking at the time evolution of the large-scale structures in terms of the vortex-element
distribution in the interior of the flow domain and the corresponding product concentration field.
Figure 4.23 shows the formation, merging, and the shedding of a composite vortical structure

from the recirculation region for the case Uj/Ua = 0.62. In this figure, the instantaneous locations

of the vortex elements are depicted by small squares, and the line segments initiating from the
centers of the squares represent the velocity vectors of the elements. Notice that the most prom-
inent unsteady flow feature in this series of time frames is the presence of the two-eddy system in
the recirculation region: a clockwise-rotating eddy created by the separation of the annular air
at the outer edge of the bluff body, and a counterclockwise-rotating eddy created by the sepa-
ration of the jet fluid from the bluff body's inner edge. This time series clearly showed that in this
case the dominant physical process modulating the mixing and the reaction in the near-wake
region is the formation, merging, and the shedding of the large-scale composite eddies from the
recirculation zone.

Figure 4.23 shows a typical shedding cycle of the recirculation region. The roll up of the
inner jet boundary layer forms a counterclockwise-rotating eddy situating above the exit of the
jet nozzle which entrains most of the jet fluid entering the flow domain. The rest of the jet fluid not
entrained by this fuel eddy penetrates into the recirculation region a short distance before being
stagnated and turned to flow backward upstream along the shear layer between the jet and the
recirculating air eddy. Mixing of the jet fluid with the annular air and reaction in this case is largely
confined to this thin shear layer, and along the interface between the recirculating air eddy and
the counterclockwise-rotating fuel eddy. This can be seen clearly by comparing the first frame of
Figure 4.23 with the corresponding instantaneous product concentration field given in Figure 4.24.
In this case, the flame will be confined primarily to the shear layer between the jet and the recir-
culating air eddy for exothermic reaction.

As more fuel is being engulfed by the counterclockwise-rotating eddy, it begins to grow in
size and to compete with the air eddy for the available space within the recirculation region. This
process causes the air eddy to drift away from the face of the bluff body. Meanwhile, a new air



eddy begins to form at the outer edge of the bluff body (second frame of Figure 4.23). The for-
mation of the new air eddy destabilizes the fuel eddy, and causes it to move away from the face
of the bluff body also. Merging between the fuel and the air eddy is clearly evident in the third
frame of Figure 4.23. While the eddies are being merged, mixing and reaction between the jet
fluid and the annular air continue to take place. (second and third frame of Figure 4.24). Beyond
t = 28.53, the composite eddy breaks away from the recirculation region. However, mixing and
reaction are seen to continue on the surface of the composite eddy as it is being convected
downstream (the last two frames of Figure 4.24). Meanwhile, the recirculation region is occupied
by the newly generated air eddy and the shedding cycle is ready to repeat again. This unsteady
ejection of discrete reactive flow structures from the recirculation region resembles the intermit-
tent and discrete combustion process of exothermic reactive flows as observed in many experi-
mental studies [103, 120]. Notice that in this case the unsteady mixing zone is never much longer
than the recirculation region.

Since all the numerical simulations are performed with steady inflow boundary conditions,
the unsteady shedding of large-scale structures from the recirculation region observed here is the
intrinsic dynamics of this confined bluff-body flow, and the corresponding shedding frequency is
the property of the flow system. Vortex shedding inside combustors has been known to interact
with the acoustic waves in exothermic reactive flows and to generate intense pressure fluctua-
tions which can cause structural damage to the combustion system [27, 113]. These instabilities
are usually triggered when the shedding frequency of burning vortices is in resonance with one or
more of the natural instability modes of the combustion system, causing large-scale temporal
and spatial variations in heat release rate within the combustor. Thus, the natural shedding fre-
quency of a system is usually of great interest to combustion system designers. To further charac-
terize the unsteady shedding of these coherent structures from the recirculation region, we have
calculated the frequency spectra at the exact same locations where the PDFs were obtained by
taking the Fourier transform of the fluctuation kinetic energy u'u' + v' v' at these locations. Note
that the power spectra at a given point in the flow domain provide a quantitative measure of the
relative size and the energy content of the large-scale eddies passing by the vicinity of that point.
From the power spectra presented in Figure 4.25, we see that the dominant Strouhal number is
centered approximately around 0.15, which is close to the well-known bluff-body shedding fre-
quency at this Reynolds number [125]. As mentioned earlier, the unsteady dynamics of bluff-body
flows are generally characterized by the recirculation bubble instability for low inflow velocity
ratios. Experimental studies have found the shedding frequencies of many bluff bodies are in the

range of O (0.1 ). Works by Kiya and Sasaki [73], Parker and Welsh [109], and Cherry et al. [18] all
have found the Strouhal number based on the bluff-body diameter and the freestream velocity
in the range from 0.1 to 0.2. Thus, the information provided by the power spectra confirmed the
early speculation that the dynamics and the large-scale mixing field in the near-wake region are
governed by the natural unsteady shedding dynamics of the bluff body. As we move further
downstream, a lower value of Strouhal number, centered around 0.06, also becomes noticeable.
This Strouhal number is most likely associated with the dynamics of the merged structures being
convected away from the recirculation region [93]. The shedding of these large-scale structures
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from the recirculation region can also clearly be seen from the time traces of the axial velocity
fluctuations presented in Figure 4.26. These time traces show remarkably well that the quasi-peri-
odic disturbances on the local velocity field due to the passage of the large eddies. Noticeably,
the magnitude of the disturbances can reach as high as 90 percent of the mean local velocity
(the last plot on the left-hand column of Figure 4.26).

Figures 4.27 and 4.28 show the time-dependent velocity field in terms of the vortex ele-
ments in the flow domain and the corresponding product concentration field for the case UI/U a

= 1.04. The most prominent feature of the flow dynamics at this velocity ratio is also the quasi-peri-
odic shedding of well-organized reactive flow structures from the recirculation region. A typical
shedding cycle is depicted in the time series given in Figure 4.27. Notice that the destabilization of
the air eddy due to the growth of the fuel eddy, the merging of the two eddies and, finally, the
shedding of the composite structure from the recirculation region are almost identical to the
case Uj/Ua = 0.62. However, since the momentum of the jet flow is comparable to the annular

flow in this case, a large percent of the fuel penetrates and escapes the recirculation region
remains unreacted. Thus, mixing and reaction are not confined within the recirculation region at
this velocity ratio. In additional to the shedding of large-scale structures from the recirculation
region similar to that of the previous case, mixing and reaction also occur along the centerline
extending several bluff-body diameters downstream of the recirculation region in this case (Fig-
ure 4.28). Notice that reaction along the centerline occurs only discretely. From Figure 4.28, it is
seen that regions of high product concentration are separated by distinct regions of low product
concentration along the centerline of the combustor. This is because of the jet fluid escaping the
near-wake region in short bursts at this velocity ratio due to the unsteady nature of the recircula-
tion region, and results in the supplying of fresh fuel to the oxidizer elements in a pulsating fashion.
This phenomenon has also been observed by Namazian in his experimental studies [103].

The power spectra for this case are presented in Figure 4.29. Again, the spectra were cal-
culated at the exact same locations where the PDFs were obtained. Notice that the distribution
of the spectra is very similar to the previous case, revealing the similarity of the large-scale flow
structures and the shedding behaviors of these two cases despite differences in velocity ratio and
the flow dynamics near the axis of the combustor.

The large-scale entrainment and mixing can further be investigated by injecting passive
particles in the central jet stream at every time step. By following their trajectories as these parti-
cles are being dispersed in the flow domain, the simulation mimics the dispersion of a passive dye
injected with the jet stream into the annular flow. Thus, the resulting dispersion pattern can be
used to study the effects of the large-scale structures on the entrainment and the mixing in the
near-wake region. Two series of time frames showing the unsteady dispersion of the passive parti-
cles into the annular flow are presented in Figure 4.30 for the two cases UI/Ua = 0.62 and 1.04.

Again, the instantaneous locations of the particles are depicted by small squares, and the line
segments initiating from the centers of the squares represent the velocity vectors of the particles.



For the case Uj/Ua = 0.62, we see two time-dependent stagnation points exist along the center-

line of the combustor. At these locations, the axial velocity of the particles becomes zero as they
are being entrained into the reverse flow stream of the clockwise-rotating recirculation region
established by the bluff body. These particles are being transported upstream along the jet shear
layer . As the particles move closer to the face of the bluff body, they bifurcate between two
directions. Most of the particles are seen to get engulfed by the counterclockwise-rotating eddy.
A small fraction of the particles, however, escapes by moving radially upward along the face of
the bluff body and then along the outer fringe of the recirculating air eddy. As the size of the
counterclockwise-rotating eddy increases, it destabilizes the recirculation region. Mixing of the
passive particles with the annular air can clearly be seen in the fifth and the sixth frame in the left-
hand column of Figure 4.30. This unsteady interaction between the counterclockwise-rotating
eddy and the recirculation region eventually leads to the complete breakdown of the recircula-
tion region, and the escape of the particles which are trapped In the clockwise-rotating eddy
from the recirculation zone.

Similar entrainment and mixing pattern in the jet shear layer within the recirculation region
is also observed for the case Ui/Ua = 1.04. However, since the momentum of the jet fluid is com-

parable to the momentum of the recirculating annular flow in this case, a large percent of the
passive particles penetrates and escapes the recirculation region. In this case, in addition to the
unsteady large-scale dynamics within the recirculation region, mixing and entrainment of the
particles into the annular flow also take place along the centerline of the combustor downstream
of the recirculation zone.

Figure 4.32 shows comparisons between the predicted jet-fluid concentration and the
experimental data provided by Namazian [103] as a function of the axial coordinate. The numer-
ical data were obtained by overlaying a mesh of identical square cells onto the domain of inter-
est and calculating the concentration of the jet fluid in each cell as a function of time' (Figure
4.31). Since the dimensions of all the cells in the mixing domain as well as the source cells at the
exit of the jet nozzle are identical, the concentration of the jet fluid in each cell at any given
instant of time can easily be found by dividing the instantaneous number of particles in the cell
by the total number of particles in a source cell (10 in this case). From the figure, it is seen that the
numerical predictions show reasonable agreement with the experimental data. Maximum dis-
agreement in both cases occurs at approximately one-and-a-half times the bluff body diameter,
near the end of the recirculation region and in the vicinity of the stagnation region. This disagree-
ment can be attributed to the modelling errors introduced by interpolation in regions of high
velocity gradient.

1. Reducing the cost of the computation is the primary reason behind limiting the overall size of the
mesh. From the simulations, it was found that all the particles, once they have moved past axial
station z = 4.0, did not recirculate back upstream. Therefore, it was decided to delete these pas-
sive particles once they have moved past axial station z = 4.0 in order to reduce the computa-
tional cost.
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Finally, the velocity field in terms of the vortex elements and the corresponding unsteady
product mole fraction field for the case Uj/Ua = 2.08 are presented in Figures 4.33 and 4.34,
respectively. At this velocity ratio, the jet momentum is so much stronger than the recirculating
flow, the recirculation region has essentially no effect on the dynamics of the jet flow. In essence,
all the fuel elements escape the recirculation region remain unmixed and unreacted. In this case,
the product distribution is seen to concentrate mainly along the axis of the combustor, with small
excursions away from the centerline. These excursions correspond to the products entrained by
the large-scale eddies which form occasionally on both sides of the bluff body. Notice that the
maximum level of the product concentration in the recirculation region in this case is much lower
than the previous two cases. Mixing, hence reaction, seems to take place starting near the end
of the recirculation region only. At this velocity ratio, the recirculation region becomes relatively
stable and the flow experiences much less entrainment and fluctuation in the near-wake region.
Most of the fuel elements are seen to confine to a narrow region very close to the centerline
where mixing and reaction are most intense.

