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Abstract
Nanocrystalline metals are polycrystalline metals with grain sizes in the nanometer
range. They have attracted significant interest in recent years due to their unique
mechanical and electrical properties. The main objective of this thesis is to de-
velop continuum-scale descriptions of nanoscale deformation and failure mechanisms
in nanocrystalline metals. The research has focused on three specific aspects: the
influence of grain boundary mechanisms on the grain-size dependence of the yield
stress, the influence of grain boundary friction on the response to shock loading and
the increased ductility accompanied by increased strength observed in ultrafine crys-
tals with embedded growth nanotwins.

A phenomenological model considering grain boundary sliding and accommoda-
tion as uncoupled dissipative deformation mechanisms is proposed to describe the
constitutive behavior of grain boundaries. In agreement with atomistic models and
experiments, tensile test simulations using the numerical model predict the inverse
Hall-Petch effect, i.e. a dependence of the yield stress on the inverse square root of
the grain size with a negative slope. In addition, the model suggests that the observed
discrepancy between atomistic and experimental results may be partially related to
rate dependence effects.

Recent atomistic simulation results suggest that high states of compression inhibit
grain boundary sliding, which causes a reactivation of intragrain dislocation activity,
leading to much higher material strength. We extend the continuum model to ac-
count for these frictional effects inhibiting deformation at the grain boundary. The
extended model captures the salient features of the shock response of nanocrystalline
copper observed in atomistic simulations, including the shock propagation and jump
conditions, as well as the peak and trailing values of the deviatoric stress profile.

One of the limitations of nanocrystals is their low ductility. It has been shown re-
cently that the high strength of nanocrystals without a compromise in ductility can be
achieved by growing ultrafine crystals with embedded nano-twins. Twin boundaries
provide equivalent barriers to dislocation motion as grain boundaries do in nanocrys-
tals, but without their associated low ductility. A model for describing the strength-



ening and toughening role of nanotwins is developed and calibrated to experiments.
The model captures the dependence of the stress-strain response on twin density in-
cluding the onset of fracture observed in experiments.

Part of the legacy of this thesis work is a computational framework for large-scale
simulation of the continuum-level response of nanocrystalline metals. This parallel
computing framework was developed in order to address the necessity of describing
the full three-dimensional response of large number of grains subject to a wide range
of loading conditions.
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Chapter 1

Introduction

Because of their potential for achieving higher material strength [1, 2, 3, 4, 5, 6],

nanocrystalline metals, i.e. metals with a polycrystalline structure and grain sizes in

the nanometer range, have recently elicited significant interest. Figure 1-1 shows the

Transmission Electron Microscopy (TEM) image of an electrodeposited Ni nanocrys-

tal with an average grain size of - 30nm [1]. Efforts to characterize and understand

the mechanical behavior of these materials have unveiled some unique features of

deformation that are not commonly observed in polycrystals. It appears that grain

boundary deformation mechanisms in metals structured at the nanometer scale are

responsible for this departure from the mechanical behavior of conventional polycrys-

talline materials. It is therefore important and opportune to devise theories describing

the mechanical behavior of nanocrystals.

One of the peculiar behaviors of the mechanical response of nanocrystal is the

dependence of strength on grain size. Conventional microcrystalline polycrystals have

long been known to exhibit an increase of the yield stress with a decrease of the grain

size. This behavior has been observed to agree with the Hall-Petch [7, 8] relation:

I

aY = ao + kd- (1.1)

where k is a positive multiplicative constant and a0 is the lattice friction stress.

Based on this observation, microstructure refinement has been exploited as a



Figure 1-1: TEM image of electrodeposited nanocrystalline Ni with an average grain
size of - 30nm [1]

24



means of producing materials with increased strength. A long standing goal in Ma-

terials Sciences has been to determine the limits of the Hall-Petch relation. Starting

with the pioneering-albeit controversial-experiments of Chokshi et al. [9], there

has been experimental evidence that the yield stress decreases when the grain size is

reduced beyond a given grain size [10, 11, 12], see Figure 1-2. More curiously, their

observations of the dependence of the yield stress on grain size also appeared to fol-

low an inverse square root relation, Equation (1.1), but with a negative coefficient k.

There has since been significant efforts to confirm and explain this inverse-sometimes

also referred to as reverse-Hall-Petch effect. However, the experimental evidence is

not conclusive and this aspect of the response of nanocrystals is still subject of con-

siderable debate [13].

2.5

0.2

I -+- Copper

4
l I I I I I I

0.26 0.28 0.3 0.32
d-12 (nm-1t 2 )

0.34 0.36 0.38

Figure 1-2: Chokshi's experimental observation of the reverse Hall-Petch effect on Cu
and Pd [9] (microhardness from [10])

It is generally accepted that the direct Hall-Petch (HP) effect results from a

hardening mechanism associated with the pile-up of lattice dislocations at the grain

1-

t

I
l



boundaries. Nevertheless, as the grain size further decreases, the increase of the yield

strength with microstructure refinement has been observed to level off at grain sizes

of the order of 10 to 50 nm, switching to a decrease of strength with further reduc-

tion of grain size. Summarizing the experimental and theoretical findings, there is a

growing consensus that the apparent anomalous dependence of yield stress on grain

size can be rationalized by the activation of deformation mechanisms taking place at

the grain boundary which compete with crystal plasticity and become the dominant

operative dissipative deformation mechanisms when grain sizes are sufficiently small,

leaving no room for dislocation activity inside the grains. Different grain bound-

ary deformation mechanisms explaining this change of behavior have been proposed.

Chokshi et al. initially suggested that Coble creep at room temperature was perhaps

the mechanism explaining their experimental results [9]. Atomistic simulations of

tensile tests on nanocrystalline metals have nevertheless shown a reverse Hall-Petch

effect in the absence of thermally activated processes [14], see Figure 1-3. By contrast

to the mechanism suggested by Chokshi, this and other atomistic simulation studies

[15, 14, 16, 17, 18] have shown that the main deformation mechanism taking place

at grain boundaries consists of localized sliding accompanied by some accommoda-

tion mechanism that maintains the intergrain compatibility, e.g. at triple points.

However, there is still dissent on the nature of this accommodation process [14, 19].

Recent large-scale atomistic simulations have been able to show the crossover from

the direct to the inverse grain-size dependence of material strength [20], see Fig-

ure 1-4. Experimental studies have also provided evidence of this peculiar behavior

[21, 2, 11, 1].

A second important aspect of the response of nanocrystals of focus in this thesis is

the observed glass-like behavior of grain boundaries. Recent studies [22] have shown

an asymmetry in the compressive versus tensile stress-strain response of nanocrys-

talline nickel. This is consistent with the work of Wolf et al. reporting an amorphous

state at grain boundaries [19] which suggests a frictional intergranular behavior char-

acteristic of metallic glasses. Friction takes a new dimension in the shock response of

nanocrystals. Molecular Dynamics (MD) simulations have suggested that the grain
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boundary glassy behavior leads to the inhibition of the sliding under strong state of

compression, which forces the reactivation of intragrain dislocation as the main de-

formation process [23]. Figure 1-5 shows a snapshot of Bringa et al.'s MD simulation

of shock propagation of a - 50GPa pressure wave after 30ps in Cu nanocrystal with

grain size of 20nm. The shock front as well as the significant dislocation activity are

clearly apparent. This reorganization of the deformation processes leads to a shift of

the direct/inverse HP effect transition to higher strength and smaller grain size [23].

Figure 1-5: Snapshot of MD simulation of shock propagation of a ?- 50GPa pressure
wave after 30ps in Cu nanocrystal with grain size of 20nm [23]

Although it has been shown that nanocrystals with high ductility can be made

under very careful processing conditions [24], it is generally observed that nanocrys-

tals possess very low ductility [25, 26, 27]. A significant improvement in ductility



without compromising the strength observed in nanocrystals can be achieved by cre-

ating a microstructure of ultrafine crystals (, 500nm) with artificially grown nano-

twins [26, 27, 28, 29, 30]. Figure 1-6 shows the TEM image of an electrodeposited

nanocrystalline Cu with an average twin spacing of - 15nm [28]. Figure 1-7 shows

the comparison between stress-strain curves of coarse-grained (grain size > 100lpm),

nanocrystalline (grain size - 30nm) and nano-twinned (twin spacing - 15nm) Cu

[26]. The gain of ductility and strength of nano-twinned Cu with respect to nanocrys-

talline and coarse-grained Cu is clearly illustrated. The work in these references shows

that twin boundaries play the same role of a highly coherent grain boundary in inhibit-

ing dislocation transmission. However, their complex and gradual loss of coherence

during deformation delays to higher strains failure normally observed in disordered

grain boundaries [30].

A summary of efforts to model the mechanical response of nanocrystalline metals

has been recently presented in the review article by Meyers et al. [13]. This thesis

endeavors to contribute to these efforts by devising continuum scale descriptions of

the peculiar deformation and failure mechanisms in nanocrystalline metals which have

not been accounted for in the past.

The first objective has been the development of a general continuum framework

for describing grain boundary mechanics of deformation in nanocrystals. A litera-

ture review shows a limited number of contributions to the continuum description of

nanocrystal response which are restricted to two-dimensional analysis or columnar

microstructures [31, 32, 25, 33, 34, 35, 36], see Chapter 2 for more details. The model

proposed in this thesis consists of a finite element formulation of the continuum three-

dimensional problem with a special consideration of the boundaries between grains.

Following what has been observed experimentally, grain boundaries are considered

as having a small but finite size. Interface elements inspired by well-established

descriptions of fracture and crack propagation [37] are formulated to account for

the special kinematics of grain boundaries (i.e., to describe grain boundary sliding

and other accommodation mechanisms). The amount of grain boundary sliding and

accommodation is determined by a phenomenological model formulated within the



Figure 1-6: TEM image of electrodeposited nanocrystalline Cu with an average twin
spacing of - 15nm [28]
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Figure 1-7: Comparison of strength and ductility of coarse (grain size > 100 m),
nanocrystalline (grain size - 30nm) and nano-twinned (twin spacing - 15nm) grains
from the corresponding strain-stress curves [26]

framework of variational constitutive updates [38, 39]. The model essentially consid-

ers the grain boundary as a slip plane in a similar manner to crystal plasticity models,

but without a preferred slip direction. The opening mode is modeled with a similar

plasticity formulation. In addition, a parallel implementation of this model is devel-

oped, enabling large-scale simulation of three-dimensional boundary value problems.

In Chapter 2, the proposed three-dimensional continuum model of the deformation of

nanocrystalline materials is described in details including the continuum framework,

the constitutive models and the numerical approach.

In Chapter 3, the calibration of the model parameters against the atomistic and

experimental results in [14, 17, 40, 41] is presented. Subsequently, the calibrated

model is used to conduct numerical simulations of the tensile response of nanocrys-

talline copper under a wide range of grain sizes and strain rates. The ability to use

rather large computational meshes enables the investigation of grain-size dependence

of the nanocrystal effective response.



To this end, simulations of tensile tests are conducted on 100nm and 2Onm sized

nanocrystalline copper specimens of grain sizes ranging from 33.33nm to 3.33nm.

The numerical results are compared to both experimental [40, 41] and atomistic re-

sults [14, 17]. In particular, vastly different strain rate conditions similar to published

experimental and atomistic results are simulated in an attempt to ascertain if the sig-

nificantly different yield strengths predicted by those two approaches may be partially

due to rate dependence effects. It bears emphasis that this ability to simulate wide

ranges of loading rates is easily accessible to continuum models. The capability of

the continuum model to describe the reverse Hall-Petch effect and, thus, confirm ex-

perimental and theoretical findings, as well as the overall effectiveness and versatility

of the proposed continuum approach as an alternate tool to describe the behavior of

nanocrystals is also discussed and summarized.

In Chapter 4, the model is extended and used to explore the response of nanocrys-

talline metals to shock loading. The shock of nanocrystals has been studied by Bringa

et al. [23] using MD calculations. They highlighted the role of friction in the grain

boundary under high pressure and its implications on the intragrain dislocation ac-

tivity. The extensions involve the modification of the grain boundary sliding and ac-

commodation model to account for the pressure-dependent frictional resistance of the

grain boundary, the implementation of a high-rate equation of state (EOS), shock-

capturing scheme to describe the volumetric response of the grain interiors under

shock loading and a plasticity model to describe their deviatoric response. After

calibration, the influence of the frictional mechanism is then studied and compared

to Bringa et al.'s results [23]. It should finally be noted that, except for Wei et al.'s

models [31, 32], there has not been significant efforts to model the frictional behaviors

of grain boundaries. Both references either decided to neglect this effect or concluded

that there is a small contribution of friction under slow-rate conditions as opposed to

other mechanisms (e.g. cavitation of grain boundaries). These works nevertheless did

not tackle the relative importance of this phenomenon under extremely high pressure.

Chapter 5 is devoted to the development, calibration and testing of a model of

ultrafine crystals with embedded growth twins. The model represents an extension



of the two-dimensional work of Dao et al. [29] to three dimensions. The approach

is based on a crystal plasticity model for the bulk where slip, hardening and rate

dependence are modified to account for the presence of twin boundaries which act as

dislocation barriers. In addition, a failure criterion similar to the one developed by

Dao et al. [29] is conceived, which consists of a limited value of slip of the twin planes.

