
Scaleup of Electrochemical-Metal-Refining Process

by

Prashant Soral

B.Tech., Indian Institute of Technology, Bombay (1995)

Submitted to the Department of Materials Science and Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Materials Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1998

@ Massachusetts Institute of Technology 1998. All rights reserved.

A uthor ...... ., .. . .. .. .... .. •.. ................... .......................
Department of Materials Science and Engineering

January 16, 1998

Certified by ............................... ............................
/ Uday B. Pal

John Chipman Associate Professor of Chemical Processing of Materials
Thesis Supervisor

A ccepted by ................... ..............................
Linn W. Hobbs

John F. Elliot Professor of Materials
MASSACHUSETTS INSTITU'The

OF TECHNOLOGY

AUG 1 7 1998

LIBRARIES

irman, Departmental Committee on Graduate StudentsI



Scaleup of Electrochemical-Metal-Refining Process

by
Prashant Soral

Submitted to the Department of Materials Science and Engineering
on January 16, 1998, in partial fulfillment of the

requirements for the degree of
Master of Science in Materials Science and Engineering

Abstract

Laboratory-scale galvanic deoxidation technology developed by earlier workers has been in-
vestigated with the aim of developing a prototype pilot-scale deoxidation unit. An order
of magnitude enhancement in the deoxidation-process kinetics has been attained. Each
deoxidation cell consists of a one-end closed yttria-stabilized zirconia (YSZ) tube coated
with Ni-YSZ cermet on the inner walls. The YSZ tube is immersed in the melt and an
oxygen chemical-potential gradient across the YSZ electrolyte is used to deoxidize the melt
by short-circuiting it with the cermet.

Through laboratory experimentation, the nature of anode/electrolyte interface adhe-
sion was identified to be an important factor in obtaining enhanced deoxidation kinetics.
The kinetics of oxygen removal from the melt was increased by developing a slurry-coating
process that was used to fabricate porous, electronically conducting and adherent cermet
layers. The deoxidation process model was modified to include multiple deoxidation cells,
that were required for pilot-scale trials, and to analyze the effect of electrolyte/electrode
adhesion on deoxidation kinetics.

A pilot-scale refining unit consisting of 53 cells was manufactured and field evaluation
of galvanic deoxidation of copper was conducted at Reading Tube Corporation/Cambridge
Lee Industries, Reading, PA. Based on the results of the field trial, efforts have been de-
voted towards the development of large-scale anode-supported deoxidation structures for
industrial implementation. Finally, process-component lifetimes have been studied by in-
vestigating the thermal cycling, corrosion behavior of the electrolyte and long-term stability
of the porous cermet structure.

Thesis Supervisor: Uday B. Pal
Title: John Chipman Associate Professor of Chemical Processing of Materials
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Chapter 1

Introduction

Control of undesirable elements, such as dissolved hydrogen, sulfur and oxygen, in liquid

metals and alloys is critical to obtaining superior physical and mechanical properties of

the final product. Over the past few decades, this has resulted in a search for new metal-

refining techniques capable of reducing the concentration of impurities to extremely low

levels. Currently, the two most popular refining techniques are vacuum degassing and ad-

dition of reagents to form stable compounds with the undesirable elements[l]. Vacuum

degassing is capital intensive, limited by the vacuum pressure that can be created over the

melt, and can lead to the loss of desirable elements. In the case of chemical refining, some of

the reagent metals can be expensive, and the compounds of the undesirable elements may

remain as inciusions in the metal. In addition, the reagent may go into solution in the melt,

which may deteriorate the properties. There exists a need for a commercially-viable, energy

efficient, and environmentally sound molten-metal refining technique which overcomes the

above-mentioned disadvantages.

Since the pioneering work of Kiukolla and Wagner[2] on solid-oxide electrolytes, stabi-

lized zirconia has received attention with regard to its application in both thermodynamic

and kinetic studies of high-temperature metallurgical systems[3]. A large number of workers

have demonstrated the feasibility of using oxygen-ion conduction in stabilized zirconia to

extract oxygen from molten metals[l, 3, 4, 5, 6, 7, 8]. Electrochemical deoxidation of molten

metals involves the diffusion of oxygen through the solid-oxide electrolyte (stabilized zirco-



nia) out of the melt and can be divided into two categories: galvanic and electrolytic. In the

electrolytic process, an external potential is used to pump oxygen through the electrolyte.

In the galvanic process, the electrolyte is used to separate the oxygen-containing melt from

a reducing atmosphere and the oxygen-chemical-potential gradient acts as the driving force

for the migration of oxygen ions across the zirconia membrane[9].

Due to application of an external potential, the electrolytic process would rely on the

combustion of fossil fuels to produce electrical energy and therefore have an intrinsic effi-

ciency limitation imposed by the Carnot cycle[10]. In addition, hydrocarbons, NOX/SOX

gases, and carbon monoxide, released into the atmosphere during incomplete combustion of

fossil fuels, are thought to adversely affect both public health and the environment. On the

other hand, the galvanic technique operates on the same principle as a fuel cell (an energy

conversion device that produces electricity and heat by electrochemical combination of a

fuel and an oxidant). Because a fuel cell converts the chemical energy of the fuel directly

to electrical energy (and heat), its efficiency is not subject to the Carnot limitation[ll],

making the galvanic technique more energy efficient than electrolytic deoxidation.

Yuan et. al. [8] and Hasham et. al. [1] have developed a novel solid-state refining device,

based on the galvanic technique, and have utilized the device for deoxidizing molten copper

and steel, respectively. Their refining device consists of a one-end-closed yttria-stabilized

zirconia (YSZ) tube, which is immersed in a bath of molten metal. An electronically con-

ducting, porous cermet electrode is deposited on the inner walls of the tube and the tube

interior is flushed with a reducing gas. The melt is deoxidized by short-circuiting the cer-

met electrode with the melt. The main advantage of oxygen removal by the electrochemical

technique described above, lies in the fact that the deoxidized metals are free of oxide inclu-

sions which are invariably present when the melts are deoxidized by chemical reagents[l, 4].

In addition, the deoxidation technique is environmentally benign as it does not generate

any harmful by-products in the form of dust, gas, or slag[l].

Yuan et. al. [8] have conducted a detailed analysis of the galvanic deoxidation process,



and have identified the key factors that need to be considered during designing of an indus-

trial deoxidation system. Based on the model, they have proposed a scale-up structure for

the solid-electrolyte cell, that could be used for either a batch or continuous deoxidation

process. It consists of a series of stabilized-zirconia plates with stabilized-zirconia plugs

that close alternate openings between the plates. The walls of the annular solid-electrolyte

structure encapsulated by the plug would be coated with a cermet electrode, that would be

exposed to a reducing gas. For deoxidation, the structure would be immersed in the melt,

the melt would rise in between the open-ended zirconia plates, and the cermet electrode

would be short-circuited with the melt.

The present work was undertaken in order to develop a prototype pilot-scale unit for the

electrochemical deoxidation of molten metals. The refining unit was designed on the basis of

the scale-up structures proposed by earlier workers[6, 8]. The deoxidation kinetics obtained

by using single solid-electrolyte cells that constitute the pilot-scale unit was investigated and

improved (an order of magnitude enhancement) by developing a modified cermet fabrication

process. Field trials were conducted at a continuous copper casting facility (Reading Tube

Corporation - RTC/Cambridge Lee Industries, Reading, PA) to evaluate the performance

of the prototype structure. A preliminary investigation of the process component lifetimes

at high temperature and of the thermal cycling behavior of the electrolyte has also been

conducted. Based on the results of the present study, thermally shock resistant, anode-

supported deoxidation cell structures are being developed for industrial implementation.

In order to briefly introduce the technology and present the state-of-the-art, Chapter

2 first provides a survey of earlier studies on electrochemical deoxidation. This is followed

by a description of the phenomenology of the process, wherein, the process is analyzed in

terms of five elementary steps. A computational process model developed by Yuan et. al. [9]

has been discussed next. The chapter also describes the modifications made to the model,

in order to include multi-cell structures and the effect of electrolyte/electrode adhesion on

process kinetics. Chapter 2 concludes with an analysis of the results obtained on modeling

a typical deoxidation experiment conducted by Yuan et. al.



Chapter 3 describes experiments conducted to measure the ionic and electronic con-

ductivity properties of YSZ electrolyte tubes that were used in the present study. Charac-

terization of the conductivity properties is required to model the deoxidation experiments.

In Chapter 4, detailed information on the setup and procedure for laboratory-scale deoxi-

dation experiments is provided. Results of preliminary deoxidation experiments that were

conducted using the cermet coating technique developed by Chou et. al. [12] have been

presented. Based on an analysis of the preliminary experiments, Chapter 4 identifies the

need to develop a slurry-coating process to fabricate adherent cermet electrodes.

Chapter 5 starts with a review of studies conducted to investigate the relation between

the performance characteristics of a cermet electrode and its fabrication method. An im-

proved slurry coating technique that was developed on the basis of the literature review

has been detailed next. Adherent Ni-YSZ cermet electrodes fabricated using the modified

technique have been characterized using scanning electron microscopy, energy-dispersive

X-ray analysis and mercury porosimetry. Finally, the chapter demonstrates the enhanced

deoxidation kinetics obtained in laboratory experiments that were conducted using YSZ

tubes coated with the improved cermets.

The deoxidation kinetics obtained with the improved coating technique was found suit-

able for pilot-scale trials. Chapter 6 provides detailed information on the deoxidation setup

used for field trials at RTC and presents results obtained from the field trial. Commer-

cial viability of the process will require extended application of the deoxidation cells at

high temperature. The chapter also describes preliminary experiments conducted and the

methodology to study process component lifetimes at high temperature.

Finally, the study has been used to direct efforts towards the development of manufac-

turing processes for deoxidation cell structures suited to industrial implementation.



Chapter 2

Electrochemical Deoxidation

Employing Solid-Oxide

Electrolytes

2.1 Literature Review

Korousic et. al. [13] in 1968 were among the first few to demonstrate the feasibility of using

oxygen-ion conduction in stabilized zirconia to extract oxygen from molten metals. They

immersed a one-end closed magnesia-stabilized zirconia tube (3.5 mm thick) containing

molten copper into a copper melt contained in a crucible. Molybdenum rods were inserted

into the two copper melts, and an external potential was applied to drive oxygen from the

copper melt outside the zirconia tube, to the melt inside. In a typical deoxidation exper-

iment, the oxygen content in the copper melt outside the zirconia tube, as determined by

chemical analyses, was reduced from ;70 ppm to ;10 ppm in 25 minutes. The maximum

applied potential was 3.22V, for which they obtained a current density of 124 mA/cm 2 .

Fischer et. al. [4] similarly studied electrolytic deoxidation of liquid Fe, Co, Ni, and Cu

melts at 16000C. A one-end closed, stabilized-zirconia tube was immersed into the melt, and

either a noble metal-gas electrode or a liquid-metal with a graphite contact rod was used

as the anode. A metal lead wire inserted into the mechanically-stirred metal bath served as



the cathode. 450g of liquid iron and steel, initially containing -0.05 wt.% 0, were deoxi-

dized down to 0.002-0.003 wt.% O in 0100 minutes (with a current density of 150 mA/cm 2).

Oberg et. al. [5] deoxidized induction-stirred melts of copper contained in calcia-stabili-

zed zirconia crucibles (2.5 mm thick). Dissolved oxygen was electrochemically pumped from

the melt, through the solid electrolyte, into air. This was accomplished by applying an ex-

ternal potential between the copper melt that served as the cathode and a porous platinum

anode, coated on the external wall of the crucible. For a typical deoxidation experiment

at 11500C and an applied voltage of 3V, they were able to achieve a current density of 93

mA/cm 2 with an ionic resistance of 0.318Q. The oxygen concentration of the melt (830g)

was reduced from 300 ppm down to less than 10 ppm in 8 minutes.

Oberg et. al. [5] pointed out that applied potentials would not lead to decomposition

of zirconia, so long as oxygen was available to the electrolyte. However, in case of high

deoxidation rates and/or low oxygen concentrations in the melt, adequate supply of oxygen

to the electrolyte may no longer be possible, leading to extremely low melt/electrolyte inter-

face oxygen concentrations. It is well known that at low oxygen concentrations, stabilized

zirconia exhibits significant n-type electronic conduction. Only the passage of oxygen ions

and, therefore, the ionic current is effective in carrying out the deoxidation. Under such cir-

cumstances, application of an external potential leads to reduced current efficiencies[7] and

can, in extreme cases, bring about electrolyte dissociation[5]. Odle et. al. [7] extended the

study conducted by Oberg et. al. [5] and elaborated on the characteristics and mechanism

of electrochemical deoxidation. They measured melt/electrolyte interface oxygen concen-

trations to determine the fraction of the ionic current effective in deoxidizing the melt in

the presence of electronic currents and concluded that electronic currents are insignificant

at high oxygen concentrations (> 300ppm). The oxygen concentration of a copper melt

(1133g) was reduced from 600ppm to 10ppm in 30 minutes (applied voltage 1V, current

density 80 mA/cm 2 , electrolyte thickness 4.3 mm, ionic resistance 0.120).

