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Abstract— Landmark-based architecture has been commonly
adopted in the networking community as a mechanism to
measure and characterize a host’s location on the Internet. In
most existing landmark based approaches, end hosts use the
distance measurements to a common, fixed set of landmarks
to derive an estimated location on the Internet. This paper
investigates whether it is possible for participating peer nodes
in an overlay network to collaboratively construct an accurate
geometric model of its topology in a completely decentralized
peer-to-peer fashion, without using a fixed set of landmarks.
We call such a peer-to-peer approach in topology discovery and
modeling using landmarks PALM (Peers As LandMarks). We
evaluate the performance characteristics of such a decentralized
coordinates-based approach under several factors, including
dimensionality of the geometric space, peer distance distribution,
and the number of peer-to-peer distance measurements used. We
evaluate two PALM-based schemes: RAND-PALM and ISLAND.
In RAND-PALM, a peer node randomly selects from existing
peer nodes as its landmarks. In ISLAND (Intelligent Selection of
Landmarks), each peer node selects its landmarks by exploiting
the topological information derived based on existing peer nodes’
coordinates values.

I. INTRODUCTION

Recently, a new class of globally distributed network
services have emerged. Examples of such services include
distributed content delivery services, overlay multicast [1],
structured peer-to-peer lookup services [2], [3], [4], [5], and
peer-to-peer file sharing. Network distance estimation can
benefit many of these services. To help with the performance
of these services, much research has been done to allow end
hosts to discover network topology and accurately predict
network distances in a scalable and timely fashion.

Most of the existing network distance prediction schemes
rely on distance measurements to a common set of reference
nodes to some extent. For example, in IDMaps [6], hosts called
Tracers are deployed in the network to measure distances
among themselves and to nearby hosts in a range of IP
addresses. The Global Network Positioning (GNP) system [7],
for example, uses a host’s distance measurements to a fixed
set of infrastructure nodes to compute absolute coordinates to
characterize the host’s location on the Internet. More recently
proposed coordinates-based systems [8], [9], [10] attempt to
avoid the use of a common fixed set of landmarks by allowing
hosts to use different subsets of landmarks to construct a local
coordinate system. However, for most of these schemes, a
common set of landmarks still need to be used for hosts in

the same local coordinate system.

Unlike the existing works, such as IDMaps [6] and GNP
[7], our goal is not to provide an infrastructure service that
performs network distance prediction between any arbitrary
points on the Internet. Instead, this paper aims to investigate
whether it is possible for participating peer nodes in an overlay
network to collaboratively construct an accurate geometric
model of its topology in a completely decentralized peer-to-
peer fashion, without using a fixed set of landmarks. We extend
the absolute coordinates framework from GNP and apply it in
a completely decentralized, peer-to-peer environment. More
specifically, instead of using a fixed set of nodes as landmarks;
any peer node which has already derived its coordinates can be
selected by another peer node to function as a landmark. We
call such a peer-to-peer based approach in topology discovery
PALM (Peers as Landmarks).

The focus of this paper is to evaluate the performance
characteristics of such a decentralized coordinates-based ap-
proach under several factors, including dimensionality of the
geometric space, peer distance distribution, and the number
of peer-to-peer distance measurements used. We evaluate
two PALM-based schemes: RAND-PALM and ISLAND. In
RAND-PALM, a peer node randomly selects from existing
peer nodes as its landmarks. In ISLAND (Intelligent Selection
of Landmarks), each peer node selects its landmarks by ex-
ploiting the topological information derived based on existing
peer nodes’ coordinates values.

