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Abstract

This thesis is a collection of essays on coordination and learning in dynamic cooperation
games.

Chapter One begins by establishing results which are required in order to extend the
global games approach to settings where the game structure is endogenous. In particular it
shows that the selection argument of Carlsson and van Damme (1993) holds uniformly over
appropriately controlled families of games. It also discusses selection results when the game
lacks dominance regions.

Chapter Two uses these results to investigate the impact of miscoordination fear in a
class of dynamic cooperation games with exit. More specifically, it explores the effect of
small amounts of private information on a class of dynamic cooperation games with exit.
It is shown that lack of common knowledge creates a fear of miscoordination which pushes
players away from the full-information Pareto frontier. Unlike in one-shot two-by-two games,
the global games information structure does not yield equilibrium uniqueness, however, by
making it harder to coordinate, it does reduce the range of equilibria and gives bite to the
notion of local dominance solvability. Finally, Chapter Two provides a simple criterion for
the robustness of cooperation to miscoordination fear, and shows it can yield predictions
that are qualitatively different from those obtained by focusing on Pareto efficient equilibria
under full information.

Finally Chapter Three studies how economic agents learn to cooperate when the details of
what cooperation means are ambiguous. It considers a dynamic game in which one player's
cost for the cooperative action is private information. From the perspective of the other
player, this cost is an unknown but stationary function of observable states of the world.
Initially, because of information asymmetries, full cooperation can be sustained only at the
cost of inefficient punishment. As players gain common experience, however, the uninformed
player may learn how to predict her partner's cost, thereby resolving informational asym-
metries. Once learning has occurred, players can sustain cooperation more efficiently and
reduce the partnership's sensitivity to adverse economic conditions. Nevertheless, because
inducing information revelation has an efficiency cost, it may sometimes be optimal for the
uninformed player to remain uninformed even though that limits the amount of cooperation
that can be sustained in equilibrium.
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Chapter One: Uniform selection in global games.

Abstract

This paper brings together results which are required in order to extend the global

games approach to settings where the game structure is endogenous. In particular it

shows that the selection argument of Carlsson and van Damme [2] holds uniformly over

appropriately controlled families of games. It also discusses selection results when the

game lacks dominance regions.

KEYWORDS: global games, equilibrium selection, uniform selection, endogenous games
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1 Introduction

The global games framework, first proposed in Carlsson and van Damme [2], has been widely

applied as a selection device in 2 x 2 coordination games1 . Their first result is that if players

have an information structure resulting from independent additive observational noise, then,

the set of rationalizable strategies shrinks to a unique equilibrium as the amplitude of the

noise goes to 0. Their second result is that the selected equilibrium is in fact to play the

risk-dominant strategy studied in Harsanyi and Selten [4].

While it is true that global games have been widely used in applied work, there have been

only few attempts to use the information structure of Carlsson and van Damme [2] in models

of greater complexity than one shot two actions coordination games. A notable exception

is Frankel, Morris and Pauzner [3] which proves selection results for a class supermodular

games in which the actions and the state of the world belong to the real line. Adding layers

of decision making on top of a 2 x 2 coordination problem is another tempting direction

in which to extend the results of Carlsson and van Damme [2]. The main hurdle towards

that goal is that in such models, the payoffs of the coordination game will be endogenously

determined: to use selection results in this setting, we need them to hold uniformly over the

class of possible payoffs. Up to now however, available selection results all take the payoff

structure as given; in other words, they hold pointwise while we need uniform selection. An

example makes this point clearer.

Consider the problem of a principal trying to get her two agents to cooperate. The game

has three periods: at time t = 1, the principal can invest in some capital k at a positive

increasing cost c(k). At time t = 2, the two agents observe k perfectly and then play a global

game F(O, k, or) with actions {cooperate, defect}, where 0 is the noisily observed state of the

world, a the amplitude of the noise and capital k parameterizes players' payoffs. At time
1See Morris and Shin [7] for a literature review.



t = 3, the principal gets a payoff depending on whether the agents cooperated or not. What

is the optimal capital stock k* the principal should purchase? How do k* and the principal's

payoff vary as a goes to zero?

To solve her optimization problem, the principal must form some belief about her agents'

behavior. When the state of the world is common knowledge, because of multiplicity of

equilibria, this problem is not well defined. This motivates the use of a global game informa-

tion structure. The typical global games selection results state that for a given capital stock

k, the agents will cooperate if and only if the state of the world is above some threshold

O,(k) and that as a goes to zero, O,(k) converges to the risk-dominant threshold ORD(k).

Uniqueness of equilibrium makes the principal's problem well defined. Assume there is an

optimal amount of capital k* the principal would choose if there was no noise and the agents

used the risk-dominant threshold ORD(k). Is it true that k* converges to k* as a goes to

zero? Is it true that the principal's payoff is continuous in a?

The answer to these questions is affirmative, however as the counter-example of Figure

1 shows, pointwise convergence of 0r,(k) is not sufficient for these results to hold. In this

counter-example the cooperation threshold 0,(k) converges pointwise to a constant threshold

equal to , but does not converge uniformly. In fact, there is always a capital stock such2'

that the players' cooperation threshold is 1. If agents behaved according to Figure 1, the

principal might choose a capital stock k* = 1 - s for all a > 0, but at the limit she would

choose k* = 0 since capital is costly. To show that in fact k* does converges to k*, we need

to prove uniform convergence of 0,(k) over the set of possible capital stocks as a goes to 0.

The goal of this paper is to provide uniform selection results over general families of

payoffs. The purpose being to give results that are widely applicable, Section 2 defines general

classes of payoffs over which we will prove uniform selection. Section 3, which constitutes the

core of the paper, proves the main selection results. Finally, because the usual dominance

assumption might not hold when payoffs are endogenous, Section 4 discusses selection when



there are no dominance regions.

Figure 1: A sequence of thresholds converging pointwise but not uniformly. Agents cooperate
above the threshold and defect below.

2 Choosing an appropriate payoff class.

This section introduces the class of games that we will be studying. Keeping with the

framework of Carlsson and van Damme [2], the paper focuses on two actions two players

games. However, all results presented in further sections extend to symmetric games with

two actions and a continuum of players, such as those reviewed by Morris and Shin [7]. The

extension is presented in the appendix.

We consider 2 x 2 games, with players i E {1, 2}, actions a E {C, D} and payoffs that

depend continuously on a state of nature 0 e I, where I is an interval of R. Payoffs are

denoted by

C D

wi(9
W11(0)

W12(0)

Wi(9

0

1

5 1AI1-a 1-•2



where i is the row player. Both players get signals xi = 9 + uea, where e61 and 62 are

independent random variables with support [-1, 1], and 0 is a random variable with a C'

distribution fo and convex support.

Let G(9) denote the game with perfect information at state 9 and let Fe, be the global

game with noisy information. Denote by w the payoff structure (w, w 2, W2) , Wi2)iE{1,2}.

Pure strategies are functions s : R '- {C, D}. For completeness mixed strategies will be

succinctly considered. By allowing players to privately observe independent random variables

ii uniformly distributed on [0, 1], mixed strategies can be viewed as functions s : Rx [0, 1] a

{ C, D}. To eliminate multiple representations, one imposes the constraint that for all x e R,

and (u, u') e [0,1]2, whenever u < u', then {s(x, u) = C =- s(x, u') = C}. Pure strategies

are also mixed strategies, which do not depend on the random variable u.

In order to apply global games techniques to endogenous payoff structures we need to

prove selection results holding uniformly over some family W of possible payoff functions.

Rather than dealing with the problem on a case by case basis, the goal of this paper is to

prove uniform selection results holding for general classes of payoffs. However, choosing an

appropriate reference class of payoff functions W is delicate. While well behaved classes

allow for simple proofs and fewer cases, they also limit the applicability of the results. This

section defines and motivates the fairly general reference class of payoff functions we will use.

Generality comes at some notational cost and we must first introduce a few assumptions and

definitions.

Assumption 1. For any state of the world 0, game G(9) has pure strategy equilibria. The

set of equilibria is either {(C, C)},{(D, D)} or {(C, C), (D, D)}.

This assumption rules out games of "matching pennies" and ensures that there exists a

fixed order on actions such that for all states of the world, the game G(O) is either dominance

solvable or has increasing differences in actions with respect to the aforementioned order.



Note that this is equivalent to assuming that there is a fixed order on {C, D} such that

for all 0 e I, game G(O) satisfies the single-crossing condition of Milgrom and Shannon [6]

with respect to the chosen order on {C, D}.

Assumption 2 (increasing differences in the state of the world). The game has increasing

differences in 0:

Vi G {1,2}, both a'(6) wi 2(6) - wM2 (0) and bi(0) = w'i() - wi'(6) are strictly increasing

in 0.

Assumption 3 (Dominance regions). Let w be a payoff structure satisfying Assumptions 1

and 2. There exist thresholds 9_ and 9i solutions to

W12(i) - W22(i) = 0 and w',(O%) - w',(9) = 0.

Together, Assumptions 1, 2, and 3 insure that whenever G(O) has multiple equilibria,

either (-oo, 0] is included in the risk-dominance region of (D, D) or [0, c00) is included in the

risk-dominance region of (C, C). This is the unidimensional equivalent of Carlsson and van

Damme's assumption that all states of the world should be connected to dominance regions

by a continuous path that is included in the risk-dominant region of one equilibrium. Note

that Assumption 1 implies that we must have 6. < .

Definition 1 (differences in actions). Given a payoff structure w, we define hi(0) = bt,(0) -

a (0) =v -w - 1+ 2

Whenever hL(0) > 0, then the game has strictly increasing differences in actions for

player i at 9, that is, wi1 - Wi > w 2 - w 2. Supermodularity requires that for all 0 E I,

hi(0) > 0 should hold. While Assumption 1 does imply increasing differences in actions over

some intermediate range of states, assuming full supermodularity is in fact quite restrictive.



Consider for instance the symmetric game :

CD

-y6

M/2

where payoffs are given for the row player, y < 1/2, and 0 E R. This game satisfies Assump-

tion 1 but not supermodularity. To include such games, we will not assume supermodularity

and content ourselves with the weaker Assumption 1.

Definition 2 (modulus of continuity). A function p : R+ -+ R + is a modulus of continuity

if and only if it is continuous, strictly increasing and p(O) = 0.

Let (A, I - 1A) and (B, I- 1,) be two normed vector spaces. A funtion g : A -+ B has a

modulus of continuity p if and only if

V(x, y) E A2, 9g(x) - g(Y)j • p(Ox - YIA).

We will require payoff functions to share a common modulus of continuity. We know from

the Arzelk-Ascoli theorem 2 that this is in fact a compactness assumption. It is less restrictive

than assuming that payoff functions are Lipschitz continuous with a common rate R. Because

utility functions commonly used in economics typically satisfy the Inada conditions, they are

not Lipschitz continuous; however they do admit a modulus of continuity. This is why we

deal with this greater level of generality.

Definition 3 (rates). Let g be some function from I to R. We define the upper and lower
2For a reference, see James Munkres, Topology, Prentice Hall, 2000.



rates of g at 0 by,

+ (0) = lim sup g(0') - g(0)
0 o'-•o 0 ' - 0

8-g f( 9 ') - g(9)19- ( 0 ) = lim inf 0'
890 0'-0 0'- 0

Those rates are always well defined although they might take infinite values. The lower

and upper rates of g coincide at 0 if and only if g is differentiable at 0.

Definition 4 (Reference payoff class). Consider r, K > 0, h E R, a compact set K C R and

a modulus of continuity p. We denote by Wp,I,,rN,,K the class of payoff structures w such that

1. w satisfies Assumptions 1, 2 and 3

2. Vi E {1, 2}, ai and b',, have lower rates greater than K > 0 over [2i(w) - r, 9-(w) + r]

3. Vi E {1, 2}, [_0(w), 9(w)] C K

4. payoff functions corresponding to w have a modulus of continuity p

5. Vi E {1, 2}, VO E [2. - r, O + r], hi(0) > h.

This definition may seem odd, in particular requirement 5. The class of payoffs it de-

scribes is in fact fairly general. More restrictive classes could be described in simpler ways,

but some natural applications force us to deal with that level of generality. The following

lemma gives an equivalent definition of classes Wp,K,h,r,K when h > 0.

Lemma 1 (equivalent characterization). For d > 0 and v > 0, we define the class Ap,v,K,d,K

of payoff structures w satisfying,

1. w satisfies Assumptions 1, 2 and 3

2. Vi E {1,2}, ai, and bt, have lower rates greater than n > 0 over [2i(w) - v, k(w) + v]



3. Vi e {1,2}, [_0(w), O(w)] C K

4. payoff functions corresponding to w have a modulus of continuity p

5. Vi E {1, 2}, Oi(w)- _,(w) > d.

We have Ap,V,K,d,K C p,I,h,,K with h = d,/2 and r = min{p-1 (dn/8), v}. Inversely for all

h > 0, Wp,K,,rh,K C Ap,v,.,d,K with v = r and d = p-1 (h/4).

Proof. For the first inclusion: we have by definition b () = 0 and a'() = 0. Since b and

a' both have lower rates greater than r, this implies that for all w,

VO e [92,- ], h' (0) = b~,()- a,() b,() b ~ +(a, () - ac,(() (1),~~~A Z, (0 a(O > - (1) aTO

> (O - 02) + n(ý, - 0) > dr.

Since all components of w have a modulus of continuity p, h' has a modulus of continuity

4p. This implies that whenever Ix - yj •< p-1(dr/8), then jht,(x) - h (y)] < dK/2. For any

0 E [2i - p-1(dr/8), - + p-1 (dr/8)], there exists 9 such that [ e [_,-0] and 10 - 01 < di/2.

Using inequality (1) we get that,

VO C [02 - p-'(dr/8) , - + p-1 (dn/8)], h' (0) > h,(0) -Ih,(0) - h'(O)0) > d /2

which gives us the first inclusion.

For the second inclusion: by definition, we know that b = a' (i) = 0. Since for all

payoffs w, b' and a' share a modulus of continuity 2p, then for 0 E [2i(w) - r, 9i(w) + r],

we must have h'(0) = b~,(O) - a (0) < 4p(|0,(w) - 2(w)1). Since by assumption, h (O) > h,

this implies

O _(w) - 2(w)I > p-'(h/4).

Finally, Assumption 1 implies that Oi(w) - 2 (w) > 0. This gives us the second inclusion. O



3 Uniform selection

In this section we prove the two main results of the paper:

Joint selection: There exists - > 0 such that for all a e (0, 5), and all payoff structures

w in Wp,,h,r,K, the game FP(w) has a unique rationalizable pair of strategies.

Uniform convergence: The selected equilibrium converges uniformly over Wp,K,h,r,K to the

risk-dominant equilibrium associated with each payoff profile.

The logic of the proof is the following: we first place ourselves in settings where equi-

librium multiplicity is non-trivial; we then prove that for a noise term a small enough,

Assumption 1 implies that the game FP exhibits monotone best response and has extreme

monotone Nash equilibria; finally we prove joint and uniform selection results by showing

that these extreme equilibria are characterized by two real equations whose solutions are

well behaved in the underlying payoff structure.

3.1 The regular case

Assumption 1 implies that h -6 i >_ 0. We distinguish proof techniques depending on whether

miniE{i, 2} 91 - _} > 0 or miniE{1,2}{J - •i} = 0. The first case, which we will refer to as

the regular case, features a non-trivial coordination problem under complete information.

The second case, which we refer to as the non-regular case, features no such coordination

problem. Naturally, we are mostly interested in the effect of a global games information

structure in the regular case, however when payoffs are endogenous, we may not be able to

exclude the non-regular case. This means we will need to prove uniform selection in both

cases.

We will say that an entire family of payoffs W is regular whenever there exists Ap,v,K,d,K

such that W C Ap,v,n,d,K. Lemma 1 implies that Wp,,K,h,r,K is regular if and only if h > 0.



Because selection happens for different reasons in the two cases, we will treat regular and

non-regular payoff classes separately. The reason why we have to make such a distinction

will become clearer in Section 3.3. The non-regular case is presented in the appendix.

3.2 Structural results

In this section we consider a payoff class Wp,I,h,,,K and show that there exists 5 > 0, such

that for all a E (0, 5), and all w E W4p,K,h,r,K, the set of rationalizable strategies of F,(w) is

bounded by extreme monotone Nash equilibria.

To do this, we first define a natural order on strategies denoted by 4. We then show that

for a small enough, the best response mapping is increasing with respect to 4, and preserves

the monotonicity of strategies.

Note that since we do not assume supermodularity, the results of van Zandt and Vives [8]

for Bayesian games do not apply. Also, although there is a consistent order over {C, D} such

that for all 0 E I, G(0) satisfies the single-crossing property of Milgrom and Shannon [6],

this does not imply that the Bayesian game F, satisfies the single-crossing property. This is

why we cannot apply the results of Milgrom and Shannon [6], and must limit the amplitude

a of the noise term.

Definition 5 (monotone strategies). A strategy s is said to be monotone if it is a pure

strategy, and admits a threshold x, such that,

x <x 8 =-+ s(x) = D and x > x, => s(x) = C.

A monotone strategy of threshold x will be denoted sx and inversely, the threshold of a

monotone strategy s will be denoted x,.

Definition 6 (ordered strategies). Let < denote the partial order on pure an mixed strategies



defined by

s 4 s' V(X, u) ERx [0, 1], s(x,u)= C ' s'(x, u)= C.

Given a pair of strategies (s, s') such that s - s', we denote by [s, s'] the set of all strategies

s" such that s - s" - s'.

Let BR' denote the best response mapping of player i.

Lemma 2 (rationalizable strategies). For all a > 0 and any strategy s, BRi(s) E [se,-., s++,].

Moreover, a rationalizable strategy s has to belong to niE{1,2} [SO-2a, S&+2 -].

Proof. For the first part: whenever she gets a signal x < 0 - a, player i knows that D is

dominant in all possible games G(0) given her signal. Thus it is dominant for her to play D.

Similarly, whenever x > 9i + a, it is dominant for her to play C in all possible games G(0).

For the second part: a rationalizable strategy s is a best response of i to some strategy

s__ which is itself a best response of player -i to an other strategy of i. The first part of

the lemma implies that, s E [se,-, su+,] and s_- E [so_-, s,]. Thus, whenever she gets

a signal x < __i - 2a, player i knows that player -i will play D. Because w is regular,

Assumption 1 implies player i must choose to coordinate on D. Respectively, when she gets

a signal x > 0 i + 2a-, player i knows that player -i will play C and coordinates on C. This

proves the result. O

Given her opponent's strategy s and her signal xi, player i's expected payoffs upon

cooperation an defection are

Hc(xi, s) = E [w 2 + {W 1 - w12 }11=cjx, s] (2)

HD(Xi, s) = E [wu2 + {Wl - w =2}l=cxi, s] . (3)



Define AF(xi, s) by AF(xi, s) IIC(xi, s) - HD(xi, s). Player i's best response to s is C

whenever A'(xi, s) > 0.

Theorem 1 (monotone best response). For all w E Wp,,,rk,,K and a e [0, r/2], the game

F,(w) has monotone best response. That is, for any s and s',

s' 14 s BRw(s') 4 BR'•(s).

Proof. Player i's best response is to cooperate if and only if AY (xi, s) > 0. For all x e

[_ - r/2, ij + r/2], we must have 0 e [. - r, Q + r]. This implies hi(0) > h > 0. Thus, when

s' •s , Vx E [o - r/2, i + r/2],

AF(x, s) = E[w -2  + (w 1 - 21- W 2 + W 2 ) 1=c]
=hi(O)>O

SE[•• w2  + ( 1 -M - 2 W' + W2 =)1,=cX ] ZŽ (, s').

The best response is to play C if and only if AF > 0. Thus whenever x e [_ -r/2, i +r/2],

BRi(s')(x) = C =• BRi(s)(x) = C. Finally we know from Lemma 2 that if x < i - r/2 <

9i - a, then BR'(s')(x) = BR'(s)(x) = D. Similarly if, x > -i + r/2 > 9j + a then

BRk(s')(x) = BR'(s)(x) = C. This concludes the proof, BRk(s') - BRi(s). E

Lemma 3 (monotone strategies). For all w E Wp,K,,r,K and a < r/2, whenever s is a

monotone strategy, then BR',(s) is also monotone. Moreover, the threshold associated to

BRi (s) is a continuous function of threshold x8 .

Proof. Consider the function AF(xi, s). A best response to s is characterized by the solutions

of equation AF(xi, s) = 0. Thus, it suffices to show that when s is monotone, AF is increasing

in its first argument, xi.

A_(x, s) = E[(w 2  22) x-<xs 8  (W - W >x,,s]. (4)

19



We have already defined a'(0) = wi 2 (0)- wi 2 (0) and b'(0) = w'(0) - w' (0). Denote F, the

cumulative distribution function of e and G, = 1 - F,. We can write

A (xi, s) = J0 [ai()F0 (Ex, 9 + b'((0)G, x ) f (x)d9. (5)

Since xi is the potential threshold of the best response to some other strategy, Lemma 2

implies that we can restrict our attention to xi E [a- - r/2, O4 + r/2]. This implies that the

conditional density f ( xi) in equation (5) only puts mass on 0 E [2 - r, 9i + r]. For such a

0 we know that h'(0) = bi(O) - a'(0) > h > 0. Let us show it implies that the function ¢,

defined in equation (5), is strictly increasing in 0. We have

a-0 a-a' a-bV'
o9 - +  G + (b' - a') f.

Assumption 2 insures that the first two terms are strictly positive. We just noted that

the third term is weakly positive. Finally, note that the conditional distribution f(01xi)

is increasing in xi in the sense of first order stochastic dominance. Because q is strictly

increasing in 0, this implies that AF is strictly increasing in xi. Therefore, BR~,(s) is

monotone.

For the second part of the lemma, note that equation (5) implies that AL' is continuous

in xi and x,. The continuity and strict monotonicity of Af imply that the solution xi(x 8)

to AT (xi, x) = 0 is continuous in x, 3 . l

Corollary 1 (extreme strategies). For all w e Wp,K,h,r,K and a e [0, r/2], the set of ratio-

nalizable strategies of game F,(w) is bounded by extreme monotone equilibria.

Proof. Let Ri denote the set of rationalizable strategies of player i. RP is the biggest fixed

set of BR' o BR-'. We know from Lemma 1 that BRi o BR-' is monotonically increasing
3 Note that when s is a monotone strategy of threshold x8 we use the notation AF(xi, x) A!"(xi, s).



with respect to the partial order 4. Thus we can entirely replicate the construction given

by Milgrom and Roberts [5] and Vives [9] for supermodular games.

Begin with the set of all possible strategies, that is, the interval So = [D, C], where D

and C respectively correspond to "always defect" and "always cooperate". We have,

BRk o BR-'(So) C [BR' o BR-(D), BR o BR-(C)] C So.

By iteratively applying the mapping BR' o BR-', we obtain that for all k e N, R' C

[(BRi o BR-'i)k(D), (BRk o BR-')k(C)]. The extreme strategies are monotone and their

thresholds form increasing and decreasing sequences. Monotonicity and boundedness implies

these sequences admit limits with respect to convergence in probability. By construction and

by continuity of BRk o BR-' with respect to convergence in probability, these limits are Nash

equilibria. E

Using this result, the rest of the analysis can now focus on threshold form monotone

strategies. Note that monotone strategies are pure strategies.

3.3 Selection in the regular case

In this section we prove joint selection and uniform convergence in the regular case. Consider

a class of payoffs Wp,m,h,r,K with h > 0. We want to characterize the set of rationalizable

strategies of global games F,(w) with w E W/p,K,,r,K and u small. The first step is to use

Corollary 1, which implies that when a e [0,r/2], we only need to study monotone Nash

equilibria to prove that there is a unique rationalizable equilibrium. A monotone equilibrium

is characterized by a pair of thresholds (xi, x-_) such that,

A( (xi,xi,a ) = 0, for i E {1,2}. (6)



This is in fact the main insight that this paper takes from the global games approach:

in the presence of observational noise, players' payoffs must be continuous in their signal.

This implies that at a threshold point, players must be indifferent between their two actions,

which gives us extra restrictions that equilibria must satisfy. To study equilibrium selection,

it is equivalent to study the behavior of the set of indifference equations (6). We have

A, (x,, x_,a) = 1+00 [a'(0)F( + b'(0)GE
fe ( )f(o) dO.

f00 f (xi-) fo(O)dO
(7)

Let us do the change in variable u = x. Noting that f, only puts mass on the [-1, 1]

interval, we obtain

A (xi, x _, a) = a'(xi -au)Fe -i -i
1 Or

+ bt(xi - oru)G + x+ - x'i fE(u)fo(xi - Ou) du.
f J 'I f, (u)fo(xi - au)du

The above expression has a (xi - xi)/o term which blows up as a goes to 0. In order to

have functions that have a continuous limit as a goes to 0, we define a by x_• = xi + oa

and abuse notations slightly by denoting AY(xi, a, a) - Ay(xi, x-j, a). We obtain

Xi (x, ,,o) = [a'(xi - •u)Fe(u + a)
-1

bifE-u)0Gf ( + E]••(i Ux ) du.
+ b'(xi - au)GE (u + a) 1du.

f', fe(u) fo(i - uu)du

(8)

We can now think of a monotone equilibrium as a pair (xi, a), such that A'(xj, a, a) =

Awi(xi + a, -a, a) = 0. The essence of our proof technique is to show that this equation

has a unique solution and that it is well behaved in w. To do this we need to understand

how AO varies with xi, a and a.



More precisely we show that : over a specific range for parameters (xi, a) which is convex

and includes any threshold equilibrium for a small enough, AT(xj, a, a) is strictly increasing

in xi and strictly decreasing in a with rates bounded away from 0 independently of either a

or w; as a goes to 0, AT'(x, a, a) converges uniformly over (x, a) E R2 at a rate that depends

only on Wp,,,hr,K.