In addition to low oxygen concentrations, the electronic conductivity of stabilized-



zirconia increases exponentially with temperature. This further limits the application of

stabilized-zirconia electrolytes in electrolytic deoxidation that is carried out at high tem-

peratures (e.g. at steel-making temperatures). Etsell[14] and Iwase[15] reported that the

current efficiency during electrolytic deoxidation of liquid iron was less than 70% at con-

centrations of oxygen below 300 ppm.

Iwase et. al. [3] realized the disadvantages of electrolytic deoxidation and instead used

the electronic conductivity of stabilized-zirconia electrolytes to galvanically deoxidize liquid

iron. In their study, a 2mm thick, one-end closed calcia-stabilized-zirconia (CSZ) tube was

inserted into liquid iron (1823K) contained in an alumina crucible. The inside of the zirco-

nia tube was flushed with a CO/CO2 gas mixture. The resulting oxygen-chemical-potential

gradient led to the migration of oxygen ions from the melt to the reducing gas mixture. The

oxygen removal was possible because the residual electronic conductivity of CSZ allowed

the compensating electrons to migrate in the opposite direction across the electrolyte. The

initial oxygen content (580 ppm) decreased to 300 ppm after 200 minutes of galvanic deox-

idation.

Hasham et. al. [1] and Yuan et. al. [8] have pointed out that the exponential decrease

in the electronic conductivity of stabilized zirconia with temperature would render Iwase's

method unsuitable for deoxidation of metals such as copper, which is carried out at lower

temperatures (at 12000C). Furthermore, the absence of a metallic anode in Iwase's experi-

mental setup impedes the reaction kinetics at the anode[9]. Their solution to the problem

consists of providing an alternate path for the compensating electrons to migrate, in order

to maintain electroneutrality. The refining device consists of a one-end-closed YSZ tube,

whose interior is flushed with a reducing gas (forming gas or H2) and the tube is immersed

in a bath of molten metal. In the deoxidation experiments described by Hasham et. al. [1],

the inside wall of the YSZ electrolyte tubes was coated with a layer of an electronically-

conducting Mo-YSZ porous cermet electrode, and steel melts were deoxidized by externally

short-circuiting the melt with the cermet electrode. Yuan et. al. [8] similarly employed Ni-

YSZ cermet anodes to deoxidize copper melts and obtained current densities on the order



of 10 mA/cm 2 for an electrolyte thickness of 1.6 mm.

2.2 Process Mechanism

2.2.1 Overview

Several authors have elaborated on the characteristics and mechanism of electrochemical

deoxidation[1, 3, 5, 7, 8]. As illustrated in Fig. 2-1, the steps involved in the deoxidation

process include the following:

1. Diffusion of oxygen atoms from the bulk of the melt to the melt/electrolyte interface.

2. Electrode reaction at the melt/electrolyte interface:

0O+ 2e- -_ 0 2 - (2.1)

3. Transport of oxygen ions through the solid-oxide electrolyte to the electrolyte/reduc-

ing gas interface.

4. Electrode reaction at the electrolyte/reducing gas interface:

0 2 - -+ 2e- + 102(g) (2.2)

5. Diffusion of oxygen molecules through the porous electrode into the bulk of the re-

ducing gas.

In the list above, the electrode reactions have been represented in a phenomenolog-

ical manner and actually consist of a series of steps. At the melt/electrolyte interface,

the electron-transfer reaction is believed to involve the adsorption of dissolved oxygen on

the electrolyte surface, which is followed by an electrochemical reduction reaction at the

electrolyte[5]. Step 2 can therefore be represented as follows:

0 -+ Oads

Oads + 2e' + V6 --+ 0



where, 0 represents dissolved oxygen in the melt, Oads is an adsorbed oxygen atom on

the electrolyte surface, V6 is a doubly-ionized oxygen vacancy (in the Kr6ger-Vink nota-

tion), and O' is an oxygen atom on a normal lattice site in the zirconia lattice.

In the present study, Ni-YSZ cermet electrodes were used as anodes in a H2 atmosphere.

Similar Ni-YSZ cermet systems are widely used as fuel electrodes in solid-oxide fuel cells

(SOFC's)[16]. Recently, several studies have been conducted in order to elucidate the re-

action mechanism at the cermet anode of SOFC's in H2-H20 atmospheres. The results of

these studies can be used to discuss possible reaction paths for step 4 and lead to conclu-

sions that the electrode reaction takes place through the triple-phase boundary (TPB) of

H2-H20/Ni/YSZ and that the reaction site of the rate-determining reaction process is on

the Ni surface in the vicinity of the TPB[17, 18].

Jiang[17] proposed a reaction model for H2 oxidation in the presence of water vapor,

produced in situ by the oxidation reaction. The interaction of H20 with the Ni surface

results in the dissociation of the molecule. Hydrogen gas is released and the Ni surface is

covered with a layer of Oads atoms. Possible reaction steps could include the following:

Dissociative adsorption of H2:

H2(g) = 2Hads,YSz(On YSZ surface)

H2(g) = 2Hads,Ni(on Oads covered Ni surface)

{Had8,YSZ }-+ Hads,rs
Hads,Ni

where, the third step represents the migration of adsorbed hydrogen atoms to the reac-

tion site (rs), which could possibly be the TPB.



Charge transfer reaction:

O = O2,,-, +ads,YSZ +V&5

02- 2-
ads,YSZ Oads,rs

o2-

Oads,rs + Hads,rs = H20gas + 2e-

In order to elucidate the reaction mechanism at the anode of SOFC's in H2 - H20

atmospheres, Mizusaki et. al. [19] employed Ni stripe pattern electrodes on the surface of

YSZ. They showed that the rate-determining reaction process can be considered to take

place on the Ni surface and assumed Oads and H20ads as the adsorbed species on the Ni

surface. The rate-determining reaction was expressed as:

H2(g) + Oads -+ H2 0 ads (2.3)

and, the following equilibrium was assumed to hold between the gas phase and the

surface:

H20 + Vads = H20ads (2.4)

where, Vads denotes a vacant adsorption site on the Ni surface. Since eq. 2.4 holds,

H20ads formed by eq. 2.3 easily desorbs and, with a combination of eqs. 2.3 and 2.4, Oads

is removed from the Ni surface.

During electrochemical deoxidation, only two steps of the indicated reaction sequence

are likely to be significant in controlling the overall rate, namely oxygen diffusion in the

melt (step 1) and/or transport of oxygen in the electrolyte (step 3)[1, 5, 8]. At operating

temperatures above 1273K and relatively small current densities (0.5-250 mA/cm 2), the

electrode reactions and gas-phase diffusion in SOFC's are known to be very rapid and

therefore, not rate controlling[8, 20]. Taking these facts into consideration, Yuan et. al.

[8] have provided a detailed analysis of the galvanic deoxidation process. The next section

briefly discusses the theoretical aspects of the deoxidation analysis.



2.2.2 Deoxidation Analysis

A galvanic deoxidation process involving a solid electrolyte such as stabilized zirconia (which

exhibits mixed electronic and ionic conduction), and an external load can be represented by

an equivalent electric circuit, as shown in Fig. 2-2. Yuan et. al. [8] have derived a general

expression for the ionic current through a solid-oxide electrolyte, under the influence of

an oxygen-chemical-potential gradient and an external load. Their analysis is based on

irreversible thermodynamics and assumes that the electrodes are reversible. For a solid-

oxide electrolyte that is predominantly an oxygen-ion conductor, ionic transport through

the electrolyte is described by the following equation:

RT In P 2  RTaRex )-1/4 )-1/4 (25)
4Frtotal P 2  rtotalFd {(P2 a 2 } (2.5)

where, iion is the ionic current through one electrolyte cell, F is the Faraday constant,

a is the electrolyte/melt interfacial area, Jo2- is the flux of oxygen ions through the elec-

trolyte, R is the gas constant (= 8.314), T is the melt temperature, rtotal = Rex + rion,

Rex is the external lead resistance, rion is the ionic resistance of a single electrolyte cell,

P 2 and Po2 are the oxygen partial pressures at the melt/electrolyte interface and in the

reducing gas, respectively, d is the thickness of the electrolyte, and aO is a parameter that

describes the electronic conductivity of the electrolyte.

In eq. 2.5, Yuan et. al. [8] have assumed that Rex, rion and the electronic resistance

of the electrolyte, rel, completely describe the resistive paths involved in the equivalent

circuit and that, in stabilized zirconia, the variation of electronic conductivity (0e) with

oxygen partial pressure (Po2) can be represented by ae = o'P1/4 . However, in the

case that an imperfect interface exists between the cermet anode and the YSZ electrolyte,

an additional "contact" resistance, rcon will have to be incorporated in the analysis. In

addition, Yuan et. al. have analyzed the process for a single deoxidation cell, whereas, in

the present study, several solid-electrolyte cells were employed in the deoxidation process.

When the "contact" resistance, rcon is included and multiple electrolyte cells are considered,



the equivalent circuit is modified as shown in Fig. 2-3 and the ionic current through each

electrolyte cell, ion, can be represented as follows:

ion = Fajo2- RT J2RTa )-1/4 _ )-1/4} (2.6)
4Frtot PI 2  rtotFd{ Ve(PO2)

where, rtot = nRez + rion + rcon, and n is the number of one-end closed tubes used in

the refining unit.

Transport of oxygen to the melt/electrolyte interface can be modeled using the film

theory[21]. A thin unmixed film or boundary layer is assumed to exist in the melt next to

the melt/electrolyte interface. This film is continuously exposed to the completely mixed

bulk melt, and is supposed to offer all the resistance to the transfer of oxygen atoms from

the bulk to the interface. In the present study, the melt was induction stirred, and therefore,

the assumption stated above is believed to be satisfied. The entire concentration change

from Cb to Ci is assumed to take place within the boundary layer in a steady-state manner,

and the mass-transfer coefficient, a, is defined by

Jo = a(Cb - Ci)

where, Jo represents the flux of oxygen atoms to the electrolyte surface and Cb, Ci are

the oxygen concentrations (in ppm) in the bulk of the melt and at the melt/electrolyte

interface, respectively.

Assuming that there is no accumulation of oxygen ions at the metal/electrolyte interface,

the ionic current can be represented in terms of the oxygen flux in the melt:

_ 2FJoapmelt 2aFa(Cb - Ci)pmet (2.7)
Mo x 106 Mo x 106

where, Mo is the atomic mass of oxygen and Pmelt is the density of the melt. If the

melt is assumed to be homogeneous prior to deoxidation (Co = initial oxygen concentration

in the melt (in ppm) at t=0), mass balance considerations can be used to show that after



galvanic deoxidation for time t, the bulk oxygen concentration can be represented as follows:

ft iionMo x 106d((2.8)

Cb " C o 2Fmmet(

where, mmelt -= is the mass of the melt (Mmelt) per cell.

Negligible Electronic Conductivity

When electronic conductivity is small, either due to small oa or high Po2, eq. 2.6 can be

simplified as

RT P
ion = In '_2 (2.9)

4Frtot P(2

Using Sievert's law, the oxygen concentrations can be represented in terms of the oxygen

partial pressures by the following equations:

Ci = KS(P 2,) 1/ 2  (2.10)

Cr = Ks(PL2)1 / 2  (2.11)

Cr represents the oxygen concentration in the melt that would be in equilibrium with

the reducing gas. Sievert's constant, K, is the equilibrium constant for the reaction

o2(g) = O(melt) (2.12)

In the present study, the deoxidation experiments were conducted on copper melts, and

Ks was calculated by utilizing the free energy data (for eq. 2.12) provided by Oberg et. al.