This extension enables the consideration of out-of-plane slip, cross slip/hardening and

grain rotation. The results are compared with the two-dimensional model of Dao et

al. and with the experiments of Lu et al. [29, 27], and the model is finally used for

studying the three-dimensional aspects of dependence of the stress-strain response of

ultrafine copper on twin density.

The main conclusion of this thesis is that the continuum approach provides a

plausible modeling approach for describing the unique nanoscale mechanisms of de-

formation and failure in nanocrystals as well as in nano-twinned ultrafine crystals.

The large-scale parallel computational framework proposed here provides a good com-

plement to experiments and to atomistic simulations.





Chapter 2

Continuum modeling framework

for nanocrystals

To a large extent, the mechanical behavior of nanocrystals has been modeled using

large scale atomistic simulation. Whereas this approach has been very successful in

unveiling the basic deformation mechanisms taking place in nanocrystals, the need

to represent and account for the dynamics of each individual atom poses severe re-

strictions on the number of grains and/or the extent of the nanocrystalline sample

sizes that can be simulated. For instance, only recently has it been possible to simu-

late grain and sample sizes that capture the transition from the inverse to the direct

Hall-Petch effect [20]. In addition, the time scales available to molecular dynamics

simulation are also severely constrained by the need to track the dynamics of individ-

ual atoms. A common approach to circumvent this limitation is to impose extremely

large deformation rates in the simulations (10s - 1 and higher are not uncommon),

which allows them to reach significant values of strain in very short-picoscale-

times. However, these strain rate levels are not realistic except when studying the

material response to shock loading. Another alternative is to use Molecular Statics

models but in this case thermally activated processes are neglected.

There is then opportunity to explore the continuum framework for modeling the

basic deformation mechanisms of nanocrystalline metals. Among the continuum ap-

proaches that have been proposed for modeling the response of nanocrystals, two



basic strategies can be identified. In the first approach, separate models are used to

describe the mechanisms that are specific to the grain bulk and the grain boundary,

and the effective response of the aggregate is obtained by recourse to homogenization

[42, 33, 43, 44]. This type of model has been used to study the competitive mech-

anisms of deformation for a wide range of grain sizes and to identify the optimum

grain size for a maximum strength.

The second approach is based on an explicit discretization of the microstructure

using the Finite Element Method (FEM). Two different variants of this approach

have been proposed. The first one considers the grain boundary and its affected

zone ("grain boundary affected zone" or GBAZ) explicitly as a continuum with a

finite thickness and different properties from the bulk [25, 33, 34, 32]. The second

variant uses interface elements in the finite element mesh for the description of the

grain boundaries [31, 36]. It should be emphasized that these modeling efforts were

limited to two-dimensional analysis or three-dimensional analysis of two-dimensional

(or columnar) microstructures and focused on the ability of the continuum approach

to describe grain size dependence [31, 32, 36], strain localization [34, 36] and failure

[31, 32].

The general continuum modeling approach adopted in this thesis falls within the

category just described. The model consists of a finite element formulation of the

continuum three dimensional problem describing the polycrystal grains explicitly and

where grain boundaries are treated as discontinuity surfaces embedded in the contin-

uum. Interface elements inspired in well-established descriptions of fracture and crack

propagation are formulated to account for the special kinematics of grain boundaries,

i.e., to describe grain boundary sliding as well as other accommodation mechanisms.

Finally, a phenomenological model formulated within the framework of variational

constitutive updates is proposed to describe the operative grain boundary deforma-

tion mechanisms of sliding and opening accommodation.



2.1 Continuum formulation

2.1.1 Governing equations

We assume from the outset that the kinematics of the deformation mechanisms taking

place at grain boundaries may be described as surfaces of discontinuity embedded in

an otherwise continuous medium. Toward this end, we adopt the continuum frame-

work described in [37], which we briefly summarize in this section. The undeformed

polycrystal lies in the region of space occupied by the set B0 = Ug B c R3, where Bg

is the region occupied by grain g, and undergoes a motion p : B0 x [0, t] --+ R, where

[0, t] is the time interval considered. In the continuous regions of the polycrystal, i.e.

the grain interiors, local information about the material deformation is conveyed by

the deformation gradients F, whereas the local stress state is described by the first

Piola-Kirchhoff stress tensor P, [45]. Figure 2-1 shows a representative intergrain

boundary surface OBgb whose unit normal is N. Considering a grain in isolation, the

power expended by the boundary tractions t, which includes both the external as

well as the intergranular tractions, is given by the expression:

LBg t - dSo (2.1)

where OBg includes the externally exposed OBoXt (if any) as well as the intergrain

aBgb portions of the grain boundary, i.e. OBg = 9B'xt U OBgb. The total power of

the surface tractions is:

EJaBgt -*dSo = Bt - dSo + 0 -t (2.2)

Wogb

where 0Bo = Ug OBO"xt is the external boundary of the aggregate polycrystal, Wgb

represents the deformation power associated with the grain boundary and the + sign

indicates that the surface integral is to be computed on both sides of the intergrain

boundaries.



B= UB" OBB = U Bon n B

JBg OB!'- U OBJt

Figure 2-1: Schematic of geometric model of nanocrystals as a continuum with sur-
faces of discontinuity at grain boundaries

Inspired by atomistic simulations showing that grain boundary sliding and other

accommodation mechanisms become operative in the deformation of nanocrystals

[15, 14, 16, 17, 18], here and subsequently we allow for discontinuous displacements

across the grain boundaries. Equation (2.2) then shows that the resulting finite dis-

placement jumps 6 = -9] = o+-o - at the grain boundary constitute the appropriate

deformation measure that is work-conjugate to the intergrain boundary tractions. In

addition, balance of linear momentum requires P -N = t on OB' and the tractions

to be continuous across the intergrain boundaries, i.e. It] = [P -N] = 0. The total

power of the external loads including the body forces pob is therefore:

w = jpob - dVo + jt - dSo + t . pdSo
JBo JBo gb 8g (2.3)

S(Pob + Vo -P) - dVo + P -.FdVo + Z, t. dSo
Bo o gb 0i

The deformation power is the portion of the external power not consumed in increas-



ing the kinetic energy K = E, fBg Pol 2dVo:

PD =W - !K = P FdVo + ± j bt |<|dSo (2.4)
gb 0

Wgb

where linear momentum balance Vo - P - Po(O - b) = 0 inside the grains Bg has

been imposed. It becomes clear from Equation (2.4) that in this polycrystal model-

ing framework, the deformation power encompasses the contributions of the internal

stresses inside each grain, as in conventional continuous solids, as well as those of the

intergranular tractions which are work-conjugate to the displacement jumps describ-

ing the deformation mechanisms at the intergrain boundaries.

Taking as a starting point the work conjugacy relations suggested by the defor-

mation power identity, Equation (2.4), we develop a constitutive framework for the

mechanical behavior of nanocrystalline materials including grain boundary deforma-

tion mechanisms.

Atomistic simulation studies have shown that dislocation-mediated plastic defor-

mation inside the grains in nanocrystalline materials is ostensibly impeded [17, 20].

Consequently and in order to reveal the independent role played by grain boundary

deformation mechanisms, we will assume that the grain interiors can only undergo

a reversible, i.e. elastic, lattice distortion and rotation. The competition between

intra-grain crystal plasticity and grain boundary deformation has been discussed in

[43, 31, 36]. Under moderate loading condition, the distortion of the lattice is then

expected to be small and a linear relation between the Lagrangian strain tensor

E = (C - I)/2 and the second Piola-Kirchhoff S = F-'P can be assumed, see Chap-

ter 3. In these expressions, C = FTF is the right Cauchy-Green deformation tensor

and I is the unit tensor. In the case of intense shock loading consideration, the elastic

response requires additional considerations, see Chapter 4.

As suggested by Equation (2.4), the displacement jumps across the grain bound-

ary 6 are taken as the kinematic variable or deformation measure, whereas the grain

boundary traction vector t is taken as the corresponding work-conjugate stress mea-



sure. It should be noted that 6 vanishes for a rigid body motion, as should be the

case for an appropriate deformation measure.

2.1.2 Kinematic assumptions

For the purpose of tracking geometric information of the deformed grain boundary

surface, we conventionally define the mean deformation mapping [37]:

1
€ = I ( + W-) (2.5)

from which the original deformation mapping on both sides of the grain boundary

can be recovered as:
1 1

2 1O (2.6)2 2
Thus, the deformed grain boundary is defined as S •p(So). Given a parametrization

~p= <~p(sa), = 1, 2 of S, as subsequently provided by the finite element discretization

of the grain boundaries, the deformed surface normal n may be obtained directly from

the covariant basis vectors a, = W, as:

a1 x a 2
n = a x a2(2.7)

Ila, x a2[1

The displacement jumps may then be decomposed into an opening separation vector

and a grain boundary sliding vector as follows:

6 = (6 -n)n = (n ® n) 6 (2.8)

68 = 6-6= (I - -non).6 (2.9)

In addition, the mean deformation of the grain boundary surface may be measured

by the material gradient of the mean deformation mapping Vsoco. It is worth noting

that the mean deformation of the grain boundary surface Vso0 describes in-plane

stretching and shearing deformation of the grain boundary in the absence of rela-

tive grain sliding or opening. In particular, the surface deformation gradient conveys



information about the normal, Equation (2.7), and the surface deformation as mea-

sured by the surface Cauchy-Green deformation tensor Cso = (Vsoa)TVso@. This

information would be required in models accounting for the influence of grain bound-

ary misorientation or preferred sliding directions. However, due to the absence of

supporting experimental evidence such additional complexities will be ignored.

These kinematic assumptions lead to a constant state of deformation across the

thickness h of the grain boundary which can be expressed in the local orthonormal

reference frame (ni, n 2 , n 3 ) = (_!, nxa, 1) as

_ 6- nf 68 *.n1 1 6,. n2 1e- = nn3 (9 n +3  • (n, + n1  n 3 +n9 ni) + h 2 (n2 n3 3 n2)h It 2 It 2
(2.10)

It should be noted that I introduces a characteristic length scale in the model. The

above expression also shows that the strain tensor additively decomposes in a sliding

part E, and a normal opening part eC.n-

2.1.3 Variational constitutive framework

For the purpose of formulating constitutive models of grain boundary response and

their corresponding algorithmic updates, we adopt the variational framework pro-

posed in [38, 39]. It was shown in [38] that an incremental, pseudo-elastic strain

energy density can be derived for a rather general class of elastic and inelastic mate-

rials, leading to algorithmic updates possessing a potential structure. An important

advantage of this approach is that it naturally furnishes solutions of the incremental

boundary value problem as the result of a variational statement. This approach was

extended in [39], where, in addition, variational updates are presented for specific

material models, including finite-deformation isotropic plasticity and single-crystal

plasticity. More recently, the same framework has been used for developing models of

non-cohesive granular media [46], porous plasticity [47], nonlinear viscoelasticity [48]

and thermomechanics [49].

An internal variable formalism [50, 51] is adopted to describe inelastic processes



and a decoupled response in the opening and sliding components is postulated, i.e.

that opening deformations do not cause sliding tractions, and vice versa. The free

energy density may thus be additively decomposed into a sliding part As and an

opening part A,:

A(es, En, q) = As(6s, q) + An(en, q) (2.11)

where q E IR denotes a suitable set of internal variables. In the following, for

simplicity of notation, we will drop the subscripts s and n, and treat both parts

(sliding and opening) in an identical way.

We will consider that the material in the grain boundary undergoes an elasto-

visco-plastic behavior. We will further assume that the strain additively decomposes

in an elastic and a plastic part:

E = Ee + Ep (2.12)

which, given the linearity of relation (2.10), amounts to an additive decomposition of

the displacement jump 6 = 6' + 6p . We also define the equivalent plastic strain 6P,

linked to the tensorial plastic strain through the flow rule:

P - ýPM (2.13)

where M is a symmetric tensor verifying the following set of conditions (J2 plasticity):

tr[M] = 0 
(2.14){ ~ (2.14)

M.M= 
3

2

and otherwise undefined at this point. The set of internal variables is then q =

{eP, E}. It will be determined by the variational principle described below. It will be

assumed that the elastic response of the grain boundary is not affected by irreversible

processes, as it is usually done for the elastic response of the crystal, and, thus, we

can write

A(e, eP, P) = W(e - EP) + WP (Ep , cP) (2.15)

Taking into account the flow rule, the thermodynamic forces associated to e and P



are respectively given by:

OA _Wea - = e  (2.16)
OAaE a~e

Y = • = (a - c) -M - ay (2.17)

where cc = OEPWP(eP, P) is the backstress tensor and oy = O&PWP(EP, ) is the

yield stress corresponding to stored hardening mechanisms (by contrast to dissipative

mechanisms). Finally, kinetic relations between Y and P are given by a convex

dissipation pseudo-potential J* (convexity ensures positive dissipation):

Y = (F; ,) (2.18)

If we define the following functional [39]:

D = A + ,* = ar - - YiP + T*(?; c-) (2.19)

the constitutive relations are equivalent to the variational principle

Deff(; E, q) = inf D(ý, i, M; E, q) (2.20)
P',M

Minimization of D with respect to M corresponds to the principle of maximum plastic

dissipation, and yields, using Lagrange multipliers to enforce conditions (2.14):

M = 3s - S where s = dev[t] and sc = dev[ac] (2.21)

while the minimization with respect to P yields the kinetic relations (2.18). An addi-

tional advantage of the variational formulation is that Deff provides a rate-potential

for the stress:
ODeffa = . ( i ; e, q) (2.22)

An incremental solution procedure that retains the variational properties is adopted

to integrate the constitutive update following [39].