Lemma 4. For any payoff structure w and any a, all monotone equilibria (xi, a) of game

FI(w) are such that a E [-2, 2].

Proof. Consider a potential equilibrium threshold xi. If player -i gets a signal x < xi - 2a or

x > xi + 2a, then she knows for sure what player i does. Because w is regular, Assumption 1

implies player -i must choose the same action. This implies that if (xi, a) is an equilibrium,

then a E [-2, 2].

Lemma 5. Given p, r, r and K, there exists D > 0 small enough such that for all h > 0,

a E (0, 5), a E [-2,2] and w E Wp,K,,,r,K

V xi 6 [E(w) - r, i(w) + r], ' (x, , a, ) > r/2 > 0.1Oxi

Proof. Define

a(x,, •u•) = a'(xi - ou)F,(u + a) + b'(x - ou)G, (u + a) (9)
XJ(x,, U) = fe(u)fo(xi - au) (10)

f l fe(u)fo(xi - au)du

Note that we know from equation (7) that AT is differentiable in xi. We have

T> 4 + I du. (11)84x f I 89xi 84x



From equation (9) and by definition of Wp,.,h,r,K, we obtain that

0-9 > 0 aw  _ ___w- > WFe w+ G- , (12)

Moreover, we have

O ff f 6f fo f', f,(u)f (xi -ou)du
2 (13)xi fl f,(u)fo(x - ou)du f 1 fe(u)fo(xi - ou)du 2 "

Note that equation (13) does not depend on the particular payoff structure w. Let us show

that as a goes to zero, - converges to 0 uniformly over K. Indeed, for any continuous

function g, f ' f,(u)g(xi - au)du converges uniformly to g(xi) over any compact set. By

assumption, the density fo is bounded away from 0 over the range [0_(w) -r, 0(w)+r]. This

implies that uniformly over [_i(w) - r, i (w) + r],

lim -1 f6 (u)f-(xi) _ fE(u)fo(xi)f(Xi) - 0. (14)
a--o 8x fo(x) fo(xi)2

Since all payoffs w have a common modulus of continuity, and because ai,(0) = bi,(20) = 0,

there exists a constant M E R such that for all w E Wp,,I,r,K and all 0 E K,

Iw(9, a, u)I < la' (0) + Ib,.(O)I < M. (15)

Equations (14) and (15) imply there exists - small enough such that whenever a E (0, ),

then 
8AWthen I _ r/2. This and equation (12) imply that over K, - > i/2.

Lemma 6. For all a < r/2, xi e [2i(w) - r/2, 9(w) + r/2] and w E W4p,K,r,K,

V a E [-2,2], °.(x', a ) < -h fi(u + a)c (, u) du < 0.



Proof. We know from equation (8) that Al is differentiable in a. We have,

S< -- Wdu.
a J1 0 a

Moreover,

0+((xia, u) = [a'(x - u) - b'(xi - uu)] fe(u + a)

= -hý,(xi - uu)f,(u + a).

By assumption, for all 0 E [2i(w) - r, i(w) + r] we have h'(0) _ h. This yields,

0-(xi, a, u) -hf(u + a). (16)

Integrating over [-1, 1], we obtain

O"(Xi, a, a)0 (a' < -h if (u + a)(xi, u)du < 0.

Oa i-i

We can now state our first selection result. It says that for all a less than some Z small

enough, selection happens jointly for all games with payoffs in Wp,,,hr,r,K. It does not discuss

how the selected equilibria behave as o goes to 0. This will be the object of Theorem 3.

Theorem 2 (joint selection). There exists - > 0 sufficiently small such that for all a E (0, U)

and w E WVP,K,h,,K,g all global games I,(w) have a unique pair of rationalizable strategies.

Proof. Take U such that Lemmas 5 and 6 hold. We know from Theorem 1 that the set of

rationalizable strategies is bound by monotone equilibria, so it suffices to show there is a

unique monotone equilibrium. Such an equilibrium is characterized by a pair (xi, a) such



that, Au (xi, a, a) = Awi (xi + au, -a, a) = 0. From Lemmas 5 and 6 we know that AY is

strictly increasing in xi and weakly decreasing in a. Thus, the first equilibrium condition

Ay"(xi, a) = 0 implicitly defines a function a(xi) that is weakly increasing in xi. Replace that

in the other equilibrium condition: xi is such that Ai(xi + a(xi)a, -a(xi), a) = 0. Define

((xi, a, w) - Aw_(xj+a(xj)a, -a(xi), a). Lemmas 5 and 6 imply that this function is strictly

increasing in xi which implies there is at most a unique value xi satisfying ((xi, a, w) = 0.

Existence results from Assumption 3. Using Corollary 1 we conclude that there is a unique

pair of rationalizable strategies. O

Lemma 7. Pick r, p and K, then there exists N > 0 such that for all r, h and w E Wp,,cr,K,

IA(x,a,a ) - A!(x,a,0)1 < Nmax{p(a),a}.

Proof. All payoff functions w in Wp,I,h,r,K share a common modulus of continuity. Moreover,

we know from equation (15) that there exists M such that for all w E WVp,1K,h,r,K, we have

lal + Ib' < M over K. Denoting by I Ioo the supremum norm, this implies that

AT(x, c, a) - AFL(x, a, 0)1 • 4p(a) + M I f loo a.

This shows there exists N > 0 independent of w such that IA!"(x, a,a)- Af (x, a, 0) <

N max{p(a), a}. O

Without loss of generality, we can always assume that p(a) > a. Indeed if a function has

a modulus of continuity p, it has a modulus of continuity 5 for all 5 greater than p.

We now want to show that the unique equilibrium thresholds selected in Theorem 2

converge towards the risk-dominance threshold uniformly over Wp,,,h,r,K. We know from

Lemma 1 that it is equivalent to consider payoff classes Ap,v,K,d,K and WVP,K,h,r,K when h > 0.

Here we switch to working with a payoff class Ap,v,x,d,K because it simplifies notations.



Lemma 8. Given, p, r and v, there exist strictly increasing continuous functions 'q, A and

r mapping R+ into R+, such that for any family of payoff structures Ap,v,K,d,K, whenever

a < T(d), any monotone equilibrium (xi, a) of P,(w) with w e Ap,v,,,d,K is such that,

1. a E [-2 + A(d), 2 - A(d)]

2. Vxi E [0i - v, ± + v], Va e [-2 + A(d), 2 - A(d)],

< -77(d)Oa

3. Denote by a(xi, w) the implicit function solving A (xi, a, a) = 0. For all xi in [0_ -

V, 9i + v], a(xi, w) is (A_) -Lipschitz in w, with respect to the norm on payoff structures

defined by, I1w - i•1i maXi,j,kE{1,2}3 II -W k T1100

Proof. A monotone equilibrium is characterized by a pair (xi, a) such that Aý'(xi, a,a) =

Ai(xi + au, -a,a) = 0. We know from Lemma 2 that whenever a < v xi E nie {1,2}i -

V, O + V]. Moreover, we must have a E [-2, 2].

Let us first show the tighter bounds on equilibrium values of a. Define x'(xi, a) =

AV(x, a, a) - Aw1(xi + au, -a, a). If (xi, a) is an equilibrium, then Xw(xi, a) = 0. At the

limit where a = 0, we have,

Xw(xi,a) = f ,(xi)Fe(u + a) + b' (xi)G,(u + a) (17)

-aw (xi)Fe(u - a) - bw (xi)G,(u - a) f6(u)du

Which yields,

x(xi, -2) = b~,(xi) - a-'(xi) > dr (18)

Xo(xi, 2) = a1,(xi) - b•'(xi) < -dr (19)



Over this range, we know there exists M dependent only on p and K such that IbMA + laiI <

M. Moreover, f, is bounded over [-1, 1]; thus we conclude from equation (17), that there

exists a constant Q > 0 such that x'(xi, a) is Q-Lipschitz in a. This and equations (18)

and (19) imply that,

X>(xi, a) > dr - Q(a + 2)

Xw(xi , a) _ -dr + Q(2 - a)

Finally, using Lemma 7, we know there exists N depending only on p and K such that

Xw(xi, a) > dr, - Q(a + 2) - Np(a) (20)

Xw(xi, a) • -dK + Q(2 - a) + Np(a) (21)

Using equations (20) and (21) and the fact that at an equilibrium (xi, a), we must have

X'(xi, a) = 0, we obtain that whenever (xi, a) is an equilibrium, then we must have

2 dr - Np(oa) 2- dr - Np(a) (22)

Q Q

From Lemma 6, we know that,

a < -h fe(u + a) T(xi, u)du

We know from equation (10) and the fact that fo is Cl, that there exists some constant,

C > 0 depending only on fe and fo such that IT(xi, u) - fe(u)I < Cu. Thus, over the range

-2+ K-Np(r) 2- _dmzp()1,

Q f(ua)f(u)du+C. (23)
ItOa -dr -1 ,u+a ,ud o.(3



Define for any A > 0,

m(A) = min f,(u + a)fh(u)du.
aE[-2+A,2-A] -1

Because f, is strictly positive over (-1, 1), m is positive and strictly increasing in A. We

now define r(d) by,

T(d) = {p-(dj/2N)} A {dn x m(di/2Q)/2C}.

For all a < r(d), we obtain that equilibrium values of a are such that,

a E [-2 + di/2Q, 2 - d,/2Q] - [-2 + A(d), 2 - A(d)].

And over that range,

9AT (Xi, a, a)
Sa < -ds x m(d,/2Q)/2 - -q(d). (24)

Oa

Finally, given a and xi and o, the function Aý'(xi, a, a) is 4-Lipschitz in w. This and equation

(24) yield that a(xi, w, a) is (• )-Lipschitz in w. O

We can now state the main result of the paper.

Theorem 3 (uniform convergence). Consider a class of payoffs Ap,L,K,d,K. We know from

Theorem 2 that for a e (0, U), all games F1,(w) have a unique pair of rationalizable strate-

gies, with thresholds (xi(w, a), xi(w,a)). As a goes to 0, the equilibrium threshold xi(w, a)

converges uniformly over Ap,v,a,d,K to the risk-dominant threshold. More precisely, for any

a E (0, ),
)2 o[Np(a)) Np(o-)1|xi(w, a) - xi(w, 0)| < 2 4p + 2MUlfE1 oo (25)- K 71(d) 77 (d) I



where we use the constant N and the functions p and 7 defined in Lemmas 7 and 8.

Note that if we had not restricted ourselves to the regular case, inequality (25) would not

be defined since in a non-regular case d = 0.

Proof. First, from Lemmas 7 and 8, we know that IAY(x,a,a) - Ab(x,a,0)1 <Np(a) and

that 9< -7(d). This implies that the solution c(x, a) to Ay(x, a, a) = 0 must satisfy

Np(a)
Ia(xi, w, a) - c(xi, w ,0)1 < Np(_ )

Recalling the definition, ((x,w,a) - Ai(x + cZ(x,w,a)a,- ci(x,w,a),a), and using the

majoration of inequality (15), we obtain after simple manipulations,

(aN p(a) N p(a)

I((xij, w, a) - ((x , w, 0)1 _ 4p o () + 2MI fell Np()
k. r7(d) 77r(d)

From Lemma 5 we know that 0• > K/2. This yieldsax

2 F (Np(a)" Np(a)1
Ixi(w,a)- xi(w,0)j • - 4p + 2MI|l foo

K 7 7r(d) ,(d)

Theorem 3 implies that in the example given in the introduction, the principal's optimal

level of capital stock for a positive does converge to the optimal capital stock in the risk-

dominant equilibrium, as long as the family of payoffs indexed by k belongs to some regular

class Ap,v,,,d,K.

The next two theorems deal with the continuity of the selected equilibrium with respect

to the payoff structure. These continuity results are useful in applications, for instance to

ensure the existence of maxima. Theorem 5, can be used to apply global games selection

recursively and thus combine the Abreu, Pearce and Stachetti (1990) stationary approach



to dynamic games and a global games information structure.

Theorem 4 (continuous selection). Consider a class of payoff structures Ap,V,.,d,K, the func-

tions 77(d), A(d) and T(d) defined in Lemma 8 and the joint selection threshold U of Theorem

2. Then, for ao E (U Ar (d)), the selected equilibrium threshold xi (w, a) is a continuous func-

tion of the payoff structure w. More strongly, xi has a modulus of continuity in w defined

by the inequality

xi(w,' ) - xi(@, a)_ [(4 + 2M fý,|11d. w -_1 + 4p (4uw- 15'()(26)

where " 11 denotes the sup. norm, and 11w - wfl - maxi,j,ke{1,2}3 IIwk - w17kIOO.

Proof. Af(xi, a, ) is continuous in w. In fact it is 4-Lipschitz in w. This and Lemma 8

imply that the implicit function a(xi, w) is strictly increasing in xi and (--!)-Lipschitz in

w. Thus the function (: x F- Aw_•(xi + a(xi)a, -a(xi), a) is continuous in the payoffs and

strictly increasing in xi. This implies that the solution to A!O(xi + a(xi)a, -a(xi), a) = 0 is

a continuous function of the payoffs.

To get the announced modulus of continuity, note that from Lemma 5 we know that the

function ((xi, u, w) = Aw_(xi + a(xi)a, -a(xi), a) has a lower rate in xi greater than r/2.

Moreover, because a(xi, w) is ( 4)-Lipschitz in w, we have

i( ( 4c|u|w -' w
I|(xi, w) - ((xi, w)| 1 4 + 2MIIfeI|• |)1w - wl1 + 4p

77(d) ) 1 11+4 (d)

This implies that the implicit function xi(w) solution to ((xi, w) = 0 has the modulus of

continuity defined by inequality (26). O

So far we considered general payoff classes. In applications, however, it is frequent for

payoff classes to be parameterized by some finite vector of real numbers. The following

theorem describes how the selected equilibrium varies as a function of such a parameter.



Theorem 5 (parametrized payoffs). Consider a family of payoffs Wk E Ap,v,N,d,K parametrized

by k E R and such that there exists H E R satisfying

O+a' a+bi
Vi E {1,2}, -9 < H and k < H

8-ai a-bi
890 890

Then, there exists U > 0 such that for all a < F, the unique equilibrium (xi(k, a), x_(k,a))

of F],(Wk) is 2H-Lipschitz in k.

Proof. An equilibrium (Xk, ak) is a solution to the pair of equations, Aý (xk, ak, a, k) =

A-i(Xk + aka, - Ok, U, k) = 0. Assume temporarily that the functions involved are infinitely

differentiable in all arguments. Denote a(k, x) the solution to Aý(x, a, a, k) = 0. Differenti-

ate this equation.

jdA = ([ Fe + k GE dk + [ Fe + G dx +[a' - b']fe da '(ulx)du

+ (aiF 6 + biGE) (ux)du dx = 0 (27)

We showed in Lemma 5 that o*,(UjX) converged uniformly to 0 over K as a goes to 0.Ox

Moreover, ooFe + bGo > a > 0, thus for a small enough,

/1 8F,(ujx). 1 l[a'F Ob'(a'F, +bGE) du<- & + G. T)(ulx)du

19X 8 2 1 0 80

Using equation (27) and the fact that if a, b, c, d > 0 are such that a/c < m and b/d < m

then a < m, we obtain, by considering the integral as a limit of sums, that

aL r Fa' + ob, G. x,(ujx)du
< 2 obG1 < 2H. (28)

f L F, + -GE (ulX)du



Similarly, we know that Xk is the unique solution of (k(x) = 0. Differentiate that equation,

f[ Oa- Oa-' Oc\ (Ob-1 Ob-i OBa 1
d(= - + 0 9a--•-i-) F,+ + -+ G. J,(ulx)dudkJ-,I(ak 190 Ak ) 8 ck ) Ik
+ (Oa- i F OIb-] 89,(ux))dud

+ aa-' (1 + . ~e-) F, +b- (1+ aa)G, x,(ulx) + (a-%Fe + b-'G,) du dx = 0

-a- X-•( + a o )F + -- ua-x a) dud = 0

09 Ox x=

Using the above equation, it is possible to express 9 as a ratio involving Oa-` ,ob- and 2

By exploiting this expression of x inequality (28) and the fact that > 0, it results from

simple but tedious algebra, which we skip, that,

- < 2H. (29)
Ok -

Finally, since the Lipschitz rate of x with respect to k is independent of the smoothness of

the equilibrium equations, we can use the fact that smooth functions are dense to conclude

that the 2H-Lipschitz continuity of x holds at the limit, even when none of the involved

functions are differentiable. O

Extending the result to a multidimensional k poses no difficulty. One can simply use

Theorem 5 iteratively along each dimension.

4 Games without dominance regions

The view of global games fostered in this paper is that observational noise imposes that in

equilibrium, players' payoffs should be continuous in the state of the world. More precisely,

if x* is such that player i switches from playing D to playing C around x*, then at x*

player i must be indifferent between playing C and D. This gives additional indifference

conditions that an equilibrium with switching must satisfy. This obviously restricts the set

of equilibria with switching compared with the full information case. We have shown that



these additional restrictions can be used to prove uniqueness.

From this perspective, the role of dominance regions is simply to insure that any equilib-

rium must have a switch point. Thus, it should be possible to get selection results over the

class of equilibria that admit at least one switch point even when the global game does not

admit dominance regions. This is what we show next. It is a useful result for endogenous

global games when the existence of dominance regions cannot be assumed.

Definition 7. Consider a payoff structure w satisfying Assumptions 1 and 2, but not neces-

sarily Assumption 3. We say that w admits a finite risk-dominance threshold whenever both

(C, C) and (D, D) have non-empty risk-dominant regions.

Theorem 6 (selection in games without dominance regions). Consider a payoff structure w

satisfying Assumptions 1, 2, without dominance regions, but such that there is a finite risk-

dominant threshold. Then, there exists 5 > 0 such that for all u E (0, a), the global game

P, admits only three Nash equilibria: cooperating always, defecting always and a monotone

equilibrium with switching from defection to cooperation at a threshold converging to the

risk-dominance threshold as o goes to 0.

Proof. Always defecting and always cooperating are clearly equilibria. Now for the third

equilibrium, consider once again the function AV(x,s_j), which we will denote AV(x, x_)

whenever strategy s-i is monotone with threshold x-z. We know that for a small enough,

Af(x, y) is strictly increasing in x and strictly decreasing in y. Denoting xi(x) the solution

of equation AV(x,x_-) = 0, we also showed in the proof of Theorem 2 that, (_(x) --

A_ (x_j(x), x) is strictly increasing in x. Because there is a finite risk-dominant threshold,

we know that for o small enough there is a solution to equation A-i (x-i(x), x) = 0. Thus,

we do have at least one monotone equilibrium with switching, which we know must converge

to the risk-dominant equilibrium as a goes to 0. Let us show it is the only equilibrium with

switching.



Denote (x*, xz*) the thresholds of the monotone equilibrium defined above. Consider

a potential equilibrium (si, s-i) involving switching. Denote xi and Y the infimum and

supremum of switch points of player i when she uses strategy si. We will show that x =

= = X!•

Since player i must be indifferent on either side of a switch point, we must have A'(xi, s-i)

0. Since there are no dominance regions, Assumption 1 implies that hi is positive over the

entire state space I. Noting that s_- - sx_, we infer from Theorem 1 that A!(x,x -) >

AF(xj, s-i) = 0. Since AL(xi, x-j) is decreasing in x-i, this implies that x_ý x •(x). Since

A' (x-j, xi) is increasing in its first argument we obtain,

Which implies that xi > x! since (i- is increasing.

Similarly we can prove that T • x!. These two inequalities imply j = = x. O

5 Conclusion

The approach of global games taken in this paper stresses the fact that when players observe

noisy signals, their payoffs should be continuous in their signals. This gives additional

constraints on equilibria which can be exploited to prove uniform selection results over fairly

general classes of payoffs. This view of global games also permits to describe the set of Nash

equilibria when the game lacks dominance regions.

These uniform selection results are handy tools for applied economists wishing to use the

global games approach to study more intricate game structures. For instance, in the agency

problem presented in the introduction, we can now conclude that the limit of the principal's

behavior is indeed the best response to the limit of the agents' behavior.



Finally, because these uniform selection results hold over general classes of payoffs, they

also allow to apply global games selection recursively and may prove useful to extend the

use of such an information structure to dynamic games.

Appendix A: uniform selection in the non-regular case

The regular case is the case for which selection is a relevant question under full information.

Indeed, under full information, the non-regular case is dominance solvable. However, one

might worry that private information induces unexpected behavior. In order to have a

framework that imposes the least number of constraints on the payoff structure, we prove

uniform selection results that hold in the non-regular case as well.

Theorem 7 (uniform convergence). Consider some class of payoffs WV = Wp,,,,r,K with

h = 0. Then as o goes to 0, the set or rationalizable strategies of F,(w) converges uniformly

over W to the risk-dominant equilibrium.

Proof. We first note that W = Ud>o AP,VN,d,K U (W \ Ud>o Ap,v,,,d,K). We know that if w E

(W\Ud>o Ap,v,K,d,K), then, w is non-regular and any selection problem is spurious because the

players' zones of non-dominance do not overlap. Let xo be the unique equilibrium threshold

under common knowledge. Any rationalizable strategy of FP(w) belongs to [Sxo-2a, sx0+2a• -

Now let us consider w E Ud>o Ap,v,,d,K. From Lemma 2, we know that if (xi, x_) is

an equilibrium, then xi E niE{1,2} [s2-2a, Si+2a]. By definition, the risk-dominant threshold

belongs to the same set. This implies that if Oi(w) - 0_(w) < d, then

Ixd(w, oa) - xi(w, 0) 1 < d + 2a. (30)



Using inequality (25), obtained for d > 0 in Theorem 3, we get that,

|xi(w,a) - xi (w,0) < - 4p + 2M lfEll. (31)
K 71 (d) ) q(d) I

Define d(a) - -1 (p(u)). Note that d(.) is continuous, strictly increasing and satisfies

d(0) = 0. Using inequality (30) for d < d(a) and inequality (31) for d > d(a), one obtains,

|xi(w, a) - xi(w, 0)|1 < max 771(F-o) + 2u, 2 4p (uN,1pu + 2MI| IfE o

As a goes to 0, this uniform upper bound goes to 0 as well. E

Theorem 8 (continuous selection). Consider some class of payoffs W = Wp,K,h,T,K with

h = 0. Then there exists U > 0 such that for all a < U, the equilibrium (xi(w, a), xi (w, a))

is continuous in w over W.

Proof. Note that W = Uh>o Wp,,,r,r,K. We know from Theorem 4 that (xi(w, a), xi(w, a))

is continuous in w over Uh>o Wp,K,h,r,K. For any w Uh>o WVp,n,h,r,K pick a sequence

{Wn}n>o C Uh>O Wyp,n,h,r,K, converging uniformly towards w. The payoff structures {Wn}nEN

are associated with a sequence of equilibria { (xJ, xzn)~>o all satisfying AL" (x, ý i) =

Aw (xnh, xz) = 0. By compactness one can extract converging sequences from {(x(, xn)} 0.

By continuity of A~,, any limit (x', x ) must satisfy, AF(xz, xt) = Awi (x, x) = 0. This

means that (x?, xz) is an equilibrium of F,(w). We know from Theorem 2 that for a small

enough, we have joint selection over W. This implies that all converging subsequences of

{ (x, xT_)}n>0 converges to the unique equilibrium of Fl,(w). This gives continuity over

W. O



Appendix B: Extension to games with a continuum of

players

Here we briefly outline why results presented in Section 3 still hold in symmetric games with

a continuum of agents.

We consider games with a continuum of agents indexed by t e [0, 1]. Each player has an

action set {C, D}. All decisions are taken simultaneously. Let us denote by q the proportion

of players choosing to play C. Players have identical payoffs which depend on their own

action a E {C, D}, the aggregate outcome q, and a state of the world 0, with convex support

I C R, and a CI density fo. Let these payoffs be denoted by Uc(q, 9) and UD(q, 9). Before

taking action, player t gets a signal xt = 0 + aet, where et has support in [0, 1] and all draws

are independent. We denote F,(u) this global game.

We define the class of game structures -Hk,p as follows,

Definition 8. Given a modulus of continuity p and a number k > 0, we denote by k,p the

class of payoff structures U such that,

1. For all q E [0,1], the functions Uc(q, .) and UD(q,") have a modulus of continuity rho

with respect to 0.

2. The mapping m : (q, 9) '-4 Uc(q, 9) - UD(q, 9) is strictly increasing in both 9 and q with

lower rates greater than k.

3. There exist 0 and 9 in I such that m(O, ) > 0 and m(1, 0) < 0.

To simplify analysis, we assume that the games are fully supermodular. As in the case

of two player games it is possible to work under the weaker assumption that the game has

strictly increasing differences in the state of the world, and that at all states 0, the perfect

information version of the game that players face is either dominance solvable or exhibits



increasing differences in q. For the sake of simplicity, this appendix will not deal with that

level of generality.

Because we have assumed that payoff structures were supermodular, it follows that game

Fr,(U) has extreme Nash equilibria which are monotone and symmetric. Each of these

equilibria takes a threshold form, meaning that there is a threshold x such that player t

chooses C when xt > x and D when xt < x.