[22]. Eqs. 2.10 and 2.11 can be used to express eq. 2.9 in the following form:

Ci = Crexp{ 2Fiionrtot(2.13)RT
Substituting for Ci from eq. 2.13 and for Cb from eq. 2.8 into eq. 2.7 and rearranging

gives:



Crexp2Fiionrtot iinMo x 106 =t iionM o x 106d(2.14)
RT 2aaFp,lt C - Fmmelt

During deoxidation, oxygen from the melt passes through the electrolyte into the re-

ducing gas (hydrogen) and reacts to form water vapor. The oxygen partial pressure in the

reducing gas is consequently fixed by the H2/H20 equilibrium. Taking into account the

number of moles of oxygen atoms present in the reducing gas under open-circuit condition

and the number of moles of oxygen atoms pumped into the reducing gas during deoxidation,

Yuan et. al. [8] have shown that Cr can be calculated as follows:

K 30ii R•Trm
Cr Ks {P 2 0 (OC) + ionTr} (2.15)

KpPH2  vF

or,

Cr = ki + k2iion (2.16)

where,

k =Ks 8 Pý20o(OC)SKpPH2

Ks 30RTrm
K, PH2  vF

PH2 is the partial pressure of hydrogen in the reducing gas (which is approximately 1

atm in the present study), Pr 20 (OC) is the partial pressure of water vapor in the reducing

gas under open-circuit condition, R is the gas constant (in units of atm-zier), Trm is the

room temperature in K and v is the flow rate of the reducing gas through each cell of the

refining device in 1/min. Kp is the equilibrium constant for the reaction

1
H2(g) + 102(g) = H20(g) (2.17)

and can be calculated using the thermodynamic data provided by Kubaschewski et. al.

[23]. Substituting eq. 2.16 in eq. 2.14 and differentiating with respect to time leads to the

following expression for the variation of ionic current through the electrolyte:



lion MO x 106

diion _ -2Fmmet (2.18)
dt 2C,.FrtOt exp( 2 Firtot) + M 2aX e6 +k 2 exp(2Fii ° rtot)

RtT RT 2ctaFpelt RT

When rel is large (low electronic conductivity), the electronic current flowing through

each deoxidation cell (iet) is negligible, and it can be shown that lex = niion (see Fig. 2-3).

Under such conditions, the deoxidation process can be modeled with eq. 2.18, by using the

external short-circuit current, Iex, at any time t, and relevant experimental parameters.

Eq. 2.8 can then be used to model the decrease in the oxygen concentration of the melt

with time.

Appreciable Electronic Conductivity

Electronic conductivity of stabilized zirconia increases exponentially with increasing tem-

perature and decreasing oxygen partial pressure. Under such conditions the electronic

conductivity can no longer be ignored and the oxygen-ion flux through the electrolyte needs

to be expressed by eq. 2.6 instead of eq. 2.9. Substituting eqs. 2.10 and 2.11 in eq. 2.6

gives:

RT Ci nRex RTa r Cr 2 2
lion - In + {o~e(K - aO( ) } (2.19)

2Frto Cr rtot Fd K, K,

Substituting eq. 2.8 in eq. 2.7 to eliminate Cb and differentiating gives:

_diion_ "i 2F dCi= -aaPmelt + (2.20)
dt mmelt Mo x 106 dt

Using eq. 2.16 to eliminate Cr and differentiating eq 2.19 gives:

RT k2 nRex RToraK2  k2 diion
{1+ T k + } =

2Frtot ki + k2iion rtot 2Fd (ki + k2iion) 1  dt

RT 1 nRex RTacaKs2 1 dCi
-{ t + } (2.21)

2Frtot Ci rtot 2Fd Ci2 dt

With Cb set equal to the initial oxygen concentration in the melt (determined through

sampling), eqs. 2.19 and 2.7 can be solved to obtain the ionic current, iion(0), and the oxygen



concentration at the melt/electrolyte interface, Ci (0), at time t = 0. These initial conditions

are used to obtain iion(t) by solving eqs. 2.20 and 2.21, which form a system of first-order

differential equations in two variables (iion(t) and Ci(t)). The following relationship between

iion and Iez[8] can now be used to model the variation of external current with time.

-R--T P+2 ion ion+co
4FRex Pz 2  Rex

Parameters Required for Modeling

As indicated above, values of several parameters need to be known in order to model the

deoxidation process. These parameters can be divided into three different types, depending

upon the manner in which they are acquired:

1. Experimental parameters: These are purely experimental variables and include the

mass of the melt (Mmelt), the partial pressure of H2 in the reducing gas (PH2), the

volumetric flow rate of the ruducing gas in 1/min (v), the temperature at which de-

oxidation is carried out (T), the melt/electrolyte interfacial area (a), the outer and

inner diameter of the electrolyte tube, the density of the melt (Pmelt) and the exter-

nal resistance, Rex (measured using a micro-ohmmeter - Cambridge Technology Inc.

Model 510A).

2. Literature data: Theoretical constants include the atomic mass of oxygen (Mo), the

Faraday constant (F), and the gas constant (R and R). In addition, this group includes

K, and Kp which, as described previously, can be calculated using the following

thermodynamic data:

90374 - 22.175T
K, = exp( RT ) (2.22)RT

PH20 246438 - 54.39T
K exp( RT (2.23)

PH2 02

3. Calculated parameters: These parameters are calculated directly from experimental

results. The first parameter in this category is the partial pressure of water vapor in



the reducing gas, under open-circuit condition, Po20 (OC). If electronic conductivity

is neglected, the measured open-circuit potential can be represented by the Nernst

equation

RT P62 (OC) RT (C())2Eoc = _._ In P2 ( = In (2.24)
4F Pla (OC) 4F Pr2 (OC)

and Ci(OC) can be approximated to be equal to the bulk oxygen concentration. Before

short circuiting the melt with the anode, a measurement of Eoc and Co therefore

enables one to calculate P52 (OC). Eq. 2.23 is then used to calculate Pj,2 0 (OC).

The measured external current during deoxidation is used to calculate the mass-

transfer coefficient of oxygen in the melt, a. During the final stages of the deoxidation

process, when the external short-circuit current is small, it is possible to show that

the following relation holds[l]:

lnlex - ln{Iex(O)} - aaPmel-tt (2.25)
mmelt

A linear regression of In Iex vs. t towards the end of deoxidation therefore yields a.

Finally, the electronic conductivity parameter, a, and the ionic conductivity aion,

were determined using coulometric titration and four-probe DC techniques, respec-

tively. Chapter 3 describes relevant experimental details. aion is subsequently used

to calculate rion.

The description above indicates that all parameters required for modeling the deoxida-

tion process are known, except for ron. ron is a variable which is iteratively adjusted such

that the variation of external current, calculated using the model, matches the experimental

one. This method is used to estimate the cermet/electrolyte interface contact resistance.

2.2.3 Modeling Results

Based on model calculations for their experiments, Yuan et. al. [8] conclude that the deoxi-

dation process can be divided into two stages. The modeled ionic current, external current,

and concentration vs. time curves for a typical deoxidation experiment conducted by Yuan



et. al. are shown in Fig. 2-4. In the range of high concentrations (Zone I), the removal

of oxygen is controlled by the electronic and ionic resistances of the electrolyte as well as

Rex. In this zone, as shown in Fig. 2-4, the bulk oxygen concentration decreases linearly

with time. In the lower oxygen concentration range (Zone II), when the interfacial oxygen

concentration is close to zero, transport of oxygen from the bulk to the melt/electrolyte

interface becomes the rate-controlling step and the external current is characterized by an

exponential decay (see Fig. 2-4).

Similar results have been obtained by previous workers. For deoxidation of liquid iron

with liquid metal/graphite anodes, Fischer et. al. [4] concluded that oxygen-ion transport

through the solid electrolyte was the rate-controlling step at oxygen concentrations between

470 and 160 ppm, and that oxygen diffusion to the melt/electrolyte interface was rate con-

trolling below 160 ppm. During electrolytic deoxidation of induction-stirred copper melts,

Oberg et. al. [5] determined that Zone I was operative at oxygen concentrations greater

than 90 ppm, and Zone II below 45 ppm. In the experiments conducted by Iwase et. al. [3],

the transport of oxygen in liquid iron was determined to be the rate-controlling step in the

range of 580 to 300 ppm 0.

Yuan et. al. [8] have identified the mass-transfer coefficient, a and the external resistance,

Rex, as key factors in the enhancement of deoxidation kinetics. Hasham et. al. [1] point out

that the melt must have sufficient stirring intensity (provided by induction stirring), and

that the total system resistance must be minimized in order to delay the start of Zone II.

In order to facilitate comparison of the deoxidation studies that have been conducted to

date, Table 2.1 briefly lists the experimental details for the several studies reported here,

and also summarizes the results obtained.

In the present study, deoxidation of copper melts was carried out on a lab-scale and field

trials were conducted using solid-electrolyte cells similar to those employed by Yuan et. al.

[8]. The emphasis of the present study was on the enhancement of deoxidation kinetics and

the rate-limiting factors were identified through numerical modeling and lab experimenta-



tion. The process can be divided into electrolyte-controlled and mass-transfer controlled

regimes as reported by Yuan et. al. , and the achievable current density was increased from

40 to 230 mA/cm2 , by improving cermet/electrolyte adhesion. The next chapter describes

experiments conducted in order to characterize electrolyte properties required for process

modeling.



Chapter 3

Electrical Properties of YSZ

Process modeling plays an integral role in identifying factors limiting deoxidation kinet-

ics and, therefore, in efforts directed towards improving the commercial feasibility of the

electrochemical refining technique. As described in section 2.2.2, the ionic and electronic

conductivity properties of the YSZ electrolyte tubes need to be characterized in order to

model the deoxidation kinetics. The present chapter describes the experimental setup and

procedures used to determine the conductivity parameters and presents the results obtained.

YSZ is fabricated by commercial manufacturers and university laboratories in a variety

of ways, including hot isostatic pressing, tape casting, electrochemical vapor deposition,

slip casting etc. The oxygen-ion-conducting properties of stabilized-zirconia materials de-

pend on the fabrication technique, dopant concentration, and phase assemblage[24, 25]. In

order to understand the conductivity behavior in zirconia-based electrolytes, a knowledge

of the phase assemblage is essential. Pure ZrO2 exists in three different crystal structures:

monoclinic (m), tetragonal (t), and cubic (c)[26]. At room temperature, m-zirconia is the

stable form. During heating, m - ZrO2 -+ t - ZrO2 and t - ZrO2 -+ c - Zr02 phase

transformations occur at 1170 and 23700C respectively. The cubic phase is stable upto

the melting point (26800C) of zirconia. Several metal oxides (MO and M2 03 ) stabilize the

high-temperature cubic and tetragonal structures at lower temperature by forming solid

solutions with ZrO2. If the stabilizer or dopant content is not sufficient to fully stabilize

the cubic structure, then the material may consist of a mixture of the cubic and monoclinic



(or tetragonal) phases and is called partially-stabilized zirconia (PSZ).

In addition to stabilizing zirconia, the addition of di- or trivalent oxides creates a large

concentration of oxygen vacancies by charge compensation according to the following equa-

tion (written for Y20 3 stabilization using Kr6ger-Vink notation):

Y203 -+ 2Yzr + V5 + 300

The high oxygen-vacancy concentration gives rise to high oxygen-ion mobility and

oxygen-ion conduction takes place in stabilized zirconia by movement of oxygen ions via

vacancies[16]. In general, the ionic conductivity of stabilized zirconia is independent of

oxygen partial pressure over several orders of magnitude. In the present study, zirconia

stabilized with 5.1 mol% yttria was used as the electrolyte. Fig. 3-1 shows a phase diagram

of the Zr0 2 - Y2 0 3 system[16]. A Rigaku IU300 DMAX-B wide-angle diffractometer was

used to analyze the phase assemblage in the electrolyte. Fig. 3-2 shows a typical XRD

pattern obtained. Intensities in the angular regions 27 to 320, 33 to 380, and 71 to 770

(20) were used (planes of the form {111}, {200}, {400} respectively) to distinguish the

polymorphs[27]. The major phases were found to be cubic and tetragonal. The electrolyte

composition was determined through electron micro-probe analysis (EPMA) and a JEOL

300 scanning electron microscope was used for the purpose. The scanning electron micro-

graph used to analyze the composition of the electrolyte is shown in Fig. 3-3. The presence

of a glass phase (Al 20 3/CaO/SiO2) between the YSZ grains should be noted. The glass

phase is used by the manufacturer as a binder for the starting material powders. The results

of EPMA analysis are provided in Table 3.1. The PSZ material was selected as the elec-

trolyte because it possesses better thermal shock resistance than fully-stabilized zirconia[26].

The commonly accepted toughening mechanism for materials with the tetragonal phase is

the stress-induced transformation of the tetragonal phase to monoclinic zirconia[25]. Mi-

crocracking has also been identified as an important toughening mechanism in ZrO2-based

materials[26].



3.1 Ionic Conductivity Measurement

The ionic conductivity of the electrolyte was measured by the four-point-probe method.