Through extensive simulations using both real network
measurements and simulated topologies, we compare the per-
formance of RAND-PALM and ISLAND with the original
GNP scheme (referred to as the FixedLM scheme from now
on). Our findings are as below.

o The FixedLM and PALM approaches have rather different
performance characteristics. The FixedLM scheme tends
to underpredict larger RTTs. The PALM approaches, in
contrast, tend to overpredict small RTTs.

o The flexibility of the RAND-PALM approach comes at
the price of a higher network distance prediction inaccu-
racy when the number of landmarks is low. However, the
performance gap between the RAND-PALM scheme and
the FixedLM scheme quickly narrows as the number of
landmarks increases.

o The performance of the FixedLM approach can be very
sensitive to the landmark placements. The FixedLM



scheme performs substantially worse when the peer nodes
being modeled are clustered (relative to the landmark
locations) in the network , or when the set of landmarks
chosen are not well distributed in the network topology.
In particular, it tends to underpredict larger RTTs signif-
icantly.

o In PALM, since the landmarks are dynamically chosen
from the existing peer nodes, the landmark selection auto-
matically adapts to the topological distribution of the peer
nodes. One of the PALM approaches, ISLAND, can in
fact out perform the FixedLM scheme by selecting well-
distributed peers as landmarks based on the topological
information in the PALM map.

In the following sections, we first briefly describe the
FixedLM and the PALM approach. We then evaluate the
PALM approach extensively through simulation using both
real network measurements and simulated topologies. We
compare the performance of RAND-PALM and ISLAND with
that of the FixedLM scheme in terms of errors in network
distance prediction and their effectiveness in selecting nearest
peer nodes.

II. THE PALM APPROACH

The landmark-based architecture has been commonly
adopted in the networking community as a mechanism to
measure and characterize a host’s location on the Internet [7],
[11], [S], [12], [8], [13]. In most existing landmark based
approaches, end hosts use the distance measurements to a
common, fixed set of landmarks to derive location estimations
on the Internet. The Global Network Positioning (GNP) system
[7], for example, uses a host’s distance measurements to a
fixed set of infrastructure nodes to compute absolute coordi-
nates to characterize the host’s location on the Internet.

However, using a fixed set of landmarks presents a potential
performance bottleneck. More importantly, as we will show in
this paper, the accuracy of the fixed landmark schemes, often
depends highly on the strategic placement of the landmarks.
Although GNP reported good prediction accuracy with a care-
ful selection of landmarks when hosts are globally distributed,
in practice, it will be difficult to pre-determine the strategic
placement of landmarks without some prior knowledge of the
topological distribution of the participating hosts.

In this paper, we investigate the performance of a
coordinate-based scheme, PALM, which uses peers as land-
marks. Before we describe the PALM approach, we first briefly
introduce the GNP[7] framework as background information.

A. GNP

In GNP, the Internet is modeled as a D-dimensional ge-
ometric space. End hosts maintain absolute coordinates in
this geometric space to characterize their locations on the
Internet. Network distances are predicted by evaluating a
distance function over hosts’ coordinates. A small distributed
set of hosts known as landmarks provide a set of reference
coordinates. Hosts measure their latencies to a fixed set of
landmark nodes in order to compute their coordinates. While

the absolute coordinates provide a scalable mechanism to
exchange location information in a peer-to-peer environment,
the GNP scheme presented so far used distance measurements
to a fixed set of landmarks to build the geometric model.

B. PALM

In PALM, there is no specially designated landmark nodes;
any peer node can potentially be selected as a landmark by
another node. As part of the bootstrap process, we assume
that an arbitrary set of initial peer nodes function as bootstrap
landmarks to provide reference coordinates to orient other
nodes.

The PALM bootstrap nodes follow the same procedure as
the landmarks in GNP to construct their coordinates. The
bootstrap landmark nodes measure the inter-node round-trip
ping times to produce an MxM distance matrix, where
M is the number of bootstrap nodes. A set of coordinates
are computed for the M bootstrap nodes to minimize the
overall error between the measured distances and the computed
distances. A peer node is said to have been mapped once it
has derived its absolute coordinates. Once the bootstrap nodes
have been mapped, their coordinates along with the description
of the geometric space and possibly the distance function used
can be made available for other peer nodes to compute their
own coordinates.

In order for a host H to compute its coordinates, it selects
any K existing mapped peer nodes to function as its landmarks
(D+1 <= K <= M, where D is the dimensionality
of the geometric space, and M is the number of bootstrap
nodes). Using the coordinates of those K peer nodes and
the K peer-to-peer distances (between H and each of the
K selected peer nodes), host H can compute its coordinates
to minimize the overall error between the measured and the
computed distances. We use the sum of squared normalized
error measure as our error measurement (see [7] for details).

