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ABSTRACT

Three virtual scenes of decreasing polarity and increasing symmetry -- a furnished room
(FR), an unfurnished symmetric windowed room (SR), and an unfurnished windowless
dotted room (DR) -- were rotated CW or CCW at 30- 1.50/sec about the subject's
anterior-posterior axis using a Virtual Environment System (VES) prototypical of
equipment that is planned for use in an experiment on human visual orientation on the
1998 "Neurolab" Space Shuttle mission. The system consisted of a DOS based PC (100
MHz Pentium), dual SPEA 1860 Fireboards, and an Eyephone I Head Mounted Display
(HMD). Experiment control software was developed for this project in C, using World
Tool Kit (Sense8 Corp.).

Sixteen subjects viewed the scenes while in erect and supine postures and reported
on their illusions, such as vection (self-motion), self-tilt and visual reorientation illusions
(sudden exchanges in the subjective identity of walls, ceilings, and floors). A subject's
vection latency (time until vection onset) and saturation (percentage of roll velocity
perceived as self-motion) both demonstrated a sensitivity to scene content but only a slight
dependence on head orientation. On average, subjects reported vection latency 2.1 seconds
sooner for the FR than the DR, but only 0.2 seconds sooner when erect than supine. Head
orientation played a more significant role in whether the subjects felt full 3600 vection (full-
tumbling) and the axis of this perceived tumbling. These experiments did confirm
DeSouza's [1995] observation of more subjects reporting of vertical full tumbling
sensation (VFT) when viewing a rotating furnished room from the erect as opposed to
supine posture, but the effect of posture was not significant for individual subjects.

Subjects frequently experienced visual reorientation illusions as the rooms rotated.
Subjects reoriented to all four surfaces, but the furnished and symmetric rooms had two
preferred orientations (FR's floor and SR's floor or ceiling in lower visual field) which for
9 (57%) subjects triggered reorientations 20-250 earlier, and for the remaining subjects
triggered reorientations at least twice as often. Reorientation behavior was interpreted in
terms of a heuristic model. The frequency of full-tumbling illusions in a gravitationally
vertical plane presumably mainly influenced by the strength of visual cues, and the
frequency of horizontal full-tumbling illusions by the strength of vestibular cues.

Thesis Supervisor: Charles M. Oman, Senior Lecturer, Director of Man Vehicle Lab.
Supported by Grant NAGW 3958 from the National Aeronautics and Space
Administration (MIT OSP 62760).
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1. Introduction

The objective of this thesis was to continue the development of a flexible virtual

environment system (VES) for orientation research, and to use it to study the interaction of

visual, vestibular, and haptic cues to roll orientation. The experimental approach was to

provide conflicting sensory cues to subjects, who were trained to report on their tilt, vection

and reorientation illusions. In order to rapidly design and perform this experiment on a

large number of subjects, versatile and flexible VES experiment control software was

developed. The software has already been adapted and reused in other VES experiments

[11 ], and is being considered by NASA for use in their space-based VES.

Humans determine their exocentric orientation by combining visual,

vestibular, haptic, and non-vestibular gravireceptic information -- all of which are

egocentrically based. Usually, all these sensory modalities work synergetically to provide a

consistent exocentric position. With the advance of technology, however, humans are being

thrust into environments which require them to make unaccustomed egocentric-to-

exocentric transformations.

One such environment is the microgravity of space, where gravitational

(e.g. vestibular or gravireceptic) cues are nearly absent. Previous research [Oman, 1987]

has shown that astronauts will compensate the lack of vestibular and other gravireceptic

input by becoming more dependent on visual and haptic input. This illustrates the

adaptability -- in spite of sensory conflict -- of human self-orientation determination.

In microgravity, astronauts are able to move around freely, and thus they

'view their environment from a variety of different orientations. Astronauts have reported a

variety of striking and labile Visual Reorientation Illusions (VRI) in which "floors",
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"walls", and "ceilings" exchanged identities [Oman 1986], [Oman, Lichtenberg, Money,

1986]. These illusions have been known to cause a number of human-factors problems --

including disorientation and space-sickness. As space agencies increase mission lengths,

they will need to expand their study of these illusions. The research herein serves as a

prelude to a 1998 Spacelab (Neurolab) experiment [Oman, Howard, Carpenter-Smith,

1995] proposed to better understand how well the human egocentric-to-exocentric

transformation system will adapt to microgravity.

One does not need to be in microgravity to experience orientation illusions.

On a plane accelerating for take-off, passengers are exposed to approximately 0.3g, and

this acceleration is sensed in the passengers via otolith and/or haptic stimulation. When

passengers looks straight along the fuselage of the plane, their senses may be "telling"

them that they are looking diagonally upward, even though the plane is still horizontal on

the ground. The passengers might look out the window and see that the plane is still flat on

the ground and believe instead that the ground itself is tilted upward. This is an example of

how the human central-nervous-system (HCNS) may misinterpret or be confused by

certain combinations of sensory stimuli.

Researchers have constructed devices whose sole purpose is to confuse the

part of the HCNS that determines orientation. Witkin and Asch [1948] demonstrated that

illusory self-tilt can be induced in erect subjects by tilting a luminous 1 m square 280 to the

left or right in their frontal-plane. Based on their observations of subjects' adjusting a rod to

the perceived vertical, they concluded that the tilted horizontals and verticals (i.e., the frame)

induced subjects to feel 60 of illusory self-tilt in the same direction of tilt as the frame. This

suggested that frames were used by the CNS to determine exocentric orientation.

Held [1975] and Howard [1988] showed that up to 200 of constant self tilt

can be induced in subjects by exposing them to large displays of dots rotating in their
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frontal-planes. These displays contained only randomly placed dots, therefore the induced

constant tilt must have been due to the movement of purely textural cues. Howard [1988]

explored this further by building a large 9 ft diameter sphere that rotated around the

subjects roll axis. The increase in fraction of the visual field taken up by dotted textures

helped to induce an average self-tilt of 250, with some subjects reporting up to 900 of self-

tilt.

In building tilted as much as 80 by an earthquake, residents still believed

that the (furnished) rooms inside were upright [Kitaharo and Uno 1967]. This suggested

that familiar objects that tend to have constant positions or orientations with respect to

gravity are used as reference points to determine self-orientation. Concisely stated, a fully

furnished room is visually polarized by the corresponding placement of objects that

provide up-down references.

One of the first ever devices built that demonstrated the combination of

frame, motion, and polarity was a fairground attraction built even before all these papers

were written. The "Haunted Swing" [Wood, 1895] was a large room that rotated about an

axle through the walls of the room. Thrill-seekers sat in a gondola, which swung back and

forth from the axle, and watched as the room rotated around them. Those in the gondola

felt as if the room was stationary while they were rotating. Yet this observation did not

conclusively show that the vestibular system was being overcome by visual cues, because,

even if the observer was moving, his vestibular inputs would not register major changes in

orientation. The centrifugal force acting on an observer would keep his otolith hair cells

aligned with the resultant force acting along the body axis, thus the inversion of the body

would not be registered by the vestibular organs. During the acceleration phase of the

"Haunted Swing" ride, there would be some conflicting signals from the vestibular

system, but it was still not strong enough to overcome the visual signals. A fuller
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explanation was given by Howard and Childerson [1994]. They postulated that the only

way to investigate extent to which visual stimuli could override a full-range of vestibular

input would be to rotate the visual stimuli on or near the axis of visual rotation.

Experiments by Kleint [ 1937] used a furnished room that rolled 3600 about

the subject's visual axis. Some subjects experienced a feeling of complete 3600 rotation,

and others felt only an angular oscillation about the visual axis. Since the visual stimuli was

rotating about the visual axis in those experiments, the otolith cues conflicted strongly with

the visual cues. The vestibular system was sensing gravity directed along the body axis, but

the visual system was perceiving a rotation about the subjects posterior-anterior axis. That

subjects felt full-tumbling demonstrated the power that the combination of the three visual

aspects (frame, movement and polarity) have over the non-visual gravireceptic senses.

Unfortunately, Kleint did not present quantitative or comparative data.

Howard and Childerson [1994] and Allison, Zacher and Howard [1995],

conducted experiments with real rotating rooms and classified subjects' sensations into

four categories: (1) constant tilt, (2) alternating tilt, (3) full (3600) tumbling and (4) supine

response. The new category, supine response, was the illusion of lying supine or in some

plane other than the vertical, and was usually accompanied by a sensation of vection or tilt

depending whether the subject felt completely supine. If subjects felt no illusions at all, they

were classified as type (1), constant 00 tilt. Howard and Childerson used three different

rotating rooms: furnished, dotted walled, and dotted sphere. They found that more subjects

experienced full tumbling in the furnished room than in the other rooms. The combination

of frame, polarity and motion was strong enough to overcome the conflicting otolith cues

in 60% of the subjects. Compare this to the 13% who felt full-tumbling in the dotted-

sphere, which lacked frame and polarity.
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DeSouza [1995] extended Howard and Childerson's [1994] study by using,

instead of a real room, a virtual furnished room generated by a virtual environment system

(VES). He also performed tests on subjects with different head-orientations. He found that

the previous categories were insufficient to classify his subjects' responses. Subjects were

retrospectively classified with a new set of categories based on descriptions of their

illusions. In the cases where subjects felt no vection or tilt, DeSouza further specified

whether the person felt gravitationally erect or supine. Still, there were several illusions that

did not fit into any of his or his predecessors' categories. One subject reported constant self

tilt and two reported alternating tilt about the earth vertical axis. DeSouza's surprising result

was that 75% (9) of his subjects felt full tumbling in an earth vertical plane when they were

erect, but only 33.3% (4) when supine. DeSouza believed that this was because the conflict

between mono-oriented objects (aligned horizontally with respect to gravity) and the

vestibular input (aligned vertically) prevented subjects from feeling full-tumbling in the

supine posture. DeSouza also reported that when subjects were following an object at the

periphery of the display they reported similar sensations as when they were gazing at the

center of the display.

This study takes DeSouza's research a few steps further. In order to contrast

within-subject to between-subject effects, a new experimental design was developed that

increased the number of trials and repetitions of conditions. Not only were more runs-per-

subject performed, but two more scenes were added to provide a richer set of independent

variables. In this experiment, a different set of categories was used by subjects to describe

their sensations. In addition, the phase and frequency of occurrence of visual reorientation

illusions were systematically examined. The experiment design also let us look for effects

of order and method of reporting. Also, DeSouza used a head-tracker in part of his

experiment, but found it detrimental for sustaining vection in subjects. Since the goal of
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this thesis was to study effect of head-orientation and scene content, not head-tracking, on

roll illusions, the head tracker was not used in this study. Finally, in this experiment, more

time was invested in training subjects.

The next chapter describes the apparatus, and the following two chapters

present the variables (dependent and independent) used in this experiment. In these two

chapters, the choice of variables is explained and a new categorization scheme which was

used by subjects to describe their dominant sensations is outlined. Results and discussion

are provided in Chapter 5, followed by conclusions and suggestions for future research in

Chapter 6. Analyses of Variance (ANOVAs) on the collected data are listed in Appendix:

ANOVAs, while Appendix : Experimental Software describes the software used to run the

experiments.
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2. Apparatus

The most important part of the apparatus was undoubtedly the virtual environment

generator. Presented first is the rationale for using a virtual as opposed to real environment,

and second, a description of the VES used in this experiment.

2.1 Why Virtual Environments?

Visual-vestibular interaction experiments have required environments realistic enough to

"fool" subjects. One common technique has been to build a mock-environment and move

it around the subject, but this equipment was generally expensive, required a large amount

of lab space, took a long time to operate, and demanded regular maintenance. Moreover,

large rotating rooms cannot be flown on a space shuttle or space station. This is a niche

ideally suited for a virtual-reality (VR) stimulus device.

A VES provides the researcher with a simulated reality in which to explore

interaction of visual and vestibular perception. It takes up only a single desktop (or less if

its a portable design), and is more adaptable to a variety of experiments. Flexible

experiment control software and rapid prototyping of virtual scenes reduce the time needed

to design complex perceptual experiments. Consider, for example, an experimental design

in which 3 different scenes were cycled for 24 runs, as was done in this research. A VES

can switch between the scenes instantaneously, whereas a physical rotating room, even a

miniature model of one, would take some time to alter. Experiments can be designed and

carried out sooner with the VES, and less time means less cost.
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While money has been a big issue in research, especially with government

down-sizing and reductions in research spending, space has also increasingly become an

issue. While it has often been said that "smaller is better", this is especially true on the

frontier of space exploration. Compactness has been a primary design requirement for

most space-related experiments. Previous visual-vestibular research in space, such as the

rotating dome experiment, has used relatively small mechanical contraptions. The rotating

dotted dome itself was unalterable, presenting only a spinning dotted surface [Young, et al,

1993]. Proposals for future experiments in space have included deeper studies on the

effects of various visual cues on motion perception, and require a wider range of neural-

stimulus. It has been expected that the Neurolab mission ('98) will launch with a

sophisticated VES that will provide the capability to explore the effects of more complex

visual stimuli.

While the engineering world continues to improve the finer aspects of VR,

such as haptic stimulation, it has already achieved (and is still achieving) remarkable

success with the visual aspects. Displays are rapidly improving, gaining in clarity,

resolution and field-of-view. Despite the multitude of advances in VR technology,

however, there has not been a significant amount of visual-vestibular research using virtual

environments. While previous experimenters have used large displays [Held, 1975] or

rooms [Kleint, 1937] [Howard and Childerson, 1994] [Allison, Zacher, and Howard,

1995] to study various rolling perceptions, DeSouza [1995] was one of the first to use

virtual rotating rooms to study orientation perception in a conflicting visual-gravitational

field.

One drawback of using computer-generated environment has been the

limited field-of-view of the available head-mounted displays (HMD's). Size of field-of-

view (FOV) has already been linked to the strength and type of roll-illusions reported by
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subjects [Zacher Allison and Howard, 1995]. While the HMD (VPL Eyephone I) used in

DeSouza's experiments had a horizontal FOV of 900 (600 overlap), which was above

average on the market at the time of its purchase, its vertical FOV was only 580. When

reporting self-tilt, subjects have traditionally been asked to align a rod with their perceived

angle of tilt. The HMD's rectangular-apertures, however, make questionable the use of

virtual "rods" for subjects to report on tilt. Subjects might be biased toward aligning rods

with the vertical boundary of the visual field. This made it necessary for subjects to

estimate angles verbally. Finally, limited resolutions have hindered the realism of virtual

environments. Since screen-resolution has been important in object-recognition, which has

been associated with roll-illusions [Howard and Childerson, 1994], this technological

constraint effects the ultimate ability of a virtual-environment system to induce roll-

illusions.

2.2 Proposed Virtual Environment System

The virtual environment system (VES) used in this experiment, shown in Figure 2-1 was

the same one used by DeSouza [1995], with the exception of completely rewritten

experiment control-software (see Appendix : Experimental Software on p. 93). The

hardware consisted of a 90 MHz Pentium-based microcomputer with various

enhancements and add-ons. A stereoscopic head-mounted-display (HMD), the VPL

Eyephone, was driven by dual SPEA i860 Fireboard graphics cards. The Fireboards were

used by Sense8TM's WorldToolKitTM (WTK) version 2.0 for DOS. WTK provided an

application programmer's interface (API) in C for developing virtual-reality applications.

Code was compiled using Metaware's High C\C++ v3.31. WTK for DOS required a 32

bit DOS-Extender, hence PharLAP's TNT DOS-Extender was used. The Fireboards

provided two channels of RBG output, which were converted -- using two Harmonics
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Research part CV121A converters -- to the NTSC format that the VPL Eyephone needed.

The right eye video was also routed to a TV allowing one to monitor the experiment.

DeSouza [1995] has provided a complete description of this system, including Eyephone

viewing parameters. The head-tracker was not used in this experiment because it had a

detrimental effect on the frequency and strength of illusions in DeSouza's subjects.

Figure 2-1: The Virtual Environment System

Sense8TM said that the speed and type of the CPU has directly effected the

rate of the rendering process. This was hard to verify since only one computer was

available to operate on. There was, however, a 5% increase in rendering speed when the

compiler was told to make code specifically for Pentiums, as opposed to making

executable that could also be run on a 486 as well. This 5% improvement was probably a

result of the compiler taking advantage of the scheduling optimizations that the Pentium

thrives on. These improvements, however, were limited because WTK's engine came as

binary libraries, not as C source code. Speed increases from compiler optimizations were

small, since most of the CPU time was taken up by WTK's rendering engine, and not the
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relatively smaller portion of code that was built around the engine to create operator-

interface.

The three scenes used in this experiment will be described in detail in the

next chapter, but they are briefly discussed here from a simulation perspective. The

furnished room, with around 1 10 polygons (less than half of these were textured), rendered

at 19.5 frames per second (FPS). The frame rate was not fixed by the WTK engine since it

was free-running. Frame rate, therefore, was very sensitive to the percentage of view that

was covered by textures. The rendering engine slowed to 15 FPS when the dotted room,

with 5 fully textured polygons that cover the entire scene, was simulated.

Since instantaneous frame rate could not be measured accurately,' its

average was used to determine how much to rotate the viewpoint in a given rendering

cycle. To calculate the angle-increment, the following equation was used,

Equation 2-1 A = FPS

where 6 was the desired speed of rotation and FPS was the expected average frame rate in

frames-per-second. Since constant velocity rolling was simulated for this experiment, the

viewpoint was rotated at equal increments for each rendering cycle To obtain the average

FPS for a scene, the room was spun around 4 times and the total number of rendering

cycles was divided by the total amount of time the simulation took. In the next chapter,

average frame-rates are presented with the description of the rooms themselves..

'WTK provided a function "Wtuniverse_framerate ( )" that averaged framerate over the last 30
frames, but it did not provide a direct way to determine the time taken up by the last frame, hence
instantaneous frame rate. Furthermore, the computer's system clock (accessed via DOS system calls)
jumped in -0.05 second increments. This explained why DeSouza, when trying to average the
furnished-room frame-rate (-20 FPS or -0.05 seconds per frame) over two cycles, observed some
cycles taking up half as much time has others.
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When a room with unbalanced textures was simulated, however, the frame

rate varied, and the scene slowed down and sped up cyclically. When simulating the virtual

furnished room used in this experiment (shown in Figure 3-1 ), for example, the system's

instantaneous frame-rate depended on the roll angle of the viewpoint. In general, WTK

slowed down as the number of visible textured surfaces increased. At two orientations in

the furnished room, 900 and -900 from the vertical, the room's textured ceiling and floor

took up the larger part of the head-mounted display's screens (recall that the HMD was

wider horizontally than vertically). At these orientations, the rendering process took longer,

and these slowdowns caused artifacts of perceived acceleration that were obstacles to

simulating constant rotation speed. While simulating the furnished room, for example, the

WTK engine varied from 18.5 to 20.5 FPS. For ao)0=300/sec (7/6 rad/sec) constant rolling

velocity, this translated to a ±1l.5 0/sec (i.e., ±5% of average rotation rate) variation in

perceived velocity. If one assumes the virtual scene velocity follows the formula,

Equation 2-2 O = o + P /00o0 sin(2wot)

which is based on the frame rate varying between 100-p% and 100+p% of the average with

velocity peaks occurring at 1800 intervals (hence twice per virtual revolution), then

differentiating this one gets the virtual scene acceleration,

Equation 2-3 wC = P/50o2 cos(2oot)

Thus, based on a sinusoidally varying frame rate, the maximum virtual

scene acceleration is pco2/50. In order to prevent the HCNS from detecting a disparity in

visual and vestibular cues, it would be necessary to keep p small enough so that the virtual

scene acceleration is less than the threshold of perceived angular acceleration about a visual

axis. When visual cues are absent, and rotations are applied about the earth vertical, the

HCNS has been able to detect angular accelerations as small as 0. 10/s 2 [Howard, 1982],
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presumably because of the high sensitivity of the human semicircular canals. For

0o0=30 0/sec (7T/6 rad/sec), therefore, one would need p < 1/it (i.e., less than 0.32%). In

other words, to prevent unwanted virtual acceleration cues, the frame rate variation would

have to be less than +0.32% of its average! This an order of magnitude smaller than the

frame rate variation when simulating the furnished room. Theoretically, however, this

threshold would be higher in the presence of a conflicting visual field, due to the ensuing

confusion in the HCNS. If a subject's vestibular threshold is raised when contradictory

visual cues are present, then she will feel vection in the furnished room, in spite of the

visual acceleration cues that are unconfirmed by the vestibular system. Even if a subject's

visually perceived acceleration is not confirmed by the subjects vestibular senses, she may

still feel vection since the virtual velocity changes are small compared to the simulated

constant velocity (<5%).
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3. Independent Variables

Scene content, subject posture, and direction of scene rotation were the three independent

variables chosen to characterize the way the HCNS resolves sensory conflict between the

vestibular and visual senses. In a virtual furnished room, for example, conflict was

generated in the subject when the room's visual down was not oriented with (1) her

vestibular system's imposed down, or (2) with her body's axes when she was supine.

3.1 Scenes

This experiment used three scenes of decreasing polarity and increasing symmetry. The

two characteristics were complementary, since adding polarity to a scene necessarily took

away some of its symmetry. Previous research has suggested that type and strength of

illusions reported by subjects were not sensitive subjects' direction of gaze [Allison, Zacher

and Howard 1994] [DeSouza 1995]. Therefore, subjects were asked not to focus on any

one point of the scene, but instead to take in the whole scene by gazing straight into it.

Scenes were as texture-balanced as possible to minimize virtual acceleration cues. The

mean and range of frame rate variation is given for each room.

3.1.1 Furnished Room

The presence of mono-oriented objects, objects that have a natural "upright" orientation,

have been attributed to an increase in number of subjects feeling full 3600 tumbling

[Howard and Childerson, 1994]. Mono-oriented objects must have a readily identifiable

"top" and "bottom", and the axis between the two must be aligned with gravity in

everyday experience. Since it had many aligned mono-oriented objects, the first scene
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(Figure 3-1) was a highly polarized furnished room (FR) that was identical to the one used

by DeSouza[ 1995]. The room had a table with a computer on it, a door on the right wall, a

bookcase with a leaning book on the far wall, paintings on the far and left walls, a carpeted

floor and a tiled ceiling. All the objects in the room provided down cues, including the

floor, since carpeting of that texture has rarely been found on a ceiling. The FR averaged

19.5 FPS and ranged between 18.5 and 20.5 FPS.

Figure 3-1: Furnished Room (FR).

3.1.2 Symmetric Room

Figure 3-2 shows a room with axi-symmetric windows and matching floor and ceiling

tiling, but without any mono-oriented objects in it. (The windows were not mono-oriented

because they could be rotated 900 and still be considered "upright".) This scene was the

symmetric room (SR) used in this experiment. The SR was not entirely un-polarized since

its symmetry gave the subject two orientations (00, 1800) that could be interpreted as
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upright. The room's residual polarity was hypothetically weaker than that of the FR, since

it had no visually-aligned mono-oriented objects. Once her viewpoint started rolling, the

subject would have had to follow the floor in order to keep track of it. The SR averaged 20

FPS and ranged between 19.5 and 20.5 FPS

Figure 3-2: Symmetric Room (SR).

3.1.3 Dotted Room

When all the walls (including the ceiling and floor) were textured with colored dots

(covering 10-15% of the surface) as shown in Figure 3-3, the room became a dotted room

(DR), which had four room orientations (00, 900, 1800, 2700) that could be interpreted as

upright. The DR had little polarity, but, in common with the previous two scenes, it had an

identical frame. The DR averaged 15 FPS and did not exhibit much frame rate variation.
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Figure 3-3: Dotted Room (DR).

The experimental research on non-framed dotted surfaces was quite

extensive. In addition to previously mentioned research, Young, et al [1993] studied the

effects of a rotating dotted dome on astronauts. He found that the dome induced stronger

vection in astronauts in space than it did for astronauts oriented both vertically and

horizontally with respect to gravity on earth. Howard and Childerson [1994] contrasted a

dotted with a furnished room as part of their study on the effect of visual polarity and

frame on body tilt. The furnished room used in our experiments was a virtual replica of the

real rotating room used by Howard and Childerson [1994], but it had slightly different

furnishings. Their dotted room was composed of smaller and variable-sized colored dots.

Their dots were 1.3, 2.6 and 3.5 cm in diameter and covered 18% of the white surface. The

current dotted room had dots 9 cm in diameter that covered 10-15% of the white surface.

The windowed (symmetric) room was unique for this experiment. One other difference in

the visual stimulus was that in this experiment, the rooms were spun at 300/sec, as

opposed to 150/sec that Howard and Childerson spun their rooms at.
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3.2 Head orientation with respect to gravity

The subject's posture, or gravitational orientation, was the second independent variable.

Subjects were in an erect or supine posture with respect to gravity by sitting or lying down

on a medical exam bed. These two positions provide different vestibular and haptic

stimulation.

3.2.1 Erect

In the erect, or upright, posture (see Figure 3-4), subjects were free to lean in any one

direction. There were several reasons for this. First, any effects the visual stimulus had on

the body's closed-loop orientation control system could be observed. Posture-adjustments

implied that the visual stimulus was effecting the body's perceived orientation. It was also

believed that physically restraining the body's tilt would compromise the illusion of being

immersed in the virtual environment. Even though sensory conflicts present in the

experiment needed be controlled, unconstrained posture adjustments had be allowed. Even

though those adjustments may have altered the vestibular system's orientation in gravity, it

still provided observations on a closed-loop control system that included the perception and

interpretation of visual cues. In any case, it would be impractical to control all the sensory

conflicts. The subject, for example, still felt haptic cues on the seat of the pants, and from

the weighty head-mounted display
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Figure 3-4: Subject in the Erect Posture.

3.2.2 Supine

In the supine posture, the subject laid flat on the bed with the viewing axis directed upward

(tolerance was a --3) along the gravitational vector (see Figure 3-5), and was unable to

make significant posture corrections. Also, the subjects felt haptic stimulation over a

greater part of backs. In erect posture, subjects felt the bulk of their weight at the seat of

their pants, whereas in the supine posture, their weight is spread out over their entire back.

The supine posture has this advantage: the subjects' neck muscles no longer supported the

full weight of the head-mounted display.
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Figure 3-5: Subject in the Supine Posture.