The principle of the four-point technique is shown in Fig. 3-4. Four Pt wires (0.02" dia,

Engelhard Clal) were attached to a flat-bottom YSZ tube (ZDY - 41, 3/8" OD, 1/4" ID,

12" long, Coors Ceramics Company) with Pt paste (Engelhard Pt ink 6926) as shown in

Fig. 3-4. The Pt leads ran to the specimen through insulating alumina tubes. On applying

a constant current, i, through the two outer contacts, a voltage drop, AU, across the two

inner contacts was recorded. Solartron Instruments SI1287 potentiostat was used for the

purpose. A straight line was obtained when the voltage drops were plotted versus applied

current values. For the geometry given in Fig. 3-4, the ionic conductivity, ion, of the

electrolyte was calculated through the following expression:

1 i Xrd 2 - d,
-= --- x

rion AU 4 1

where, do is the outer diameter of the YSZ tube, di the inner diameter and I is the

distance between the inner contacts. Measurements were carried out between 1200 and

1650 0 C , at intervals of 500 C. The variation of ionic conductivity with temperature can be

represented by the semi-empirical equation[28]:

C, -Ez
on - exp( )

where, Ei is the activation energy and Ci, a pre-exponential constant. Data for the

variation of Oion with temperature (in air) is shown in Fig. 3-5. The InoionT vs. 1/T

plot shows two straight lines, one in the low-temperature range (1200 - 14400C) and the

second in the high-temperature range (1440 - 16500C). In anticipation of the fact that the

conductivity is entirely ionic for the experimental conditions, the results for Ei and Ci are

listed in Table 3.2. The break in the Arrhenius diagram at 1440 0C is assumed to be due to

phase changes in the binder present between YSZ grains. In order to verify the conclusion,

similar measurements were carried out for YSZ tubes of the same composition, fabricated

without the binder (ZDY-9 flat-bottom YSZ tubes, Coors Ceramics Company). The break

in the Arrhenius diagram was not present for ZDY-9 tubes (see Fig. 3-5) and the ionic



conductivity was slightly higher as compared to ZDY-4 tubes.

From the experimental results, the ionic conductivity of the YSZ electrolyte tubes used

in the present study (ZDY - 4, round-bottom YSZ tubes, 0.528" OD, 0.05" thick, 8" long,

Coors Ceramics Company) is calculated to be 0.196 S/cm at 12000 C. Scaife et. al. [29]

reported a value of 0.22 S/cm for 5.8 m/o YSZ. The ionic conductivity-temperature data

for various Y20 3-ZrO2 compositions as determined by Strickler et. al. [30] are shown in

Fig. 3-6. The measured ionic conductivity for the ZDY-4 electrolyte tubes agrees with

literature data.

3.2 Electronic Conductivity Measurement

Zirconia-based solid electrolytes exhibit electronic conductivity at high temperature and/or

under reducing conditions. The characterization of this electronic conductivity is a necessity

in any assessment of zirconia-based electrochemical devices. Under low oxygen pressures

(as encountered in the hydrogen atmosphere used in the present study), the electronic

conductivity is viewed as arising from the following reaction (in Kroger Vink notation) [31]:

=1
0 = 202 + V& + 2e'

For heavily doped materials, the oxide-ion vacancy concentration remains constant, and

the electronic conductivity at a given temperature will vary with oxygen pressure according

to the following relation:

Ue = UePo2

Schmalzried[32] has treated the cell-potential relationships for solid-electrolyte cells in

which the electrolyte shows mixed ionic and electronic conductivity. The open-circuit po-

tential for a zirconia-based oxygen concentration cell with oxygen pressures of P62 and P,2

at the anode and cathode, respectively, (Pt2 > P62) is given by:



RT Pl/4 + Pi"1/4
E= In (3.1)F p,/4 + p /4

where, P0 is the oxygen pressure at which the electronic conductivity becomes equal to

the ionic conductivity.

A coulometric-titration technique as described by Swinkels[33] has been used to deter-

mine the value of P0. Once P0 has been determined, the electronic conductivity can be

characterized using the following relationship:

o , 1/4
ae = aionP'

An oxygen-concentration cell was made from the electrolyte tube (ZDY - 41), with a

Pt-air electrode on one side and a liquid metal (Ag) electrode on the other side (see Fig. 3-

7)[34). The liquid Ag electrode is the working electrode (the electrode at which the half-cell

reaction of interest occurs) and the Pt-air electrode acts as the counter electrode. The

counter electrode was prepared by wrapping Pt gauze (45 mesh, Engelhard Clal) around

the tube. A Pt/Pt-10%Rh thermocouple was used to serve as conducting lead for estab-

lishing electrical contact with the counter electrode. 1.5g of pure silver was melted in the

zirconia tube under a stream of Ar (AIRCO grade 5, 10.2 std. ml/min) and contact to liquid

silver was made via molybdenum wires (0.5 mm dia, Johnson Matthey).

As in aqueous electrochemistry, experiments were conducted using a three-electrode sys-

tem, the third electrode being a reference electrode. The reference electrode was constructed

by wrapping Pt wire (0.005" dia) P4 mm above the counter electrode. Pt paste was used to

improve electrical contact between the YSZ sample and the counter, reference electrodes. In

this arrangement, a Solartron SI1287 potentiostat was used to apply a DC external current

between the working and counter electrodes. However, activation (kinetic) and concentra-

tion (diffusive) polarization[35] can exist at both the working and counter electrodes and

may influence the realized potential at electrode/electrolyte interfaces. The reference elec-

trode remains unpolarized because the current is driven through the counter electrode and



a negligible current passes through the reference. If the potential was measured between

the counter and working electrodes, the extraneous influences of the kinetic and diffusive

limitations at the counter electrode would be incorporated in the measurement. The po-

tentiostat, therefore, measured the potential between the reference and working electrode

to determine the applied potential across the working electrode/electrolyte interface for a

given value of external current[36]. Ohmic loss arising due to Mo lead wire resistance, at

the working electrode, was eliminated by attaching another reference electrode (a second

Mo wire) to the working electrode.

The assembled cell was heated in a resistance furnace, with an air atmosphere outside

the YSZ tube. After oxygen was removed electrochemically from liquid silver to the Pt-air

counter electrode, the open-circuit potential, Eoc, was measured between the reference

and the working electrode, by interrupting the external current. When the oxygen partial

pressure at the liquid Ag/electrolyte interface, P',, is sufficiently lowered to satisfy the

condition,

PO << P0 < PO,

eq. 3.1 can be simplified to,

Eoc RTIn 2 (3.2)4F P0

Eoc was obtained by interrupting the current and measuring the cell potential using

a digital real-time oscilloscope (Tetronix TDS 360). Fig. 3-8 shows a typical cell-potential

vs. time plot obtained during a measurement of Eoc. The instantaneous drop in potential,

on interrupting the external current, corresponds to ohmic losses that occur because of

resistance to the flow of ions in the electrolyte and resistance to flow of electrons through

the electrode materials. In the present study, the open-circuit potential recorded after this

instantaneous drop has occurred is used to calculate Po.

The Pt/Pt-10%Rh thermocouple was used to measure the temperature of the YSZ sam-



ple and the measured potentials were corrected for the thermoelectromotive force between

Pt and Mo by using Iwase et. al. 's[37] results:

Et(EPt - Moe)/mV = 22.1 - 0.04T

Patterson[38] has shown that the parameter PO can be represented as,

B
log Pe(atm) = A + -

The experimental results for ZDY-4 tubes are compared with literature data[29, 34, 39, 40]

in Fig. 3-9. At 12000C, Po is calculated to be 3 x 10-24 atm and the electronic conductivity

can be expressed as, ae = 2.6 x 10-7Po1 /4. Electronic conductivity for the YSZ tubes in

the present study lies within the scatter in literature data.



Chapter 4

Preliminary Deoxidation

Experiments

4.1 Experimental Setup and Procedures

The electrochemical deoxidation cell used in the present study consisted of a one-end closed

YSZ tube (ZDY - 4,), with a porous layer of Ni-YSZ cermet deposited along the inner wall

of the zirconia tube. For the initial deoxidation experiments conducted in the laboratory,

the cermet was fabricated using the process described by Chou et. al. [12]. The fabrication

method essentially involves a slurry-coating process and is briefly described in Fig. 4-1. A

Ni tube (1/4" OD, seamless Ni-200 tubing, Tubesales), with Ni gauze (40 mesh, Johnson

Matthey) spirals welded to it, was inserted into the cermet-coated YSZ tube and served as

the current collector at the cermet anode. Ni gauze spirals were used to ensure electrical

contact with the cermet, while still allowing the reducing gas to flow through the annular

space between the Ni rod and the cermet. Fig. 4-2 shows the electrochemical cell after

assembly.

The pilot-scale trials aimed at assessing the performance of the galvanic deoxidation

process developed by Yuan et. al. [8]. The trials were conducted at Reading Tube Corpo-

ration (RTC)/Cambridge Lee Industries, Reading, PA. The casting rate of copper at the

plant was typically around 20 t/hr and in order to achieve a significant deoxidation rate,



it was determined that several cells of the type described above would be required (the

plant trials have been described in detail in Chapter 6). A fixture was designed to hold

the deoxidation cells in place and to ensure distribution of reducing gas (H2) to each of

the YSZ tubes. The fixture was fabricated using 306 stainless steel and consisted of two

sections. The holding section had the same number of holes as the number of YSZ tubes to

be used during deoxidation. The deoxidation cells were attached to the fixture by welding

the Ni tubes projecting out of the YSZ tubes, to the holding section. After the required

deoxidation cells were attached, a sealing plate was welded to the top of the holding sec-

tion. The clearance between the holding section and the sealing plate served as a plenum

for distribution of H2 to the deoxidation cells (see fig. 4-3).

For the laboratory experiments, a similar fixture design was used to hold a single YSZ

tube. Besides a reducing gas inlet, the sealing plate for the laboratory fixture had openings

for a thermocouple (K-type, positioned in a one-end closed alumina protection tube) that

was used to monitor the melt temperature, and for a feed tube that was used for adding

high-oxygen copper to the melt and for sampling. The fixture was placed on a hangdown

assembly (see Fig. 4-4) and a cable/winch arrangement was used to raise and lower the

fixture. When the YSZ tube was lowered into the melt, a 446 stainless steel rod, welded

vertically to the base plate of the hangdown assembly, dipped into the melt, making the

base plate act as the cathode lead. Another 446 rod, welded to the holding section of the

fixture served as the anode lead. A 1/4"-thick mica sheet was used to electrically insulate

the holding section of the fixture from the base plate of the hangdown assembly. Copper

wires were used to connect the cathode and the anode leads to the terminals of a double-

pole, double-throw switch. The switch is open in position A and throwing it in position B

leads to short circuit between the melt and the cermet anode.

Deoxidation experiments were conducted in an induction furnace (model W53/10-50

Ajax Magnethermic Corporation). An alumina tube partially filled with alumina beads

was placed within the coils of the induction furnace. A quartz crucible (31" OD at top,

31" OD at bottom, 1/4" thick, 6" height, Corning Inc.) containing a section of copper



billets cast at RTC was placed on top of the alumina beads. The alumina tube and beads

protected the coils of the induction furnace, in case of crucible failure. Ceramic wool was

wrapped around the alumina tube to prevent heat loss. In order to minimize temperature

gradients within the molten metal, a 1/4"-thick mild-steel sheet was placed on top of the

crucible. The mild-steel radiation shield had openings for the YSZ tube, feed tube, ther-

mocouple, an Ar inlet tube and the 446 rod welded to the base plate. Ar (AIRCO grade 5)

was blown over the melt at a rate of 3 1/min to prevent melt oxidation. In order to prevent

heat loss and to maintain an inert atmosphere over the melt, a ceramic-fiber board (ASPA2

alumina/silica paper, 1/4"-thick, Zircar Products Inc.) was placed on top of the alumina

tube, followed by a machinable glass-ceramic block (MACOR, Ceramic Products Inc.) and

finally, a second ceramic board on top of the MACOR block.

The fixture was lowered to bring the bottom of the YSZ tube in contact with the top of

the copper block. The charge was then heated to 12000 C at a rate not exceeding 40 C/min.

Bringing the YSZ tube in contact with the charge prevented the tip of the YSZ tube from

thermal shock and subsequent cracking, when immersed into the melt. In addition, thermal

shock was prevented by designing the reducing gas inlet in the manner shown in Fig. 4-2.

The peripheral slits avoided direct impingement of relatively cold reducing gas onto the

bottom of the YSZ tube.

After the charge was molten, the hangdown assembly was lowered to immerse the deox-

idation cell in the melt, with the switch in position A (open-circuit). Pin tubes were used to

draw a copper sample, which was analyzed for initial oxygen concentration by LECO com-

bustion analysis. The open-circuit potential was corrected for the thermoelectric potential

between the 446 stainless steel cathode lead and Ni anode lead. A separate experiment was

conducted to study the thermoelectric characteristics of the 446 stainless steel/Ni couple.