The power spectral density plots for this case are shown in Figure 4.35 (the sampling loca-
tions are exactly the same as the other two cases already presented). Notice that since the recir-
culation region is much more stable, large-scale shedding from the recirculation region is less
frequent. Thus, the bluff-body shedding frequency is less pronounced in most locations except
near the point (r, z) = (0.25, 0.6051) (Figure 4.27d). In all other locations at r = 0.25, we see that the
spectra have many narrow high-frequency peaks, indicating that a wide range of different sizes
small eddies are being shed from the upper shear layer instead. Another interesting point worth
noting here is that the spectral peaks in the jet shear layer are all concentrated in the lower fre-
quency range. The natural frequencies observed in these plots form the basis for the selection of
forcing frequencies when we study the same flow with different monochromatic forcing jet inflow
boundary conditions in Section 4.3.
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Flow Direction ,

(a)
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(c)

(d)

(e)

(f)

Figure 4.23 A series of time frames showing the evolution of the large-scale vortical structures in the near-wake
region in terms of the distribution of the vortex elements in the interior of the flow domain. Ui/Ua = 0.62.
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Figure 4.24 The same sequence of time frames as depicted in Figure 4,23 showing the instantaneous productconcentration field. UI /Ua = 0.62,
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Figure 4.26 The instantaneous axial velocity fluctuation. Ui/U a = 0.62.
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Flow Direction >
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Figure 4.27 A series of time frames showing the evolution of the large-scale vortical structures in the near-waKe
region in terms of the distribution of the vortex elements in the interior of the flow domain. Ui/U0 = 1.04.
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Figure 4.31 The mesh used In the calculation of the jet-fluid concentration.
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Figure 4.32 Concentration of the jet fluid as a function of the axial coordinate. Experimental data provided

by Namazian [103]. (a) U,/Ua = 0.62. (b) Ui/Ua = 1.04.
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Figure 4.33 A series of timne frames showing the evolution of the large-scale vortical structures in the near-wake
region in terms of the distribution of the vortex elements in the interior of the flow domain, Uj /U0 = 2.08.
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Flow Direction

Figure 4.34 The same sequence of time frames as depicted in Figure 4.33 showing the instantaneous productconcentration field. UI / Ua = 2.08.
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4.2.5 THE UNSTEADY FLUCTUATION KINETIC ENERGY

Inspection of the unsteady vorticity dynamics and the product concentration field in the
previous section unveiled much details of the large-scale interactions within the recirculation
region. To further investigate the dynamics of the near-wake region, we have obtained correla-
tion between the concentration of the unsteady fluctuation kinetic energy and the dynamics of
the large-scale eddies within the recirculation. The production, redistribution, and dissipation of
the unsteady fluctuation kinetic energy are important aspects of the flow dynamics and must be
treated explicitly in many turbulence models currently being used in the moment-equation meth-
ods for simulating turbulent reactive flows (see the discussion in the Introduction). The instanta-
neous fluctuation kinetic energy u'u' + v'v' in the flow domain for all three cases are presented in
Figures 4.36-4.38. These figures show that the distribution of the unsteady fluctuation kinetic
energy in the flow field is discrete and highly non-uniform, with most of the energy being concen-
trated in the well-defined, large-scale vortical structures. Shedding events and the trajectories of
the large-scale structures are seen to be quite pronounced from inspecting the fluctuation kinetic
energy distribution in the flow field. From these figures, it is seen that instability of the near-wake
region starts as the eddies within the recirculation region begin to accumulate fluctuation kinetic
energy. The eddies begin to pair as the perturbation continues to get amplified. Except for the
case Ui/Ua = 2.08, this strong unsteady fluctuation inside the recirculation region is seen to reach

a maximum value prior to the shedding of the composite eddy. Notice that the magnitude of the
fluctuation kinetic energy in the recirculation region decays quickly after the eddy is being
ejected. Thus, the perturbation kinetic energy level within the recirculation zone gives a quantita-
tive measure of the stability of the region. Since the shedding dynamics are quasi-periodic, the
same events as depicted in these figures will repeat themselves for the next shedding cycle.
Notice that the large eddies being ejected from the recirculation region retain their identities as
well as the energy levels even at a large distance downstream of the recirculation zone.

Unlike the other two cases, for Uj/Ua = 2.08, a buildup of the unsteady fluctuation kinetic

energy within the recirculation region does not cause the complete break down of the structure
within recirculation region and the shedding of large composite eddies. Instead, the fluctuation
kinetic energy is carried away from the recirculation region by the continuous shedding of smaller
eddies from the upper shear layer.

As mentioned before, the shedding of a large-scale eddy from the recirculation region is
usually accompanied by the appearance of a smaller eddy inside the top wall boundary layer
being convected downstream, which is clearly evident in Figure 4.36. The modulation of the wall
boundary layer by the recirculation region causes a significant increase in the boundary thick-
ness every time a large eddy is ejected from the recirculation zone. The eddy within the wall
boundary layer usually interacts with the large vortical structure shed from the recirculation
region. This interaction causes complicated flow pattern several bluff-body diameters down-
stream of the recirculation region, as seen in the last two frames of Figure 4.27. The results pre-
sented in this section also revealed that the three cases under investigation have quite different
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flow dynamics; however, the values of the fluctuation kinetic energy varied between zero to
approximately 12 percent of the mean flow for all cases.

Figure 4.39 shows the time-averaged fluctuation kinetic energy field and the correspond-
ing product concentration field for all three cases. From this figure, we see that all three cases
have high fluctuation intensity in the jet shear layer, corresponding to the location where large-
scale entrainment and mixing are the most intense. For the two cases with higher velocity ratio,
intense fluctuation can also be seen along the axis of the combustor near the centerline.
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Figure 4.39 Time-averaged fluctuation kinetic energy and the product mole fraction contours.(a) Fluctuation kinetic energy. (b) Product mole fraction.
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4.3 LARGE-SCALE DYNAMICS AND THE MIXING FIELD UNDER THE ASSUMPTION OF ISOTHERMAL REACTION

WITH PERIODIC FORCING INFLOW BOUNDARY CONDITION

In Section 4.2, the unsteady flow dynamics and the large-scale entrainment and mixing in
the near-wake region of the bluff body as a function of the (steady) inflow velocity ratio were
studied in detail. In this section, we will consider the unsteady flow dynamics and the large-scale
entrainment under various sinusoidal forcing inflow boundary conditions for the case U /Ua =

2.08. The study presented in Section 4.2 has shown that intense mixing in the near-wake region
downstream of the bluff body for the two cases UJ/U a = 0.62 and 1.04 is achieved mainly due to
the strong interaction and pairing of the large-scale vortices, generated at the inner and the
outer edge of the bluff body, within the recirculation region. The unsteady kinetic energy in the
flow field was found to concentrate predominantly in the coherent structures, and the energy
level of the large eddies persisted at quite large distance downstream of the recirculation region
after they are being shed. Shedding events and the stability of the recirculation were quite pre-
dictable from examining the unsteady fluctuation kinetic energy field. For the case with Uj/Ua =

2.08, it was found that the large-scale dynamics within the recirculation region were less conse-
quential, and the entire region was not very susceptible to small perturbations compared with the
other two cases Uj/Ua = 0.62 and 1.04. At this high velocity ratio, mixing and reaction activities

were limited mostly to regions close to the axis of the combustor, and extended many bluff-body
diameters downstream of the recirculation region along the centerline.

The study presents in this section is intended to demonstrate that for the case with velocity
ratio Uj/Ua = 2.08, the flow structure near the jet exit and the characteristics of the recirculation

region can be altered significantly by introducing axisymmetric longitudinal perturbations to the
jet flow. We will show in this study that, by applying external perturbations to the jet flow at fre-
quencies closest to the most unstable frequency of the system and with a forcing amplitude
exceeding a minimum threshold, it is possible to induce instability of the flow near the jet exit and
the subsequent roll up of the jet shear layer into large eddies in phase with the excitation fre-
quency. Under this condition, a notable increase in entrainment of the jet fluid near the jet exit
from the unforced case is observed. The size and the energy level of the shear layer eddies gen-
erated from forcing the jet flow are seen to get amplified continuously with time due to the lock-
ing of the unsteady forcing energy into these large-scale structures. Similar to the two cases with
lower inflow velocity ratio, these eddies interact and pair with the recirculating air eddy and,
eventually, cause instability of the flow within the recirculation region and the shedding of large-
scale composite structures. This enhanced entrainment within the recirculation region increases
local mixing rate considerably which, in turn, increases the rate of fuel consumption in the near-
wake region of the bluff body and effectively shortened the entire mixing length.

Although few studies have been conducted in the past of a forced jet in a confined,
bluff-body flow configuration, a considerable amount of research has been done on forced,
nonreactive as well as reactive free jet flows [25, 67, 68, 149, 150]. The works of Hussain et al. [66,
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68, 149, 150] have shown that excitation of a free jet can occur for a range of Strouhal numbers
based on the jet diameter and the magnitude of the jet velocity in the range from 0.1 to 0.9, and
that the preferred excitation frequency depends, in fact, on the shear layer and can be pre-
dicted by linear stability theory in many cases [99, 112]. He has also found that the effects of forc-
ing on the jet-flow structure generally disappear at a distance x/D a 20, where D is the jet
diameter.

Numerous experiments have been conducted in the past mainly to determine the
increase in entrainment associated with excited jets. Favre-Marinet and Binder [36] used a spin-
ning valve to modulate a turbulent air jet with a forcing frequency S = 0.23 and a forcing ampli-
tude equal to 42 percent of the jet velocity. The local entrainment was found to increase by up to
35 percent within x/D a 15, but the effects vanished by x/D a 20. Parikh and Moffat [108] used a
spinning plate to modulate an air jet at the resonant frequency of the jet nozzle (S 0.85) with
forcing amplitude of 37 percent. Their results indicated that very close to the jet exit the local
entrainment was increased by as much as 300 percent. Sarohia and Bernal [124] excited a high-
Reynolds-number air jet (Re = 90000) using a pneumatic transducer and found that the jet struc-
ture could be altered significantly near the exit for a range of frequencies S = 0.1-0.56 with a forc-
ing amplitude of only 10 percent. The jet entrainment was found to increase roughly by 25
percent, but the effects vanished by x/D = 5. These studies all show that significant increases in jet
entrainment can be achieved by moderate forcing at the appropriate forcing frequencies. How-
ever, the effects of forcing usually disappear a short distance downstream of the jet nozzle.

Extensive studies have also been conducted with jet excited by very high forcing ampli-
tude at a wide range of forcing frequencies. Curtet and Girard [28] used a piston to excite a tur-
bulent air jet with S = 0.11 and forcing amplitude of up to 80 percent. They observed that large
coherent vortex rings grew quickly within one diameter of the jet exit. Bremhorst and Harch [16]
employed segmented rollers on the air jet supply to produce a complete on-off pulse with a duty
cycle of 1/3 and with two forcing frequencies S = 0.0071 and 0.018. The jet entrainment from this
experiment was found to increase by up to 300 percent within a distance x/D M 17. Direct mea-
surements of entrainment were made by Vermeulen et al. [145] on an air jet with very strong forc-
ing amplitude (270 percent) and S = 0.25. Unlike other experimental investigations, however, in
this study the effects of the forcing were observed at distance as far as x/D a 70 downstream of
the jet nozzle. The local entrainment was found to increase by 200 percent near the jet exit. These
experimental studies all have shown that the structure of the jet flow can also be significantly
altered by high-amplitude forcing.

The above brief survey reveals that the structure of the flow near the jet exit can be
altered under high-amplitude forcing at the appropriate frequencies. All the experimental studies
have shown that the application of external excitations at the characteristic frequencies of the
system destabilizes the jet flow near the exit, causes roll up of the shear layer and produces strong
vortices. In most experimental studies, instability of the jet shear layer generally occurs at frequen-



cies such that the Strouhal numbers based on the jet diameter and the jet velocity in the range of
0.1 to 0.9 for low-amplitude forcing, and can go down as low as 0 (0.001) if the forcing ampli-

tude is high. On the average, the effects of forcing are seen to vanish by x/D s 20. Accordingly,
it is anticipated that by applying external perturbations to the jet flow in our confined bluff-body
flow at certain selected frequencies which are closest to the characteristic frequency of the sys-
tem, it will have the same destabilizing effect on the flow structure near the exit; thus, influencing
the stability and the mixing characteristics of the recirculation region. However, one should keep
in mind that the flow configuration we are studying here is far more complicated than a free jet,
and many of the results found in the free-jet experiments may not be applicable in this case.
Therefore, a direct comparison between the free-jet experimental results and the system we are
studying here is not appropriate and should not be attempted. The free-jet experimental studies
should only be treated as a guide for this forcing study.

The free-jet experimental studies described above have shown that the two significant
governing parameters in any externally controlled excitation of a flow system are the forcing fre-
quency and the forcing amplitude. Thus, selecting the correct forcing frequency and coupling it
with the appropriate forcing amplitude is essential if we wish to modulate the jet flow in the hope
that it would alter the flow structure of the recirculation region. Given all this, the immediate issue
we are facing before the numerical experiments can be performed is the identification of the sig-
nificant frequencies of the system, and to determine the minimum threshold level of the forcing
amplitude. One way of identifying the significant frequencies is to perform many simulations with
the forcing frequency applied at a fixed increment, starting at a small but finite value. In doing so,
the impact of varying the excitation frequency on the flow structure in the near-wake region can
be examined and the effectiveness of a given forcing frequency on the stability of the flow field
can be assessed visually. However, a more systematic approach of identifying the significant fre-
quencies of the flow system at this velocity ratio is to examine the natural shedding frequencies of
the unforced study presented in Section 4.2. Specifically, we want to examine the power spectral
density plots presented in Figure 4.35. Since the power spectra presented in Figure 4.35 were
obtained from a simulation with steady inflow condition, the significant shedding frequencies
observed in these plots are the intrinsic properties of the flow system at this velocity ratio. Thus, by
applying external perturbations to the inflow jet velocity close to these natural frequencies of the
system at an appropriate amplitude, it is anticipated that we will be able to excite the jet shear
layer instability near the exit, inducing local changes of the flow structure and to affect the large-
scale entrainment in the near-wake region.