Consider the incentives of player t when other players use threshold x. The proportion

of people choosing C is q = P [e > X]. Thus payoffs are given by

IIc(xt, x, a) = Uc PE > x ,0) f(OIxt)dO (32)

HID(Xt, X, a) = UD P [6 > x , 0 f(OIxt)dO. (33)

For x to be an equilibrium threshold, it must be that player is indifferent between C and

D when xt = x. Thus equilibrium is characterized by the equation

AU(x, x, a)- m P > X - ,0 f(Ojxt)dO = 0. (34)
Ia

Do the change in variable u = , equation (34) becomes,

AU(x, x, a) m(P [e> u]J, x - auu) f(u)fo(x - u) du = 0. (35)
i-1i f fe (u) fo (x - uu) du

As in section 3, we define I, by

f(XU) fE(U)f 9 (x - cu)

f-1 f,(u)fo(x - au)du

We have already shown using standard results for convolution products that, over any com-

pact, T,(u, x) converges uniformly to fe(u) as o goes to 0 and that 8 converges uniformly



to 0.

We also have that > k. Finally because we consider only symmetric games, we know

that the a term that we needed to consider in section 3 is equal to zero.

This implies that uniformly over any compact,

lim A(x,x, a) = m(P [e > u] ,x) f,(u)du= m(u,x)du
U-*0 -1 f1

and that the solutions of the equation A(x, x, a) = 0 converge to the risk-dominant equilib-

rium, that is, the solution of equation f l m(u, x)du = 0.

More precisely Theorems 2 and 3 extend as follows,

Theorem 9. Consider a class of payoffs lk,p. There exists U such that for all o < U, and

all U E -lk,p, all games FG(U) have a unique pair of rationalizable strategies, with threshold

x(U, ao). As a goes to 0, the equilibrium threshold x(U, o-) converges uniformly over -kp to

the risk-dominant equilibrium.

Proof. The proofs are identical to those of Theorems 2 and 3. Joint selection is proven by

showing that for some a, a < 5 implies that A(x, x, a) is strictly in x. Uniform convergence

results from the fact that the rate of convergence of x(U, a) has an upper bound that depends

only on k and p. O
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Chapter Two: Fear of Miscoordination and the

Robustness of Cooperation in Dynamic Global Games

with Exit

Abstract

This paper develops a framework to assess the impact of miscoordination fear on
agents' ability to sustain dynamic cooperation. Building on theoretical insights from
Carlsson and van Damme (1993), it explores the effect of small amounts of private
information on a class of dynamic cooperation games with exit. It is shown that lack
of common knowledge creates a fear of miscoordination which pushes players away
from the full-information Pareto frontier. Unlike in one-shot two-by-two games, the
global games information structure does not yield equilibrium uniqueness, however, by
making it harder to coordinate, it does reduce the range of equilibria and gives bite to
the notion of local dominance solvability. Finally, the paper provides a simple crite-
rion for the robustness of cooperation to miscoordination fear, and shows it can yield
predictions that are qualitatively different from those obtained by focusing on Pareto
efficient equilibria under full information.

KEYWORDS: cooperation, strategic risk, miscoordination risk, global games, dy-
namic games, exit games, rationalizability, local strong rationalizability, local domi-
nance solvability. JEL CLASSIFICATION CODES: C72, C73



1 Introduction

The folk theorem for repeated games teaches us that even though short run incentives may

lead to suboptimal outcomes, continued interaction can allow players to sustain efficient

cooperation when promises of future benefits are large enough. One notable property of

repeated games is that they admit a large set of equilibria. As a consequence, much of the

applied work using dynamic cooperation games focuses on Pareto optimal equilibria for the

purpose of deriving comparative statics. One may however worry that using Pareto efficiency

as a selection criterion overestimates the players' ability to coordinate. Indeed, there exists a

substantial experimental literature on coordination failure in one-shot coordination games'

indicating that empirically, Pareto efficiency is not a fully satisfying selection criterion and

that risk-dominance, in the sense of Harsanyi and Selten (1988), is often a better predictor of

experimental outcomes. The work of Carlsson and van Damme (1993) sheds theoretical light

on these empirical findings by showing that the Pareto efficiency criterion relies heavily on

common knowledge and that for a natural family of small departures from full information,

the risk-dominant action will be the unique rationalizable outcome.

This paper uses the information structure of Carlsson and van Damme (1993) to model

miscoordination risk in a class of games with exit that replicates much of the intuition

underlying repeated games, while being simple enough to study the effects of small amounts

of private information. The exit games considered are two-player games with infinite horizon

and positive discount rate, in which players decide each period whether they want to stay

or exit. Under the global games information structure, in each period t, players' payoffs are

affected by an i.i.d. state of the world wt, on which players make noisy observations.

The paper's main result is a characterization of rationalizable strategies as players' signals

become arbitrarily precise. Although the likelihood of miscoordination becomes vanishingly

small as signals get more precise, the ghost of miscoordination is enough to push players

away from the Pareto efficient frontier. The set of surviving equilibria - which are inter-

'See for instance Cooper, DeJong, Forsythe, and Ross (1990) or Battalio, Samuelson, and Van Huyck
(2001).



preted as those equilibria that are robust to miscoordination risk - depends both on the

magnitude of miscoordination losses and on the distribution of states of the world wt. Un-

like the case of one-shot coordination games studied by Carlsson and van Damme (1993)

and Frankel, Morris and Pauzner (2003), the global games information structure does not

yield unique selection in infinite horizon games. However, the dominance solvability of static

global games does carry over in the weaker form of local dominance solvability. As play-

ers' signals get arbitrarily precise it is possible to characterize local dominance solvability

explicitly for a focal class of equilibria. This allows us to identify equilibria that are robust

to strategic uncertainty in addition to being robust to miscoordination fear. Finally, the

paper provides a simple criterion for cooperation to be robust in games with approximately

constant payoffs, and shows how taking into account the impact of miscoordination fear on

cooperation can yield predictions that are qualitatively different from those obtained by fo-

cusing on full-information Pareto-efficient equilibria. This is illustrated in an applied model

which investigates the question of how wealth affects people's ability to cooperate.

From a methodological perspective, the paper shows how the Abreu, Pearce, and Stac-

chetti (1990) approach to dynamic games can be used to study the impact of a global games

information structure in a broader set of circumstances than one-shot coordination games.

The approach has two steps: the first step is to recognize that one-shot action profiles in

a perfect Bayesian equilibrium must be Nash equilibria of an augmented one-shot game in-

corporating continuation values; the second step is to apply global games selection results

that hold uniformly over the family of possible augmented games, and derive a fixed point

equation for possible continuation values. This approach can accommodate the introduction

of an observable Markovian state variable and auto-correlated states of the world.

This paper contributes to the literature on the effect of private information in infinite

horizon cooperation games. Since Green and Porter (1984), Abreu, Pearce, and Stacchetti

(1986), and Radner, Myerson, and Maskin (1986), much of this literature2 has focused on

the issue of imperfect monitoring of other players' actions and on the amount of inefficient

punishment that must occur on an equilibrium path. In this paper however, actions are
2See for instance Fudenberg, Levine, and Maskin (1994), Compte (1998), or Kandori (2003)



observable. It is the players' assessment of the state of the world that is private information.

Interestingly, this form of private information prevents the players from attaining the full-

information Pareto frontier even as the players' assessments become arbitrarily precise.

This paper also fits in the growing literature on dynamic global games. Much of this

literature however avoids intertemporal incentives. Levin (2001) studies a global game with

overlapping generations. Chamley (1999), Morris and Shin (1999), and Angeletos, Hellwig

and Pavan (2006) consider various models of dynamic regime change, but assume a discount

rate equal to zero, and focus on the endogenous information dynamics that result from agents

observing others' actions and new signals of the state of the world. In this sense, these

models are models of dynamic herds rather than models of repeated interaction. Closer to

the topic of this paper is Giannitsarou and Toxvaerd (2003), which extends results from

Frankel, Morris, and Pauzner (2003) and discusses equilibrium uniqueness in a family of

finite, dynamic, supermodular global games. From the perspective of the present paper,

which is concerned with infinite horizon games, their uniqueness result is akin to equilibrium

uniqueness in a finitely repeated dominance solvable game. Finally, in two papers that do

not rely on private noisy signals as the source of miscoordination, but carry a very similar

intuition, Burdzy, Frankel, and Pauzner (2001), and Frankel and Pauzner (2000) obtain full

selection for a model in which players' actions have inertia and fundamentals follow a random

walk. However, their unique selection result hinges strongly on the random walk assumption

and does not rule out multiplicity in settings where fundamentals follow different processes.

The paper is organized as follows. Section 2 presents the setup. Section 3 is the core

of the paper and proves selection and local dominance solvability results. It illustrates how

tools developed for one-shot global games can be applied to study perfect Bayesian equilibria

in dynamic games. Section 4 applies the results of Section 3 and makes the case that the

model of miscoordination fear proposed in this paper is practical and can yield qualitatively

new comparative statics. Section 5 concludes. Proofs are contained in Appendix A, unless

mentioned otherwise. The results of Section 3 are extended to non-stationary games in

Appendix B.



2 Stationary exit games

2.1 The setup

Consider an infinite-horizon game with discrete time t E {1,..., +o00} and two players i E

{1, 2} with discount rate ft. The two players act simultaneously and can take two actions:

A = {Stay, Exit}. Payoffs are indexed by a state of the world wt e R, which is independently

drawn each period. Given the state of the world wt, player i expects flow payoffs,

S

E

S E

gi(Wt) W 12(wt)

WMil(Wt) W2Wt)

where i is the row player. States of the world {wt}tEj1,...,oo} form an i.i.d. sequence of real

numbers drawn from a distribution with density f, c.d.f. F and convex support I C R. All

payoffs, gi, W12, WI, WM2 are continuous in Wt.

At time t, the state of the world wt is unknown, but each player gets a signal xi,t of the

form

Xit - Wt + Oi6 ,t

where {6i,t}ie{1,2}, t>1 is an i.i.d. sequence of independent random variables taking values in

the interval [-1, 1]. For simplicity wt is ex-post observable 3.

Whenever there is an exit, the game ends and players get a continuation value equal

to zero. This is without loss of generality since termination payoffs can be included in the

flow-payoffs upon exit W12, WMi and WM2. For all a > 0, let F', denote this dynamic game

with imperfect information. Note that Po corresponds to the game with full information.

The paper is concerned with equilibria of F, with a strictly positive but arbitrarily small.
3Note that the analysis that follows would hold if players' final payoffs were shifted by some idiosyncratic

noise ri,t independent of all other random variables and with zero expectation.



2.2 Example: a partnership game

As a benchmark, consider the following - extremely simple - partnership game. Flow payoffs

are symmetric and given by,

S

E

S E

Wt wt - C + PVE

b +VE VE

where payoffs are given for the row player only, and C > b > 0. Parameter wt is the expected

return from putting effort in the partnership at time t; C represents the diminished value

of being in the partnership when the other player walks out; parameter b (which can be set

to 0) represents a potential benefit from cheating on a cooperating partner; and VE is the

present value of the players' constant outside option. States of the world wt are drawn from

a distribution with density f and support R. We assume that ElwtI < o00 and VE > 0.

As a benchmark, let us study subgame perfect equilibria under full information. When-

ever wt 5 (1 - 3)VE + C, playing (E, E) is a possible equilibrium outcome. Similarly, there

exists a lowest value w of wt for which (S, S) can be an equilibrium play. This cooperation

threshold is associated with the greatest equilibrium continuation value V. The following

equations characterize V and w:

(1) i + #V = b + VE

(2) V = E [(wt + V)1wo>w] + F(Iw)VE.

Whenever wt belongs to [w, (1 - f)VE + C], any symmetric pair of actions is an equilibrium

play and any pair of actions is rationalizable. In fact, within these bounds, any symmetric

pair of actions can be an outcome of a Markovian equilibrium, and hence, any action is

rationalizable by a Markovian strategy. When wt is greater than (1 - 13)VE + C, staying is

the dominant action. When wt is smaller than w, exit is the dominant action.

Under full information, the criterion of Pareto efficiency would imply that players coor-



dinate on using w as their threshold for cooperation, independently of C, which does not

enter equations (1) and (2). Is this prediction robust when players' assessments of wt are

private? If not, what equilibria are robust to such a departure from common knowledge?

How do these robust equilibria move with respect to C? Section 3 develops tools to answer

such questions for a variety of games.

2.3 Assumptions

To exploit existing results on one-shot global games, we make a few assumptions which

essentially ensure that the assumptions of Carlsson and van Damme (1993) hold for the

family of one-shot stage games augmented with the players' potential continuation values.

While it is possible to find weaker conditions under which the results of Section 3 will hold,

the assumptions given here have the advantage that they can be checked in a straightforward

way from primitives.

Assumption 1 (boundedness) Let mi and Mi respectively denote the min-max and max-

imum values of player i in the full information game Fo. Both mi and Mi are finite.

This assumption is typically unrestrictive but is still important given that in many natural

examples, wt will have unbounded support. The min-max value mi will appear again in

Assumptions 4 and 5, while Mi will be used in Assumption 2.

In the partnership example of Section 2.2, we have mi = m-i = E max{ VE, wt - C+,VE}

and Mi = M- = M where M satisfies M = E max{wt + #M, b + VE}.

Assumption 2 (dominance) There exist w and T such that for all i E {1, 2},

g'(w) + •OM - W21(w) < 0 and Wi12 (w) - W22(w) < 0 (Exit dominant)

and W 2 (U) - WM2 (U) > 0 and g'(w) + mi - W2I (w) > 0 (Staying dominant).

Assumption 3 (increasing differences in the state of the world) For all i E {1, 2},

gi (wt) - W2 (wt) and W12(w) - W 2(wt) are strictly increasing over wt E [I, T], with a slope



greater than some real number r > 0.

Note that the assumption that W12 - Wi2 is strictly increasing in the state of the world

may rule out examples in which staying yields a constant zero payoff when the other player

exits.

Definition 1 For any functions Vi, V- : R --+ R, let G(Vi, Vj, wt) denote the full informa-

tion one-shot game

S

E

S E

g•(wt) + /i(wt) Wi2 (wt)

W~i (WO) Wji2 (W

where i is the row player. Let 1i,(V, Vi) denote the corresponding one-shot global game in

which players observe signals xi,t = wt + oEi,t.

Assumption 4 (equilibrium symmetry) For all states of the world wt, G(mi, m_-, wt)

has a pure strategy Nash equilibrium and all pure equilibria belong to {(S, S), (E, E)}.

Recall that mi is player i's min-max value in the game with full information F0 . If Assumption

4 is satisfied, then for any function V = (Vi, Vi) taking values in [mi, +oo) x [m-i, +oo),

the game G(V, wt) also has a pure strategy equilibrium, and its pure equilibria also belong

to {(S, S), (E, E)}. Indeed, whether (E, E) is an equilibrium or not does not depend on

the value of (Vi, V-j), and if (S, S) is an equilibrium when V = (mi, mi), then it is also an

equilibrium when the continuation values of player i and -i are respectively greater than mi

and m-i.

Note that when Assumptions 2 and 3 hold, Assumption 4 is equivalent to the condition

that for all i E {1, 2}, at the state wi such that W 2(wi )-W2i2(wi) = 0, we have gi(wi)+Omi-

W21(wi) > 0 and g-i(wj) + 3m-i - W-'(wj) > 0. Assumption 4 holds for the partnership

game since C > b.

Together, Assumptions 3 and 4 insure that at any state of the world w and for any pair

of individually rational continuation values V, either (S, S) or (E, E) is the risk-dominant

equilibrium of G(V, w), and that there is a unique risk-dominant threshold xRD(V) -



(S, S) being risk-dominant above this threshold and (E, E) being risk-dominant below. In

conjunction with Assumption 2 this is in fact the unidimensional version of Carlsson and

van Damme's assumption that states of the world should be connected to dominance regions

by a path that is entirely contained in the risk-dominance region of one of the equilibria.

Definition 2 For any function V : R --- R, and w G R, define Ai(V, w) and Bi(w) by,

Ai(V,w) = g(w) + /3V(w) - W 2(w) and B(w) = W• 1(w) - W 2(w).

Assumption 5 (staying is good) For all players i G {1, 2} and all states of the world

w E [wIL, ], A(m, w) > 0 and Bi(w) > 0.

Recall that [w, U] corresponds to states of the world where there need not be a dominant

action. Assumption 5 is restrictive but not unreasonable: it means that under full infor-

mation, at a state w E [w, T] with no clearly dominant action, player i is weakly better off

whenever player -i stays, independently of her own action.

The partnership game of Section 2.2 satisfies this assumption since for all w E R,

Ai (mi, w) = C + 3(m• - VE) > 0 and Bi(w) = b > 0.

2.4 Solution concepts

Because of exit, at any decision point, a history hit is characterized by a sequence of past

signals and past outcomes: hi,t - {xi,1,... ,xi,t ; wi,1,... , Wi,t-1}. Let N denote the set of

all such sequences. A pure strategy is a mapping s : N -÷ {S, E}. Denote by Q the set

of pure strategies. For any set of strategies S C Q, let A(S) denote the set of probability

distributions over S that have a countable support. The two main solution concepts we will

be using are perfect Bayesian equilibrium and sequential rationalizability. To define these
concepts formally, it is convenient to denote by h {x,,.. , ; wi,1, , } thei't - f X~l 0 • •• i,t- 1 W 0 7..I W~l1I h

histories before players receive period t's signal but after actions of period t - 1 have been

taken. A strategy s-i of player -i, conditional on the history hoi? having been observed, will

be denoted s_-ilho . A conditional strategy S-ilhOt, and player i's conditional belief ph over



hit induce a mixed strategy denoted by (s_-ilhO , P1 O ). Player i's sequential best-response

correspondence, denoted by BRi,c,, is defined as follows.

Definition 3 (sequential best-response) V S-i Q, si c BRi,,(s-i) if and only if:

(i) At any history h°, that is attainable given s-i and si, the conditional strat-

egy SilhO is a best-reply of player i to the mixed strategy (S-ith0, i PIht), where

conditional beliefs Pjh9, over h-it are obtained by Bayesian updating;

(ii) At any history ht that is not attainable given s-_i and si, Silh is a best-reply

of player i to a mixed strategy (silho , lhO, ) for some (any) conditional beliefs

PLhO, over h'
--

it

With this definition of sequential best-response, a strategy si of player i is associated

with a perfect Bayesian equilibrium of F, if and only if, si E BRi,o o BRi, (si). Sequential

rationalizability is defined as follows.

Definition 4 (sequential rationalizability) A strategy si belongs to the set of sequen-

tially rationalizable strategies Ri of player i if and only if

Si (BR o BRAi ,)n(Q)

nEN

where BRý' = BRi,, o A.

Given strategies si, s_-i and beliefs upon unattainable histories, let Vi(hi,t) denote the value

player i expects from playing the game at history hi,t. Pairs of value functions will be denoted

V (V1, V-).

3 Selection and local dominance solvability

The first class of results presented in this section aims at characterizing the extent to which

lack of common knowledge and the fear of miscoordination prevent players from achieving



Pareto efficient levels of cooperation. It is shown that payoffs upon miscoordination influence

equilibrium selection, although in equilibrium, as u goes to 0, miscoordination happens with

a vanishing probability. Theorem 2 characterizes the limit set of equilibrium values explicitly.

Section 4.1 applies these results to the partnership game introduced in Section 2.2 and derives

simple comparative statics that do not hold when focusing on Pareto efficient equilibria under

full information.

The second class of results given in this section explores how the dominance solvability

result of Carlsson and van Damme (1993) extends to dynamic games. Since dynamic global

games can admit multiple equilibria, it would seem that these results do not carry over.

However, Section 3.4 shows that the global games structure gives bite to the notion of local

dominance solvability, extensively discussed in Guesnerie (2002). Theorem 3 shows that for

the class of exit games defined in Section 2, local dominance solvability, which is a high

dimensional property of sets of strategies, is asymptotically characterized by the stability of

the fixed points of an easily computable, increasing mapping from R to R. This will allow

us to discuss the issue of robustness of equilibria to strategic uncertainty.

3.1 General methodology

A useful methodological insight of this paper is to recognize that tools from equilibrium

selection in one-shot global games can be exploited to study the impact of a global games

information structure in dynamic games. Using the dynamic programming approach to

dynamic games developed in Abreu, Pearce, and Stacchetti (1990), actions prescribed by a

perfect Bayesian equilibrium of a dynamic game must be outcomes of a Nash equilibrium

in the Bayesian one-shot game that incorporates the players' continuation values. The idea

is to apply global games selection results to a family of such augmented games in order to

characterize the equilibrium continuation values of the dynamic game.

The main difficulty is that the selection results of Carlsson and van Damme (1993)

only hold pointwise - they take the payoff structure as given - while selection results will



need to hold uniformly 4 to apply dynamic programming techniques. For this reason, the

present paper draws on results from Chassang (2006) which show that selection does happen

uniformly over equicontinuous5 families of two-by-two games satisfying the assumptions of

Carlsson and van Damme (1993). Mostly, we will use the following implication of Theorems

2, 3 and 4 of Chassang (2006).

Lemma 1 (uniform selection) For any compact subset V C R2 , consider the family of

one-shot global games ',(V) indexed by V E V. If for all V E V the full information

one-shot game G(V, w) has pure equilibria which are all symmetric and admits dominance

regions with respect to w, then under Assumptions 2 and 3

(i) There exists - such that for all a E (0,-), all one-shot global games ',(V),

indexed by values V E V, have a unique rationalizable equilibrium;

(ii) This equilibrium takes a threshold form6 with thresholds denoted by x* (V) CE

R 2. The mapping x*(.) is continuous over V

(iii) As a goes to 0, each component of x* (V) converges uniformly over V E V

to the risk-dominance threshold of 4 0 (V), denoted by xRD(V).

The analysis will proceed as follows. Section 3.2 shows that for an appropriate order over

strategies, the game r, exhibits a restricted form of monotone best response which suffices

to show that the set of sequentially rationalizable strategies is bounded by extreme Marko-

vian equilibria. Section 3.3 characterizes the continuation values of Markovian equilibria by

iteratively applying selection results on one-shot global games to families of augmented stage

games. Section 3.4 shows how the dominance solvability of one-shot global games can be

used to characterize the local dominance solvability of equilibria of the dynamic game F,.
4 The reason for this will become clear in Section 3.3.
5More precisely, families of games whose associated family of payoff functions is equicontinuous.
6 A strategy si in game TI,(V) takes a threshold form if and only if there exists x e IR such that almost

surely, si(xi) = S if and only if xi > x.



3.2 Monotone best response and rationalizability

This section exploits assumptions of Section 2.3 and the exit game structure to prove sim-

plifying structural properties on F,. In particular, it shows that for a small enough, the set

of rationalizable strategies of F, is bounded by extreme Markovian equilibria.

Definition 5 (Markovian strategies) A strategy si is said to be Markovian if si(hi,t) de-

pends only on player i's current signal, xi,t.

A Markovian strategy si is said to take a threshold form if there exists a constant value

x such that for almost all xi,t > x, si prescribes player i to stay, and for almost all xi,t < x,

si prescribes player i to exit. The threshold of a threshold form strategy s will be denoted x,

and a strategy of threshold x will be denoted s,.

Definition 6 We define a partial order -< on pure strategies by

s' -< s <== {a.s.Vh E 71, s'(h) = Stay => s(h) = Stay}.

In other words, a strategy s is greater than s' with respect to - if and only if players stay

more under strategy s. Consider a strategy s_- of player -i and a history hi,t observed by

player i. From the perspective of player i, the one period action profile of player -i is a

mapping from player -i's current signal to lotteries over {stay, exit}, which we denote by

a-jhj, : R --+ A{stay, exit}. The order -< on dynamic strategies extends to one-shot action

profiles as follows:

a' -< a 4==>- {a.s. Vx E R, Prob[a'(x) = Stay] <• Prob[a(x) = Stay]}.

Note that if s-i is Markovian, then a-Ihjt is effectively a mapping from R to {stay, exit}.

For any mapping Vi that maps player i's current signal, xi,t E R, to a continuation value

Vi(xi,t), and any mapping a-i : R -- A{stay, exit}, one can define BRi,G(a_-, V), as the one

period best response correspondence of player i when she expects a continuation value Vi and

player -i uses an action profile a-i. Given a continuation value function Vi, the expected



payoffs upon staying and exit - respectively denoted by IJJ(Vi) and IP - are

(3) H(Vi) = E[Wi2(w) + {gi(w)+ fVi(hi,t,w)- W 2(w)}ls,=slhi,t ,s-i

(4) -= E[W22(w) + {W 1(w) - W 2 (w)}l 8,=sh8i,t,si].

Lemma 2 For any one-shot action profile a-i and value function Vi, the one-shot best-

response correspondence BRj,,(ai, Vi) admits a lowest and a highest element with respect to

-. These highest and lowest elements are respectively denoted BRYo(a_j, V) and BRiL(a_, Vi).

Proof: An action profile ai belongs to the set of one-shot best-replies BRi,,(ai, Vi) if and

only if a, prescribes S when I (Vi) > IH and prescribes E when HI(Vi) < IIE. Because ties

are possible BRj,(a-i, Vi) need not be a singleton. However, by breaking the ties consistently

in favor of either S or E, one can construct strategies a0 and aL that are respectively the

greatest and smallest elements of BRi,(a-i, Vi) with respect to _. U

Lemma 3 There exists U > 0 and v > 0 such that for all constant functions Vi taking value

in [mi - v, M + v], and all a E (0, -5), BRH (aj, Vi) and BRL (a_ , Vi) are increasing in a-i

with respect to _.

The proof of this result exploits the fact that Assumption 4 implies a family of single-

crossing conditions already identified in Milgrom and Shannon (1994). Note that the results

of Athey (2002) do not apply directly since the conditions on distributions they require are

only satisfied at the limit where a is equal to 0.

Lemma 4 Consider continuation value functions V and V' such that for all hit E R,

V(hi,t) < V'(hi,t). Then, for any a-j,

BRf(ai, V) _ BR!'(ai, V') and BRL (a_, V) _ BRS•,(ai, V').