The results of the experiment are shown in Fig. 4-5. A linear regression between 11000 C

and 12000C resulted in the following expression for the thermoelectric potential (ENi/446):

ENi/446/V = -3.7 x 10-5T + 0.01



where, the temperature is in 'C and Ni is positive.

In order to deoxidize the melt, a short-circuit between the cermet anode and the melt

cathode was established by throwing the switch into position B. A Hall probe (PR30,

LEM/HEME) was used to measure the external current during deoxidation. A data-

acquisition system (2635A Hydra Data Bucket, Fluke Corporation), that filtered electri-

cal noise generated by the induction furnace, was used to record all experimental data.

A second copper sample was drawn after deoxidation and analyzed for the final oxygen

content.

4.2 Experimental Results

The results of a typical deoxidation experiment conducted in the manner described above

are shown in Fig. 4-6. 4kg of copper was deoxidized and a mass transfer coefficient of 0.004

cm/s was obtained by carrying out a linear regression analysis between In lex and time

in Zone II (see Fig. 4-7). Fig. 4-8 compares the modeled and experimental variation of

external current and bulk oxygen concentration. Division of the deoxidation process into

an electrolyte-controlled and a mass-transfer-controlled regime can be seen clearly, and the

agreement between the modeled and experimental variation in bulk oxygen concentration

is excellent. The bulk oxygen concentration was reduced from 443 ppm to 19 ppm in ;280

minutes. Table 4.1 lists the modeling parameters.

The total resistance, rtot, is an order of magnitude lower when compared to rtotal for

the deoxidation experiments conducted by Yuan et. al. [8] and Hasham et. al. [1] (3 - 4-).

Yuan et. al. and Hasham et. al. used thin wires dipping in the melt and sintered to the

anode to establish the short-circuit. The external resistance was therefore the most signif-

icant component in rtotal. In the present study, the external resistance was lowered (to :

10mQ) by using thick rods as current collectors and higher gauge copper wires to complete

the external circuit. From Table 4.1, it is evident that r,,o controls deoxidation kinetics in

Zone I.



Field trials at RTC aimed at removing ;20 ppm O from a stream of copper being

continuously cast at a rate of 010 t/hr. The dissolved oxygen content in copper was

expected to be -500 ppm, and therefore, transport of oxygen ions through the electrolyte

would be rate controlling. If each deoxidation cell in the refining device is assumed to

operate at a constant current density of 40 mA/cm2 (based on the results of preliminary

deoxidation experiments), the number of cells (n) that would be required can be estimated

as follows:

AC = nieMo x 106ac = (4.1)
2FO

where, AC represents ppm O removed and, 0 is the casting rate in g/sec. This calcu-

lation yields that -400 cells would be needed to achieve the desired amount of deoxidation

(with 6" of submergence). In an industrial environment such as at RTC, utilizing such a

large number of tubes was found to be infeasible. Preliminary field visits to RTC were used

to establish that the pilot-scale refining unit should consist of approximately 50 deoxidation

cells. The submergence depth in the copper stream was expected to be 6".

Having identified the contact resistance as the most significant component in rtot, an

investigation of the cermet/electrolyte interface was conducted in an effort to improve the

deoxidation kinetics. Fig. 4-9 shows a scanning electron micrograph of a typical cermet pre-

pared using the method described by Chou et. al. [12]. The imperfect adherence between

the YSZ-electrolyte surface and the cermet anode layer is evident from the figure, and could

possibly lead to the high contact resistance observed in the present study.

Eq. 4.1 can be used to calculate that a current density of approximately 250 mA/cm 2

would be required for deoxidation at RTC, if 50 cells were used to remove 20ppm oxygen, at

a casting rate of 10 t/hr. The process model predicts that in order to achieve the required

deoxidation kinetics with the present electrolyte tubes, the contact resistance, ron, should

be of the same order as rion (, 0.10).

The cermet fabrication process was modified in order to obtain adherent cermet an-



ode layers and therefore decrease the contact resistance. The next chapter describes the

procedure developed for depositing the cermet. The results obtained from deoxidation

experiments that were conducted using the improved cermet have also been discussed.



Chapter 5

Enhanced Deoxidation Kinetics

As identified in Chapter 4, the deoxidation kinetics required for the field trials necessi-

tates a decrease in the contact resistance, and therefore, an improvement in the cermet

electrode/electrolyte adhesion. Studies by earlier workers[41] have shown that the charac-

teristics of slurry-coated cermet electrodes on YSZ are highly dependent on the preparation

method. The present chapter, therefore, first presents a brief review of reports on the rela-

tion between performance characteristics of Ni/YSZ cermet electrodes and their fabrication

methods. This is followed by a description of the slurry-coating technique developed to

deposit adherent cermet electrodes for use in the field trials. The Ni/YSZ cermets have

been characterized and results of laboratory experiments conducted to demonstrate the

enhancement in deoxidation kinetics have been presented.

5.1 Literature Review on Cermet Fabrication

A porous cermet of Ni/YSZ is the most commonly used anode material in solid-oxide fuel

cells, that have recently attracted much attention as efficient power generators. The anode

material must be stable in the reducing environment of the fuel and must have sufficient

electronic conductivity at the operating temperature. The thermal expansion of the anode

must match that of other cell components to avoid delamination during fabrication and

operation. The anode must adhere well and must also have sufficient, stable porosity to

allow gas diffusion to the reaction sites. In addition to these requirements, other desirable



properties for the anode are fabricability and low cost. The cermet anode employed in the

galvanic deoxidation process must possess identical properties.

A variety of preparation methods have been used for making Ni/YSZ cermet anodes.

These methods include conventional ceramic forming techniques (tape casting, calender-

ing), coating techniques (screen printing, slurry coating), and deposition techniques (plasma

spraying, electrochemical vapor deposition). The nature of the design and assembly of the

deoxidation cell in the present study permits the use of deposition techniques and slurry

coating for anode fabrication. Of the available techniques, slurry coating is less expensive

and was, therefore, used to form the Ni/YSZ anode layers.

There have been several reports on the relation between the performance characteristics

of a Ni/YSZ cermet electrode and its fabrication method. Murakami et. al. [42] examined

the relationship between the particle size of YSZ, the YSZ/Ni ratio and anode performance

by slurry coating mixtures of YSZ powder (mean diameter within 0.5 to 40pm) and Ni

powder (mean diameter 2.5pm). They conclude that, in general, greater than 50 wt% YSZ

is required to build a continuous ZrO2 network in the Ni/YSZ cermet. The continuous

network of YSZ particles serves to support the Ni particles and prevents changes in dimen-

sions and microstructure of the Ni/YSZ anode over long periods of time[16]. They also infer

that an increase in the effective electrode/electrolyte reaction area as the YSZ particle size

is decreased, leads to a reduction in the interface resistance and therefore, improved cell

performance.

Dees et. al. [43] determined the conductivity of porous Ni/YSZ cermets at 100 0'C as

a function of Ni content (between 15 and 50 v/o of total solids), for two different zirconia

particle sizes (23 and 47 m2 /g). Thin strips of Ni/YSZ cermets were fabricated by tape

casting a dispersion of NiO (Baker reagent grade - 3.5 m 2 /g) and YSZ powders. NiO was

reduced to metallic Ni by a reducing gas mixture of H2/H 2 0 at 1000'C, which led to an

increase in the porosity of the samples. In accordance with the percolation theory, they

observed that the cermets were electronically conducting at Ni contents greater than 30



v/o of total solids. Below this level, a greater than three order of magnitude decrease in

conductivity was observed, corresponding to a change in mechanism from electronic con-

duction through the Ni phase to ionic conduction through the zirconia phase. Considerable

improvement in the electronic conduction of the cermet (Ni content greater than 30 v/o)

was made by increasing the YSZ particle size. The increase was attributed to improved Ni

particle-to-particle contact, resulting from the Ni phase being able to cover more completely

the surface of the YSZ particles.

Kawada et. al. [41] studied the polarization characteristics of Ni/YSZ cermet electrodes

(at 1000'C in H2-H 20 atms.) in order to search for an adequate fabrication condition.

Standard material powders of Ni/YSZ cermet anodes were prepared by mixing NiO and

YSZ powders in a ball mill. These material powders were, at first, heated at 1400-1800K

(pre-calcination temperature, Tpc) for 5h and crushed, painted with i-propanol on YSZ

electrolyte pellets. This was followed by sintering at 1400-1800K (sintering temperature,

T,) for 5h. Resulting thickness of the electrode layers was about 10011m. Reduction of

NiO was done by fuel gas. In accordance with the results presented by Dees et. al. [43],

they observed a drastic change in interface conductivity around 30 v/o Ni and conclude

that Ni content is required to be more than 30 v/o. Precalcination of electrode material

powders at 1673K was found to be effective in preventing Ni from sintering and in avoiding

any resulting degradation of electrode performance. When Tpc is lower, YSZ powders shrink

during sintering and this leads to a loose microstructure around NiO particles. Finally, they

conclude that the electrode powders should be sintered on the electrolyte at a temperature

above 1600K. They suggest that a high sintering temperature leads to a smaller electrode

ohmic resistance due to the following reasons:

* It may be effective in promoting good nickel-to-nickel contact and in forming contin-

uous electronic paths in the electrode layer.

* In addition, YSZ particles in the electrode sintered at a higher temperature make a

rigid sintered framework and the reaction zone is supposed to extend into the electrode

layer, and is not restricted to the electrode/electrolyte interface.

Setoguchi et. al. [44] examined the anodic properties of several metal/YSZ cermet sys-



tems. Electrode materials were mixed with turpentine oil and coated on YSZ electrolyte by

firing at 1000'C for lh. The YSZ powder (TZ-8Y, TOSOH Corp.) was heated at 13000C

for 10h before mixing with NiO. The mixture was then heated at 14000C for lh. Anodic

overvoltage of metal/YSZ interface was related with metal-oxygen bonding strength and

was found to be the smallest for Ni/YSZ anode.

Chou et. al. [12] have described the deposition and characterization of Ni-YSZ cermet

electrodes that are adhering, have high stable porosity and low sheet resistance. Briefly, the

process reported consists of slurry coating and sintering a layer of Ni and YSZ on the inner

wall of one-end closed YSZ tubes, followed by pressure infiltrating YSZ and resintering. The

process was reproducible and could consistently deposit cermet electrodes having porosity

within a narrow range (30 to 37%), and sheet resistance between 0.0064 to 0.019 Q/cm2

depending on the thickness (150 to 30 pm). These electrodes were also stable at high tem-

peratures (1273K - 1473K). Galvanic deoxidation cells employing such cermet anodes were

operated for more than 100 hours at 12000C and could also undergo at least ten thermal

cycles between 12000C and room temperature.

Iwata[45] has reported on the relationship between anode degradation and Ni sinter-

ing in the Ni/YSZ anode. Mercury porosimetry revealed that pore distribution peaks in

the radius range of 10 to 200 nm that were present in the Ni-YSZ anode substrate before

testing, completely disappeared after 1015h at 1000'C. Electron microprobe observations

showed that the diameter of Ni particles in the anode substrate was 0.1 to 1pm before

running, whereas it increased upto 10pm after 1015h. Based on these results, the author

concludes that as Ni sintering progresses, anode degradation is caused by a decrease of the

contact area at the electrolyte/anode interface and a decrease in the specific surface area of

Ni particles.

A study of the literature reveals that a key factor in the preparation of Ni/YSZ anodes

is to tailor and control electrode morphology, because the characteristics and stability of

the anode microstructure significantly affect electrode performance. The next section de-



scribes the deposition technique developed to produce adherent, stable and electronically

conducting Ni/YSZ cermet electrodes for use in the present galvanic deoxidation process.

5.2 Fabrication and Characterization of Ni/YSZ Cermet

Anodes

5.2.1 Fabrication

The slurry-coating process developed is schematically depicted in Fig. 5-1. Standard pow-

ders for fabrication of Ni/YSZ cermet anodes were prepared by ball milling nickel oxide and

YSZ powders in a jar mill. Baker reagent grade nickelous oxide (average particle diameter

- 31pm) and ZrO2 - 13.16 w/o Y20 3 powders (TOSOH TZ-8Y, mean particle diameter -

0.2pm) were used as the starting materials. YSZ powder was first precalcined at 13000C

for 5 hours in air, crushed in a mortar and sieved through a US #325 sieve. Precalcined

YSZ powder was then ball milled with an appropriate amount of NiO powder (such that

after reduction of NiO to Ni, the Ni content in the anode layer would be 60 v/o of total

solids). Milling was carried out at 50 RPM for 12 hours in a glass jar using YSZ balls as the

milling media and a ball-to-powder weight ratio of 20:3. In order to break down powder ag-

gregates that resulted on milling, the powder mixture was crushed and sieved a second time.