From Figure 4.35, we see that the power spectra have high-energy isolated peaks cen-
tered around 0.03, 0.06, 0.1, and 0.2. Again, since these are the natural shedding frequencies of
the system, it is anticipated that studying the effects of forcing on the flow dynamics using these
frequencies will be sufficient because they represent the essential physics of the flow. A total of
eight simulations with the jet flow varying sinusoidally at dimensionless frequencies S = 0.03, 0.06,
0.1, and 0.2 at two forcing amplitudes: 30 and 60 percent of the mean value of the jet velocity
were performed for this study. The matrix of the forcing parameters for the simulations are pre-
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sented in Table 4.1. The forcing function used in the simulations is given by

Ui = Uo[1 +Asin(wt)] (4.5)

where Uo = 2.08 is the mean jet inflow velocity, w is the angular frequency calculated using the

chosen Strouhal numbers, and A, = 0.3 or 0.6 is the forcing amplitude. These two forcing ampli-
tudes were chosen based on the results of the experimental studies on pulsed free-jet as dis-
cussed earlier. Typical time traces of the jet flow at two different forcing amplitudes are shown in
Figure 4.40. Notice that longitudinal excitations are used in this study. However, it has been shown
that longitudinal and transversal excitations on the flow dynamics are effectively equivalent [46,
134]. Thus, the mode of excitation applied is irrelevant in regard to the flow development. It
should also be pointed out that although data are available for the complete matrix of forced
conditions, not every simulation made in the course of this study is presented and discussed in
detail here in order to avoid drudgery. The data present in the next few sections represent results
which are deemed most significant from the investigation and from which meaningful conclu-
sions can be drawn. In the following, we will study in detail of the characteristics of the unsteady
near-wake region dynamics and the large-scale entrainment with forced jet inflow boundary
condition, and to discuss the significant differences between the forced and the unforced flow
dynamics.

Before we proceed to discuss the results of the numerical experiments, it should be
pointed out that external perturbations applied at frequencies close to the natural frequencies of
the system may cause sustained large-amplitude pressure oscillations and destructive combus-
tion instabilities in real combustion devices [62]. Thus, the benefits gained in enhanced mixing
and reduction of NOx emissions from externally applied excitation must be weighted against the
possibility of inducing destructive combustion instability and may, in the extreme cases, lead to
the total loss of the system [5, 24, 59, 147].

Case Dimensionless Forcing Frequency Forcing amplitude

1 0.03 30%
2 0.06 30%
3 0.10 30%
4 0.20 30%
5 0.03 60%
6 0.06 60%
7 0.10 60%
8 0.20 60%

Table 4.1 Inflow parameters for the forcing study.
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Figure 4.40 Typical time traces of the jet inflow velocity for the forcing study.

4.3.1 The TIME-AVERAGED PRODUCT CONCENTRATION FIELD

A primary finding from this investigation is that the unsteady dynamics and the entrain-
ment in the near-wake region respond to all the forcing frequencies chosen for this study to some
degree. However, the most significant reduction in the time-averaged mixing zone length is
observed when the perturbation is applied at a dimensionless frequency based on the magni-
tude of the annular inflow velocity and the bluff-body diameter S = 0(0.06), with a forcing
amplitude Af = 0.6. When forcing the jet flow at this frequency and amplitude, significant
amount of fuel elements are seen to disperse radially within the recirculation region, resulting in a
reduction of the time-averaged mixing zone by approximately 11 percent compared with the
unforced case. This reduction in the mixing zone length would translate into noticeable shorten-
ing of the flame length for exothermic reactive flows. Extrapolating from the results of this study, it
is expected that when the perturbation is applied with a forcing amplitude Af> 0.6 at this fre-
quency, the reduction in the mixing zone length would be more pronounced.

In order to examine the effects of the forcing frequency and the amplitude indepen-
dently, it is necessary that the amplitude of the pulsation be maintained constant as the pertur-
bation frequency is being varied. Figures 4.42 and 4.43 show the time-averaged product
concentration field as a function of the perturbation frequency for the two forcing amplitudes
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studied. The time-averaged product concentration field provides a valuable visualization as well
as a quantitative measure of the global changes in mixing in the near-wake region as functions
of the perturbation frequency and amplitude. Figure 4.42 shows comparisons of the time-aver-
aged mixing field between the unforced (4.42a) and the forced (4.42b-e) cases with a forcing
amplitude equal to 30 percent of the mean value (see Equation 4.5). Although perturbation
applied at this amplitude produced small changes in the unsteady large-scale entrainment in the
near-wake region for all the frequencies considered (Figure 4.49), the change on the time-aver-
aged mixing zone length appeared to be negligibly small when the perturbation is applied at this
pulse amplitude.

As the experiment is repeated by retaining the same perturbation frequencies but with
the amplitude of the perturbation increased to 60 percent of the mean value, remarkable
changes in the stability and the flow structure of the jet shear layer near the exit are observed for
the case with forcing frequency S = 0.06. From the simulation, it was found that external perturba-
tion applied at this frequency and amplitude increased the local entrainment and mixing of the
jet flow near the exit in two ways. Forcing the jet flow magnified the shear layer instability and
enhanced the growth of the vortical structures within the shear layer, as can be seen in Figure
4.44. In addition, the unsteady energy delivered to the flow from forcing increased the local
unsteady fluctuation kinetic energy considerably, which can clearly be seen in Figure 4.45 where
we compare the instantaneous fluctuations between the forced and the unforced case at three
points along the jet shear layer within the recirculation region. This changes to the local flow
dynamics and the large-scale entrainment are reflected in the time-averaged mixing field, as
can be seen in Figure 4.43. It is seen that the most significant enhancement to mixing in the near-
wake region when forcing the jet flow at this frequency comes from the amplification of the
inherent unstable recirculation zone dynamics of this coaxial-jet configuration, and that this
amplification occurs as the forcing frequency approaches the natural pairing and shedding fre-
quency of the eddies within the recirculation region. Forcing the jet flow causes the roll up of the
jet shear layer near the exit and produces a counterclockwise-rotating eddy (similar to the two
cases with lower velocity ratio) in phase with the forcing frequency. This eddy entrains most of the
jet fluid entering the flow domain, and it interacts vigorously with the recirculating air eddy. Similar
to the two cases with lower velocity ratio, the interaction generates strong local fluctuations
between the interface of the two eddies and decreases the stability of the recirculation region
substantially. The interaction eventually leads to the merging and the shedding of the large-scale
vortical structure from the recirculation region (Figure 4.44). This increase in entrainment and mix-
ing in the recirculation region causes the fuel in the jet flow to react sooner in space, decreasing
the overall time-averaged mixing length as shown in Figure 4.43c. The reduction of the mixing
zone length, as obtained from measuring the difference in the concentration contours presented
in Figure 4.43a and 4.43c, was found to be approximately 11 percent.' This increase in entrain-
ment and mixing in the recirculation region from forcing can also clearly be seen in Figure 4.41,
where we compare the product flux as a function of the axial coordinate between the unforced

1. The measurement was taken from the face of the bluff body to the maximum streamwise loca-
tion of the contour with the highest product concentration.



and the forced case.

Since the reference velocity of this study is 0.45 m/s and the reference length is 0.1 m, by
rescaling the most effective Strouhal number, we see that the flow responds to a dimensionless
forcing frequency based on the jet diameter and the magnitude of the inflow-velocity difference
of 0.003. One might (correctly) suspect that this Strouhal number seems to be unrealistically low.
Since the amplification of the inherent unsteady dynamics of the recirculation region leading to
the interaction and pairing of the fuel and air eddies is mainly responsible for the entrainment
and the enhanced mixing in the near-wake region, the Strouhal number based on the bluff-body
diameter and the magnitude of the annular inflow velocity, S = 0.06, is more appropriate in this
case. Forcing the jet flow has the effect of causing the jet shear layer to roll up at the forcing fre-
quency, and the increase in entrainment by the jet shear layer due to forcing cannot account for
the remarkable increase in mixing in the near-wake region. Thus, the Strouhal number based on
the jet diameter and the magnitude of the jet velocity is inappropriate in this case. To further illus-
trate the effects of the forcing on the flow structures, we will present and discuss the changes in
the probability density functions of the velocity distributions and the unsteady large-scale entrain-
ment in the near-wake region as functions of the perturbation frequency and amplitude in the
next two sections.

UU,
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Figure 4.41 Comparison of the product flux as a function of the axial coordinate between the unforced
and the forced case. For the forced case, S = 0.06, Af = 0.6.
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Flow Direction

Figure 4.42 Contours of time-averaged product concentration as a function of the inflow perturbation
frequency. Forcing amplitude At = 0.3, mean value of U /Ua = 2.08.
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Figure 4.43 Contours of time-averaged product concentration as a function of the inflow perturbationfrequency. Forcing amplitude Af = 0.6, mean value of Uj /Ua = 2.08.
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Figure 4.44 The unsteady flow dynamics in the near-wake region in terms of the vortex elements. Mean
value of Uj /U a = 2.08. Forcing amplitude Af = 0.6. Forcing frequency S = 0.06.
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value of Ui /Ua = 2.08, S = 0.06, and At = 0.6.



4.3.2 PROBABILITY DENSITY FUNCTIONS OF THE VELOCITY DISTRIBUTIONS

From the discussion in Section 4.2.3, we see that the probability density functions (PDFs) of
the velocity distributions are effective in terms of separating the large-scale mixing from the more
classical small-scale mixing flow features of high-Reynolds-number flows. Much of the flow
dynamics within the recirculation region and the characteristics of the shear layers were brought
out by the PDFs of the velocity distributions. The PDFs of u' and v' for the case Uj/Ua = 2.08 with
steady inflow boundary condition are presented in Figures 4.20 and 4.21. For comparison, the
PDFs of the velocity fluctuations for the case with forcing frequency S = 0.06 and forcing ampli-

tude Af = 0.6 at exactly the same locations as those presented in Figures 4.20 and 4.21 are
shown in Figures 4.46 and 4.47. By analyzing the differences of the corresponding plots in these
figures, the effects of externally applied perturbation on the structures of the shear layers in the
recirculation region can readily be deduced. Notice that we have chosen the case with forcing

frequency S = 0.06 and amplitude Af = 0.6 for further detailed discussion since most significant
changes in the flow dynamics are observed when these perturbation parameters are used in the
simulation.

The probability density functions of u' and v' for the unforced case reveal that the distri-
butions in the jet shear layer along the centerline of the combustor are typically unimodal and
nearly Gaussian at all three sampling locations (Figures 4.20a, b, c and 4.21a, b, c). Since the
velocity at any point in the shear layer is generally subjected to disturbances from the passage of
a large number of random eddies, the probability density functions provide a good Indicator to
the general characteristics of these disturbance eddies. PDFs having approximately normal distri-
butions usually indicate that the disturbance eddies are mostly small scale in nature, and the sizes
of these eddies are quite uniform.

External perturbation applied to the jet flow at a dimensionless frequency S = 0.06 with an
amplitude Af = 0.6 changes the characteristics of the jet shear layer significantly. The excitation
intensifies the vortex-roll up activities near the jet exit, accelerates the growth rates of the eddies
in the jet shear layer by enhancing the fluid entrainment rate and the coalescence of the eddies.
Since disturbance to the local mean velocity induced by the passage of a large-scale eddy are
generally more dramatic, the formation of the large-scale eddies in the shear layer causes signif-
icant departure of the probability density functions from a Gaussian distribution. From Figures 4-
46a, b, and c, we see that the major effects of the perturbation on the PDFs of u' in the jet shear
layer are the broadening of the distributions and changing the shape of the distributions to bimo-
dal, with two slight peaks centered around -0.5 and 0.5. The bimodal peaks are especially notice-
able at the axial station z = 1.5051 (Figure 4-46c). However, external perturbation doesn't seem to
affect the flow structure of the shear layer in between the annular flow and the recirculation bub-
ble. Comparing Figures 4.20d, e, and f with the corresponding plots in Figure 4.46, we see that
forcing the jet flow causes only a small spreading out of the fluctuation velocity distributions in the
negative direction in the upper shear layer. This behavior qualitatively agreed with the general
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experimental results of forced free jet that the effect of external applied perturbation to the jet
flow is usually localized, produces noticeable difference in the flow structures only near the jet
exit, and disappears very quickly with axial distance. Thus, the marked increase in entrainment
and mixing from forcing the jet flow alone comes directly as a result of the formation of the large
counterclockwise-rotating eddy near the jet exit, which entrains most of the fuel elements enter-
ing the flow domain. The existence of this large-scale eddy causes substantial local changes in
the flow structure of the recirculation region, and greatly increase the entrainment and mixing of
the jet fluid within the recirculation region as it interacts and merges with the recirculating air
eddy.

Comparing the PDFs of v' between the forced and the unforced case shown in Figures

4.21 and 4.47, we see that the effect of external perturbation on the distribution of v' is to cause
the spreading out of the PDFs in the positive direction at the jet shear layer, indicating that forcing
induces a small increase in the fluctuation intensity of v in the positive radial direction. However,
this would translate into enhancement of momentum transfer across the jet shear layer into the

recirculation bubble. Again, similar to the distributions of u', Figures 4.47d, e, and f show external
perturbation applied to the jet flow has minimal effect on the PDFs of v' on the upper shear layer.
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4.3.3 VORTEX DYNAMICS AND THE UNSTEADY FLOW PROPERTIES

The discussions in the last two sections have focused on the effects of the externally
applied perturbations on the global flow features. Results from the simulations have demon-
strated that external perturbation applied at the appropriate frequency and amplitude can lead
to the roll up of the jet shear layer near the exit to form large-scale structures and, subsequently,
affecting the global mixing field. In this section, we will examine in detail the unsteady flow
dynamics and the large-scale entrainment and mixing in the near-wake region as functions of
the applied perturbation frequency and amplitude. The main objectives of this section are to
highlight the role plays by the jet shear layer in determining the unsteady flow dynamics, and to
examine more closely the unsteady response of the recirculation region to external perturbations.
In the results to be presented below, we will again discuss the Fourier analyses of the velocity fluc-
tuations in the shear layers as well as the instantaneous flow visualization at selected time steps.
For flow visualization, we will rely on the product concentration field, the velocity field in terms of
the vortex elements, and the unsteady fluctuation kinetic energy field in order to illustrate the
changes in the recirculation-region dynamics due to the forcing of the jet flow. This combination
of flow data presentation allows us to correlate and to keep track of the evolution of the coher-
ent vortical structures and the merging patterns of the eddies induced by the external perturba-
tions; in the near-wake region.