In PALM, any peer node, which has already derived its
absolute coordinates, can be selected by another peer node to
serve as one of its landmarks. Note that the initial bootstrap
nodes need not remain available in the system all the time.
As long as there are at least X mapped nodes available, the
system should continue to be operational.

III. COMPARING RAND-PALM WITH THE FIXED
LANDMARK SCHEME

We evaluate the PALM approach extensively through sim-
ulation using both real network measurements and simulated
topologies. We compare the performance of PALM with the
FixedLM scheme in terms of errors in network distance
prediction and their effectiveness in selecting nearest peer
nodes.

As in GNP [7], we use the absolute relative error (RE) as
our performance metric. For each pair of nodes, their absolute
relative error is defined as %, where P is the predicted
Euclidean distance, and R is the actual measured RTT (round
trip time) between the two nodes. The directional relative error
is Lol



We evaluate our scheme using both real network measure-
ments and simulated topologies:

o The Active Measurement Project (AMP) at the National
Laboratory for Applied Network Research (NLANR)
collects network measurements between over 100 active
monitors distributed over the Internet [14]. We use the
RTT measurements between 110 of such monitors on July
16, 2002 for our experiments. The RTTs are the round
trip ping time between each pair of hosts measured at
a frequency of once every minute over a 24 hour period
(i.e., total of 1440 round trip times reported between each
pair of hosts).

e The GT-ITM Internet Topology Generator is used to
generate transit stub topologies of a 10,000 node network.
We then randomly select 3492 out of the 10,000 nodes
as peer nodes of our test overlay network.

The GNP paper evaluated their scheme using distance
measured between 19 landmark nodes and 869 hosts. However,
since no inter-hosts distances between the 869 hosts are
available, we used other network measurements and simulated
topologies to test our approach.

Unless otherwise noted, the landmark nodes used by the
FixedLM scheme in this section are generated by randomly
select K out of N nodes to serve as landmarks. In a later
section, we examine the performance effect of biased selection
of landmarks. Ten experiments in total were performed for
each topology, each with a different random selection of the
landmarks. The default dimension of the geometric space used
is five, unless otherwise noted.

A. Effects of Number of Landmarks

In this section, we compare the distance prediction perfor-
mance of the FixedLM scheme with that of the RAND-PALM
scheme when different number of landmarks are used.

In figures 1 and 2, we compare the cumulative distribution
of the absolute relative error of FixedLM scheme vs. the
RAND-PALM scheme when different numbers of landmarks
are used. Figure 1 shows the results from the AMP measure-
ments. For visibility, we only show the results for 6, 10 and 15
landmarks respectively. Figure 2 compares the relative error
distribition of the two schemes using the GT-ITM topology
when 10, 20 and 30 landmarks are used respectively.

The FixedLM scheme results shown here are consistent with
the results reported in [7]. In both schemes, the performance
improves as the number of landmarks increases.

We note that the performance of the two schemes are
very similar. In both schemes, the performance monotoni-
cally improves as the number of landmarks increases. The
performance of the 20 landmarks case is much better than
that of the 10 landmarks under both schemes. Further, the
gap between the distributed landmark selection scheme and
the fixed landmark selection scheme is even smaller when the
number of landmarks is increased to 20.
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Fig. 1. AMP results. Cumulative distribution of relative error, FixedLM vs.
RAND-PALM. N = 110, 5-Dimensions.

Cumulative Distribution

RandPalm 10LM —— 7
FixedLM 10LM -------

RandPalm 20LM --------
FixedLM 20LM 1

RandPalm 30LM --—-
FixeqLM 30LM -------

. . .
0 0.2 0.4 0.6 0.8 1
Relative Error

Fig. 2. GT-ITM results. Cumulative distribution of relative error, FixedLM
vs. RAND-PALM. N = 3492, 5-Dimensions.