We consider here that grain boundary sliding occurs exclusively by dissipative

hardening micromechanisms. This implies that

WP (E, 4) = 0 (2.23)

In the specific model used in calculations, the following dissipation pseudo-potential

is adopted:

S*(Ep, Ep) = &o (p)OOm+ (1
( )n&o(0) = go 1 +

+ (.4)+.1] (2.24)

where co, 0o, 1 0 , m and n are model parameters. This expression leads to a power-law

rate dependence and isotropic hardening model.

By combining Equations (2.17), (2.21), (2.23) and (2.24), we finally obtain:

Y = 2J(s - Sc).(s - sc) = &() 1 (2.25)

With this constitutive framework in hand, the deformation power at the grain

boundary (2.4) can be reformulated as

Wgb = j gb
gb 0Bg

Dgb (6; 6, q)dSo

in terms of the effective rate potential Dej obtained by integrating (2.20) over the

interface thickness using (2.10):

h/2
-h/2

D(6 6, q ) =
,b (6, q Deff(; c-, q)d( = hDe"(; c, q)

Using Equation (2.10), Equation (2.26) can then be simplified to:

Wbgb- OBgb
gb 0

aDe(6; 6, q) 6dS
0 6 dSo-

gb

ODeff(; q) dso
h JpdSo

JBBgb

Comparing this equation with (2.4) and using (2.22), the tractions are then given

(2.26)

(2.27)

(2.28)

m
+ ýeo)



by:
&Deb -E

t = h (i; E, q) = ho. - (2.29)
06 896

which can be simplified, using (2.10), to

U13

t = 23  (2.30)

0'33

where the vector components are expressed in the local reference frame.

2.2 Finite-element discretization

The continuum problem with embedded discontinuity surfaces representing the grain

boundaries described above is approximated numerically using a conventional finite-

element discretization for the grain interiors and a discretization of the grain bound-

ary deformation power based on grain boundary interface elements. The geometric

description of the interface elements follows [37]. In calculations, we use 10-node

tetrahedral elements for the continuum which naturally suggests grain boundary el-

ements as schematically shown in Figure 2-2. The interface element consists of two

6-node triangular surface elements lying on the positive S+ and negative S- sides

of the grain boundary and offset along the normal by a distance equal to the grain

boundary thickness h in the reference configuration. Therefore, the total number

of nodes of the interface element is 12. The nodes are numbered from 1 to 6 and

identified with + (-) if they lie on S+ (S-). The mean deformation mapping of

the grain boundary p (2.5) is discretized using the standard shape functions for a

six-node triangular element Na(ýI, ,2), a = 1,..., 6 and the mean nodal coordinates

aK (x+ + x-), where xa are the deformed nodal coordinates, as follows:

6

=Oh -- EZNa( )Xa (2.31)
a=1



X1

A-3

Figure 2-2: Schematic of grain boundary element. Two tetrahedra belonging to two
adjacent crystals separated by an interface element at the grain boundary: S+ and
S- are respectively the facets corresponding to the tetrahedra on the positive and
negative side as defined by the positive surface normal N and S is the midsurface



The isoparametric finite element interpolation of the middle surface of the interface

element provides a parametric description of the element geometry in the deformed

configuration from which all the geometric and kinematic quantities in Section 2.1.2

can be conveniently obtained, including the deformed unit surface normal (2.7) which

is computed using the covariant basis vectors:

6

a(W)= CPh,a() W Na,a()ixa (2.32)
a=1

and the interpolation of the displacement jumps:

6

6(W) = Wh(() = Na()XaI, JXaj = x° - x a  (2.33)
a=1

An application of the discretized values of the kinematic variables to the effective

grain boundary deformation power (2.26) leads to the expression of the internal grain

boundary forces contributed by each grain boundary element:

f = fSo tiNadSo (2.34)

with t given by (2.30), where So is the reference configuration of the grain bound-

ary element and Na, the conventional shape functions corresponding to quadratic

isoparametric triangular elements as shown in Figure 2-2. In these expressions, thus,

the node identifier a ranges from 1 to 6 and the +(-) sign applies to the nodes on

the positive (negative) side of the grain boundary element as informed by the positive

surface normal resulting from the finite element parametrization. The stiffness matrix

- = F NafdSo (2.35)
istakb A: - ]b o i ads

is required in static calculations and can be obtained after a straightforward derivation



K--b•T nji Ocrj3 (o6r3nlk +iak~b - oJ 2h OD~

" j 6, (r3
So4h 2Oc , N 0 kb/ oTs 3jiNadSo

SSo 2 1 kb

6 13nrk) NbNadSo

+613 NadSO
04kb

where

-,- sAkb613 + Iskb6 ll + Vskb12
04kb

Aikb = 1, (a2rNb,1 - aIrNb,2)( is - n3in 3s)

Likb = ýlb16ik - lk

Vikb - eijl (jkbnll - Pjkbn3)

In these expressions, aij and nij correspond to the Jth component in the global

referential of respectively ai and ni, and 6ij and eijk are respectively the Kronecker

and the permutation symbols.

The preceding formulation of the grain boundary model was implemented as an

addition to a research code for doing finite element analysis of material deformation

for both implicit and explicit calculations. This implementation includes the ability

of running the code in parallel, which allows large-scale computations as used in

Chapters 4 and 5.

resulting in

(2.36)

and

(2.37)

(2.38)



Chapter 3

Grain size dependence of the yield

stress in nanocrystalline metals

In this chapter, the model presented in Chapter 2 is first calibrated to atomistic

simulations and experimental tensile tests on nanocrystalline copper for a given grain

size [14, 40]. The calibrated model is then used to evaluate the grain size and rate

dependence of the yield stress. The results are compared with static experiments and

atomistic simulations.

3.1 Simulation setup

The simulation domain consists of finite elements meshes of idealized polycrystalline

samples in which individual grains are discretized and accounted for explicitly. The

geometry of each grain corresponds to the tetrakaidecahedron which is the Wigner-

Seitz cell corresponding to the b.c.c. lattice. This idealized grain morphology fa-

cilitates the automatic generation of conforming computational meshes of idealized

polycrystalline samples with an arbitrary number of grains in three dimensions, and

leads to nanostructures consisting of equiaxed grains. Each grain is discretized using

192 10-node tetrahedral finite elements in a manner that leaves the overall polycrys-

tal mesh conforming at the grain boundaries. The idealized grain configurations are

shown in Figure 3-1 with their corresponding designations.



(a) finite element mesh of a
single grain

(b) lxlxl: 9 grains (c) 2x2xl: 22 grains

A, tkIlk "'Rix "Ift
J I

PA I V4t,

1OAk 'k

(d) 3x3x1: 41 grains (e) 4x4x1: 66 grains (f) 5x5x1: 97 grains

Figure 3-1: Idealized polycrystal grain configurations used in calculations. Designa-
tion and number of grains



The notation "lxlxl" designates the microstructure with the fewest number of

grains. This structure is a unit cell consisting of a full tetrakaidecahedron padded with

eight grain eighths completing the regular cubic geometry. Similarly, the notation

"lxnxn" designates a microstructure consisting of n2 unit cells. This results in n2 +

2 x (n + 1)2 total number of grains including partial grains on the boundary.

Other approaches based on 3D Voronoi diagrams leading to more general mi-

crostructures is commonly used in MD descriptions or when non-conforming meshes

are used [52). However, the grain boundary modeling approach proposed in this work

demands the conformity of the mesh across grain boundaries such that interface ele-

ment can be properly defined, which requires the generation of a general unstructured

mesh. Despite the obvious limitations of our approach (e.g. preventing the consid-

eration of a grain size distribution), the lack of an automated procedure to generate

3D Voronoi microstructures and the need to obtain a large number of computational

meshes, suggested that the idealized microstructures adopted here are reasonable for

studies of grain size dependencies.

In light of the availability of experimental characterizations and atomistic descrip-

tions of the grain size dependence of strength on nanocrystalline copper [14, 17, 10,

53, 54, 20, 43], we have focused our attention on this metal.

Our ability to conduct simulations of rather large problem sizes avoids the need

of using periodic boundary conditions which limits the analysis to a representative

volume element. Displacement-controlled tensile test conditions are simulated by

constraining the mesh nodes at the bottom face of the specimen, whereas specified

displacements are applied to the nodes at the top of the specimen.

3.2 Model calibration

As mentioned in Chapter 2, plastic deformation inside the grains can be neglected un-

der moderate loading conditions. Furthermore, it is found that the elastic anisotropy

of the grains does not significantly affect the macroscopic yield behavior of the

nanocrystalline sample, thus the grain interiors are assumed to follow an isotropic



large deformation neohookean elastic law with Young's modulus E = 108 x 109Pa

and Poisson's ratio v = 0.3. The properties of the grain boundary model are calibrated

against experimental and atomistic results as described below. One of the main issues

that needs to be confronted towards this end is the significant discrepancies in yield

stress values between experiments and atomistic models [14, 17, 10, 53, 54, 20, 43].

These discrepancies have been attributed to the idealized polycrystalline configu-

rations of the simulated samples including the lack of porosity and other defects,

as well as to the unrealistic physics involved which either considers extremely high

strain-rates (Molecular Dynamics) or outright ignores thermally activated processes

(Molecular Statics). It should be noted that Molecular Dynamics simulations under

extreme rates (5 x 10s - 1) and Molecular Statics simulations are in relative good

agreement in general (cf. for example [17] and [53]).

In this work, we attempt to fit representative atomistic and experimental results

with a single set of constitutive parameters. The elastic properties for bulk polycrys-

talline copper were adopted for the grain boundary model and the yield, hardening

and rate dependence parameters were adjusted until good agreement with both the

atomistic and the experiment stress-strain reference curves was found.

The stress-strain curve corresponding to atomistic simulation of Schiotz et al.

[14, 17] of nanocrystalline copper with 6.56nm mean grain size is used as a reference

for model calibration at high strain rates, as shown in Figure 3-2. A tensile test

simulation on a cubic-shape sample of 20nm per side with 91 grains and grain size

d = 6.67nm (3x3x3) was conducted at the same strain rate of 5 x 108 s - 1 used in

[17, 20]. The comparison between the two stress-strain curves is shown in Figure 3-2.

The calibration of the quasi-static response of the model was extracted from the

experimental results of Sanders et al. [40, 41, 55]. These experiments consist of quasi-

static tensile tests on nanocrystalline copper specimens obtained by inert-gas conden-

sation and warm compaction. The experimental stress-strain curve corresponding to

grain size d = 26nm [40] was used for calibration. The simulation was conducted

using 66 grains of size d = 25nm (4x4x1 designation) and under quasi-static con-

ditions. Figure 3-3 shows the comparison between the stress-strain curve obtained
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Figure 3-2: Calibration of grain boundary model parameters against atomistic results
from [17] for grain size d 6.6nm and strain-rate 5 x 108s - 1
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numerically and the experiment.
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Figure 3-3: Calibration of grain boundary model parameters against experimental
results from [40] for grain size d , 25nm

The final set of model constitutive parameters calibrated to both reference curves

is presented in Table 3.1. Considering that a single set of model parameters is used

in both simulations, the agreement with the experiment and the atomistic simulation

is found to be reasonable.

3.3 Grain size dependence

The calibrated model was then used to investigate the dependence of the stress-strain

response on the grain size. In order to compare with the size dependence results

obtained from atomistic models in [14], a set of tensile test simulations was conducted

keeping the sample size fixed at 20nm and systematically increasing the number of



Table 3.1: Simulation and Model parameters after calibration for Cu grain boundaries

Young's modulus (Pa) 108.0e+09
Poisson's ratio 0.33 / 0 (sliding / opening)

ao (Pa) 200.0e+06
Co 1.0e-04

eo (8- 1) 1.0
1/n 10
1/m 10 (rate dependent)

h (nm) 1

grains from 22 (2x2x1 designation) to 97 (5x5x1 designation). This corresponds

to grain sizes in the range 0lnm-4nm. In all the simulations, the grain boundary

thickness was kept at h = lnm.

The resulting stress-strain curves are shown in Figure 3-4. Owing to the extremely

high strain-rate (5 x 10's - 1) used in these simulations, significant dynamic oscillations

are observed in the stress-strain curves. This makes it difficult to identify a well-

defined yield stress. For comparison purposes, we conventionally extract points on

the stress-strain curves that would elastically unload to 2% permanent deformation.

Similar approaches for identifying yield points in nanocrystalline metals have been

adopted in [56, 57]. The extracted conventional values of "yield" stress are plotted

on a Hall-Petch plot (cra,, vs d- 1/2 ) and compared with the atomistic results in Figure

3-6.