Let us begin the discussion by examining Figure 4.48, showing the instantaneous mixing
field at t = 22.5 for all four forcing frequencies studied with a forcing amplitude Af = 0.6. In this

figure, frame a shows the mixing field for the unforced case and frames b-e show the mixing fields
for the cases with forcing frequencies S = 0.03, 0.06, 0.1, and 0.2, respectively. The most notable
feature of this figure is the shedding of a large-scale vortical structure from the recirculation
region for the case S = 0.06 (Figure 4.48c). At this forcing frequency, the Instantaneous product
concentration along the centerline is seen to decrease quickly with axial distance downstream
of the recirculation region, indicating that much of the jet fluid leaving the recirculation region is
being engulfed by the large-scale vortical structure; hence, less fuel elements are available to
react with the oxidizer elements downstream of the recirculation region. In this case, reaction is
seen to occur mostly on the surface of the large-scale vortex. On the contrary, when the inflow
boundary condition is steady, the recirculation region is stable and most of the jet fluid escapes
the region remains unreacted (Figure 4.48a). In this case mixing and reaction occur mostly down-
stream of the recirculation region along the axis of the combustor. Hence, high product concen-
tration along the centerline is observed.

When external perturbation is applied to the jet flow, the structure of the recirculation
region changes more or less depending on the applied perturbation frequency. Forcing at fre-
quencies S = 0.03, 0.1, and 0.2 induces a small increase in the small-scale eddy shedding activities
from the outer shear layer. These eddies entrain the jet fluid which has moved radially upward
along the face of the bluff body as they are being convected downstream, resulting in mixing
and reaction to occur along the outer shear layer as can be seen in Figures 4.48b, d, and e. How-
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ever, the overall effect of forcing on the stability of the recirculation region is seen to be minimal
when the perturbation is applied at these frequencies. Instability in the jet shear layer near the
exit did not get amplified significantly when forcing at S = 0.03. As for the higher forcing frequen-
cies (S = 0.1 and 0.2), the disturbances were observed to decay quickly with axial distance and
the effect of forcing on the stability of the shear layer is again minimal. However, when the distur-
bance was applied at the frequency S = 0.06, the instability of the shear layer near the exit was
observed to get amplified noticeably. The strong local response to the disturbances in the jet
shear layer causes it to roll up near the exit, and generates a distinctive counterclockwise-rotat-
ing eddy between the bluff-body face and the air recirculation bubble. Once this eddy is
formed, it grows rapidly by the additional entrainment of the jet fluid entering the flow domain.
Similar to the two cases with lower velocity ratio, this eddy interacts strongly with the recirculating
air eddy and, eventually, causes the merging and the shedding of the large-scale composite
structure. Details of the flow dynamics and interaction just described can clearly be seen in Fig-
ures 4.44 and 4.50.

The effectiveness of forcing the jet flow alone, in terms of increasing local entrainment
and mixing within the recirculation region, also strongly depended upon the amplitude of the
perturbation. From the study, it was found that external perturbations applied at an amplitude A
which is less than approximately 60 percent of the mean value did not significantly affect the
near-wake region flow dynamics, regardless of the applied frequency. To illustrate this, Figure 4.49
shows the same time step for the different cases as given in Figure 4.48 but with a forcing ampli-
tude A = 0.3. Notice that at this amplitude, forcing has very little effects on the stability and the
instantaneous flow structures for all forcing frequencies, and the large-scale entrainment in the
near-wake region did not seem to get enhanced to any significant degree. The flow exhibits very
similar behaviors for all applied frequencies at this forcing amplitude. The ineffectiveness of exter-
nal perturbations applied at this particular amplitude can also clearly be seen in the time-aver-
aged product concentration contours presented in Figure 4.42.

To further illustrate the effects of external perturbation on the near-wake region dynamics
and the large-scale entrainment, Figures 4.50-4.52 highlight the differences of the instantaneous
velocity field in terms of the vortex elements, the product concentration field, and the fluctuation
kinetic energy field, respectively, between the forced (S = 0.06, Af = 0.6) and the unforced case
at several time steps. Interestingly, it is seen that a weak counterclockwise-rotating fuel eddy
occurs naturally within the recirculation region for the unforced case (Figure 4.50a). However, the
perturbations induced by the existence of this fuel eddy seem to be negligible and are not strong
enough to cause instability of the recirculation region. Instead of merging with the air eddy, most
of the fluid within the fuel eddy is being forced to move radially upward along the boundary
between itself and the outer air eddy, and escapes along the upper shear layer (Figure 4.50b).
This process gives rise to mixing and reaction activities along the upper shear layer as well as near
the axis of the combustor along the centerline, as shown in the instantaneous product concen-
tration field in Figure 4.51. Notice that in all the time frames presented in Figure 4.50 for the
unforced case, the region with the most significant shedding activities is along the upper shear



layer. Furthermore, a stable, well-defined recirculation region can be identified at any given
instant of time in this case, and shedding of small-scale eddies from the upper shear layer domi-
nates the flow dynamics in the near-wake region.

When external perturbation is applied to the jet flow at dimensionless frequency S = 0.06
and amplitude Af = 0.06, we see that the relative size and the coherency of the fuel eddy
increase significantly. Its existence is also more strongly felt by the recirculation region. The large
eddies within the recirculation region in this case are also more distinctive and orderly, and have
higher concentration of vorticity. This observation is supported by the vortex element plots, show-
ing the more roll up of the eddies as well as having higher concentration of vortex elements in
and around the outer edges of these large-scale structures. Figure 4.51g captures the merging of
the fuel eddy with the air eddy within the recirculation region, as commonly seen in the two cases
with lower velocity ratio. Forcing the jet flow at this frequency and amplitude enhances the
growth of the jet shear layer, causes the layer to roll up and to form periodic coherent structures
near the let exit (this can clearly be seen in Figures 4.51 h, i, and j). These large-scale vortical struc-
tures entrain much of the jet fluid entering the flow domain and continue to grow in size. As the
fuel eddy has grown to a sufficiently large size, the recirculation region becomes unstable and
the eddies begin to merge. After the eddies are merged, the composite structure breaks away
from the recirculation region, entraining more fluid as it is being convected downstream (Figures
4.511 , i, and j). Notice that the eddy also remains coherent for a significant downstream distance
after it is being shed. Meanwhile, a newly generated air eddy is seen to occupy the recirculation
region.

From the simulations, it was noted that the shedding of large vortical structures from the
recirculation region with forced inflow boundary condition is quasi-periodic in phase with the
forcing frequency, which can also be seen clearly from the power spectral density plots pre-
sented in Figure 4.53. The coordinates of the sampling locations in these plots are exactly the
same as those for the unforced case. Therefore, it is possible to see the effects of forcing on the
characteristics of the eddies within the shear layers (see Figure 4.35 in Section 4.2.4). Examining
the power spectra along the jet shear layer for the unforced case, we see that there are large
number of high-frequency peaks in the power spectra (Figure 4.35a, b, and c), indicating that
the existence of a wide range of small-scale eddies moving along the jet shear layer within the
recirculation region. Forcing the jet flow causes organization and the coalescence of these small-
scale eddies within the shear layer to form large-scale structures in phase with the forcing fre-
quency. Notice that forcing also causes the energy of the power spectra to shift toward 0.06 In
the upper shear layer, as can be seen in Figures 4.53d, e, and f.

The effects on the dynamics of the large-scale entrainment in the near-wake region can
also be seen in the unsteady product concentration field. For the unforced case, Figures 4.51a-e
show sharp irregular boundaries in terms of the product concentration along the axis of the com-
bustor separating the central jet from the surrounding air. Looking down the time series, we see
that the radial spread of the mixing zone is relatively constant with time and no significant large-
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scale entrainment activity is observed. However, these time series clearly show evidence of the
presence of small eddies rolling along the shear layer of the jet. In this case, air flow penetration
into the fuel jet is minimal. Examining the time series on the right-hand side of Figure 4.51 for the
forced case, we see that a very different flow dynamics and large-scale entrainment in the near-
wake region from the unforced case. Owing to the growth of the fuel eddy and the subsequent
merging and ejection of the composite structure from the recirculation region, we see that a sig-
nificant amount of fuel are entrained by the large-scale eddy as it is moving away from the recir-
culation region. Notice that the region along the axis of the combustor downstream of the
recirculation region is almost void of products after the passage of the large composite structure
(Figure 4.51j), providing more evidence that most products are carrying away by the large-scale
vortical structure in this case.

Finally, Figure 4.52 shows the effects of forcing on the unsteady fluctuation kinetic energy.
As discussed before, at this inflow velocity ratio the unsteady fluctuations within the recirculation
region are much less intense than the two cases with lower velocity ratio, which can clearly be
seen in Figure 4.38 as well as in Figures 4.52a-e. In this case, regions with high fluctuation kinetic
energy within the recirculation region are found mostly along the shear layer between the jet
flow and the clockwise-rotating air eddy a large fraction of the time. Moreover, the unsteady
kinetic energy within the recirculation region in this case seems to build up rather slowly, and it
affects the stability of the recirculation region insignificantly. The energy dissipates quickly after it
is built-up due to the continuous shedding of small-scale eddies from the upper shear layer, rather
than causing instability of the recirculation region as in the two cases with lower inflow velocity
ratio. Forcing the jet flow causes the increase in the unsteady fluctuations near the centerline.
Moreover, the large-scale vortical structures inside the recirculation region induced by this exter-
nal forcing also accumulate a considerable amount of kinetic energy. This energy is being car-
ried away from the recirculation region as the composite eddy is being shed. Similar to the two
cases with lower velocity ratio, the kinetic energy within the recirculation region is observed to
decrease to a minimum value after the composite eddy is being shed, and builds up to a maxi-
mum value prior to the shedding of the composite structure.
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Figure 4.48 Unsteady mixing field as a function of the forcing frequency. Forcing amplitudeAf = 0.6, mean value of U1/Ua = 2,08, t = 22.75.
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Figure 4.49 Unsteady mixing field as a function of the forcing frequency. Forcing amplitudeAf = 0.3, mean value of Uj /Ua = 2.08, t = 22.75.
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4.4 CONcLUSIONS

Axisymmetric vortex-scalar element method has been used to study the unsteady isother-
mal reactive flow in a two-stream, coaxial-jet, axisymmetric bluff-body combustor as a function
of inflow velocity (momentum) ratio. The vortex method solves the vorticity transport equation at
moderate-to-high Reynolds number without resorting to turbulence closure models. Scalar ele-
ments are used to transport the scalar concentration fields. The assumption of infinite-rate kinetics
is used to model chemical reaction and to calculate the rate of product formation. Since the
unsteady dynamics of the mixing field are known to be controlled by the large-scale structures to
a great extent, and the actual flame length in an exothermic reactive flow is ultimately tied to
the amount of mixing can be accomplished within the recirculation region, the investigation con-
centrated on the large-scale entrainment and mixing in the near-wake region downstream of
the bluff body. The effects of the energy released from chemical reaction on the flow dynamics
were neglected from the simulations so that the unsteady dynamics of the large-scale entrain-
ment and the global mixing field can be studied in a simpler environment, and a better under-
standing of the basic mixing mechanisms can be developed. Three cases with three different
inflow velocity ratios, U /Ua = 0.62, 1.04, and 2.08, were performed for a combustor with diameter

ratio Da/Db = 2.0. The dynamics of the flow field as well as the large-scale entrainment and mix-
ing were studied under both steady and externally imposed sinusoidal inflow boundary condi-
tions. The followings are observed from the numerical simulations:

1) The complex flow structure in the near-wake region downstream of the bluff body is a
dynamically unstable system involving two coexisting and interacting flow instabilities: the
shear-layer instability and the recirculation-region instability. The flow in the near-wake
region is highly nonhomogeneous and the velocity fluctuations exhibit strong non-Gaussian
behaviors in the shear layer between the outer annular flow and the recirculation bubble,
and between the recirculation bubble and the central jet. The PDFs of u' are mostly single-
peaked and positively skewed in the jet/recirculation shear layer, and are negatively
skewed in the recirculation/annular-flow shear layer. In the jet shear layer close to the stag-
nation region, the distributions are bimodal. This highly non-Gaussian behaviors of the veloc-
ity PDFs within the shear layers can be attributed to the existence of large-scale coherent
structures within the shear layers, and they become more pronounced as one moves further
downstream within the recirculation region. In general, the velocity fluctuations are in the
opposite direction of the mean velocity.