B. Compare Summary Statistics with Different Number of
Landmarks

To better understand the performance characteristics of the
RAND-PALM vs. the FixedLM scheme, we plot the summary
statistics that describe the distance prediction error of both
schemes as a function of the number of landmarks used.
Figures 3 and 4 plot the median, 5th, 25th, 75th, and 95th
percentile relative error (RE) and directional relative error
(DRE) respectively of both schemes as a function of the
number of landmarks.

We note that a zero value in RE and DRE indicates a
perfect prediction in the network distance. RE expresses the
prediction error as an absolute value, and therefore is always
positive. A positive DRE value indicates an over prediction
in network distance, while a negative DRE value indicates an
underestimation of actual network distance.

We note that RAND-PALM performs worse than FixedLM
when the number of landmarks is low. In particular, when six
and ten landmarks are used, RAND-PALM has a tendency
to over predict network distances between hosts, as can be
observed from the large positive 95th percentile DRE value
in figure 3. The FixedLM scheme, on the other hand, has
a tendency to under predict inter-hosts distances when the
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Fig. 4. Directional Relative Error. Comparing FixedLM and RAND-PALM
schemes with summary statistics of directional relative error: GT-ITM, N =
3492. Dimensionality is 5. Number of landmarks: 6, 10, 15, 20, 25, 30.

number of landmarks is low. This can be observed from the
large negative 5th percentile DRE values in figure 4.

We note that for both schemes, the RE and DRE values im-
prove monotonically with increasing the number of landmarks.
For RAND-PALM, the performance improvement is especially
significant when the number of landmarks is increased from
6 to 15. The performance of both schemes tends to flatten
beyond 25 landmarks.

An important observation is that the performance of RAND-
PALM eventually catches up to that of the FixedLM scheme
when increasingly large numbers of landmarks are used. We
also observe that the 5th percentile DRE value of the FixedLM
scheme is consistently lower than that of the RAND-PALM
scheme across all landmark values, indicating a large under-
prediction problem in the FixedLM scheme. This is consistent
with the original GNP results in [7], which reported a large
under-prediction error using their data set when predicting
large RTT measurements.

C. Compare Summary Statistics by RTT Groups

From the previous section, we observe that the FixedLM
scheme tends to under-predict while the RAND-PALM scheme
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Fig. 5. Bin size distribution by RTT groups: GT-ITM, N = 3492

tends to over-predict. To understand the sources of these under-
and over-predictions, we further investigate the performance
properties of both schemes by classifying the evaluated paths
into groups of 50ms each.

Figure 5 shows the RTT group size distribution of our GT-
ITM topology. We show the summary statistics of the RTT
prediction error, defined as (predicted RTT - actual RTT), for
each RTT group. Figures 6 and 7 show the median, mean,
5th, 25th, 75th and 95th percentile prediction error of each
RTT group using FixedLM and RAND-PALM respectively.
Ten landmarks are used for both figures. Figures 8 and 9 show
the same statisitcs when 20 landmarks are used.

For the 10 landmark case, figure 6 shows that the FixedLM
scheme is very good at predicting the distances of less than
50 ms, but tends to over-predict distances that are beyond
250ms. This is again consistent with the results from the GNP
paper[7].

Figure 7 shows that the RAND-PALM scheme has the most
trouble in predicting short distances when 10 landmarks are
used. The 95th and 75th percentile prediction errors are as
high as 694 and 385 ms respectively, showing a gross over-
estimation of distances less than 50 ms. The RAND-PALM
scheme also tends to under-estimates distances over 700ms,
although the extent of the under-estimation is not nearly as
bad as the over-estimation for the 50ms group case.

Increasing the number of landmarks to 20 helps both
schemes in narrowing down the extent of their prediction
errors across all RTT groups. However, the performance
improvement of the RAND-PALM scheme is particularly
dramatic when comparing the 10 LM (figure 7) vs. the 20
LM (figure 9) statistics.