A slurry-coating process was used to deposit the electrode. The slurry was prepared

by dispersing 7.5g of the powder mixture in 6ml isopropyl alcohol. Prior to the coating

process, the YSZ tubes to be used in the deoxidation cells were washed with acetone and

deionized water, followed by drying under an infrared lamp. The coating process consists

of filling a YSZ tube with 2g of the slurry. The YSZ tube is held vertically, the open end

of the tube is blocked and it is vibrated in order to obtain a thin, uniform coating of the

slurry on the inner wall. After the slurry has been allowed to dry for approximately 3 days,

the tube is heated to 15000C at 40C/min, sintered for 5 hours, followed by cooling to room

temperature at 40C/min. NiO was reduced to metallic Ni by heating the tube to 12000 C,

under an atmosphere of Ar, followed by sintering at 12000C for 1h under an atmosphere

of forming gas (5%H 2 - 95%N 2). During the reduction step, it was observed that, instead



of producing a uniform cermet layer, stagnation of reducing gas inside the YSZ tube led

to the formation of localized Ni globules. This was prevented by blowing the reducing gas

directly into the YSZ tube, thus ensuring a uniform gas flow.

5.2.2 Characterization

SEM and EDX

A JEOL 6320F SEM and a Philips Electroscan Model 3 Environmental SEM were used to

investigate the microstructures and morphologies of the as-prepared cermet anodes. Fig. 5-2

and Fig. 5-3 show typical SEM images for the cermet/electrolyte interface obtained using

the slurry-coating method described above. From the figures it is evident that the technique

produces anode coatings with uniform thickness (;20pm - see Fig. 5-2) and an improved

cermet/electrolyte adhesion (see Fig. 5-3), when compared with the process described by

Chou et. al. [12]. A micrograph of the surface of the Ni/YSZ cermet coating is shown in

Fig. 5-4. An important feature that can be observed from Fig. 5-4 is the porosity of the

coating (analyzed later using mercury porosimetry) - which would allow easy gas diffusion

to the reaction sites. Fig. 5-5 shows the Ni distribution (obtained with EDX) across the

thickness of the cermet. The procedure employed is effective in making good nickel-to-nickel

contact and therefore leads to the formation of continuous, electronically conducting paths

in the electrode layer.

Mercury Porosimetry

A Micromeretics Autopore 9220 mercury porosimeter was used to analyze the pore radius

distributions for the as-prepared cermet samples. The theory of wetting and capillarity

for mercury porosimetry and the experimental method for the determination of the porous

properties of a sample have been reviewed by Lowell et. al. [46]. Briefly, the method em-

ployed in mercury porosimetry involves the evacuation of all gas from the volume containing

the sample. Mercury is then transferred into the sample container while under vacuum. Fi-

nally, pressure is applied to force mercury into the voids and the applied pressure and

intruded volume are monitored.



Fig. 5-6 is a cumulative pore-volume intrusion curve which shows the summation of

volume intruded into the pores (V) plotted versus the applied pressure. The surface area,

S of all pores filled up to pressure P can be calculated from Fig. 5-6 using the following

equation[46]:

S= 0.0188 jPdV (5.1)

where, V is in cubic centimeters and P in psia. By graphical integration, using the

cumulative intrusion curve in Fig. 5-6, the surface area of all pores filled by mercury up to

30 psia is 288 cm 2 /g. Plots of the derivative of the cumulative curves, • versus radius are

useful for the determination of the radius at which the maximum volume intrudes. Fig. 5-7

is a derivative plot calculated from the cumulative curve in Fig. 5-6. The area under the

derivative plot can be used to represent pore-size distribution in the as-prepared cermet

anodes, in terms of the fraction of pores that lie within specific pore-radius intervals (see

Fig. 5-8). The cermets fabricated using the slurry-coating technique developed, have 75%

of the pores in the pore-radius range between 10-151Lm.

5.3 Laboratory Deoxidation Experiments Using Modified

Cermet

The setup and procedure for the experiments is similar to that described for the preliminary

ones (see section 4.1). The differences include the following:

* The cermet anode layers are deposited using the modified technique described above.

* The mass of copper deoxidized during an experiment was reduced and smaller quartz

crucibles were used (3½" OD, 1/4" thick, 3 " height, Corning Inc.).

* During the preliminary experiments it was observed that the Ni gauze spirals damage

the cermet during insertion of the Ni current collector rod. In order to prevent this,

Ni gauze strips (1/4" wide, 1/16" thick) were placed in contact with the cermet before

insertion of the Ni rod.



The external current vs. time curves for two deoxidation experiments are shown in

Fig. 5-9. Linear regression fits between In lex and time towards the end of the deoxidation

experiments are plotted in Fig. 5-10. The calculated mass-transfer coefficients and other ex-

perimental/modeling parameters are provided in Tables 5.1 and 5.2. The modeled external

current and oxygen concentration curves are in excellent agreement with the experimental

ones (see Fig. 5-11).

In the electrolyte-controlled regime, a current density of 230 mA/cm2 was obtained (see

Table 5.2), as against 40 mA/cm2 for the preliminary experiments. With the development

of adherent cermet layers and the use of protective Ni strips, the contact resistance has been

decreased from 0.3Q to 0.10 (which, as described in Chapter 4, is the target value predicted

using the process model). In addition, the mass-transfer coefficient is an order of magni-

tude higher, which may be attributed to increased stirring due to the lower mass of the melt.

With the improved kinetics, Eq. 4.1 predicts that 55 tubes (6" submergence) will be

required to remove 20 ppm O at a casting rate of 10 t/hr. This number was found to be

reasonable for the deoxidation trials at RTC. The deoxidation cells for the field trials were

therefore prepared using the modified cermet-fabrication procedure.



Chapter 6

Field Evaluation and Cell

Longevity

6.1 Trial at Reading Tube Corporation

6.1.1 Current Melting and Refining Practice

Reading Tube Corporation produces phosphorus deoxidized UNS C12200 copper tubing con-

taining a minimum of 99.9% copper and 0.015-0.04% phosphorus. The production process

begins by melting No. 1 grade copper scrap in a 220 t reverberatory furnace. Fire-refining

is used to remove the impurity elements in the purchased scrap. The refining technique

consists of oxidizing molten copper by blowing air into the bath. The oxygen reacts with

the impurity elements that have a higher oxygen affinity than copper. The blowing opera-

tion also raises the oxygen content in copper to 0.3-0.6wt.% which is reduced by poling to

-0.05wt.% before the furnace is tapped.

The remaining oxygen is removed during casting, by controlling the addition of phos-

phorus to the stream of molten copper. The primary variables are flow of copper and the

oxygen content, both of which vary significantly during the eight hour casting operation.

The oxygen content tends to rise due to absorption from the furnace atmosphere and ex-

posure of the copper stream to air. When the oxygen content rises to an unacceptable level

of 0.05-0.06wt.%, the copper bath is poled again. At Reading Tube, excursions to higher



levels occur occasionally. More frequent or extended poling operations cannot be performed

due to temperature losses and particulate emissions. In addition, poling becomes ineffective

when the metal level in the furnace drops below 40%. Reading Tube Corporation has no

method of reducing the oxygen content in the last 3.5 hours of casting.

6.1.2 Potential Applications and Benefits

The electrochemical deoxidation technique will enable control of the oxygen content within

the desirable range throughout the casting operation. Maintaining the oxygen content

within a low narrow range will result in the following benefits:

1. Thin-walled tube market opportunities and improved tube drawing: High oxygen con-

tents in the molten stream require greater amounts of phosphorus addition. The ex-

tended time in which phosphates continue to form can lead to the entrapment of brittle

and glassy phosphate inclusions in the cast billets. These inclusions cause difficulties

in subsequent tube-drawing operations, especially thin-walled tubes. Application of

the electrochemical deoxidation technique will eliminate/reduce the entrapment of

phosphates. This aspect will result in higher production efficiencies, higher yield and

aid RTC in gaining entry into the thin-wall tube market.

2. Improved phosphorus control: Dissolved phosphorus significantly degrades the elec-

trical conductivity of copper[47]. Measuring the electrical conductivity therefore pro-

vides a simple and rapid method to estimate the phosphorus content. However, it

cannot detect the presence of phosphate inclusions, because phosphorus present as an

inclusion has a negligible effect on conductivity.

To eliminate correlation errors and verify conformance to specification requirements,

a direct chemical analysis is required. While a method such as optical emission spec-

troscopy can provide accurate results of the total phosphorus content, it cannot distin-

guish between the soluble and insoluble forms of phosphorus in copper. If this method

were used instead of conductivity measurements during casting, samples would read



erroneously high and show more variability depending upon the amount of trapped

phosphate inclusions. Some amount of phosphate inclusions float to the surface down-

stream of the sample location. Consequently, this would lead plant personnel to reduce

addition of phosphorus to the stream and produce billets with low phosphorus con-

tents.

Increased control over entrapment of phosphates on application of the present tech-

nique will allow the use of an optical emission spectrometer for process control and

improve the reliability of segregating billets using conductivity. Using the cells to

minimize variability in oxygen content will also minimize fluctuations in phosphorus

additions.

6.1.3 Electrochemical Deoxidation Setup

A schematic of the deoxidation setup used for the pilot-scale deoxidation trials at RTC is

shown in Fig. 6-1. 53 deoxidation cells, prepared as described in Section 5.3, were welded

to the holding section of the fixture (see Section 4.1). The deoxidation setup was similar to

the one used for the laboratory experiments, with the following modifications:

* An Inconel pipe (Schedule 80 Inconel Alloy 600 pipe, Tubesales) welded to the sealing

plate served as the hydrogen inlet and was also used to raise and lower the deoxidation

unit.

* In the event that some of the YSZ tubes crack during deoxidation, hydrogen distribu-

tion to each cell would no longer be uniform, as the reducing gas would preferentially

flow through the cracked deoxidation cells. In order to prevent non-uniform hydrogen

distribution, 0.25" diameter Ni plates, with centrally located circular holes (0.002" di-

ameter), were welded to the top of each Ni rod (see Fig. 4-2). By causing the largest

pressure drop in the flow line, the 0.002" holes act as orifice meters, thus ensuring

uniform gas flow to each cell. A rotameter (044-40T 150mm flowmeter, Aalborg In-

struments and Controls) was used to regulate the hydrogen flow to 2.5 1/min per

deoxidation cell.



* 2/0 welding cable (Middlesex Gases and Technologies) was used to establish the short-

circuit between the melt and the cermet. A copper connector (see Fig. 6-1) was used

to attach the lead wire to the Inconel rod. Electrical contact with the melt was

established by dipping several 446 rods (welded to a 306 block) in the stream.

Fig. 6-2 is a flowsheet for copper production at RTC. Copper from the reverberatory

furnace flows, via a launder, into a gas-fired holding hearth to control the melt level in

the tundish (the tundish is a rectangular vessel that simultaneously feeds multiple, semi-

continuous casting molds). A ceramic insert, as shown in Fig. 6-3, was placed in the launder

to create a relatively quiescent melt and prevent the bending of Ni tubes due to the flow

of metal. In addition, the insert ensured a minimum submergence depth (4-") for the

deoxidation cells, under variable metal flow conditions. In order to carry out deoxidation,

an electric furnace was placed above the insert and the YSZ tubes were preheated in the

furnace to 8000 C. The preheated cells were lowered into the flowing stream of copper, with

the help of a cable/winch mechanism.

6.1.4 Diagnostics for the field trial

The external current measured during the pilot-scale deoxidation trial is shown in Fig. 6-4.

When the tap slot of the reverberatory furnace was opened, the sudden discharge of copper

in the empty launder led to splashing of hot metal on the bottom of the YSZ tubes. Several

YSZ tubes cracked due to the extreme thermal shock associated with the splashing. In

addition, the YSZ tubes were subjected to thermal shock during preheating, which was

carried out at a rate significantly greater than 4VC/min.

For the cracked YSZ tubes, the Ni current collector rods were in direct contact with

the melt - providing an alternate path for current to flow between the cermet anodes of the

functioning (undamaged) deoxidation cells and the melt cathode. The measured external

current was, therefore, not completely representative of the oxygen content removed and the

results could not be modeled. Raising the fixture (by 0 1") enabled a limited elimination of

the internal short, thereby increasing the measured external current. The spikes in Fig. 6-

4 represent attempts to reduce the internal short, as described above. Approximately 10



YSZ tubes were found to be undamaged at the end of the experiment and the submergence

was estimated to be 3 - 4". Based on these approximations, the maximum current density

observed during the trial was ;200 mA/cm 2 . The current density obtained compares fa-

vorably with that obtained during the laboratory experiments. The results of the trial can

be used to conclude that, with an improved engineering design of the deoxidation setup,

application of the electrochemical deoxidation technique on an industrial scale is feasible.