2) The distribution of the unsteady fluctuation kinetic energy, u'u' + v' v', in the flow field is highly
nonuniform and discrete, with most of the energy being concentrated in the well-defined,
large-scale vortical structures and the shear layers within the recirculation region. Instability
of the recirculation region begins as the eddies within acquire fluctuation kinetic energy. The
maximum amplitude of the fluctuations reaches its peak value prior to the shedding of the
composite flow structures, and decays quickly after the eddies are being shed from the
recirculation region. The large composite eddies being ejected from the recirculation region



retain their identities as well as their energy levels even at a large distance downstream of
the recirculation zone.

3) The overall characteristics of the mixing field are controlled by the large-scale eddies, espe-
cially in the recirculation region. Reaction occurs mostly on the surfaces of these eddies as
they entrain and mix the reactants. The quasi-periodic shedding of the large-scale coherent
structures from the recirculation region strongly resembles the intermittent and discrete com-
bustion processes in the exothermic reactive-flow experiments conducted by Roquemore et
al. [119]. While the thermal energy released from combustion may affect the shedding fre-
quency, the growth rate, or the size of the large-scale eddies generated inside the recircula-
tion region, results from the simulations suggest that the mechanisms affecting the mixing
field in the near-wake region are strongly tied to the instability of the recirculation region and
to the inflow velocity ratio.

4) When the momentum of the central jet is weak relative to the recirculating flow, a short,
compact mixing zone confined mainly to the near-wake region with quasi-periodic shed-
ding of large-scale, reactive-flow structures from the recirculation zone is observed. As the
velocity ratio is increased, an intermittent pulsating and reacting jet, extending several bluff
body diameters downstream of the recirculation region, is noted in addition to the quasi-
periodic shedding of reactive flow structures from the recirculation region. For the case with
the highest velocity ratio, the recirculation region becomes relatively stable and the flow
experiences less fluctuation and entrainment. In this case, shedding from the recirculation
region is less frequent, and most of the jet fluid is confined to a narrow region close to the
centerline where mixing and reaction are most intense.

5) Results from the periodic forcing study have shown that a preferred-mode coupling exists
between the forced jet and the large-scale structures of the recirculation region. Time-aver-
aged product concentration field indicates that the length of the mixing zone depends on
the forcing frequency, as long as the pulse amplitude exceeds a minimum threshold to

affect the stability of the shear layer near the jet exit. For the case with U /Ua = 2.08, it was
found that controlled excitation amplifies the inherent recirculation zone dynamics, and as
this amplification approaches the natural shedding frequency of the recirculation zone
eddies, it causes instability in the otherwise stable recirculation region. This process produces
interactions within the recirculation region similar to those occurring naturally in the two
lower velocity cases. The most notable changes to the mixing field in the near-wake region
was observed when the central jet was being forced at a dimensionless frequency based on
the magnitude of the annular inflow velocity and the bluff-body diameter of 0 (0.06), with
forcing amplitude Af ; 0.6. Forcing the jet flow at this frequency and amplitude destabilizes
the jet shear layer and increases the local entrainment and mixing of the jet flow near the
exit in two ways. First, the process enhances the growth of the jet shear layer by amplifying
the vortex structures in the shear layer, causing it to roll up and to form a counterclockwise-
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rotating eddy. This eddy entrains most of the jet fluid entering the flow domain and interacts
strongly with the recirculating air eddy. In addition, the unsteady energy added to the flow
from forcing increases the fluctuation kinetic energy in the recirculation region. This process
causes interaction among the large-scale flow structures within the recirculation region and,
eventually, leads to the shedding of composite eddies from the recirculation region similar to
the flow dynamics observed in the two cases with lower inflow velocity ratio.
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5. EXOTHERMIC REACTIVE-FLOW SIMULATION

The main focus of the isothermal reactive-flow study presented in Chapter 4 is on the
unsteady flow dynamics of the near-wake region downstream of the bluff body as a function of
the inflow velocity (momentum) ratio. The dynamics of the recirculation region as well as the
large-scale entrainment and mixing were studied under both steady and externally imposed sinu-
soidal inflow boundary conditions. The unsteady mixing process was investigated by assuming a
fast second-order chemical reaction of the form F + 0 -- P with negligible heat of reaction so
that the dynamics of the unsteady large-scale entrainment and the global mixing field can be
studied in a simpler environment, and a better understanding of the basic mixing mechanisms
can be developed. In all the flow simulations, dilute fuel F and oxidizer 0 were added to the jet
stream and the annular flow, respectively. Once inside the flow domain, the reactants, F and 0,
were assumed to react instantaneously and irreversibly upon contact with one another to form
products, P. This simplified model leads to a diffusion-limited reaction, and the amount of prod-
ucts formed is directly proportional to the rate of consumption of the lean reactant F. Thus, the
product concentration found within a small sample volume at any given time provides an
approximation to the local instantaneous mixing rate. Despite the simplicity of the model, it is suf-
ficiently accurate to be used for describing the mixing process. The study has given important
physical insight into the process by which the large-scale vortical structures entrain fluid in the
near-wake region and, subsequently, enhance the overall mixing. However, since the thermal
energy released from combustion was neglected in the simulations, the chemical reaction was a
passive process and did not influence the unsteady dynamics of the fluid motion. Thus, the role
played by the thermal energy released from combustion on the development of the large-scale
structures and the mixing field was not addressed by the simulations. From two-dimensional exo-
thermic reactive shear layer studies, it is well-known that, in general, thermal energy released
from combustion decreases the size of the shear layer mixing region via delaying the onset of the
flow instability, and the suppression of eddy pairing. The changes in the unsteady flow dynamics,
together with the decrease in fluid density within the mixing region, lead to significant reduction in
product formation within the shear layer [95, 134]. Thus, it is expected that if the thermal energy
released from chemical reaction is taken into consideration in our flow simulations, it would have
similar effects on the flow dynamics and the mixing zone. In this chapter, we will again examine
the flow dynamics and the large-scale entrainment and mixing while considering the effects of
the thermal energy on the flow dynamics in terms of the expansion velocity alone. It is antici-
pated that the large-scale dynamics, which have already been shown to be quite important in
the isothermal reactive flow study, will continue to be important in the exothermic reactive flow.

In an exothermic reactive flow, the unsteady dynamics of the fluid motion are highly cou-
pled to the chemical reaction. The combustion process is generally influenced by the hydrody-
namic field through such effects as strain rate, flame stretching, and curvature. The
hydrodynamic field is, in turn, affected by the combustion process through volumetric expansion
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and baroclinic vorticity generation, among others [147]. It is this complicated close coupling and
feedback between the flow and the chemistry that makes the analytical or numerical solution of
the governing equations for a turbulent reactive flow a daunting task. Despite extensive research
effort, no realistic solution of the turbulent flame equations has yet been achieved even after
major simplification, nor is it likely to be, in the near future. Over the years, researchers have
instead devoted great effort to developing simplified models to analyze flows in which only cer-
tain flow-combustion coupling mechanisms are considered significant. This effort had led to a
substantial body of useful knowledge about the individual and collective effects of the flow-alter-
ing mechanisms induced by the thermal energy on the flow dynamics [11, 32, 42, 43, 49, 51, 134].

Owing to the fast-chemistry assumption and the unique flow configuration used in this
research, in general, most fuel being injected into the flow domain reacts inside the recirculation
region within a short distance downstream of the jet exit (except for the case Ui/Ua = 2.08).
Under this flow condition, the release of thermal energy and the combustion-related density gra-
dient are mainly confined to the near-wake region. Volumetric expansion of the fluid within the
recirculation region induces a radial velocity component on the fluid elements, and causes the
direction of the density gradient to point more or less radially outward from the center of the
recirculation zone. The baroclinic torque, (Vp x Vp) /p 2 , describing the differential fluid acceler-
ations resulted from the nonaligned pressure and density gradients in the flow field, can alter the
vorticity field significantly under certain flow conditions. However, in this case most of the fuel
reacts within the near-wake region and is quickly diluted by the excess air before leaving the
recirculation region. Compared to the volumetric expansion, the effect of the baroclinic vorticity
generation is mostly localized and has little impact on the overall vorticity dynamics. The flow field
in the near-wake region is affected most significantly by the nonhomogeneous density distribu-
tion caused by the thermal expansion of the fluid. In order to simplify the solution procedure, we
will neglect the baroclinic vorticity generation term in the governing equations and include only
the expansion velocity term in this study. Furthermore, in this research we are mainly interested in
the aerodynamic aspects of the flow rather than the chemical kinetics or the reaction mecha-
nisms. For the sake of simplicity, we will also neglect the effects of the hydrodynamics on the
combustion processes; namely, the effects of strain rate, flame stretching and curvature will not
be considered in the simulation. Thus, the issues of ignition and flame extinction also will not be
addressed in this exothermic reactive-flow study. Although many interesting features of real exo-
thermic reactive flows can no longer be captured by this simplified model, many significant
effects of the exothermic reaction on the flow dynamics can still be studied. In the following sec-
tion, we will present the results obtained from the exothermic reactive-flow simulation, and dis-
cuss the effects of the expansion velocity on the unsteady flow dynamics and the large-scale
entrainment and mixing. Qualitative comparisons with the isothermal reactive flow simulations
presented in Chapter 4 and with experimental data will be made where applicable.



5.1 LARGE-SCALE DYNAMICS UNDER THE ASSUMPTION OF EXOTHERMIC REACTION WITH STEADY INFLOW
BOUNDARY CONDITION

For this exothermic reactive-flow study, we consider the case with inflow velocity ratio

Uj/Ua = 1.04. This particular case is selected for this study because the characteristic flow
dynamics at this velocity ratio were observed to encompass the distinctive flow features of the
other two cases in the isothermal reactive-flow study; namely, intense interaction between the
fuel eddy and the air eddy within the recirculation region leading to periodic shedding of com-
posite structures, and the penetration of the recirculation zone by the fuel jet (see Figure 4.27).
Since the primary goal of this exothermic reactive-flow study is to determine the implication of
the expansion velocity on the overall flow dynamics and the subsequent effects on the unsteady
entrainment and mixing in the near-wake region, the investigation will be conducted by examin-
ing the flow with steady inflow boundary condition only. This way, the effects of the volumetric
expansion on the unsteady dynamics of the recirculation region can readily be isolated and
studied in a simpler environment. Furthermore, results from the simulation may be used to com-
pare with the dynamics of the isothermal reactive-flow study discussed in Chapter 4.

As seen in the last chapter, the unsteady dynamics and the characteristic flow features of
the recirculation region are most apparent in terms of the large-scale vorticity dynamics. Thus, we
begin the discussion of the effects of the expansion velocity on the unsteady flow dynamics by
first examining the velocity field in terms of the vortex elements. Examining the vorticity dynamics
first allows us to obtain a global description and visualization of the impact of heat release on the
flow directly in terms of the large-scale unsteady flow dynamics. It also provides us with a quick
qualitative answer to the question of how the stability characteristics of the recirculation region
are affected by the release of thermal energy within the region before we study the details of the
unsteady mixing field.

A brief review of the characteristic flow features when the reaction is isothermal seems to
be the most appropriate starting point for the discussion of the dynamical implication of the heat
release on the recirculation region and the large-scale entrainment. After this brief review, the
extent to which volumetric expansion alters the unsteady flow dynamics and the large-scale
entrainment and mixing should readily be identified and isolated during the discussion of the exo-
thermic reactive flow field.

In terms of the vortex elements within the interior of the flow domain, the sequence of
time frames presented in Figure 5.1 illustrates the interaction between the jet and the annular air
eddy within the recirculation region of the isothermal reactive flow. This strong interaction leads to
the formation and, subsequently, the shedding of the composite structure from the recirculation
region. It should be noted that in these vortex-element plots, the same notation used in the previ-
ous chapter also applied; namely, the instantaneous position of a vortex element is depicted with
a small square, and its velocity vector is delineated by a straight line segment originating from the
center of the square. Upon a careful inspection of this series of time frames, we see that the signif-



icant event within the recirculation region begins with the instability and the roll up of the jet shear
layer to form a counterclockwise-rotating fuel eddy a short distance downstream of the jet exit.
This eddy grows steadily in size as it continues to entrain more and more of the jet fluid entering
the flow domain (Figure 5.1a). The remaining jet fluid not entrained by the fuel eddy penetrates
and escapes the recirculation region along the centerline of the combustor in discrete bursts due
to the unsteady motion of the recirculating air eddy. As the size of the fuel eddy continues to
grow from the entrainment of more fluid delivered by the jet shear layer, It begins to occopy most
of the space within the recirculation region and pushes the air eddy radially outward and away
from the face of the bluff body (Figures 5.1a and b). This action marks the onset of the instability
within the recirculation region. Eventually, the strong interaction between the two eddies leads to
the merging of the eddies (Figure 5.1c) and, subsequently, the shedding of the composite struc-
ture from the recirculation region (Figures 5.1 d and e). Meanwhile, the roll up of the outer annular
flow shear layer creates a new recirculating air eddy. The entrainment of the jet fluid into the
counterclockwise-rotating eddy downstream of the jet exit sets the stage for a new shedding
cycle (Figures 5.1 e and f). This complicated unsteady shedding dynamics of the recirculation
region is found to be quasi-periodic, and all the events associated with a single period are
observed to repeat more or less in every shedding cycle.