3.3 Direction

The last independent variable was direction of rotation. Changing it reduced the subject's

buildup of expectations due to adaptation or other effects in either direction. No direction

was repeated for more than 2 consecutive runs. This variable should have uncovered any

relationship between the dominant eye, the handedness, and the tendency to feel vection or

reorientations in one direction more than the other. Previous research has shown no bias of

vection for clockwise or anti-clockwise rotation [Howard and Childerson 1994] [Allison,

Zacher and Howard 1995].

3.4 Experiment Schedule

Subjects underwent training on the first day, and the actual experiments were performed on

the second and third days. (See Appendix 9 for detailed description of training regimen.)

On each experiment day, twenty-four combinations of independent variables were
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presented in an order shown in Table 3.1. The sequence was designed to balance out the

effects of presentation order of the scenes, hence no scene appeared twice in a row. The

posture variable, however could be similar twice (only once it appears three times) in a

row. In the table, the independent variables occurred as evenly as possible throughout the

experiment.

3.5 Subjects

The experimental protocol was approved by the MIT COUHES. Subjects were recruited

by advertisement, and all were naive as to the purpose of the experiment. Subjects were not

allowed to participate if they had serious medical conditions that could be aggravated by

becoming motion sick. Subjects were given an information packet and questionnaire (see

Appendix: Recruitment and Training) that they were to read and fill out. The questionnaire

was used to determine the suitability of the subject and to record biographical information

relevant to the study. The experiment design required 16 subjects to participate in the

experiment. Twenty-one people were recruited but 5 of them developed motion sickness

symptoms and chose to withdraw. Eight of the sixteen subjects were male, 3 had

previously had dizzy spells, 8 had experienced motion sickness before, 9 had dominant

right eyes (6 left, I even), 12 were right handed, 5 were "cross-wired" -- having dominant

eye and hand on different sides, all but one had normal peripheral vision and depth

perception. 11 subjects have used corrective lenses. The ages ranged from 18 to 54 years,

with a mean of 22.9 years and standard deviation 8.7 years. All of the subjects said they

had normal hearing and balance. Most people who required corrective lenses either wore

contacts or did not wear glasses during the experiment. One subject very near-sighted

subject wore glasses underneath the HMD.

Page -30-



Run # Scene Posture Direction

1 FR erect CCW

2 SR supine CW

3 DR erect CCW

4 SR erect CW

5 DR supine CCW

6 FR supine CCW

7 DR erect CW

8 FR supine CW
9 SR supine CCW

10 FR erect CCW

11 SR supine CW

12 DR supine CW

13 SR erect CCW

14 FR supine CW

15 DR erect CCW

16 FR erect CW

17 DR erect CCW

18 SR supine CW

19 DR supine CW

20 SR erect CCW

21 FR supine CW

22 SR erect CCW

23 FR erect CCW

24 DR supine CW

Table 3.1: Schedule of Stimulus
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4. Dependent Variables

This chapter discussed the selection of dependent variables that would best elucidate the

cognitive processes that a person would undergo during this experiment. First, some

principles related to subjective and objective measurements were laid out to guide the

process of the variable selection. The next few sections describe a set of variables that were

used in the experiment, and the last section will laid some groundwork for the

interpretation of subjects' responses.

4.1 Objective versus subjective measurements

It was desirable to design the least intrusive, yet most flexible reporting system for the

subjects. This involved a consideration of subjective and objective forms of measurements.

When performing experiments on animals, researchers have been limited to objective

forms of measurement by the inability to communicate effectively with their subjects.

When performing experiments on humans, however, researchers were able to make

subjective measurements (which allowed monitoring of subjects' perceptions). The

objective and subjective measurement processes were diagrammed in Figure 4-1.
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sensory motor
processes processes

physical objective measurement points physical
stimulus subjective measurement point responses

Figure 4-1: Objective and Subjective Measurement Block Diagram.

Both subjective and objective measurements have been suitable for different

perception-related research-goals. In Anderson and Dyre [1989], researchers used objective

measurements to study the frequency response of human sway to optical-flow stimuli.

Their results showed that optical flow excites natural sway according to the optical-flow

frequency. They also showed that excited sway tapers off at higher frequencies. This kind

of result could only be obtained from using explicit objective measurements of sway. One

could not ask the subject "what frequency and magnitude are you swaying at?" and expect

accurate results. Further, the usefulness of the objective measurements depended on an

unconscious transformation of optical-flow (sensory input) into muscle-activity (output)

causing the sway. The sway was a by-product of the body's internal postural control

system. The subjects in that experiment were not told to sway with the room, but were

unconsciously responding to a change in the perceived environment.

A subject's perceptions cannot be directly measured by experimenters, thus

they must be reported in some subjective and cognitive way by the subject herself. In many

experiments, for example, researchers have been interested in perceptual effects or events

that have no known manifestation in unconscious physical activity. For example, the onset
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of vection in virtual environment experiments has not persistently produced common

muscle activity in all humans. Also, the intensity, or saturation of vection cannot been

measured without the subject's cooperation. They inherently must be determined through

some sort subjective report. Researchers have depended on the subjects to consciously give

reliable reports on their vection, and, at the same time, hoped that the act of inspection and

reporting would not distract the subjects, thereby tainting the results.

One cannot always be sure that objective measurements were not in fact

subjective measurements. To a person who is not familiar with natural sway in humans,

the sway in Anderson and Dyre [1989] might have been interpreted as the subjects'

actively trying to maintain their upright orientation in the face of visually-induced

acceleration sensation. Orientation-control was something we have learned to do

unconsciously. Walking on a ramp, most people have automatically slanted themselves so

that they were walking upright. Were the subjects' natural sway really subconscious or

were subjects completely aware of the posture corrections they were performing? Both

objective and subjective measurement types involved a mapping of senses to action. They

differed in that subjective measurements were more sensitive to the subjects' cognitive

processes. On the other hand, a subject's reporting actions could become almost like

reflexes if she was trained long enough.

In any case, the experiments occurred under the assumption that the

subjects were operating in the region where their act of reporting had a minimal effect on

their perceived state. Ideally, the subjects reported their senses accurately and promptly.

Thus, it was desirable to have all subjects reporting with as little cognitive activity and as

much reflex as possible without reducing the validity of their report. It became important,

therefore, for all subjects to undergo symmetric and sufficient training. The regimen that

was used can be found in Appendix 9. It was also important to design the reporting
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methods so that they had the smallest impact on the subject's accuracy. The next section

describes such a system in detail.

4.2 Reporting of event data

The experiment was divided into runs in which a virtual scene appeared to make 3 full

rotations in 36 seconds. Data were collected during and after a run. The onset of vection,

cessation of vection, and the feeling of being reoriented were events that can occur more

than once in a given run. They were described by the time and angle (of the virtual image)

at which they occur, and the subject pressed a joystick button that caused the data to be

recorded.

After the run, the subjects described the overall sensations they had during

it. Previous research on conflicting visual-vestibular stimuli asked subjects to choose

among pre-defined categories to report what they felt [Howard and Childerson, 1994],

[Allison, Zacher, and Howard 1995] [DeSouza 1995]. This experiment used an improved

categorical approach described below.

Since subjects needed a simple but sure way to specify when an event

occurred, protected against inaccuracies and human error, they required a peripheral device

connected to the computer running the virtual environment. The experimental software

could then accurately record the time and angle at which the event occurred.

4.2.1 Vection and latency

Subjects pressed an index-finger trigger button while they are feeling vection. The software

recorded the pertinent data at the moments the button was pressed down and then released.

The descriptive events for vection were the onset ("drop-in") and cessation("drop-out") of

vection. This ensured that the window of vection is documented. The first drop-in was

called the latency of the vection. It tells how soon after the visual stimuli (virtual rotating
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scene) starts, that it had overcome the cues from the other senses. Latency of linear vection

had been attributed to the absence of an acceleration cue to the body's gravireceptors at the

onset of scene motion [Dichgans and Brandt, 1978; Henn, et al 1980]. A drop-out was

hypothesized to indicate that the visual input is coming into strong sensory conflict with

other senses or internal state representations. This could happen either because the visual

cues were no long as compelling as they were previously, or because the CNS had

increased its weighting of vestibular or haptic senses.

4.2.2 Reorientations

The illusion of reorientation was also reported using a single-click of the top joystick

button. Reorientations were expected to occur when the scene was oriented such that the

subject begun to reinterpret the surfaces of the room (e.g., wall as a ceiling). In order for

this to have happened, the new interpretation of the surfaces must have been more

compelling than the previous one. Even though subject's were asked to "look at the whole

scene," most people are accustomed to watching where they walk (i.e., looking down), or

looking straight ahead. The most common reorientation illusion, therefore, was expected to

be due to the subject believing that the surface closest to their feet was a floor. Thus it may

be useful to speak of a reorientation illusion as a subject's "reorienting to a new floor".

Even though it was not known by the experimenter that the new floor was causing the

reorientation, one can still assume, and pilot studies supported this, that the surface lowest

(or approaching the lowest) in the visual field was the becoming a new floor. To analyze all

reorientation events consistently among subjects, the reorientation angles can then be

referenced from the floor.

It was believed that reorientations would be randomly distributed about a

certain mean angle from a reference surface, and that the subjects would reorient sooner for
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orientations of the scene that are easily interpreted as upright (i.e., highly polarized

orientations of the scene). A scene orientation was more polarized than others when mono-

oriented objects were aligned with the subject's head to foot axis. The most polarized

orientation for the FR, for example, occurred when the reference surface was the floor.

Preliminary research showed that nearly all reorientations occurred between

-600 and 300 from the reference surface. All reorientations between -60' and 30' from a

surface, therefore, were initially assigned to that surface. In Figure 4-2, reorientations for

surface n are denoted R,. In a few cases, a subject might have pressed the button so lightly

that it switched back and forth between the on and off state, recording several reorientations

very quickly. A filter removed the surplus button presses by looking at how far apart they

were: if two reorientation occurred within 300 of each other, and they were both on the

same side of a cutoff angle at 00, then the later one was ignored (Figure 4-2b and c). If the

two reorientations were on opposite sides of the cutoff angle, then the first was counted for

current surface, n, and the second for the next surface, n+1 (Figure 4-2d). This was for the

case in which a subject reorients before the surface reaches the horizontal (00), and again,

for the next surface, just after the previous surface passes the horizontal (but is less than

30' from it). For the FR, a subject might have reoriented to the wall exactly when just

before 00 but then again for the floor soon after. The software correctly interpreted the

reorientations in this case. If the subject, however, had pushed the button just before 0O

and, inadvertently, again just after 0', the algorithm would incorrectly assign the accidental

reorientation to the next surface. Fortunately the subjects never did this. After the few runs

in which a subject reported two reorientations close to 00, the subject was asked which

surfaces she was reorienting too. The implementation of the algorithm can be found in the

functions findwall ( ) and perf ormstats2_l () in statmod.c on page 152.
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Figure 4-2: Determining Reorientation Surface from

Reorientation Angle

4.2.3 Single and mixed presentation block design

It was believed to be confusing for the subject to report on both vection (V) and

reorientations (R) in a single run. Therefore, the experiment included both single (V or R)

and mixed (VRV or RVR) protocols . This design should have found (or ruled out) an

effect of V-runs on R-responses on the same day. Then further research could focus

efficiently on one or the other in a single experimental day. In each design, subjects

underwent one day of training, immediately followed by two consecutive days of

experiments with 24 (plus 3 warm-up) runs on each day. For both days, the order of scene,

posture and direction followed the same factorial design described previously, but single
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and mixed subjects reported on different events at different times. In the pure design,

subjects concentrate on vection (V) events on one day and reorientation (R) events on the

other day. Subjects who focused on vection events on the first and reorientations on the

second day were called VR subjects (vection-reorientation). Subjects who reported on

reorientation events on the first and vection on the second day, were called RV subjects.

Mixed subjects alternated RVR (or VRV) on a single day. To balance the

combinations of the independent variables across the two days, the 24 runs were split into a

9-6-9 set. Subjects therefore reported on vection events for the first 9 runs, reorientation

events for the next 6 runs and vection events (again) for the last 9 runs. The following day,

they reported on reorientation first, then vection and then reorientation again. Hence this

subject was called a VRVRVR or (VR)' subject, and her complement would be the

RVRVRV or (RV)3 subject. Thus there were two presentation orders for each type, single

and mixed. Care was taken to ensure that the subject pool (including gender) was split

equally into single and mixed designs.

4.3 Categorizing of sensations

Previous experiments have relied on the subjects' categorization of their dominant

sensations [Howard and Childerson 1994], [Allison, Zacher and Howard 1995], [DeSouza

1995]. This constrained the subjects' responses to a limited pre-determined set. This

situation was analogous to the projection of a 3-dimensional environment on 2-

dimensional plane. While it's simpler to create a lower dimensional surface (i.e.

photographs as opposed to holographs), the ability to describe accurately what was actually

happening was lost. In DeSouza's experiments, subjects often described their sensations in

ways that did not fit his pre-set categories. To accommodate this, DeSouza was forced to

reclassify his subjects according to a new set of expanded categories. In this thesis, a new
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framework was suggested for describing the subject's experience. The main purpose of the

new system was to allow maximum flexibility in the subject's description of their senses

without making the recording process and eventual statistical analyses unmanageable.

4.3.1 An improved system

Ideally, it was desired to have a reporting system which could classify any possible

sensation, but it also had to be manageable and its data analyzable. A close inspection of the

previously used categories showed that subjects are describing four aspects of their

perceived orientation. Table 4.1 shows a new set of categories that are described below.

Angular vection, the sensation of moving at a angular velocity was the first

mode of motion. The second mode was tilt, and consisted of constant and alternating tilt.

Tilt and vection had to be reported independently, because in preliminary runs, subjects

could (paradoxically) experience limited tilt and vection simultaneously. Choosing vection

and tilt categories separately, subjects could report a richer variety of sensations.

The first two categories, (left-right) vection and tilt, occurred in the subjects

perceived frontal-plane. In several cases subjects reported that their perceived frontal-plane

was at different orientations with respect to gravity. Thus, the third and fourth modes of

motion describes the inclination of the frontal-plane itself with respect to gravity. Subjects

could report whether their frontal-plane seemed horizontal or vertical with respect to

gravity, and they could modify this a little by specifying whether they felt slightly tilted

forward to or backward from the rolling scene. Thus mode 4 was a modifier of mode 3.

In this new design, subjects had more flexibility in characterizing what they

felt. Subjects can combine categories from the four groups to come up with over 36

possible descriptions. Typically, a subject would choose one category from each of the 4

groups, but they did not actually see Table 4.1; instead, they were asked 4 questions after
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every run: "Did you feel vection?", "Did you feel alternating or constant tilt?", "Did you

feel vertical or horizontal with respect to gravity?", and "Did you feel tilt toward or away

from the scene?". In cases where subjects felt tilt, they were asked for its maximum

magnitude. In order to ensure the categories and modifiers were understood by the

subjects, a mannequin was used to demonstrate them.

To clarify the categorization system, some examples of subjects' sensations

and how would they report them are presented. A subject who felt like she was rolling

3600 around a horizontal axis (full-tumbling) would specify that she felt vection with no

tilt, and that her frontal-plane was vertical. A subject who felt that she was having constant

tilt, and that she was in a supine position with respect to gravity would specify that she felt

no vection, constant tilt, and her frontal-plane was horizontal. A subject who felt that she

was laying down watching the scene above her spin, and that her head was closer to the

scene then her feet might report that she felt no vection, no tilt, and her frontal-plane was

nearly horizontal with a slight forward tilt. A subject who felt like they were floating and

looking down at the scene may have reported that she her frontal-plane was horizontal and

that she was looking down. A subject feeling frontal-plane tilt 450 had several options. If

the subject felt like she was nose-up 450 tilted back from the vertical, she might also report

it as feeling horizontal with 450 tilt up. In this ambiguous case, the subject becomes the tie-

breaker, deciding whether to specify tilt from the vertical or horizontal.
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The improved system was easy to learn and use, but it was also powerful in its descriptive

ability. There were now 36 possible categories of perceived motion, but not all categories

needed to be explained individually. Subjects only had to learn the four groups describing

perceived motion, each with only 2 or 3 possible categories. The simplicity was critical for

this experiment, since the subjects could only recall a limited number of categories while

trying to focus on their own feelings. It was also advantageous to separate subjects'

sensations into various characteristics of their perception. The various groupings could then

be analyzed independently of one another: how many subjects experienced vection for a

given set of conditions, and how many felt horizontal in another set of conditions?

4.3.2 Subjects' Responses

Subjects were expected to interpret their visual, vestibular and idiotropic cues using an

internal state representation, which had been implicated as part of a large heuristic

mathematical model of the dynamics of space sickness [Oman, 1982]. (The idioptropic

effect was hypothesized by Mittelstaedt [12]: when asked to indicate the vertical, subjects

have a tendency to bias their subjective down so that it is more aligned with their

longitudinal axis.) Subjects, however, depended not only on sensory stimulation, but also

on memories of previous experiences. Encountering strange conflicting stimuli, subjects
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tried to interpret them according to what they had experienced before, or they might even

have discovered new ways to interpret their perceptions (and resolve conflict). In the next

chapter data was presented in terms of this theory, which was depicted in Figure 4-3.

Pact

Figure 4-3: Internal State Representation Model of Sensory Conflict with Past

Experience

If adaptation trends were exhibited in the results, this would support an

internal-state-representation theory that included past experience. If the subjects started to

feel one sensation more often than before, it could mean that their CNS' had learned a

"new path" to resolve their sensory conflict. Some subjects, for example, may have

discovered a new way of interpreting a scene that minimized the sensory conflict present.

The SR and DR could potentially be interpreted in different ways depending on the

subject's perceived orientation. This theory would suggest that a subject's CNS would

continually try to minimize sensory conflict by revising its internal-state-representation of

its body.

At a first glance, one may have believed that viewing the DR when supine

would have elicited different results than viewing it when erect, because vestibular-visual
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interaction was different for each posture. Using the model described recently, however, an

idiotropic-visual interaction, which was present in a supine subject viewing the DR, could

have the same effect as a vestibular-visual interaction in an erect subject. Thus, an idiotropic

down might have mimicked gravitational down under some conditions, and this could

have lessened the sensitivity of the independent variables to posture. If there was little

difference between the erect and supine results for a given subject, it would have meant

either that the subject was insensitive to gravitational cues and was relying more on visual

cues (probably feeling stronger vection or tilt sensations), or that the subject was relying on

her idiotropic down to determine her orientation (subject was probably feeling weak

illusions).

4.3.3 Predicted effects of scene content on orientation.

The dimensions of each room were identical, therefore any difference in a subject's

responses for the scenes must be due to scene content. Based on Howard and Childerson's

[1994] results, this research assumed that the strength of vection will depend strong visual

down cues (i.e., polarity) in the scene. In that experiment, more subjects felt complete 3600

tumbling in a furnished room than in a similarly framed dotted room.

It was further believed that the room orientation at which certain illusions

occur will depend on the symmetry of the room. In some strongly symmetric

compartments of the space shuttle, astronauts experienced reorientation-illusions at 1800

intervals. When in these symmetric environments, they sometimes reached the wrong way

for an object usually found in one direction. Many astronauts have tended to carry their

"down" with them, using their head-to-feet vector for orienting themselves to their tasks.

When in an unfamiliar or non-polarized area of the space-shuttle, astronauts would feel that

the surface nearest to their feet is a floor [Oman, 1987]
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Subjects were expected to exhibit similar behavior with virtual rotating

rooms. Even though the subjects were actually stationary, they would feel reoriented to

various walls, ceilings and floors in the virtual environment as it moved around them.

Subjects in the erect posture might believe the surface closest to their feet is the floor, the

one closest to their head a ceiling, or those closest to their sides walls. A subject in the

supine posture might also feel reorientations because her idiotropic vector is still imposing

a head-to-foot down cue.

A reorientation in a rolling virtual room, therefore, is akin to a sudden

reinterpretation of its surfaces (i.e., wall, ceiling or floor). A reinterpretation might draw on

several senses (e.g., visual and gravireceptic), and thus be influenced by both scene content

and head orientation. When a virtual room rotated, its surfaces spent only a finite amount

of time "under" the subject's feet. A surface might be reinterpreted as a wall shortly after it

moved off to the side. At that point, the surface moving to the lower part of the visual

display might be reinterpreted as a floor. Before the event, the subject felt as if she was

rolling off the floor to one side, but afterwards, as if she was rolling toward the "new"

floor. In this example, the subject may also have felt an alternating-tilt to accompany the

reorientations.

If and when a subject reorients in a scene might be related to the polarity in

it. The visual polarity of a scene was a property of the scene itself. The polarities of

individual objects combine with the room symmetry to produce a scene polarity which

changes as a function of viewing angle. Even as the subject watches the FR floor roll

around herself, she might still believe it is the real floor, but she might still feel reoriented

when she detects a wall moving underneath her feet. This is because the surface below us,

or lowest in the gravitational field, is usually a floor, and the CNS might interpret the wall

as such. Thus, there was competition occurring the CNS between the recognition that the
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surface is a wall, and the belief that the surface beneath us is usually a floor. As the subject

sees the FR wall moving around their feet (the surface moving away is the floor), then she

might either still believe it is the wall or she might, at some point, reinterpret it as the floor

(thus feeling reoriented). The angle of the surface (from the horizontal) which the subject is

reinterpreting as the floor is called the reorientation angle. The subject's reorientation to the

FR floor might occur sooner than those for the walls since it is easier to believe (based on

visual polarity cues) that the FR floor is actually the floor. Similarly, the subject might

reorient sooner for the FR ceiling than for its walls, since it is easier for the subject to

believe that the FR wall -- which was previously reinterpreted to be a floor -- is a wall

again.

For the SR, both ceiling and floor (which are identical), are more easily

interpreted as floors than are the SR's walls, especially since the walls have windows --

which are very rarely found on floors. Again, there is there is also the possibility that,

because of the windows, the subject might not even reorient for the walls of the SR. If

subjects do reorient for the SR's walls, they would probably wait until the walls are exactly

"beneath their feet".

In the DR, all surfaces are almost identical. Subjects should not exhibit any

difference in reorientation angle for the surfaces, since each surface is equally believable

(based on visual cues) as a floor, wall or ceiling. The DR -- a room without any polarity --

should serve as a control for the reorientation data. The contrast of reorientation results

between the FR, SR and DR will present, if any, a significant effect of visual polarity on

the occurrence of and/or angles of reorientations.
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4.3.4 Predicted effects of posture on orientation.

The posture variable provided two different types of sensory conflict. The three vectors that

represent the three determinants of orientation -- gravity, vision and idiotropic perception --

and their direction for each posture were depicted in Figure 4-4. These vectors represented

three "votes" that the CNS uses to determine the orientation of the subject. They could

conflict, or they could reinforce one another by being "coherent" in a sensory manner. The

CNS -- the vote-counter -- might even have weighed one vote more heavily than another if

it felt the other senses were providing unusual, strange, or incomplete data. This theory was

consistent with astronauts' increased reliance on visual cues in the absence of strong

gravireceptic cues. A visual-down cue was generally stronger in the presence of greater

scene polarity, such as in the FR. In this experiment the idiotropic-down cue was relatively

constant. Subjects could not see the rest of their body while wearing the HMD, but the

screens rectangular shape can provide a relatively weaker replacement for the head-to-feet

vector. The idiotropic vote might have been weaker because the CNS was not accustomed

to the absence of its body in the visual field.

As shown in the diagram, the visual vector, which represented the direction

of the polarity generated by the virtual room, rotated with the room. The visual vector

might or might not revolve 3600, depending on the scene, subject and her past experience.

For the SR, for example, the visual vector might rotate 1800 and then return to the 0O

orientation since the room was visually symmetric about 1800. For the DR, the visual

vector might rotate only up to 900 because of its four-way symmetry. The subject may,

however, keep track of the original floor; in that case, the visual vector would revolve

completely around 3600. The FR has a visual vector oriented strongly toward the floor, but

when this angle gets beyond 900, in some subjects, the visual vector might flip over and
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point toward the ceiling, albeit more weakly. This is because, when viewing the FR when it

is inverted, subjects may see the FR ceiling as a floor.

The visual vector rolls around a horizontal axis when the subject was erect

and a vertical axis when the subject was supine. The idiotropic vector was along the body

axis, so it was vertical when the subject was erect and horizontal when the subject was

supine. Gravity remains fixed in the vertical direction. In the erect posture, for example, the

subject's vestibular (gravitational) input was aligned with the visual input only at certain

intervals; in the FR, at 0O; in the SR at 0' and 180*; and in the DR it 00, 90', 1800 and

270".

Supine

x v I

I tr Ca 4
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9 / v iV1
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Figure 4-4: Visual, Gravitational, Idiotropic Vectors

A scene's polarity was measured by the number and potency of the mono-

oriented objects in it. An object's potency varied with its size and ambiguity. The strength
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of vestibular-visual alignments (coherence) in a room should be weaker if it has less

polarity. By definition, a room that has more ambiguous orientations (such as the DR) has

weaker polarity. Using the "voting" analogy presented previously, one could have said "the

visual vote from a less polarized room was hypothesized to be weighted less than a visual-

vote from a highly polarized room." The FR's single alignment, therefore, was more

compelling than any alignment in the SR or DR. Nonetheless, viewing a rotating scene

from an erect posture usually caused sensory conflict mixed with moments of coherence.

A supine subject--oriented perpendicular to the gravitational field-- had a

different kind of visual-vestibular interaction. There were no periods of acute sensory

coherence (when all three sensory votes coincided), and the sensory conflict was usually

not as strong since gravity did not have any components in the plane of the visual polarity

and idiotropic vector. With the symmetric scenes (DR and SR), where the visual polarity

was not as strong, it was even hard to convince the subject that she was not horizontal with

respect to gravity. The gravitational vector perceived by the erect-oriented vestibular

system, however, actively conflicted with the rotating scenes visual polarity, except when

the two were precisely aligned. To one in the supine posture, however, the physical gravity

vector was along the line of sight. Since the rotation axis of the virtual scene was then

parallel to gravity, the vestibular input did not actively impose its own polarity onto the

visual scene.