A similar approach has been followed for comparing model predictions of the size

dependence of the yield stress under quasi-static loading with the experimental results

in [40, 41]. In this case, the sample size was 100nm and three different simulations

with grain sizes d = 20nm, d = 25nm and d = 33.3nm, corresponding to designa-

tions 5x5x1, 4x4x1 and 3x3x1 respectively, were conducted. The same grain boundary

thickness h = Inm as in the high strain-rate simulations was adopted. The resulting

stress-strain curves are shown in Figure 3-5. It can be observed in this figure that

the same softening tendency with the reduction of the grain size is obtained. Under

quasi-static conditions, the stress-strain curves do not exhibit oscillations and a con-
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Figure 3-4: Tensile dynamic simulations of a 20nm plate for d=10, 6.67, 5 and 4nm
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ventional yield[ stress at a 0.2% offset permanent strain may be defined. The extracted

yield stress values as well as the experimental results reproduced from [40, 41] were

added to the Hall-Petch plot in Figure 3-6, showing a reasonable agreement between

simulations and experiments. This suggests that the vast discrepancy in the yield

stress of nanocrystalline metals between experiments and atomistic simulations may

be at least partially explained by rate dependence effects. However, it should also be

emphasized that the proposed model overplays the role of rate dependence, as other

potentially important sources of discrepancy owing to the idealizations of atomistic

models are ignored.
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Figure 3-5: Tensile static simulations of a 100nm plate for d=33, 25 and 20nm

The previous simulations exercise the developed model under a wide range of

grain sizes and for loading rates in the MD and the experimental range. In both

cases, the model predicts a decrease of the yield stress with grain size, due to the
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Figure 3-6: Hall-Petch plot of our two sets of simulations and of the corresponding
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increased presence of grain boundaries, in agreement with atomistic and experimental

descriptions. In addition, the dependence of the yield stress on the grain size follows

a reverse Hall-Petch relation with a similar slope k obtained by atomistic simulation,

see Equation (1.1).

3.4 Summary

The proposed phenomenological model describes the onset of yield in the deformation

of nanocrystals. Given that the grains are assumed elastic, all the plastic deforma-

tion can only be attributed to intercrystalline grain boundary mediated deformations.

These mechanisms appear to provide an adequate continuum description of experi-

mental observations and atomistic predictions. Our continuum model is consistent

with the hypothesis that grain boundary kinematic mechanisms of sliding and ac-

commodation are responsible for the softening of nanocrystals with decreasing grain

sizes.

The continuum model also predicts a decrease of the yield stress with the grain

sizes. Furthermore, the dependence of the yield stress on the grain size is found to fol-

low the reverse Hall-Petch effect, which is consistent with atomistic characterizations

[14] and experiments [40].

A single set of model parameters is able to fit both the high strain-rate and quasi-

static response. This suggests that the significant discrepancy between the experi-

mentally observed strength of nanocrystalline copper and atomistic model predictions

may be partially due to loading-rate effects.

It is also important to highlight that the continuum modeling approach does

not suffer from the time step limitations which mire MD and, thus, enables the

consideration of a vast range of loading rates including static loads. The continuum

modeling approach proposed here can be taken as a basis for the development of

multiscale models of grain boundary mechanisms of deformation and failure based

on atomistic characterizations of grain boundary properties and their dependence on

microstructural parameters (e.g. grain boundary misorientation).





Chapter 4

Continuum modeling of shock

response in nanocrystals

This chapter is devoted to the modeling of the shock response in nanocrystals. To

this end, atomistic simulations of shocks in metal are used as a reference for the

identification and characterization of the competitive grain bulk and grain boundary

deformation mechanisms under such conditions.

The response of nanocrystalline metals to intense compressive loads such as pro-

duced by shock loadings has thus far only been investigated via atomistic simulations

and very few experimental efforts [23, 58]. The main finding has been an unprece-

dented compressive strength (up to 15GPa), which has been rationalized by the

suppression of grain boundary dissipation mechanisms under strong state of com-

pression, leading to a decrease of grain boundary sliding and an increase of intragrain

dislocation activity. These observations suggest frictional mechanisms at the grain

boundary in which the sliding is strongly affected by the state of compression whereas

the intragrain dislocation nucleation barrier is not as severely affected by the pres-

sure. Intragrain dislocation emission then becomes the only way of accommodating

the deformation.

Other conclusions of the work in [23] include a shift of the threshold between

direct and inverse Hall-Petch effect to a smaller grain size and higher strengths which

is also supported by a simple qualitative model, see Figure 4-1.
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Figure 4-1: Flow stress versus grain size as predicted by Bringa et al.'s model and
MD results [23]

The frictional behavior of grain boundaries has also been observed in recent work

by Schuh and coworkers [59, 22] who used Molecular Statics simulations to show an

asymmetry between the compression and tension strength of nanocrystalline nickel

(cf. Figure 4-2). This asymmetry has been partially explained by the observation that

the grain boundary in nanocrystals tends to have a glass-like behavior but exhibiting

shear bands confined to very small scales (- Inm) [19, 22]. In [23, 22], a Mohr-

Coulomb friction model was suggested as a means to describe the behavior of the

grain boundary under compression.

These deformation features specific to the nanoscale are very strongly depen-

dent on the grain size. At the micron and larger scales, the deformation is purely

symmetric and the deformation is driven entirely by intragrain plasticity. Between

approximatively 1,pm and 10nm, the tension-compression asymmetry appears and

increases [19, 22]. Finally, below 10nm, the asymmetry decreases and the deforma-

tion is mainly due to grain boundary deformation. Ultimately, for ultra-small grains,

the nanocrystalline asymmetry is thought to be equivalent to the one observed in

amorphous metal.

In this thesis, we endeavor to extend the continuum modeling framework for

nanocrystalline metals to the range of shock loading response. The extensions in-
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Figure 4-2: Strength asymmetry on a cubic Ni 4nm grain size specimen in Lund et
al.'s simulations [22]

volve the modification of the grain boundary sliding and accommodation model to

account for the pressure-dependent frictional resistance of the grain boundary, the

implementation of a high-rate equation of state (EOS), shock-capturing scheme to

describe the volumetric response of the grain interiors under shock loading and a

plasticity model to describe their deviatoric response. The model parameters are

calibrated to fit the elastic and plastic waves obtained by atomistic simulation in

[23]. The calibrated model is then used to investigate the influence of grain boundary

friction.

4.1 Grain boundary friction model

In order to account for the frictional response of grain boundaries to sliding under com-

pressive loading suggested by atomistic simulations, we modify the sliding resistance

of the grain boundary model in Equations (2.24) and (2.25) with a pressure-dependent

frictional term [31]:

o(NEp) = UO 1 + EP) + P Max(O, -an) (4.1)

C63
63



where p is the friction coefficient and an, the normal component of the stress at the

grain boundary. In the rate-independent limit with no hardening, Equation (2.25)

becomes in the case of compression: Y = o - puan, which is consistent with the model

proposed in [22] but applied at the level of the grain boundary instead of the effective

response.

Previous studies on metallic glasses by Lund and Schuh [60, 61, 62] have shown

that a Mohr-Coulomb model with a friction coefficient of p = 0.12 provides a good fit

of the asymmetric yield surfaces of metallic glasses. In our model, we adopt this value

(p = 0.12) for the friction coefficient of the grain boundary based on the expectation

that nanocrystals will tend toward the response of a metallic glass in the amorphous

limit.

Except for the modification of the grain boundary resistance sliding, Equation

(4.1), the grain boundary model of Chapter 2 is used.

4.2 Model for the grain bulk response under shock

loading

4.2.1 Equation of state

Shock Hugoniot

The shock response of many metallic materials is well described by the Hugoniot

relation between the shock velocity U8 and the material velocity Up of the simple

form [63, 64, 65]:

Us = Co + 8s Up (4.2)

In this expression, Co and s are material parameters which can be obtained from

experiments. Values of these parameters for many metals have been published [63,

64, 65].

By considering conservation of mass and momentum in a control volume at the

shock front, and Equation (4.2), the final pressure can be calculated explicitly as a



function of the Jacobian behind the shock front JH and the reference density ahead

of the shock po [63, 64, 65]:

PH poC2 (1- JH)
[1 - s(1 - JH)]2  (4.3)

where JH is related to the density PH, the specific volume VH or the deformation

tensor FH, defined behind the shock front, by:

JH - Po - _VH = det(FH) (4.4)
PH Vo

The relation (4.3), also called the "shock Hugoniot", relates any final state of

density to its corresponding pressure. The deformation path taken by the material

between the initial state (P0, Vo) and the final state (PH, VH) is then defined by a

straight line in the (P, V) plot: the Rayleigh line [64].

Mie-Griineisen EOS

The shock response of material deformation can also be described theoretically-as

opposed to the empirical Hugoniot approach-by recourse to the Mie-Grfineisen EOS.

This relation can be derived from quantum statistical mechanics of a large system

of coupled harmonic oscillators as well as from purely thermodynamic considerations

[66]. It relates the jump of pressure P to the jump of internal energy E with respect

to the Hugoniot final state [64]:

P- PH = (E-EH) (4.5)
V

where V is the specific volume and where 7, defined as the Griineisen constant, verifies

[64]:
S =O cte (4.6)
V Vo

where -o is the Griineisen constant at the initial state.



Temperature rise

The temperature rise behind the shock follows from the energy equation [64]:

(dT) 1 (dP) P + Po (4.7)
+ PoyoTC,, = 1 -dP H (1 - J) + (4.7)dV H2Po dV 2

where use has been made of the Mie-Griineisen EOS and the Hugoniot relation, and

where C, is the heat capacity at zero pressure. (P)H follows from Equation (4.3) as:

(dP) 2 1 +s(1 - JH) (4.8)
dV H 0 (1 - s(1 - JH)) 3

Temperature changes due to plastic deformation will be considered in Section

4.2.2.

By direct integration of T, the temperature rise ATEOs during a time step At can

be calculated numerically for a given Jacobian increment AJ = AV/Vo.

Pressure approximation

We have seen that the correct description of a shock from an initial state to a final

state should follow the Rayleigh line [63, 64, 65]. Because of the local nature of

the finite element approach-where an element at the shock front cannot "know"

PH in advance-the following approximation is then usually done to just follow the

Hugoniot. One of the implications of this is a smoothing of the shock front but

without affecting the jump condition.

4.2.2 Intragrain plasticity

Plastic deformation inside the grain is described by an isotropic model of large de-

formation plasticity based on the variational framework in [39]. More detailed de-

scriptions accounting for the anisotropic plastic response based on crystal plasticity

models are possible [67]. However, due to the lack of model parameters, such as

slip plane resistance, hardening and rate dependence, under shock conditions, these

effects are ignored as a first approximation.



A pseudo-potential of dissipation [39, 48] of the form:

B/ 1+1/mB• OB 0 OB B (4.9)/B 0 1 + -- aOe p

is adopted from which the isotropic rate and temperature dependent hardening law

-(+ 1/nB (± ) 1/mB (.0
EB BT ?IT

a0 = Oo C B 1 + h0 m 1 -T (4.10)

follows, where aB, c and T are respectively the yield stress, the equivalent plastic

strain and the temperature, and where o , n , o, mB, Tm and qT are model parame-

ters representing respectively the reference plastic strain, the hardening exponent, the

reference plastic strain rate, the rate dependence exponent, the melting temperature

and the thermal softening exponent. In these expressions, the superscript "B" refers

to grain bulk values as opposed to the grain boundary parameters.

In this model, we consider the influence of temperature on the yield stress-cf.

Equation (4.10)-as well as the heating produced by plastic deformation. This plastic

dissipation contributes to the increase of temperature given by the EOS ATEOS by:

ATplastic = L t (4.11)poCp
POCp

where 3TQ, At and Cp are the Taylor-Quinney coefficient, the time step increment

and the heat capacity at constant pressure. The final increase of temperature is then

calculated by summing the two contributions.

In order to account for the influence of the high pressure loads produced by the

shock on temperatures, a linear dependence is assumed [68]:

Tm = Tmo + Tm,pP (4.12)

where Tmo is the melting temperature at ambient pressure and where Tm,p is the slope

of the melting curve, assumed constant [68].



The present model ignores the contributions of entropy changes in the plastic

response of the grains. It is known that the isentropic assumption is reasonable

for material subjected to mild loading conditions [69, 70]. Appendix A provides an

analysis based on the work of Clifton justifying this assumption for the range of shock

pressure considered in this thesis [69].

4.3 Simulation setup

The computational framework for modeling the response of nanocrystalline metals

described above is employed for investigating the influence of grain boundary friction

on copper nanocrystalline deformation under shock loading conditions. To this end,

we model a 120nmx80nmx80nm nanocrystalline copper sample with 20nm grain

size (same as in [23]) subjected to shock loading conditions. These are applied as

displacement boundary conditions representing a piston velocity Up = 100Om/s.

Idealized grain morphologies resulting from the three dimensional packing of

Wigner-Seitz cells corresponding to body centered cubic lattices are adopted for sim-

plicity as building blocks of nanocrystalline samples. 6x4x4=96 of these macrocells

result in a microstructure consisting of 271 equiaxed grains or portions of grain.

Each full grain is discretized using 1,536 second-order tetrahedral finite elements in a

manner that leaves the overall polycrystal mesh conforming at the grain boundaries-

note that this is eight times more tetrahedra per grain than was used in Chapter 3.

Subsequently, interface elements are added at the boundaries between grains, taking

advantage of the conformity of the existing mesh. The simulations are done with a

total of 294,912 bulk elements and 26,624 interface elements and run on 24 processors.

Figure 4-3 shows the grain structure and finite element mesh.