D. Dimensionality

In this section, we examine the effect of dimensionality on
the prediction accuracy of the RAND-PALM scheme. Figures
10 and 11 plot the relative error distribution for the FixedLM
and RAND-PALM schemes respectively using varying number
of dimensionalities. The number of landmarks is fixed at ten
in both schemes. Due to space constraints, we only show the
AMP results.
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Fig. 10. FixedLM. Effect of dimensionality on performance. AMP, N = 110,
10 Landmarks.

From both figures, significant performance improvement
can be observed as the dimensionality increase from one to five
in both schemes. The incremental performance improvement
beyond five dimension, however, is very small.

E. Does the Error Term Accumulate over Time in RAND-
PALM?

Next we examine whether nodes that joined later have
larger absolute relative errors. We split the GT-ITM 3492
nodes into 3 batches based on their join order. Figure 12
plots the relative error distribution for the three batches, with
batch 1 being the first 1164 nodes that join. The performance
of the three batches does not appear to differ significantly.
Further research is needed to investigate the possibility of error
term accumulation as the number of peer nodes and network
condition dynamically change over time.

F. Nearest Peer Node Selection

The ability to select the nearest node from a set of peer
nodes is important to many applications, including nearest
server/proxy selection, proximity routing in peer-to-peer net-
works and neighbor selection in overlay network construction.
We use distance ratio as our performance metric. The distance
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ratio R; of a node i is defined as, R; = gg? , where RT'T

is the RTT measured between node ¢ and its closest node
in the coordinate system, and RT'T, is the RTT measured
between node ¢ and its closest neighbor based on actual RTT
measurements.

Figure 13 and 14 show the cumulative distribution of the
distance ratio using various landmarks for both schemes for
AMP and GT-ITM distance measurements respectively. It
is interesting to note that the performance of the FixedLM
scheme does not change significantly as the number of land-
marks increases. This, however, should not come as a surprise,
since the ability to locate nearest neighbor depends largely on
the prediction accuracy of the short distances. A comparison
of our previous results in figures 6 and 9 indicates that the
prediction accuracy of the FixedLM scheme did not change
for the smallest RTT group (less than 50 ms) when the number
of landmarks increased from 10 to 20.

We note that even though the nearest neighbor selection per-
formance of the RAND-PALM scheme significantly improves
as the number of landmarks increases, it consistently performs
worse than the FixedLM scheme even when we increase the
number of landmarks to 30 for the GT-ITM topology. This
result again should not come as a surprise. As discussed in
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the earlier section, the RAND-PALM scheme can grossly over-
estimate RTT distances that are between 0 and 50ms, which
negatively affects the nearest node selection performance of
the RAND-PALM scheme.

IV. ROBUSTNESS IN LANDMARK PLACEMENT

The results we have presented so far randomly select from
a global pool of peer nodes to function as landmarks. In the
FixedLM scheme, this randomly selected set of peer nodes are
used by all other peer nodes to construct their solution coor-
dinates. In the RAND-PALM scheme, this randomly selected
set of peer nodes function as the bootstrap nodes that provide
a set of reference coordinates to other peer nodes.

In this section, we compare the performance of RAND-
PALM with the FixedLM scheme when the landmark place-
ment is not well distributed. We use the following procedure
to generate ten different sets of badly placed landmarks,
which tend to be clustered in network topology. We plot
the hosts-to-landmark RTT distribution for both randomly
selected landmarks and clustered landmarks in figure 15. The
distribution corresponding to the randomly selected landmarks
is generated from the same random landmark selection that
generate results in previous sections (10 landmark case).
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Let K be the number of landmarks to be picked for each
configuration. We pick the clustered landmarks as follows.
First, a hierarchical clustering algorithm is used to cluster peer
nodes into C' clusters based on their actual RTT measurements.
Let C’ be the number of clusters with no less than K nodes in
them. We then randomly pick a cluster from the C’ clusters.
Finally, randomly pick K nodes from the above cluster. Ten
different sets of clustered landmark selections are generated
for each topology, and the cumulative results are presented
here.

Figure 16 and 17 plot the cumulative relative error distri-
bution with bad (i.e., clustered) landmark placement in AMP
and GT-ITM respectively.