The above discussion assumed that the subject was not imposing a strong

idiotropic "down", for her doing that would have explained similar behavior in both the

erect and supine postures. To an erect subject, gravity imposed a "down" that corresponds

with the idiotropic vector. When supine, however, the subjects may have imposed their

idiotropic down on their visual input. The rotation axis of the virtual scene was always

perpendicular to the idiotropic vector, therefore the idiotropic vector corroborates the visual
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polarity at least once for the FR (twice for the SR and four times for the DR). These

moments of coherence might have caused a supine subject to feel instantaneously vertical

instead of supine, and could explain why subjects might feel reorientations equally as often

in both the erect and supine postures.

The conflicts and coherence may also have varied from room to room. In

the SR, for example, a subject may feel she was looking up at a skylight, while lying down

on a rotating platform. If the subject was supine while experiencing this, she would have

had near continuous sensory coherence, since all her senses were confirming this. The

illusion of lying down on a rotating platform, a horizontal-plane rotation, was also possible

with the DR, which had no strong mono-oriented objects. Since this scenario has not

commonly experienced by the CNS, it was more readily open to reinterpretation. Yet, with

the FR, the subject was receiving strong visual "down" cues, making it difficult to feel a

horizontal-plane rotation. Thus, various combinations of scene and posture provided a

potential exploration of the way our CNS resolves sensory conflict.
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5. Results

In this chapter, vection, tilt, and reorientation were in reported in separate sections. In the

last section learning effects among subjects were examined. Most of the analyses were

based on the general linear model (GLM) as realized in Systat 5.21 software on a 601-

based Power Macintosh. Data was presented as fitted least-square means (LSM) unless

otherwise noted, and "p" levels were Bonferroni-adjusted t-tested means-comparisons

marked as "p*" to distinguish them from uncorrected values, "p"'s. All F-ratios were

calculated from analyses of variance (ANOVAs) tabulated in Appendix B. When the

Wilcoxon Signed Ranks Test (WSRT) was used, all subjects were included. This may not

be apparent from the description of the results, since the WSRT by definition ignores

subjects which do not exhibit any effect.

5.1 Vection

This section describes results related to the sensation of vection. The expanded category

system allowed subjects to report two types of full-tumbling: full-tumbling horizontally

and vertically with respect to gravity. Thus the full-tumbling analysis was broken down

into to parts. Scene did not have the expected significant effect on full-tumbling. The

interactions between scene and posture were more complicated than previously thought.

On the other hand, scene -- but not posture -- significantly affected the reported latency of

vection. Finally, scene content contributed significantly to increased saturation, while

posture did not.
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5.1.1 Full-Tumbling

When an erect subject experienced the illusion of "vertical full tumbling" (VFT), her visual

input was dominating her vestibular cues. She believed she was rolling through 3600 about

a horizontal axis (i.e., gravitationally vertical plane) despite the vestibular report that she

was not rotating at all. Unfortunately, the new categorization system provided subjects no

direct way to report the sensation of full-tumbling. Instead, when subjects reported vection

with neither constant-tilt nor alternating-tilt, it was inferred that they were feeling a

continuous rolling without any angular limits, i.e., full-tumbling. In presenting the full-

tumbling results, a distinction was made between horizontal-frontal-plane full-tumbling

(HFT) -- the sensation of full 3600 tumbling in a gravitationally horizontal plane -- and

VFT. This was because, while VFT illusions indicated a dominance of the visual input

(i.e., visual polarity over otolith stimulus), HFT illusions represented the HCNS weighting

of the vestibular over visual input.

In DeSouza's experiment, 9/12 (75%) of the subjects reported feeling VFT

in the furnished room when they were erect, but only 6/16 (33%) of them felt it when

supine.[1995] In the present experiment, but not in DeSouza's, conditions were repeated.

One way to compare the present full-tumbling results with DeSouza's is to look at the

number of subjects in this experiment who felt VFT at least once for the FR. In the present

experiment, 9/16 (56%) felt VFT at least once in the erect position, whereas (38%) did

while supine. From this viewpoint, DeSouza's results were not that different from that of

the current experiment. Based DeSouza's single trial experiment, however, one might

hypothesize that over repeated trials, a subject will feel VFT while viewing the FR more

often when erect than supine. The results of the current experiment, however, which

compared each subject's response in the two different orientations, were not consistent with
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this interpretation. As will be shown, while a given subject viewed the FR they did not feel

VFT more often when erect than supine.

In the present experiment, subjects felt full-tumbling more often when

supine than when erect. Figure 5-1 and Figure 5-2 summarize the subjects' frequency of

VFT illusions. Three subjects (19%) indicated that they did not feel full-tumbling in any of

their 48 runs, hence they were omitted from these charts. The charts report the number of

subjects indicating full-tumbling a given number of times. Taller columns on the left mean

fewer reports of full-tumbling for a given set of conditions. Taller columns on the right

indicate more frequent reports of full-tumbling. Since there were 8 runs for each of the six

scene and posture combinations, the subject could report up to 8 instances of full-tumbling

for a given combination.
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Number of Subjects Feeling Vertical Full
Tumbling N Times (Erect)
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* FR (e)
In SR (e)
II DR (e)
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N

Figure 5-1: Number of Subjects Feeling VFT "N" Times (Erect).

Number of Subjects Feeling Vertical
Tumbling N Times (Supine)
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Full

,U FR (s)
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Figure 5-2: Number of Subjects Feeling VFT "N" Times (Supine).
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When viewing the DR, subjects had a tendency to feel VFT more often

when erect than supine. In the DR, 9 subjects felt VFT more often (only 2 less often) when

erect (the others reported VFT equally often in both postures). By the Wilcoxon Signed

Ranked Test, this was significant (WSRT z = -2.28; p = 0.0221). When subjects were

viewing the FR and SR, their posture did not have a significant effect on their frequencies

of VFT. For the FR, only 5 felt VFT more often (3 less often) when erect (WSRT z = -

0.422; p = 0.673). For the SR, only 5 felt VFT more often (4 less ofteh) when erect

(WSRT z = 0.357; p = 0.729). Note, the three subjects who did not feel full-tumbling in

any run are conveniently ignored by the WSRT. The FR result differed from DeSouza's.

His subjects felt VFT in the FR more often when erect than supine.

The effect of posture much more dramatic on subjects viewing the DR, a

Number of Subjects Feeling Horizontal Full
Tumbling N Times (Erect)

1Z -

10

a8

6-
(I)

*k

A FR (e)
'I SR (e)
in DR (e)

0 1 2 3 4 5 6 7 8

N

Figure 5-3: Number of Subjects Feeling HFT "N" Times (Erect).
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stimuli that was devoid of polarity cues. This would be consistent with the hypothesis that

subjects use mono-oriented objects as reference points to determine their own orientation.

For the supine posture, 6 subjects felt VFT more often (1 less often) in the FR than DR

(WSRT z = -1.98; p = 0.048). The DR did not have any visual elements that provided an

"upright" cue to the subject, thus the subject became more dependent on her vestibular

cues in determining her orientation. The FR, however, provided polarity directed

perpendicular to the subjects' visual axis induced, hence it induced (more often than did the

DR) supine subjects to feel as though their frontal-planes were vertical with respect to

gravity. The FR polarity, therefore, would lessen the effect of posture on the frequency of

VFT illusions. A similar argument can be made for the SR, which did not have mono-

oriented objects, but did have windows, floors, and ceilings, which provided a relatively

weaker, but still present, vertical cue. Thus the residual polarity in the SR masked the effect

of posture on the subjects' frequency of reporting VFP illusions in that scene.

Subjects exhibited a different trend for HFT illusions. As depicted in Figure

5-3 and Figure 5-4, they reported HFT illusions less often in the erect than supine posture.

This trend was highly significant for each room. For the FR, 10 subjects felt HFT more

often, none less often (the rest as often), in the supine than erect posture (WSRT z = 2.82;

p = 0.005); for the SR, 9 more, 1 less (WSRT z = 2.40; p = 0.016); for the DR, 11 more, 1

less (WSRT z = 2.99; p = 0.0028). This trend was expected since, for subjects in the erect

posture, the combination of "vertical" otolith stimulus and visual polarity (in the case of the

FR and SR) made it difficult for the subjects to feel horizontal, much less HFT. If the

subject were to feel HFT when erect, she would have to discount her vestibular sense, but

when supine, she would not. When the subject was supine, it was much easier for her to

believe that she was feeling HFT since it would nearly resolve all sensory conflict. If the

subject was feeling HFT when viewing the FR in the supine posture, it meant she was
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discounting the visual polarity that suggested here frontal-plane was gravitationally vertical.

In effect, she would believe that the FR was not a real room, but the image of one. The

subject might also be discounting the reality of the SR, but another possibility was that she

reinterpreted the surfaces to be something else. A few subjects mentioned that, when

viewing the SR in the supine posture, it seemed like they were spinning with a platform on

the floor of a room with a skylight. In this case, conflict was completely resolved. These

subjects reported similar illusions while viewing the DR although less often than for the

SR. Hence, HFT more often VFT illusions represented the resolving of conflict.

In their experiments, Howard and Childerson [1994] found an increase in

subjects reporting VFT in passing from their dotted-room to their furnished room.

Surprisingly, however, the scene content had, in this experiment, no significant effect on

the frequency of reports of VFT. The number of subjects in the erect posture reporting

Number of Subjects Feeling Horizontal Full
Tumbling N Times (Supine)

A FR (s)
In SR (s)
A DR (s)

5 6 7 8

N

Figure 5-4: Number of Subjects Feeling HFT "N" Times (Supine).
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VFT did not significantly increase or decrease from the FR to DR: 4 subjects felt VFT

more often (3 less often) in the FR (WSRT z=-0.34; p = 0.732). In the supine posture,

however, subjects reporting VFT did significantly increase from the DR to FR: 6 subjects

felt VFT illusions more often (only 1 less often) in the FR than DR (WSRT z = -1.98;

p=0.048). Again, the polarity of the FR overcame the vestibular conflict in many subjects.

Between the FR and SR, however there was not a significant difference: 3 felt VFT more

often (1 less often) in the FR (WSRT z = -1.3; p = 0.194). Thus, this experiment neither

confirms nor disagrees with Howard and Childerson's results.

There were several possible explanations for the small effect of scene on the

frequency of full-tumbling illusions. The limited FOV, for example, might have reduced

the impact of the visual stimuli. Previous multiple-scene studies of full-tumbling used real

rotating rooms with unconstrained field-of-view (FOV) [Kleint 1937], [Howard and

Childerson 1994]. In other research, the percentage of subjects reporting full-tumbling

increased 25% going from 900 FOV to an unconstrained FOV. Thus, the 900 FOV used in

the present experiment could have reduced the effectiveness of the visual stimuli, causing

the subjects to feel constant or alternating tilt rather than full-tumbling.

One might be tempted to somehow attribute this result to the multiple trials

used in the present experiment, since single trials had been used for each scene in previous

research. Howard and Childerson [1994] used only one repetition per subject for each

scene. To test whether subjects were more sensitive to scene content in earlier runs, the

subjects' first and last runs for the FR and DR in the erect posture were compared.

According to Table 3.1, these were run #1 and #3 on the first day and, #17 and #23 on the

second day. The contingency table for these runs (shown in Table 5.2), however, did not

indicate any significant learning effects for subjects. Thus the result cannot be explained by

the increase in number of trials.

Page -58-



Table 5.2: Full-Tumbling in the First and Last Runs of the FR and DR with

Subject in the Erect Posture (Xo3) = 0.881; p=0.83).

Full Tumbling First FR Last FR First DR Last DR

No 11 11 12 14

Yes 5 5 4 2

Since, in this experiment, subjects indicated full-tumbling in ways that

differed from previous research, that may have caused the a different result. Subjects were

not given a direct method to specify full-tumbling. Instead, they decided whether or not

they felt limited tilt (i.e., constant tilt or alternating tilt). That would have indicated that they

did not feel full-tumbling. If, on the contrary, subjects reported no limiting tilt,

accompanied by a sensation of vection, that was taken to be a report of full-tumbling. This

difference might have made full-tumbling less sensitive to scene content, and more

sensitive to the same variables that effected tilt. Training subjects to be aware of and report

reorientation illusions may have made them more sensitive to the sensation of tilt, hence

they might have reported tilt more often than subjects who would not have been trained to

report on reorientation illusions. This could have greatly reduced the frequency of full-

tumbling in subjects and made it difficult to see any significant effect of scene and posture

on it.

To conclude the analysis, all instances of HFT and VFT illusions were

combined into one "overall" full-tumbling illusion. In the furnished room, 12 subjects felt

full tumbling more often (only 1, less often) in the supine than erect posture (WSRT

z=2.99; p=0.0028). Similar results were observed for each scene: in the symmetric room,

12 of 12 felt full tumbling more often in the supine posture (WSRT z=3.08; p=0.0021); in

the dotted room 12 of 13 (WSRT z=3.02; p--0.0025). Overall, there were nearly twice as
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many reports of full-tumbling in the supine as in the erect posture. This followed a trend

noticed by Young[ 1975] that subjects' visually induced self motion increased as their

heads were tilted away from the vertical axis.

5.1.2 Latency of Vection

The apparent rolling of objects, that are usually stationary, provokes vection. A scene with

more mono-oriented objects should therefore have provided more opportunities for

inducing vection, and thus produce shorter average latencies. As shown in Table 5.3, the

scene' s content did have a significant effect on latency (F(2,351)= 149.3 p--0.0003).

Subjects had shorter latencies in the FR (p* = 0.0004) and SR (p* = 0.0059) than they did

in the DR. Subjects had slightly shorter latencies for the FR than the SR, but this was not

significant (p* = 1.0). Supine latencies were slightly--but not significantly (p* = 0.59) --

longer than erect.

Table 5.3 Fitted LSM Vection Latency Averaged Across Subjects

Posture Furnished Symmetric Dotted Room Combined

Room Room

Erect 7.12 s 7.36 s 9.15 s 7.88 s

Supine 7.24 s 7.76 s 9.33 s 8.11 s

Combined 7.18 s 7.56 s 9.24 s 7.99 s

The weak effect of posture on vection latencies suggested that latency was

driven by scene content, rather than the subject's posture. This result suggested, but did not

conclusively prove, that the presence of mono-oriented objects induces vection sooner.

Subject's CNS may have been discounting its vestibular information sooner because it

conflicted with strong visual cues that advertised self-motion. Returning to the voting
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analogy, one could say that, when viewing the strong visual stimuli, the CNS did not lend

credence to the vestibular system's input.

It was surprising that the subjects' latencies for the DR were significantly

longer than those for the SR, even though the SR did not have any mono-oriented objects.

One subject noted that her vection was strongest when she was looking at the tiled surfaces

of the floor and ceiling in the SR (and the ceiling in the FR). This suggested that, in

addition to polarity, the CNS used frame and spatial frequency of the visual stimulus to

determine when they began self-motion. That the FR latency was not much shorter than the

SR latency suggested that scene polarity might not have effected latency as much as the

other scene characteristics. The latency relationship could be written as

Equation 5-1 Tltencr = To - P() - F() - f (6)

To is a maximum latency corresponding to the weakest possible visual stimulus. P, F, and

f, are respectively the polarity, frame and spatial-frequency effects on latency. Since roll

velocity might effect latency, it was included as a parameter in Equation 5-1.

There was significant amount of latency variation between subjects

(F(15,351) = 14.05; p<0.0001). Figure 5-5 plots the subjects' mean latencies with error

bars (using the standard deviation of the mean). The large variation between subjects

suggested that each subject had a characteristic P, F, f, and To. Future research should

explore this possible relationship.
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5.1.3 Saturation of Vection

Saturation was defined as the percentage of the scene's velocity of roll that was perceived

as self-motion. The average saturation was expected to increase with the number of mono-

oriented objects in the scene, i.e., the average vection saturation should decrease from FR to

SR to DR (SATF> SATsR> SATDR). This followed the assumption that the apparent

rolling of (usually stationary) mono-oriented objects, helped convince the subjects that

they, and not the scene, were moving.

The results (Table 5.4) supported this theory. Scene had a significant effect

on saturation (F(2,746)=35.8; p<0.0001). The FR induced significantly higher average
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saturation than those of both the SR (p* = 0.0093) and DR (p*<0.0001). The SR also

induced higher saturation than did the DR (p*<0.0001).

Table 5.4: Reported Vection Saturation (%) by Room and Posture

Furnished Symmetric Dotted Room Combined

Room Room

Erect 45.3% 42.7% 34.5% 40.1%

Supine 49.1% 43.1% 35.6% 42.6%

Overall 47.2% 42.9% 35.1% 41.7%

While it was expected subjects would report higher saturation in the supine

than in the erect position, posture was not a significant main effect (F(1,746)=2.22;

p=0.1365). When exposed to contradictory sensory information, subjects may (as

suggested) have given greater weight to visual cues than to their haptic and vestibular cues.

This would increase the effect of the scenes' visual content, and reduce the effect of the

subjects' posture.

The idiotropic down may also have reduced the effect of posture on

saturation. While supine, the subjects might have been weighting their idiotropic vector

more than their visual and vestibular cues. Thus the idiotropic cue might have taken the

place of gravity, and maintained a similar level of conflict that was present in the erect

subject. Since full-tumbling was effected by posture, it must have been more dependent

than vection saturation on actual gravireceptor cues (as opposed to idiotropic cues).

During the vection blocks, subjects are concentrating more on it than on

reorientation, and may be inducing stronger vection, and therefore, higher reported

saturation. Indeed, (Table 5.5) block had a significant, although not very dramatic, effect on

saturation (F(1,746)=8.5; p=0.0037).
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Table 5.5: Vection Saturation by

44.2% 39.3%

Block

I
As with full-tumbling, variation between subjects was large (F(15,746) =

41.33; p<0.0001). Figure 5-6 plotted the subjects' mean latencies with error bars (using the

standard deviation of the mean). This plot suggested that subjects had characteristic

saturation functions, just as they did for latency. Although subjects may have varied

significantly in their mean saturation, they still followed the trends related to scene and

posture mentioned earlier.
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Figure 5-6: Mean Saturation for

(a111)

Subject

Each Subject with Standard Error Bars

of the Mean.
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5.2 Reorientations

Reorientation angles were specified by citing the angle to the horizontal made by the

relevant surface of the scene (i.e., the surface that the reorientation was assigned to using

algorithm described in section 4.2.2). Each scene had 4 surfaces because they shared a

common frame. The surfaces are numbered 0 to 3, with (0,1,2,3) representing (original

"floor", first wall, original ceiling, second wall to appear under foot)2 as in Figure 5-7.

2

3 1 1 3

Figure 5-7: Coding of Surfaces in a Room Depends on Rotation Direction

A reorientation angle of 00 indicated that it occurred when the relevant

surface was exactly horizontal and beneath the subjects feet. Negative angles indicated a

reorientation before (positive angles after) the surface reached this position (Figure 5-8).

0<0 0=0 0>0

Figure 5-8: Reorientation Angle (0) and Surface of
Reorientation (darker line)

:2 Note that for the DR surface 0 = 1 = 2 = 3, for the SR 0 = 2, and 1=3, but for the FR, 0*1•2•3. For
the SR and DR, both rotation directions provide identical stimuli, but for the FR, CCW provides a
different stimuli than CW, since for CW, the left wall is surface 3, but for CCW the left wall is
surface 0.

Page -65-



5.2.1 Polarization effects: Early and On-Time Classification

Since reorientations were expected to occur earlier for highly polarized orientations of the

scene (Section 4.2.2), mean reorientation angle was expected to be more negative for these

surfaces. Specifically, mean reorientation angles were expected to be more negative when

the FR's floor and the SR's floor and ceiling were subjective floors (reference surfaces).

Only subjects who had very negative mean reorientation angles when the FR floor was a

reference surface exhibited this expected behavior. The others, while not showing

significant sensitivity of reorientation angle to the orientation of the scene, did exhibit a

significant sensitivity of reorientation frequency to the orientation of the scene.

Two patterns of behavior in the reporting of reorientations were recognized.

Subjects were classified into two subgroups, based on their average reorientation angle for

the floor of the FR (Figure 5-9). The FR floor was chosen because all subjects had at least

5 reorientations for it, and also because it theoretically corresponded to the most polarized

scene and orientation in the experiment. Subjects were classified as (early, on-time) if their

mean angle of reorientation for the FR floor was (less than, greater than) -22.5'. This angle

was chosen because the Figure 5-9 seemed to suggest two distinct response groups, and -

22.5 ° was the value which best split the groups. Subject 1, for example, had 14

reorientations for the FR floor, averaging 8.130, and was classified as on-time. Subject 3

had 24 reorientations for the FR floor, averaging -32.70, and was classified as early. Nine

subjects were classified as early and seven as on-time. Even though the subjects' mean

reorientation angles for the FR floor fell clearly on one side of -22.50, their standard errors

of the means may have overlapped. In the ensuing discussion, subjects are called early or

on-time based the criteria explained above. Subjects who have been classified as early

might have exhibited on-time behavior for surfaces other than the FR floor (e.g., the FR

ceiling.
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Mean Reorientation Angle (0)

Figure 5-9: Determination of Early or On-Time Behavior.

Figure 5-10 through Figure 5-12 reveal that a subject's early or on-time

behavior was consistent for the floors and ceilings of the FR and SR. The figures show that

early subjects -- subjects who reoriented early (i.e. mean less than -22.50) for the FR floor -

- also reoriented early for the FR ceiling. These subjects reoriented early for the floor and

ceiling of the SR as well. Despite this, early subjects tended to exhibit mixed early and on-

time behavior for the walls of the FR and SR. For the walls, some subjects continued to

reorient early, but others on-time. In some cases a subject had only one or no reorientation

for a given surface of a room, and was excluded from the corresponding plot. The two

reorientation patterns are summarized in Table 5.6 and Table 5.7.
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Distribution of Mean Reorientation Angle for FR Surfaces

"early" "on-time"

-90 -60)

Floor

-30 0 30

Wall1

-90 -60 -30 0 30

-90 -60 -30 0 30
2

-90 -60 -30

-3

-2

/ I
-90 -60 -30

Ceiling

2
0 30 -90 -60 -30 0 30

-90 -60 -30 0 30 -90 -60 -30 0 30
Mean Reorientation Angk

Figure 5-10: Furnished Room: Early and

On-Time Mean Reorientation Angles.
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Distribution of Mean Reorientation Angle for SR Surfaces
"early" "on-time"

eilingl

-90 -60 -30 0

vl

-900

Ui.ýi
-160 -30

30

Wall1

0 30

eiling2

-90 -60 -30 0 30

-90 -60 -30 0 30

-90 -60 -30 0 30

H
-90 -60 -30 0

Wall2

jz
-90 -610 -30 0

H
30 -90 -

Mean Reorientation Angk

60 -30 0 30

Figure 5-11: Symmetric Room: Early and

On-Time Mean Reorientation Angles.
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Distribution of Mean Reorientation Angle for DR Surfaces
"early" "on-time"

Surface 0

-30

-30

0 30

Surface 1

30

Surface 2

0 30

Surface 3

-90 -60 -30 0 30

-3 M00

-90 -60 -30 0

-90

-3

-60 -30 0

-90 -60 -30 0 30 -90 -60

Mean Reorientation Angle

Figure 5-12: Dotted Room: Early and

On-Time Mean Reorientation Angles.
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Table 5.6: Patterns Within Early and On-Time Reorientation

Table 5.7: Patterns Between Early and On-Time Reorientation
Reporting (Ai,B1).

Furnished Room Ao=A 2>Bo=B2 ;

A,= A3 B,1 B3

Symmetric Room Ao=A 2>B0 B2 ;

Ai =A 3 -B1 B3

Dotted Room Ao=A22Bo0 B2 ;

AI =A3-B,=B33

Although early subjects reoriented earlier in the FR and SR when the

subjective floor (reference surface) was either a floor or ceiling than when it was a wall,

they reoriented at similar angles for all four DR surfaces. The SR and DR result was to be

expected, but it was odd that early subjects also reoriented early when the FR ceiling was a

subjective floor. The dotted room did not have one particular orientation which seemed

more believably upright than the others. Two orientations of the SR were more believably

upright than the others (when the identical floor and ceiling were below and above the

center of the visual field), and it was these scene-orientations that the "early" subjects

reoriented earlier for. Yet the FR arguably had only one "upright" orientation due to the

large number of aligned mono-oriented objects in it. Despite this, early subjects reoriented

almost as early when the subjective floor was the ceiling than when it was the floor. Early

subjects may have become used to believing that the FR ceiling was a floor because the SR
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floors were identical to it, hence they would reorient just as early when the FR was inverted

than when it was upright in the visual field.

It was also possible that these subjects may have used the "walls" to

reference their orientations from. A "competing-walls" model , where the two pairs of

parallel surfaces compete to "become" walls, could explain the observed behavior of the

early-subjects. As these subjects observed the scenes' real walls approaching their

appropriate positions (on the side of the visual frame), they would reorient sooner than

when the floors and ceilings were approaching the same positions. This was because the

walls of the FR and SR were more "believably" walls. Note that each surface in the DR

was identical, hence the competing-walls model would predict that subjects would reorient

at identical angles from all reference surfaces. Yet it was still possible that reorientations are

"floor" driven. A "competing-floor" model, where the two surfaces lowest in the visual

frame compete to "become" a floor could explain the observed behavior of the early

subjects. The competing-floor model would clearly predict that the real floor would induce

reorientations sooner than a wall as it moved toward the subjects feet. Also, since they may

have felt the wall was disturbing as a subjective floor, early subjects may have tried to

reorient as soon as possible after the wall moved out from under the their feet. This could

explain why the inverted FR (with the ceiling as a subjective floor) still induced early

reorientations from early-subjects. It should be noted that we cannot know whether the

subjects in this experiment were attending to the floors or the walls, and so we cannot

distinguish between a "competing floors" model and a "competing walls" model on the

basis of the present experimental results.

A "competing-ceiling" model might explain why subjects would reorient

sooner when the real ceiling approached its appropriate position, but it would not explain

why this happened for the floor as well (as it did for the FR and SR). A "competing-
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frame" model -- where all the surfaces compete simultaneously to become a floor-ceiling-

walls set -- might have some credibility in explaining the observed behavior in early

subjects, but it was more likely that subjects followed a competing-floor or competing-

walls strategy (or maybe even a mixture of the two). Consider that many people, when

sitting or walking upright, pay no attention the ceiling of a room, but instead, they regard

the walls and floor. They watch floor sometimes because they have to watch where they

are stepping. When they are not watching their step, they are probably looking straight,

where the walls are in plain sight.