Certain characteristic flow features of this isothermal reactive flow are noteworthy and
should be pointed out here so that we can compare them with the exothermic reactive flow pre-
sents in Figure 5.3. First and foremost, a common characteristic shared by all the eddies in this iso-
thermal reactive flow is that the eddies are coherent, and they all possess substantial amount of
vorticity, as can be seen from the tightly roll-up of the eddies and the high concentration of vor-
tex elements distributed within and on the surfaces of these large-scale structures. The air eddy
and the fuel eddy inside the recirculation region before the pairing are distinctive, and the sizes
of these two eddies are comparable. The structure of the recirculation region is seen to be well-
organized and is mainly composed of these large-scale, oppositely rotating structures. After
being shed from the recirculation region, the composite eddy remains coherent, and retains its
identity for significantly large distance downstream of the bluff-body face. Within the shear layer
in between the annular flow and the recirculation bubble, shedding activities are less prominent
in this case, as most of the small-scale eddies in the shear layer are engulfed by the recirculating
air eddy. Inside the recirculation region, the air eddy is usually the dominant flow structure before
the fuel eddy has grown to a comparable size to affect the stability of the region. The growth of
the fuel eddy in between the bluff-body face and the recirculating air eddy is clearly the primary
destabilizing mechanism of the recirculation region. The unsteady reattachment point of the
outer shear layer can usually be found at a distance slightly greater than a bluff-body diameter
downstream of the bluff-body face, and the unsteady dynamics of the near-wake region are
dominated by the interaction and shedding of the composite structure from the recirculation
region. Mixing between the fuel and the oxidizer is largely accomplished by the merging of these
two oppositely rotating large-scale structures. Since the inflow boundary condition is steady and
the white noise associated with the random-walk diffusion has no preferred frequency, the
unsteady dynamical events observed here are natural to this unique flow configuration with this
inflow velocity ratio. These natural large-scale shedding dynamics are also captured by the
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power spectra present in Figure 5.2. From this figure, we see that the significant Strouhal numbers
for this flow at the given velocity ratio included the well-known bluff-body shedding frequency,
S - 0.15, as well as the frequency associated with the shedding of the composite structures,
S - 0.06, as one moves downstream toward the end of the recirculation region (Figure 5.2f).
These two Strouhal numbers, which are the fundamental frequency and its first subharmonic,
respectively, have been observed in numerous experimental and numerical studies involving a
wide range of bluff-body-to-jet diameter ratios and inflow velocity ratios [52, 53, 85, 93, 103, 118,
119, 120]. Notice that all the dominant peaks of the spectra in these plots are narrow and sharp,
indicating the high energy contents of the large-scale eddies associated with these frequencies.

When the reaction is exothermic, volumetric expansion induces an expansion velocity
field which is superimposed on the rotational vortical flow structures. As a consequence of this
expansion velocity, the large-scale eddies in the exothermic reactive flow appear more diffuse,
and their rotational rates decrease significantly. The entire structure of the recirculation region is
slightly elongated, with the major axis of the structure becomes more aligned with the streamwise
coordinate. A sequence of time frames showing the unsteady dynamics of the near-wake region
in terms of the vortex elements for the exothermic reactive flow is presented in Figure 5.3. Com-
paring the two series of time frames presented in Figures 5.1 and 5.3, we see that many of the glo-
bal characteristic flow features observed in the isothermal reactive flow also appear in the
exothermic reactive flow. The large-scale vortical structures, although appear more diffuse and
less orderly, are still very much discernible within the recirculation region of the exothermic reac-
tive flow. Similar to the isothermal reactive flow dynamics, from Figure 5.3, we see that eddies are
continuously being shed from the outer edge of the bluff body and the large-scale vortices inter-
act vigorously with one another within the recirculation region. These large-scale vortices grow by
entrainment and pairing, then detach from the recirculation region and are being convected
downstream as distinct units of vortical structures. The exothermic reactive flow does differ, how-
ever, from the isothermal reactive flow in many subtle aspects, as can be seen by a careful com-
parison of the time-dependent flow structures of the near-wake region between Figures 5.1 and
5.3. One of the most apparent differences between the two flows is the maximum amplitude of
the large-scale eddies' vorticity, found mainly in the vortex cores, has decreased substantially in
the exothermic reactive flow. All the large-scale structures within the recirculation region as well
as the shed eddy are more diffuse, and have much less concentration of vorticity than their
counterparts in the constant-density case. Furthermore, the eddies within the exothermic reac-
tive flow appear to be slightly flatten by the expansion velocity, and the major axes of these ellip-
tical flow structures become more aligned with the streamwise coordinate (compare the
composite eddy between Figure 5.1d and Figure 5.3e). As discussed at the beginning of this
chapter, the most significant flow mechanisms altering the vorticity field in an exothermic reactive
flow are the baroclinic vorticity generation and volumetric expansion. However, since the baro-
clinic vorticity generation term has been neglected in the present simulation, the changes of the
vorticity field seen here are effectively caused by the volumetric expansion alone. The observed
changes of the unsteady vorticity dynamics can qualitatively be explained as follow. The fluid
density in an incompressible isothermal reactive flow remains constant with time and the flow has
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zero divergence. However, for an exothermic reactive flow, the divergence of the velocity field,
V - u, is positive. It is the volumetric expansion of the fluid that causes the decrease in the magni-
tude of the vorticity. This phenomenon can easily be understood by the angular-momentum con-
sideration. As a rotating fluid element expands from the absorption of thermal energy released
from combustion, its angular momentum is redistributed over a larger area. Thus, the magnitude
of its local rotational rate, hence its vorticity, must decrease in order to conserve angular momen-
tum, everything else being equal.

Thermal energy released from combustion also affects the maximum size of the air eddy
within the recirculation region. Compared with its isothermal counterpart, the maximum size of
the air eddy in the exothermic reactive flow is slightly reduced due to the presence of a signifi-
cantly thicker jet shear layer, which takes up much of the space within the recirculation region.
The roll up of the jet shear layer to form a counterclockwise-rotating fuel eddy can be seen in Fig-
ure 5.3a upon a careful inspection of that time frame. However, as soon as the fuel elements
within the eddy come into contact with the oxidizer elements in the air eddy, chemical reaction
occurs and the resulting expansion velocity diminishes the vorticity of the fuel eddy to the point
that it becomes almost undetectable (Figures 5.3b and c). In addition to the expansion velocity,
the existence of an expanded jet shear layer within the recirculation region pushes the air eddy
radially outward and away from the face of the bluff body. Thus, the unsteady reattachment
point of the outer shear layer is being moved further downstream, resulting in a slightly longer
unsteady recirculation region for the exothermic reactive flow (compare the recirculation region
of Figures 5.1 b and c with Figures 5.3b and c). Unlike plane shear layers, however, the release of
thermal energy in this flow configuration did not significantly dampen the instability of the recircu-
lation region as initially expected (at least for the case of low heat release studied here'). This is
due to the fact that the unsteady flow structure of the recirculation region is dominated by a
highly unstable two-eddy dynamical system in this case. In the isothermal reactive flow, instability
of the recirculation region was initiated by the growth of the fuel eddy between the jet shear
layer and the recirculating air eddy. These two eddies have opposite-sign vorticity and they inter-
act strongly with one another within the recirculation region. The interaction of these two eddies
leads to the shedding of the composite structure from the recirculation region, which has a Strou-
hal number of 0 (0.06) associated with the shedding process. The same destabilizing mechanism
is also observed in the recirculation region of the exothermic reactive flow. However, owing to the
additional expansion velocity and the existence of a relatively thick jet shear layer within the
recirculation region displacing the air eddy further downstream, the instability of the composite
structure is observed to occur sooner in the exothermic reactive flow, resulting in a slightly higher
characteristic frequency associated with the shedding process. This observation can clearly be
seen in the power spectra of the flow presented in Figure 5.4. Comparing the plots in Figures 5.2
and 5.4, we see that the corresponding power spectra of these two cases are very similar except
that for the exothermic reactive flow, heat release seems to dampen certain high-frequency

1. One-half of the lower heating value (LHV) of methane was used as the heat of reaction in the
calculation ( 2.5x10 7J/kg). The maximum temperature rise was about 1160 K (less than 2 percent
of the time in the whole simulation) and the average temperature rise was 38 K.
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fluctuations, hence some small-scale eddies, in the jet shear layer. The dominant bluff-body shed-
ding frequency does not change very significantly when the reaction is exothermic. However, the
Strouhal number associated with the shedding of the composite eddy is seen to shift slightly
toward 0.1 (compare the last plot of Figures 5.2 and 5.4).

Another significant difference between the isothermal and exothermic reactive flow is
the time evolution and the structure of the composite eddy shed from the recirculation region.
From Figure 5.1, we see that the composite eddy in the isothermal flow remains coherent, and
the magnitude of it vorticity persists for a large distance downstream of the recirculation region.
The structure of this eddy is compact, with high concentration of vortex elements on the surface
of the structure. For the exothermic reactive flow, however, the large eddy loses it identity quickly
because of the continuously spreading out of the vorticity over a larger area. The geometry of
the eddy is slightly flattened, with the major axis of the eddy becomes more aligned with the
streamwise coordinate (compare Figure 5.1 d to Figure 5.3 e). Moreover, as will be shown later, the
eddy in the isothermal reactive flow contains significantly high level of unsteady fluctuation
kinetic energy, and this energy is retained by the eddy for very large distance downstream of the
recirculation region. For the exothermic reactive field, however, the eddy has much less unsteady
fluctuation kinetic energy to start with, and the amplitude of the unsteady fluctuation kinetic
energy dissipates quickly to a point where it is indistinguishable from the background level within
a bluff-body diameter downstream of the recirculation region. Furthermore, the upper wall
boundary layer is thinner for the exothermic reactive flow, and less large-scale eddies are being
generated in the boundary layer (compare the wall boundary layer between Figures 5.1 and
5.3). In this case, less interaction between the shed composite eddies and the wall boundary
layer is observed in the exothermic reactive flow. Finally, the wake region downstream of the
recirculation zone of the exothermic reactive flow is significantly thicker than that of the corre-
sponding isothermal reactive wake, and has relatively lower concentration of vortex elements.
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the near-wake region of an exothermic reactive flow in terms of the vortex-element distribution in the
interior of the flow domain. Uj /Ua = 1.04.
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A sequence of time frames showing the instantaneous isothermal product concentration
field at the same time steps corresponding to Figure 5.1 is presented in Figure 5.5. From this figure,
we see that the locations with highest product concentration are inside the recirculation region
near the jet exit, and along the axis of the combustor extending from the end of the recirculation
region to several bluff-body diameters down stream of the bluff-body face. This particular pattern
of the product distribution indicates that mixing and chemical reaction generally occur inside the
recirculation region close to the jet exit and along the centerline of the combustor downstream
of the recirculation region. This series of time frames also shows that entrainment and mixing in the
near-wake region are strongly modulated by the large-scale vortices, and the entrainment of the
jet fluid into the counterclockwise-rotating eddy provides a continuous supply of fresh fuel to sus-
tain the reaction within the recirculation region (Figures 5.5a and b). As the recirculation region
becomes unstable, the shedding of the composite structure carries away most of the products
accumulated in the region (Figures 5.5c and d). Notice that as the large composite structure is
being convected downstream, it entrains additional jet fluid from the centerline of the combustor
and mixes the fuel elements in the jet fluid with the oxidizer elements (Figure 5.5e). This unsteady
entrainment process causes intense mixing and reaction to occur along the outer surface of the
vortical structure continuously, as can clearly be seen in Figures 5.5d and e.

The instantaneous product concentration field of the exothermic reactive flow is different
from its counterpart in the isothermal reactive flow in many subtle aspects. Figure 5.6 shows a sim-
ilar sequence of time frames illustrating the unsteady product concentration field when the reac-
tion is exothermic. Comparing the two time sequences shown in Figures 5.5 and 5.6, several
differences between the two cases are immediately noticeable. First and foremost, the product
concentration inside the recirculation region near the jet exit of the exothermic reactive flow is
much lower than that in the isothermal case. High product concentration in this case begins to
appear at approximately a bluff-body radius downstream of the jet exit. The changes in the mix-
ing and reaction pattern observed here is clearly reflected in the value of pY, integrated across

the combustor cross section as a function of the axial coordinate (Figure 5.11 la) and can be
attributed to the changes in the large-scale flow structure within the recirculation region. This
changes can be seen by examining the corresponding vortex-element plots presented in Figure
5.3. Owing to the expansion velocity field, the air vortex in the exothermic reactive flow within the
recirculation is slightly flattened, and the major axis of the structure becomes more aligned with
the streamwise coordinate. As a result, the unsteady reattachment point of the upper shear layer
is moved further downstream. Moreover, the expanded jet shear layer has shifted the entire struc-
ture of the recirculation region radially outward and away from the face of the bluff body, reduc-
ing the chances of the fuel elements to interact with the oxidizer elements near the jet exit. As a
consequent, mixing and reaction are seen to occur mostly downstream of the recirculation
region and along a more angled jet shear layer. The reaction pattern just described can clearly
be seen by examining the flow structure near the end of the recirculation region in Figure 5.3a
and the corresponding unsteady product concentration field in Figure 5.6a, as well as the instan-
taneous reaction zones in the flow field present in Figure 5.7 (to be discussed shortly). Another sig-
nificant difference between the two cases is the boundary separating the jet and the outer
annular flow along the axis of the combustor. For the isothermal case, we see that most products
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are confined very close to the centerline with sharp irregular boundary between the jet and the
outer flow, indicating the existence of a large number of small-scale eddies inside the shear layer
separating the two fluids. For the exothermic case, we see that the entire wake region down-
stream of the bluff body becomes much thicker, and the boundary separating the two fluids
becomes more diffuse. Small-scale eddy activities along the shear layer are seen to be less
intense than those in the isothermal reactive flow. This observation can also clearly be seen in Fig-
ures 5.1 and 5.3 as well as the comparisons of the unsteady and time-averaged product concen-
tration field between the isothermal and the exothermic reactive-flow calculation presented in
Figures 5.9 and 5.10.