Figures 18 and 19 show the summary statistics of the
FixedLM scheme when a clustered landmark set is used.
Comparing the summary statistics in figure 6 using randomly
selected landmarks, we note that the FixedLM scheme has
the tendency to grossly underestimate RTT groups larger than
50ms when clustered landmarks are used. A sharp dip of the
5th percentile DRE value around the 200 ms RTT group in
figure 18 is caused by under-predicting some 200 ms paths by
almost 100%. This causes the DRE value to dip dramatically
around the 200ms RTT group, because the DRE metric divides
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Fig. 18. Summary statistics of directional relative error for the FixedLM
scheme under clustered landmark placement. N = 3492, 10 Landmarks.

the prediction error by the minimum of the measured and
the computed RTT values. Similar levels of mis-predictions
at higher RTT groups do not have as low of a DRE value,
because of the larger denominators.

Figures 20 and 21 show the effect of clustered landmark
placement on nearest neighbor selection performance for both
FixedLM and RAND-PALM. Although the overall prediction
accuracy of the FixedLM scheme suffers from bad landmark
placement, we note interestingly that its nearest neighbor
selection performance does not seem to be affected as much.
Even with bad landmark placement, the FixedLM scheme still
outperforms the RAND-PALM scheme in nearest neighbor
prediction.

V. INTELLIGENT LANDMARK SELECTION USING PALM
MAPS

In the previous section, we presented some interesting
performance properties of RAND-PALM. As the number of
landmarks increases, the overall distance prediction perfor-
mance of RAND-PALM converges to that of the FixedLM
case. However, unlike the FixedLM scheme, it is very robust
against suboptimal landmark placement.

In this section, we describe an approach called ISLAND
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(Intelligent Selection of Landmarks using PALM Maps) to
improve on the performance of the RAND-PALM scheme. Our
goal is to achieve network distance prediction accuracy of the
FixedLM scheme with fewer landmark nodes while preserving
the robustness of the RAND-PALM scheme. The idea of
ISLAND is to have each peer node intelligently select its
landmarks by exploiting the topological information contained
in the PALM map.

We assume that each existing peer node in the system
has access to a copy of the current PALM map. The PALM
map contains the IP addresses of existing peer nodes, and
their coordinates values in the geometric space. Note that
ISLAND does not require each peer node to have a global
PALM map that contains all of the peer nodes in the system.
A partial PALM map is sufficient, provided that it contains
a reasonably well-represented set of peer nodes in terms of
network topology. The dissemination of the PALM map is
beyond the scope of this paper, and will be left as future work.

In ISLAND, each peer node uses the following heuristic to
select landmarks.

« Upon joining, a peer node ¢ contacts any existing peer
node j in the system to obtain a copy of the existing
PALM map. The map contains the IP addresses of ex-
isting peer nodes known to node j, and their coordinate
vlaues.

o The existing peer nodes are classified into clusters based
on their coordinates in the geometric space. The results
presented in this section use the Euclidean distance
between nodes’ position in the geometric space to cluster
the existing peer nodes. We will experiment with other
distance functions in the future work.

o Node i then randomly picks K clusters from the clusters
formed above, and then randomly picks a node in each
cluster as its landmarks. By picking each landmark node
from a different cluster, we attempt to achieve a well-
dispersed landmark set, and avoid the degenerate case
where all landmarks are from the same network region.
Further, to avoid picking only outliers (i.e., peer nodes
that are distant from all other peer nodes) as landmarks,
only clusters with “sufficiently” large number of peer
nodes will be considered. In our simulation, we pick
the cutoff cluster size between 5 - 10, depending on the
cluster distribution. Future work is need to dynamically
decide the optimal set of clusters to pick.

The clustering can be done offline by existing peer nodes
in the system, so that a newly joined peer node can quickly
select a set of landmark nodes based on the clustered PALM
map.