Proof: The result is proven for the greatest one-shot best-reply BRY . Player i chooses S

over E whenever HI(Vi) > HI. As equation (3) shows, II(Vi) is increasing in Vi, while HI



does not depend on Vi. This yields that BRH (a-i, V) - BRH (aj-i, V'). The same proof

applies for the lowest one-shot best-reply. U

Lemma 5 Whenever s-i is a Markovian strategy, BRi,,(si) admits a lowest and a highest

element with respect to -<. These strategies are Markovian and are respectively denoted
BR*(s_j) and BRH(s_).

Proof: Let V be the value player i obtains from best replying to s_-. Since s-i is Markovian,

at any history h •i t the conditional strategy s-ilhOj is identical to s_j, and the value player

i expects conditional on h9 is always V. Hence, si BRi,(s-i) if and only if action profiles

prescribed by si at a history h9 belong to BRi,,(si, V), where s-i is identified with its

one-shot action profile. Since BRi,,(s-i, V) admits highest and lowest elements af and aL ,

the Markovian strategies sf and sF respectively associated with the one-shot profiles af and

aL are the greatest and a smallest elements of BRi,(s-i) with respect to -. U

We now show that game F, exhibits monotone best response as long as there is a Marko-

vian strategy on one side of the inequality.

Proposition 1 (restricted monotone best response) There exists - such that for all

a E (0,-6), whenever s-i is a Markovian strategy, then, for all strategies s'_,

s - s _ {Vs" E BRi,, (s'i), s" BM (si)
and s-i - s'- : {Vs" E BRi,(sJi), BRL (s-i) S/ .

Proof: Let us show the first implication. Consider s_• a Markovian strategy and s'_i such

that s'_ -< s-i. Define Vi and V' the continuation value functions respectively associated to

player i's best response to s-i and s' _. Note that since s-i is Markovian, Vi is a constant

function. Assumption 5, that "staying is good", implies that at all histories hi,, V'(hi,t) <

Vi(hi,t). From Lemma 4, we have that

(5) BRH -(ai', it'(hi,t)) - BR H(a'_-, Vi(hi,t)).



Since Vi(hi,t) is constant we want to apply Lemma 3. For this, let us show that a' ilhi, <

a-ilh,t. This follows directly from s-i being Markovian, and the fact that s'_ -< s_-. Indeed,

whenever Prob{a' ilh,t = stay} > 0, we must have Prob{a-ilh,,t = stay} = 1. Applying

Lemma 3 yields that

(6) BRH (a' I, V(hi,t)) 5 BRH (ai, Vi(hi,t)).

Combining equations (5) and (6) we obtain that indeed, for all s" e BR,,r(s' ), s"

BRY (s_i). An identical proof holds for the other inequality. N

Proposition 1 will allow us to prove the existence of extreme threshold-form equilibria.

For this we will use the following lemma which shows that for a small enough, the best

response to a threshold-form strategy is unique and takes a threshold form.

Lemma 6 There exists U > 0 such that for all a E (0, -) and any x e R, there exists x' E R

such that BRi,,(s.) = {s, }, i.e. the best response to a threshold form Markovian strategy is

a unique threshold form Markovian strategy. Moreover, x' is continuous in x.

Theorem 1 (extreme strategies) There exists > 0 such that for all a < -, sequentially

rationalizable strategies of F, are bounded by a highest and lowest Markovian Nash equilibria,
respectively denoted by sH = (sn,, SHi{a) and S = (S, S ia).

Those equilibria take threshold forms : for all i E {1, 2} and j E {H, L}, there exists xz

such that si, prescribes player i to stay if and only if xi,t Ž xj

Indeed, although F, is not supermodular, Proposition 1 is sufficient for the construction of

Milgrom and Roberts (1990) to hold. The first step is to note that the strategies corre-

sponding to staying always, and exiting always are threshold form Markovian strategies that

bound the set of possible strategies. The idea is then to apply the best response mappings

iteratively to these extreme strategies. A formal proof is given in Appendix A.

Let us denote by x Hand xL the pairs of thresholds respectively associated with the
L__ H u L___ H LeV H

highest and lowest equilibria with respect to -<. Note that s. SU , but x x. Let V

and V L be the value pairs respectively associated with sH and sL.



Lemma 7 sH and sL are respectively associated with the highest and lowest possible pairs of

rationalizable value functions, V H and V L . More precisely, if s-i is a rationalizable strategy,

the value function Vi,or associated with player i's best reply to s-i is such that at all histories

hi, < V. ,' <V,(hi,t) _< Vi'.

Proposition 1 and Theorem 1 are the main benefits of using an exit game structure. They

also provide a first justification for why we are specifically interested in Markovian equilibria:

they provide tight bounds for rationalizable behavior. This focus will be further justified in

Section 3.4.

3.3 Dynamic selection

We can now state the first selection result of the paper. It shows that continuation values

associated with Markovian equilibria of Fg, must be fixed points of a mapping 0,(.) that

converges uniformly to an easily computable mapping 4I from R2 to R2. This provides explicit

bounds for the set of rationalizable value functions and shows that the set of Markovian

equilibria - which is a continuum under full information - typically shrinks to a finite number

of elements under a global games information structure.

Theorem 2 Under Assumptions 1, 2, 3, 4 and 5 there exists 5 > 0 such that for all ao E

(0, D), there exists a continuous mapping ,(.) : -R2  R2, mapping value pairs to value pairs

such that,

(i) V L and V H are the lowest and highest fixed points of 0,(.);

(ii) A vector of continuation values is supported by a Markovian equilibrium if

and only if it is a fixed point of 0,(.);

(iii) As a goes to 0, the family of functions 0,(.) converges uniformly over any

compact set of R2 to an increasing mapping 4 :R 2 F- R2 defined by

(7) D ((Vi , Vi) = ( E  [( g + OVi ) 1w>XRD (Vi,V i) + W i2 (w) I W<XRD(V,V )]

Ew [(g-i + ,3V-i) lw>XRD(v,v_,) + Wi22(w)1w<xRD(vvi,)]



where xRD (Vi, Vi) is the risk-dominant threshold of the one-shot game To (V, Vi). -

Proof: For any fixed a, any Markovian equilibrium of F, is associated with a vector of

constant continuation values V, = (Vi,,, V-i,,). By continuity of the min-max values, for

any v > 0, there exists 5 > 0, such that for all a E (0,7r), V,, E [mi - u, Mi]. Stationarity

implies that equilibrium actions at any time t must form a Nash equilibrium of the one-shot

game

S

E

S E

gi(Wt) + Vi,a W12 (WO

WAi (W 0 W~i2 (W

where i is the row player and players get signals xi,t = wt + uYi,t. All such one-shot games

',(V), indexed by V e [m - V, Mi] x [m-i - v, Mi] and a > 0 have a global game structure

a la Carlsson and van Damme (1993).

Assumption 4 implies that there exists v > 0 such that for all V E [mi - v, Mi] x [mi -

V, M-i] and all w E I, the one-shot game G(V, w) admits pure equilibria and they are all

symmetric. Hence, Lemma 1 (uniform selection) implies that the following are true

1. There exists U such that for all a E (0, ) and V E [mi - v, Mi] x [m-i - v, M-i],

the game I,(V) has a unique pair of rationalizable strategy. These strategies take a

threshold-form and the associated pair of thresholds is denoted by x*(V);

2. The pair of thresholds x* (V) is continuous in V;

3. As a goes to 0, x*(V) converges to the risk dominant threshold xRD(V) uniformly

over V E [mi - v, Mi] x [m-i - V, M-i].

The first result, joint selection, implies that there is a unique expected vector of values from

playing game T,(V), which we denote ~,(V). The other two results imply that 0,(V) is

continuous in V, and that as a goes to 0, 0,(V) converges uniformly over V E xi~e{1,2}mi -

V, Mi] to the vector of values 1(V) players expect from using the risk-dominant strategy

under full information.



Stationarity implies that the value vector V of any Markovian equilibrium of r0, must

satisfy the fixed point equation V = 0,(V). Reciprocally, any vector of values V satisfying

V = 0,(V) is supported by the Markovian equilibrium in which players play the unique

equilibrium of game x'(V) each period. This gives us (ii).

Furthermore, we know that the equilibrium strategies of game 'o(V) converge to the

risk-dominant strategy as ao goes to 0. This allows us to compute explicitly the limit function

(. Because the risk-dominance threshold is decreasing in the continuation value, and using

Assumption 5, it follows that I is increasing in V. This proves (iii).

Finally, (i) is a straightforward implication of (ii). Values associated with Markovian

equilibria of F, are the fixed points of 5,(.). Hence the highest and lowest values associated

with Markovian equilibria are also the highest and lowest fixed points of 4~,(.). U

Theorem 2 states that extreme equilibria of games F, are characterized by the extreme

fixed points of an operator 0,(.) that converges uniformly to an explicit operator 4) as a goes

to 0. To show that the mapping cI gives us a precise description of Markovian equilibria of

1P, however, we must show that the uniform convergence of the mapping 0,(.) implies the

convergence of its fixed points. This corresponds to the upper- and lower-hemicontinuity of

fixed points of 0, .

The first important property we consider is upper-hemicontinuity. The next lemma states

that fixed points of 5,(.) converge to a subset of fixed points of 4 as a goes to 0. In that sense,

considering fixed points of (D is sufficient: we do not need to worry about other equilibria.

Lemma 8 (upper-hemicontinuity) The set of fixed points of q,(.) is upper-hemicontinuous

at a = 0. That is, for any sequence of positive numbers {Gn}nEN converging to 0, whenever

{Vn}InN = {(Vi,,, V-i,0 ,)} EN is a converging sequence of fixed points of 0, (.), the sequence

{Vn}4 N converges to a fixed point V of D.

Theorem 2 and Lemma 8 imply that whenever 4 has a unique fixed point, the set of

rationalizable strategies of game F0 converges to a single pair of strategies as a goes to

0. Section 4.2 will exploit that property to define a robustness criterion for cooperation in

games with approximately constant payoffs.



As another illustration, Lemma 9 shows that conditional on continuation values belong-

ing to some bounded set, whenever the states of the world have sufficient variance, then,

equilibrium is unique. Let H1 - 1i denote the norm on R2 defined by ||Vl1l = Ivl + |V4l.

Lemma 9 (uniqueness) Let K be a bounded interval of R. Under the maintained con-

straint that individually rational values Vi belong to K, there exists a constant rl > 0, that

depends only on payoff functions, such that whenever the distribution of states of the world f

satisfies max_, 1] f < r, then 4 is a contraction mapping with rate 6 < 1 with respect to the

norm on vectors II -111. That is, for all Vi taking values in K, |l I(V)-(l(V') 1l <_ 61 V-V' l1.

The question is now what happens when ( has multiple fixed points (see Section 4.1 for

examples)? Does the game F, have multiple equilibria? This is not a trivial question. If

all fixed points of (D are indeed associated to equilibria of F, for a small, this shows that

while a global games information structure may yield uniqueness in static settings, this does

not hold anymore when players have an infinite horizon. This question is closely related to

the problem of lower-hemicontinuity: when is it that a fixed point of 4 is associated with a

sequence of fixed points of 0,(.) as a goes to 0? This is the point of Proposition 2.

So far we have been characterizing Markovian equilibria by their continuation values. For

the remainder of this section, it becomes convenient to characterize Markovian equilibria by

their cooperation threshold. This is authorized by the following lemma.

Lemma 10 (threshold-form Markovian equilibria) There exists - > 0 such that for

all a E (0, -), all Markovian equilibria of F, take a threshold form.

Furthermore, if (xi,, x-i,,) is a pair of equilibrium thresholds, then xj,,q - x_4,jI < 2a.

Proof: Consider a Markovian equilibrium of r, denoted by (si, si). This Markovian

equilibrium is associated to a pair of values (Vi, V_j). The one-shot action profile (ai, a_)

associated with (si, s_j) has to be a Nash equilibrium of the global game I,(Vi, Vi). Lemma

1 implies that there exists - > 0 such that for all a E (0, 0), and all V E [m•, Mi] x [mi, M_],

the game I,(V) has a unique Nash equilibrium. Furthermore, this unique equilibrium takes

a threshold form. This proves the first part of the lemma: for a small enough, all Markovian



equilibria of Fr, take a threshold form. The second part of the lemma is a direct application

of Lemma 4 of Chassang (2006). U

Note that the second part of this lemma shows that as a goes to 0, Markovian equilibria

of F, are asymptotically symmetric, so that the likelihood of actual miscoordination van-

ishes. This illustrates that the ghost of miscoordination, rather than miscoordination itself

is enough to drive players away from efficient behavior.

Definition 7 For all a > 0, let BRVi,,(x) denote the value that player i gets in game F,

from best replying to a player -i using a threshold form strategy sx.

For a small enough for Lemma 10 to hold, denote by x* (V) the unique rationalizable

pair of strategies of game T,(V). Note that x*(V) belongs to R2, while the risk-dominant

threshold xRD(V) of game P0 (V) belongs to R.

For any pair of thresholds x E R2, define ,(x) = x*(BRV,,(xi), BRV_i,,(xi)) and

((x) x xRD(BRV½,o(x_), BRVi,o(xj)). When x E R, ((x) will be used to denote ((x,x).

Lemma 11 (properties of ,) There exists - > 0 such that for all a G (0,-Z), ý, is a well

defined, continuous mapping from R2 to R2 . Furthermore, the following properties hold:

(i) A pair of strategies (si, s_-) is a Markovian equilibrium of F, if and only if

it takes a threshold form and the associated pair of thresholds, x = (xi, xi),

satisfies x = ,(x);

(ii) As a goes to 0, ý,(x) converges uniformly over x E R2 to the symmetric pair

(iii) The mapping : {R --+ R, x -4 ý(x)} is weakly increasing.

Note that point (i) of Lemma 11 implies that there is a bijection between fixed points of

(,(-) and fixed points of 0,(.).

Definition 8 (non-singular fixed points) A fixed point x of is non-singular if and only



if there exists e > 0 such that either

Vy E [x - e, x), ((y) < y and Vy E (x,x + c], ((y)>y

or Vy E [x - e,x), ((y) > y and Vy e (x,x + e], ((y) < y.

In other terms x is non-singular whenever ( cuts strictly through the 450 line at x.

Proposition 2 (lower hemicontinuity) Whenever x is a non-singular fixed point of (,

then, for any sequence of positive numbers {un}nEN converging to 0, there exists a sequence

of fixed points of ,, {xn}nEN = {(Xi,ln, xI,,ln)}nEn, converging to (x,x) as n goes to infinity.

This shows that all non-singular fixed point of ( are the limit of threshold-form equilibria

of the game r, as a goes to 0. This shows that all equilibria (sm, s7x) of F0 , with x a non-

singular fixed point of ý, are robust to miscoordination risk. Theorem 3 will enrich this result

by showing that robustness to miscoordination risk implies robustness to strategic risk only

if x is a stable non-singular fixed point of (. The next lemma shows that for an appropriate

distance on payoff structures, fixed points of ( are generically non-singular.

Definition 9 (topology on C1 payoff structures) A C1 payoff structure -r is a 9-tuple

of 0 1 functions 7r = xij{ 1,2}(gi, W12, W7 1, WM 2) x F, that satisfies the assumptions of Section

2.3. Let Hl denote the set of C1 payoff structures. The distance I" j•ni over payoff structures

is defined as,

1 II7r ln S II i 1 - FII.oo+ '

lE{1,...,9} w

where II- . o denotes the supremum norm.

Lemma 12 (generic non-singularity) There exists a subset P of HI1 that is open and

dense in I' with respect to I1 I Ha and such that whenever 7r E P, the fixed points of ( are

all non-singular.

Proposition 2 and Lemma 12 imply that typically, all fixed points of L are indeed as-

sociated with Markovian equilibria of F, as a goes to 0. This shows that a global games



information structure need not always yield full-fledged selection7 . In that sense coordination

in dynamic games is qualitatively different from coordination in one-shot games.

Although dominance solvability is clearly an attractive feature of one-shot global games,

the possibility of multiplicity should not be considered a negative result in this context.

As the example of Section 4.4 shows, trigger equilibria in a fully repeated global game are

also equilibria of a related exit game in which payoffs upon exit are those obtained from

reverting to the one-shot Nash equilibrium. In that setting, one can show that the one-shot

Nash equilibrium is always an equilibrium of this exit game. If dynamic global games with

exit were always dominance solvable, this would imply that the one-shot Nash is the only

equilibrium in trigger strategies that is robust to private noisy assessments of the state of

the world. From that perspective, the fact that a global games information structure does

not always imply dominance solvability is reassuring.

Furthermore, Section 3.4 shows that the dominance solvability of one shot global games

does survive in dynamic exit games, albeit in a weaker form. While equilibria may not be

globally uniquely rationalizable, it is shown that the global games information structure can

make them locally uniquely rationalizable.

3.4 Local dominance solvability, stability, and strategic uncer-

tainty.

Local dominance solvability, discussed at length by Guesnerie (2002) in a macroeconomic

context, can be viewed as an intermediary notion between Nash equilibrium and dominance

solvability. For any two-player game, consider a set of strategies Z of player i and a strategy

s e Z. The game is said to be locally dominance solvable at s with respect to Z whenever

the sequence8 {(BR$ o BRi)n }N converges to {s} as n goes to infinity. In this case,

we say that s is locally strongly rationalizable with respect to Z. Equivalently, the game

is said to be locally dominance solvable at s with respect to Z if and only if s is the only

7 See Section 4.1 for examples.
'Recall that BR4 = BRi o A.



rationalizable outcome when it is common knowledge among players that player i uses a

strategy that belongs to Z. From this perspective, s is a strict Nash equilibrium if and only

if it is locally strongly rationalizable with respect to itself, and s is the unique rationalizable

strategy of player i if and only if it is locally strongly rationalizable with respect to the set

of all possible strategies.

The purpose of local dominance solvability is to be a middle ground between Nash equi-

librium, which may not be demanding enough, and dominance solvability, which may be too

demanding. The approach of Guesnerie (2002) is to introduce a topology on strategies and

then define a strategy s as locally strongly rationalizable - without reference to any set -

whenever there exists a neighborhood A of s such that s is locally strongly rationalizable

with respect to H. This effectively defines a stability criterion with respect to iterated best

response. The object of this section is to characterize both the stability of Markovian equi-

libria of F1, and the size of their basin of attraction. We must first define a topology on

strategies.

Definition 10 (balls in the "noise" topology) Consider two histories ht and hK. These

are vectors of real numbers of length 2t - 1. Hence, we can define the distance d(ht, h') =

ht - h I, and the Lebesgue measure A over histories of length t. For any strategy s and

any 6 > 0, the ball BS(s) of center s and radius 6 is defined as

B6(s) {s' I a.s. Vht e 'H, A({h' I d(h', ht) < 6 and s(h') = s'(ht)}) > 0}.

A neighborhood H of a strategy s is a set that contains a ball of center s and radius 6 > 0.

Note that the choice of topology is not innocuous. Depending on the topology, the same

equilibrium may be locally strongly rationalizable or not. In the topology defined above, a

ball Bj(si) corresponds to the set of strategies an uninformed observer might deem possible

when observing perfectly the moves of player i but observing a version of player i's signal that

is garbled by a noise term of maximum amplitude 6. Alternatively, one can view a ball B6(si)

as the set of strategies deemed possible by a player getting a description of si that potentially



misclassifies histories that differ by less than J. In this sense, this topology is appropriate

to discuss strategic uncertainty9 . A strategy s will be locally strongly rationalizable with

respect to balls in this topology whenever it is robust to small amounts of doubt regarding

the players' common understanding of s.

Under full information, exit games admit no locally strongly rationalizable strategies

because given any equilibrium, it is always possible to find another equilibrium that is

arbitrarily close. The rest of this section shows that as a goes to 0, the dominance solvability

result of Carlsson and van Damme (1993) for one-shot two-by-two games translates into

local dominance solvability for exit games. Furthermore, it is shown that as a goes to 0, the

local strong rationalizability of Markovian equilibria of F, - which is a stability property

in the space of strategies - is asymptotically characterized by the stability of the increasing

mapping : R -+ R introduced in Definition 7. Let us first define asymptotic local dominance

solvability formally.

Definition 11 (Asymptotic Local Dominance Solvability) Consider a pair of strate-

gies (si, s-s). We say that the family of games {F'},>o is asymptotically locally dominance

solvable (ALDS) at (si, s-_) if there exist neighborhoods of si and s-_, denoted XN and .A'f-i

such that Vi E {1, 2},

(8) lim lim (BR 7 o BRA,)n(Af) = {si}
0"--+0 n--oo ' -,Oe->oA- o

(9) and lim lim BRAi, o (BR o BR i,) (Af){s
(r--O n--oo

The basin of attraction of (si, s-i) is the greatest neighborhood Aix × .i of (si, s-_j) such

that equations (8) and (9) hold.

The central result of this section is that the asymptotic local dominance solvability and

the basin of attraction of Markovian threshold form equilibria are largely characterized by

the stability and basins of attraction of fixed points of the mapping : R F- R.
91n fact the size of the balls B3(s) for 6 > 0 is a good measure of the strategic uncertainty inherent to a

strategy s. For instance, if s = s,, then B6 (s) = [s3+6, s-6], while if s is defined by s(w) = Stay if and only
if int[w/ 5] is an even number, then, B6 (s) is the set of all possible strategies.



Proposition 3 is the key step to characterize local dominance solvability. It shows that

whenever x is a stable fixed point of (, then for a small enough, the first step of iterated

best-response shrinks neighborhoods of sx. Using the partial monotone best-response result

of Proposition 1 this will allow us to prove asymptotic local dominance solvability.

Proposition 3 Consider a stable fixed point x of ( and y in the basin of attraction of x. If

y < x, then there exists x' < y and - > 0 such that x' belongs to the basin of attraction of x

and, for all a E (0,U) and i E {1,2}, we haveo BI, BRi,GoBR-i,(sx,) -< sxt.

Similarly, if y > x, there exists x" > y and 5 such that x" belongs to the basin of

attraction of x and for all o E (0, ) and i E {1, 2}, sr,, - BRi,a o BR-i,o (Sx,)

Proposition 3 is a key step to understand the impact of a global games information structure

on local dominance solvability, which is why a proof in the case of symmetric games is given

here. It is instructive of how dominance solvability results for one-shot global games can be

exploited in dynamic games. The proof in the case of asymmetric games is more delicate

but follows the same intuition. It is given in Appendix A.

Proof (symmetric games): This proof applies to the case where players have the same

payoff functions. This implies that BR,,, = BRi,, = BR,. Let us show the first part of

the lemma.

Pick 5 small enough such that Proposition 1 applies. Then, for all a E (0, ), it is

sufficient to prove that there exists x' < y such that BR,(sx,) - sx,. Let BR,(a, V) denote

the one-shot best response of a player expecting a continuation value V and facing a one-shot

action profile a. Pick any'" x' < y that belongs to the basin of attraction of x. It must be

that ((x') > x'. Using the fact that for Markovian strategies, one-shot action profiles are

equivalent to full-fledged strategies, we can write, BR,(sxf,) = BR, (sx, BRV~,(x')).

The idea is to use this formulation to apply dominance solvability results from one-shot

global games. From Lemma 1, we know that for 5 small enough, all games I',(V), with

a E (0, ) and V E [mi - v, Mi] x [m-i - v, Mi], are dominance solvable. This and Lemma

1oRecall that if a and b are thresholds such that a > b then the corresponding strategies satisfy sa " Sb-
"In the case of asymmetric payoffs the choice of an appropriate x' becomes relevant, which is why the

proposition allows for this extra degree of freedom.



3 implies that when n goes to infinity, the sequence {(BR,(., BRV,(x')))n(sx,)}nEN con-

verges monotonously to the unique rationalizable equilibrium of the one-shot global game 12

'I,(BRV,(x')). This equilibrium is associated to the threshold x*(BRV,(x')) = o(x'). We

know that , converges uniformly to ( and that ((x') > x'. This implies that for U small

enough, ( (x') > x'. This implies that the sequence {(BRo,(., BRVo,(x')))n(sx,)}nCN is de-

creasing with respect to -<. Hence, we must have BR,(sx,) _ sx,. This proves the first part

of the lemma. The second part results from an entirely symmetric reasoning. N

We can now prove the main result of this section. It states that asymptotically, basins of

attraction of Markovian strategies are largely characterized by the basins of attraction of (.

Theorem 3 (Asymptotic Local Dominance Solvability) Consider any symmetric pair

of threshold form strategies (sx, sx). Whenever x is a stable fixed point of (, then the family

{F, J}>0 is ALDS at (sx, sx).

More strongly, if an interval [y, z] is included in the basin of attraction of x with respect

to (, and x E (y, z), then, [sz, sy] 2 is included in the basin of attraction of (sx, sx) with respect

to asymptotic local dominance.

Proof: The second part of the theorem implies the first one. We prove the second part

directly. Using Proposition 3, we know there exist 5, x_ < y and x+ > z, with [x_, x+]

included in the basin of attraction of x, such that for all a E (0, ), and i E {1, 2},

BR(,, o BR_,o,(sx-) -< sx- and sx+ -< BR,• o BR-i,(Sx+).

These inequalities and Proposition 1 imply by iteration that for all n E N,

(BRA, o BR", ) n ([sx+,)s-]) C [(BRi,, o BR-i,a )n (sx+), (BRi,a o BR-i,a)n (sx-)]

C [(BR,, o BR ,,) (sx+), (BR,, o BR-i, a)n- 1 (sx-coo
C ... C [sx+, sx-

12 Given that we are considering symmetric games, the arguments of many previously defined functions
become redundant. Such redundant arguments are dropped in all relevant cases.