The denomination of "shock pressure" for the axial stress will be used following

Bringa et al. [23], referring to "pressure" for the third of the trace of the stress tensor.
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Figure 4-3: 6x4x4 mesh used in the shock simulations; the heavy lines denote the
grain boundaries between the tetrakaidecahedra

4.3.1 Artificial viscosity

Originally proposed by Von Neumann and Richtmyer [71], the artificial viscosity aims

at spreading the shock front over several elements in order to enable the simulations

of strong shocks of thickness smaller than the mesh size. The viscosity introduced in

the calculations vanishes when the mesh size decreases and conserves the fundamental

features of the shock, such as the shock speed or the jump conditions, while avoiding

the high frequency spurious mode otherwise observed.

Based on Von Neumann and Richtmyer's work [71], Lew et al. [72] proposed a

specific deviatoric Lagrangian artificial viscosity scheme for unstructured mesh and

high-order elements. This scheme allows the consideration of large plastic deformation

as it is observed in the case of shock loading conditions, and, by spreading the shock

over 4 to 6 elements, avoids unwanted oscillations while providing stable solutions for

mesh size larger than the shock width [72].

We adopt here this scheme, in which the corresponding artificial viscosity is defined

Z



as follows [72]:

r fmax(O, -- heltp(CiAU - cLa), Au < 0; (4.13)r]4 (4.13)

0, Au > 0.

where helt, Au and a are respectively the element size, the velocity jump across the

element and the sound speed of the material, and where cl and CL are two model

parameters. Note that the mass density p for a given Jacobian J and an initial

density po is simply equal to P. cl and CL are chosen such that an adequate balance

between a minimum diffusion of the shock wave and a maximum attenuation of the

oscillations is reached.

4.3.2 Calibration of model parameters

The calibration of the grain bulk model parameters was done by considering the shock

response of a homogeneous material sample. To this end, the mesh configuration in

Figure 4-3 was used to conduct shock simulations under the conditions in [23].

The parameters for the Mie-Griineisen/Hugoniot EOS were taken directly from

published properties for bulk polycrystalline copper [65]:

SCo = 3910m/s

s = 1.51 (4.14)

yo = 1.96

The volumetric response, represented by the longitudinal pressure profile, predicted

by our model after lOps of simulation and the corresponding MD prediction are shown

on Figure 4-4.

It can be seen in this figure that the MD simulation predicts a shock propagation

speed that is faster than the prediction of the continuum model. The shock prop-

agation speed can be matched to the atomistic model by increasing Co to a value

of Co = 4841m/s, see Figure 4-4. However, that necessarily affects the value of

the pressure behind the shock as the pressure is directly proportional to the shock
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speed for a given piston velocity: PH = poU8 Up. This observation that the Mie-

Griineisen/Hugoniot EOS can either match the speed of propagation of the shock

or the pressure behind the shock is indicative of a deficiency of the model to de-

scribe shock response in nanocrystals. A more accurate description may require the

consideration of higher order terms in the expansion of the pressure.

The remaining deviatoric parameters were then adjusted until a good agreement

with the deviatoric response predicted using MD and represented by the longitudinal

profile of the Von Mises stress after 10ps was obtained, see Figure 4-5.
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Figure 4-5: Comparison of Von Mises stress distribution after
model and atomistic simulations [23]
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The deviatoric response is characterized by a sudden rise of the Von Mises Stress

due to the sudden increase of deformation rate at the shock front. A rapid decay, with

an accompanying increase of plastic deformation, is then observed, followed finally
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by a plateau, which characterizes the flow stress of the shocked material [23]. In the

continuum model, the peak is controlled by the initial yield stress and the rate depen-

dence parameters. The decay is controlled by the rate dependence parameters and

the tail is controlled mainly by the initial yield stress and the hardening parameters.

It is expected that the constant value of the Von Mises stress at the tail of the

shock correspond to the total shock temperature dependent value of the yield stress

for an amount of hardening corresponding to the total plastic strain accumulated

across the shock front. Based on the experimental observations which show a limited

or negligible amount of strain hardening in nanocrystals [29], the strain hardening in

the model is suppressed by choosing 1/nB = 10,000.

The atomistic Von Mises stress profile shows a very rapid relaxation of the Von

Mises stress behind the front shock thus suggesting an unusually high rate depen-

dence. In the continuum model, it is found that even adopting an extremely high

rate dependence by choosing very low values of the rate dependence exponent is not

sufficient to obtain such rapid decay in the Von Mises stress. This may be due to

inadequacy of the rate dependence law or to some artifact in the MD simulations.

Due to the larger width of the Von Mises profile obtained with the continuum model,

a longer simulation is required to capture the remnant value of the deviatoric stress

at the tail of the shock, see Figure 4-6.

Finally, the artificial viscosity parameters were fitted in order to minimize the

oscillations while retaining the sharpest jump possible. The values of the parameters

for the grain interior are given in Table 4.1.

The grain boundary parameters adopted in Chapter 3 with a value of the friction

coefficient p/ = 0.12 are used in calculations, see Table 4.2.

In order to understand the accuracy of the continuum model, a mesh convergence

analysis consisting of simulations with increasingly refined meshes was conducted.

Three cases were considered: 192, 1,536 and 12,288 elements per grains, corresponding

to a total number of elements of 36,864, 294,912 and 2,359,296, respectively. Figures

4-7 and 4-8 show the shock pressure and Von Mises stress profiles for the three cases

as well as the theoretical shock position after 10ps calculated from Equation (4.2).
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Table 4.1: Model parameters for Cu bulk grain

Po 8960kg/m 3

EB 124 x 109Pa
vB  0.34

B 1.335 x 10 9Pa
00
B 1.
~0
0B 2.4 x 109s - 1

1/mB 1.
1/nB 10000.

rwf 1.
To, ambient temperature 298K

Tmo, melting temperature at ambient temperature 1356K
Tm,p, melting curve slope 40K/GPa
Co, offset of the Hugoniot 3910.0m/s
s, slope of the Hugoniot 1.51

7yo, Griineisen coefficient at T=0K 1.96
C,, specific heat at constant volume 385.OJ/(kgK)
c1 , first artificial viscosity parameter 25

CL, second artificial viscosity parameter 0.4

Table 4.2: Model parameters for Cu grain boundaries

Young's modulus 108.0 x 109Pa
Poisson's ratio 0.33 / 0 (sliding / opening)

Uo 200.0 x 106Pa
CO 1.0 x 10- 4

eo 1.0s - 1
1/n 10
1/m 10

h lnm
P 0.12
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In both cases, the decrease of the mesh size leads to a convergence of the shock

front towards one unique sharp front. The corresponding slopes become increasingly

more abrupt but the position of the shock front is conserved, independently of the

mesh size. The final shock pressure is also unaffected by the mesh size as the su-

perimposition of the tails for all meshes indicates but the Von Mises peak is subject

to a sufficient refinement in order to be representative of its converged value. The

observed behavior indicates a good convergence of the scheme and the intermediate

mesh is chosen as a good balance between precision and calculation time.

4.4 Influence of friction on the shock response of

nanocrystals

In order to study the influence of friction on the behavior of shocked nanocrystalline

copper, two additional simulations incorporating the grain boundary model with and

without friction were conducted.

Figure 4-9 shows a snapshot of the spatial distribution of the Von Mises stress

consisting of a longitudinal slice taken in the middle of the rod for the three cases:

no grain boundary sliding, grain boundary sliding without friction (P = 0) and grain

boundary sliding with friction (p = 0.12). Additionally, Figures 4-10 to 4-13 show

the corresponding one-dimensional longitudinal profile-taken as a line in the middle

of the rod-as well as the ones for pressure, temperature and velocity distributions.

For all three simulations, the shock jump conditions including the shock propa-

gation speed and the pressure jump were matched with good accuracy, see Figure

4-10. In particular, the shock speed and the maximum shock pressure obtained are

approximatively 7nm/ps and 47GPa, respectively, which are in good agreement with

the atomistic simulations in [23].

In the absence of grain boundary sliding, a uniform drop of the Von Mises stress

is observed behind the shock front which results from the plastic relaxation of the

grains, see Figure 4-11. As discussed earlier, the drop that follows is not as strong
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Figure 4-9: Von Mises stress for a shocked 6x4x4 model of nanocrystalline copper
after lOps with Up = 100Om/s; plots of simulations are shown for a longitudinal slice
in the middle of the rod with and without grain boundary sliding and with/without
friction in the grain boundary (GB) sliding case

as in [23] and the average Von Mises stress level remains relatively high behind the

front. In the second case where grain boundary sliding without friction is allowed, the

overall deviatoric stress level exhibits sudden drops at the grain boundaries due to the

dissipation provided by the sliding deformations. Due to the unimpeded relaxation

of the grain boundaries, plasticity inside the grains occurs in much smaller amounts,

which is manifested by large oscillations in the Von Mises stress profile with a spatial

frequency equal to the grain size. The peak observed near the grain centers are due

to wave reflections at the grain boundaries. The Von Mises stress can drop below

the yield value inside the grains at the tail of the shock, thus showing the additional

relaxation provided by the grain boundaries. In the third case where friction is

considered, an intermediate situation is observed. Sliding dissipation is partially

inhibited due to the high level of compression at the grain boundary leading to a

somewhat larger stress level and a smoother distribution.

The increase in temperature observed for the case without friction is caused by

the increase of plastic work due to the oscillations of the Von Mises stress, see Figure

GB sliding +
Friction [t=0.12/

"'0/ 2
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Figure 4-10: Shock pressure distribution after 10ps; plots of simulations are shown for
a longitudinal line in the middle of the rod with and without grain boundary sliding
and with/without friction in the GB sliding case
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Figure 4-11: Von Mises stress distribution after 10ps; plots of simulations are shown
for a longitudinal line in the middle of the rod with and without grain boundary
sliding and with/without friction in the GB sliding case
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Figure 4-13: Velocity distribution after 10ps; plots of simulations are shown for a
longitudinal line in the middle of the rod with and without grain boundary sliding
and with/without friction in the GB sliding case



4-12. In the case where the friction is considered, the temperature profile is ostensibly

unchanged with respect to the homogeneous material, which is probably due to the

neglect of the frictional heating at the grain boundary in the model.

Finally, Figure 4-13 shows the profile of material velocity obtained in the three

simulations. These plots confirm the grain-scale oscillations in the shock response in

the case where grain boundary sliding is unimpeded, which is maximum immediately

behind the shock front and is attenuated toward the tail. The temperature and

velocity profiles were not compared because the atomistic results were not provided

in [23].

4.5 Conclusion

A model attempting to capture the shock response of nanocrystals by extending the

model presented in Chapter 2 was developed, tested and used to investigate the

influence of the frictional behavior of the grain boundary. It is found that the model

parameters can be adjusted to describe the basic features of the shock response of

nanocrystals obtained with atomistic simulations, including the shock speed and the

shock pressure, with reasonable accuracy. However, more accurate descriptions may

require an improved EOS. The parameters of the Mie-Griineisen/Hugoniot EOS can

be adjusted to obtain the shock speed or the pressure, but not both. It can finally

be concluded that, under shock loading conditions, the continuum model for grain

boundary requires the addition of frictional mechanisms at the grain boundary in

order to avoid the non-physical oscillations otherwise observed.



Chapter 5

Continuum model of ultrafine

polycrystals with embedded

growth nano-twins

This chapter is devoted to the development of a continuum model of the deformation

and failure response of ultrafine polycrystals embedded with growth nano-twins. As

discussed in the introduction of this thesis, this type of material has elicited significant

interest because they exhibit yield stresses comparable with nanocrystals without

compromising the ductility.

Nanocrystalline metals resulting from normal processing conditions usually have

high-angle grain boundaries. The low coherence and high energy of high-angle grain

boundaries result in residual microstrains in the sample [24] and a glass-like behavior

of the grain boundary [19], which is responsible for the low ductility of nanocrystals.

By taking extreme care in the processing conditions so as to minimize microstrains

and obtain samples with predominant low-angle boundaries, Lu et al. have shown

that the ductility of nanocrystals can be significantly improved [24].

It is consequently of interest to design polycrystalline materials where the dislo-

cation blocking activity of the nanocrystalline grain boundaries could be conserved

while avoiding the low ductility associated to high-angle grain boundaries. Recent

work based on the artificial growth of structured twins-a special kind of intragrain



coherent boundaries-in ultrafine polycrystalline grains (d - 500nm), has resulted

in promising steps in this direction [26, 27, 28, 29, 73]. Figure 5-1 shows an ultrafine

polycrystal with embedded growth twins. The top picture represents two twinned

grains separated by a grain boundary, and the bottom picture shows the very high

coherence of the twins. At such grain size, grain boundary deformation mechanisms

are still not predominant and most of the deformation is due to intragrain dislocation

mediated plasticity. Twin boundaries act as barriers to dislocation motion, thus pro-

viding a strengthening mechanism similar to grain boundary. However, their highly

coherent structure avoids the loss of ductility characteristic of nanocrystals where the

strengthening mechanism is provided by the grain boundaries.

Figure 5-1: Grain boundary and twin boundaries in nano-twinned ultrafine polycrys-
talline Cu [26]

Froseth and coworkers have studied the creation and evolution of growth and de-

formation twins for Ni, Al and Cu using atomistic models [74, 75, 76, 77]. These

references suggest that the role of potential competitive mechanisms leading to the

emission of partial dislocations, full dislocations or twins are still subject to debate.