The instantaneous locations in the flow field where chemical reactions are most intense,
hence the flame surfaces for the exothermic reactive flow, are presented in Figure 5.7. For com-
parison, the same quantity for the isothermal reactive flow is presented in Figure 5.8. In these two
figures, the first three frames show the instantaneous reaction zones in the flow field, and the last
three frames show the corresponding instantaneous product concentration field. As observed in
the experimental studies performed by Roquemore [119] and Namazian [103], chemical reac-
tions are seen to occur mostly within the shear layer between the jet and the recirculation bub-
ble, and on the outer surfaces of the large-scale vortical structures for both cases. In addition, the
reaction surfaces are seen to be strongly modulated by the large-scale structures as the eddies
continue to grow within the recirculation region.

Comparing the reaction surfaces of the exothermic reactive flow presented in Figure 5.7
with the isothermal reactive case presented in Figure 5.8, the effects of the thermal energy on the
large-scale entrainment and mixing can clearly be seen, Chemical reaction with heat release,
while decreases the entrainment and mixing in the recirculation region close to the jet exit, does
not alter the overall large-scale structures significantly. The large-scale dynamics observed in the
isothermal reactive flow also appear in the exothermic reactive flow. The main difference
between the two cases is mostly on the location and the magnitude of the instantaneous reac-
tion within the recirculation region. For the isothermal reactive flow, reactions begin to take place
immediately downstream of the jet exit, and the reaction surface between the jet and the recir-
culation bubble is almost parallel to the axis of the combustor. Fuel elements which are entrained
into the jet shear layer and are moving radial upward along the outer surface of the recirculating
air eddy cause reaction to take place along the jet shear layer as well as along the surface of
the recirculating air eddy, as can clearly be seen in Figures 5.8a and b. For the exothermic reac-
tive flow, the expanded jet shear layer pushes the air eddy away from the face of the bluff body.
In this case, the reaction surface within the recirculation region becomes more angled relative to
the axis of the combustor, resulting in combustion to take place further downstream of the jet exit.
Otherwise, the large-scale entrainment and the mixing mechanisms of the two cases appear to
be similar.
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Figure 5.5 Instantaneous product concentration field, U) /Ua = 1,04 (isothermal reactive flow).
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Figure 5.6 Instantaneous product concentration field, Uj /Ua = 1,04 (exothermic reactive flow).
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r1gue ~.1 Instantaneous reaction zones in Tme flow field (a-c) and the corresponding product concentrationfield (d-f). Uj /Ua = 1.04 (exothermic reactive flow),
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Figure 5.8 Instantaneous reaction zones in the flow field (a-c) and the corresponding product concentrationfield (d-f). Uj /Ua = 1.04 (isothermal reactive flow).





Figure 5.9 A comparison of the unsteady product concentration field between the isothermal and theexothermic reactive-flow calculation, The experimental Schlieren photographs on the left are from [103).





Figure 5.10 A comparison of the time-averaged product concentration field between the isothermal andthe exothermic reactive-flow calculation. The experimental Schlieren photographs on the left are from (103).
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From the isothermal reactive flow study presented in Chapter 4, it was observed that the
spatial distribution of the unsteady fluctuation kinetic energy in the flow field is highly nonuniform,
attaining maximum value in regions where the mean gradients are high; namely, in the shear lay-
ers along the central-jet boundary and along the boundary separating the recirculation bubble
from the outer annular flow, as well as within the well-defined large-scale structures. The degree
of the recirculation region instability was found to be directly related to the amount of fluctuation

n 00
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kinetic energy possessed by the eddies inside the recirculation region. Since unsteady fluctuation
kinetic energy is usually associated with the momentum exchange due to large-scale transport,
regions in the flow field with high level of unsteady fluctuation kinetic energy are usually the loca-
tions where intense mixing occurs. Thus, the investigation of the spatial distribution of the
unsteady fluctuation kinetic energy, its production, redistribution, and dissipation rate provides
another useful way to examine the effects of the thermal energy released from combustion on
the large-scale motions, and to account for certain changes observed in the vorticity dynamics
and the mixing field.

Two series of time frames showing the unsteady fluctuation kinetic energy field for the iso-
thermal and the exothermic reactive flow are presented in Figures 5.12 and 5.13, respectively.
From Figure 5.12, we see that most of the unsteady fluctuation kinetic energy in the isothermal
reactive flow field is concentrated in the well-defined, large-scale vortical structures. Instability of
the recirculation region starts as the large-scale eddies and the shear layers within the region
begin to accumulate unsteady fluctuation kinetic energy. The magnitude of the unsteady fluctu-
ation kinetic energy of the eddies continues to increase, and reaches a maximum value prior to
the shedding of the composite structure from the recirculation region. After the ejection of the
composite eddy from the recirculation region, the energy level within the region decreases sub-
stantially, and remains relatively low until the growth of the fuel eddy begins to affect the stability
of the region again. Notice that the shed composite eddy remains coherent, and retains its
unsteady fluctuation kinetic energy a large distance downstream of the recirculation region.
Even after the interaction with the eddy on the upper wall boundary layer, the eddy is still highly
distinguishable. Since the intensity of the unsteady fluctuation kinetic energy is directly related to
the large-scale transport rate, the high level of unsteady fluctuation kinetic energy associated
with these large-scale eddies implies that these eddies are efficient agents in terms of initiating
mass and momentum exchanges among the fluid elements.

When the reaction is exothermic, the natural shedding dynamics of the recirculation
region persist despite the less orderly and relatively incoherent of the large-scale structures within
the recirculation region. However, Figure 5.13 clearly shows that a major effect of the thermal
energy released from combustion on the flow dynamics is the suppression of the unsteady fluctu-
ation kinetic energy of the large-scale structures. From Figure 5.13, we see that, very similar to the
isothermal reactive case, instability of the recirculation region begins as the eddies within the

region accumulate unsteady fluctuation kinetic energy. However, the kinetic energy acquired by
the eddies within the recirculation region before the shedding is noticeably less in this case. The
energy of the eddy being shed from the recirculation region is seen to dissipate very quickly,
decreasing to a level which is almost undetectable at a distance less than two bluff-body diame-
ters downstream of the recirculation region. This phenomenon can qualitatively be explained as
follow. As the expansion velocity acts on the large-scale structure by spreading out its vorticity,
the eddy becomes more diffuse and loses its ability to entrain irrotational fluid as well as to extract
additional energy from the freestream. As the eddy continues to expand and becomes less dis-
tinguishable, the concentration of the unsteady fluctuation kinetic energy in the eddy is redistrib-



uted over a larger area. Therefore, the energy can be dissipated by molecular diffusion more
quickly. Since lower level of fluctuation within an eddy implies lower large-scale transport rate,
thus, thermal expansion decreases the ability of the large-scale structures to entrain fluid. As seen
in Figure 5.13b, the unsteady fluctuation kinetic energy of the eddy shed from the recirculation
region becomes almost undetectable at a distance just slightly greater than one bluff-body
diameter, and disappears completely within two bluff-body diameters downstream of the recir-
culation region.

As discussed earlier, heat release did not affect the natural shedding frequencies of the
flow significantly. A comparison of the differences between the power spectra of the isothermal
and the exothermic reactive flow is provided by Figures 5.2 and 5.4. For the isothermal reactive
flow, we see that the significant Strouhal numbers found in the flow domain included the well-
known bluff-body shedding frequency, S- 0.15, and the frequency associated with the shed-

ding of the composite eddy, S - 0.06. Also, notice that the dominant peaks in the isothermal
reactive flow are very narrow and sharp. Examining the power spectra of the exothermic reac-
tive flow, we see that the general trends of the power spectra are very similar. Differences, how-
ever, do exist between the two cases. The power spectra for the exothermic reactive flow are
broader, the peaks are being spread out more and are less sharp as compared with those in the
isothermal case. Furthermore, the frequency associated with the shedding of the composite
structure from the recirculation region is slightly shifted toward 0.1. Suppression of certain high-fre-
quency oscillations is also evident. This observation can be seen much clearer in Figures 5.14 and
5.15, where we compare the radial velocity fluctuations in the shear layer between the outer
annular flow and the recirculation bubble and in the jet shear layer, respectively. From these fig-
ures, similar conclusion can be drawn. Heat release did not change the large-scale dynamics
very significantly. Most of the large-scale coherent fluctuations observed in the isothermal reac-
tive flow can also be seen in the exothermic reactive flow. The main difference being the relative
amplitude of the different modes of fluctuation. In general, the maximum amplitude of the fluctu-
ations is reduced for all frequencies and certain small-scale oscillations are suppressed. Lower
radial velocity fluctuations implies less large-scale momentum transport in the radial direction.
Thus, large-scale entrainment and mixing are both decreased in the exothermic reactive flow, a
trend which has been observed in numerous experimental studies as well as in other numerical
studies of two-dimensional exothermic reactive shear layer [55, 134]. From the information pro-
vided by these figures and the result of the unsteady fluctuation kinetic energy, we can conclude
that heat release from chemical reaction decreases the large-scale entrainment and mixing,
resulting from the more diffuse eddies which are less capable of entraining fluid from their sur-
rounding.
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Flow Diraftion .

Figure 5.12 The unsteady fluctuation kinetic energy u'u'+v'v'. Uj /Ua = 1.04 (isothermal reactive flow).
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Flow Direction

Figure 5.13 The unsteady fluctuation kinetic energy u'u'+v'v'. Uj /Ua = 1.04 (exothermic reactive flow).
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As seen in the isothermal reactive flow study presented in Chapter 4, the probability den-
sity functions (PDFs) of the velocity distributions are effective in terms of separating the large-
scale dynamics from the more classical small-scale flow structures of high-Reynolds-number flows.
From the isothermal study, it was found that the PDFs of the flow for all three velocity ratios studied
did not deviate significantly from a Gaussian distribution except in regions where the local flow
dynamics are dominated by large-scale activities. As discussed in the Introduction, this strong
non-Gaussian behavior would significantly complicated the solution procedure using assumed
probability density function methods. In the following, we will compare the PDFs between the iso-
thermal and the exothermic reactive flow field in order to see the effect, if any, of heat release
on the PDFs of the flow.

Figures 5.16-5.19 show the PDFs of u' and v' for the isothermal and the exothermic reac-
tive flow field. Compare Figures 5.16 and 5.17, it is seen that the expansion velocity has very little
impact on the PDF distribution. Within the jet shear layer, we see that the PDF of u' becomes neg-
atively skewed at the first station, and positively skewed at the last two stations. No significant
changes can be detected at the upper shear layers between the two cases. Similarly, no signifi-
cant changes can be detected between the two cases for the PDFs of v'. This observation can
further be confirmed by examining Figure 5.20, where we show the comparisons of the skewness
and Kurtosis between the two cases. From this figure, we see that, as observed from the PDF plots,
the thermal energy did not change the structures of the main flow significantly (at least for the
level of heat release chosen for this study). The variations of the skewness and Kurtosis for the case
with heat release follow exactly the same trends as for the isothermal case, indicating that the
most significant effect of heat release on the flow is the reduction of the unsteady fluctuations
and the vorticity of the large-scale structures. All the significant global flow dynamics and the
large-scale entrainment and mixing mechanisms occur in the isothermal case are also present
when the reaction is exothermic, the main difference being the relative magnitude of the differ-
ent events.
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5.2 CONCLUSIONS

Results of the exothermic reactive-flow simulation with low heat release discussed in this
chapter have shown that, when heat release accompanies chemical reaction, volumetric
expansion of the fluid induces an expansion velocity field which is superimposed on the rotational
flow structures. As a result, the large-scale eddies appear more diffuse, their overall rotational
rates decrease noticeably, and the entire structure of the recirculation region becomes more
aligned with the streamwise coordinate. Stability of the recirculation region is not significantly
dampened by the heat release. The large-scale coherent structures are still apparent in the exo-
thermic-reactive flow field. The roll-up of the eddies, however, appear to be much less intense.
The maximum amplitude of the eddies' vorticity, found mainly in the vortex cores, has decreased
substantially. This phenomenon can be explained by the angular momentum consideration. Vol-
umetric expansion of the fluid induces a local positive divergence V - u of the velocity field, as a
consequence, the angular momentum of a rotating fluid element is redistributed over a larger
area. Thus, the magnitude of its local rotational rate, hence the vorticity, must decrease in order
to conserve angular momentum. In addition to reducing the maximum amplitude of the eddies'
vorticity, heat release also decreases the unsteady fluctuation energy of these large-scale struc-
tures. This phenomenon can also be attributed to the expanding vortical structures in an exother-
mic reactive field. As an eddy expands and becomes less distinguishable, the concentration of
the unsteady fluctuation kinetic energy is redistributed over a larger area and can decay much
more quickly. Since unsteady fluctuation and large-scale transport are closely related, lower con-
centration of the unsteady fluctuation kinetic energy within these eddies, together with the
reduced amplitude of the vorticity, implies that the ability of the large-scale structures to entrain
fluid is substantially decreased in an exothermic reactive flow as compared to their counterparts
in the isothermal reactive flow . Large-scale eddies are known to be responsible for most of the
transport of momentum and mixing of the scalar quantities. Their structures and coherence have
important repercussions with respect to mixing, reaction, and pollutant formation. The weaker
large-scale vortices resulted from heat release implies that less large-scale entrainment and mix-
ing, hence product formation, are possible in the near-wake region when the reaction is exother-
mic.
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6. SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE WORK