On-time subjects, however, did not exhibit much difference in mean

reorientation angle between any particular upright orientation of a room. This implied that

the early subjects were more actively seeking out particularly strongly polarized

orientations of the scene to reorient to, whereas the on-time subjects were more passively

reorienting, waiting until the scene was almost exactly "upright" before feeling reoriented.

Table 5.8 summarizes the range of mean reorientation angles for each

reference surface for early and on-time subjects. It lumps the mean reorientations to walls

of the FR and SR into one set, and to floors and ceilings of the FR and SR in another.

Mean reorientations to surfaces of the DR are lumped into a third set since they were very

similar. For the FR and SR, early subjects' mean reorientation angles for the walls had a

much larger range than for the floors and ceilings. For on-time subjects, the mean

reorientation angles for the FR and SR floors and ceilings were offset approximately 100

earlier than for the walls'. Individual subject means for all surfaces of each scene are

plotted with their standard errors in Figure 5-13 and Figure 5-14 for early subjects, and in

Figure 5-15 and Figure 5-16 for on-time subjects. Each point represents one subject's

mean reorientation angle for a reference surface in the respective scene, with a different

symbol used for each subject. In Figure 5-13, for example, there are four pentagons, each
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representing one subject's mean reorientation angle when the reference surface was the FR

or SR floor or ceiling.

Table 5.8: Range of Mean Reorientation Angle for Early and On-Time Subjects.

FR and SR Walls FR and SR Floors and All surfaces in DR

Ceilings

# Subjects 9 of 9 (36 means) 9 of 9 (36 means) 8 of 9 (32 means)

reorienting (#12 did not reorient for any

(who didn't) surface.)

Minimum Maximum Minimum Maximum Minimum Maximum

Early -55.40 26.60 -61.20 -21.30 -44.50 -22.80

# Subjects 6 of 7 (18 means) 7 of 7 (26 means) 6 of 7 (24 means)

reorienting (#4 did not reorient for any (#4 did not reorient to SR (#4 did not reorient for any

(who didn't) walls. #1 did not reorient to floor and FR ceiling.) surface.)

SR walls. #2, #11 reoriented

for one wall in SR and FR.)

Minimum Maximum Minimum Maximum Minimum Maximum

On Time -19.50 23.20 -32.70 12.30 -14.90 13.00
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Figure 5-13: Early Subjects' Mean Reorientation Angles for the Floors and Ceilings

of FR and SR.
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Figure 5-14: Early Subjects' Mean Reorientation Angles for the Walls of the FR and

SR.
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Figure 5-15: On-Time Subjects' Mean Reorientation Angles for the Floors and

Ceilings of FR and SR.
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Figure 5-16: On-Time Subjects' Mean Reorientation Angles for the Walls of FR

and SR.

Table 5.8 also presents an account of subjects who did not reorient for

certain surfaces. One on-time subject (#4) did not reorient for any surface except for the FR

floor and SR ceiling. Another on-time subject (#1), did not reorient to any walls of the SR.

Two on-time subjects (#2 and #11) reoriented only a few times on various walls of the SR

and FR, but many times for the surfaces of the DR. The early subjects had reorientations

for every surface of the FR, SR, and DR (except for #12 who did not reorient for any

surface of the DR).

ANOVAs of reorientation angle were performed separately for each

subgroup. The most salient difference was that early subjects' reorientation angles

(F(3,1811) = 108.05; p<0.0001) were more sensitive to surface than on-time subjects

(F(3,971) = 1.84; p=O. 1388). This was consistent with the previously mentioned result that
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early-subjects were reorienting earlier for floors and ceilings than for walls, whereas on-

time subjects were not reorienting at significantly different angles for surfaces in room.

Although on-time subjects' reorientation angles were not sensitive to

surface, their frequency of reorientations was. An ANOVA done on frequency of

reorientations for a given scene and surface showed that subgroup (i.e., early and on-time)

was a significant main effect on reorientation frequency (F(1,168) = 20.3; p<0.0001), and

that subgroup * surface was a significant cross effect (F(3,168) = 4.12; p=0.0075). Table

5.9 lists this ANOVA's fitted LSM frequencies of reorientation for each subgroup. For

each scene, on-time and early LSM reorientation frequencies are given by surface. On-time

subjects reoriented, on average, more than twice as often for the FR and SR's floors and

ceilings than walls, but for the dotted rooms, they reoriented equally as often for all

surfaces.

On-time and early subjects reacted to polarity cues in different ways. The

(early-subjects, on-time subjects) were reorienting (earlier, more frequently) for polarized

than non-polarized surfaces. This explained why early-subjects were not significantly

sensitive to scene (F(2,181 1) = 0.6151; p=0.54), but on-time subjects were (F(2,971) =

14.5; p<0.0001). As shown in Table 5.10, on-time subjects reoriented more frequently

when the subjective floors were floors and ceilings of the FR and SR, hence their mean

reorientation angles for the FR and SR were influenced more by the highly polarized

orientations of the room than by the non-polarized. The early-subjects, on the other hand,

reoriented equally as often for walls, ceilings and floors, hence their mean scene

reorientation angles for the FR and SR were equally influenced by polarized and non-

polarized orientations. This made on-time subjects' mean reorientation angles for a scene

more sensitive to polarity.
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Table 5.10 through Table 5.13 lists the by-scene-and-surface fitted LSM

reorientation angles which were calculated for the ANOVAs. For on-time subjects, the

mean reorientation angles (including all surfaces) for the furnished (p* = 0.0035) and

symmetric (p*<0.0001) rooms were significantly different from the dotted room. This

supported the previous paragraph's explanation that the on-time subjects' more frequent

reorientations for the FR and SR's floor and ceiling were making their FR and SR mean

reorientation angles more negative.

Table 5.9: Fitted LSM of Frequency Reorientations per Reference Surface

(out of 24 passes).

Scene Subgroup Surface 0 Surface 1 Surface 2 Surface 3

Furnished Early 18.4 17.6 16.2 17.1

Room On-time 19.0 6.7 12.7 6.9

Symmetric Early 14.6 16.8 14.1 17.7

Room On-time 16.6... 6.6 16.6 7.3

Dotted

Room

Early

On-time

17.2

13.3

17.8

11.3

17.0

12.4

19.4

12.6

Table 5.10: Fitted LSM Reorientation Angle by Subgroup and Scene

(All Scenes).

Subgroup Furnished Symm••etric Dotted

RoRoomoom Room

Early -27.50 -26.60 -26.20

On-Time -4.30 -7.10 0.30
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Table 5.11: Fitted LSM Reorient Angle for Furnished Room

Surfaces.

SNubgroup Floor (0) Wall1 (1) Ceiling (2) Wall2 (3)

Early -40.10 -16.50 -36.70 -16.60

On-Time -5.70 -3.50 -1.10 -7.00

Combined -24.40 -7.10 -20.70 -8.00

Table 5.12: Fitted LSM Reorient Angle for Symmetric Room Surfaces.

Subgroup loor/Ciling ••(0) Wall (1) Floor/Ciling(2) Wall2(3)

Early -40.10 -12.80 -38.60 -15.00

On-Time -10.60 -4.00 -10.10 -3.80

Combined -26.00 -4.30 -25.00 -6.00

Table 5.13: Fitted LSM Reorient Angle for Dotted Room Surfaces.

:Subgroup all (0) Wall2 (1) Wll(2) Wall4 (3)
Early -27.40 -23.60 -29.70 -24.10

On-Time --0.90 1.20 0.00 1.00

Combined -14.70 -11.7 - 16.00 -12.20

Since on-time subjects reoriented roughly 2/3 as often as the early-subjects,

they might have been feeling full-tumbling more often. Indeed, the three subjects who did

not feel full tumbling in any of their runs were early subjects. The average frequency of

horizontal full-tumbling (HFT) among the on-time subjects was 11.6 and among the early

subjects 7.4. Interestingly, the frequency of vertical full-tumbling (VFT) was slightly

greater for early subjects (7.8) than for on-time subjects (6.6). Overall, however, on-time

subjects experienced vection without any tilt (i.e., full-tumbling in either vertical or

horizontal planes) in, on average, in 8 more runs than early subjects
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5.2.2 Posture and Perceived Frontal Plane Effects

Since early and on-time subjects were behaving differently with respect to polarity, it was

natural to believe they would respond differently to other independent variables. While

posture was a significant main effect on early-subjects' reorientation angles (F(1,1811) =

5.01; p-0.0253), it had no effect on those of the on-time subjects' (F(1,971) = 0.089;

p--0.92). Early subjects reoriented on average 2.90 sooner (p* = 0.0253) when erect than

supine.

While posture had no significant effect on on-time subjects' reorientation

angle, it may have indirectly influenced their reorientations through the perceived frontal-

plane orientation. Some on-time subjects, when they were supine and felt gravitationally

horizontal, tended to feel reorientations only when a surface was exactly horizontal below

them. They momentarily felt vertical but then reported a return to a horizontal plane of

perceived motion. It's possible that subjects did not feel reoriented until the surface was

just "beneath" them because they were not expecting a reorientation while they felt

horizontal. Unfortunately, this alternating vertical-horizontal sensation was not recorded

accurately, which precludes any extended analysis. It seems, however, a reorientation

during perceived horizontal-plane rotation will, in at least some subjects, bring a sudden

sensation of being vertical with respect to gravity.

5.3 Tilt Illusions

The model outlined at the end of the previous chapter accounts for tilt in several ways. A

constant physical tilt will obviously send a "tilt" message to the CNS. When in the erect

posture, a subject might actually tilt in order to correct the virtual tilt simulated visually by

the virtual room. In that case, the subject would report a illusory tilt in the direction that she

actually tilted. In fact, 12 (75%) subjects exhibited physical tilt from postural-adjustments
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in at least 5 (21%) the runs in which they were in the erect posture. Not surprisingly, when

subjects in the erect posture made postural adjustments, 90% of the time they would report

some form of tilt sensation, nearly always corresponding to the posture adjustments they

actually made. For runs in which subjects in the erect posture did not exhibit postural

adjustments (real tilt) they reported illusory tilt, on average, only 60% of the time.

Eventually, the experimenter was able to predict what kind and magnitude of tilt subjects

were feeling just by watching them move in the erect position.

When subjects maintained a steady physical tilt, they tended to report

constant tilt, but when they oscillated they often reported alternating tilt. Several subjects

would tilt their heads slightly forward (probably due to neck fatigue), and later report they

felt they were "looking down" at the scene. Often, the subjects' oscillation would coincide

with the passing of a floor underneath, as if they were trying to orient themselves so that

their feet were pointed to the "current floor" (see Figure 5-17). Two subjects exhibited

extreme posture adjustments to counteract the rolling visual field, oscillating 100 about the

vertical. It was not a surprise that these subjects tended to report alternating-tilt during these

episodes.

Not all the tilt sensations could be attributed solely to automatic postural-

A B C

Figure 5-17: Subject Making Postural Adjustments During the Passage of a

Surface.
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adjustments. The supine posture constrained most of the postural adjustments, but twelve

(75%) subjects still reported at least 5 instances of tilt when they were supine (out of 24

runs). Despite the fact that most of the subjects were able to feel tilt while supine, most of

the instances of tilt sensation occurred in subjects in the erect posture. Subjects experienced

tilt sensations while supine less frequently (45.1% of all supine runs across subjects) than

when erect (74.7% of all erect runs across subjects). All subjects felt tilt more often in the

erect posture, except for one, who felt tilt equally as often in both postures. These results

suggest its easier to induce a tilt sensation in subjects who are erect.

While these previously mentioned thirteen subjects were supine, eight

tended to feel constant tilt more frequently than alternating tilt, two felt both constant and

alternating tilt equally often , and three tended to feel alternating tilt. This ratio of supine tilt

tendencies (constant-tilt: both: alternating tilt = 8:2:3) was not much different from the

overall (both postures) tilt tendencies (9:4:3). This suggests that subjects' assumption of

the supine posture does not radically alter the type of tilt they feel. Instead, it evenly

diminishes the frequency with which they feel any kind of tilt. One of the two subjects who

exhibited extreme postural-adjustments and felt alternating-tilt most of the time she was

upright, also felt alternating-tilt when she was supine.

5.4 Perceived Frontal Plane Orientation

Subject's sensations (i.e., full tumbling) could be classified as either vertical or horizontal.

The subjects' haptic, vestibular, and gravireceptic senses were believed to play an important

role in inducing vertical-frontal-plane illusions (VFPI) -- the sensation of being in a plane

that is vertical with gravity. A subject had a VFPI whenever she specified a "vertical" (with

or without forward or backward tilt) as the dominant frontal-plane orientation for the run,

even if the subject did not report any other illusions (i.e., vertical with no vection and tilt).
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The following stimuli should induce VFPI in subjects: strong gravitational or haptic down

cues directed along the subjects' idiotropic vector, or the rolling of visually mono-oriented

objects in a plane perpendicular to the subjects' visual axis. In this experiment, the

probability of a subject having a VFPI was more sensitive to her vestibular and/or haptic

than visual cues

Four types of VFPI behavior were noted among subjects (See Figure 5-18

and Figure 5-19). The first group (1,2,3,9,12,14) tended to have VFPI's every time they

were erect, and never when they were supine. Hence, with respect to VFPI's, this group

was highly sensitive to posture, but highly insensitive to scene content. The second group

(10,11) exhibited the opposite of this. They exhibited a slight sensitivity to scene content

and a relative insensitivity to posture. The third group (4,6,7,8,13,16) exhibited a mixture

of both posture and scene sensitivity. The fourth group consisted subjects 5 and 15, who

reported no VFPI's, feeling horizontal-frontal-plane illusions for every run. Thus, with

respect to VFPI's, the fourth group exhibited no sensitivity to either posture or scene

content. The reader must be reminded, however, that several of the subjects also reported

brief moments in which they felt an instantaneous VFPI during a run, usually when they

were having a reorientation (this result was anecdotal, so it was not clear whether this

behavior was unique to any group). Thus, while a subject might be reporting a dominant

horizontal-frontal-plane orientation, she might feel brief moments of VFPI due to the

strong visual cues that caused the reorientation.
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Frequency of VFPI per Subject in Erect Posture

m FR (erect)
IISR (erect)
a DR (erect)

O- M M3 0) C yr~V- V-1 Suj CD C(D - P. 0

Subject

Figure 5-18: Frequency of VFP per Subject (Erect).

Frequency of VFPI per Subject in Supine Posture

A FR (supine)
I SR (supine)
a DR (supine)

CN M 0) y It 10 Co V) (0 N- 0 'It CD LO

Subject

Figure 5-19: Frequency of VFP per Subject (Supine).

The most significant effect on perceived plane of rotation was, not

surprisingly, posture. Only one subject ever felt vertical more often in the supine than erect

posture. Table 5.14 lists the number of subjects reporting differences in frequency of VFPI

between the two postures. By the WSRT, subjects reported significantly more frequent
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VFPI's in the erect than supine posture for the FR (WSRT z = -3.11; p = 0.0018), SR

(WSRT z = -2.9; p = 0.0037), and DR (WSRT z = -3.3; p = 0.0009). This was expected,

and it suggested that it was harder to induce in a horizontal subject the illusion of being

vertical in a gravitational field. On the other hand, it showed that at least some subjects will

experience a VFPI when they are supine, despite the conflicting vestibular input.

Table 5.14: Number of Subjects Feeling Vertical More Often in

One Posture.

# subjects who felt verti biore often in... FR .SR i DR

erect posture 12 11 14

supine posture 0 1 0

Although subjects reported horizontal sensations more often when supine,

several (as described earlier) felt instantaneously upright (with respect to gravity) at the

moment they underwent a reorientation. Subjects felt this combined reorientation-upright

sensation with reorientations roughly close to 0=00 (based on discussions with subjects).

While this phenomenon was not reported by all subjects, nor was it recorded in detail, it

seemed to occur more often with the furnished and symmetric room, than with the dotted

room. This suggested that the reorientation-vertical illusions were due to a momentarily

strong visual-down cue caused by polarity of the scene, and that this polarity made subjects

feel "upright" for a moment, despite their really being supine.
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6. Conclusions

The development of the flexible experimental control software used for this research makes

completion of future experiments related to visual-vestibular interaction easier. Another

researcher [Markmiller, 1996] in the laboratory in which this experiment was conducted

recently finished his experiments, using the experimental control software developed for

this study. Markmiller's research was on perceived linear self-motion under conflicting

visual, haptic and vestibular stimuli. Markmiller spent around one week designing the

scenes for his experiment, using 3D Studio by Autodesk, and then imported the 3D Studio

model into World Tool Kit for use in his experiments. He spent only one more week

expanding the experimental control software to allow linear as well as rotational motion.

The modular design of the software made it necessary for him to modify only a small

portion of the C source code. The software was provided to NASA at its request, and is

being evaluated by NASA as a possible way of controlling experiments on the NASA

Virtual Environment Generator which is to be flown on the 1998 Space Shuttle mission,

Neurolab.

6.1 Vection

When erect and viewing the FR, 9/16 (56%) subjects eventually felt vertical full tumbling

(VFT) but when supine only 6/16 (38%) did. These percentages were roughly comparable

to the ones DeSouza observed in his subjects. In this experiment, however, it was not

possible to show that individually subjects did feel VFT more often when they were erect

than supine while they were viewing the FR. Posture had a significant effect on frequency

of VFT only for the dotted room (DR), where polarity was completely absent. When

Page -88-



viewing the DR, 9 subjects felt VFT more often (2 less often) when erect than when

supine. Subjects were dependent on vestibular cues when the visual field was not saturated

by mono-oriented objects (e.g., as in the DR).

Consistent with the above explanation, 6 subjects when supine felt VFr

more often (1 less often) when viewing the FR than DR. For subjects in the erect posture,

however, there was no significant increase in frequency of VFT from the DR to the FR.

Subjects, when supine, will therefore feel vertical more often when exposed to a highly

polarized visual field perpendicular to their visual axis than when exposed to a non-

polarized visual field. When viewing the FR and symmetric room (SR), subjects did not

feel VFT more frequently in any one posture, probably because they were exposed to

visual polarity that compensated for the lack of vestibular down cues aligned with their

head-to-toe axis.

While VFT illusions were generally due to the dominance of highly

polarized visual cues, horizontal full-tumbling illusions (HFT) -- the illusion of full 3600

rotation in a gravitationally horizontal plane -- were more often driven by vestibular

dominance. HFT illusions were reported very infrequently among the runs in which

subjects were erect, suggesting that vertical vestibular cues were keeping subjects from

feeling horizontal. It was easier for a subject to feel horizontal when she was actually

supine, but when viewing highly polarized scenes, like the FR and the SR, she would

additionally need to discount the polarity of the scene in order to feel HFT. When supine,

the subject might also reinterpret the surfaces of the SR and the DR so as to resolve

sensory conflict. If, when supine, the subject perceived the far wall of the SR as a ceiling

and its windows as a skylight, she could resolve all sensory conflict when feeling HFT.

When exposed to a moving strong visual polarity stimulus, the human

central nervous system (HCNS) may be convinced earlier than it normally would be that it
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is moving. In effect, strong polarity should reduce latency. The results were consistent with

this hypothesis, since the FR, SR, and DR induced vection on average within 7.2, 7.6 and

9.2 seconds respectively. This result, however does prove that polarity was the main cause

shorter latencies. It was also possible, that the shorter latencies were due instead to different

spatial frequencies of the scene. The larger number of moving lines in the FR and SR, for

example, may have had a partial effect on vection latency.

It was surmised that putting the subject in the supine posture would

significantly decrease latencies since the subject's visual axis would be aligned with the

rotational axis. This trend did not manifest itself in the data, suggesting that the "vection"

sensor in the HCNS was not as sensitive to the otolith cues as it was to the visual input.

The HCNS may also have quickly learned to "discount" the vestibular reports of "no-

motion" after repeated exposure to sensory-conflict.

Subjects followed a trend of faster perceived vection velocities for more

polarized rooms (SATFR = 47.2% > SATsR= 42.9% > SATDR = 35.1%). Thus, while the

onset of vection was not as sensitive to scene polarity as previously thought, the intensity

of vection was. Subjects were using the mono-oriented objects as reference points to

determine their own vection velocities. When many polarized objects were rolling in their

visual frames (the egocentric frames), subjects felt faster velocities of self-roll in the

exocentric frame. The SR, not having any mono-oriented objects, may have induced

greater vection saturation because it had a larger number of parallel lines than the dotted

room. As with latency, posture only slightly effected saturation (SATERcr = 40.1 % <

SATS•UP = 42.6%), probably for the same reason as why posture did not significantly

influence vection latency. The HCNS may have quickly learned to discount the conflicting

vestibular input when determining self-roll velocities. For each scene, however, subjects
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reported vection saturation on average a few percent more when supine than when erect,

suggesting that posture may have a slight but not significant effect on saturation.

6.2 Reorientations

The reorientation behavior of subjects was by far the most interesting result of this

research. Based on their mean reorientation angle in the FR when the real floor was

reinterpreted as a subjective floor (reference surface), subjects were placed into two

categories: "early" and "on-time." Subjects who reoriented early in this situation tended to

do so as well when the subjective floors were the FR ceiling and the SR floor/ceilings.

They exhibited mixed early and on-time behavior when the walls of the FR and SR and all

surfaces of the DR were becoming subjective floors. In each scene the on-time subjects

tended to reorient at around the same angle when each surface was becoming a subjective

floor, and these angles were usually later than those of the early subjects.

The early subjects seemed to respond to visual polarity in a scene by

reorienting sooner to the highly polarized orientations of the scene. They tended to reorient

for all 4 subjective "upright" orientations of a scene about 2/3 of the time. In the DR,

where polarity was absent, early subjects did not exhibit any significant difference in

reorientation angles for the different subjective "upright" orientations but still reoriented

sooner, on average, than on-time subjects did. This suggested that early subjects were more

attracted to reorienting to highly polarized orientations of a scene, i.e., when the real floors

and ceilings were in the appropriate places.

On-time subjects responded to lower levels of polarity not by reorienting

later, but by reorienting less frequently. Overall, on-time subjects reorientd two-thirds as

often as early subjects did. Many on-time subjects reoriented at least 2 times as often for

orientations of the scene in which the FR and SR floor and ceilings were the subjective
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floors than when they were the walls. They reoriented more often for the highly polarized

orientations of the rooms. Therefore, their overall mean reorientation angles for a scene

were more sensitive to the scenes polarity. The early subjects reoriented equally as often for

each subjective "upright" orientation of the scene. Hence, their mean reorientation angles

for scenes were not as sensitive to scene polarity. Also, the decreased frequency of

reorientations among on-time subjects might be related to an increase in frequency of full-

tumbling.

It was possible to explain early subjects' behavior using either a

"competing-walls" or a "competing-floors" model. In the former, pairs of parallel surfaces

in a scene (i.e., wall-wall or floor-ceiling) compete to become subjective walls in the

subject's interpretation of the scene. The real walls of the FR and SR do indeed feel more

like walls. Hence, subjects will believe the actual walls are the subjective walls of the scene

earlier than they would the floor and ceiling. Subjects would feel reoriented sooner when

the real walls were approaching their appropriate places. The competing-floor model would

work similarly, but the subject relied on her interpretation of which surface was the

subjective floor rather than which surfaces were the walls. The actual floors of the FR and

SR were more readily interpreted than walls as subjective floors. Add to this, the

assumption that the subject did not feel comfortable with the wall as a subjective floor, and

one would hypothesize that the subject would interpret the ceiling early as a subjective floor

in order to reduce discomfort. Both models can explain early subjects -- and with a few

modifications on-time -- subjects' behavior. Perhaps the early subjects have expectations as

to what types of reorientations will occur as the scene rotates about them, whereas the on-

time subjects do not. The more naive on time subjects would be asking, "could it be a

wall?" or "could it be a floor?" instead of "has it become a wall yet ?" or "has it become a

floor yet?".
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6.3 Future Research

Future experiments should explore the reorientation behavior of a larger pool of subjects.

Subjects will probably fall into two categories of behavior. Roughly half will tend to

reorient for all 4 subjective "upright" orientations in a rolling room but will reorient sooner

for more polarized orientations. The others will react to less polarized orientations of the

room by not reorienting at all, and when they do reorient, they will at later angles than for

early subjects.

Testing subject's reactions to different versions of the furnished room

would be interesting. If one were to make each of the 4 subjective "upright" orientations of

the FR equally polarized, it would be possible to test whether subjects reorient sooner for

some orientations because of greater overall scene polarity of that orientation or because

subjects track specific objects and determine their orientation based on just a small

component of the scene. If the mono-oriented furnishings were randomly assigned to a

surface (i.e., the table and computer were on the wall, the book shelf on its side, the door

on the floor) then a FR with 4 equally polarized upright orientations could be created.

"Wall-less" and "floor-less" furnished rooms could help determine whether

subjects are following a "competing-floors" or "competing-walls" model. If subjects

reoriented at similar angles for all reorientations of the "wall-less" FR it would imply that

subjects used a competing-floor model. If, on the other hand, subjects reoriented at similar

angles for all reorientations of the "floor-less" room, it would mean subjects followed a

competing-walls model. A floor-less room can be made by removing all the objects (e.g.,

carpet) from the FR's floor. Walls can then be emphasized by adding objects like paintings,

doors or book shelves. Following a similar strategy one can design a wall-less FR.

Research should be done to explore why the FR did not induce subjects to

feel vection dramatically sooner than for the SR. It may be that rolling of a highly polarized
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scene does not in itself induce a subject to feel vection sooner, but rather the rolling of

stationary objects (e.g., windows or frames) in any orientation (e.g., scattered or aligned)

convinces the subject's HCNS that it and not the scene is moving. Again, a FR with

randomly oriented furnishings could help determine whether the alignment of mono-

oriented objects significantly effects the HCNS when determining self-orientation

While full-tumbling illusions need to be studied in more detail, a careful

distinction must be made between their horizontal and vertical counterparts. Each illusion

represents a different form of conflict resolution. More subjects need to be tested to

determine whether visual polarity has any significant effect on the frequency of VFT

illusions in the erect posture. Also, does the training of subjects to feel reorientations make

them less susceptible to full-tumbling?

Future researchers that study illusory tilt in erect subjects should carefully

record direction of physical tilt and illusory tilt to see if a significant correlation exists.

While originally thought that subjects would tilt in one direction with respect to the scene

rotation direction, many subjects physically tilted and/or felt illusory tilt in both directions

with respect to scene motion.
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8. Appendix: ANOVAs

All ANOVAs cited in this thesis are listed below.