For Al, there is evidence of twin migration as the preferred deformation mechanism

when the twins are initially present as in the case of growth twins, whereas for Ni or

Cu, extended partial dislocation nucleation appears as the predominant deformation

mechanism. This is explained by the much lower energy barrier in Al (as opposed to

similar energy barriers in the case of Ni and Cu) for twin migration compared to dis-

location emission and twin nucleation [76, 77]. Other work by Zhu et al. emphasized

the hardening effect due to the gradual loss of coherence of twin boundaries during

pile-ups [30]. At the onset of plastic deformation, the undeformed twin boundary

seems to favor absorption of external dislocations in the twin itself, followed eventu-

ally by a gradual loss of coherence and the accumulation of interfacial dislocations.

This unbalance leads to an increase of both desorption and direct transfer between

the two sides of the twin until a steady state is reached [30], see Figure 5-2. Even

though these two mechanisms are not necessarily mutually exclusive, it is clear that

further work is required to be able to assess their relative importance. Here, we adopt

a phenomenological approach similar to the one proposed by Dao et al. [29] aimed

at describing the strengthening dislocation pile-up mechanisms of twin boundaries,

neglecting the mechanism of twin boundary migration.

Important aspects of deformation and failure response of ultrafine crystals with

embedded nano-twins have been studied by Dao, Lu, Shen et al. [27, 28, 29, 73]. In

these studies, they investigated the dependence of strength, ductility and strain-rate

sensitivity on twin density. Among the main findings, strain-rate sensitivity, strength

and ductility have been found to increase with decreasing twin spacing, as shown in

Figure 5-3.

Based on the observed experimental behavior, Dao et al. developed a two-dimensional

computational model of nano-twinned ultrafine polycrystalline copper aimed at cap-

turing the macroscopic response [29]. In this approach, a crystal plasticity model

for the bulk is used, in which slip, hardening and rate dependence are modified to

account for the presence of twin boundaries which act as dislocation barriers. In

addition, a fracture initiation criterion based on a maximum slip per unit twin was

proposed. The model captures the strengthening and ductility increase observed with
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Figure 5-2: Absorption, desorption and direct transmission of a dislocation at twin
boundaries as described by Zhu et al. [30]
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the decrease of twin spacing.

Notwithstanding the success of this two-dimensional model in capturing the basic

role of twin boundaries inside ultrafine crystals, it is desirable to incorporate in this

modeling approach kinematic mechanisms which have an inherently three-dimensional

nature. This requires the consideration of the totality of slip systems pertaining to

the crystalline system in question as well as the analysis of microstructures devel-

oped in all three space dimensions. This, in turn, requires large-scale simulations on

parallel computers in order to compute the individual grain response as well as the

grain interactions with sufficient accuracy. To this end, we propose to extend the

modeling approach of Dao et al. [29] to three dimensions. The model consists of

a finite element formulation of the continuum three dimensional problem describing

the ultrafine polycrystal grains explicitly without any special modeling of the grain

boundary since bulk deformation is the predominant deformation mechanism at such

grain size. A crystal plasticity model is adopted for the bulk, in which the dislo-

cation barrier action of the twinned slip systems is accounted for by modifying the

critical resolved shear stress, rate dependence and hardening parameters of the slip

systems piercing the twin boundaries. A fracture criterion based on maximum slip

per unit twin is implemented and calibrated against experiments. The simulation re-

sults are then compared with two-dimensional results and experimental observations

[29], and used to investigate the three-dimensional aspects of the dependence of the

stress-strain response and ductility of ultrafine copper on twin density.

5.1 Constitutive model for single crystals with em-

bedded twins

In this section, we describe the constitutive framework for modeling the response of

the grain interiors of nano-twinned ultrafine crystals. The modeling approach is based

on a constitutive framework for single crystal plasticity which is modified to account

for the presence of the twin boundaries. The constitutive framework of Cuitifio and



Ortiz [78] later modified by Kuchnicki et al. [79] is adopted.

The total deformation of a crystal is the result of two main mechanisms: disloca-

tion motion within the active slip systems and lattice distortion. Following Lee [80],

this points to a multiplicative decomposition

F = FeFp (5.1)

of the deformation gradient F into a plastic part FP, which accounts for the cumulative

effect of dislocation motion, and an elastic part F', which accounts for the remaining

non-plastic deformation. Following Teodosiu [81] and others [82, 83, 84, 85, 86], we

shall assume that F P leaves the crystal lattice not only essentially undistorted, but

also unrotated. Thus, the distortion and rotation of the lattice is contained in Fe.

This choice of kinematics uniquely determines the decomposition (5.1). By virtue of

(5.1), the deformation power per unit undeformed volume takes the form

P: F = P: Fe + • :LP (5.2)

where

P = PFPT, = FeTpFpT, LP = FPF P 1  (5.3)

Here, P defines a first Piola-Kirchhoff stress tensor relative to the intermediate con-

figuration Bt, and 2 a stress measure conjugate to the plastic velocity gradients L_

on St. The work conjugacy relations expressed in (5.2) suggest plastic flow rules and

elastic stress-strain relations of the general form

LP = V(2, Q), P = P(Fe, Q) (5.4)

Here, Q denotes some suitable set of internal variables defined on the intermediate

configuration, for which equations of evolution, or hardening laws, are to be supplied.

A standard exercise shows that the most general form of (5.2) consistent with the



principle of material frame indifference is

P = FeS(Ce), C'e = FeTFe (5.5)

where S = Ce-1 2 is a symmetric second Piola-Kirchhoff stress tensor relative to the

intermediate configuration Bt, and Ce is the elastic right Cauchy-Green deformation

tensor on Bt. For most applications involving metals, a linear-but anisotropic-

relation between S and the elastic Lagrangian strain Ee = (Ce- I)/2 can be assumed

without much loss of generality. Higher-order moduli are given by Teodosiu [87].

From the kinematics of dislocation motion, it has been shown by Taylor (1938)

[88] and Rice [86] that (5.4) is of the form

1: ýga ( jha(5.6)
a

where -' is the shear rate on slip system a and SP and fha are the corresponding slip

direction and slip plane normal. At this point, the assumption is commonly made

that fa depends on stress only through the corresponding resolved shear stress Ta,

i. e.,
a= a (TaQ) (5.7)

which is an extension of Schmid's rule. If (5.7) is assumed to hold, then it was shown

by Rice [86] and by Mandel [85] that the flow rule (5.6) derives from a viscoplastic

potential.

In order to complete the constitutive description of the crystal, hardening relations

governing the evolution of the internal variables Q need to be provided. In this work,

we adopt the forest dislocation hardening model for f.c.c. metals of Cuitifio et al. [78].

A synopsis of the main assumptions of the model together with the key constitutive

relations is provided below for completeness.

The rate of shear deformation on slip system a is given by a power-law of the

form:



Zý1/m C
So Q -1 , if >-• g,

To = (5.8)
0, otherwise.

In this expression, ma is the strain-rate sensitivity exponent, o0 is a reference

shear strain rate and g' is the current shear flow stress on slip system a. Implicit

in the form in which (5.8) is written is the convention of differentiating between the

positive and negative slip directions +ma for each slip system, whereas the slip rates

1a are constrained to be nonnegative.

For multiple slip, the evolution of the flow stresses is found from an analysis based

on statistical mechanics to be governed by a diagonal hardening law:

a = Zhaaa (5.9)
a

where ha" are the diagonal hardening moduli:

7 = ( cosh [ ] - 1 (no sum in a) (5.10)

In this expression,

S= r/bWDd = 2Vp (no sum in a) (5.11)

are a characteristic shear stress and strain for the slip system a, respectively. The

values of Tca and ya determine the location of the "bend" in the resolved shear stress-

slip strain curve associated with the observable yielding during experiments. Thus,

Tr correlates well with the value of the flow stress determined by back extrapolation.

In expressions (5.11), y is the shear modulus, na is the density of obstacles in slip

system a, pa is the dislocation density in slip system a, b is the Burgers vector and

r is a numerical coefficient of the order of 0.3 that modulates the strength of the

obstacle in slip plane a given by a pair of forest dislocations separated by a distance



1. This strength is estimated as

S= (5.12)

In order to complete the constitutive formulation, evolution equations for the obstacle

density na and dislocation density pa are provided. Evidently, n' is a function of the

dislocation densities in all remaining systems. The experimental work of Franciosi

and co-workers [89, 90, 91, 92, 93] is suggestive of a dependence of the form

na= a3 P 0 (5.13)

Experimentally determined values of the interaction matrix aa have been given by

Franciosi and Zaoui [89] for the twelve slip systems belonging to the family of { 111}

planes and (110) directions in f.c.c. crystals. They classify the interactions accord-

ing to whether the dislocations belong to the same system (interaction coefficient

ao), fail to form junctions (interaction coefficient a,), form Hirth locks (interaction

coefficient a,), co-planar junctions (interaction coefficient a,), glissile junctions (in-

teraction coefficient a2 ), or sessile Lomer-Cottrell locks (interaction coefficient a3 ),

with a0 _ a, < a2 _ a3 . Franciosi [92] has also found the interaction coefficients

to be linearly dependent on the stacking fault energy of the crystal, the degree of

anisotropy increasing with decreasing stacking fault energy.

Finally, an analytical expression for the evolution of pa with the applied slip strain

can be postulated by considering that the dislocation production is dominated by mul-

tiplication by cross glide and dislocation annihilation is proportional to the probability

of having two dislocations segments of different sign in a small neighborhood of each

other. The resulting expression is given by

pa = Psat 1- 1  sPo° e / at  (5.14)
Psat)I

where Psat and ysat are the saturation dislocation density and saturation shear slip,

which are determined by the multiplication and annihilation rates.

In this model, the only two differences with Dao et al.'s constitutive model have



been in the definitions of the diagonal hardening coefficients h" in Equation (5.10),

and of the shear deformation rate law % in Equation (5.8). In Dao et al.'s model, a

hardening power law is adopted [29]:

h"'(ya) = L/a 1 + 7 ca (5.15)
Toa

where v~a and Toa are respectively the strain hardening exponent and the critical re-

solved shear stress for slip system a, ya is the accumulated sum of slips, and the shear

deformation rate on slip system a is given by the following power-law form:

ýo (Z!!) 7 if Ta > 0,S= g0 ,(5.16)
0, otherwise.

The preceding framework for single crystal plasticity is modified for the purpose of

describing the influence of twins present in the lattice. The modifications are based on

the two-dimensional model of Dao et al. [29] who proposed to consider the slip planes

parallel to the twin boundaries as soft shear planes without barriers for dislocation

motion, whereas the remaining slip planes piercing the twin boundaries have a harder

response reflecting the fact that dislocation gliding in those planes will encounter the

barriers provided by the twin boundaries, and consequently giving to the material a

preferred shearing direction [29]. This model follows a homogenized approach based

on twin density, which avoids the consideration of individual twins. The resolved

shear stress, the hardening exponent and the rate sensitivity for the hard modes are

accordingly modified as a function of twin spacing [29].

In the two-dimensional model, only three systems are considered, see Figure 5-4,

in which the planes are perpendicular to the two dimensions considered whereas the

slip directions are constrained to be in the plane. In the three-dimensional model

proposed here, these restrictions are eliminated and all twelve slip systems in the

f.c.c. lattice are considered. Among the four f.c.c. slip planes, each one with three

possible slip directions, one of the planes is chosen as the twin plane whose three slip

directions are taken as the soft modes and, on the three remaining planes piercing



the twin plane, a hard slip mode is assigned to all three slip directions.

b

Figure 5-4: Dao et al.'s 2D model of twinned polycrystal; the twinned slip system is
considered as the soft shear mode and the two others are labeled as hard shear mode
[29]

In our calculations of the tensile response of ultrafine crystalline copper with

different twin densities, we adopt the soft and hard mode parameter values from the

same reference [29]. The critical resolved shear stress for the soft mode is taken as

gos ft = 67MPa (5.17)

which is an estimate for polycrystalline Cu with grain size dgrain '- 500nm and effective

yield stress of 200MPa.

For a given twin spacing dtwin, the hard mode critical resolved shear stress is

assumed to follow a Hall-Petch relation:

hard ( dth 1/2 (5.18)

g0  = 9th th (5.18)\dtwin

where dth and 9th are the minimum twin spacing under which no pile up occurs and

its corresponding shear strength, respectively. The values of both parameters are:

gth = 1GPa (5.19)

dth = 13nm

Hardening is suppressed in the hard modes by setting haf = 0 in Equation (5.10)

1



reflecting the negligible strain hardening of nanocrystalline materials.

Finally, the rate sensitivity for all modes is taken as a volume weighted average of

the crystal interior sensitivity mXTL and the "twin boundary affected zone" (TBAZ)

sensitivity mTBAZ:

ma = (1 - fTBAZ)mnXTL + fTBAZmTnTBAZ, Va (5.20)

where fTBAZ is the volume fraction of the TBAZ, defined as the region around the

twin boundary of thickness equal to 7-10 lattice spacings. Following [29], we take

mXTL = 0.005 and mTBAZ = 0.085.