Consider the decreasing sequence {(BRi,, o BR-i,o)n (sz-) }EN. As n goes to o00, it must con-

verge to a threshold form strategy with threshold x-, E [x_, zx+]. Moreover (sx- , BR_,,((sx ))
must be a Markovian threshold form equilibrium of F,. Lemma 8 implies that as a goes to

0, any converging subsequence of {(xT,, x-i,a)}I>0 must converge to a symmetric pair (2,2)

such that ý is a fixed point of ( and c [x_, x+]. The only fixed point of ( in [x_, x+] is

x. This implies that as a goes to 0, x- must converge to x. Similarly, as n goes to o00,

the sequence (BR,, o BRij) n (sx+) converges to a threshold strategy with a threshold x+a

that converges to x as a goes to 0. This concludes the proof. N

The value of this result lies in the fact that the stability of strategies with respect to a

complex iterated best response mapping is characterized by the stability of fixed points of a

simple13 mapping ( from R to R.

It is also interesting to note that the closure of basins of attraction of an increasing

mapping is a partition of R•. In other words, any value x IR is either a fixed point of (,

or belongs to the basin of attraction of a fixed point of (. This implies that if a Markovian

equilibrium is associated to a threshold x that is an unstable fixed point of (, then s8x is

asymptotically unstable with respect to iterated best response. As a goes to 0, arbitrarily

small amounts of pessimism or optimism will push players' behavior away from sx. Hence, a

Markovian equilibrium associated to a fixed point x of ( will be robust to strategic uncertainty

if and only if x is a stable fixed point of (. The basin of attraction of x with respect to (

measures the amount of strategic uncertainty that can be introduced before the players'

behavior is perturbed away.

Finally, this result restricts possible non-Markovian strategies: asymptotically, there can

be no non-Markovian equilibrium that is strictly contained within two consecutive Markovian

equilibria with respect to -_.
13Computations can be further simplified by considering the mapping ( H-4 R defined by, ((x)

xRD(NVi(x),NVi(x)), where NVi(x) = 1-Prob(w>x) E[gi (W 2 E i)1x>w]. Computing ( is simpler

than computing ý and both functions coincide around their respective fixed points. See Lemma 17 in
Appendix A for more details.



4 Applications

This section makes the case that the class of exit games introduced in Section 2 provides

a practical framework to model miscoordination risk, and yields predictions that are qual-

itatively different from those obtained by focusing on Pareto-efficient equilibria under full

information. Section 4.1 revisits the partnership game of Section 2.2 and shows how under

private information, miscoordination fear can drive players to immediate exit even though

the likelihood of miscoordination is vanishing. Section 4.2 shows how results from Section 3

can be used to define a simple criterion for the robustness of equilibria to miscoordination

fear in exit games with approximately constant payoffs. As an example, Section 4.3 explores

how wealth affects agents' ability to cooperate and shows that taking into account miscoor-

dination fear yields predictions that are both intuitive and qualitatively distinct from those

obtained under full information. Finally, Section 4.4 uses the example of repeated Cournot

competition to show how exit games can be used to study the properties of trigger equilibria

in repeated games with noisily observed states.

4.1 Miscoordination fear in the partnership game

Consider the partnership game introduced in Section 2.2. Flow payoffs are symmetric and

given by

S

E

S E

Wt wt - C + /3VE

b + VE VE

where payoffs are given for the row player only and C > b > 0. Under full information there

exists a Pareto dominant equilibrium, of value V, in which players stay whenever the state

wt is greater than a minimum threshold w defined by

w+OV = b+VE

V = E [(wt + /3V)l wt >w] + F(w)VE.



If we use Pareto efficiency as a selection criterion in this full-information game, then the

magnitude of C has no impact on players' behavior. Let us show this is not the case anymore

when players privately assess the state of the world.

From Theorem 2, we know that the extreme equilibria of F, are asymptotically charac-

terized by the fixed points of the mapping (D. Hence, we are interested in the comparative

statics of extreme fixed points of ( with respect to C. Because the game is symmetric, fixed

points of 4 will be symmetric and (D can be restricted to a mapping from R to R. The risk

dominant threshold of the augmented game P0 (V) is given by the equation

XRD(v) + V - b - VE = VE - XRD(V) + C - VE

so that xRD(V) = (1 - 3)VE + b-C + 3vI. The mapping ( is defined by,

(10) V VE [VE, +oo), 4(V) = VE + f (w + fV - VE)1w>RD(V)f(w)dw.
JwER

Figure 1 summarizes simulations of 1 in which f is a Gaussian distribution of parameters

(p, q2). In the cases represented in Figure 1, VE = 5, i = 0.7, C = 3, b = 1 and p =

3. As Figure 1(a) shows in the case of 7 = 1, private assessments of the state of the

world can dramatically reduce the set of rationalizable strategies. The range of equilibrium

values shrinks from the interval [5.3, 9.9] under full-information to the singleton {7.4} once

players' fear of miscoordination is taken into account. Interestingly, as the standard-error

rq diminishes, the set of equilibria that are robust to miscoordination risk changes a lot

even though extreme equilibrium values under full-information vary very little. Figure 1(b)

corresponds to the case q = 0.2. Under full information, the set of equilibrium values is

[5.1, 9.8] and does not differ from the case q = 1 by much. However, unlike the case ) = 1,

the game with private information now exhibits multiple asymptotic equilibria: one middle

equilibrium that is unstable with respect to iterated best-reply, and two extreme equilibria

associated with values 5.2 and 9.5, that are stable with respect to iterated best-reply. Note

that the two extreme equilibrium values under miscoordination risk are actually very close



to the extreme equilibrium values under full information1 4.

One can also derive comparative statics with respect to C directly from expression (10).

Indeed, we have, - f(xRD(V)) (xRD(V) + V - VE). Since xRD(V) is the risk-

dominant threshold of o0 (V), it must be that for w = xRD(V), staying is a strict Nash

equilibrium of the game G(V, w). Hence, we obtain that (xRD(V) + V - VE) > 0. This

shows that -(V) < 0. Since (P is an increasing mapping, downward shifts of b also shift

its extreme fixed points downwards. Hence, we conclude that the extreme fixed points of

D are strictly decreasing in C. Under a global games information structure, worsening the

payoffs upon miscoordination diminishes the players' ability to cooperate, even though the

probability of actual miscoordination is vanishingly small.

In fact, as C goes to +oo, x(V) goes uniformly to -oo over any compact. This im-

plies that over any compact, I(V) converges uniformly to the constant VE. Since we know

that independently of C, fixed points of 4 must belong to [VE, V], this implies that as

limco lim_ 0 VH(C) = VE, and immediate exit is asymptotically the only rationalizable

strategy that is robust to miscoordination fear. Given that having C go to +00oo does not

affect the Pareto efficient equilibrium of the full information game, this shows in a stark way

how modeling miscoordination fear can generate new predictions. Section 4.3 illustrates this

point in a richer economic context by using the robustness criterion developed in Section 4.2.

4.2 Robustness of cooperation in games with constant payoffs

This section considers the limit where the distribution f of states of the world w becomes

arbitrarily concentrated around a particular state w0 . Interestingly, at the limit, the sensitiv-

ity of cooperation to miscoordination risk only depends on the payoffs at w0 . This allows us

to define a simple explicit criterion for the robustness of cooperation in games with constant

payoffs. The example of Section 4.3 will exploit that criterion to investigate the effect of

wealth on agents' ability to cooperate.
14This could potentially suggest that as the underlying distribution f becomes concentrated around a

particular state of the world wo (here wo = 1), miscoordination risk has no impact on the sustainability of
cooperation. Section 4.2 shows that this is not the case.



Definition 12 (global games extension) Consider a vector of payoff functions

S= (g, W12, W 1 W 2) X (g, W2 W 1 W2

and a sequence {fn}neN of density functions with convex support, converging weakly to a

Dirac mass at wo when n goes to infinity. The sequence of game structures 7rn = (7, f) is

said to be a global games extension of the full information game with constant payoffs 7(w0 )

whenever, for all n e N, the payoff structure 7r, satisfies Assumptions 1, 2, 3, 4 and 5.

Note that a game with constant payoffs y(wo) can admit multiple global game extensions,

which can have different payoff functions and different densities.

Assumptions 2 and 3 only make sense in a global game context, Assumptions 1, 4, and 5

however naturally extend to games with constant payoffs. Indeed Assumption 1 is trivially

satisfied, and Assumptions 4, 5 are required to hold only when the state of the world is wo.

Lemma 13 Any exit game with certain flow-payoffs y(wo) satisfying Assumptions 4 and 5

admits a global game extension.

Consider a global game extension {lrn}neN of some game with constant payoffs y(w0),

and {4n}nEN the associated value mappings. Let V H and V L denote the highest and lowest

fixed points of 4ý. Denote by VH the vector of values obtained by players if they stayed

every period in game y(wo) and VL = (WM2(Wo), Wý2i (Wo)) the values they would obtain

upon immediate exit.

The case of greatest interest - considered in the remainder of this section - is the one in

which staying is a Nash equilibrium whenever players expect continuation values VH, but

exit is the only Nash equilibrium when players expect continuation values VL. As before,

we denote by G(V, w) the full information augmented game

S E

gi(wt) + 3V1 W12(wt) where i is the row player.



The next proposition shows that in games with approximately constant payoffs, the robust-

ness of cooperation to miscoordination fear is entirely characterized by the payoffs at wo.

Proposition 4 (robustness to miscoordination fear) Whenever staying is the risk-dominant

equilibrium of game G(VH, w0), as n goes to infinity, V L converges to VL and V H converges

to VH.

Whenever exit is the risk-dominant equilibrium of game G(VH, w0 ), as n goes to infinity,

V L converges to VL and V H converges to VL.

Proof: Denote by Vn(x) the vector of values players would obtain by best replying to sx

under full information for the payoff structure 7ir.

Let us first prove that V L always converges to VL as n goes to oc. Since VL is the value

of immediate exit, it is clear that lim inf VL > VL. Since staying is not an equilibrium action

when players expect continuation values VL, it must be that there exists T > 0 such that

xRD(VL) > wO + T. By continuity of XRD this implies that there exists 6 > 0 such that for

all V satisfying V- _VLI c < 6, we have XRD(V) > wo+T/2. Convergence of fn to a Dirac

mass at w0 implies that there exists N such that for all n > N, |V(wo + T/2) - VLI , < 6.

This implies that for all n > N, (n(wo + T/2) > wo + T/2. Hence n must have a fixed point

above w0 + 7/2. Since f, converges to a Dirac mass at wo the value pair associated with

such an equilibrium converges to VL as n goes to infinity. Hence, lim V L = VL.

Assume that staying is risk-dominant in G(VH, w0 ). This means that there exists T > 0

such that xRD(VH) < w 0 - 7. By continuity of xRD this implies that there exists 6 > 0 such

that for all V satisfying IV - VH H < 6, we have xRD(V) < wo - T/2. Convergence of f"

to a Dirac mass at w0 implies that there exists N such that for all n > N, ||V(w 0 - T/2) -

VH H < J. This implies that for all n > N, (,(wo - 7/2) < wo - T/2. Hence $n must have

a fixed point below wo - 7/2. This and the convergence of f, to a Dirac mass at wo implies

that as n goes to infinity, V H converges to VH.

Assume now that exit is risk-dominant in G(VH, wo). This means that there exists T > 0

such that xRD(VH) > WO+ T. By continuity of xRD this implies that there exists 6 > 0 such

that for all V satisfying V < VH + 5, we have XRD(V) > wo + 7/2. Convergence of fn, to a



Dirac mass at w0 implies that there exists N such that for all n > N, V,(+00) < VH +6.

This implies that for all n > N, and all x E R, ,n(x) > w0 + T/2. Hence all fixed points of

(, are above w0 + T/2. This and the convergence of f, to a Dirac mass at w0 implies that

as n goes to infinity, VH converges to VL.

Because this result does not depend on the particular global games extension of the

game with constant payoffs y(w0 ), Proposition 4 can be used to define a simple robustness

criterion for cooperation in exit games with constant payoffs. According to this criterion,

whenever the continuation value associated with full cooperation is high enough for staying

to be risk-dominant in the augmented one-shot game, then full cooperation is robust to the

fear of miscoordination. However if exit is the risk-dominant equilibrium in the augmented

game, then immediate exit is the only robust equilibrium of the game with constant payoffs

-y(w0 ). Section 4.3 provides an illustration of how the robustness criterion of Proposition 4

can yield predictions that are qualitatively different from those obtained when focusing on

Pareto-efficient equilibria of the full-information game.

4.3 Wealth, miscoordination fear, and cooperation

This section investigates whether wealth facilitates cooperation or not. It is shown that

taking into account the players' fear of miscoordination generates qualitatively new insights

about the forces that affect players' ability to cooperate. In the exit game considered here,

two symmetric players can cooperate on a project which increases their regular income I

by an amount II. Each player can either cooperate (Stay) or defect (Exit). When both

players stay, the life of the project is extended by one period, otherwise the project dies next

period and the players get their baseline stream of income. More precisely, we consider the

symmetric exit game with the following, constant, flow payoffs

S

E

S E

u(I + HI) u(I - L) + 1%3 u(I)

u(I + G) + -',u(I) u(I) + 1 3 u(I)



where payoffs are given for the row player, G > II > 0, L > 0, I > L, and u is a concave

twice differentiable utility function defined over (0, +oo).

In this game, the value of full cooperation is VH = 1u(I + H) while the value of

immediate exit is VL = 1u(I). Under full information, full cooperation will be sustainable

if and only if

11) [u(I + H) - u(I)] > u(I + G) - u(I + II)
u(I+G)-u(I+rI)<

which is equivalent to g(I) U (I+n)-u(I ) < -

Proposition 5 (wealth makes cooperation harder under full information) Whenever

u exhibits (strictly) decreasing absolute risk aversion (r - -" decreasing), then g is (strictly)

increasing in I.

Decreasing absolute risk aversion is a standard property of utility functions. For instance

it is satisfied for the class of CRRA functions u(x) = p(xP - 1), with p E (-c0, 1). Hence

Proposition 5 implies that for natural utility functions, focusing on the Pareto efficient

outcome of the game with full information yields the prediction that wealth makes it harder

to cooperate. While this prediction is not entirely counter-intuitive - it simply states that

the rich just cannot be bothered to cooperate - the fact that it holds for all feasible levels of

wealth is rather surprising. This result, however, does not hold anymore once we consider

the impact of miscoordination fear.

The game defined above satisfies the conditions of Lemma 13, hence, it admits a global

game extension, and we can use the robustness criterion of Proposition 4. Cooperation

is robust to miscoordination fear if and only if staying is the risk-dominant action in the

augmented symmetric one-shot game

S

E

S E

u(I + II)+ /3VH u(I- L) + 1
1lu(I)

u(w + G) + -u(I) u(I) + u(I).



Because the game is symmetric, staying will be risk-dominant if and only if

(12) 3 u(I + II) - u(I)] > u(I + G) - u(I + II) + u(I) - u(I - L)

value of coop. dev. tempt. miscoord. loss

u(I-D)-u(I-L)<

which is equivalent to h(I) g(I) + u(I+-D)-u(I-L)u(In)-(I-- 1-13

Condition (12) has an intuitive interpretation: cooperation is robust to miscoordination

risk if and only if the value of continued cooperation is greater than the sum of the devia-

tion temptation and the miscoordination loss. For the same reason that g(I) is increasing

in I when u exhibits decreasing absolute risk aversion (DARA), the second term of h is

decreasing in I when u is DARA, and hence, the monotonicity of h is unclear. The forces

of deviation temptation and miscoordination fear push in opposite directions. The following

proposition shows that when the loss L upon miscoordination is large enough, the prediction

of Proposition 5 is entirely overturned: wealth facilitates cooperation at every income level.

Proposition 6 (wealth facilitates cooperation under miscoordination fear) Whenever

L> G and the coefficient of absolute risk aversion r -u" is decreasing and (strictly) con-

vex over (0, oc), then h is (strictly) decreasing for I (L, +o-O).

For DARA utility functions, it is quite natural for r to be convex. It simply states that the

players' risk tolerance is increasing, but at a diminishing rate. This property is satisfied, for

instance, for all CRRA functions. Proposition 6 implies that when strategic risk is significant

enough, the impact of wealth on miscoordination fear always dominates the impact of wealth

on the deviation temptation. Moreover, even when r is not convex, or L < G, the following

lemma shows that at least for the very poor, wealth facilitates cooperation once the players'

fear of miscoordination is taken into account.

Lemma 14 Consider any concave function u such that lim_,o u'(x) = +oo, then there exists

I* > L such that h is strictly decreasing over the range (L, I*).

Because the miscoordination loss looms very large for the poor, they are particularly wary of

miscoordination risk and choose not to purse projects that require them to rely on a partner.



This example shows how taking into account the robustness of cooperation to miscoor-

dination fear can yield new comparative statics that are qualitatively different from those

obtained by focusing on Pareto efficiency in the full-information game.

4.4 Trigger strategies in a game of repeated Cournot competition

This section uses the example of repeated Cournot competition to illustrate the point that

selection results from Section 3 can be used to study trigger strategy equilibria in two-by-two

repeated games with noisy assessments. In particular, the class of perfect Bayesian equilibria

supported by trigger strategies can be mapped into the class of subgame perfect equilibria

of the exit game in which players get the repeated Nash continuation value upon exit.

In each period, two firms i c {1, 2} can produce a quantity of good Qj E {Q, (1 + p)Q}.

The additional cost of producing pQ units is C > 0. The unit price of the good is Pt =
, where Dt represents the strength of demand15 . Parameters p, C, and Q are commonQl+Q2 '

knowledge, positive, and fixed in time. The intensity of demand, {Dt}tEN, is an i.i.d. sequence

of positive numbers drawn from some distribution fD with c.d.f. FD and support [0, +oo).

Each firm gets a signal of current demand strength, xi,t = Dt+oui,t. Each player's production

decision is ex-post observable. Firms are risk neutral.

We say that a firm cooperates when its production is Q and defects when its production

is (1 + p)Q. Under full information, one-shot payoffs (for the row player) are given by

Coop.

Defect

Coop. Defect

1 Dt DtD2 2-pDt
+!D Dt - C.

2+p 2C

Clearly, for any Dt, cooperation is the efficient outcome of this one-shot game. Define

DNE = 22C. Whenever Dt > DNE, then defection is a dominant strategy. Inversely,p
whenever Dt < DNE, then cooperation is a dominant strategy. Hence, this one shot game

is dominance solvable. Denote VNE the value of playing this one-shot Nash equilibrium

15Note that this particular functional form facilitates the analysis by making the total value of sales
constant.



repeatedly under full information. Because this game exhibits increasing differences with

respect to the state of the world wt - -Di, it satisfies the assumptions of Carlsson and

van Damme (1993). Hence, for a small enough, this game is also dominance solvable under

a global games information structure. Denote by V~NE the value of repeatedly playing the

one-shot Nash equilibrium under a global games information structure. Note that as o goes
to 0, V~NE converges to VNE.

The question is whether repeated interaction allows firms to sustain greater cooperation

under trigger equilibria. Under trigger strategies players revert to repeatedly playing the

one shot Nash equilibrium following any defection. In between periods, players also have

the option to return to the repeated one-shot equilibrium. This insures that players always

expect a continuation value weakly greater than VJNE. Any trigger strategy equilibrium must

be an equilibrium of the exit game F, with flow payoffs

S

E

S E

½Dt 1 Dt + ± VNE
2 +2+p

l __Dt _ C + /3VOE 1 Dt - C + O3V&E.2 ±p

Because in this game payoffs upon exit are indexed by o, we are not exactly in the framework

of Section 2.3, the game, however, satisfies the more general assumptions of Appendix C:

since players have the option to exit in-between periods, rational players expect values V

greater than VJNE and the equilibrium symmetry assumption holds since the one-shot game

with common knowledge has only symmetric equilibria; increasing differences in the state

of the world holds with respect to -Dt; dominance holds since staying is dominant for Dt

close enough to 0, and exit is dominant for any Dt high enough; finally, the assumption that

"staying is good" holds because

Ai (D I VNE P Dt = B1(,t) > 0.

2 )  (2 + p)

As o- goes to 0, rationalizable strategies of game F, are bounded by extreme Markovian



equilibria 16 whose continuation values converge to the highest and lowest fixed points of

16(V) = -E[D_] - C + 3VNE + (C+ J3V - OVNE)FD RD(V))(D(V VE[D)] D(xRD(V) )2

Where xRD(V) = 2+P(2C+/V--tVNE). It is interesting to note that 1(VNE) - VNE, hence

asymptotically, the one-shot Nash equilibrium is always an equilibrium of F,. Furthermore

((DNE) = DNE, independently of the particular distribution of states of the world.

We are particularly interested in the case where there can be multiple equilibria, and

in their asymptotic stability properties. The asymptotic local strong rationalizability of

Markovian equilibria of F, is characterized by the stability properties of fixed points of the

mapping (. Because we are considering symmetric games, the stability of fixed points of

is equivalent to the stability of fixed points of 4.

Lemma 15 Define g = log fD. Then whenever 02 g/OD2 < 0 and O3g/OD <_ 0, the map-

ping D is S-shaped.

Notably, this lemma covers the case of exponential distributions and truncated Gaussian

distributions. For such distributions, 4 will admit at most three fixed points.

Figure 2 presents various simulation in the case where fD follows a truncated Gaussian

of parameters (/, 772). In all cases, C = 2, p = 1,,q = 1, and / = 0.7. The different

cases correspond to different values of y. Low values of p put greater weight on states Dt

that make cooperation easier to sustain while high values of ,a make cooperation typically

harder to sustain. For all simulations DNE = 12 is an equilibrium threshold. Note that

fixed points of ( below DNE do not correspond to equilibria, since they are associated with

continuation values less than VNE which players can opt out of. For P = 8, Figure 2(a)

shows there is a unique rationalizable strategy with threshold DNE. In this case, players

already cooperate most of the time in the one-shot Nash equilibrium. Hence incremental
16 Note that in this example, because the game exhibits increasing differences in -Dt rather than Dt,

for a given cooperation threshold x, players cooperate when Dt is less than x rather than greater than x.
Hence the greatest equilibrium with respect to - is the one which is associated to the greatest cooperation
threshold rather than the smallest cooperation threshold.



amounts of cooperation bring only very little gain in utility and cannot be self-sustained.

Figure 2(b) corresponds to the case where p = 12. It is particularly interesting because only

two of the fixed points of ( correspond to Markovian equilibria. From Theorem 3, we know

that the lowest one - corresponding to the one-shot Nash equilibrium - is unstable with

respect to iterated best response, while the highest one is stable. This highest equilibrium

is the only stable equilibrium of the game. Hence this higher equilibrium can be viewed

as the natural outcome: any small amount of optimism will lead players to coordinate on

the high cooperation equilibrium. Finally, Figure 2(c) corresponds to the case where p = 15

which puts greater weight on states of the world that make it difficult to sustain cooperation.

There are three equilibria, DNE being the lowest. In this case both extreme equilibria are

stable.

5 Conclusion

This paper provides a framework to model miscoordination fear in dynamic games. In par-

ticular it analyzes the robustness of cooperation to small amounts of observational noise in

a class of dynamic games with exit. In equilibrium, this departure from common knowledge

generates a fear of miscoordination that pushes players away from the full information Pareto

efficient frontier, even though actual miscoordination happens with a vanishing probability.

Payoffs upon miscoordination, which play no role when considering the Pareto efficient fron-

tier under full information, determine the extent of the efficiency loss. The greater the loss

upon miscoordination, the further will players be pushed away from the full information

Pareto frontier.

The first step of the analysis is to show that for cooperation games with exit, the set of

rationalizable strategies is bounded by extreme Markovian equilibria. The second step uses

the dynamic programming approach to subgame perfection of Abreu, Pearce, and Stacchetti

(1990) to recursively apply selection results in one-shot global games. As players' signals

become increasingly correlated, this yields a fixed point equation for continuation values

associated with Markovian equilibria. Whenever this mapping has a unique fixed point,



the set of rationalizable strategies of the game with perturbed information converges to

a singleton as signals become arbitrarily precise. However, unlike in one-shot two-by-two

games, infinite horizon exit games can still admit multiple equilibria under the global game

information structure.

The dominance solvability of one-shot global games carries over in the weaker form of

local dominance solvability, which can be interpreted both as a stability property and as a

form of robustness to strategic uncertainty. As noise vanishes, the local dominance solvability

and basins of attraction of Markovian equilibria are characterized by the stability of fixed

points of an explicitly computable increasing mapping from R to R. The greater the basin

of attraction of an equilibrium s, the more robust it is to strategic uncertainty.

Finally, by considering various examples, the paper makes the case that this framework

is simple and flexible enough to be used for applied purposes, and that it provides new

insights about cooperation that could not be obtained by focusing on Pareto efficiency under

full information. In particular, the model can be used to define a robustness criterion for

cooperation in exit games with constant payoffs: whenever staying is the risk-dominant

strategy of the one-shot game augmented with the players' continuation values, cooperation

is robust to any global game extension; whenever defection is the risk-dominant strategy of

the one-shot augmented game, then for any global game extension, the set of rationalizable

strategies shrinks to immediate exit. This criterion can be readily used in applied games and

provides insights on the determinants of cooperation that are qualitatively different from

those obtained under full-information.
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Figure 1: Equilibria of the partnership game depending on r7. VE = 5, 3 = 0.7, p = 3, C = 3
and b = 1
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Cooperation threshold x

(a) Unique stable equilibrium: p = 8.

CL
CL

Cooperation threshold x

(b) One unstable and one stable equilibria: =
12.

(c) One unstable and two stable equilibria: M =
15.

Figure 2: Trigger equilibria in a game of repeated Cournot competition depending on p.
C = 2, 3 = 0.7, p = 1, i7 = 1. Fixed points of ( below x = 12 do not correspond to
equilibria.