8.1 Latency

DEP VAR: TIMELAT
ANALYSIS OF VARIANCE

N: 372 MULTIPLE R: 0.629 SQUARED MULTIPLE R: 0.396

SUM-OF-SQUARES

3808.4086
298.5149

5.1273

1.2560 2

6341.6870 351

DF MEAN-SQUARE

253.8939
149.2575

5.1273

0.6280

18.0675

Note: DOVECT is a variable that specifies whether the subject was using the joystick trigger

to report vection (1) or reorientations (0).

DEP VAR: VECTSAT
ANALYSIS OF VARIANCE

SOURCE

SUBJECT
SCENE
POSTURE
DOVECT
SCENE
*POSTURE

ERROR

N: 768 MULTIPLE R: 0.695 SQUARED MULTIPLE R: 0.483

SUM-OF-SQUARES

167486.2196
19347.3132

600.3138
2296.1484

DF MEAN-SQUARE

11165.7480
9673.6566
600.3138

2296.1484

394.1608 2 197.0804

201519.9909 746 270.1340

8.3 Reorientation Angle

8.3.1 All Subjects

DEP VAR: EFOLDDEG
ANALYSIS OF VARIANCE

N: 2828 MULTIPLE R: 0.604 SQUARED MULTIPLE R: 0.364
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SOURCE

SUBJECT
SCENE
POSTURE
SCENE
*POSTURE

ERROR

F-RATIO

14.0525
8.2611
0.2838

0.0348

8.2 Saturation

P

0.0000
0.0003
0.5946

0.9658

F-RATIO

41.3341
35.8106
2.2223
8.5000

0.7296

P

0.0000
0.0000
0.1365
0.0037

0.4825



SOURCE SUM-OF-SQUARES DF

0.4704
2446.3165

422080.9911
1524.9476
2143.1743
1218.8293

108413.7695

36236.4542

.104725E+07 279

8.3.2 Early Subjects

DEP VAR:EFOLDDEG
ANALYSIS OF VARIANCE

0.4704
2446.3165

28138.7327
762.4738

2143.1743
1218.8293

36137.9232

6 6039.4090

374.4183

N: 1835 MULTIPLE R: 0.582 SQUARED MULTIPLE R: 0.338

SUM-OF-SQUARES

1451.6093
1849.9137

138805.5636
491.1643
3351.0838
2001.3325

129425.3684

39459.9251

723103.4391 181

DF MEAN-SQUARE

1 1451.6093
1 1849.9137
8 17350.6955
2 245.5822
1 3351.0838
1 2001.3325
3 43141.7895

6 6576.6542

.1 399.2841

SUM-OF-SQUARES

1913.9218
1010.4378

51222.8788
8269.3142

16.1846
2.5425

1569.6417

2943.0913

DF MEAN-SQUARE

1913.9218
1010.4378
8537.1465
4134.6571

16.1846
2.5425

523.2139

6 490.5152

Page -98-

DAY
DIRECTIO
SUBJNBR
SCENE
PLANE
POSTURE
SURFACE
SCENE
*SURFACE

ERROR

0.0013
6.5336

75.1532
2.0364
5.7240
3.2553

96.5175

16.1301

0.9717
0.0106
0.0000
0.1307
0.0168
0.0713
0.0000

0.0000

SOURCE

DAY
DIRECTIO
SUBJNBR
SCENE
PLANE
POSTURE
SURFACE
SCENE
*SURFACE

ERROR

F-RATIO

3.6355
4.6331

43.4545
0.6151
8.3927
5.0123

108.0479

16'.4711

P

0.0567
0.0315
0.0000
0.5407
0.0038
0.0253
0.0000

0.0000

8.3.3 On-Time Subjects

ANALYSIS OF VARIANCE

SOURCE

DAY
DIRECTIO
SUBJNBR
SCENE
PLANE
POSTURE
SURFACE
SCENE
*SURFACE

F-RATIO

6.7186
3.5470

29.9686
14.5142
0.0568
0.0089
1.8367

1.7219

0.0097
0.0600
0.0000
0.0000
0.8117
0.9248
0.1388

0.1127

MEAN-SQUARE F-RATIO



276608.5141 971 284.8697

8.3.4 Frequency of Reorientations

TREND is 1 for early subjects, 0 for on-time subjects (i.e., TREND=subgroup)
DEP VAR: COUNT N: 192 MULTIPLE R: 0.465 SQUARED MULTIPLE R: 0.216
ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES

SCENE
SURFACE
TREND
TREND*SCENE
TREND
*SURFACE
SCENE
*SURFACE
TREND* SCENE
*SURFACE

59.1133
383.3151

1262.6045
33.1133

DF MEAN-SQUARE

29.5566
127.7717

1262.6045
16.5566

769.8776 3 256.6259

289.1943 6 48.1990

230.4443 6 38.4074

F-RATIO

0.4746
2.0515

20.2722
0.2658

4.1204

0.7739

0.6167

10463.4603 168 62.2825
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0.6230
0.1086
0.0000
0.7669

0.0075

0.5915

0.7168

ERROR



9. Appendix: Recruitment and Training

Subjects were solicited via electronic mail advertisements targeted at the MIT community.

Subjects were then trained using two scenes (Figure 9-1 and Figure 9-2), a large dotted

wall and a furnished room (different from the one used to collect data).

.i9 9 IOW

0 * o @
* r0

0* S00 00 0 ) a o_ 1n 1 • ,-

SW.r

* 0 ~I

* 0

*A OOsOO On .,,,,

W l
0 9

*@40 .
* *

9. .O90

* **@

S. *0

* 0
* * *4

* 0.a **e O• 0·
o 0
1~10

4

0

o0*

•09.9* **
i" a

**

*11

ii

Figure 9-1: Dotted Wall Training Stimulus.
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Figure 9-2: Furnished Room Training Stimulus.

The following information-packet/questionaire was given to all applicants:

Virtual Tumbling Room Experiment

Introduction

This experiment, which takes about an hour, studies how scene content

influences our sense of rotation and tilt when we use "virtual reality" head mounted

displays. Our goal is to understand how people use different objects in the visual scene to

know how much they are tilted or rolled, and how fast they are rotating. The illusions you

may experience in the experiment relate to the striking "visual reorientation illusions"

experienced by astronauts: When the "down" arrow of gravity is absent, astronauts

floating upside down in the spacecraft cabin say they often feel that the spacecraft ceiling

Page -101-



and the floor have somehow exchanged identities. Results of our experiment may allow us

to improve the design of spacecraft interiors and certain types of "virtual reality" displays,

so that users have a better "sense of where they are".

In order to do this experiment properly, we need to train you to distinguish

and report on different aspects of your subjective sensations.

As the first step in your training, we ask you to read these instructions

and fill out the questionnaire before you come in for the experiment. Results from the

experiment and your answers to the questionaire will be kept completely confidential.

If you have any questions that you would like answered before your

scheduled experiment session, I can be reached by Email at ----------- , or leave a

message with -----------------

When you come in for the experiment, we'll continue your training, and

then perform the experiment itself.

Wearing the Head Mounted Display

For these tests you will wear a Head Mounted Display (HMD). In half of

the runs, you will be sitting upright. For the remainder you will be lying on a bed, facing

up.

The HMD resembles a large diving mask, with a sand bag on the strap

behind your head to help balance the weight when your head is upright. Two color LCD

TVs with lenses in front are mounted inside. All the scenes you will be seeing are created

by the computer. The computer draws a slightly different scene for each of your eyes,

producing an illusion of depth.

You won't be able to wear glasses. Once you have donned the HMD, help

us check the following things:
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1. Is the display reasonably comfortable ? (Are the straps too tight ?)
2. Does the scene seem in acceptable focus in each eye ?
3. When you look with both eyes, are you seeing double ? (We can adjust the offset

between the two eyes).
4. Do both LCDs are about the same brightness ? (if not, adjust the display up or

down, or left and right your head bit).
5. If you look around the scene, can you still see all of it ? (if not, try adjusting the

display left or right a bit.)
6. Is stray light entering the headset. (is it pretty dark when the TV's are off?)

Training:

We'll first train you to report on various aspects of your sense of rotation and tilt. To do

this, we first need to familiarize you with visual motion illusions, and teach you a

vocabulary for describing them by means of three demonstrations.

Demonstration 1 - "Vection"

The term "vection" refers to sensation of self-motion - the sensation that

you, not the room, are moving. In the first demonstration, we'll position you lying down,

looking up at a polka-dotted surface that will start to rotate. After a few moments, you

will may experience the illusion that you are moving (even just a little), in the opposite

direction of the dots. The sensation probably will be of angular motion, which we call

"circular-vection", though you may also experience a component of "linear vection", i.e.

illusory motion in a straight line. The character of the vection sensation may remind you of

illusory motion sensations you have felt in wide screen movies, like IMAX.

You will report the onset of the illusion of vection with a joystick. Hold the

handle, and push-and hold the index finger trigger when you feel yourself starting to

move. Try to distinguish self-motion from scene motion. The illusion of self motion

often takes some time to develop. Once it does, you may feel that the dots in the scene are

moving more slowly, or even seem stationary.
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While the scene continues to rotate, it is also possible that your vection

sensation will disappear momentarily. If this happens, release the trigger to report this

"drop out", and press the trigger again when you feel motion once again. This way we can

measure the latency (delay) of your vection sensation after the scene starts to move, and

also the fraction of the time that you feel vection during the run.

After each run, we will ask you some follow up questions: How much of

the relative motion you saw seemed to be associated with motion of the scene (as opposed

to your own motion in the opposite direction?) Try to judge this saturation on a percentage

scale from 0 to 100. 0% means that you feel completely stationary and the scene seems to

be moving around you. At the other end of the scale, 100% means you feel as though you

are moving, and the scene is completely stationary. A saturation of 50% means you feel

that you are moving in one direction, and the scene seems to be moving in the opposite

direction at about the same speed. Practice estimating your vection saturation as the scene

spins, and give us verbally an estimate of the average level of vection saturation at the end

of each trial.

We will also ask you how the plane of your illusory motion seemed

oriented with respect to gravity. Did you feel that all your motion was in an earth-

horizontal plane, parallel to the floor of the laboratory ?

Demonstration 2 - Visually Induced Tilt

In this next demonstration, you'll be looking at the same scene, this time

while sitting upright. Once the scene starts to rotate, you'll probably feel some vection in

the direction opposite to the scene motion, and begin to feel tilted away from the erect

position. However, within a few moments, your sensation of tilt may stop increasing -i.e.

you'll feel tilted at an approximately constant angle with respect to the laboratory vertical. If

so, try to judge your final angle of tilt with respect to the vertical. How many degrees is it ?
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Notice that even though you are tilted at approximately a constant angle, you

may still have a sense of movement. You feel vection, and you may even be able to

estimate its percentage of saturation as in experiment 1, but paradoxically your tilt angle is

limited - you feel you should be tumbling head over heels, but you aren't !. It may be that

your angle of tilt will fluctuate. One moment you feel tilted, and the next you feel upright

again. We call this oscillating tilt sensation "alternating tilt'.

Try to judge the plane of your circular vection and tilt with respect to

gravity. Does your motion and tilt seem to be in an earth vertical plane ? Or is the axis

tilted somewhatforward (face down) or backward (face up) ? By how many degrees ?

To help you describe your tilt angle after the run, we have an artist's mannequin that you

can use to demonstrate your sensation after the test.

Demonstration 3 -Visual Reorientation Illusions

In this demonstration, we'll ask you to look at a scene showing a furnished

room while sitting upright. Notice the familiar objects in the room. The experimenter will

go through these with you. Next, the experimenter will roll the scene by successive small

increments around your line of sight. Try to keep your gaze centered on the middle of the

far wall, but try to take in the whole scene. Notice that as the room eventually turns upside

down, there is a natural tendency for you to feel that the ceiling of the room somehow

seems like a generic floor, and the floor seems like a ceiling. Of course you know which is

which if you think about it, because you remember details about "correct" orientation, but

nonetheless, the ceiling somehow seems like a floor. Instead of feeling upside down in a

right side up room, you may suddenly feel right side up in a room which is similar to the

original, except that objects that you remember were on your right now are found on your

left.. It may also be that the walls will sometimes seem like floors or ceilings, depending

on your orientation to them.
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We call these changes in perceived identities of the walls, ceiling, and floor

"visual orientation illusions". Notice the top button (not the hat) on the joystick, beneath

your thumb. As the experimenter moves the room around give the that button a brief click

(press-and-release) as soon as you notice that a ceiling, floor, or wall has exchanged

identities. This will tell us the scene orientation at which your "visual reorientation

illusions" occurred.

When the experimenter moves the image of the room you may feel some

illusory sensations of tilt. This is to be expected, and will be explored in the main

experiment.

That's basically all the training you need. If you have any questions about

the terminology, the experiment procedures, or anything else you'd like to clarify with the

experiment, this is a good time to do so.

EXPERIMENT

Based on your training experiences, we will now ask you to view a variety

of different rotating scenes in several different head positions, indicating vection onset and

dropout with your index finger on the joystick trigger, and any reorientation illusions

(changes in subjective identity of the ceiling, walls, or floor) with the thumb button. After

each run, we'll ask you to describe:

a) the percentage of saturation of your vection, if you can, on the 0-100% scale.

b) categorize your vection and tilt as:

none

constant tilt,

alternating tilt (feeling tilted and then suddenly upright again)
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full tumbling

c) categorize the plane of your illusory vection and tilt with respect to the vertical.

Was your motion and tilt in:

a supine plane,

an earth vertical plane,

a head tilted backwards plane, or

head tilted forward plane ?

Even though you've had some training, it will probably take you a couple

of runs to get comfortable with all this. Don't worry about it. We've allowed for this in

the statistical experiment design. Just do the best you can. If you realize you've made a

reporting mistake, tell the experimenter about it after the run. If you're uncertain about any

of the definitions, just ask again !

We really appreciate your taking the time to be a subject in this experiment.
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Virtual Environment Questionaire

Do you have medical conditions that would be aggravated if you became
motion sick? (yes,no)

If you said "yes," you should not be a subject for this experiment and you

should stop right now. Otherwise, please continue...

Have you ever experienced dizzy spells? (yes,no)

If yes, can you please describe these experiences?

or ... motion sickness? (yes,no)

If yes, can you please explain some of your experiences?

What is you dominant eye? (left,right)

To find your dominant eye, hold your index finger up about 10 inches from
your eyes and close each eye one at a time. If you close one eye and your finger

seems to move to to the side, the other eye is dominant.

Do you have normal peripheral vision? (yes,no)

Do you have normal depth perception? (yes,no)

Do you need corrective lenses? (yes,no)
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Check all that apply. I have...

[astigmatism OEdyslexia type(s):

Onear sightedness ]Iblind spots where:

Olfar sightedness i-phoria OLwall eye

]Ocolor-blindness color(s): Estrabismus

Do you have any hearing loss? (yes,no)

If yes, please explain how you havelare lostilosing your hearing.

Do you have any balance problems? (yes,no)

If yes, please describe the nature of your balance problem(s)?

Do you have a history of chronic ear infections? (yes,no)

If yes, can you please elaborate?

What is your gender?(female,male)
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10. Appendix : Experimental Software

This section describes the design and operation of the experiment software. The software

proved itself to be valuable in conducting the experiments in this thesis, and it has the

potential to help others who are performing research with WTK and virtual environments.

The software was written as a combination of modules using C, and the package is

portable to all compilers that have ANSI support. The software can also be adapted to other

virtual reality toolkits by simply rewriting the experiment-driver module.

10.1 Software Design

This section will discuss the design of the experiment software. First, the motivation and

requirements for the software are described. Then, the module-based implementation is

detailed. That section also outlines the advantages and disadvantages of the implementation.

Finally, the various modules in the program are expounded.

10.1.1 Background and Requirements

The software was required to be flexible to the point where the researcher could alter the

design of an experiment without having to recompile the executable. This flexibility was

balanced with the need for a dummy-proof method of conducting the experiments. For

example, rather than having a user input rotation speed, duration, scene, etc., each time an

experiment is run, the software reads them from text files, or scripts. When the software

relies on scripts, it can control the experiment with greater consistency and reliability.

A software interface that requires minimal interaction with a human

experiment controller makes it easier to conduct experiments in space. Astronauts would

require less time handling the software and more time performing tests on themselves. In

addition, the experiment could run itself, without needing an extra person to control the
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experiment. If the software takes the role of the controller, it reduces the number of work

hours required run the experiment and makes it possible to do more of them.

To run an experiment, the software needs the order in which to test different

conditions. An experiment schedule is made up of a series of runs in which a set of

conditions (or independent variables) is tested. In this experiment, a scene, velocity-profile,

direction and posture were specified in each run. Many variables can be specified with an

integer, i.e., direction can be 1 for CW and -1 for CCW rotation, but others, such as scene

content, require an amount of information that is better kept in its own file.

10.1.2 Implementation

The software's requirements indicate that an module-based design would improve its

reliability and enhance its ease of use. Most perceptual research is performed with a

balanced schedule of conditions, and, to do this, the software must repeat presentations of a

variable. In this experiment, for example, the schedule must periodically repeat a scene.

Rather than repeat the scene descriptions in the schedule, it would be simpler to describe

the scene in one place and have the schedule make references to it. The virtual motion

profile that is repeated for each run is also easier to reference rather than repeat. The scene

and profile, therefore, are components that can be combined to describe a specific run.

This module-based framework makes it simpler not only to schedule a set

of conditions, but also to modify an existing condition without making drastic changes to

the schedule itself. Suppose, for example, after creating a creating a schedule, you decide to

modify one of the scenes; a Monet makes a more interesting impression than the picture of

the space-shuttle launch. With a modular design, you would only need to change the scene

description in one place, and the entire schedule is changed automatically. Without a

modular design, however, you would need to go through the entire schedule, changing the
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room description each time it appears.

Experiment Description

Scenes: / Motion Profiles

Furnished room

Dotted Room

Symmetric Room7

crstart Q•emd3 0 /sec

Vbn•
T

brnstart Acel 50/se

T

Figure 10-1: Modular Experiment Description.

The scheduling is specified using a set of text files. Scenery, for example, is

described in one file, and velocity-profiles in another. The scheduling itself is placed in its

own file. The framework, shown in Figure 10-1, can therefore be easily altered with the

use of a text-editor. In the event that the experiment needs to be quickly redesigned (i.e.,

rapid experiment prototyping or mid-flight mission alterations), it can be done with

minimal knowledge of how the experiment software is written.

There are, however, some drawbacks with the implementations. Ideally, the

experiment-designer would want to specify all characteristics of the scene in one file.
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Besides the visual description, these characteristics include information such as expected

frame-rate. The nature of Sense8's World Toolkit and our hardware, however, make it

impossible to completely control frame-rate. The system is free-running, meaning that it

cycles as fast as it can through rendering and other tasks. Frame-rate, therefore, varies

slightly throughout the experiment.

When a large number of textures become visible on the head-mounted-

display's screens, it causes rendering time to increase, frame-rate to decrease, the scene

rotation to slow, and the subject to experience virtual acceleration. How this effects

immersion and fidelity is not completely known. Typically, vestibular excitation

accompanies acceleration, so when a subject is virtually accelerated without the appropriate

confirmation it causes a sensory conflict that may reduce the realism of the virtual

environment. One subject reported saturated vection while the scene was slowing down,

because, for a brief moment, he perceived that the room had stopped rotating so all his

apparent velocity was due only to his rolling. Various ways to minimize the variation are

being researched, but current hardware makes this difficult.

10.1.3 Modules

The software package is made up of 6 modules. The Menu Module handles the user-

interface and sends commands to all the other modules. The Subject Module handles all

access to the subject database and keeps track of what each subject has been through

already. Experiment control is handled by the Experiment Module. This module

determines the set of conditions to test, given a subjects treatment type, and it sends this

information to the Run Module which runs an experiment by interacting with a virtual-

reality tool kit such as Sense8's WTK. To adapt the software to another tool kit, one would

only need to rewrite the Run Module to use it. A Movement Module implements
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programmed velocity profiles. The software uses the Data Module to handle all storage,

retrieval and conversion of data.

10.2 Using the Software: Instructions

The user-interface is menu driven, and Figure 10-2 shows the menu hierarchy. A human

controller loads in a experiment description and performs various tasks including

performing experiments, manipulating subject information, and exporting of data into text

format.

To perform experiments, the controller must first select an existing subject

or create new one using the subject database. To support Latin-square designs, subjects are

given a treatment number that specifies where in the schedule the subject begins her

experiment. Future versions of the software will let the user rapidly design experiment

schedules using a powerful Create Experiment module. Currently, schedules must be

manually entered using a text-editor.

The options in the Data Menu allow one to export data into a text format

that is readable by most spreadsheet packages. This feature is currently limited to

producing reports of a specific format, but future versions will support user-definable

formats.

10.3 Source Code

The source code is listed in the following sections, starting with makefiles, continuing with

the headers (*.h), and ending with source (*.c) files. The code was compiled on a Packard

Bell Legend (90Mhz Pentium), using the WTK 2.0 virtual reality tool kit, High C

development system, and the Phar-Lap DOS extensions.
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Figure 10-2: Experimental Software User Interface.

10.3.1 central.mak

#Makefile to build central.exe : the experiment control software.

SRC
OBJ =

OBJECTS = ${OBJ)statmod.obj \
${OBJ)subjdb.obj \
$ {OBJ)runexp.obj \
${OBJ}joyutil.obj \
$ {OBJ)spin.obj \
$ {OBJ}myprint.obj \
${OBJ} fplan.obj \
$ {OBJ)move.obj \
$ {OBJ)expmod.obj \
$ {OBJ)datarec.obj \
${OBJ}dataread.obj \
${OBJ}track.obj \
${OBJ}joysens.obj \
$ {OBJ}dirutils.obj
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# link any other wtk demo

all: central.exe

central.exe: ${OBJECTS)
3861ink -cvsymbols @central.lnk -EXE central.exe

.c.obj: joysens.h datarec.h central.mak
hc386 -c -g -586 $*.c -Hpro=\wtk860\metaware.pro

10.3.2 central.Ink

! This link file is for MetaWare version 3.x compiler.

! This file is used by MAKE.BAT to link WTK.EXP using the Phar Lap
Version 5.0 3861Link program
The resulting protected mode executable WTK.EXP can be run under

! the Phar Lap 3861DOS-Extender using the RUN386.EXE command

subjdb.obj runexp.obj joyutil.obj spin.obj myprint.obj fplan.obj dataread.obj
move.obj expmod.obj datarec.obj track.obj joysens.obj dirutils.obj statmod.obj
-exeformat pe
-markphar
-subsystem dosstyle
-defstubname gotnt
-pebias 2000h
-STACK 131072
!-OFFSET 4000h
-maxdata 200000h
-twocase
-LIB \wtk860\lib\wtkspea
-LIB \wtk860\lib\libsp3dp
-LIB \wtk860\lib\libspp
-LIB \wtk860\lib\hcmlibp
-LIB \highc\small\HC586
-LIB \highc\small\HC387
-LIB \highc\small\HCNA
-attributes class CODE er
-attributes group CGROUP er
-attributes class DATA rw
-attributes class CONST rw
-attributes class BSS rw
-attributes class STACK rw
-attributes group DGROUP rw

10.3.3 subjdb.h

#ifndef _HSUBJDB
#define _H_SUBJDB

#include"runexp.h"

#define SUBJDBMAXWDLEN 100
typedef struct {

int numTreats;
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char expName [50 ]);
char expDir[SUBJDB_MAXWDLEN];
TreatmentInfoRec *Treatments;

} ExpInfoRec;

#define SUBJDB MAXNAMELEN 40
#define SUBJDB_MAXTREATMENTS 16

typedef struct {
char subjName[SUBJDBMAXNAMELEN];
int treatment;
int finished;

int gender;
int eyedata;
etc...