As indicated by Odle et. al. [6] and as observed in the field trial, the applicability of the

technique depends upon the thermal shock resistance of the electrolyte tubes, which would

necessitate a slow, careful heat-up of the tubes prior to immersion. In addition, research on

solid-oxide fuel cell technology indicates that the densification of the cermet is one of the

factors which limits the life of a SOFC[16]. Extended application at high temperature can

lead to deterioration of deoxidation-cell performance and therefore, the kinetics of oxygen

removal. The next section describes the results of experiments conducted to study the

longevity of the deoxidation cells.

6.2 Cell Longevity

A detailed schematic of the experimental setup used to investigate the thermal-cycling life

of the YSZ electrolyte tubes is shown in Fig. 6-6. The experimental arrangement consists

of a YSZ tube (the inner wall coated with the cermet) sealed to an alumina support tube

(3/4" OD, 9/16" ID, Vesuvius McDanel) with a ceramic adhesive (Ultra-Temp 516, Aremco

Products Inc.).

In industrial application of the deoxidation technology, it is expected that the cells will

be kept heated at approximately 100 00C (soak temperature), in order to prevent thermal

shock damage between deoxidation cycles and to reduce cycle time. The expected industrial

conditions were simulated by conducting the thermal-cycling experiments in a three-zone re-

sistance heating furnace (Lindberg model 54459-V). The top zone of the furnace was heated

to the soak temperature (10500 C), while the middle and the bottom zones were maintained

at the deoxidation temperature (12000C). An alumina crucible (40mm OD, 91mm height,



Vesuvius McDanel) containing 350g copper (1-10mm Cu shots, Johnson Matthey) was posi-

tioned in the central heating zone, inside an alumina furnace tube. End caps (306 stainless

steel, Vesuvius McDanel) were used to seal the top and bottom of the furnace tube. The top

seal had openings for a mullite tube (0.125" OD, 0.094" ID, Vesuvius McDanel), a 446 rod

(1/4" dia.), the alumina support tube and a thermocouple (B type) positioned in a one-end

closed alumina tube. The mullite tube was used as a forming gas (90%N 2 - 10%H 2) inlet, in

order to maintain a reducing atmosphere inside the furnace tube. The 446 rod was used to

establish electrical contact with the copper melt and the B-type thermocouple to monitor

the melt temperature (maintained constant at 12000C). A type S thermocouple placed in

contact with the closed end of the YSZ tube was used to monitor the temperature of the

tip of the YSZ tube during the cycling experiment. In addition, it was used to maintLin an

inert Ar atmosphere inside the YSZ tube (to prevent oxidation of the cermet) and as an

electrical contact with the cermet. The integrity of the YSZ tube being cycled was contin-

uously monitored, by measuring the resistance between the melt and the cermet, during a

cycling experiment. Penetration of copper, in the event that the YSZ tube cracked, would

lead to a short-circuit between the melt and the cermet.

The alumina support tube was held in a pressure fitting (3/4" Tube OD Ultra Torr

Union Tee, Swagelok), which in turn was supported on a 306 stainless ring. A steel cable

attached to the 306 ring was used to raise and lower the YSZ tube at a controlled rate (a

Dayton motor/gearbox arrangement was employed for the purpose). An isometric view of

the longevity/cycling setup is shown in Fig. 6-5. The top zone of the furnace was heated to

1050'C (at 40C/min), with the YSZ tube in the raised position. The YSZ tube was lowered

into the copper melt at a rate of 0 0.002 inch/min, kept immersed for 2 hours and raised

again. During one thermal cycle, the tip of the YSZ tube was subjected to a temperature

history shown in Fig. 6-7. The experimental parameters for the cycling experiments have

been listed in Table 6.1.

The tubes have been tested for a maximum of 10 thermal cycles, and were held at 10500 C

for 80 hrs (20 hrs immersion time in molten copper). The integrity of the cycled YSZ tube



was investigated by pressurizing it, followed by immersion in soap solution. Measurement

of a resistance on the order of 10kQ between the 446 rod and the rhodium element of the

tip thermocouple, as well as the immersion test were used to conclude that the YSZ tubes

did not crack during the present experiments.

The part of the YSZ tube that was immersed in copper was sectioned and the outer

surface analyzed for corrosion resistance using EPMA (JEOL 733 SEM). Fig. 6-8 shows

a scanning electron micrograph of the electrolyte surface after immersion in copper for 20

hours. EPMA analysis was used to conclude that copper did not penetrate in the YSZ

grains or in the intergranular pores.

In order to study the long-term stability of the cermet electrodes, mercury porosimetry

was carried out on cermet samples that had been used in the cycling experiments. Fig. 6-9

and Fig. 6-10 show the intrusion curves and pore-radius distributions for the cermets, as

a function of time at temperature. As described in Section 5.2.2 the as-prepared cermet

had 75% of the pores in the radius range of 10 to 15pm. After expt. CE2, the pore radius

distribution "peaks" disappeared. In addition, pores in the radius range of 15 to 35pom,

that were absent in the as-prepared cermets became prominent after expt. CE2. Table 6.2

shows the specific surface areas of the cermets obtained from mercury porosimetry data of

Fig. 6-9. After expt. CE2, the specific surface area of the cermet decreased to a third of

that for the as-prepared sample. The decrease in the specific surface area can be attributed

to Ni sintering in the Ni-YSZ cermet anode. Figs. 6-11 and 5-5 can be used to compare the

morphology and Ni distribution of electrodes before and after expt. CE2. It is important

to note that though mercury porosimetry indicates a significant decrease in the specific

surface area (288 to 107 cm 2/g), any appreciable difference could not be seen in SEM/EDX

analysis. This is probably because the difference was not so large as to be observed in the

micrographs.

SOFC research indicates that significant structural changes in the cermet anode can

cause degradation in deoxidation cell performance[16]. Cermet densification can lead to a



decrease in the three-phase contact area and will limit the useful life of the deoxidation

units. Commercial viability of the technology therefore re- _.-Z the anode to maintain its

dimensions and desired microstructure in long-term operatL,- a elevated temperature. As

reported in section 5.1, a continuous network of YSZ particles in the anode is required to

prevent a change in dimensions and microstructure over long periods of time. The formation

of a three-dimensional YSZ network strongly depends on fabrication conditions and starting-

material characteristics and compositions. The rate of anode sintering is also dependent on

the Ni particle-size distribution and increases as the wide., of Ni particle-size distribution

increases and as the Ni content in the anode increases. Mercury porosimetry results on long-

term stability of the cermets prepared in the present study, therefore, emphasize the need

for an in-depth investigation of electrode processing to characterize and optimize cermet

fabrication.

6.3 Future Work and Alternate Applications

The field trial conducted at RTC has demonstrated the need to develop cell assembly fixtures

more suited to application in an industrial environment. In collaboration with the Idaho

National Engineering and Environmental Lab (INEEL), researchers at the State University

of New York at Stony Brook have directed significant effort towards the development of a

process to economically manufacture deoxidation-cell structures for industrial application.

The technique results in a thermally-shock resistant, compositionally-graded cell structure.

The cell-manufacturing process starts with plasma spraying a layer of porous Ni (0.06"

thick) on a metallic anode mandrel and ends with plasma deposition of a 0.01" thick, outer

YSZ layer. A schematic of the cell structure is shown in Fig. 6-12. The thin electrolyte

in such anode-supported cell structures leads to improved thermal-shock resistance (due to

lower thermal stresses within the electrolyte layer) and a decrease in the ionic resistance,

rio,. Fig. 6-13 shows the deoxidation kinetics predicted for an anode-supported cell (3"

OD, 60" submergence), based on modeling results obtained from laboratory experiments

(see Table 6.3). With a predicted current density of ^ 750mA/cm2 , it would be possible

to deoxidize (3000 to 250 ppm) a 50 ton batch of liquid copper in 1 hour, if 100 anode-

supported structures of the kind described were employed for the purpose. The process



can be used to eliminate the poling operation and will lead to a reduction in particulate

emissions and soot production during fire-refining. Stricter environmental regulations in

the future provide an impetus to designing cell assembly fixtures and conducting an eco-

nomic analysis to assess the commercial feasibility of the technology in an industrial setting.

At high current densities, anode polarization is expected to become a limiting factor

in the performance of the cell structures[20]. In addition, longevity experiments conducted

during the present study have shown that Ni sintering can occur and decrease the re-

action area at the anode, leading to a concurrent deterioration in cell performance with

prolonged cell use. Gubner et. al. [48] have investigated the degradation of SOFC cer-

met anodes and report that transport of Ni via gaseous species (NiOH2) can lead to loss

of Ni in the porous cermet structure and that the effect is enhanced by a high oxygen

activity in the fuel. Most studies on the long-term stability and electrochemical perfor-

mance of cermet anodes employed in SOFC's have been conducted at a lower temperature

(800 - 10000C)[17, 18, 19, 41, 42, 43, 45] and, therefore, a need exists to characterize and

improve the anodes used in the present deoxidation technique at higher operating temper-

atures and current densities.

Besides deoxidation of molten metals, the technology described has the potential to be

used in electrocatalytic extraction of metals. The extraction device consists of a one-end

closed YSZ tube which contains an oxide ore. A working electrode is immersed in the

molten ore and a counter electrode is painted outside the tube. A potential step applied

between the working and the counter electrode causes the oxide in the ore to dissociate and

form the metal. The metal deposited at the working electrode can be grown as a dendrite,

which autocatalytically increases the interfacial area of the working electrode and enhances

the reduction-process kinetics. The process has been used in the laboratory to efficiently

produce iron, ferro-alloys and lithium, from its oxide ores.

Oxygen-separation technology, essentially based on the concept described in the present

study, is being used by an alliance of five global companies (including British Petroleum



and Praxair Inc.) to develop a revolutionary technology in which natural gas is converted

to synthesis gas (syngas). The process uses a non-porous ceramic membrane (similar to the

YSZ electrolyte in the present study) ýLat separates oxygen from air and transports it to

a methane/steam stream (see Fig. 6-14). Methane reacts with emerging oxygen and steam

to produce synthesis gas. By eliminating the need for a separate oxygen production plant,

the technology significantly reduces the energy and capital cost associated with syngas

production.



Chapter 7

Summary and Conclusion

The technical feasibility of employing solid-electrolyte cells for electrochemical deoxidation

of molten metals has been demonstrated by earlier workers on a laboratory scale. Though

several scale-up structures have been proposed, field trials have not been conducted to date.

In the present work, galvanic deoxidation technology developed by Yuan et. al. [8] has been

investigated with the aim of developing a prototype pilot-scale deoxidation unit.

A single deoxidation cell consists of a one-end closed YSZ tube, the inside of which is

coated with a porous Ni/YSZ cermet anode and is flushed with a reducing gas. The tube

is dipped into the melt to be deoxidized and oxygen is removed by short-circuiting the melt

with the cermet anode. The external lead-wire resistance involved in short-circuiting the

melt with the anode was decreased to a few mQ and through lab experimentation, the nature

of anode/electrolyte adhesion was identified to be an important factor in obtaining enhanced

deoxidation kinetics. Since industrial deoxidation will require multiple cells, the mathemat-

ical process model developed by Yuan et. al. [9] was appropriately modified. In addition, a

contact resistance was incorporated in the model, in order to analyze anode/electrolyte in-

terface characteristics. The contact resistance was decreased by developing a slurry-coating

technique that was used to produce uniform, electronically conducting, and adherent cermet

anode layers.

A pilot-scale deoxidation unit consisting of 53 deoxidation cells was manufactured and



field trials were conducted at Reading Tube Corporation/Cambridge Lee Industries, Read-

ing, PA. These trials indicate that there exists a need to design assembly cell fixturc, suited

to industrial application. In addition, the deoxidation cells should be protected from ther-

mal shock damage by ensuring a slow heat-up prior to immersion and by keeping the cells

heated between deoxidation cycles. The commercial feasibility of the technique will also

require enhancement of the deoxidation kinetics and a significant parallel effort at INEEL

has been devoted towards the development of thin, anode-supported YSZ structures that

are thermally shock resistant and can lead to high current densities, on the order of 750

mA/cm 2. The thermal-spraying process being developed to manufacture the large-scale

structures will also lead to a reduction in cell-manufacturing cost and time, further improv-

ing economic viability.