Appendix A: Proofs

Proof of Lemma 1: This is a direct application of Theorems 2, 3 and 4 of Chassang
(2006). U

Proof of Lemma 3: This is a direct application of Theorem 1 of Chassang (2006). U

Proof of Lemma 6: Consider s' G BRj,,(s,), and denote V the value player i expects from
best-responding. The one-shot action profile a' induced by s' must belong to BRj,,(sýr, V).
Lemma 3 of Chassang (2006) implies that there exists 5 such that for all a E (0, -), there
is a unique such one-shot best-reply. It takes a threshold form a,' and the threshold x' is
continuous in both x and V. This concludes the proof. U

Proof of Theorem 1: This is a corollary of Proposition 1. The methodology of Milgrom
and Roberts (1990) and Vives (1990) applies almost directly. Let R2 denote the set of
rationalizable strategies of player i , U the set of all possible strategies and, S and E the
strategies corresponding to "always staying" and "always exiting". Define BR = BRioBR-i.
R4 is the largest set of strategies such that Ri C BR(iR) and R__ = BR-i(Ri).

Noting that U = [E, S], since S and E are Markovian, Proposition 1 implies that
BR(U) C [BR(E), BR(S)]. Since the best response to a Markovian strategy is Markovian,
we know that BR(E) and BR(S) are Markovian. This implies we can iterate forward. For
all k E N, we obtain that Ri C [BRk(E), BRk(S)]. Because {BRk(E)}k•N and {BRk(S)}kEN
are monotone sequences of Markovian strategies, they are equivalent to monotone sequences
of indicator functions specifying for all state of the world w E R whether the player should
stay or exit. As k goes to infinity, these sequences converge in probability to limits BR"(E)
and BR'(S). We get that, Ri c [BR"(E), BR"(S)]. Denote by sL and sH these extreme
strategies (omitting the u subscript for simplicity). By continuity of the best response map-
ping with respect to convergence in probability, we have sH = BR(sH) and s = BR(s ),
so that the pairs of strategies (sH, BRi(sH)) and (sL, BRj(sL)) are Nash equilibria in
addition to being rationalizable.

It is easy to check that whenever s is a threshold form Markovian strategy, then As-
sumption 3 implies that BRi(s) is also Markovian and takes a threshold form. Since E and
S take threshold forms, then by induction, extreme strategies also take a threshold form. U

Proof of Lemma 7: Consider the highest equilibrium s'. For any rationalizable strategy
si, s_ - sHi. Assumption 5, implies that player i gets a higher value from best-replying
against si ,,,, than s-i. Thus Vi ,i, in the functional sense. Identical reasoning yields the
other inequality. M

Proof of Lemma 8: Since Vn converges to V and ( is continuous, for all - > 0, there
exists N 1 such that for all n > N 1

I||(V) - V Ilo _ I (Vn) - Vn loo+ -/2.



Since 0, (.) converges uniformly to D and V, is a fixed point of 0,., there exists N 2 such
that for all n > N2 , II|(Vn) - VnIloo • r/2. This yields that 1D1(V) - VII T for all T > 0.
Hence, V must be a fixed point of D. N

Proof of Lemma 9: Indeed, it results from expression (7) that

9XRD 9XRD
IIk(V)-*(V')II - ,IIV-V'111+llfll+oo E |ig1+03Vj-W'21100 I + 1 |IIv-v'|11

iE{1,2}

Since Ei{ 1,2 1} I91 + OVi - -21 ' + o- Io, is finite, for any 6 > /, there exists II f IIoo
small enough such that 14P(V) - 1(V')I11 • 3J|V - V'|| 1.I

Proof of Lemma 11: BRVi,,(x) is continuous in x since it is the maximum of a bounded
function continuous in x. In conjunction with Theorems 2 and 4 of Chassang (2006), this
yields the first part of the lemma.

Lemma 10 implies that for a small enough all Markovian equilibria must take a threshold
form. Such an equilibrium is associated with values (V, Vi) and thresholds x = (xi, x_)
which must satisfy Vi = BRVi,a(xi) and (xi, xi) = x*(Vi, Vi). Hence, Markovian thresh-
olds must satisfy x = ( (x). Inversely, if a vector x satisfies x = (,(x), then the values
V = (V, V_) defined by V = BRVi,,(x_,) must satisfy, V = ¢(a,V) and hence, using
Theorem 2, values V support a Markovian equilibrium with thresholds x. This gives us the
second part of the lemma.

The third part of the lemma is an almost immediate consequence of Theorem 3 of Chas-
sang (2006). One only needs to show that BRV,,(.) converges uniformly to BRVi,o (.) as a
goes to 0. Indeed, because states of the world have a bounded density and payoffs are Lips-
chitz, the best response when a = 0 is almost optimal when a > 0 and small and vice-versa.
Hence, there exists K > 0 such that for all x E R, |BRVi,o(x) - BRVi,,(x)| < Ka.

The fourth part of the lemma is a consequence of the fact that xRD(V) is decreasing in
V and Assumption 5 which implies that BRVi,o(x) is decreasing in x. U

Proof of Proposition 2: A direct proof can be given but it is faster to use the local
dominance solvability property that will be proven in Theorem 3. For any x e R, BRP,, o
BR-i,,(s) takes a threshold form, sx,. Define X,(.) by x~,(x) = x'. For a small enough,
Lemma 6 and Proposition 1 imply that X, is continuous and increasing. By definition of X,,
sx is a threshold form Markovian equilibrium of Fr if and only if X,(x) = x.

Consider a non singular fixed point of ( denoted by x. Indeed, Assume that x is a stable
fixed point - that is ý cuts the 450 line from below - then Theorem 3 implies that, for all
r > 0, there exists 5 > 0 and q e (0, T) such that for all a e (0, 5), the interval [x - q, x + 7]
is stable by X,. Since X, is continuous and increasing, this implies that it has a fixed point
belonging to [x - 77, x + 7]. This proves the lower hemicontinuity of stable fixed points of (.

Assume that x is unstable. Then for any T > 0, there exists q E (0, T) such that x -
and x + r respectively belong to the basins of attraction of a lower and a higher fixed point.



Proposition 3 implies that there exist 7' and q' in (0, 77) such that xo(x - 7') < x - 7' and
X,(x + 7") > x + ,'. Since x, is continuous, this implies that it admits a fixed point within
[x-77', x+7/"]. This proves the lower hemicontinuity of unstable non-singular points of . U

Lemma 16 Consider x a fixed point of ý. Then there exists i > 0 and 5 > 0 such that for all
o E [0,5), x' e [x - q,x + 77], and i E {1, 2} there exists x" E R such that BRi,,(s') = {sx}
and Ix" - x'I < 2a.

Proof of Lemma 16: Since, x is a fixed point of (, it must be that at w = x, both
(E, E) and (S, S) are strict Nash equilibria of the game G(BRVi,o(x), BRVi,o(x), w). Since
BRVi,,(x') is continuous in a and x', and payoffs are continuous in w, there exist 77 > 0 and
5 < q/4 such that for all a < 5 and x' E [x - 77, x + 77], then for all w E [x' - a, x' + a], both
(E, E) and (S, S) are strict Nash equilibria of G(BRVi,,(x'), BRV.i,,(x'), w).

Take a < Y and x' e [x - 77/2, x + 77/2]. Assumption 3 implies that for any a, the best
reply to a threshold form strategy is also a threshold for strategy. This implies that indeed
BR,,.(x') takes the form sx,,. Let us show thatix" - x'I < 2u. When she gets a signal
xi,t < x' - 2a, player i knows for sure that player -i will be playing E. From the definition
of 77, we know that (E, E) is an equilibrium of G(BRVi,,(x'), BRVi,,(x'), w) for all values
of w consistent with a signal value xi,t. Thus, it must be that player i's best reply is to play
E as well. Inversely, when she gets a signal xi,t > x' + 2a, player i knows that player -i will
play S, and her best reply is to Stay as well. This implies that Ix" - x'I < 2o. U

Lemma 17 Define the function R R -R R by, ((x) = xRD(NVi(x), NV-i(x)), where
NVi(x) - 1-Prob(w>x) E [gi + (Wi2 - gi)lx>w] is the value player i obtains when both players
naively follow the threshold strategy sx.

Then, x is a fixed point of ý if and only if it is a fixed point of C. Furthermore, for any
fixed point x, there exists 7 > 0 such that for all x' e [Ix - 7, x + 7], ((x') = ((x').

Proof of Lemma 17: Lemma 16 implies that for a = 0, whenever x is a fixed point of (,
then there exists 7 > 0 such that for all x' e [x - r, x + 7], BRi(s.,) = sx,. Hence, for all
x' e [x - 77, x + 7], BRVi(x') = NVi(x') and thus, ((x') = ((x').

Moreover whenever x satisfies ((x) = x, then sx is a threshold form Markovian equi-
librium of the full information game F0, which implies that BRVi(x) = NVi(x). Thus
((x) = ((x) = x and x is also a fixed point of (. N

Proof of Lemma 12: Let us first show that the set P of payoff structures such that
has a finite number of fixed points and has a derivative different from 1 at each of these
fixed points is open in I1. From Lemma 17, we know that x is a non-singular fixed point
of ( if and only if it is a non-singular fixed point of (. One can compute ( explicitly :
((x) = xRD(NVj(x),NV_j(x)), where NYV(x) l1pProb(w>x)E [gi + (Wi2 - gi)1x>w]. Since



xRD(i, V-i) is defined as the locally unique solution of the C1 equation

Q,(x, Vi, V-0) =- l (9' + OVi - W21) - l (W22 - W12) = 0
iE{1,2} iE{1,2}

the implicit function theorem implies that RD exists and is a continuous expression of the
derivatives of the payoff functions (gi, W 2 Wd, WJ2 )iE{1,2}. Hence ( admits a derivative,

0 xRD ( _1i(R
x = e{1,2}  D (W 2(xRD) i(xRD))

x 1r 1 - fProb(w > x)

O f (X)- )2E[g ' + (W 2 - gi)lx>w] .(1 - PProb(w > x))ý

This derivative is continuous with respect to x and continuous in the payoff structure with
respect to 11 -I In1 . Assume that for a payoff structure r, the mapping ( has a finite number
of fixed points and has a derivative that is different from 1 at all it's fixed points. Then there
exists r > 0 such that for any fixed point x, 2 is either less than 1 - q over [x - q, x + 77] or
greater than 1 + n over [x - n, x + q]. A payoff structure r close enough to r, is associated
with a mapping ( such that all fixed points i of ( belong to [x - q, x + q] and such that
its derivative over [x - i7, x + 7/] is either greater than 1 + 7/2 or lower than 1 - 7/2. This
implies that all payoff structures close enough to r are also associated with mappings ( that
have a finite number of fixed points and have a derivative different from 1 at each of these
fixed points.

Let us now show that P is dense in Il. Consider a payoff structure 7r and v > 0. We
know from Assumption 2 that fixed points of ( are restricted to a compact region [1, Y]. By
Weierstrass's Theorem, there exist uniform polynomial approximations of the derivative of
the vector of functions r over [x - 1, + 1]. Hence, one can find a payoff structure R such
that 1I1 - Illnl < v/2, 7r, r coincide over the complementary of [1, Y], and r is polynomial
over [_, T]. By Lemma 18, this implies that the mapping ( is analytic over [x, 5]. Let us now
define the family of payoffs i by,

Vw E R) j•,'•(w) - i(w)

W22'(W) = W422(W)
1W(W) = W12(W - 6) + W(w) - §i(w - 6)

WV (W) = W 1(W -6 ) + W22 -(W) (W2 -6)

This new payoff structure is such that for any 6, and any x E R, (8(x) = (x) + 6. Note
that for 6 small enough, V is arbitrarily close to r. More over is analytic in x. Whenever
61 # 62 then 61 and C62 have strictly different fixed points. Assume that for every 6 E (0, v),
there exists a fixed point x6 of ( such that C6 is singular at x6 . this implies that the deriva-
tive of ( is equal to 1 an infinte number of times in a compact set. Since the derivative of (
is analytic, this would imply that it is identically equal to 1 over [x- 1, T + 1]. Since ( has a



fixed point in [_, Y], this would imply that ( is equal to the identity over [I - 1, Y + 1] which
contradicts the fact that fixed points of ( belong to [X, 7]. N

Lemma 18 (Analyticity of () Whenever functions of the payoff structure

= Xi{ 1,2} (g 2 W1 , 2 W21 W2) xF

are polynomial over the range [w, U] then the mapping ( is analytic.

Proof: We give the proof for the stationary case. First, note that xRD(Vi, V_) is a simple
root of the polynomial Q(w) = IiE{1,2}(gi(w)+ 7V3 - Wi(w)) - Iie{1, 2}(W 2 (w) - W2(w))
Indeed, Q(w) is strictly decreasing at xRD. A simple root of a polynomial is jointly analytic in
the polynomial's coefficients. This implies that xRD(1, V _) is analytic in (Vi, Vi). Further
more the functions Vi(x) and VIi(x) can be computed explicitly:

Vi(x) = 1 -P( > x)E[W 2(x) + (g -W2w>-

Clearly, V14(x) is analytic in x. Since the composition of analytic functions is analytic, this
implies that ( is analytic in x. U

Proof of Proposition 3: Let us prove the first part of the proposition. Define baj(x) =
inf{ < x I Vy e [2, x], (y) > y}. Because x is stable, ba_(x) is well defined. We distinguish
two cases, either ba_(x) = -oo or ba_(x) e R.

If ba_(x) = -oo, any x' < x belongs to the basin of attraction of x. Assumption 2
implies that there exists x such that for all a < 1, BRi,, o BR-i,,(s-oo) -< s,. Pick any
x' < min{x, x}. Using the monotonicity implied by Proposition 1, we conclude that there
exists Z > 0 such that for all a < -, BR4,, o BR-i,~,(sx,) _ BRi, o BR-i,,(soo) < Sx,.

Consider now the case where ba_(x) E R. Then by continuity of (, we have that
((ba_(x)) = ba_-x. From Lemma 16 we know that there exist ij > 0 and 5 such that
for all x' e [ba (x) - q, ba_(x) + q], and i {1, 2}, BR4,,.(sx,) = se with |x' - x'f < 2a.
By definition, we must have y > ba_(x). Thus we can pick x' e (ba_(x), ba_(x)+ rq) such
that x' < min{x, y}. We have that ((x') > x'. By continuity of ( there exists ?' such that
x' < x' and (') > x'. Using the notation BRi,,(a, V) to denote the best reply of player
i to a one shot action profile a and continuation value V, and using the fact that one-shot
action profile are identical to Markovian strategies, we obtain,

(13) BRi,, o BR_-,,(sx,) = BRi,a (BR-i (sx, BRVi,o (xl)), BRVi, (BR-i, (s~')))

We know that Ix/ - x'1 < 2a. Thus there exists i small enough such that BR_-,,(sx,) - s,.
Joint with Assumption 5, this implies that, BRV,,(BR_i,,(sx,)) 5 BRV,,(2'). Furthermore,
' < x' implies that BRV,,(x') < BRV,,(2'). Hence, using inequality (13), and the fact



that for i E {1, 2}, BR (a, V) is increasing in a and V with respect to -<, we obtain

BRt~,O BR_i,.(s.,) BRi,~ (BR _(sx,,BRVi,a(i')), BRVi,,(i'))

(14) -< BRi,c (.,BRV(,,(')) o BRi, (.,BRVi,,(c')) (Sx,)

We know from Theorem 2 of Chassang (2006) that there exists - small enough such that
for all a E (0, ) and all (Vi, V-i) E [mi, Mi] x [m-i, M ~], the game ,(V14, Vi) has a unique
rationalizable pair of strategies x*(Vi, Vi).

We know from Theorem 3 of Chassang (2006) that x*(V, Vi) converges uniformly to
xRD(V4 , Vi) as a goes to 0. This implies that x*(BRVj,,(_'), BRVi,,(i')) converges to
(((x'), ((x')) as o goes to 0. Since x' < (i'), it implies there exists 7 such that for all a < -,
x' < x*(BRVi, (F'), BRV-i,o(_')).

The fact that T,(BRV,o,('), BRVi,, (I')) has a unique rationalizable strategy and the
monotonicity of Lemma 3 imply that the sequence of threshold form strategies

(BRi, (., BRVi,,(i'))o BRi (., BRV-i,u('))) (sx,), for n c N,

converges monotonously to the Markovian strategy of threshold x*(BRV1,,(x'), BRVIi,,(x')).
Since x' < x*(BRV,, (V'), BRVi, (')), the sequence must be decreasing with respect to _.
Thus BR,, (., BRV,,(.')) o BRi,, (., BRVi,,(.')) (sx,) -< sx,. Using inequality (14), this
yields that indeed BRi,, o BR-i,, (s') Sx',.

The second part of the lemma results from a symmetric reasoning, switching all inequal-
ities. M

Proof of Lemma 13: Set wo = 0. Denote mi and Mi the bounds on value implied by

Assumption 1. For i C {1,2}, define Ai = min{1, o }. Note that Ai > 0. For

any wER and i {1, 2}, define j(w) by,

721(W) - •21 (0) ; '2 2 () = 722 (0) ; 11W) = y 1- 1(0) + w

I- 2(0)+ A•w when w > 0
712O- (0)+A7lw when w < 0

Assume that Assumption 5 holds strictly, more precisely, that, A(0, mi) > 0. Then whenever,
f, is close enough to a Dirac mass at 0, there exists a lower bound m' arbitrarily close to
mi. Pick any sequence {fn}nEN with support R and weakly converging to a Dirac mass at
0 as n goes to oo. Then there exists N such that for all n > N, A(0, m7) > 0. Since for
all w, A(w, m7) Ž> A(0, m), this implies that for all n, 7rn = (7, f) satisfies Assumption 5.
Assumptions 1, 4, 3 and 2 are easily checked. Hence {(7, fn)}n>N is a global game extension
of Y(0).

When A(0, mi) = 0, then the sequence fn has to be chosen appropriately skewed to the
right so that m7 > mi. This can clearly be done, since by skewing fn to the right, we can
give value to staying by guaranteeing future cooperation in dominant states. This essentially
puts us in the former case, and for such a sequence {fn}neN, {(7, fn)}n>N is a global game



extension of -y(0). N

Proof of Proposition 5: We have that,

(15) alog g(I) u'(I + G) - u'(I + H) _ u'(I + II) - u'(I)

I u(I + G) -u(I + IH) u((I + H) -u(I)
f+i u"(x)dx f± u"(x)dx

ff , u'(x)dx f± u'(x)dx

Consider the following lemma.

Lemma 19 For any n e {1, . .., +oo}, consider sequences {al, bil,.. ., a, b,} and {a', b',. .
such thatfor allk {1,...,n}, bk> O, b' > O, and

a < a2  a a 1 a< 2 < at
blb - b2 b - b'l - b' - - b'

then we have that a, + ""+ an < a/I + ""+ a/n

b, + + bn - b'I + + +b

For any n > 1, and k G {0,... , n}, consider the wealth levels xn I+nH+ (G - H) and
Ut,[ k n i _

y = I + -HII. Lemma 19 applies to the numbers ak = u"(yf), bk = u (y, ak u (xn), and
b' = u'(x). This yields that,

Gn rI E n=0 u if(X n) E n•- =o u I (Y n)
n k k n k-0--fl En 0 u"(Xn) nI EZ-0 u"(yn)

Letting n go to infinity and using equation (15) yields that Ologg(I) > 0. The proof can be
easily adapted to show that the inequality holds strictly whenever u exhibits strictly dimin-
ishing absolute risk aversion. N

Proof of Lemma 19: The property obviously holds for n = 1. Let us show it holds for n =
2. < < b < a2 implies the four inequalitites akb1 < a' b for (k, 1) E {1, 2}2 Summingbl -- b2 -- b' -- b' 1- k

these inequalities and dividing both sides of the resulting inequality by (b, + b2)(b' + b2)
yields the result.

We prove by induction the property for n > 2. Assume it holds for n - 1, then by
applying it to the subsequences (a, b,. . . , an- 1, bn-1) and (a' , b~, . . . , a', bY) yields that

a, + + + an-1 a• < all < a/ + -+ at

bl + - .+ b_ - b - b - b' + .+ b



We can again apply the property for n = 2 to this last inequality. It yields that

a, + -+a, a' + -+ a'al-' a < 'a1  ' ' an

bi " + bn - bl+""-+bln

which concludes the proof. N

Proof of Proposition 6: We have,

a log h(I) _

0I
u'(I + G) - u'(I- L) u'(I + II) - u'(I)
u(I + G) - u(I- L) u(I + H) - u(I)

u'(I + G) - u'(I - L) A + A2 + A3
u(I + G) - u(I- L) B1 + B2+ B3

= u'(I + G) - u'(I + r)
= u'(I + I) - u'(I)
= u'(I) - u'(I - L)

B, = u(I + G) - u(I + H)
B2 = u(I + H)- u(I)
B3 = u(I) - u(I - L)

Proving that ogh(I) <0 boils down to showing that A +A 2 +A3 < 4A. We haveaI BI+B 2+B3 B 2

A1 + A 2 + A 3 A1 B_

BI + B2+ B 3 B1 B± + B2+ B3

A 2  B2 A 3  B3

B B1 +± B2 +B3 B3 1 + B2 +B3

We know from the proof of Proposition 5, that - > 2 > A Since by assumptionB1 -- B2 -- B3'

L > G, we have B3 > B1. These last two inequalities and equation (16) imply that to prove
AI+A 2+A3 < A2 it is sufficient to show that 1 (A + A < 22 . We know from the proof of
B +B2+B3 - B22 • 1  B3  B2

Proposition 5 that

A2 > u"(I)
B2 u'(I)

(17)

Consider the following lemma.

Lemma 20 For any n G N, consider a sequence of numbers {al, bl, a2 , b2 ,... , a2n+l1,b2n+1

such that b, > b2 > .. > b2n+1 > 0,
a < < a2n+l

bl - - b2n+1

and for all i {1, . .., k} then, we have that

al + a2 + .. + a2n+l < an
bi + b2 + ---+ b2n+1 - bn

Define

where

(16)



By considering integrals as the limit of sums as in the proof of Proposition 5, this lemma
and the concavity of u imply that

(18) A1 _ u'(I + G) - u'(I + II) u" (I + G21I)

B1 u(I + G) - u(I + HI) u' (I 2 r)

A 3  u'(I) - u'(I - L) u" (I - L)
(19) < 2B3 u(I) - u(I- L) u' (I- )

Hence, by using inequalities (17), (18), and (19), we obtain that,

A- A - 2A2 < 2r(I)- r (I + (G - 1)/2)- r (I- L/2).B- B3 B2
Since L > G > G - II, and r is strictly convex, this implies that indeed

A 1  A 3  A 2A,+ A3 2 A2< 0.
B, B3 B2

This implies that < 0, and concludes the proof. U

Proof of Lemma 20: We can write,

a1 + a2 + a " + a2n+1 nI bn-i + bn+i an-i bn-i an+i bn-i(20)=+
b1 + b2 + -..+ b2n+1 E = bn-j + bn+j bn-i bn - + bn+i bn+i bn-i + bn+ii=1

By assumption, we know that a < an, and bni > bn+i > 0. This yields thatbn-i - bn+-

an-i bn-i an+i bn-i < 1 an-i an+i~ +~ + < , +
bn-i bn-i + bn+i bn+i bn-i + bn+i - 2 bn-i b24

Using the assumption that an-+ a , ! and reinjecting in expression (20) yieldsUsing~~~ ~~ th(supinta bn_-i bn+i - bn
that indeed,

al + a2 + + a2n+l <an
bl + b2 + " + b2n+1 - bn

which concludes the proof. U

Appendix B: Extension to non-stationary games

From a methodological perspective, this paper shows how selection results holding for one-
shot global games can be exploited to derive insights on the impact of a global game infor-
mation structure in dynamic games. Because the key step of the approach is to recognize
that actions in dynamic subgame perfect equilibria must be Nash equilibria in a one shot



global game with augmented payoffs, there is hope that this methodology can be scaled -
at least in part - to study the impact of a global game information structure on a variety of
other games. This appendix extends the results of Section 3 to non-stationary exit games.

B.1 The setup

There are two players i E {1, 2}, time is discrete t E {1,..., oo}, players have discount rate
3 and there are two actions A = {Stay, Exit}. In addition, payoffs are indexed by a state
of the world wt E R, which is independently drawn each period, and by a state variable
kt E K C Rd . We will discuss different processes for kt. Given the state of the world, player
i expects flow payoffs,

S E
S g'w1(wt, kt) W2 (wt, kt)
E W2, (wt , kt) WM2 (Wt 7kt)

where i is the row player. States of the world {wt}t{1,...,o} form an i.i.d. sequence of real
numbers drawn from a distribution with density fe, c.d.f. F and convex support I C R. All
payoffs, gi, W , 12 l, WM2 are continuous in Wt and kt.

The state variable kt is perfectly observable at the beginning of period t and common
knowledge. The state of the world wt is unknown but players get signals xi,t = wt + oEi,t,

where {sj,t}i,t is a sequence of independent random variables lying in the interval [-1, 1].
We allow for the possibility of players' final payoffs to be shifted by some idiosyncratic

noise qi,t independent of everything else. That makes the true state of the world unobservable
ex-post, but it is also more realistic and adds no difficulty. Let us denote ri,t = g(wi,t) + li,t
the realized payoff obtained when both players stay.

Whenever there is an exit, the game stops and we assume without loss of generality that
players get a zero continuation value. Because of exit, any history hi,t is characterized by a
sequence of past signals and past outcomes: hit -- {xi,1, ... , it ,1 , . . ) rit-1 , k1,... , kt}.
Let us denote H the set of all such sequences. We will denote Vi(hi,t) the value of playing the
game starting at history hit from the perspective of player i. Note that these continuation
values are endogenously determined and will depend on players strategies.