We have examined the performance of the ISLAND scheme
with simulation using both the GT-ITM and AMP topology.
Due to space constraints, we present only the GT-ITM results
here. . Let N be the total number of peer nodes in the
system, B be the number of bootstrap landmarks, and K be
the number of landmarks used by each node to compute its
coordinates. In the FixedLM scheme, B equals K; and the
bootstrap landmarks are used by all peer nodes to generate
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their coordinates. The difference between the RAND-PALM
scheme and ISLAND is that, in RAND-PALM, peer nodes ran-
domly select K nodes from the PALM map; whereas ISLAND
selects the K nodes by exploiting the cluster information in
the PALM map.

We compare the performance of ISLAND, RAND-PALM
and the FixedLM schemes under the following scenarios.

+ Random bootstrap landmarks. The B bootstrap nodes are
randomly selected from the N nodes.

e Clustered bootstrap landmarks. The bootstrap landmarks
are all from the same cluster.

o Dispersed bootstrap landmarks. The boostrap landmarks
are from different clusters. The performance of this
scenario is not shown as it does not differ significantly
from the random bootstrap landmarks case.

Figures 22 - 21 compare ISLAND with RAND-PALM and
FixedLM schemes using the GT-ITM topology. In figure 22,
the performance of ISLAND is better than the RAND-PALM
and FixedLM schemes when ten landmarks are used by all
schemes. Further, we note that the performance of ISLAND
using 10 landmarks is comparable to the performance of
the FixedLM scheme when 15 landmarks are used. Finally,
when the bootstrap landmarks are clustered (figure 26) both
ISLAND and RAND-PALM greatly outperforms the FixedLM
scheme.

Figures 24 and 25 show the summary statistics of the
ISLAND scheme under random bootstrap node placement.
Note that the performance of the ISLAND scheme is much
better than the RAND-PALM summary statistics presented in
figure 7.

Figures 28 and 29 show the summary statistics of the
ISLAND scheme when a clustered landmark set is used (
compare with figures 18 and 19).

VI. RELATED WORK

The IDMaps [6] and GNP [7] are both architectures for
a global distance estimation service. IDMaps is intended to
be a public infrastructure that provides distance information
between any two arbitrary points on the Internet. Hosts called
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Fig. 23.  ISLAND nearest neighbor selection performance using randomly
selected bootstrap landmarks. GT-ITM, N = 3492, 10 landmarks.
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Fig. 24. Summary statistics of directional relative error for the ISLAND
scheme under random bootstrap landmark placement. GT-ITM, N = 3492,
10 Landmarks.
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Tracers are deployed in the network to measure distances
among themselves and to nearby hosts in a range of IP
addresses. HOPS servers compute distance prediction compu-
tation based on measurements from Tracers. Both IDMaps [6]
and GNP [7] rely on the deploymennt of infrastructure nodes.
Our scheme, in contrast, can be implmented in a peer-to-peer
environment without special infrastructure node support.

To avoid the fixed landmark problem in GNP, several
schemes [8], [9], [10] have been proposed that allow hosts
to use different subsets of landmarks to construct a local
coordinate system, which are then transformed to a global
coordinate system. However, a common set of landmarks still
need to be used for hosts in the same local coordinate system.
For example, the Lighthouse scheme [8] uses multiple local
bases and a transition matrix in vector spaces to allow a host
to determine its coorinates relative to any set of landmark
nodes. Virtual Landmarks (VLM) and Internet Coordinate
System (ICS) both use principal component analysis (PCA)
to extract topological information. Our approach, in contrast,
maintains a global absolute coordinates system by peer-to-peer
measurements. Vivaldi [15] is a recently proposed coordinates
based system that allows hosts to construct their coordinates
without any landmark support. It is based on a simulation of
a network of physical springs.

King [16] uses direct online measurements using the DNS
infrastructure to predict network latencies between arbitrary
Internet end hosts. The goal of our work, in contrast, is to pre-
dict network distances using purely peer-to-peer measurements
without relying on the infrastructure services. The M-coop [17]
architecture utilizes a peer-to-peer system to provide queries
to network performance information. Each node is assigned
an “area of responsibility”, which defines a set of addresses
for which it can answer queries.