} SubjectInfo;

#define MAX_SUBJS 40
typedef struct {

int numSubjs;
int treatmentBound[SUBJDB_MAXTREATMENTS);
SubjectInfo Subjects[MAX_SUBJS];

} SubjectListRec;

void subjdbMain(void);

void subjdbReadSubjectInfo(FILE *subfile,SubjectInfo *aSub);
int subjdbReadAllSubjs(void);
void subjdbWriteSubjects (void);
void subjdbWriteSubjectInfo(FILE *subfile, SubjectInfo *aSub);
void subjdbNewSubject(void);
void subjdbInitialize (void);
void subjdbMainMenu(void);
void subjdbSubjectMenu(void);
void subjdbStatMenu(void);
void subjdbPrintMenu(int which);
void subjdbLoadExperiment(void);
void subjdbNewExperiment(void);
void subjdbSaveExpInfo(void);
void subjdbDeleteSubject(void);
void subjdbContinueSubject(void);
void subjdbLoadSubjectList(void);
void subjdbResetSubject(void);
void subjdbPrintAllSubjects(void);
void subjdbChooseSubject();
void subjdbUpdateFinished(SubjectInfo *a);
void subjdb_PerformStatsOnChosen(void);
#endif

10.3.4 expmod.h

#ifndef _H EXPMOD
#define HEXPMOD
#include "subjdb.h"
#ifndef FNAMESIZE
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#define FNAMESIZE 80
#endif
void expmodjmain(SubjectInfo *SInfo);
void expmod_setconfigfile(char *configfile);
int expmod_getnumtreats(void);

#endif

10.3.5 runexp.h

#ifndef _H_RUNEXP
#define _H_RUNEXP

#ifndef FNAMESIZE
#define FNAMESIZE 80

#endif

enum {
POSTURE_ERECT=1,
POSTURE_SUPINE

);

typedef struct {
char fplanfile[FNAMESIZE];
char scenefile[FNAMESIZE];
char triggfile[FNAMESIZE];
char triggdir[FNAMESIZE];
char treatcode[FNAMESIZE];
float expectedfps;
int direction;
int posture;

) TreatmentInfoRec;

void runexp (TreatmentInfoRec *info,char *subname);
#endif

10.3.6 fplan.h

#define FPLAN MAX_PARAMS 4

typedef struct {
int type; /*Type of movement*/
int NumUps; /*Expected number of updates*/
float p[FPLAN_MAX_PARAMS]; /*parameters for movement*/

} movementrec;

extern int fplannummovements,all_done;
extern movement_rec *FlightPlan;
extern fplan_actual_updates;

#define GetNM() fplan_num_movements
#define FP(i) FlightPlan[i]
#define fplan_NumUps(i) FP[i].NumUps
#define fplan_isdone() all_done
#define fplan_get_actualupdates () fplan_actual updates
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/*first line is for featured, second is featureless scale 2, third
featureless scaled 1*/

extern float EXPECTED_FPS;

/*#define EXPECTED_FPS 19.4*/
/*#define EXPECTED_FPS 12.5*/
/*#define EXPECTED_FPS 15.0*/

void fplan_load(char *name);
void fplanpicknload (void);
void fplan_read_params (int numparams);
void fplan_read_next_movement (void) ;
void fplan_start_nextmovement (void);
void fplan_exit(void);
int fplan_expups(void);
void fplan_domove(void);
void fplan_setexpectedfps(float a);

10.3.7 move.h

#include "wt.h"

#define DIRECTION_TOO 1

void move_init(void);
int move_isdone(void);
float move_getangle(void);
int move_getrot_count(void);
void move_setobject(WTobject *anobject);
void move_accelerate(void);
void movej erk (void) ;
void move_domove (void);
void move_reset(void);
void move_const_velocity(float v,float t);
void move_const_accel(float v,float a,float t);
void move_constjerk(float a, float v, float j, float t);
void move_getkinetics(float *v, float *a, float *j);
void move_setrotdirection(int rot);

enum {
DIRECTION_CW=1,
DIRECTION_CCW

);

10.3.8 datarec.h

/*datarec.h*/

/*RECTYPE will probably also include rotation angle*/
#ifndef _H_DATAREC
#define _H_DATAREC
#include <time.h>
typedef struct {

clock_t time;
float angle;
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) StampRec,*StampPtr,**StampHandle;

enum {(
data_rec_triggerl,
data_rec_trigger2

#define RECTYPE StampRec
#define RECTYPE2 RECTYPE
#define HedRec int

int datarec_openexp(char *expname,int maxentries);
int datarec_closeexp(void);
int datarec_recdata(char *info,int which);
#endif

10.3.9 dataread.h

#ifndef _H_DATAREAD
#define _HDATAREAD

#define GetDNE() data_numentries
#define GetDNE2() data.numentries2
#define TimeData(i) dataread[(i)] . time
#define AngleData(i) dataread[(i)].angle
#define TimeData2(i) dataread2[(i)].time
#define AngleData2(i) dataread2[(i) .angle
#define StampData(i) dataread[(i)]
#define StampData2(i) dataread2[(i)]

int openexpread(char *name);
int closeexpread(void);

extern RECTYPE *dataread;
extern RECTYPE *dataread2;
extern int data_numentries,data_numentries2;
extern int data_numexps;
#endif

10.3.10 joysense.h

/* joysens.h
joystick sensor update function detects button presses

*/

extern void WTjoystick_detbutt (WTsensor *sensor);

10.3.11 statmod.h

#ifndef _HSTATMOD
#define _H_STATMOD 1
#include "runexp.h"

void printstats(char *expname);
void performstats_ (void);

Page -121-



void performstats2_l (void);
void statmod_init(void);
#ifdef INDEPENDENT
int performstats(char *name);
#else
int performstats (char *name, TreatmentInfoRec *arec);
#endif
void do_analysis(char *name);
void statmod_init(void);
#endif

10.3.12 dirutils.h

#ifndef _H_DIRUTILS
#define _H_DIRUTILS
#include <dirent.h>

int SetDirectory(char *dirname);
void ListDirectory(int withnumbers);
struct _dirent *GetNthEntry(int N);
int GetNthEntryName(int N,char *name);
void dirwalk(char *dir, void (*fcn) (char *));
#endif

10.3.13 myprint.h

#ifndef _HMYPRINT
#define _H_MYPRINT

#include <stdarg.h>

/*#define ADAM_DEBUGGING 1*/
int myprint(char *fmt, ... );

#endif

10.3.14 subjdb.c

#include"wt.h"
#include<stdio.h>
#include<stdlib.h>
#include<errno.h>
#include<direct.h>
#include<string.h>
#include"subjdb.h"
#include<sys\types.h>
#include<sys\stat.h>
#include"dirutils.h"
#include" expmod.h"
#include"statmod.h"

#define GET_CHAR newgetchar

enum {
ksubjmenuMAIN,
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ksubjmenuSUBJECT,
ksubjmenuNEWSUBJ,
ksubjmenuDELETE,
ksubjmenuCONTMENU,
ksubjmenuSTATMENU,
ksubjmenuRESETSUBJ,
ksubj menuCHOOSESUBJ

extern TreatmentInfoRec Treatments[];
static char moduleName[25]="Subject Database";

/*subjdb globals

extern
static
static
static
static
static
static
char

char SubjectDir[80];
int subjectsLoaded;
Subj ectListRec subj dbAllSubj ects;
ExpInfoRec subjdbExpInfo;
int subjdb_initialized=0;
char subjdbExpFileName [1024];
int theChosen=0;

SubjectDir [ 80] ;

/*Syntactic Sugar*/
#define subjects(j)
#define num_subjs
#define subjname

(subjdbAllSubjects.Subjects[(j)])
subjdbAllSubjects.numSubjs

(theChosen) ? subjects(theChosen-1).subjName : "a subject.")

/*Decls*/
void DoQuit(void);
char newgetchar(void);
void subjdbInit(void);

/* a dirwalk function for finding all the cfg files */

#define MAX_CFGS 20
char cfg_files[MAX_CFGS] [128];
int numcfgfiles=0;

void findcfg(char *name){
if (strstr(name,".CFG"))

strcpy(cfg_files[numcfgfiles++],name);

/* For Choosing Subjects

void main(int argc,char *argv[]){
subjdbMain();

void subjdbMain(void) {
/*Main entry point into this
/*perform any initialization
if (!subjdb_initialized)

subjdbInitialize();

module */
if necessary */
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subjdbMainMenu() ;
/*This is the last you should do when running a WTKapp*/
printf("does this get run?\n");
WTuniverse_delete() ;

void subjdbInitialize(void){
/*Create the universe to be used*/
WTuniverse new (WTDISPLAY_STEREO, WTWINDOW_DEFAULT);
subjectsLoaded=0;
subjdbAllSubjects.numSubjs=0;
subjdbExpInfo.numTreats=0;
subjdbExpInfo.expName [0]=0;
subjdbExpInfo.expDir[0]=0;
subjdb_initialized=l;

/* Menus */
void subjdbMainMenu(){

char choice=0;
while (1) {

subjdbPrintMenu(ksubjmenuMAIN);
choice = GETCHAR();
switch (choice) {

case 'N':
case 'n':

subj dbNewExperiment () ;
break;

case 'L':
case '1':

subjdbLoadExperiment();
break;

case 'S':
case 's':

subjdbSubjectMenu();
break;

case 'T':
case 't':

subjdbStatMenu();
break;

case 'Q':
case 'q':

DoQuit();
break;

default:
break;

void subjdbSubjectMenu() {
char choice=0;
while ((choice!='X') && (choice!='x')){

subjdbPrintMenu(ksubjmenuSUBJECT);
choice = GETCHAR();
switch (choice){

case 'D':
case 'd':
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subjdbDeleteSubject ();
break;

case 'C':
case 'c':

subjdbContinueSubject();
break;

case 'N':
case 'n':

subjdbNewSubject ();
break;

case 'R':
case 'r':

subjdbResetSubject ();
break;

case 'P':
case 'p':

subjdbChooseSubject ();
break;

default:
break;

void subjdbStatMenu(){
char choice=0;
while ((choice!='X') && (choice!='x')){

subjdbPrintMenu(ksubjmenuSTATMENU);
choice = GET_CHAR();
switch(choice){

case 'C':
case 'c':

subjdbChooseSubject ();
break;

case 'S':
case 's':

if (!theChosen){
subjdbChooseSubject ();

}
if (theChosen){

subjdbPerformStatsOnChosen();
}
break;

case 'A':
case 'a':

{ /*ALL*/
int savedChosen=theChosen;
subjdbLoadSubjectList();
for (theChosen=l;theChosen<=num_subjs;theChosen++)

subjdb PerformStatsOnChosen();
theChosen=savedChosen;

}
break;

default:
break;

}
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void subjdbPrintMenu(int which){
switch (which) {

case ksubjmenuMAIN:
printf("%s: Main Experiment Menu\n",moduleName);
printf("Current Experiment is %s\n",subjdbExpInfo.expName);
printf("(N)ew Experiment\n");
printf("(L)oad other Experiment\n");
printf("(S)ubject menu\n");
printf("s(T)atistics menu\n");
printf("(Q)uit\n");
break;

case ksubjmenuSUBJECT:
printf("%s: Subject Menu\n",moduleName);
if (theChosen) printf("Chosen subject %s\n",subjects(theChosen-

1).subjName);
printf(" (N)ew subject\n");

printf("(D)elete %s\n", subjname);
printf("(C)ontinue/Begin testing %s\n",subjname);
printf("(R)eset %s\n",subjname);
printf("(P)ick a subject.\n");
printf("e(X)it, or back.\n");
break;

case ksubjmenuNEWSUBJ:
printf("%s: New Subject Menu\n",moduleName);
printf("(l-%d) Treatment type.\n",subjdbExpInfo.numTreats);
printf("or 0 to exit back.");
break;

case ksubjmenuRESETSUBJ:
printf("%s: Reset which subject?\n(0 to cancel)",moduleName);
subjdbPrintAllSubjects();
break;

case ksubjmenuDELETE:
printf("%s: Delete which subject?\n(0 to cancel)",moduleName);
subjdbPrintAllSubjects();
break;

case ksubjmenuCONTMENU:
printf("%s: Continue/Begin testing which subject?(0 to cancel)\n",

moduleName) ;
subjdbPrintAllSubjects();
break;

case ksubjmenuCHOOSESUBJ:
printf("%s: Choose a subject.\n",moduleName);
subjdbPrintAllSubjects();
break;

case ksubjmenuSTATMENU:
printf("%s: Stats Menu\n",moduleName);
if (theChosen) {

printf("Chosen subject %s\n",subjects(theChosen-1).subjName);
}
printf("Perform (S)tats on %s.\n",subjname);
printf("(C)hoose a subject.\n");
printf("Perform Stats on (A)11 subjects.\n");
printf("e(X)it\n");
break;

default:
printf("%s: Unknown Menu", moduleName);
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break;

void subjdbLoadExperiment (void) {
char *cwd=NULL;
int whichexp;
int i;
numcfgfiles = 0;
cwd = getcwd(NULL,SUBJDB_MAXWDLEN);
dirwalk(cwd,findcfg);
if (numcfgfiles) {

printf("Choose an experiment...\n");
again: for (i=1; i<=numcfgfiles; i++)

printf("(%d) %s\n",i,cfg_files[i-1]);
scanf("%d",&whichexp);
if (whichexp<=numcfgfiles) {

strcpy(subjdbExpFileName,cfg_files[whichexp-1]);
expmod_setconfigfile (subjdbExpFileName);

}
else {

printf("You must choose a number between 1 and %d\n",
numcfgfiles);

goto again;
}

}
else {

printf("There are no experiments in this directory\n");
printf("You must first create a new one.\n");
return;

}
if (cwd) free(cwd);

void subjdbNewExperiment (void) {
/*not implemented yet*/
printf("Not yet implemented\n");

}

void subjdbSaveExpInfo (void) {
/*not implemented yet*/
printf("This isnt implemented yet.\n");

}

void subjdbDeleteSubject (void) {
int i,start,last;
if (!theChosen) {

printf("You have not chosen a subject to delete\n");
return;

}
printf("Are you sure you want to delete %s(Y/N)?\n",subjname);
start = theChosen;
last = num_subjs--;
for (i=start;i<last;i++)
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subjects(i-1) = subjects(i);
subjdbWriteSubjects();

void subjdbChooseSubject() {
/*entry point for choosing a subject*/
theChosen = choosesubject (ksubjmenuCHOOSESUBJ);

}

void subjdbContinueSubject() {
if (theChosen==O)

theChosen = choosesubj ect (ksubjmenuCONTMENU);
if (theChosen>O) {

expmodmain(&subjects(theChosen-1));

void subjdbUpdateFinished (SubjectInfo *subjinfo) {
subjects(theChosen-1).finished = subjinfo->finished;
subjdbWriteSubjects();

void subjdbResetSubject() {
if (theChosen ==O)

theChosen= choosesubject(ksubjmenuRESETSUBJ);
subjects (theChosen-1).finished=O;
subjdbUpdateFinished(&subjects(theChosen-1));
printf("%s has been reset.\n",subjects(theChosen-1).subjName);

/* Subject Lists */

void subjdbLoadSubjectList (void) (
/*Loads a list of ALL test subjects (for a given

experiment into an indexed datastructure
for easy retrieval. Information loaded
is only administrative-related info. It wont
load in actual test results, only whether a
user has completed a certain test and other
relevant info. */

/*make a quick exit if already loaded subjects, and
delegate the work to another function*/

if (!subjectsLoaded) subjectsLoaded = subjdbReadAllSubjs();

int subjdbReadAllSubjs (void) (
printf("Readling all Subjs\n");
char fname[512];
FILE *subjfile=NULL;
strcpy(fname,SubjectDir);
strcat(fname,"subject.lst");

printf("looking for subjects in %s\n",fname);
if (subjfile = fopen(fname,"r")){

int i;
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fscanf (subj file, "%d", &subjdbAllSubjects.numSubjs);
/*make sure numsubjs is less than maximum allowable*/
num_subj s = (num_subj s<MAX_SUBJS) ? num_subj s : MAX_SUBJS;
printf("Num subjects is %d\n",num_subjs);
for (i=0;i<subjdbAllSubjects.numSubjs;i++)

subjdbReadSubjectnfo (subjfile, &subjdbAllSubjects.Subjects [i]);
fclose(subjfile);
return 1;

}
else {

printf("Couldnt open %s\n",fname);
return 0;

void subjdbReadSubjectInfo(FILE *subfile,SubjectInfo *aSub) ({
/*read subject info into the subject record pointed to
by *aSub. */

fscanf(subfile,"%s",aSub->subjName);
fscanf(subfile,"%d",&aSub->treatment);
fscanf(subfile,"%d",&aSub->finished);

void subjdbWriteSubjects (void) {
char fname[512];
FILE *subjfile=NULL;
strcpy(fname,SubjectDir);
strcat(fname,"subject.lst");

if (subjfile = fopen(fname,"w")){
int i;
fprintf (subjfile, "%d\n", subjdbAllSubjects.numSubjs);
for (i=0;i<subjdbAllSubjects.numSubjs;i++)

subjdbWriteSubjectInfo(subjfile,&subjdbAllSubjects.Subjects [i]);
fclose(subjfile);

void subjdbWriteSubjectInfo (FILE *subfile, SubjectInfo *aSub) {
/*write subject info from the subject record pointed to
by *aSub. */
fprintf (subfile, "%s\n" ,aSub->subjName);
fprintf(subfile, "%d\n" ,aSub->treatment);
fprintf(subfile,"%d\n",aSub->finished);

void subjdbPrintAllSubjects (void) {
/*reads in all subjects into DB if necessary and then
print out a list of them, with a number prepended so
that the user can choose that subject. The number
prepended corresponds to the index+1 in the loaded
data structure. */

int i;
printf("Printing subjects, numsubjs = %d, subjectsLoades= %d\n",

num_subj s, subj ectsLoaded);
if (!subjectsLoaded)
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subjdbLoadSubjectList();
for (i=1;i<=num_subjs;i++)

printf("(%2d) %8s(%ld,%ld)\n",i,subjects(i-l).subjName,
subjects(i-1).treatment,subjects(i-1).finished);

void subjdbNewSubject(void){
char fname[512];
SubjectInfo newsubj;
if (num_subjs == MAX_SUBJS) {

printf("Sorry, I dont have any room for more subjects.\n");
printf("Complain to the author!\n");
return;

}
subjdbLoadSubjectList();
printf("Subject's name: ");
scanf("%s",newsubj.subjName);

retry: printf("%s's treatment(l-%d): ",newsubj.subjName,
expmod_getnumtreats ());

scanf("%d",&newsubj.treatment);
if (newsubj.treatment>expmod_getnumtreats ()

newsubj.treatment<l){
printf("You must choose a value between l-%d.\n",

expmod_getnumtreats ());
goto retry;

}
printf("New subject, %s, treatment %d, created.\n",

newsubj.subjName, newsubj.treatment);
newsubj.finished = 0;
subjdbAllSubjects.Subjects[num_subjs++]=newsubj;
/*NB: NEED TO CREATE A FOLDER IF NECESSARY!*/
strcpy(fname,SubjectDir);
strcat(fname,newsubj.subjName);
mkdir(fname);
subjdbWriteSubjects();

void subjdb_PerformStatsOnChosen(void) {
/*Create Text Data files corresponding to the
subject specified by "theChosen" */

int i;
char temrp[FNAMESIZE],expname[FNAMESIZE];
printf("Doing Stats on %s...",subjname);
for (i=l;i<=24;i++){

strcpy(tenmp,SubjectDir);
strcat(temp,subjname);
temp [strlen(temp) +1]=0;
temp[strlen(temp) ='\\';
sprintf(expname,"%sf%d.dat",temp,i);
statmod_init();
if (!performstats(expname,&Treatments[i-l]))

printf("Could not open %s\n");

printf("...done.\n");
}
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void DoQuit(void){
/*If we need to do anything before quitting,
do it here*/

/*...nothing to do...*/

/*This picks the first character off a line*/

char newgetchar(void){
char line[80];
int i=0;
scanf("%s",line);
while (i<80 && (line[i]==' ' I line[i++]=='\t'));
return (line[i-1l);

int choosesubject(int menu){
int choice;
char line[80];

retry: subjdbPrintMenu(menu);
scanf("%s",line);
choice = atoi(line);
if (choice<0 II choice>num_subjs){

printf("You must choose a number between 0-%d\n",
num_subjs);

goto retry;

printf("You chose %d\n",choice);
return choice;

10.3.15 expmod.c

/*Experiment Module: Entry point into runexp*/
#include "wt.h"
#include<stdio.h>
#include "runexp.h"
#include "expmod.h"
#include "move.h"
#include <direct.h>
#include "myprint.h"
#define NUM_TREATS 100
/*#define INDEPENDENT 1*/
int noisy = 0;

void loadexperimentinfo (void);
void expmod_readtreatment(FILE *tfile,TreatmentInfoRec *Treat);
void doexperimentmenu(void);
void load_configuration(char *config);
void makeifnecessary(char *name);
void donexttreatment(void);

TreatmentInfoRec Treatments[NUM_TREATS];
static int NumTreats;
static char ExpFileName[80];
static char SceneDir[80);
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extern char SubjectDir[80];
static char ProfileDir[80];
static char cwd[100];
static char itsConfigFile[1024];

void expmod_setconfigfile(char *afile){
strcpy(itsConfigFile,afile);
load_configuration(afile);
loadexperimentinfo();

int expmodgetnumtreats() {
return NumTreats;

SubjectInfo itsSInfo;
#ifdef INDEPENDENT
void main(int argc, char *argv[]) {

#else
void expmod_main(SubjectInfo *SInfo){

if (SInfo) itsSInfo = *SInfo;
else return;

#endif
/*load configuration*/

#ifdef INDEPENDENT
load_configuration("vectexp.cfg");

#else
load_configuration(itsConfigFile);

#endif

#ifdef INDEPENDENT
WTuniversenew (WTDISPLAY_STEREO, WTWINDOW_DEFAULT);

#endif
loadexperimentinfo();

/*Do the treatment*/
#ifdef INDPENDENT

doexperimentmenu();
#else

donexttreatment();
#endif

/*cleanup*/
#ifdef INDEPENDENT

WTuniverse delete();
#endif

void makeifnecessary(char *name){
char testdir[120];
strcpy(testdir,cwd); /*copy wd into a string*/
strcat(testdir,name); /*append the dirname to check*/
testdir[strlen(testdir)-11=0; /*remove the last '\'*/
mkdir(testdir); /*make it if need to*/

I
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void expmod_readtreatment (FILE *tfile, TreatmentInfoRec *Treat){

strcpy(Treat->fplanfile,ProfileDir);
fscanf(tfile,"%s",Treat->fplanfile + strlen(ProfileDir) );
myprint("fplan file is in %s\n",Treat->fplanfile);
strcpy(Treat->scenefile,SceneDir);
fscanf(tfile,"%s",Treat->scenefile + strlen(SceneDir));
strcpy(Treat->triggdir,SubjectDir);
fscanf(tfile,"%s",Treat->triggfile);
fscanf(tfile,"%s",Treat->treatcode);
fscanf(tfile,"%f",&Treat->expected_fps);

#ifdef DIRECTION_TOO
fscanf(tfile,"%d",&Treat->direction);

#endif
fscanf(tfile,"%d",&Treat->posture);
/*Create the directories if they dont already exist*/

makeifnecessary (ProfileDir);
makeifnecessary (SceneDir);
makeifnecessary (Subj ectDir);

void loadexperimentinfo (void){
FILE *expfile=NULL;
int cnt;

if (expfile = fopen(ExpFileName, "r") ) {
fscanf(expfile,"%d",&NumTreats);
printf("Number of treatments: %d\n",NumTreats);
for (cnt=O;cnt<NumTreats;cnt++)

expmod_readtreatment (expfile, &Treatments[cnt]) ;
fclose(expfile);

void doexperimentmenu(){
unsigned int treatment=0,cnt;

/* noisy = 1;*/
#if INDEPENDENT

while (treatment<=NumTreats) {
printf("Choose a treatment\n");
for (cnt=l;cnt<=NumTreats;cnt++)

printf("(%d) %s\n",cnt,Treatments[cnt-1].treatcode);
printf("(%d) Exit\n",NumTreats+1);
scanf("%d",&treatment);
if (treatment<=NumTreats)

runexp (&Treatments [ treatment- 1], "j anedoe");
/*runexp (&Treatments[treatment-1],itsSInfo.subjName);*/

#else
/*code to choose appropriate experiment to run*/
donexttreatment() ;

#endif
}
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void load_configuration(char *config){
FILE *cfgfile=NULL;

/*cfgfile = fopen("vectexp.cfg","r");*/
cfgfile = fopen(config,"r");
if (cfgfile){

fscanf(cfgfile,"%s",SceneDir);
fscanf(cfgfile,"%s",ProfileDir);
fscanf(cfgfile,"%s",SubjectDir);
fscanf(cfgfile,"%s",ExpFileName);
getcwd(cwd,100);
cwd[strlen(cwd) +1)=0;
cwd[strlen(cwd)]='\\';

}
else {

printf("Error: Could not open configuration file.\nIs \"vectexp.cfg\"
really there?\n");
exit(0);

}

void donexttreatment (void){
int next;
char s[10];
next = ((itsSInfo.treatment-l)+(itsSInfo.finished)) % NumTreats;
printf("Now doing experiment %d of treatment %d (finished %d)\n",

next+l,itsSInfo.treatment,itsSInfo.finished);
printf("Subject's posture should be %s\n",

(Treatments[next].posture==POSTUREERECT)?"ERECT" :"SUPINE");
printf("Type 'G' to begin or 'X' to go back (and RETURN)\n");
itsSInfo.finished++;
scanf("% 10s",s);

if (s[0]!='X' && s[0]!='x'){
runexp(&Treatments [next],itsSInfo. subjName);
subjdbUpdateFinished(&itsSInfo);

10.3.16 runexp.c

/*runexp.c*/

#include "wt.h"
#include <strings.h>
#include <stdio.h>
#include <time.h>

#include "runexp.h"
#include "joysens.h"
#include "spea2d.h"
#include <time.h>
#include "datarec.h"
#include "fplan.h"
#include "move.h"
#include "myprint.h"
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#define NUMUPS 886
/*#define CHANGEORDER 1*/
void spin(WTobject *object);
void SetupSpin(int howmany);
void CleanupSpin(void);
static void displayjnenu();
static void setparameters();
void draw2d(short eye);
void toggle_joystick();
void recordjoystick();
FILE *infile = NULL;
FILE *outfile = NULL;

int num_rotation, num_tests, num_rotupdate;
char rotate_axis = Y;

WTpq lobbyview;
extern WTpq *spinView;
WTobject *lobby = NULL;
extern WTobject *spinObject;
extern int noisy;
/* frame rate checker */
static clock_t currtime;
static clockt prevtime;
extern char SceneDir[80];
extern char SubjectDir[80];
extern char ProfileDir[80];

/*joystic stuff*/

void benchit();
void (*actionfn) ();
void WTuniverse_setactions(actionfn);
void datastamp();
TreatmentInfoRec TInfo;

void runexp(TreatmentInfoRec *Info, char *subjectname)
{

WTp3 centre;
FILE *infile = NULL;
int rend;
short myevents[3];
float fr,totime;
char temp[90 ;
myevents[l] =WTEVENT_ACTIONS;
myevents[0) =WTEVENTOBJECTSENSOR;
myevents [2 =WTEVENTTASKS;

if (Info) TInfo = *Info;
else return;

printf("Fplanfile is %s\t",TInfo.fplanfile);
printf("scenefile is %s\n",TInfo.scenefile);
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strcpy(temp,TInfo.triggdir);
strcat(temp,subjectname);
temp [strlen(temp) +]=0;
temp[strlen(temp)]='\\';
strcat(temp,TInfo.triggfile);
strcpy(TInfo.triggfile,temp);
printf ("Trigg file is %s\n",TInfo. triggfile);
printf("Treatment Code is %s\n",TInfo.treatcode);
printf ("Expected FPS is %f\n",TInfo.expected_fps);

#ifdef DIRECTION_TOO
printf("Direction is %s\n", (TInfo.direction==DIRECTION_CW) ?"CW ":"CCW");
move_setrotdirection (TInfo. direction);

#endif
/*Initialize the universe, name it rotate, and set background to black*/
/*WTldraw_setactions(draw2d);*/
/*WTuniverse_new(WTDISPLAY_STEREO, WIWINDOW_DEFAULT);*/
WTuniverse_setname( "rotate");
WTuniverse_setactions (benchit);

#ifdef CHANGEORDER
if (WTuniverse_seteventorder (3,myevents))

printf("changed order\n");
#endif

Wruniverse_setbgcolor (OxFFF);

WTuniverse_setresolution (WTRESOLUTION_LOWNTSC);
/* Load the room as an object and assign the spin procedure to it.