The full set of constants of the model crystal plasticity for copper is given in Table

5.1:

Table 5.1: Model parameters for Cu

C01 (GPa) 168.4
C12 (GPa) 121.4
C44 (GPa) 75.4

~'o (s-1') 100
r 0.3

b (m) 2.56 x 10- 10

Po (mn- 2) 1010
Psat (m- 2 ) 1013
1'sat (m- 2) 0.001

ao 8 x10-

a, 40 x 10- 4

a2  80 x 10-

a3  120 x 10-4
gsoft (MPa) 67

hSoft cf. Equation (5.10)
0hhard0

h 0

dtwin (nm) 100 35 15
gard (MPa) 360.56 609.45 930.95

m 0.011 0.022 0.043



5.2 Fracture initiation criterion

Intuitively, most of the shear strain is expected to be concentrated along the twin

boundary boundaries systems, indicating that failure mechanisms should a priori

primarily arise there. Accordingly, the fracture criterion adopted consists of a maxi-

mum of slip per unit length max along the twin systems, see Figure 5-5. For a given

twin spacing dtwin, the maximum allowed shear strain in the twin systems before the

initiation of failure is consequently defined by

7max = n6max (5.21)

where n = 1/dtwin is the number of twin boundary per unit length. It should be

emphasized that because this criterion is based on a fracture initiation, as opposed to

the observed material failure, a delay between the two events can be expected; short

for the cases with low ductility and longer for the ones with higher ductility.

Unit Length Unit Length

C

C-
D

ax

ax

fx fmax

Figure 5-5: Fracture criterion for twinned polycrystal adopted from [29]; each
twin boundary allows a maximum of 6max of slip, leading to a maximum shear of
7"max = n6 max where n is the number of twin boundaries per unit length

In [29], the model was calibrated against the experimental results of Lu et al.

[26], Figure 5-3. The fracture criterion was chosen such that both experimental and

simulation fracture strains for dtwin = 100nm would coincide. This was accomplished

by taking ymax = 100% for dtwin = 15nm, which corresponds to 6max = 15nm [29].

Figure 5-6 shows the stress-strain curves of their two-dimensional simulations for



dtwin = 100nm, 35nm and 15nm, and for the different strain rates 6 x 10-3S - 1 ,

6 x 10-2s - 1 and 6 x 10-'s - 1. The failure initiation according to the calibrated fracture

criterion is represented by the symbol "X".
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Figure 5-6: Simulated
15nm and strain rates
indicates the initiation

stress-strain curves from [29] for dtwin = 100nm, 35nm and
6 x 10-•s - 1, 6 x 10-2s - 1 and 6 x 10-'s- 1; the symbol "X"
of failure according to the adopted fracture criterion

The comparison between Figure 5-3 and Figure 5-6 confirms that the chosen mod-

eling approach captures adequately the deformation and failure mechanisms in nano-

twinned ultrafine crystals.

5.3 Numerical simulations

In this section, the model of ultrafine crystals with embedded nano-twins presented

above is used to investigate the three-dimensional aspects of the dependence of the

stress-strain response and ductility of ultrafine copper on twin density. In the follow-

ing, we provide a description of the simulation setup followed by the corresponding

results.

0.00



5.3.1 Simulation setup

Two different model microstructures are used. The first one is based on an extruded

two-dimensional Voronoi diagram representing a columnar polycrystalline sample of

16 grains. This configuration is used for comparison with the two-dimensional model

in [29]. The corresponding mesh is composed of 7,451 tetrahedra and 788 interface

elements and is used as a three-dimensional counterpart for the two-dimensional simu-

lations in [29], see Figure 5-7(a). The second model is created following the approach

already described in Chapters 3 and 4. It consists of a finite element mesh of a

6x6x6 idealized cube-shaped polycrystalline sample. The geometry of each grain cor-

responds to a tetrakaidecahedron discretized with 192 tetrahedra. The polycrystalline

sample is composed of 559 grains for a total of 82,944 tetrahedra and 15,120 interface

elements, see Figure 5-7(b). In both cases, the three-dimensional crystallographic

nano-twin model previously described is used with a random crystal orientation for

each grain and with the (111) plane taken as the twin plane.

(a) Columnar 3D mesh (b) Full 3D mesh

Figure 5-7: Model meshes used for the simulations of nano-twinned ultrafine poly-
crystals; the dark shadows denote the grain boundaries

For both meshes, displacement-controlled tensile test conditions are simulated by

constraining the mesh nodes at the bottom face of the specimen, whereas specified

displacements are applied to the nodes on the top face. For the columnar mesh, plane
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strain conditions are imposed by also constraining the motion on the two lateral faces

in the direction perpendicular to the direction of loading. The experimental results

corresponding to a deformation rate e = 6 x 10-4s-1 is used for comparison with the

numerical results, see Figure 5-3.

The simulations are conducted on a parallel computer on up to 200 processors.

5.3.2 Plane strain simulations

In order to compare with the plane strain model in [29], we have conducted simulations

that attempt to approximate these conditions by using a columnar-grain polycrys-

talline structure, see Figure 5-7(a). Even though the experimental samples obtained

by Shen, Lu et al. [28] consist of equiaxed grains, the two-dimensional modeling

assumption can be justified as a first approximation based on TEM analyses show-

ing that twin boundaries are predominantly aligned with the growth direction, i.e.,

perpendicular to the thin sheet surface. This simplifying assumption is subsequently

eliminated in our full three-dimension simulations.

Tensile load simulations are conducted for three different twin densities corre-

sponding to twin spacings dtwin = 100nm, 35nm and 15nm. The model parameters

are taken from Table 5.1. In addition, the critical value of 6 max used as a criterion for

fracture initiation is calibrated to the experiments so that the strain-to-fracture in

the experiments and simulations coincide. The calibration is done taking as a basis

the sample with the largest twin spacing, using 6max = 27.5nm. Subsequently, this

parameter is kept fixed.

Figure 5-8 compares the stress-strain curves obtained in the simulations with the

experimental results from [27, 28, 29] for the twin spacings dtwin = 100nm, 35nm and

15nm. The simulations were stopped as soon as the fracture criterion was met in one

of the twin slip systems.

It can be seen in this comparison that a general good agreement is obtained. In all

three cases, the stress level reached by the simulations is comparable with the experi-

mental results. Because of the very low ductility observed in the dtwin = 100nm case,

it is reasonable to assume that fracture initiation and failure occur almost simulta-
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Figure 5-8: Lu et al.'s experimental tensile tests for different twin spacings
dtwin = 100nm, 35nm and 15nm [27, 28, 29] and the corresponding plane strain sim-
ulations. The simulations are stopped when the fracture initiation criterion is met

102

Experiment - d=100nm (Lu 2006)
Experiment - d=35nm (Lu 2005)
Experiment - d=15nm (Lu 2005)

--- Plane Strain Simulation - d=10Onm
- - Plane Strain Simulation - d=35nm

- - - Plane Strain Simulation - d=15nm



neously, which justifies fitting the fracture initiation criterion to the experimentally

observed strain-to-failure for this case.

In the cases of dtwin = 35nm and 15nm, the model predicts failure initiation

approximately 1% of strain earlier than the experimentally observed failure, which is

expected from the increased ductility. Overall, this three-dimensional columnar plane

strain model incorporating basic mechanisms of the deformation of nano-twinned

ultrafine polycrystals provides a reasonable description of the stress-strain response

observed experimentally, including the twin spacing dependence of the yield stress

and strain-to-fracture.

5.3.3 Full three-dimensional simulations

Three-dimensional simulations were conducted for the purpose of assessing the influ-

ence of the plane strain assumption. In this series of simulations, the 6x6x6 mesh

shown in Figure 5-7(b) is used with a fully random twin orientation.

The same three cases were simulated using the calibrated model with the same

fracture criterion (6mx = 27.5nm). The stress-strain curves obtained are shown and

compared with the experiments in Figure 5-9.

The stress levels reached in this configuration for each case are very similar to

the ones observed in the previous cases on Figure 5-8. The main difference comes

from the fracture initiation. In the cases dtin = 15nm and 35nm, the failure is

initiated respectively roughly 1% and 2% before the experimentally observed failure

in [27, 28, 29]. On the other hand, for the case dtwin = 15nm, the failure initiation is

predicted nearly 4% after the actual experimental failure.

5.4 Discussion

This observed discrepancy between the columnar plane strain case (Figure 5-8) and

the full three-dimensional case (Figure 5-9) indicates intrinsic differences in the corre-

sponding deformation mechanisms. Whereas, in the first case, the material deforma-

tion is constrained to occur in a plane, the extension to three dimensions allows the
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Figure 5-9: Lu et al.'s experimental tensile tests for different twin spacings
dtwin = 100nm, 35nm and 15nm [27, 28, 29] and the corresponding 3D simulations.
The simulations are stopped when the fracture initiation criterion is met
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consideration of other mechanisms such as out-of-plane slips, cross slips/hardening

and grain rotation.

For dtwin == 100nm and 35nm, the three-dimensional simulations predict fracture

initiation at earlier stages of deformation which could be due to the increased number

of nucleation sites and slip directions. In the case of dtwin = 15nm, a larger strain

is predicted before the fracture initiation criterion is reached. This can be explained

by the presence of additional kinematic mechanisms in the three-dimensional model,

including grain rotation, and by the increased strength for smaller twin spacing which

results in a reduction in the amount of slip for a given strain.

Notwithstanding the relative success of the model in capturing the basic features of

the stress-strain response of nano-twinned ultrafine crystals, it is clear from the results

presented that additional theoretical as well as experimental studies are required to

corroborate and determine the extent of the validity of the proposed deformation and

failure mechanisms. For example, an important mechanism that is not considered in

the present model is the accommodation of deformation provided by the migration

of twin boundaries, which has been shown to play an important role in some cases

[76, 77].

A first step in this direction should involve using the computational framework

presented in this thesis to conduct a number of polycrystalline configurations with

increasing number of grains and different grain configurations and crystallographic

orientations to explore the statistical nature of the failure response. This additional

work will be reported in a journal paper which is in preparation at the time of the

writing of this thesis.
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Chapter 6

Conclusion

In this thesis, continuum models of nanoscale deformation and failure mechanisms

for nanocrystalline and nano-twinned ultrafine crystalline metals subject to a wide

range of loading conditions have been presented.

One of the contributions of this thesis is a three-dimensional continuum model

aimed at investigating the effective response of nanocrystalline metals under quasi-

static and high strain-rate conditions. The phenomenological model appears to pro-

vide an adequate continuum description of experimental observations and atomistic

predictions of the yield behavior of nanocrystals. In addition, the results are consis-

tent with the hypothesis that grain boundary kinematic mechanisms of sliding and

accommodation are responsible for the softening of nanocrystals with decreasing grain

sizes. In particular, the model reproduces the reverse Hall-Petch effect in agreement

with atomistic [14] and experimental results [40]. Finally, the fit of both high strain-

rate and quasi-static response with a single set of model parameters suggests that the

significant discrepancy between the experimentally observed strength of nanocrys-

talline copper and the corresponding atomistic predictions may be partially due to

loading-rate effects.

In addition, the continuum model was extended to investigate the shock response

of nanocrystals. The required extension included an EOS to describe the volumetric

response of the grain interiors under shock loading, a shock-capturing scheme and

a rate dependent plasticity model to describe the deviatoric response. Furthermore,
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grain boundary frictional mechanisms limiting sliding under strong state of compres-

sion were incorporated into the grain boundary model using a Mohr-Coulomb law. A

set of parameters was found fitting the key features of the shock response obtained

with atomistic models, i.e. shock speed, pressure behind the shock and the overall

characteristics of the deviatoric response including the peak and tail of the Von Mises

stress profile. The influence of grain boundary frictional mechanisms under shock

loading conditions was also studied and compared to atomistic results. It was con-

cluded that more accurate descriptions may require an improved EOS for the grain

interior, and that it is necessary to add friction in the model to avoid unphysical

oscillations.

A three-dimensional model of ultrafine crystals with embedded growth nano-twins

was developed taking as a basis the two-dimensional model proposed by Dao et al.

[29]. The approach is based on a crystal plasticity model for the grain bulk, modified

to account for the presence of twin boundaries acting as dislocation barriers. In ad-

dition, a failure initiation criterion consisting of a limiting value of slip on the twin

planes was implemented and calibrated against experimental results [29, 27]. The

consideration of out-of-plane slip, cross slip/hardening and grain rotation enabled

the investigation of three-dimensional aspects of the dependence of the stress-strain

response of ultrafine copper with twin density. The results showed an increase of duc-

tility and strength with decreasing twin spacing, in agreement with two-dimensional

simulations and experimental results, but exhibited a larger increase of strain-to-

fracture initiation for the smallest twin spacings. This suggests that additional mech-

anisms are available in three dimensions to accommodate the deformation, resulting

in a postponed failure. These results suggest that an improved ductility could be

obtained if the orientation of the twin boundaries in the grains can be distributed in

a fully random three-dimensional manner.

As a conclusion to this thesis, the continuum approach provides a plausible mod-

eling paradigm for describing the unique mechanisms of deformation and failure in

nanocrystals as well as in nano-twinned ultrafine crystals.
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Future work

The work presented in this thesis has focused on the formulation and development

of a computational framework for the continuum description of deformation and fail-

ure mechanisms in nanocrystalline metals. The framework was used to describe a

number of unique aspects pertaining to the mechanical response of these materials

and emphasis was given to the verification and validation of the model results against

atomistic descriptions and experimental characterizations. However, it is clear that

the models presented are by no means comprehensive and require further investiga-

tion. This includes the consideration of aspects of the response that have not been

taken into account in this work, as well as extensions to describe additional processes

that are emerging as important from experimental observations. Among a possible

list of suggestions for future work, the following can be identified.