Several works provide network proximity or location es-
timates using the distance measurements to a set of well-
known landmarks. For example, the GeoPing algorithm [11]
uses latency measurements to a set of well-known landmarks
to determine end hosts’ geographic locations. The triangulated



heuristic [13] gives a bound on the network distance between
any pair of hosts by using their distances to a common set
of base nodes. Internet Iso-bar [18] performs clustering on
hosts based on the similarity in their distance to a small
set of sites. The distances between hosts are estimated using
inter- or intra-cluster distances. In CAN [5] and [12], distance
measurements to landmarks are used to support proximity
routing in a structured peer-to-peer network. The location of
an end host ¢ in their scheme is characterized by the ordering
of landmarks in terms of their distances to ¢. These scheme,
in contrast to ours, does not attempt to model Internet hosts
using absolute coordinates.

VII. CONCLUSION AND FUTURE WORK

In this paper, we examined the performance characteristics
of a peer-to-peer approach in network topology modeling and
distance prediction, named PALM. Similar to GNP[7], PALM
models the Internet as a geometric space. End hosts compute
their absolute coordinates to characterize their network loca-
tions based on distance measurements to a set of landmarks.
In contrast to the GNP approach, which used a fixed set of
landmarks, the goal of PALM is to allow peer nodes to con-
struct their coordinates by using distance measurements to any
other participating peer nodes. We present two PALM-based
schemes: RAND-PALM and ISLAND. In RAND-PALM, a
peer node randomly selects from existing peer nodes as its
landmarks. In ISLAND, each peer node intelligently selects its
landmarks by exploiting the topological information contained
in the PALM map (which contains coordinates of the existing
peer nodes).

Through extensive simulations using both real network
measurements and simulated topologies, we compare the per-
formance of RAND-PALM and ISLAND with the original
GNP scheme using fixed landmarks. We conclude with the
following observations.

o The PALM approach is much more flexible, scalable
and fault-tolerant than the FixedLM scheme, since peer
nodes do not have to rely on a fixed set of landmarks to
compute their coordinates. The flexibility of the RAND-
PALM approach comes at the price of a somewhat higher
inaccuracy in the network distances prediction when a
low number of landmarks is used. However, we note that,
as the number of landmarks increases, the performance
gap between the RAND-PALM and FixedLM schemes
becomes negligible. We further showed that the PALM
approach can in fact outperform the FixedLM scheme by
intelligently select peers as landmarks based on the topo-
logical information in the PALM map. Our results (see
figure 26) showed that the performance of the ISLAND
heuristic using 10 peers as landmarks out performs the
FixedLM scheme with the same number of landmarks,
and is comparable to the performance of the FixedLM
scheme when 15 landmarks are used.

e As our simulation results indicated, the performance
of the FixedLM approach can be very sensitive to the
landmark placements. When the set of landmarks chosen

are not well distributed in the network topology, the
performance of the FixedLM scheme can drop by more
than half in some cases. In contrast, the performance
of the PALM approaches are robust even in the face of
suboptimal placement of the bootstrap landmark nodes.

o Although the ISLAND scheme outperforms the FixedLM

scheme in overall distance prediction, the PALM-based
approaches (both RAND-PALM and ISLAND) tend to
over predict short inter-host distances. As part of our
future work, we will explore algorithms to improve on
PALM’s performance in predicting short network dis-
tances.

Besides the above observations, some interesting insights
about the FixedLM scheme have also been presented in this
paper. Our results showed that although the overall distance
prediction performance of the FixedLM scheme can suffer
substantially when landmarks are misplaced, it is, however,
very robust in predicting short network distances across all
landmark configurations that we have tried.

As part of our future work, we will continue to inves-
tigate intelligent landmark selection schemes by exploiting
the topological information in the PALM map. Another topic
that we did not deal with in this paper is the security issue
from untrusted peer nodes which report incorrect coordinates
to other peer nodes. We plan to investigate mechanisms to
detect and cope with corrupted and inconsistent measurements,
including those introduced by network routes anomalies and
malicious peer nodes.
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