SOFC research indicates that densification of the cermet due to prolonged exposure to

high temperature will limit the useful life of the deoxidation units. Preliminary experiments

were conducted to study the sintering behavior of the cermet anodes, thermal-cycling life

of the YSZ tubes and the minimum life of the YSZ cells was determined to be 10 cycles

(when cycled between 1050 and 12000C). The YSZ electrolyte did not exhibit corrosion

after immersion in copper for 20 hrs. Mercury porosimetry was used to analyze the cycled

cermets and shows that the surface area of the porous cermet structure decreases from 288

to 107cm 2/g after 100 hours at temperature. Cermet densification and electrode polar-

ization at high operating current densities can lead to a deterioration in deoxidation cell

performance. An in-depth investigation of electrode processing and performance is there-

fore required to characterize and optimize cermet fabrication.

This study has been successful in demonstrating the technical feasibility of employing

galvanic deoxidation in an industrial environment. The technology can replace pollution-

intensive refining operations such as poling of copper melts and has alternative applications

in the electrocatalytic extraction of metals and oxygen separation. There is a strong impe-

tus to conduct an economic analysis to investigate the commercial feasibility of using the

technique on an industrial-scale and finally, to develop a large-scale deoxidation unit.
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Figure 2-3: Equivalent circuit incorporating a "contact" resistance and multiple deoxidation
cells.
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Figure 3-3: Scanning electron micrograph used for EPMA analysis of the electrolyte.
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Figure 3-4: Principle of the four-point probe method.



8-

7-
C~.o!
D

6-

5-

A4
4I I I I I

0.00052 0.00056 0.00060 0.00064 0.00068

1/T

Figure 3-5: Variation of ionic conductivity with reciprocal absolute temperature.

Without Binder

With Binder



31

UO
I

I

Trem ature(*c)
10 1D0I 100 I000 Oe m N

Figure 3-6: Conductivity vs. reciprocal temperature for various compositions in the system
Y20 3-ZrO2 . Numbers near the curves denote mole-percent Y20 3 .



Pt Wire

Pt - 1O%Rh

L

let

Z Tube

IReference

Air
Atmosphere

t Gauze
ounter

Figure 3-7: Cell geometry for electronic conductivity measurement.

I



2.0

1.9 "

9 1.8

> 1.7-

1.6 -

1.5 -

II i I

0.0 0.5 1.0 1.5 2.0

Time (ms)

Figure 3-8: Typical cell-potential vs. time plot obtained during measurement of Eoc-

I _ _

Eoc I ilia 11111111 lillioll III 1 111111111 11

I



&% **-c.-*. aife 129

a

SI I

5 6 7 8 9

104/T (K)

Figure 3-9: Relation between Po and 1/T for ZDY-4 tubes.

"V L' &-]

se [34]

a11 [39]

dman [40]

V-4

10-18.

10-21 -

" 10-24 -

10- 7 -

10- -

10-33 -

1 -36

D

F I

I I
I



TOSOH 7Z-8Y
YSZ Powder
(20 sq. mig)INCO Type 287

PVA ŽSolution N rowaer ISZ rowaer

SNi Powder 60%
PVA Solution 40%
YSZ Powder 5% of N Powder Weight

Thickness 50 to 250 micron

11OOC, 17hrs (Nitrogen + 2% Water Vapor)
Natural Cooling (Nitrogen + 5% Hydrogen)
Pressure = 20 psi

P = 5mm Hg

1200C, 7hrs (Nitrogen + 5% Hydrogen)
Pressure = 20psi

Cermet Thickness - 50 to 200 micron
Cermet Porosity - 30%.to 40%
Cermet Weight - 0.031 g/sq. cm

Figure 4-1: Flow chart for the cermet fabrication procedure described by Chou et. al. [12].
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Figure 4-2: Assembled electrochemical deoxidation cell.
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Figure 4-9: Scanning electron micrograph for a typical cermet prepared as in [12].
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Figure 5-1: Flow chart for the modified cermet-fabrication process developed in the present
study.



Figure 5-2: Scanning electron micrograph of the cermet/electrolyte interface showing uni-
form thickness.
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Figure 5-3: Scanning electron micrograph of the cermet/electrolyte interface showing
electrolyte/electrode adhesion.

Figure 5-4: Scanning electron micrograph of the Ni/YSZ cermet surface.



Figure 5-5: Ni distribution across the cermet thickness.
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0.12

0.10

0.08 -

0.06 -

0.04 -

0.02 -

E

E
U

0.00



U.UIL

0.010

~ 0.008

-0.006

" 0.004

0.002

0.000
0 5 10 15 20 25

r (gm)

Figure 5-7: Derivative plot: vs. radius.

30 35 40

A Al $I



80

70

60

50

40

30

20

10

0
0 5 10 15

Pore Size Interval (gtm)

Figure 5-8: Pore-size distribution.



6

5

4

2

0

0 20 40 60 80 100 120

Time (min)

4

3

2

1

0
0 5 10 15 20 25 30 35 40 45

Time (min)

Figure 5-9: Experimental external current vs. time.

88



0.5

0.0

-0.5

1.0

0.5 -

0.0

-0.5

-1.0

Expt. 1

0 8 85 90 95 100

Time (min)

26 28 30 32 34 36 38 40

Time (min)

Figure 5-10: Linear regression between in lex and time.

I..

....Experimental -
- RrsoF

SRegression Fit .... •
! ! I !

Expt. 2

*.

..- Experimental
- Regression Fit• .,, |

-L

I

e



5

4

U

2

1

0

3000

2500

2000

1500 U

1000

500

0

0 20 40 60 80 100 120

Time (min)

5

4

3

4)

2

1

0

- 800

700

600

500

400

300

200

100

0
0 10 20 30 40 50

Time (min)

Figure 5-11: Modeled/experimental external current and concentration vs. time curves.

r ~ll\n



To Raise/wer
Mechaism

Nil

Z Tubes

Gauze

Figure 6-1: Launder insert (end view): deoxidation setup at Reading Tube Corporation.



o

Cj

oU

C.)

u 0 Q0U0

60 o

00O w

t: 0oE aa "SI~0 C 4

CA

.,

ife

I.

m

oe o

o g yN 6 -5
x 2*Q

0o

I-

o

4)
C.

S
a!

4)

.0
I-

P" -



I HzinL
Ceramic

IU UUUUUL

Figure 6-3: Launder insert (side view): deoxidation setup at Reading Tube Corporation.
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Figure 6-8: Scanning electron micrograph of the electrolyte surface after Expt. CE2.

98



o As Prepared 00 08o 0
o After Expt. CE2 0000o co o

0
00

0

03 O
0

0o 0 00

000 0

00000 0
0

000

0 00

0 0
O 9 OO 0O

.• .• .-€3 ...

Pressure (psia)

Figure 6-9: Intrusion curves for Ni-YSZ cermet anodes as a function of time at temperature.
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Figure 6-11: Scanningig 'ele!(ctron micrograph and Ni distribution across the cross-section of
Ni-YSZ cerinet, clectrodes after expt. CE2.
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Table 3.1: EPMA analysis of the electrolyte.

Electrolyte Composition (ZDY-4)
Oxide Wt. %

Y203  7.9011

ZrO 2  89.6282

A1203
MgO 2
SiO2

Table 3.2: Values of activation energy Ei and pre-exponential constant Ci.

Temperature Range (C) Ei (eV) Ci (S/cm)

1200 - 14400C 1.066 1.268 x 106
1440 - 16500 C 0.803 2.246 x 10'

106



Table 4.1: Modeling parameters (expt. PRE).

Experimental Parameters

Literature Data

Calculated Parameters

mn jt (g)

PH2 (atm)
v (1/min)

Melt Temperature (0C)

Submersion (inches)
Melt/Electrolyte Interfacial Area (cm2)

YSZ Tube OD (cm)
YSZ Tube ID (cm)

Pmnlt (g/cc)

RR (mQ)

Eoc before Short Circuit (V)

o (ppm)

qao (S - atm'"/cm)
ar (S/cm) {rin (ma)})

3925

2.5

1200

4.349
45.11

1.3
1.04

7.98

8

0.64

443

2.87 x 10"8

0.196 {16}

Mo (g/mol) 16

F (coul/equiv.) 96485

Gas Constant (atm-Vmol-K) 0.082
Gas Constant (J/mol-K) 8.314

K, (wtO/o% - atm ) 111.32 (at 1200-C)
K, (atmai n ) 791055.7 (at 1200-C)

P& (OC) (atm) 3 x 101'6

P2o (OC) (atm) 0.0137

cc (cm/s) 0.00388

k1 (ppm) 0.0193
k2 (ppm/A) 0.0041

rn (Q) 0.32
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Table 5.1: Modeling/experimental parameters for experiment 1.

Experimental Parameters

Literature Data

Calculated Pammeters

mma (g)

PH2 (atm)

v (/min)

Melt Temperature (-C)

Submersion (inches)
Melt/Electrolyte Interfacial Area (cm2)

YSZ Tube OD (cm)
YSZ Tube ID (cm)

P•mt (g/cc)

R. (mn2)

Eoc before Short Circuit (V)

Co (ppm)

aoq (S- atm""/cm)

ari (S/cm) {rim (mQ))

720

= 1

2.5

1200

1.51
16.02

1.3
1.04

7.98

13

0.84

3000

2.87 x 10-

0.196 {47}

Mo (g/mol) 16

F (coul/equiv.) 96485

Gas Constant (atm-1/mol-K) 0.082
Gas Constant (J/mol-K) 8.314

I. (wtO/o - atrn-" )  111.32 (at 1200-C)
Kp (atmn'1) 791055.7 (at 1200*C)

Pý (OC) (atm) 2.3 x 10"

PH2o (OC) (atm) 0.0038

oc (cm/s) 0.007

k, (ppm) 0.00535
k2 (ppm/A) 0.0041

r. (f)) 0.08
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Table 5.2: Modeling/experimental parameters for experiment 2.

Experimental Parameters

Literature Data

Calculated Parameters

mmet (g)

PH2 (atm)

v (1/min)

Melt Temperature ("C)

Submersion (inches)
Melt/Electrolyte Interfacial Area (cm2 )

YSZ Tube OD (inch)
YSZ Tube ID (inch)

Pmelt (g/cc)

R, (mQl)

Eoc before Short Circuit (V)

Co (ppm)

aO (S - atm•'/cm)
am (S/cm) {r,n (mR)}

731

= 1

2.5

1200

1.69
17.9

1.3
1.04

7.98

13

0.9

709.5

2.87 x 10"

0.196 {42)

Mo (g/mol) 16

F (coul/equiv.) 96485

Gas Constant (atm-1/mol-K) 0.082
Gas Constant (J/mol-K) 8.314

K, (wt% -atm '" )  111.32 (at 1200-C)
KI (atm"m) 791055.7 (at 1200 0C)

P (OC) (atm) 1.95 x 10"'

P1• (OC) (atm) 0.00035

at (cm/s) 0.01

k1 (ppm) 0.00049
k2 (ppm/A) 0.0041

r. (0) 0.1
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Table 6.1: Experimental parameters for the longevity/cycling experiments.

Cycling No. of Time Immersed Time held in Top Gas Flow Rates
Experiment Cycles in Copper (hrs) Zone (hrs) (ml/min)

Expt. CE1 2 4 28.3 Argon: 39
Forming Gas: 331

Expt. CE2 10 20 80.5

Table 6.2: Specific surface areas of Ni-YSZ cermets.

Ni-YSZ Cermet Specific Surface
Area (cm 2/g)

As Prepared 288

After Expt. CE1 176

After Expt. CE2 107
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Table 6.3: Modeling parameters for batch deoxidation.

Experimental Parameters

Literature Data

Calculated Parameters

l (t)

PH2 (atm)

v (/min)

Melt Temperature (*C)

Submersion (inches)
Melt/Electrolyte Interfacial Area (cm2)

YSZ Tube OD (inch)
YSZ Tube ID (inch)

pt (g/cc)

R. (mO)

Eoc before Short Circuit (V)

Co (ppm)

eo (S - atm'"/cm)
ajl (S/cm) {rim (mv))

50 (100 Tubes)

550

1200

60
7296

3
2.99

7.98

104

NA

3000

2.87 x 10-

0.196 {0.018}

Mo (g/mol) 16

F (coul/equiv.) 96485

Gas Constant (atm-l/mol-K) 0.082
Gas Constant (J/mol-K) 8.314

K, (wt% - atm" 2) 111.32 (at 1200-C)
KP (atmf" 2) 791055.7 (at 1200-C)

P4 (OC) (atm) 1.95 x 10-"

P,Ho (OC) (atm) 0.00035

a (cm/s) 0.01

k1 (ppm) 0.00049
k2 (ppnmA) 1.93x 10-5

rfen() 8.7 x 10-5
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