The model presented in Chapter 2 and used in Chapter 3 for the analysis of the

grain size dependence of the strength of nanocrystal is focused exclusively on the

aptitude of the model to capture the reverse Hall-Petch effect. By introducing in the

grain bulk either conventional crystal plasticity and modifying the critical resolved

shear stress as a function of the grain size [31, 32, 36], or using strain-gradient plas-

ticity [94] as a way of capturing the scale effect associated to intragrain plasticity

in nanocrystalline metals, the competition between grain bulk plasticity and grain

boundary deformation mechanisms could be fully represented. This extension would

lead to a full three-dimensional characterization of the transition from direct to in-

verse Hall-Petch effect within the continuum framework. In addition, consideration

of temperature in addition to rate dependence would allow a more complete differ-

entiation of atomistic simulations between Molecular Statics at OK and Molecular

Dynamics at finite temperature.

The extension of this model in Chapter 4 to investigate the shock response of

nanocrystals exhibited a discrepancy between the simulated shock speed of propaga-

tion in our model and the one predicted by Molecular Dynamics. It was shown that

the parameters of the Mie-Griineisen/Hugoniot EOS could be adjusted to obtain the
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shock speed or the pressure, but not both. This suggests that a more accurate de-

scription may require the consideration of higher order terms in the expansion of the

pressure. The Von Mises stress profile of MD calculations also exhibited a very rapid

relaxation behind the front shock thus suggesting an unusually high rate dependence.

In the continuum model, it was found that even adopting an extremely high rate

dependence by choosing very low values of the rate dependence exponent was not

sufficient to obtain such rapid decay in the Von Mises stress. In that respect also,

further studies are needed to asses the real origin of this discrepancy, either originat-

ing in the rate dependence law adopted in the model or due to some limitation of the

interatomic potential used in the MD simulations.

Finally, a limited number of simulations were conducted to analyze the ability of

the model to describe the macroscopic response of nano-twinned ultrafine crystals,

Chapter 5. The simulations consisted of two different grain topologies with 16 and 559

grains, respectively, and a single initial random texture. Future work should involve

using the computational framework presented in this thesis to conduct a number of

polycrystalline configurations with increasing number of grains and different grain

configurations and crystallographic orientations to explore the statistical nature of

the failure response. This additional work will be reported in a journal paper which

is in preparation at the time of the writing of this thesis.
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Appendix A

Entropy considerations in the

propagation of shocks in

nanocrystals

In this Appendix, an analysis aiming at evaluating the entropy contribution to the

deformation under the shock conditions previously described will be conducted. Due

to its empirical nature, the EOS adopted for describing the volumetric response of the

nanocrystals in Chapter 4 intrinsically accounts for entropy contributions to the pres-

sure. However, neither the deviatoric plastic response of the grains law nor the grain

boundary constitutive law explicitly account for such contribution. It is therefore

important to quantify the influence of the entropy on the deformation mechanisms.

We prove here that this influence is negligible which justifies its omission in the con-

stitutive law.

A.1 Constitutive law

The shock conditions of interest correspond to a shock pressure of the order of 50GPa

and a piston velocity of 1000m/s. In order to evaluate the contribution of entropy

to the overall deformation under such conditions, we closely follow the analysis by

Clifton [69], see also [95, 96, 97, 98, 99, 100, 101, 70].
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To this end, we expand the internal energy per unit mass to third-order terms in

the elastic strain tensor Ee and the specific entropy S:

U=ao+aJ1 + a2J2 + a3 J2 +a4 1 a5J1 J 2 +a 6 J 3

+ bjJ 1S + b2J12S + b3 J2S + b4J1 S2  (A.1)

+ djS + d2S2 + d3S3

where J1, J2 and J3 are the three strain invariants:

Jg =e + e + Ee

J2= e e + C +e E (A.2)€2 3 2 ((1 1 E1 2

A e Ee Ce

and where a,, a2 , a3 , a4 , a5 , a6 , bi, b2, b3 , di, d2 and d3 are ten material constants

corresponding to the series expansion coefficients, and Eý is the elastic strain in the

principal direction i. The first component of the First Piola-Kirchhoff stress tensor

P11 follows from (A.1):

P11 = poA2Aj {al + 2a2(, + e + ,e) + a3 (g + e) + 3a4 e + e + )2P 1  2

+ as[(e5 + e + eg )(e + e) + (ee + e•e + ee)] (A.3)

+ a6gg + bjS + 2b2 S(Ce + e + e) + b3S(E + Ee) + b4S2

where Ap = 1 + e4 is the plastic stretch in the principal direction i.

Differentiation of this equation and its reordering in terms of the axial stretch

rates Aj leads to:

1 P
t o= 2 P -1 ± + A2 - RS (A.4)

o 112 poc
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where

1
c = 2 [2(a 2 + b2S) + 6a 4(c7 + 2c|) + 4a 5sc]

[ 2A1  2a2 +a 3 ] Po
Ks =Po C 1 1 2p)a- (aP)2 [2a 2(C' + 2c') + 2a 3C + blS]

O 2(A.5)

S [6a 4( e + 24) + a5(2c' + 5e) + a6• + (2b2 + b3)S]
(R ) ,e e

1
R =--" [b1 + 2b2 (e + 2EO) + 2b3( + 2b4S]

At this stage, Clifton considered infinitesimal strain to simplify the weighing of the

different terms of this equation [69]. In our analysis, we will not make this assumption

as the axial strains for a pressure of - 50GPa can be significant.

The estimation of each of the terms of Equations (A.4) and (A.5) is done in two

steps. The first step consists of estimating each one of a,, a2 , a3 , a4, a5, a6, bi,

b2, b3 , d1 , d2 and d3 following the method used by Clifton or by analogy with the

corresponding values in aluminum when no specific values could be found for copper.

The second step, on the other hand, consists of estimating the remaining unknowns

in Equations (A.4) and (A.5) by taking them-or calculate them-directly from the

simulations presented in Chapter 4.

A.2 Evaluation of the material constants

These 12 material constants are typically obtained from ultrasonic velocity measure-

ments. Because of the difficulty to find the values of all 12 coefficients for copper

in the literature, a comparison with the crystallographic second-order cubic elastic

constants C11, 012, C44 as well as with Brugger's third-order elastic constants C111,

C112, 0123, C144, C166, and C456 will be done [102], followed by the derivation of the

"as" from these values. The remaining constants will be then calculated following

Clifton's method [69].

Such evaluation assumes a cubic crystallographic orientation whereas the previous

equations ((A.1) to (A.5)) did assume an isotropic configuration. Nevertheless, as
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the purpose of this part is to evaluate the relative contribution of the entropy in

the general constitutive laws and not to calculate precisely the different terms, the

following analysis should stay valid under the purpose of this section.

Using the crystallographic elastic constants, we can write the elastic strain energy

density D as [103, 104]:

= (e12 e 2 2
12 1 +622 + 333)

±C12 (c•122 + 6'22C33 ± e33,11)

±044 (22 + 1e2 ± ~e2 + e 2 + Ce 2 + g 2)
+C44 (12 21

2  
2 3

2  
2
2  

1
2  

3

+ • (1 1 + 4• -33)

112 e e2e

+ (<11 2(2 3) + 2(2 1 33) 3 2 + 61))

+C1231 2 3

+C456 12 2 (C'3 32)(6'3 + 1
f e2) e 22 + g2 e 2+(e622

+C144 [ 1 (32 32 •22(31 13 33,12 12)]

±+166 [( + •2)(6,± + 4) + (,e 2 2 6)(E• ± E•) + (6,e2 2)(,e + e1)]
+C16 R1 [ +(2 1e2l 1 22 23+C32 ((22 33 3 +12 '32 33 11

(A.6)

Using Equation (A.2) and assuming that "1", "2" and "3" are the principal direc-

tions of deformation with "1" as the shock direction, this equation can be rewritten

as:

2(1
1 2 )

+ - C44 J1

+ (012 - C11 - 2C 44 ) J 2

(A.7)

1
+ I0C144

2
C 166  J1 J22

+ 0 166 - 11Ci1) J

+ Ci + 1 Cl12
(_2 2

1 3 9 9
-C0111 - -0112 + C123 - -0 144 + -C166 J3(2 2 2 2
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This expression corresponds to the first line of Equation (A.1) multiplied by the

density Po (U is per unit mass, 4), per unit volume). Using the values of the copper

crystallographic elastic constants from Overton and Gaffney for the second-order

[105], and from Hiki and Granato for the third-order [106], we can identify term by

term the two expressions and obtain:

a = 0

a 1  100
a2 =Cl+C44 = 17.81 x 106PaPo

a C 11+2C44-C 12  = -30.49 x 106Pa (A.8)a3 -- 0-Po

C166 +' 11 106
a4 = C= -110.70 x 106Pa

P0

a - 11-C12+C2144-7C166 = 330.02 x 10 6Pa
a6 = 2po

a6 = =cnl--•112+C123- 144+166 - -330.47 x 10 6Pa
Po

By derivation of the pressure with respect to the temperature under uniform thermal

expansion at zero pressure, it can be shown that [69]:

2To a
bl = (3a 2 +a 3) (A.9)

where a and Cp are respectively the coefficient of thermal expansion and the specific

heat at constant pressure. For copper, those values at ambient conditions are taken

as a ; 17 x 10- 6 K - 1 and Cp, 380J.kg-1.K - 1, which leads to:

bl -611.65K (A.10)

In Clifton's work, the values of b2 and b3 could only be roughly estimated. As

aluminum and copper mechanical and thermal properties are of the same order of

magnitude and under the purpose that we are only interested in approximated values,

we will assume that these estimations can also be used for copper:

52 , -130K
b2  -130K (A.11)
b3 1350K
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Assuming that both a and Cp, stay relatively constant with respect to the temper-

ature, the derivation of the pressure under uniform thermal expansion considerations

at zero pressure and temperature, as we already did with Equation (A.9), also yields

[69]:

b4 = 2 (6a2 + 2a3)T + •oC (54a 4 +18a 5 + 2a6)a 2

2C2 OT 2CP2

± b Ta + (12b 2 + 4b3 )\2C2 &T 2C) 2Cp

(A.12)

Using previously calculated parameters with - 0.08J.kg-.K 2 from Cezair-
T Oa

liyan [107] and 2- ITO e 7 x 10- 9 K 2 from Nix and MacNair [108], we finally obtain:OT T

b4 0.816kg2 .K 2 .J 1 (A.13)

Note that we do not actually need to calculate dj, d2 and d3 in order to evaluate

the different terms of Equation (A.4).

A.3 Evaluation of the internal variables, stress and

strain tensors

As explained previously, we use here the results obtained from the simulations pre-

sented in Section 4.4. For the numerical set up adopted here, we have:

raax r-49GPa,

12 max r- 430MPa,
emax - 18%

1 P max 10.4%,

lle max 7.6%,

|JAP min 89.6%

0ax -45GPa

qmax 11%

1•621max  0.2%
2i max 5.7%

I eI max 5.9%

Finally, following Clifton [69], the maximum specific entropy Sm ax can be approx-
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-- maqx-max

imated by 8 1 o12 IPOaxax , which leads to
3 poTO

S m ax , 47J.K-'.kg-' (A.15)

A.4 Evaluation of the entropy terms in the global

equation

Using Equations (A.8), (A.9), (A.11), (A.13) and (A.14), we can now estimate each

term of Equations (A.4) and (A.5):

2
Clx10 6

"-'0x 106

1
= 12 2a2  +

L-10x 106

2b2S
"10x103

+ 6a4( 6 + 2c) +
-100x 106

4a5-l
-100x 106.

-P0 A [2 • 2a 2 + a3]

o Po [CIAP (A)3/2 J
1,00x10, 0x 106

-10x106

Po 2a2(C + 2c ) +
-. X 106x

6a4(C + 2ec) + a5(2e + 5cE) + a6 E

-.100x10 6 1-100x10 6 -. I0x10 6

+ (2b2 + b3 )S
-100x10 3 _

1
2 P

Cl 1 b xiO~1x10+ 2b2(, + 2,) +
",0.1x 10 2

+ 2b4S
01x108

2b33
~0.1 x 103

(A.16)

which, taking a time interval At = lOps, leads to:

'lOx 1021

P1 1

-I10x10 2

+ KAP1
,1 X 1021

- poclRS
'l0x 1018

(A.17)

As can be seen from the previous evaluations, the entropy terms for K and c2 are

in both cases of the order of 0.1% of the highest neighboring terms. Only in R does

it reach as much as 10% of the highest term, but then, the global contribution of

the entropy term (multiple of R) in Equation (A.17), is of the order of 1% of the

corresponding smallest other term.
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Due to the empirical origin of the Hugoniot relation (adopted here for the de-

scription of the pressure), we have seen that the entropy contribution is naturally

embedded into the equation of state. Additionally, this analysis shows that the con-

tribution of entropy should not account for a significant portion of the deformation

process, which justifies its omission in the deviatoric plastic response.
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