Assumption 6 (control) There are finite bounds on the value of continuation V E [mi, Mi].

For instance one could take the max-min and maximum values. Those bounds have to
be proven for each particular case. In the partnership game of Section 2, we had mi = 0 and
M = 110E max{VE, wt}. The tighter bounds, the easier it will be to show that the selection
results of Section 4 apply, however these bounds are mainly needed to insure compactness.

Definition 13 For any pair of functions (V, Vi) : RxRd 2 R2, we denote G(V, V_, wt, kt)
the full information one-shot game,

S E

S gi(wt, kt) + wi2(wt, kt) W12 (wt, kt)
£ Wj (wt, kt) Wi2(wks)



We denote xIy(Vi, Vi) the corresponding global game in which players get signals xi,t =
Wt + Ocit.

Assumption 7 (symmetry) For all states of the world wt, and capital stock kt, G(mi, mi , wt, kt)
has a pure strategy equilibrium. All pure strategy equilibria belong to {(S, S), (E, E)}.

Note that if Assumption 7 is satisfied, then for any V taking values in [mi, Mj] x [m_i, M_],
the game G(Vi, Vij, wt, kt) also has a pure strategy equilibrium, and its pure strategy equi-
libria also belong to {(S, S), (E, E)}.

Assumption 8 (increasing differences in the state of the world) For all k G Rd and
i {1, 2}, gi(wt, k) - W2l(wt, k) and W12(wt, k) - WM2(wt, k) are strictly increasing in wt
with a rate greater than some r > 0 independent of k.

Together, Assumptions 7 and 8 respectively insure that at any state of the world, either
(S, S) or (E, E) is a risk-dominant equilibrium and that there is a unique risk-dominant
threshold xRD - (S, S) being risk-dominant above this threshold and (E, E) being risk-
dominant below. This is the unidimensional version of Carlsson and van Damme's assump-
tion that states of the world should be connected to dominance regions by a path that is
entirely contained in the risk-dominance region of either of the equilibria.

Assumption 9 (dominance) There exists w such that for all k, gi(w, k) +3Mi-W21 (w, k) <
0 and T such that Wi2(W, k) - WM2 (7, k) > 0

Definition 14 For any function V R x Rd -+ R and w E R, we define Ai(V, w, k) and
Bi(w, k) by,

Ai(V, w,k) = g'(w,k) + 3VK(w,k) - Wf2(w,k) and Bi(w,k) = W2l(w,k) - W22 (w,k)

Take as given the strategy s-i of player -i and let Vi be some continuation value for
player i. When choosing to stay or exit, player i expects payoffs,

IH•(Vi, k) E [W 2(w, k) + {gi(w, k) + Oi(hi,t, w, k)- W12(w, k)}1s_ =sjhi,t, s-i

--Aj(Vj,w,k)

HTE(k) = E [W2 (w, k) + {W (w, k)- W 2 (w, k)}18 _sshitSi
-Bi(w,k)

Player i's best response is to choose S if and only if IIs > HE.

Assumption 10 (staying is good) For all players i G {1, 2}, all states of the world w
and all capital stocks k, we have, Ai (mi , w, k) > 0 and Bi(w, k) > 0.

Finally we make a compactness assumptions for technical reasons.



Assumption 11 All exogenously given payoffs, gi(w, k), W 2(w, k), WA(w, k) and WM2(w, k)
are Lipschitz in w with a rate r independent of k.

By the Azrela-Ascoli theorem, this assumption guarantees that the set of payoff functions
indexed by k and mapping w to real numbers is compact. Such compactness is required for
global game selection to occur at a speed that is independent of the state variable kt.

B.2 Markovian state variables

In this section we consider the case where kt follows a Markov chain over a countable set
of states S C K C IRd, where K is compact. Denote by h(., kt) the distribution of kt+l1
conditional on kt. We assume that for all k C K, h(., k) is bounded and continuous in k with
respect to the supremum norm over functions 00.

B.2.1 General results

Lemma 21 There exists - such that for all a < -, whenever s-i is a Markovian strategy,
then, for all strategies s,

si-< s-i = BRi(si) -< BRi(s-i) and s-i -< s'i = BRi(s-i) -< BRi(s' i)

Lemma 22 (extreme strategies) Under Assumptions 6, 7, 8 and 10, there exists - > 0
small enough such that for all a < 5, rationalizable strategies of F, are bounded by extreme
Markovian Nash equilibria. Those equilibria take threshold forms : for any state variable k,
there exists threshold {xi,k}kCs such that player i chooses to stay at when the state variable
is k if and only if her signal is above {xi,k}.

Let us denote by x H and x' the thresholds associated with the highest and lowest equilibria
of F,. From Assumption 10 we obtain that xH and xL are respectively associated with
the highest and lowest possible pairs of rationalizable value functions, VH and VL. More
precisely, if si is a rationalizable strategy, the value function VI associated with player i's
best reply is such that at all histories hi,t, L(hi,t) < V(hi,t) < VH(hi,t).

Theorem 4 Under Assumptions 6, 7, 8, 9, 10, and 11 there exists U > 0 such that for
all u e (0,-), there exists a continuous operator $,(.) mapping value functions onto value
functions such that,

(i) VL(.) andVH (.) are the lowest and highest fixed points of 0,(.).

(ii) A vector of continuation value functions is supported by a Markovian equi-
librium if and only if it is a fixed point of 0,(.).

(iii) As u goes to 0, the family of operators ,() converges uniformly over any
bounded family of functions to an increasing operator 4 defined by

((4, ( V-)(k) E [Wj2 (w) + (ghl + /3Vi(kt+1 - Wi2(w)) lw>XRD(V1 (kt+j,V j(kt+j)) kt]
(I, V)(k) E Wý22(w) + (gji + •3V-i(kt+ 1 - Vý2 i(w))) lw>XRD(Vi(kt+l),V-i(kt+j)) kt]



Where xRD (Vi(kt+l), IV(kt+1 ),kt) is the risk dominant threshold of the 2 x 2
global game TI (Vi(kt+,1), V-i(kt+1 ,kt)).

Lemma 23 (upper hemicontinuity) Denote VH and VL the highest and lowest fixed
points of 1. Consider any family {V,I}> 0 of fixed points of (a, -). Then,

limsup V, < VH and liminf V, > VL.
0--0 0-0

Where the lim sup and limr inf are taken component by component.

The definition of ( and ( for real numbers is extended to mappings x: K -* IR.

Definition 15 For any mapping x : K -- R we define the mappings ( and ( by,

Vkt E K, ((x)(kt)= xRD(BRV(x, kt+l),BRV_(x, kt+),kt)

((x)(kt)= xRD(NV(x, kt+l),NVi(x, kt+l),kt).

Definition 16 (non-singular extreme fixed points) An extreme fixed point x of an in-
creasing mapping g : R• S Rs is said to be non-singular if and only if,

1. It is strongly isolated among fixed points of g in the sense that there exists 6 > 0 such
that whenever, for all n N N, yn c IBl.loo(x) and limn-o lg(Yn) - YnKloo = 0, then
limnoo IYn - xi0oo = 0

2. For all 6 > 0 there exists E e (0,5 6), and v E Rs such that for all k e S, v(k) E (r,, 6)
and for all k E S, we have:

g(x + v)(k) < x + v - /2 and g(x - v)(k) > x - v + 1/2

Lemma 24 (lower hemicontinuity) Assume the extreme fixed points of , x H and xL (by
convention x H < xL), are non-singular. Denote by xH (resp. xL) the threshold function
associated to the highest (resp. lowest ) equilibrium of IF. Then, we have,

lim |xH - - (xHXH) = 0 and lim x L -(xLXL L) 0=0.
U-0-*O "a--40

Theorem 5 (ALSR of extreme equilibria) Whenever the extreme fixed points xH and
xL of are non-singular, the strategies (SH, H)Sx and (SxL, SXL) are ALSR.

Lemma 25 Assume that S is finite and consider a C 1 payoff structure 7r. Then at an
extreme fixed point x of (, the greatest eigenvalue Amax of d< is weakly less than one.

Whenever Amax is strictly less than one, then x is non-singular.

Lemma 26 (generic non-singularity) Whenever S is finite, there exists a subset P of
C 1 payoff structures that is open and dense in II, with respect to I" I In, and such that for
any 7 E P, the extreme fixed points of the associated mapping ( are non-sigular.



B.3 Auto-correlation

Because we might want to introduce autocorrelation in the states of the world, we may want
to consider state variables following a recurrence equation of the form kt+1 = f(kt, wt), where
f is a deterministic function. In this formulation, wt is the innovation and kt is an observable
sufficient statistic for past innovations.

Compared with the previous section, the main difficulty comes from the fact that be-
cause next period's capital stock depends on the realization of the state of the world, the
continuation values at time t will now depend on the state of the world wt. Because the
uniform global games selection results we use require that all payoff functions be continu-
ous and share a common modulus of continuity (see Chassang (2006) for more details), we
must prove that equilibrium value functions indexed by the current capital stock are equi-
continuous in wt. More precisely we will to show they are increasing in wt and Lipschitz
with a rate independent of k. Let us denote by I,(Vi, V_j, kt) the global game,

S E
S g (wt, kt) + f Vi(kt+1 ) W12 (W, k)
E W2, (wt , kt) WM2 (Wt kt)

where i is the row player. In addition to the assumptions of Section B.1, we need to
make a few more technical assumptions. These assumptions make the statement of theorems
somewhat tedious, but they are fairly general so that our selection result will in fact be easily
applicable.

Assumption 12 (increasing differences in capital stock) For all wt E R and i E {1, 2},
gi'(wt, k) - W2 (wt, k) and W 2(wt , k) - WM2 (wt, k) are increasing in k.

Assumption 13 (capital is good) For i G {1, 2}, and w E R we assume that g', V12, V2,
and V22 are weakly increasing in k.

Definition 17 (iterated capital stock) For all n G N and w = (wi,...,wn) E Rn, we
define by induction the iterated capital stock f,(k, w) as follows,

fi (k,wi) = f(k,wi) and fn(k,w) = f(f, 1 (k,(wl, . . . , Wn)),wn)

In other words, fn(kt, w) = kt+n I w.

Assumption 14 We make four assumptions on the process of kt and how it affects payoffs.

1. f is increasing in both arguments.

2. there exists H G R such that

of &(g M Wi• ) ( w_2-W_2)
-k < H ok < H and ok <H
Ow Ow Ow



3. There exists n* C N and p < such that,

Vk CER Rd E O* <n*

Vn C N, k E Rd, Ew [Ofn < +

Ok

Lemma 27 (joint selection) Define VR the set of functions mapping Rd into R that are
weakly increasing and Lipschitz continuous with rate R. For all R, there exists - > 0 such
that for all o < -, for any V = (Vi, VQi) E V2, the global game FI(Vi, V-i, kt) has a unique
pair of rationalizable strategies (xi(V, kt) , xi(V, kt) ) .

Proof: This result is a direct application of Theorem 2 of Chassang (2005). U
Given a class VR, for oa small enough, Lemma 27 allows us to define a mapping O(V, a)

which maps any vector of value functions from VR into the value of playing game ', (Vi, V-i .)
for each player. Function ¢ maps value functions into value functions. In order to combine
the Abreu, Pearce and Stacchetti (1990) approach and a global games selection argument,
we need to find a class VR stable by q. Lemmas 28 and 29 show that 0,(.) maps VR into
VR# for some R# independent of a. Finally Lemma 30 shows that for some R big enough,
all iterated images of VR by 0,(-) are subsets of some fixed VR# with R# independent of a.

Lemma 28 (Lipschitz continuity in k of the selected equilibrium) Pick V E V2 and
a such that Lemma 27 applies. Then there exists p > 0, independent of R, such that for
all a < -5, the uniquely selected equilibrium of T,(V), (xi(V, k), x-i(V, k)) is Lipschitz in k
with rate p.

Lemma 29 (stability of Lipschitz continuity) If V belongs to VR for some R > 0, then
V # , defined by V#(k) = q(V, k, a), belongs to VR# for some R # > 0.

Lemma 29 allows us to define iterations of 0(-, a) as follows:

Definition 18 Pick n E N. For V and a small enough, we define by induction Oa(V, k, a)
by,

O1(V,k,a) = q(V,k,a) and On(V,k]t,a) = (E n-l(V, kt+,(o),kt,( )

Using Lemmas 27 and 29 we know that for any R > 0 and n E N there exists -n,R such that
for all a- < -n,R, a (V, k, a) is well defined for all V V and all k R d.

Lemma 30 (stable Lipschitz class) Take the integer n* defined in Assumption 14. There
exists U > 0 and R such that for all a < -, On*()2, a) C V)

Moreover, for all n C N and o < -, On(V, k, a) is well defined for V E VR and that there
exists R# > 0 such that for all n E N, On(V , k, a) C V2
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The last tricky step is to prove that to obtain tight bounds on the set of rationalizable
strategies, it is enough to study strategies corresponding to value functions in VR. To prove
this, we prove that the set of rationalizable strategies is bounded by extreme Markovian
Nash equilibria that can be obtained by iteratively applying the mapping 0,(.) to vectors of
constant value functions.

Lemma 31 Pick 5 and R such that Lemma 30 holds. Denote V = Vi x V_-i the set of
rationalizable continuation values of F,. Pick any vectors of value functions VL and VH in
VR, then for all a < -,

{V C [VL,VH]} => {V C [q(VL,U),q(VH,)]

Theorem 6 Under Assumptions 6, 7, 8, 9, 10, 11, 12, 13 and 14, there exists - > 0 such
that for all a < -, the rationalizable strategies of game F, are bounded by extreme Nash
equilibria associated with extreme value functions VH(.) and VL(.). Moreover, there exists
a continuously increasing operator 0,(.) mapping value functions into value functions, such
that,

1. VL(.) and V'(.) are the lowest and highest fixed points of 0,(-).

2. As a goes to 0, the family of operators 0,(.) converges uniformly over any class VR to
a function 4 defined by

( EW2 [W ) + 1(g± + Oi3(kt+1) - W ) 1w>XRD(Vi(f(k,w),V-i(f(k,w)))
(= E W (w) + (gi + fVi(kt+1 ) - W2i()) w>XRD(V(kt+±),Vj(kt+j))

Where xRD (Vi(kt+1), V-i(kt+l)) is the risk-dominant threshold of the 2 x 2 global game
T (Vi(kt+ 1), 7 ij(kt+ 1)).-

Whenever the fixed points of 1 are isolated with respect to the uniform norm, then as a goes
to 0, uniform convergence of 0,(.) implies that VH(.) and VL(.) converge to the highest and
lowest fixed points of 4 with respect to the uniform norm.

B.4 Proofs for Appendix B

Proof of Lemma 21: Consider s-i a Markovian strategy and s'_i such that s'_ _ s_-i.

Define i and 'i' the continuation value functions respectively associated to player i's best
response to s_-i and s'_2. Assumption 5, that "staying is good", implies that at all histories
hi,t , Vi'(hi,t) < Vi(hi,t). At any history hi,t, the best-reply action profiles of player i are
BR (aj , V(hi,t), a) and BR(a' -, V'(hi,t), a). From Lemma 4, we have that

(21) B i (a'i V'(h) i,t)s oa) -t B Ri (a'L , im(hi,t), i)

Since si is Markovian, Vi(hi,t) is constant. Thus Lemma 3 implies that

(22) BR (a'_i , V (hi,t), a) --< Blý (a_j, V (hi,t), a)
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Combining equations (21) and (22) we obtain that indeed, BRi(s'i) -< BR(s_-). An iden-
tical proof holds for the other inequality. N

Proof of Lemma 22: This a corollary of Lemma 21. The proof, again drawing on the
methodology of Milgrom and Roberts (1990) and Vives (1990) is identical to that of Theo-
rem 1. U

Proof of Theorem 4: The proof is almost identical to that of Theorem 2. Selection in
one-shot global games is applied to the augmented game associated with each capital stock.
See the proof of Theorem 2 for more details. U

Proof of Lemma 23: There exists a sequence {fUn}neN going to 0, such that {V Un}nEN

converges weakly to lim sup,_- 0 V, - V*. Let us show that V* is a fixed point of D. Indeed
for every kt, V, satisfies V,(kt) (kt, V,(kt+i), a). Since 40,(.) converges to D, and 4 is
continuous in V, the equation must hold at the limit. This implies that indeed V* is a fixed
point of D which proves the right side of the inequality. An symmetric proof gives the left
side. U

Proof of Lemma 24: This is a direct implication of Theorem 5. Indeed a ball centered
on a threshold form strategy and of radius p with respect to the topology on strategies cor-
responds to a ball centered on the threshold x and radius p with respect to the supremum
distance. U

Proof of Theorem 5: The proof is very similar to that of Proposition 3 and Theorem 3.
Let x denote an extreme fixed point of (. By assumption, for any 6 > 0, there exists r > 0 and
x" e B16(x) such that for all k E S, x"(k) > x(k)+2r and ((x")(k) < x"(k)-rq". This implies
there exists x' E [((x"), x"] such that for all k E S, ((x")(k) + 7/2 < ((x')(k) < x"(k) - 7/2.
Let us now show that for a small enough, for all k G S, BRi,, o BRi,, (sx,)(k) -< sx,(k). We
have,

BR,, o BRi,a(sx,)(k) = BRi,(. BRVi,a (BRi,(X'), k), k) o BRi(., BRVi,,.(x'), k)(x').

For q small enough, we know that IBR-i,, (x')(k) - x'(k)| < 2u. Hence, for a small enough,
Vk c S, BR_j,,(x')(k) -< x"(k). This implies that,

BRi,, o BR-i,,(sx,)(k) -< BRi,,(., BRVi,,(x", k), k) o BRi,(. BRV_ i,,(x", k), k)(x').

From Theorem 3 of Chassang (2006), we know that x*(BRVi,, (x", k), BRVi,a(x", k), k)
converges uniformly to ((x") (k), hence for a small enough,

(23) x* (BRV,, (x", k), BRVk,, (x", k), k) > x'(k).

From Theorem 2 of Chassang (2006), we know that for a small enough and for all k e S, the
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sequence [BR4,,(., BRVi,,(x", k), k) o BR,,,(., BRVi,,(x", k), k)]p (x')(k) converges monotonously
to x*(BRVi, (x", k), BRV-i,W(x", k), k) as p goes to infinity. Using 23, this implies that

(24) Vk E S, BR, o BR-i,,(sx,)(k) -, sx,(k).

Since BR,, o BRi,, is monotonous, this implies that as q goes to infinity, the sequence
{BRi,, o BRi,, }q(se,) converges weakly to a strategy of threshold x o such that x!, E
Bj,l.ll. (x). Note that (x,,, BR_j,a(xI,)) is a fixed point of (,. Let us now show that x!
converges to x as a goes to 0.

We know that (, converges uniformly to ((, (). Indeed, BRVi,a(y, k) converges uniformly
over (y, k) e RS x S to BRV(y, k) as a goes to 0, and Theorem 4 of Chassang (2006) implies
that x*(Vi, V_i, k) is Lipschitz-continuous in V with a rate independent of k. This implies
that for any v > 0 , there exists " such that for all a E (0,5),

I <(X) - X* 1 (x*) - 0(xa) + G(4) - 4Illo < I(xo) - (x*)110 <V.

Since x is an isolated fixed point of x, this implies that lim .o0 I x* - xI oo = 0.
To prove ALSR, note that one can construct : with the same properties as x', but strictly

below x rather than strictly above. Then [sx,, st] is a neighborhood of sx for which

lim lim [BR,,, o BR_j,,]n([s,,, sj]) = sX.
O-o0 n--+oo

This shows that indeed, (sm, sx) is ALSR. U

Proof of Lemma 25: ( and ( coincide around their fixed points. Since S is finite, ( is
really a mapping from RP to RP with p E N. Whenever ir E II, ( will be differentiable.
Because ( and ( coincide around their fixed points, this implies that ( is differentiable around
its fixed points. Denote by x the highest fixed point of (. Since ( is strictly increasing
around its fixed points, the Perron-Frobenius theorem applies to dfix. It states that dflx
admits a greatest eigenvalue Amax > 0 associated with an eigenvector v with strictly positive
components. Assume that Amax > 1. Then, for some 6 > 0 small enough, we will get that
((x + Jv) > x + 6v. This implies that 6 admits a fixed point x' > x + Sv, which contradicts
the fact that x is the highest fixed point of 6. Hence, it must be that Amax 5 1.

For the second part of the lemma, Amax < 1 implies that, there exists 6 > 0 such that for
all 77 E (0, 5), ±(x+rv) < x+qv - -- 7rv and ((x -qv) > x - rv+ 1-marv. Now consider
any y such that y e [x - 5v, x + Sv]. There exists 7 E (-6, 6) such that y is weakly less than
x + r7v, and y and x + 77v share one strictly positive coordinate y(k). Assume without loss of
generality that 7 > 0. Since 6(x + 7v) < x + 77v - i-Axv, and 6 is increasing, this implies
that 6(y)(k) < y(k). Hence, y cannot be a fixed point of 6, proving that x is isolated. This
concludes the proof. U

Proof of Lemma 26: Let us consider the set off payoff functions such that at its extreme
fixed points, ( admits an eigenvalue p e (0, 1) associated with an eigenvector with strictly
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positive coordinates. Note that since C is increasing around its fixed points, this property
clearly implies that C is contracting around its extreme fixed points. Denote P the set of
payoff structures satisfying this property.

Denote x the highest fixed point of (. From Lemma 25, we already know that the
Jacobian of C at x admits a largest eigenvalue Amax e (0, 1], associated with an eigenvector
v whose components are strictly positive.

Let us show that P is open. Pick 7r e P. At x*, det(d((x*) - Id) is strictly different from
0. By continuity of d(, this implies that there exists a ball of center x* and radius q > 0 and
v > 0 such that for all x E B,7(x*), I det(d( - Id)I > v. There exists _> 0 such that for all
payoff structures R within distance p of 7r, the extreme fixed points of ( are within distance
7 of x* and I det(d( - Id) I > v/2 over B,7(x*). We already know that the greatest eigenvalue

of C is weakly less than 1. This implies it is strictly less than one and proves that P is open.
We now show that P is dense. Since the intersection of dense open sets is dense and open,

we proceed separately for the highest and lowest fixed points. The set of C2 payoff structures
in IIH that strictly satisfy Assumption 10 is dense in II. Pick such a payoff structure r, and
denote by x the highest fixed point of the associated mapping (. For any vector u E Rs,
consider the payoff structure ru defined by,

V(w,k) ER x K, §""(w, k) -= g'(w, k)
W22(w,k) = W22(w,k)
Wj"(w, k) = W -2(w u(k), k) + g'(w, k) - g'(w - u(k), k)
W2u(w) = W2 (w - u(k), k)+ W2(w,k) - W2(w - u(k), k)

There exists 6 > 0 such that for all u satisfying Ilull < 6, ru satisfies Assumptions 6, 7,
8, 9, and 10. Moreover, for Ilullo small enough, ir" is arbitrarily close to r in the sense of
II - In. Also, for any u, (u = + u. Assume that there exists q > 0 such that for all u
satisfying Ilul|I, < 7, at the highest fixed point of (, d( has a largest eigenvalue equal to
1. We will show it leads to a contradiction. More precisely, let us show that if this is true,
then x cannot be the highest fixed point of (. First note that C is C2 and that Assumption
2 implies potential fixed points of (u belong to a compact L. Hence, there exists H > 0 such
that for allu e R•s, andy e L, I <u, d2(u > I < H < u,u >. For alln z N, define the
sequences {X }mE{o,...,n} and {un,}mE{O,...,n} such that for all m, xM is the highest fixed point
of (u' and I|u" Im < q, as follows:

1. x - x and u = 0

2. For all m e {0,... , n - 1}, by assumption, at xn , d( has a largest eigenvalue equal to 1.
By the Perron-Frobenius theorem, this largest eigenvalue is associated to an eigenvector
v with strictly positive coordinates. Pick a representant such that ||v|I| = 1 and define

- ( + r7v/n) - - qjv/n + Un

3. Define x,+1 as the highest fixed point of M,+1.
First note that x, + 77v/n is a fixed point of M"+1, hence, x" +1 > x, + 7v/n. Second, since

v was picked as an eigenvector associated to 1 at each stage, we have that Huni - u n11c -
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JM" (x" + nv/n) - x - qv/nI,, :5 Hq2/n 2. Hence we obtain,

~((X)C((X) =(X z ~1)-_C(Xn)
mE•0,...,n-1}

__ Z n+i)1 ) n(Xn)+ Un n

mE{O,...,n-1} mE{O,...,n-1}

x-nX+ tn_- n
- n - 1 M Jr m- + 1

mE{0,...,n-1}

which yields
II((x•)- xn) II _ X uj- Unin+1. :-• H•72/n"

mE{0,...,n-1}

Consider e E Rs the vector whose components are all equal to 1. By construction, xn e
nn

[x, x + Te] \ [x, x + l]. Extract a converging sequence from {xn}nEN. Its limit x' is such that

x' > x + and satisfies ((x') = x'. This contradicts the fact that x is the greatest fixed
point of (. Hence for any 6 > 0, there exists u satisfying ||ul|| < 6 such that at the highest
fixed point of (u, d(" has a largest eigenvalue strictly less than 1. U

Proof of Lemma 28: This is a direct application of Theorem 5 from Chassang (2006). We
refer to that paper for details. This theorem holds under conditions which, in this particular
case, boil down to showing there exists a constant C such that for all k, w, k', w',

Ak,k', (f(k,w)) <<C
Aw,w,V (f (k, w))

Where for any function u, A,,, u(s)= 11Iu()-U(s)11
-- Is'-sAssumption 14 was specifically introduced to prove this inequality. Assume temporarily

that Vi is differentiable. Then using the fact that (V o f)' = V' o f x f', we get that

8V (f (k,w))
(25) Ok < H8o (f (k,w))

Ow

Noting that we have aV(f(k,w)) > 0 and using the inequalityOw

a c a+c
Va, b,c,d>0, -d<m, -<<m= b a m

b d b+d

we get by integration of the numerator and denominator of equation (25) that,

Ak,k' , (f (k, w)) <H
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This result does not depend on the smoothness of Vi. Thus using the density of differ-
entiable functions, we know it holds for any Vi in VR. Thus Theorem 5 of Chassang (2005)
applies. The uniquely selected equilibrium (xi(V, k), xi(V, k)) is Lipschitz in k with a rate
p independent of R. U

Proof of Lemma 29: V#(k) = (Vi#(k), V_ (k)). Assume - temporarily - that i # and Vi
are differentiable, denoting xi and x-i the equilibrium strategies, we have

agV +fn a91 i>i I W12 W21 W221iX1~<= E [(-•- •-- ls>X 1s_,>X_±+ 8k s>z, 1 s_,<±_W+ k <2W1 S_2>X_ 1 <x

+ E [--f8 ,(x,) ((W2 - W2)18-i>xi + (WAI - gll - VW,)1S_>_)

+ E [-f- 1_,(x.i) ((Wi2 - W12)18i>xi + (Wil - gil - i3V,)ISi>X,)

Using Assumption 11, Lemma 28 and the fact that Vi e VRa, we conclude there exist absolute
constants C1, C2 such that,

av #

< C1 + C2R
ak

This inequality doesn't depend on the smoothness of either Vi or Vi#. Using the density of
smooth functions we conclude it holds generally.