Set viewpoint to that loaded from file*/

WTpq_init (&lobbyview) ;

lobby = WTobject_new(TInfo.scenefile,&lobbyview,. 0,TRUE,TRUE);
if (lobby) printf("Loaded the scene in/\n");
spinObject = lobby;
spinView = &lobbyview;
/*printf("Number of polygons: %d\n",WTuniverse_npolygons() ) ; */
/*printf("Number of polygons in object %d\n",WTobject_npolygons(lobby)); */
WTviewpoint_moveto (WTuniverse_getviewpoint (), &lobbyview);
WTobject_settask(lobby, spin);

/*Set the pivot point as the centre of the room*/
WTuniverse_getmidpoint (centre);
WTobj ect_setpivot (lobby, centre, WFRAME_WORLD);

/* Set default stereo viewing paramenters */
WTviewpointsetconvergence (WTuniverse__getviewpoint ( ), -63);
WTviewpoint_setparallax (WTuniverse_getviewpoint (),2.034);
WTviewpoint_setaspect (WTuniverse_getviewpoint (),0.81);
WTviewpoint_setviewangle (WTuniverse_getviewpoint (),0.655);

/* Set rendering for textured with perspective
correction and gouraud shading. */

rend = WTuniverse_getrendering();
rend = rend I WTRENDER_TEXTURED I WTRENDER_PERSPECTIVE;
if (noisy){

printf("rendering is %ld\n",rend);
printf("shading is %ld\n",WTRENDER_SHADED);
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WTuniverse_setrendering (WTRENDER_V_TEXTURE I WTRENDER_PERSPECTIVE );
if (noisy && 0){

printf("Parallax is set at:%f.\n",
WTviewpoint_getparallax (WTuniverse_getviewpoint ( ) ));

printf("Converegence is set at: %d.\n",
WIviewpoint_getconvergence(WTuniverse_getviewpoint) ) ) ;

/* load lights from file */
Wtlightload("mylights");

/*Set ambient light */
WTlight_setambient( 0.46);

/* open the keyboard */
WTkeyboard_open() ;
num_tests=1;
if (!datarec_openexp(TInfo.triggfile,NUMUPS))

printf("Problem opening the daq module");

else printf("DAQ open and waiting for data\n");

WTobj ect_remove (lobby) ;
/* Perform the test */

setparameters();
WTobject_add(lobby);
prevtime = clock ();
WTuniverse_ready() ;
togglejoystick();
/*initial data stamp*/
datastamp(data_rec_triggerl);
WTuniversego );
currtime = clock ();
/*one last datastamp*/
datastamp (data_rec_triggerl);
WTuniverse_setbgcolor (0x000);
WTuniverse_gol ();
num_rotupdate = fplan_get_actualupdates ();
fplan exit() ;
datarec_closeexp() ;
totime=((float) currtime-prevtime)/((float) CLOCKS_PER_SEC);
fr=num_rotupdate/ totime;
printf("Total time: %5.2f\tframe rate %5.2f\n", totime,fr);
CleanupSpin();

printf("Vacuuming the universe... swooooooop....");
toggle_joystick ( ) ;
/* all done; clean everything up.*/
WTruniversevacuum() ;
printf("Turning off the LIGHTS!\n");
WTlightdeleteall ();
WTlight_setambient (0.0);
printf( "<slurp> <slurp>\n");

I
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/**********************************************

Set parameters for rotation

static void setparameters()
{

int num=13;

/*NUMBER OF ROTATIONS*/
/*ROTATION SPEED*/
/*rotate_angle = ((float) num)*PI/1440.0; */
/*num_rotupdate = round((2*PI*((float)num_rotation)) / (rotate_angle)) ; */

fplan_setexpectedfps (TInfo.expected._fps);
fplan_load (TInfo. fplanfile);

num_rotupdate=fplan_expups () ;
printf("Number of expected rotation updates: %d\n",num_rotupdate);
SetupSpin(num_rotupdate+GetNM()*5);

/**********************************************

Display option menu
**********************************************

void display_menu()

printf(" 'q' Quit:\n");
printf(" '?' Print this info:\n");
printf(" 'k' Increase parallax:\n");
printf(" '1' Decrease parallax:\n");
printf(" 'a' Increase convergence:\n");
printf(" 's' Decrease convergence:\n");

10.3.17 spin.c

#include "wt.h"
#include "stdio.h"
#include "time.h"
#include "fplan.h"
#include "datarec.h"
#include "myprint.h"
#include "spea2d.h"
#include "..\tracker\track.p"

/**********************************************

Check for key presses and rotate room
***********************************************/

static int zeros=0;
static clock_t *cycle_time;
static float frame_rate;
static int cycle_count=0;
static short port = COM2;
WTobject *spinObject=NULL;
WTpq *spinView = NULL;
WTsensor *track; /* the Head Tracker */
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/*for 2d text display, display every 5th update*/
int rotsto_upd=5,upd_int=5;

/*function declarations*/
void togglejoystick();
void recordjoystick();

void spin(WTobject *object)
{

short key,conv;
float parallax;

/* get key presses, if any */
key = WTkeyboard_getlastkey();

switch(key){
case'?':

printf(" 'q' Quit:\n");
printf(" '?' Print this info:\n");
printf(" 'k' Increase parallax:\n");
printf(" '1' Decrease parallax:\n");
printf(" 'a' Increase convergence:\n");
printf(" 's' Decrease convergence:\n");
printf(" 'j' Turn joystick on/off:\n");
break;

case' j':
togglejoystick();
break;

case'k':
parallax = WTviewpoint_getparallax(WTuniverse_getviewpoint ));
parallax = parallax + 0.1;
WTviewpoint_setparallax (WTuniverse_getviewpoint (), parallax) ;
break;

case'l':
parallax = Wrviewpoint_getparallax(WTuniverse_getviewpoint());
parallax = parallax - 0.1;
WTviewpoint_setparallax(WTuniverse_getviewpoint(),parallax);
break;

case'a':
convy = WTviewpoint_getconvergence(Wruniversegetviewpoint());
convy = convy + 1;
Wrviewpoint_setconvergence(WTuniverse_getviewpoint(),conv);

printf("%d\n",conv);

break;
case's':

convy = WTviewpoint_getconvergence(WTuniversegetviewpoint());
convy = cony - 1;
WTviewpoint_setconvergence(WTuniverse_getviewpoint(),conv);
break;

case'o':
/* Initialize a Tracker sensor */
printf("trying to open head tracker\n");
track = WTsensor_new(WTtrackopen,WTtrack_close,WTtrack_update,

WTserial_new(port,(port==COM1?4:(port==COM2?3:-1)),
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(BAUD1921NPIDATA81STOPl),89),1,WTSENSOR_DEFAULT);
if (!track) WTerror("Couldn't find head tracker\n");
/* Scale sensor sensitivity with the size of the universe. */
printf("found head tracker. it is on");

WTsensor_setsensitivity(track, 1.0);
break;

case'p':
WTsensor_delete (track);
WTviewpoint_moveto (WTuniverse_getviewpoint (), spinView);

default:
break;

)
recordjoystick();
if (fplan_isdone()) {

frame_rate = WTuniverse_framerate();
WTobj ect_remove (spinObj ect);
WTuniversestop();

else fplan_domove () ;

char astr[40];

void draw2d(short eye){

WTsprgbcolor(255,255,255) ;
WTsprgbbcolor(0,0,0);
WTsptransp(0) ;
WTspselfont(11);
if (!rots_to_upd){

sprintf(astr,"%5.2f",WTuniverse_framerate();
/*
*WTuniverse_npolygons());
*/

WTsptext(O.40,0.50,astr);
rots_to_upd=upd_int;

else {
rots_to_upd--;
WTsptext(0.40,0.50, astr) ;

void benchit(){
cycle_time[cycle_count]=clock ( ) ;
if (cycle_count)

if (cycle_time[cycle_count]==cycle_time[cycle_count-1])

zeros++;
myprint("%d Zero cycle time at cycle %d!\n",zeros,cycle_count);

cycle_count++;

void SetupSpin(int howmany){
cycle_time = malloc(sizeof(clock_t)*(howmany));
cycle_count = 0;
zeros = 0;
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void CleanupSpin(void){
if (cycle_time)

free(cycle_time);

10.3.18 fplan.c

#include <stdio.h>
#include "fplan.h"
#include "move.h"
#include "myprint.h"

movementrec *FlightPlan=NULL; /*a
int fplan_num_movements; /*number
int fplan_index; /*an inde
purposes*/
FILE *fplan_file=NULL; /*file used to
int all_done;
int fplan_actual_updates;
float EXPECTED_FPS;
extern int noisy;
/*enum system is as follows: two digit number

rray of movements*/
of movements in array*/
x into the FlightPlan. Used for two

load from file*/

first digit is which is constant, the second
is which parameter specifies the end of the motion.
disp,veloc, accel, jerk, time = 0, 1, 2, 3, 4 respectively
numbers greater 100 are for linear motion

enum {
CONST_VELOC_TIME = 14,
CONST_ACCEL_DISP = 20,
CONST_ACCELTIME = 24

void fplan_load(char *name){
fplan_index = 0;
fplan_actual_updates = 0;
all_done=0;
movejinit ();
printf("trying to open %s...",name);
if (fplan_file = fopen(name,"r")){

int cnt;
fscanf(fplan_file,"%d",&fplan_num_movements);
printf("%d movements.\n",GetNM());
FlightPlan = (movement_rec *) malloc(sizeof(movement_rec)*GetNM());
for (cnt=0;cnt<fplan nummovements;cnt++)

fplan_read_next_movement();

else
printf("failed!\n");

if (fplan_file) fclose(fplan_file);
fplan_file=NULL;
fplan_index=-l;
fplan_start_next_movement();
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void fplan_picknload(void) {
fplan_load( "fplan.txt");

}

void fplanread_params (int numparams){
int cnt;
if (noisy) printf("parameters: ");
for (cnt=0;cnt<numparams;cnt++) {

fscanf(fplan_file, "%f",&(FP(fplan_index).p[cnt]));
if (noisy) printf("%f\t",FP(fplan_index).p[cnt]);

if (noisy) printf("\n ");
/*zero the rest*/
while (cnt<FPLAN_MAX_PARAMS)

FP(fplan_index).p[cnt++]=0.0;

void fplan_read_next_movement (void){
fscanf(fplan_file,"%d",&(FP(fplan_index).type));
if (noisy)

printf("movement %d of type %d\n",fplan_index,FP(fplan_index) .type);

switch (FP(fplan_index) .type) {
case CONST_VELOC_TIME:

fplan_read_params(2);
FP(fplanindex).NumUps =
break;

case CONST_ACCEL_DISP:
fplan_read_params (3);
break;

case CONST_ACCEL_TIME:
fplan_readparams (2);
FP(fplan_index).NumUps =
break;

EXPECTED_FPS*FP(fplan_index) .p[1 +1;

EXPECTED_FPS*FP(fplan_index) .p[l]+1;

default:
/*oops, unsupported movement*/
break;

fplan_index++;

void fplan_start_next_movement(void){
float v,a,j;
fplan_index++;
switch(FP(fplan_index).type){

case CONST_VELOC_TIME:
move_const_velocity(FP(fplan_index) .p[O],FP(fplanindex) .p[l]);
break;

case CONST ACCELDISP:
/*assume VO=0 for now*/
move_getkinetics(&v,&a,&j);
move_const_accel(v*180.0/PI,FP(fplan_index) .p[0],

sqrt(2*FP(fplan_index) .p [ /
FP(fplan_index).p[0]));

break;
case CONST_ACCEL_TIME:
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move_getkinetics(&v,&a,&j);
move_const_accel(v*180.0/ PI,FP(fplan_index) .p[0],

FP(fplan_index).p[l]);
break;

default:
/*not supported, dont do anything*/
break;

void fplan_exit (void){
printf("in fplan_exit...\n");
/*fplan_file is usually closed in fplan_load*/
if (fplan_file)

fclose(fplan_file);
fplan_file=NULL;
if (FlightPlan)

free(FlightPlan);
FlightPlan=NULL;

int fplan_expups(void){
/*number of expected updates*/
int cnt;
int expups=0;
for (cnt=O;cnt<fplan_num_movements;cnt++)

expups+=FP (cnt) .NumUps;
return (expups);

void fplan_domove(void){
if (FP(fplan_index).NumUps==0) {

if ((fplan_index+l) <fplannummovements)
fplan_start_next_movement();

else (all done=l);
}
fplan_actual_updates++;
move domove();
FP(fplan_index).Num.Ups--;
myprint("%d ",FP(fplan_index) .NumUps);

void fplan_setexpectedfps (float efps){
EXPECTED_FPS = efps;

}

10.3.19 move.c

#include "wt.h"
#include "move.h"
#include "fplan.h"

int ROTATE_VIEWPOINT;

float velocity; /*angular velocity in rad/sec */
int is_accelerating; /*is it constant accelerating (not jerk)*/
float acceleration; /*angular_accel in rad/sec/sec */
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int is_jerking; /*is it const jerking? d(accel)/dt != 0 */
float jerk; /*angular jerk in rad/sec/sec/sec */

int num_cycles; /*number of cycle in the 'path'*/
int cur_cycle; /*current point in the path */

int rot_count;
/*wont use anglepath*/
float *anglepath=NULL; /*an array of angles we want */

float view_angle=0.0; /*the current rotation angle (might not be actual viewing
angle with head tracker on)*/
float rotate_angle; /*the amount (rads) to rotate view/object in a cycle*/
float rotationdirection=l.0;
WTobject *itsObject=NULL;/*the room object in case we need it*/

extern int noisy;

void move_init(void) {
view_angle=0.0;
rot_count=0;

/* move_setrotdirection(DIRECTION_CW);*/
move_reset() ;

int move_isdone(void) {
return (cur_cycle>numcycles);

float move_getangle(void){
return (view_angle);

}

int movegetrot_count(void){
return rotcount;

}

void movesetobject (WTobject *anobject){
itsObject=anobject;

void move_accelerate (void) {
rotate_angle = acceleration/(2*EXPECTEDLFPS*EXPECTEDFPS) +

velocity/EXPECTEDFPS;
velocity += acceleration/(EXPECTEDFPS);

}
void move_jerk(void){

rotate_angle = jerk/(6*EXPECTED_FPS*EXPECTED_FPS*EXPECTED_FPS)+
acceleration/(2*EXPECTEDFPS*EXPECTEDFPS) + velocity/EXPECTED_FPS;

velocity += acceleration/(EXPECTED_FPS) + jerk/(2*EXPECTED_FPS*EXPECTEDFPS);
acceleration += jerk/(EXPECTED_FPS);

void move_domove (void) {
if (is_accelerating)

move_accelerate() ;
else if (isjerking)
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move.j erk () ;

view_angle += rotate_angle;
/*Sense8 says that rotating an object is less efficient than just rotating
the viewpoint. It has something to do with reordering a data-structure*/

/*WTobject_rotate(object,rotate_axis,rotate_angle,WTFRAMEWORLD);*/
WTviewpoint_rotate(Wruniverse_getviewpoint() ,Z,

rotationdirection*rotate_angle,WTFRAME_VPOINT);
rot_count++;

void move_reset(void){
isjerking=is_accelerating=0;
acceleration=jerk=0.0;
if (angle_path){

free(anglepath);
angle_path=NULL;

cur_cycle=num_cycles=0;

void move_const_velocity(float veloc,float time){
/*velocity in -degs/sec*/
/*WTK wants it in rads*/
if (noisy)

printf("move_const_velocity: veloc=%f time=%f",veloc,time);
move_reset();
rotate_angle = veloc * PI/180 / EXPECTED_FPS;
velocity = veloc * PI/180;
num_cycles=(int) EXPECTED_FPS*time;
if (noisy) printf("acceleration = %f, num_cycles = %d, velocity = %f,

rotate_angle = %f",
acceleration,num_cycles,velocity, rotate_angle);

I

void move_const accel(float VO, float accel,float time){
/*accelertion in deg/sec/sec, convert to rad/sec/sec */
/*V0 initial velocity in deg/sec */
if (noisy) printf("move_const_accel: VO=%f accel=%f time=%f\n",V0,accel,time);
move_reset();
acceleration = accel*PI/180;
is_accelerating = 1;
num_cycles= time*EXPECTED_FPS;
velocity = VO * PI/180;
rotateangle = velocity / EXPECTEDFPS;
if (noisy) printf("acceleration = %f, num_cycles = %d, velocity = %f,

rotate_angle = %f",acceleration,num_cycles,velocity,
rotateangle);

void move_const_jerk(float AO,float VO, float jk, float time){
/*AO, VO initial accel and veloc in deg */
/*jk is jerk in deg/sec/sec/sec */
move_reset() ;
jerk = jk*PI/180;
is_jerking = 1;
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numcycles = time/EXPECTED_FPS;
velocity = VO * PI/180;
rotate_angle = velocity / EXPECTED_FPS;
acceleration = AO * PI/180;

void move_getkinetics(float *v,float *a,float *j)(
*v=velocity;
*a=acceleration;
*j=jerk;

}

void move_setrotdirection (int rotdir)(
rotationdirection = (rotdir==DIRECTION_CW)?(1.0):(-1.0);
printf("Setting rotation direction to %f\n",rotationdirection);

}

10.3.20 datarec.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "datarec.h"
#include "runexp.h"

static FILE *expfile=NULL,*expfile2=NULL;
static RECTYPE *data =NULL,*data2=NULL;
static char

expname[FNAMESIZE],expname2 [FNAMESIZE],defname [FNAMESIZE]="expdata. dat";
static int expmaxentries,exppos,exppos2;
extern int noisy;

int datarec_openexp (char *name, int maxentries){
char *period,*slash;
/*pass name = NULL to get default name 'defname'
must pass maxentries > 0
returns 0 if there was a problem.
*/

if (noisy)
printf("openexp: name = %30s, maxentries = %d\n",name,maxentries);

if (maxentries>0){
data = (RECTYPE *) malloc(sizeof(RECTYPE)*maxentries);
data2 = (RECTYPE2 *) malloc(sizeof(RECTYPE2)*maxentries);

}
else {

printf("openexp: Must pass a greater than 0 for openexp\n");
return 0;

}
if (!data) {

printf("openexp: Could not allocate trigger 1 memory\n");
if (data2) free(data2);
data2=NULL;
return 0;

else if (!data2) {
printf("openexp: Count not allocate trigger 2 memory\n");
if (data) free(data);
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data = NULL;
return 0;

I
exppos=0;
exppos2=0;
if (name) {

strncpy(expname,name, FNAMESIZE);
strncpy(expname2,name,FNAMESIZE);

else {

strcpy (expname, defname);
strcpy(expname2,defname);

period = strrchr(expname2,'.');
slash = strrchr(expname2,'\\');
if ((period-slash)>5)

*(period-l) ='2';
else

strcpy(period,"t2.dat");
printf("filename 2 is %s\n",expname2);
return (expmaxentries = maxentries);

int datarec_recdata(char *info,int which){

if ((which==data_rec_triggerl) && data && (exppos<expmaxentries)) {
data[exppos++]=*((RECTYPE *) info);
if (noisy)

printf("recdata: recording info: time %d angle %f \n",
((RECTYPE *)info)->time,
((RECTYPE *)info)->angle);

if ((which==data_rec_trigger2) && data2 && (exppos2<expmaxentries)) {
data2[exppos2++]= *((RECTYPE2 *) info);
if (noisy)

printf("recdata: recording info: time %d angle %f \n",
((RECTYPE2 *)info)->time,
((RECTYPE2 *)info)->angle);

else return 0;
return 1;

int datarec_closeexp(void){
char response[30];
int printout=0,cnt;
if (data && data2) {

HedRec header=exppos,header2=exppos2;
int hd= 1,hd2=1;
printf("trigger 1 has %d, and trigger 2 has %d records\n",

exppos,exppos2);
printf("Do you want to see the stamps before saving them?\n");
scanf("%30s",response);
printout = (response[0]=='y' I1 response[0]=='Y');
if (expfile = fopen(expname,"wb")){
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printf("closeexp: Saving %d records\n",exppos);
if (printout) (

for (cnt=O;cnt<exppos;cnt++)
printf("Stamp %d\tangle=%5.2f\ttime=%ld\n",
cnt,data[cnt].angle,data[cnt].time);

}
/*write the header info*/
fwrite(&hd,sizeof(int), i, expfile);
fwrite(&header,sizeof(HedRec) , l,expfile);
/*write the experiment data*/
fwrite (data, sizeof (RECTYPE) ,exppos, expfile);

free(data);
data=NULL;
fclose(expfile);
expfile = NULL;

}
else {

printf("Could not open %s for saving trigger file!\n",expname);
goto didntwork;

if (expfile2 = fopen(expname2,"wb")) {
printf("closeexp: Saving %d records\n",exppos2);
if (printout) {

for (cnt=0;cnt<exppos2;cnt++)
printf("Stamp %d\tangle=%5.2f\ttime=%ld\n",
cnt,data2[cnt].angle,data2[cnt].time);

}
fwrite(&hd2,sizeof(int), i, expfile2);
fwrite(&header2,sizeof(HedRec) , l,expfile2);
fwrite(data2, sizeof(RECTYPE2), exppos2,expfile2);
free(data2);
data2 =NULL;
fclose(expfile2);
expfile2=NULL;
return 1;

}
else {

printf("Could not open %s for saving trigger 2 file!\n",expname2);
1

else {
printf("closeexp: No open experiment\n");

didntwork:
free (data);
free (data2);
return 0;

10.3.21 dataread.c

/*Dataread.c */

#include <stdio.h>
#include <stdlib.h>
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#include <string.h>
#include "datarec.h"
#include "dataread.h"
#include "myprint.h"
#include "statmod.h"

static FILE *expfile=NULL,*expfile2=NULL;
RECTYPE *dataread = NULL;
RECTYPE2 *dataread2 = NULL;
static char expname[20],defname[20] ="expdata.dat";
int data_numentries,data_numentries2,data_numexps;

int openexpread(char *name);
int closeexpread(void);
void secondfilename(char *a, char *b);

int openexpread(char *name){
/*1/11/95 Changed it so that it opens both trigger files*/
/*Initially it will only load in the first experiment */
char name2[90];
char *period, *slash;
int num_exp;
/* Open second trigger file too */
strcpy(name2,name);
period = strrchr(name2,'.');
slash = strrchr(name2,'\\');
if ((slash) && (period-slash)>5)

*(period-l) = '2';
else

strcpy(period,"t2.dat");
if (!dataread){

myprint ("openexpread: open file %s\n",name);

if (expfile=fopen(name,"rb")) {
fread(&num_exp,sizeof(int),l,expfile);
fread(&data_numentries,sizeof(HedRec),1,expfile);

/*printf("openxpread: %d entries being read\n",GetDNE());*/
dataread = malloc(sizeof(RECTYPE)*data_numentries);
fread(dataread,sizeof(RECTYPE),datanumentries,expfile);
if (expfile2 = fopen(name2,"rb")){

fread(&num_exp,sizeof(int), 1,expfile2);
fread(&data_numentries2,sizeof(HedRec), expfile2);
/*printf("openexpread: %d entries being read\n",
data_numentries2) ;*/
dataread2 = malloc(sizeof (RECTYPE2) *data_numentries2);
fread(dataread2,sizeof(RECTYPE2),data_numentries2,expfile2);

myprint ("openexpread: done\n");
strncpy(expname,name,20);
fclose(expfile);
fclose(expfile2);
return GetDNE();

else {
myprint("openexpread: could not open second trigger

file\n");
fclose(expfile);
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free(dataread);
return 0;

}
}
else {

myprint("openexpread: could not open %s\n",name);
return 0;

}
}
else {

myprint("openexpread: already an experiment file open\n");
return 0;

}

int closeexpread(){
if (dataread){

free(dataread);
if (dataread2) free (dataread2);
dataread=dataread2 =NULL;
myprint("closeexpread: closed experiment\n");
return 1;

}
else {

myprint("closeexpread: nothing to close\n");
return 0;

}

10.3.22 joysens.c

/*joysens.c: Joystick Update Driver */

#include <stdio.h>
#include <stdlib.h>
#include "mathlib.h"
#include "wt.h"

#include "mathlib.p"

void WTjoystick_detbutt(WTsensor *sensor);

/*
* read joystick
*/

void WTjoystick_detbutt(WTsensor *sensor)
{

/*Dont need any work done here. Just call the
raw up date function and let the WT_action
function do all the work */

WTjoystick_rawupdate(sensor);

10.3.23 joyutil.c

#include "wt.h"
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#include <stdio.h>
#include "joysens.h"
#include "datarec.h"
#include "move.h"
void datastamp(int a);
void toggle_joystick();
void recordjoystick();

/*Joystick utilities*/
WTsensor *joystick=NULL;
FLAG prevtrigger=0,prevtrigger2=0;

/*assume joystick starts out with trigger
released*/

void toggle_joystick(){
if (!joystick){

joystick=WTsensor_new(WTjoystick_open,WTjoystick_close,
WTj oystick_rawupdate, NULL, 1, WrSENSOR_DEFAULT);

/*joystick=WTmouse_new(); */
if (!joystick) printf("Warning, couldnt open joystick!\n");
else {

printf("Joystick sensor created...running\n");
printf("sensitivity %f\n",WTsensor_getsensitivity(joystick));
WTsensor_setsensitivity(joystick,1.0);
WTviewpoint_addsensor (WTuniverse_getviewpoint ( ),joystick);

else {
WTsensor_delete(joystick);
joystick=NULL;
printf("Joystick sensor destroyed.\n");

void record_joystick(){
if (joystick){

FLAG triggerdown,triggerdown2;
long buttons;
buttons = WTsensor_getmiscdata(joystick);

triggerdown = buttons & WTJOYSTICK_TRIGGERDOWN;
triggerdown2 = buttons & WTJOYSTICK_TOPDOWN;

if (triggerdown != prevtrigger){
/*Stamp when pressed and released only*/
datastamp(data_rec_triggerl);
prevtrigger = triggerdown;

if ((prevtrigger2 == 0) && (triggerdown2))
/*Stamp when pressed (not when released) */
datastamp(data_rec_trigger2);

prevtrigger2=triggerdown2;

static RECTYPE dummyRec;
void datastamp(int which){
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durmyRec. time=clock() ;
dummyRec .angle=move_getangle ();
datarec_recdata(( char *) &dummyRec,which);
printf("stamping at %if, time %ld on %d\n",dummyRec.angle, dunmyRec.time,

which) ;