6.1 SUMMARY AND CONCLUSIONS

The axisymmetric vortex-scalar element method was developed and implemented to
study the unsteady reactive flow in a two-stream, coaxial-jet, axisymmetric bluff-body combustor
as a function of the inflow velocity (momentum) ratio. The vortex method is an adaptive
Lagrangian numerical scheme in which the vorticity of the flow field is accurately discretized by a
set of finite-area vortex elements with overlapping cores, and the positions of these elements are
updated every time step according to the flow governing equations. The viscous splitting tech-
nique is used to decompose the vorticity transport equation into an advection and a diffusion
component. Advection is expressed in terms of a set of coupled ordinary differential equations
and is solved using a second-order predictor-corrector method; molecular diffusion is simulated
stochastically by random-walking the vortex elements according to Gaussian statistics.
Lagrangian scalar elements are also used to transport the scalar fields in order to maintain the
grid-free, self-adaptive nature of the algorithm. Moreover, different sets of elements can be used
to transport the scalar fields of the various species with different diffusivities. Thus, a wide disparity
in diffusive length scales can be accommodated naturally without posing any particular diffi-
culty. The scalar-element method solves the appropriate scalar transport equations describing
the reactive field directly without making restrictive assumptions about the structure of the reac-
tion zone. The method, as implemented in this study, is relatively simple and robust. It is capable
of handling a variety of initial and complex boundary conditions and is not limited to simple flow
domains. Using these numerical schemes, the underlying low-Mach-number flow dynamics within
the combustor were investigated under the assumption of isothermal and exothermic reaction. In
order to ease stability requirements in the numerical simulations, the low-Mach-number approxi-
mation was imposed on the governing equations to filter out the nonequilibrium influences of the
acoustic waves in the flow. Chemical reaction in all the simulations was assumed to be described
by a binary, single-step, irreversible equation with infinite-rate kinetics. Despite the simplicity of the
model and the axisymmetric assumption, the simulations were able to capture most of the
unsteady flow dynamics of the near-wake region as well as the large-scale entrainment and mix-
ing.

The focus of the isothermal reactive-flow study was on the unsteady dynamics of the
near-wake region downstream of the bluff body as a function of the inflow velocity ratio. The
dynamics of the flow as well as the large-scale entrainment and mixing were studied under both
steady and externally imposed sinusoidal inflow boundary conditions. The unsteady mixing pro-
cess was investigated by assuming a fast second-order chemical reaction of the form F + 0 -) P
with negligible heat of reaction so that the dynamics of the large-scale entrainment and the glo-
bal mixing field can be studied in a simpler environment, and a better understanding of the basic
mixing mechanisms can be developed. In the simulations performed for the study, dilute fuel F
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and oxidizer 0 were added to the jet stream and the annular flow, respectively. Once inside the
flow domain, the reactants were assumed to react instantaneously and irreversibly upon contact
with one another to form products P. This simplified model leads to a diffusion-controlled reaction,
and the total amount of products formed is directly proportional to the rate of consumption of
the lean reactant F. In this case, the product concentration found within a sampling volume pro-
vides an approximation to the local instantaneous mixing. Despite the simplicity of the model, it is
sufficiently accurate to describe the mixing process. The study has given important physical
insight into the procedures by which the large-scale vortical structures entrain fluid in the near-
wake region and, subsequently, enhance the overall mixing.

For the steady-inflow calculations, three cases with three different inflow velocity ratios,
Uj/U a = 0.62, 1.04, and 2.08, were performed for a combustor with diameter ratio Da/Db = 2.0. It
was observed from the simulations that the complex flow structures in the near-wake region
downstream of the bluff body is a dynamically unstable system involving two coexisting and cou-
pled flow instabilities: the shear-layer instability and the recirculation-region instability. For the two
lower inflow velocity ratios, the instability of the jet shear layer leads to the formation of organized
fuel eddies within the recirculation region between the face of the bluff body and the recirculat-
ing air eddy. These fuel eddies interact vigorously with the air eddy as they grow in size; the inter-
action eventually leads to the merging and shedding of the composite structures from the
recirculation region. This complicated unsteady flow dynamics of the near-wake region was
found to be quasi-periodic, and all the events associated with a single period were observed to
repeat more or less in every cycle. Since all the simulations were performed with steady inflow
boundary condition, the unsteady interaction of the eddies and the shedding of the large com-
posite structures from the recirculation region are the intrinsic flow dynamics of this confined bluff-
body flow, and the corresponding shedding frequencies associated with these events are the
characteristic frequencies of the flow system. To further characterize the shedding dynamics, the
frequency spectra at selected locations in the flow field were obtained. From the power spectra,
it was found that the dominant Strouhal number Is approximately centered around 0.15, which is
close to the well-known bluff-body shedding frequency at this Reynolds number. As one moves
further downstream from the face of the bluff body, the dominant shedding frequency is seen to
shift toward 0(0.06), which is the frequency associated with the shedding of the composite
structures from the recirculation region.

The distribution of the unsteady fluctuation kinetic energy, u'u' + v' v', in the flow field was
found to be highly discrete and nonuniform, with most of the energy being concentrated in the
well-defined, large-scale vortical structures and in the shear layers within the recirculation region.
The velocity fluctuations exhibit strong non-Gaussian behaviors in the shear layer between the
outer annular flow and the recirculation bubble, and between the recirculation bubble and the
central jet. Instability of the recirculation region is initiated as the eddies within the region begin to
accumulate fluctuation kinetic energy. The amplitude of the fluctuations reaches a maximum
value prior to the shedding of the composite flow structures, and decays quickly after the eddies
are shed from the recirculation region. The large composite eddies being ejected from the recir-
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culation region retain their identities and the energy levels even at a large distance downstream
of the recirculation zone.

The large-scale entrainment and the unsteady mixing in the near-wake region down-
stream of the bluff body were observed to be a strong function of the inflow velocity ratio. The
overall characteristics of the mixing field are controlled by the large-scale eddies, especially in
the recirculation region. When the momentum of the central jet is weak relative to the recirculat-
ing flow, a short, compact mixing zone confined mainly to the near-wake region with quasi-peri-
odic shedding of large-scale reactive flow structures from the recirculation zone is observed. As
the velocity ratio is increased, an intermittent pulsating and reacting jet, extending several bluff-
body diameters downstream of the recirculation region, is noted in addition to the quasi-periodic

shedding of reactive flow structure from the recirculation region. For the case Ui/Ua = 2.08, the

recirculation region becomes relatively stable and the flow experiences less fluctuation and
entrainment. In this case, shedding from the recirculation region is less frequent, and most of the
jet fluid is confined to a narrow region close to the centerline where mixing and reaction are most
intense.

Results from the forced-inflow study have shown that a preferred-mode coupling exists
between the forced jet and the large-scale structures in the recirculation region. Time-averaged
product concentration field indicates that the mixing length depends on the forcing frequency,
as long as the pulse amplitude exceeds a minimum threshold to affect the stability of the shear

layer near the jet exit. For the case Uj/Ua = 2.08, it was found that controlled excitation amplifies

the inherent recirculation zone dynamics. As this amplification approaches the natural shedding
frequency of the eddies, it causes instability in the otherwise stable recirculation region. This pro-
cess produces interactions within the recirculation region similar to those occurring naturally in
the two cases with lower velocity ratio. The most notable changes to the mixing field in the near-
wake region was observed when the central jet was being forced at a dimensionless frequency
based on the magnitude of the annular inflow velocity and the diameter of the bluff body of

O (0.06), with a forcing amplitudeA, A 0.6, Forcing at this frequency and amplitude destabilizes

the jet shear layer near the exit. The process increases the local entrainment and mixing of the
flow near the jet exit in two ways. Forcing enhances the growth of the jet shear layer by amplify-
ing the vortex structures in the shear layer, causing it to roll up and to form a counterclockwise-
rotating eddy. This eddy entrains most of the jet fluid entering the flow domain and interacts
strongly with the recirculating air eddy. In addition, the unsteady energy added to the flow from
forcing increases the unsteady fluctuation kinetic energy in the recirculation region. This process
generates interaction among the large-scale flow structures within the recirculation region and
eventually leads to the shedding of composite eddies from the region similar to the flow dynam-
ics observed in the two cases with lower velocity ratio.

When the reaction is exothermic, volumetric expansion occurs within the recirculation
region induces an expansion velocity field which is superimposed on the rotational vortical flow
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structures. As a consequence of this additional expansion velocity, the large-scale eddies within
the exothermic reactive flow become more diffuse, their overall rotational rates decreased signif-
icantly. The entire structure of the recirculation region is noticeably elongated, with the major axis
of the structure becomes more aligned with the streamwise coordinate. Compare to the isother-
mal reactive flow, we see that many of the characteristic global flow features observed in the iso-
thermal flow are also present when the reaction is exothermic. The large eddies, although
becoming more diffuse and less orderly, are still very much discernible within the recirculation
region of the exothermic reactive flow. However, the maximum amplitude of the large-scale
eddies' vorticity, found mainly in the vortex cores, has decreased substantially for the exothermic
reactive flow.

Heat release in this bluff-body flow configuration did not significantly dampen the instabil-
ity of the recirculation region as initially expected. This is due to the fact that the flow within the
recirculation region is dominated by a highly unstable two-eddy dynamical system. In the isother-
mal reactive flow, instability of the recirculation region was initiated by the growth of the fuel
eddy between the jet shear layer and the recirculating air eddy. These two eddies have oppo-
site-sign vorticity and they interact vigorously with one another within the recirculation region. The
interaction of these two eddies eventually leads to the shedding of the composite structure from
the recirculation region, which has a Strouhal number of 0 (0.06) associated with the shedding
process. The same destabilizing mechanism is also observed in the recirculation region of the exo-
thermic reactive flow. However, owing to the existence of a thicker jet shear layer within the recir-
culation region displacing the air eddy further downstream and the expansion velocity field, the
instability of the composite structure was observed to occur sooner in the exothermic reactive
flow, resulting in a slightly higher characteristic frequency associated with the shedding of the
composite structure. This phenomenon is also reflected in the power spectra of the flow in the
near-wake region.

The numerical simulations performed in this research have revealed much information
about the inherently unsteady nature and the mixing pattern of this bluff-body flow. The main
conclusions can be drawn from the study are

1) This bluff-body flow is inherently unsteady and the dynamics of the near-wake region are
dominated by a highly unstable two-eddy system even with steady inflow boundary conditions.
Simulating this flow using the time-averaged Navier-Stokes equations will most likely not be able
to capture these important physics and is not recommended.

2) The presence of the strong periodic fluctuations within the recirculation region greatly
enhance the entrainment and mixing in the near-wake region. The main effect of these unsteady
fluctuations is to increase the rate of mixing between the fuel and the oxidizer in the recirculation
region so that the length of the mixing zone can be reduced. Thus, it is desirable to have strong
velocity fluctuations in the near-wake region. One way to accomplish this is to have a thick inter-
face between the central jet and the annular flow. Further unsteady fluctuations can be induced
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in the near-wake region by forcing the inflow velocity.

3) Mixing between the fuel and the oxidizer takes place in the shear layers as well as within the
large-scale vortical structures. Initial entrainment and mixing between the fuel and the oxidizer is
usually found within the shear layer located between the central jet and the recirculating air
eddy. As the recirculation region becomes unstable, large-scale composite structures are
ejected from the region quasi periodically. These large-scale vortices continue to entrain and to
mix the two fluids as they are being convected downstream.

4) The release of thermal energy in the near-wake region of this bluff-body flow configuration
did not significantly dampen the instability of the recirculation region. This is due to the fact that
the flow within the recirculation region is dominated by a highly unstable two-eddy dynamical
system. The large-scale entrainment and mixing mechanisms as observed in the isothermal reac-
tive flow are also present when the reaction is exothermic. However, the differences in the flow
dynamics between the two cases are significant enough to warrant the inclusion of the effects of
the thermal energy on the flow dynamics if one wishes to capture the physics of the flow more
accurately in a simulation.
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6.2 SUGGESTIONS FOR FUTURE WORK

The conclusions discussed above do not answer all the questions and uncertainties which
have been raised both in this study and by earlier researchers, and there is a need for further
study on the unsteady dynamics of this confined bluff-body flow. The suggestions for future work
fall into two categories. The first is a continuation of the work on the same flow configuration, and
to develop a more robust numerical scheme which allows the inclusion of the baroclinic vorticity
generation term and higher release rate of thermal energy in the solution procedure. The second
is an extension of this work: to study a flow configuration which is widely used in practical com-
bustion system by including a swirling velocity component in the jet or the annular flow or both.
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