10.3.24 statmod.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "datarec.h"
#include "dataread.h"
#include "myprint.h"
#include "s tatmod.h"
#include <math.h>

#define PI 3.14159
#define THRESHOLD 0.500
#define TOTAL_ROTATIONS 3
#define RESOLUTION 36
#define MAX_CELLS 20
#define ORESOLUTION RESOLUTION*TOTAL_ROTATIONS
#define SECANGLEBEG(i) (i*2.0*PI/RESOLUTION)
#define SECANGLEEND(i) ((i+1)*2.0*PI/RESOLUTION)
#define THRESHOLD_ARC (2.0*PI/RESOLUTION*THRESHOLD)

#define RAD90 (RAD180/2.0)
#define RAD180 PI
#define RAD270 (RAD180*3.0/2.0)
#define RAD360 (2.0*RAD180)
#define REORIENT_MARGIN (RAD180/6.0) /*30.0 degrees*/
#define WANT_BINS 1
#define WANT_RAW 1
#define IN_SECONDS 1
#define WANT_VERIFICATION 1
#define PLAN_A 1

int
vectionbins [RESOLUTION],dropinbins [RESOLUTION],dropoutbins [RESOLUTION],reorientbins[
RESOLUTION] ;
int
ovectionbins [ORESOLUTION],odropinbins [ORESOLUTION],odropoutbins [ORESOLUTION],oreorie
ntbins [ORESOLUTION];
StampRec dropins[MAX_CELLS];
StampRec dropouts[MAX_CELLS];
StampRec reorients [MAX_CELLS];
int reorient_wall[MAX_CELLS];
int num_dropins;
int numdropouts;
TreatmentInfoRec *TreatInfo=NULL;

float percentvection;
float latency;
float angle_latency;
int total_vection=0,total_experiment=0,total_reorients;
int begin time,end_time;
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int relative(float a, int b);
int whichsector(float a);
int owhichsector(float a);
void IncrAllBins(int z[],int a);
void IncrBins(int z[],int a, int b, int c);
int pastthreshold(float a);
void fixangles(float *, float *, int *);
void perform_vection_stats(float begangle,float endangle,

int secnumb,int secnume,int numrevs,int overall);
int find_wall(float angle);

int statmod_done;
void statmod_menu(void){

char choice;
statmod_done = 0;
while (!statmod_done){

printf("Statistics Module Menu\n");
printf("Perform analysis on (I)ndividual run\n");
printf("Perform analysis on (S)ubject\n");
printf ("E(X)it\n");
scanf("%c",&choice);
switch (choice) {

case 'I':
case 'i':

/*AnalyseIndividualRun();*/
break;

case 'S':
case 's':

/*AnalyseSubject();*/
break;

case 'X':
case 'x':

statmod_done = 1;
break;

void statmod_init(void){
int cnt;
StampRec zerostamp;
zerostamp.time = 0;
zerostamp.angle = 0.0;

total_vection=0;
totalexperiment=0;
total_reorients=0;
begin_time= end_time = 0;
for (cnt=0;cnt<RESOLUTION;cnt++){

vectionbins[cnt] =0;
dropinbins[cnt] =0;
dropoutbins [cnt] =0;
reorientbins[cnt]=0;

}
for (cnt=0;cnt<ORESOLUTION;cnt++){

ovectionbins [cnt] =0;
odropinbins[cnt]=0;
odropoutbins[cnt]=0;
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oreorientbins[cnt]=0;

for (cnt=O; cnt<MAX_CEULLS;cnt++) (
dropins [cnt] =zerostamp;
dropouts[cnt] =zerostamp;
reorients[cnt]=zerostamp;
reorientwall [cnt] =0;

}
num_dropins=0 ;
num_dropouts:= 0 ;

void do_analysis(char *name){
statmod_init();
/*performstats(name);*/

}

int findwall(float angle){
float phi,psi;
int n,wall;
phi=fmod(angle, RAD360);
psi=fmod(phi,RAD90);
n=floor(phi/RAD90);
if (psi>REORIENT_MARGIN) {

/*printf("adding one\n");*/
wall=(n+l) % 4;

}
else

wall=n % 4;
return wall;

void performstats2_1 (void) {
int exppos;
int secnum;
int removed=();

if (0) printf("Sorting reorients: %d\n",GetDNE2());
if (oreorientbins[0]) {

printf ("orientbins[0]==1 and I havent even started yet!\n");
getch( : ;

for (exppos=0;exppos<GetDNE2() ;exppos++){
float angle;
removed=0;
angle = AngleData2(exppos);
if ((angle==AngleData(GetDNE()-l)) && (exppos==0)) {

printf("ignoring reorient %d at %f\n",exppos+l,angle);
removed=l;
break;

/*now find out which wall its fallen on*/
if (exppos==0)

reorientwall[exppos]=find_wall(angle);
else (

float diff=angle-AngleData2 (exppos-1);
#ifdef PLANA

reorient_wall[exppos]=find_wall(angle);
if ((reorient_wall[exppos]==reorient_wall[exppos-l])
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&& (diff<(RAD90+REORIENT_MARGIN))){

/*If two reorientations have the same surface, we need to check
and make sure that they are not too close, i.e., that the user
did not accidentally push the reorientation button several times.
Also we need to move the reorientation to the next surface if the
previous one occurred early enough. Note: settin the reorientation
to the negative of its designated surface is tantamount to "removing"
it. The reorientations are not outright removed so that the researcher
can see where subjects reorientations are being "removed"*/

if (fmod(angle,RAD90)>REORIENT_MARGIN){
/*Two angles in the first section of the region*/

reorient_wall[exppos]=-reorient_wall[exppos];
}

else if ((fmod(AngleData2(exppos-1),RAD90)<=REORIENTMARGIN)
&& (diff<REORIENT_MARGIN)) {

/*Two angles in the second part of the region
or two too close in the first part of the region
*/

reorient_wall[exppos]=-reorient_wall[exppos];
}
else if ((fmod(AngleData2(exppos-1),RAD90)<=REORIENT_MARGIN)

&& (fmod(angle,RAD90)>REORIENT_MARGIN)){
/*Two in the first part of the region. This time, on between -60 and -30

and one between -30 and 0*!/
reorient_wall[exppos]=-reorient_wall[exppos];

else {
/*Two reorientations that are far enough apart for the second one to
be moved to the next surface*/

reorient_wall[exppos] = (reorient_wall[exppos]+1)%4;

I
#endif
/*note: PLAN_B was a previously used surface-scheme but was improved upon
in PLAN_A. */

#ifdef PLAN_B

diff=fmod(diff,RAD360);
if ((diff>REORIENT_MARGIN) && (diff<=(RAD90+REORIENT_MARGIN)))

reorientwall[exppos]=(reorientwall[exppos-l]+1)%4;
else if (diff<=(RAD180+REORIENT_MARGIN))

reorientwall[exppos]=(reorientwall[exppos-1]+2)%4;
else if (diff<=(RAD270+REORIENT_MARGIN))

reorient_wall[exppos]=(reorient_wall[exppos-1]+3)%4;
else /*same wall as before*/

reorientwall[exppos]=reorient_wall[exppos-1 ;
#endif

}
/*fix angle, make sure between 0 and 2*PI*/
/*printf("angle is %f\n",angle);*/
if (reorient_wall[exppos]>=0 && !removed){

secnum = owhichsector(angle);
oreorientbins[secnum]++;
while (angle>2.0*PI) angle -= 2.0*PI;
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while (angle<-2.0*PI) angle += 2.0*PI;
/*what sector it falls in*/
secnum = whichsector(angle);
reorientbins[secnum]++;

)
if (!removed) {

reorients[exppos]=StampData2(exppos);
total_reorients++;

I

enum {
NOT_OVERALL = 0,
OVERALL = 1

void performstats_l (void)
int exppos;
int latencyset=0;
int secnume,secnumb,osecnume,osecnumb;
int numrevs;
latency=0.0;
angle_latency=0.0;
if (0) printf("analyzing dropin/dropouts...\n");
for (exppos=l;exppos<(GetDNE()-1) ;exppos+=2)

float begangle,endangle,obegangle,oendangle;
/* this is for percent of time trigger down*/

if ((exppos==l) && (TimeData(exppos)==TimeData(exppos-1)) &&
(AngleData(exppos)==AngleData(exppos-1))){
exppos++;

/*printf("%s\t%d\n",TreatInfo->treatcode,exppos) ; */

if (exppos>=(GetDNE()-1)) {
printf("breaking!\n");
break;

)
total_vection=total_vection +

(TimeData((exppos+1))-
TimeData(exppos));

/*fix the angles. Change angles to be within 0 and 2PI
and return number of complete revolutions in numrev*/

obegangle=begangle = AngleData((exppos));
oendangle=endangle = AngleData((exppos+1));
/*first do the "overall" bins*/
osecnumb = owhichsector(obegangle);
osecnume = owhichsector(oendangle);
fixangles(&begangle,&endangle,&numrevs);
secnumb = whichsector(begangle);
secnume = whichsector(endangle);
/*numrevs = 0 for overall since there is no folding*/

/*
printf( "calling perform o stats %f,%f,%ld,%ld\n", begangle,
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endangle, secnumb, secnume);
*/
perform_vection_stats(obegangle,oendangle,osecnumb,osecnume,0,OVERALL);
/*

getch();
*/
/*

printf("calling perform stats %f,%f,%ld,%ld\n" ,begangle,
endangle, secnumb, secnume);

*/

perform_vection_stats(begangle,endangle,secnumb,secnume,numrevs,NOT_OVERALL);

if (pastthreshold(oendangle-obegangle)) {
odropinbins[osecnumb] ++;
dropinbins [secnumb] ++;
dropins [numdropins++] =StampData(exppos);

if (!latencyset){
latency = ((float) (TimeData(exppos)-TimeData(0)))/

((float) CLOCKS_PER_SEC)-1.0;

angle_latency=AngleData (exppos);
latencyset=l;

}
if (((exppos+2)<GetDNE(O) &&

!((exppos==(GetDNE()-3)) &&
(AngleData(exppos+l)==AngleData(exppos+2)))){
/*last condition weeds out those 'dropouts'
that occur when the actual scene motion
has stopped*/

odropoutbins[osecnume]++;
dropoutbins[ secnume] ++;
dropouts [num_dropouts++] =StampData( exppos+l);

myprint ( "secnumb=%d\tsecnume=%d\tbeg=%f\tend=%f\n",secnumb, secnume,
begangle, endangle);

end_time = TimeData((GetDNE()-1));
begin_time = TimeData(0);

total_experiment=end_time - begin_time + CLOCKS_PER_SEC*2.0;
percentvection = ((float) total_vection)/((float) total_experiment);
if (0) printf("...done\n");

void perform_vection_stats(float begangle, float endangle, int secnumb,int
secnume,int numrevs,int overall){

if (begangle<endangle) { /*case I*/

myprint("case I .. ");

if (secnumb==secnume) { /*case a or b*/
/*increment secnumb/e bin if past threshold*/
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myprint("case a or b..");
if (pastthreshold(endangle-begangle)) (

if (overall)
ovectionbins [secnumb] ++;

else
vectionbins [secnumb] ++;

}
}
else { /*case c or d*/

/*incr range from scnumb+1 to secnume-1*/
/*and check if threshold is met in
secnume and secnumb*/

myprint("case c or d..");

if (overall)
IncrBins(ovectionbins,secnumb+l,secnume-1,1);

else
IncrBins(vectionbins,secnumb+l,secnume-1,1);

if (pastthreshold(SECANGLEEND(secnumb)-begangle)) {
if (overall)

ovectionbins [secnumb] ++;
else

vectionbins[ secnumb] ++;
}
/*if endangle>SECANGLEBEG(secnume) then it means
we are dealing with unfolded angles and the angle
went beyond the ORESOLUTION, so this condition
ensures that the last sector is included in the
vection reports for unfolded angles.
*/

if ((endangle>SECANGLEBEG(secnume)) I I
pastthreshold(endangle-SECANGLEBEG(secnume) ) ) {
if (overall)

ovectionbins [secnume] ++;
else

vectionbins [secnume] ++;

if (numrevs)( /*If any complete revolutions
deal with them now*/

if (overall)
IncrAllBins(ovectionbins,numrevs);

else
IncrAllBins(vectionbins,numrevs);

myprint("revs = %d\n",numrevs);
}

else ( /* case II */
/*unfolded angles should never reach this point*/
if (overall){

printf("I'm not supposed to be here!\n");
printf ( "%f\t%f\t%d\t%d\n",begangle,endangle,secnumb,secnume);
/*getch();*/

myprint("case II... ");

if (secnumb==secnume) { /*case a or b*/
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/*increment secnumb/e bin if past threshold*/

myprint(" a or b..");

if ((begangle!=endangle) &&
pastthreshold(2.0*PI/RESOLUTION-(begangle-endangle))){
if (overall)

ovectionbins[secnumb]++;
else

vectionbins [secnumb] ++;
}

}
else { /*case c or d*/

/*incr range from scnumb+l to secnume-l*/
/*and check if threshold is met in
secnume and secnumb*/

myprint(" c or d..");

if (overall) {
IncrBins(ovectionbins,secnumb+l,RESOLUTION-l,1);
IncrBins(ovectionbins,0,secnume-l,1);
if (pastthreshold(SECANGLEEND(secnumb)-begangle))

ovectionbins[secnumb]++;
if (pastthreshold(endangle-SECANGLEBEG(secnume)))

ovectionbins[secnume]++;
}
else {

IncrBins(vectionbins,secnumb+l,RESOLUTION-l,1);
IncrBins(vectionbins,0,secnume-l,1);
if (pastthreshold(SECANGLEEND(secnumb)-begangle))

vectionbins[secnumb]++;
if (pastthreshold(endangle-SECANGLEBEG(secnume)))

vectionbins[secnume]++;
I

if (nu.nrevs)
if (overall)

IncrAllBins(ovectionbins,numrevs);
else

IncrAllBins(vectionbins,numrevs);

myprint (" revs = %d\n",numrevs);

}
/*done with the Vection Bins*/

#if 0
/*do drop in and drop out bins*/
if (overall).{

if (pastthreshold(endangle-begangle)){
odropinbins owhichsector(begangle)]++;
o)dropoutbins[owhichsector(endangle) ]++;

}
#if 0

if (owhichsector(begangle)==0)
printf("adding a dropin at 0, angle is %if\n",begangle);
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if (owhichsector(endangle)>=ORESOLUTION){
printf("hey, my end sector %ld (angle=%lf) is gte

OReSOLUTION! \n" ,owhichsector (endangle) ,endangle);
getch();

#endif

else (

if (((endangle>begangle) && (pastthreshold(endangle-begangle))) ]
((begangle>endangle) && (pastthreshold(endangle-begangle+2.0*PI))))

dropinbins [whichsector (begangle)] ++;
dropoutbins [whichsector( endangle)] ++;

#endif

void printstats(char *expname){
FILE *out=NULL;
char outname[901;
char *period;
int cnt;
strcpy (outname, expname);
if (period=strstr(outname, ".")) *period=0;
strcat(outname,".cht");
out = fopen(outname, "w");

#ifndef INDEPENDENT
if (out) {

fprintf (out, "%s\n",TreatInfo->treatcode);
fprintf (out,"%f\n",2.0*(1.5-((float) TreatInfo->direction)));
fprintf (out, "%d\n",TreatInfo->posture);
/*(TreatInfo->posture==POSTURE_ERECT) ? "ERECT" : "SUPINE");*/
fprintf (out, "%f\n", latency);
fprintf(out,"%f\n", anglelatency);

#endif

#ifdef INDEPENDENT
printf("TotaTrigTime\t%d\nTotalExpTime\t%d\nReorients %d\n",

total vection, total_experiment, total_reorients);
printf("Bin #\trange\t\tvection\tdropins\tdropouts\treorients\n");

#endif
if (out) {

fprintf (out,"%d\n%d\n",total_vection, totalexperiment);
#ifdef WANTBINS

fprintf(out,"Bin #\trange\t\tvection\tdropins\tdropouts\treorients\n");
#endif /*WANT_BINS*/

for (cnt=0;cnt<RESOLUTION;cnt++) {
#ifdef INDEPENDENT

printf( "%d\t%6.3f\t%6.3f\t%d\t%d\t%d\t%d\n",cnt,SECANGLEBEG(cnt),
SECANGLEEND (cnt) , vectionbins [cnt],dropinbinscnt],
dropoutbins [cnt] ,reorientbins [cnt]);
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#endif
#ifdef WANT_BINS

if (out)
fprintf (out, "%d\t%6.3f\t%6.3f\t%d\t%d\t%d\t%d\n",cnt,SECANGLEBEG(cnt),

SECANGLEEND(cnt),vectionbins[cnt],dropinbins[cnt],
dropoutbins [cnt],reorientbins [cnt]);

#endif

for (cnt=0;cnt<ORESOLUTION;cnt++) {
#ifdef INDEPENDENT

printf("%d\t%6.3f\t%6.3f\t%d\t%d\t%d\t%d\n",cnt,SECANGLEBEG(cnt),
SECANGLEEND(cnt),ovectionbins[cnt],odropinbins[cnt],
odropoutbins[cnt],oreorientbins[cnt]);

#endif
#ifdef WANT_BINS

if (out)
fprirntf (out, "%d\t%6.3f\t%6.3f\t%d\t%d\t%d\t%d\n",cnt,SECANGLEBEG(cnt),

SECANGLEEND(cnt),ovectionbins[cnt],odropinbins[cnt],
odropoutbins[cnt],oreorientbins[cnt]);

#endif
}
if (out)(

#ifdef WANT_RAW
fprintf(out,"%d\n",numdropins);
for (cnt=0;cnt<MAX_CELLS;cnt++){

#ifdef IN_SECONDS
fprintf (out, "%9.6f\t%9.6f\n",

(dropins[cnt].time==0) ? 0.0 :
((float) dropins[cnt].time-TimeData(0))/

((float)CLOCKS_PER._SEC) -1.0,
dropins[cnt] .angle);

#else
fprintf (out, "%ld\t%9.6f\n",

dropins[cnt] .time,dropins[cnt].angle);
#endif

}
fprintf(out,"%d\n",num_.dropouts);
for (cnt=0;cnt<MAX_CELLS;cnt++){

#ifdef IN_SECONDS
fprintf(out,"%9.6f\t%9.6f\n",

(dropouts[cnt].time==0) ? 0.0 :
((float) dropouts[cnt].time-TimeData(0))/

((float)CLOCKS_PER._SEC)-1.0,
dropouts[cnt] .angle);

#else
fprintf (out, "%ld\t%9.6f\n",

dropouts [cnt].time,dropouts [cnt].angle);
#endif

fprintf(out, "% ld\n", total_reorients);
for (cnt=0;cnt<MAX_CELLS;cnt++){

#ifdef IN_SECONDS
fprintf (out, "%9.6f\t%9.6f\t%d\n",

(reorients[cnt].time==0) ? 0.0 :
(float) (reorients[cnt].time-TimeData(0))/

((float)CLOCKS_PER._SEC)-1.0,
reorients[cnt .angle,reorient_wall[cnt]);
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#else
fprintf (out, "%ld\t%9.6f\t%d\n",

reorients[cnt].time,reorients [cnt .angle,reorientwall[cnt]);
#endif /*IN_SECONDS*/

#endif

#ifdef WANT_VERIFICATION
fprintf (out, "Vection\n");
fprintf (out, "%ld\n",GetDNE());
for (cnt=0;cnt<GetDNE() ; cnt++){

fprintf (out, "%ld\t%9.6f\n",
TimeData(cnt),AngleData(cnt));

)
fprintf(out, "Reinterpretations\n" );
fprintf(out, "%ld\n",GetDNE2 ());
for (cnt=O;cnt<GetDNE2();cnt++){
fprintf(out, "%ld\t%9.3f\n",

TimeData2(cnt),AngleData2(cnt));
}

#endif

if (out) fclose(out);

int relative(float angle, int secnum){
/* -1 means lower, 0 means inside, 1 means higher */
if (angle<SECANGLEBEG(secnum))

return -1;
else if (angle<SECANGLEEND(secnum))

return 0;
else return 1;

int whichsector(float angle){
/* find out which sector it falls in */
/* can use binary search mechanism */
/* this works if Resolution is a multiple of 4 */
/* Dont think it works in any other case */

int which = RESOLUTION/2-1,minw=-0,maxw=RESOLUTION-1, stop=0,rel;
while (!stop) {

#if 0
printf("angle, which, min, max = %f, %d, %d,

%d\n",angle,which,minw,maxw);
#endif

/*which is the middle sector*/
if ((rel=relative(angle,which))==0) return which;

else if (rel<0) {
maxw=which-1;
which-maxw- (maxw-minw) /2;

else if (rel>0) {
minw=which+1;
which-minw+ (maxw-minw)/2;

}
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}

int owhichsector(float angle){
/* find out which sector it falls in */
/* can use binary search mechanism */
/* this works if Resolution is a multiple of 4 */
/* Dont think it works in any other case */
/* The code is identical to whichsector(...) */
/* since all that changes is the maxw and */
/* initial which */

int which = ORESOLUTION/2-1,minw=-0,maxw=ORESOLUTION-, stop=0,rel;
while (!stop) {

#if 0
printf("angle, which, min, max = %f, %d, %d,

%d\n"',angle,which,minw,maxw);
#endif

/*which is the middle sector*/
/*Some angles are just beyond the last sector, but lets just
relegate them to the last sector
*/

/* if (which>=ORESOLUTION) {printf ("which >= resolution\n") ;getch() ; }*/
if ((rel=relative(angle,which))==0) return (which<ORESOLUTION) ? which :

(ORESOLUTION-1);
else if (rel<0) {

maxw=which-1;
which-maxw- (maxw-minw)/2;

}
else if (rel>0) {

minw=which+1;
which=minw+ (maxw-minw) /2;

}

void fixangles(float *beg, float *end, int *numrevs){
float diff=*end-*beg; /*diff might be greater than 2PI but it is not

always positive (depends on rotation
direction*/

*numrevs=0;
if (diff<0) diff *= -1.0; /*use the absolute difference*/
while (diff>.2.0*PI){

diff-=2.0*PI;
(*numr:evs) ++;

myprint("fixangles beg = %f\t end = %f\n",*beg,*end);

/* make sure angles are within 0 to 2*PI */
while (*beg>2.0*PI) (*beg)-=2.0*PI;
while (*beg<-2.0*PI) (*beg)+=2.0*PI;
while (*end.>2.0*PI) (*end)-=2.0*PI;
while (*end<:-2.0*PI) (*end)+=2.0*PI;

void IncrAllBins(int bins [],int numrevs){
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int count;
for (count=O;count<RESOLUTION;count++)

bins[count]+=numrevs;
I
void IncrBins(int bins[],int from,int to,int numrevs){

int cnt;
for (cnt=from;cnt<=to;cnt++) bins[cnt]+=numrevs;

int pastthreshold(float arc){
/*

if arc is greater or equal to the threshold arc then return 1
else return 0
*/

return (arc>=THRESHOLD_ARC);

int performstats(char *name
#ifdef INDEPENDENT

#else
,TreatmentInfoRec *atreatinfo){

#endif
/* 1/11/95 Now performs stats on dataread and dataread2 variables*/
/* need to put experiment name support in*/
int cnt_exp;
FILE *expfile;
int nents;
RECTYPE *dread=NULL;

#ifndef INDEPENDENT
TreatInfo = atreatinfo;
/*

printf("TreatInfo->treatcode = %s\n",TreatInfo->treatcode);
printf("%d\n",TreatInfo->direction);
printf("%s\n",(TreatInfo->posture==POSTURE_ERECT) ? "ERECT" : "SUPINE");
*/

#endif
openexpread (name);

#ifdef INDEPENDENT
printf("doing stats on experiment %s, press a key\n",name);
getch();

#endif
if (dataread && dataread2) {

performstats_l ();
performstats2_1();
printstats(name);
closeexpread();
return 1;

else {
printf( "openexpread: data not available%s\n",name) ;
return 0;

I
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10.3.25 myprint.c

#include <stdio.h>
#include "myprint .h"
int rryprint(char * fmt, ...)

va_list args;
#ifdef ADAM_DEBUGGING

va_start(args,fmt);
return(vprintf(fmt,args));
va_end(args);

#else
return 0;

#endif
}

10.3.26 dirutils.c

#include<stdio.h>
#include<string.h>
#include"dirutils.!h"
#define MAX_PATH 1024
_DIR *directory=NUJLL;

int SetDirectory(char *dirname){
if (directory) _closedir(directory);
directory = _opendir(dirname);
if (!directory) {

printf("Unable to open directory %s\n",dirname);
return 0;

}
else return 1;

void ListDirectory(int withnumbers){
int cnt=l;
struct _dirent *dir_entry;

dir_entry = ._readdir (directory);
while (dir_entry=_readdir(directory)) {

if (withnumbers) printf("%d.\t",cnt);
cnt++;
printf("%s\n",direntry->d_name);

}

struct _dirent *GetNthEntry(int N){
struct _dirent *nthdir=NULL;
if (!directory) {

printf("DIRUTILS: Error, directory not set.\n");
return NULL;

}
_rewinddir (directory);
nthdir = _readdir (directory);
N--;
while (N && nthdir) {

nthdir:= _readdir(directory);
N--;
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return nthdir;

int GetNthEntryName(int N,char *name){
struct _dirent *dir = GetNthEntry(N);
if (dir) {

strcpy (name, dir->dname);
return :1;

}
else return 0;

void dirwalk(char *dir, void (*fcn) (char *))(
char name [MAX_PATH];
struct _dirent *dp;
DIR *dfd;

if ((dfd = _opendir(dir)) == NULL) {
fprintf(stderr, "dirwalk: can't open %s\n",dir);
return;

}
while ((dp = _readdir(dfd)) != NULL){

if (strcmp(dp->d_name, ".")==0
strcmp(dp->dname,"..")==0)

continue; /*skip self and parent*/
if (sltrlen(dir)+strlen(dp->d_name)+2>sizeof(name))

fprintf(stderr,"dirwalk: name %s/%s too long\n",
dir,dp->dname);

else {
sprintf(name,"%s/%s",dir,dp->d_name);
(*fcn) (name);

}

closedir(dfd);
I
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