Finally, note that VI# is increasing in k. This results directly from Assumptions 12 and
13. Increasing k increases cooperation directly because of Assumption 12, and indirectly
because Assumption 13 implies that more capital increases continuation values. U

Proof of Lemma 30: We know that weak monotonicity is maintained, the difficulty is
to show that Lipschitz continuity is maintained with a stable rate. Pick V E VR. We can
express 0n. explicitly.

n*-1 t-1

¢•.(V~k~a) = E O[ Z t lj ,,a>xi,, qls_ ,q>Xi _ ,q ( g  ', 1>x,,tl•_it>X-_,t
t=1 q=1

(26) + Wl218i,q>Xi,q1S-i,,q<xi,q + Wi1lsi,q<xi,q 8-i,q>X-i,q + Wl2lSj,q<xi,q1S_,,q<Xi,q

+ E [n*F 1s,8 q>Xiq1St,q>x-i,qV(fn*(k, w))
q=1

Assume temporarily, that all functions involved are differentiable with respect to k. Using
Assumptions 11, 14, Lemma 28, and the fact that V E VR, equation (26) yields after some
manipulation an inequality of the form,

'k < C+ *E [ * R < C + (13/)f*R
8kI c8kI
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Therefore, if we pick R > then VR is stable via on. The second part of the lemma
follows directly using this result and Lemma 29. U

Proof of Lemma 31: Consider a maximal rationalizable action profile am,1.It is a best re-
sponse to some action profile a-i and some rationalizable continuation value V1 . This implies
that am,i -< BRi(a-', VH). Moreover, since 1H E VR, we know from Lemma 3 of Chassang
(2005) that BRi(., VH) is monotone in strategies. Thus there exists a maximal rationalizable
action a,-i such that aml BR,(a-'i1, VH). For i E {1, 2}, we define BR(.) (., VH).
By iterating the former reasoning, we get a sequence of maximal actions {a ,q}qEN, such that

am,i - (BR o BR m)<(am,q). Taking q to infinity, this implies that rationalizable actions are
smaller than the unique rationalizable strategy of I,(VH). Because of Assumption 10, this
also implies that the value associated with any rationalizable action is less than the value
of playing the unique equilibrium of I,(VH). This shows that V - O(VH, a). An identical
proof holds for the lower bound. U

Proof of Theorem 6: To prove the existence of extreme equilibria, we use Lemma 31
iteratively. Pick R and U such that Lemma 30 holds. Denote V the set of rationalizable
value functions. Begin by setting Vo = (M i, M_-) and VL0 = (mi, mi). We must have
V C [V•L0 , V 0]. Since V H and VL0 belong to VR, Lemma 31 implies that

V C [O(Vo, U), O(VHo, a)] C [VLo, VHo
a , ,' aL  "

From Lemma 30, we know that all functions q5z(VL0 , a) and q"(V H , a) are Lipschitz with
rate R# so that we can keep applying q(.) iteratively. Using Lemma 31 and the monotonicity
of (., a) at each step, we get, that for all q E N,

V C [q(Vo ),4(Vo, a)] C [ (Vo C ... C [Vo, ,Vo]

The sequences {f¢q(VLo • ,)}qN and {¢q(V•o, )}qeN are respectively increasing and de-

creasing. Moreover these are sequences of bounded functions with a fixed Lipschitz rate R#.
Thus, by Ascoli's Theorem, they converge uniformly to value functions VL, and VHoo with
Lipschitz rate R#. Using Theorem 4 of Chassang (2005), we know that c,(.) is continuous
over VR# endowed with the uniform norm. This implies that VH, and V, satisfy,

VH,= O(VH ,, a) and Vio = (Voo, a)

This implies that VL, and VHo sustain extreme Markovian Nash equilibria in which players
respectively play the unique equilibria of ['(VL,o) and ,,(VHo). Finally, we know from
Theorem 3 of Chassang (2005) that (.) converges uniformly towards 4 over VR#. N
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Appendix C: Alternative assumptions

This section describes assumptions generalizing those of Section 2.3, and under which the
analysis of Section 3 still holds step by step. The analysis is not repeated here. Note that
these assumptions accommodate the possibility of exit payoffs also being indexed by a as in
Section 4.4.

Consider an exit game with flow payoffs -y (now indexed by a)

S E
S gi (w) Wi2, (wt)
E WM2,,a(wt) Wi2,a(wt).

Denote by G(V, w, a) the associated one-shot full-information game augmented with
continuation V, and by PF, the exit game with payoffs indexed by o and information xi, =
Wt + oei,t-

Assumption 0' (Compactness of payoff structures) There exists j > 0 such that for
all a e [0, 5] all payoff structures y, share a common modulus of continuity in w and converge
to 7o with respect to the supremum norm I. - | as a goes to 0.

Assumption 1' (Bounded values) Denote by mi,, and Mi,, the min-max and maximum
values of player i in game F,. There exist finite bounds m and M such that for all a,
m < mn,,, and Mi,, < M.

Assumption 2' (Dominance) There exist 5 > 0, w and T such that for all a E [0, 7] and
all i E {1,2},

g'(w) + PMi,~, W2,,() < 0 and W2,,,(W) - W22,a(W) < 0
and Wf2, ) - W22,a(W) > 0 and g'(T) + /mi,, - W~i,,(•w) > 0.

Assumption 3' (Increasing differences in the state of the world) There exists 7 such
that for all a e [0, 7] and all i E {1, 2}, g' (wt) - W~i,,(wt) and W2, (wt) - Wi2 ,o(wt) are
strictly increasing over wt E [w_, U], with a slope greater than some real number r > 0

Assumption 4' (Equilibrium symmetry) For all states of the world wt, G(mi,,, mi,, wt, a)
has a pure strategy equilibrium. All pure equilibria belong to {(S, S), (E, E)}.

Assumption 5' (Staying is good) For all players i E {1, 2} and all states of the world
w E [, W], A,(m,,, w, a) > 0 and B (w, a) > 0.

Under these assumptions, the analysis of Section 3 goes through step by step.
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Chapter Three: Learning How to Cooperate when

Contingencies are Ambiguous

Abstract

This paper studies how economic agents learn to cooperate when the details of
what cooperation means are ambiguous. It considers a dynamic game in which one
player's cost for the cooperative action is private information. From the perspective of
the other player, this cost is an unknown but stationary function of observable states
of the world. Initially, because of information asymmetries, full cooperation can be
sustained only at the cost of inefficient punishment. As players gain common expe-
rience, however, the uninformed player may learn how to predict her partner's cost,
thereby resolving informational asymmetries. Once learning has occurred, players can
sustain cooperation more efficiently and reduce the partnership's sensitivity to adverse
economic conditions. Nevertheless, because inducing information revelation has an
efficiency cost, it may sometimes be optimal for the uninformed player to remain un-
informed even though that limits the amount of cooperation that can be sustained in
equilibrium.
KEYWORDS: cooperation, private information, learning, ambiguity, common under-
standing, indescribability.
JEL classification codes: C72, C73, D23
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1 Introduction

Real-life partnerships are difficult to build and difficult to maintain. Breakdowns in co-

operation and inefficient rigidities - which are unnecessary in full-information cooperation

games - seem to be the rule rather than the exception. As a plausible explanation for these

observations, private information has been recognized as an important hurdle to coopera-

tion. In their seminal work on repeated games with private information, Green and Porter

(1984) consider a model with unobservable actions (later extended by Abreu, Pearce and

Stacchetti (1986, 1990) and Fudenberg, Levine, and Maskin (1994)) and show that ineffi-

cient breakdown must happen on any equilibrium path in order to induce cooperation. More

recently, Athey and Bagwell (2001), Levin (2003) and Athey, Bagwell and Sanchirico (2004)

have considered models in which it is the players' cost for the cooperative action that is the

source of informational asymmetry. They find that when costs are private, cooperation does

not necessarily require inefficient breakdown, but may involve inefficient rigidity.

The papers mentioned above are concerned with the difficulties of maintaining cooper-

ation. This paper focuses on the particular hurdles involved in building cooperative rela-

tionships. Similarly to Athey and Bagwell (2001), Levin (2003) and Athey, Bagwell, and

Sanchirico (2004), the players' cost for cooperation is initially private. The idea is to intro-

duce the possibility of learning and to take into account the fact that as they gain common

experience, players also become better judges of their partner's particular economic circum-

stances. For instance, knowing the history of disputes may help a workers' union determine

when wage cuts implemented by management are necessary or not. The paper focuses on

how learning dynamics interact with the patterns of cooperation.

The model considers two players engaged in an infinite horizon cooperation game which

gives them asymmetric roles. Each period proceeds as follows: Player 1 first decides whether

to terminate the partnership or not (stay or exit); when Player 1 stays, Player 2 gets a

profit 7r while Player 1 incurs a cost of effort n. Then, Player 2 has the option to take a
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cooperative action (C) which has a variable cost c and gives Player 1 a benefit b. As in Athey

and Bagwell (2001), Levin (2003) or Athey, Bagwell, and Sanchirico (2004), the distribution

of c is known by both players, but only Player 2 observes its realization perfectly. The

modeling innovation of this paper is that although only Player 2 observes c directly, Player

1 knows that it is a stationary function c(w) of states of the world w which are observable

by both players. Some states w may have clear payoff implications: then it will be obvious

to Player 1 whether Player 2 should cooperate or not. Other states may be ambiguous, in

the sense that: (i) these states cannot be distinguished in a language that is common to

Player 1 and Player 2, (ii) Player 1 does not know which states correspond to a low cost

of cooperation and which correspond to a high cost of cooperation. These ambiguous states

represent a hurdle for cooperation because Player 2 can be tempted to exploit Player l's

confusion in order to avoid paying the cost c. However, because Player 2's cost structure

is stationary, learning is possible and ambiguity can be resolved in equilibrium as Player 1

infers c(w) from Player 2's actions.

Because Player 2 can exploit Player l's confusion only temporarily, learning will be

costless when players are patient enough. For intermediate degrees of patience, however,

inducing information revelation will come at an efficiency cost. More precisely, on the path of

a Pareto-efficient equilibrium, and while learning takes place, the partnership will be sensitive

to adverse economic events: it will terminate with positive probability if an ambiguous

state where cooperation is very costly occurs. Once ambiguity has been resolved, however,

the partnership becomes resilient in the sense that it survives negative shocks that would

have caused termination earlier on. Nevertheless, the cost of resolving ambiguity can be

prohibitively high, and it may be optimal for Player 1 to remain uninformed.

Because the distribution of c is common knowledge, this model exhibits neither "good"

nor "bad" types: players agree on the general principle of cooperation, but need to work

through the details of implementation. As a consequence, the impact of ambiguity on coop-

eration is tightly related to indescribability: when ex ante communication about ambiguous
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states is possible, the truthful revelation of Player 2's cost function c(.) via cheap-talk im-

poses no constraints on equilibrium continuation values. In other words, the game with

asymmetric information and describable states has the same Pareto frontier as the game

with full information. Hence, in this model it is both private information and indescriba-

bility - the lack of a precise enough common language - that make it delicate to build a

cooperative arrangement.

As noted above, this paper is related to the literature on cooperation games with private

costs. Athey and Bagwell (2001) and Athey, Bagwell, and Sanchirico (2004) consider a game

of repeated Bertrand competition where the firms' production costs are private, and ana-

lyze efficient collusion schemes under symmetric and asymmetric strategies. Levin (2003)

considers a dynamic principal-agent relationship where the agent's cost of effort is private

information and highlights the tension between efficient flexibility and incentive compatibil-

ity. From the perspective of learning, the current paper is also related to the contributions of

Watson (1999, 2002), which consider a cooperation game with "cooperative" and "uncoop-

erative" types and show how delaying full cooperation emerges as a mechanism to efficiently

sort out "uncooperative" types. In the current paper, there are no "cooperative" and "unco-

operative" types: players agree on the broad features of cooperation. It is the specific details

of implementation that are ambiguous and need to be elucidated.

The paper is also related to the literature on the relevance of indescribable contingencies

initiated by Maskin and Tirole (1999) and developed in Hart and Moore (1999), Segal (1999)

and Battigalli and Maggi (2002). Here, because indescribability implies that Player 1 does

not observe the cost of Player 2 when the state is ambiguous, the results of Maskin and

Tirole (1999) on the irrelevance of describability do not apply. In the dynamic game studied

here, if costs were observable, indescribability would indeed have no impact. However,

because indescribability creates confusion, it does affect the players' ability to cooperate.

In the particular game considered in this paper, there are only two ambiguous states and

indescribability implicitly results from a coarseness of language. The work of Al-Najjar,
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Anderloni and Felli (2006) shows how indescribable events can be modelled even for rich

languages. However, their construction relies on a large enough space of states, and analyzing

the dynamics of learning for a such a rich state space is beyond the scope of this paper.

The paper is structured as follows: Section 2 describes the model. Section 3 studies the

joint dynamics of cooperation and learning. Section 4 generalizes the notion of ambiguity

and proposes a model of empathy building. Section 5 concludes. Appendix A examines the

robustness of results to specific modeling assumptions and presents an extension to three-

states ambiguity. Proofs are contained in Appendix B unless mentioned otherwise.

2 The Framework: ambiguity, indescribability, and co-

operation

2.1 The game

Consider a game with two players i E {1, 2}, infinite horizon t E {1,..., oo}, and discount

rate 6. Each period t consists of the following four subperiods:

1. Player 1 chooses to stay (S) at cost n > 0 or exit (E) at zero cost. If Player 1 exits,

the game ends and both players get zero continuation values.

2. If Player 1 has chosen to stay, an i.i.d. state of the world w is drawn from {w, w, w), W }1-p-p-
with respective probabilities {P, P, Pa, Pa}, where pa = 2

3. Player 2 observes the state w and her private cost of cooperation c(w). Player 1

observes only w. Both players observe some payoff-irrelevant random variable xt,

uniformly distributed over [0, 1], that allows for public randomizations.

4. Player 2 decides whether to cooperate (C) or defect (D). Conditional on Player 1 having
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stayed in stage 1, players' payoffs at the end of stage 4 are

Player 2

Player 1

C D

r - c(w) , r

b - r, -K

where r, b, and n are common knowledge, strictly positive, and b > &.

Ambiguity. The players' differing knowledge of the cost structure c(.) is the key element

of this environment: the observability of a state is distinguished from the observability of

the cost of cooperation that this state implies. More precisely, when the state w belongs to

{w, T}, the cost c(w) is common knowledge for the players. However, when w belongs to

{w, wI } , the state w is observable by both players, but the associated cost c(w) is perfectly

known only to Player 2. Player 1 merely knows that (c(wi),c(wa))is equal to (CL, CH) with

probability 1/2 and equal to (c, CL) with probability 1/2, where CH > CL > 0. The states

w and T, which have clear implications for the cost of cooperation, are contrasted with

the ambiguous states wl and w2, which are harder to interpret. The game with ambiguous

information is denoted by FA. The game with full information, in which c is perfectly

observable by both players in all states, is denoted by FFI. The object of this paper is

to study perfect Bayesian equilibria of both FFI and FA. Note that although they act at

different moments, both players observe the same histories from period t = 1 on.

Definition 1 (histories) Denote by dt Player 1's decision to stay or not and at Player 2's

decision to cooperate or not at time t. We respectively define by

hl - {di,wi, xi,a, ... ,dt•_1, wt•_1, xt-1, at-}

and h 2 {dl,wl,x1,al,....,dt-,wt- ,wt xtI,.,atl 1,dt,wt,xt}

the histories respectively observed by Player 1 and Player 2 when they make their decisions
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in period t.

The set of all possible histories is denoted by 7-. Pure strategies of Player 1 are mappings

sp1 : 7- -+ {S, E} and pure strategies of Player are mappings sp2 : R -+ {C, D}.

Note that there is no aggregate uncertainty about the amount of cooperation that could

be sustained under full information. This game represents a situation where players agree

on the possibility of cooperation but are trying to work out the details of when cooperation

should occur or not.

Because the cost function is stationary, the observability of states allows learning: if at

some ambiguous state, the equilibrium behavior of Player 2 is different when her cost is CL

than when her cost is CH, Player 1 will learn the mapping c(.) perfectly and the continuation

game will involve no informational asymmetry.

2.2 Interpretation

The game presented in Section 2.1, although very stylized, can be interpreted as a rough

model for a variety of economic settings where the detailed contingencies in which cooperation

should occur are ambiguous. For example, the game FA can be used to model the problem

of a union (Player 1) having to decide when wage cuts implemented by management (Player

2) are acceptable or not. It could also be a model of shareholders (Player 1) trying to decide

when it is tolerable that the firm's CEO (Player 2) does not give out dividends. It could also

be a model of a firm (Player 1) deciding to relocate its production if the local government

(Player 2) raises unjustified taxes too frequently. One might also view the game FPA as a

description of a public good provision problem in which a public authority (Player 1) is

trying to find out whether a citizen (Player 2) is not contributing because she is short of

money, or because she is being selfish. Finally this game can also be understood as a model

of a lender/borrower relationship in which the lender (Player 1) decides whether or not she

should tolerate delayed repayment by the borrower (Player 2), or demand liquidation.
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In this paper "ambiguity" refers to a setting in which players agree on the principle of co-

operation but do not know the details of when and how cooperation should be implemented.

The main result of this paper is that although there is no uncertainty about the sustainability

of cooperation under full-information, the inability to communicate about states of the world

may limit the partnership to inefficient cooperative agreements. In particular while learning

occurs, the partnership will be sensitive to negative economic shocks and inefficient termi-

nation may happen when an ambiguous state with cost CH occurs. As ambiguity is resolved,

the partnership becomes resilient to adverse circumstances and players can sustain efficient

cooperation. However, because inducing information revelation has an efficiency cost of its

own, under some conditions it will be optimal not to resolve informational asymmetries.

2.3 The role of indescribability

The game presented in Section 2.1 does not allow for communication. The assumption is

that ambiguous states are recognizable but cannot be described using words from the players'

common language. This indescribability is a key element of the setup. Indeed, Proposition 1

shows that if players have the ability to communicate ex ante about ambiguous states, then

the Pareto frontier under ambiguity is the same as the Pareto frontier under full information.

More precisely, assume that at time t = 0, before the game described in Section 2.1

begins, Player 2 can send Player 1 a message that is either "wl is the low cost state" or "wl

is the high cost state". In that setting, the following proposition holds.

Proposition 1 (communication and ambiguity) If Player 2 can engage in ex ante com-

munication, then ambiguity is innocuous. More formally, the Pareto frontier of the game

with ambiguity is the same as the Pareto frontier of the game with full information: Player

2 can be induced to reveal her type without constraining continuation values.

The intuition for this result is straightforward. Pick an equilibrium under full information,

and let Player 1 play according to that equilibrium, taking Player 2's declaration at face value.
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Given Player l's behavior, ex ante, Player 2 does not benefit from Player l's confusion and

information revelation is incentive compatible.

Section 3 studies the joint dynamics of cooperation and learning when communication

is impossible and Player 1 must learn from Player 2's actions. Incentive compatibility con-

straints will now need to hold ex post rather than ex ante. In particular, when she is at a

state where she is supposed to cooperate, Player 2 may be tempted to delay cooperation and

temporarily exploit Player l's confusion. As Section 3 will show, Player 1 may need to use

inefficient exit in order to induce Player 2 to cooperate at ambiguous states.

3 Learning how to cooperate

This section explores the joint dynamics of learning and cooperation under ambiguity. Sec-

tion 3.1 studies the problem of optimal information revelation. It shows that when learning

occurs, efficient cooperative equilibria will be non-stationary: early on, while ambiguity has

not been resolved, negative economic shocks will cause the partnership to breakdown with

positive probability; once players have built common understanding, however, the partner-

ship will be resilient to such shocks and inefficient breakdowns become unnecessary. Because

information revelation comes at an efficiency cost, Section 3.2 explores whether it may be

optimal for Player 1 to remain uninformed. Depending on parameter values, both under-

cooperation and over-cooperation on the part of Player 2 may be optimal.

3.1 The joint dynamics of learning and cooperation

This section studies game FA under the assumption that c(w) = c(wa) = CL > 0, and

c(W) = c(w 2 ) = CH = +o00 (where the fact that wl is the ambiguous state with cost CL is

of course unknown to Player 1). States w fall into four categories, depending on whether

cooperation is possible or not (c equal to CL or CH = +oo), and whether that information

is private or not (w in {w, } or {w', w~}). Section 3.1.1 characterizes the Pareto frontier
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under full information. Section 3.1.2 gives sufficient and necessary conditions for information

revelation to be costly and characterizes optimal equilibria among the class of ambiguity-

resolving equilibria.

3.1.1 The Pareto frontier under full information.

This section characterizes the Pareto frontier of the full-information game FFI. In particular,

it shows that on the full-information Pareto-efficient frontier, Player 1 should never exit in

equilibrium.

Proposition 2 (no exit) Under full information, the Pareto frontier is such that:

1. either it is reduced to a unique equilibrium for which Player 1 exits with certainty in

period t = 1

2. or, Player 1 always chooses to stay following an action of Player 2 that is possible on

the equilibrium path.

Lemma 1 Conditional on the existence of equilibria that are not reduced to immediate exit,

any pair of values on the full-information Pareto frontier can be attained by equilibria such

that

1. On the equilibrium path, Player 1 always stays;

2. Player 2 never cooperates when her cost is CH = +00oc;

3. If she has never cooperated when her cost was cL before, Player 2 cooperates with

probability r, at a state with cost CL. If she has cooperated when her cost was cL

before, Player 2 cooperates with probability r2 < rf when her cost is C1.

Consider one of the equilibria described in Lemma 1. For a given rate of cooperation r L,

after the first time Player 2's cost is CL and she cooperated, the long run continuation values
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are

VP2 1 (r - (p + pa)r2cL) (1)S1-

V _= 1 (-K + (P+Po)r b). (2)1-0

For rL >0, this cooperation scheme will be sustainable in equilibrium if and only if

L L

Vr > 0 and VpV2 CL (3)

These two conditions ensure that staying and cooperating are respectively incentive compat-

ible for Player 1 and Player 2. Denote by rmin - b(pp) the minimum constant cooperation

rate required from Player 2 to induce Player 1 to stay. There are three cases:

1. If rmin E [0, -], then if Player 2 cooperates frequently enough at the unambiguous

state w, Player 1 can be induced to stay.

2. If rmin E [• , 1], then Player 2 must cooperate at both the unambiguous state w

and the ambiguous state with low cost (state w1 by convention) to induce Player 1 to

stay.

3. If rmin > 1, then Player 2 cannot get Player 1 to stay, independently of how much she

cooperates when her cost is CL.

It is incentive compatible for Player 2 to cooperate at the minimum required rate rmin if and

only if

(7r - (P + Pa)-mincL) ý C (4)

It is assumed that condition (4) holds and rmin < 1, so that there exists a cooperative

equilibrium under full information. The maximum value attainable by Player 2 is

Vax = V = - (P + p)123
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Define rmax as the maximum r E [0, 1] such that,

1 (7r - (p + pe)rcL) > L. (6)

Ambiguous states are relevant only if rm > . Otherwise, the Pareto frontier under

full information can be spanned by equilibria such that Player 2 cooperates only at the

unambiguous state w. The maximum continuation value Player 1 can expect after Player 2

has cooperated at a state with cost CL is

VI, ax = VJma 1 (-K + (p + Pa) rmaxb). (7)1-0

3.1.2 Optimal ambiguity-resolving strategies

This section considers strategies that induce revelation of Player 2's type in equilibrium.

Since CH = +oo, revelation will occur whenever Player 2 cooperates at an ambiguous state.

Because misbehavior (i.e. failing to cooperate in the ambiguous state when c = CL) can be

detected in finite time, inducing revelation need not always be costly. Proposition 3 and

Lemma 5 provide conditions under which resolving ambiguity will be costly and characterize

the extent of the efficiency loss. Proposition 4 characterizes optimal revelation inducing

strategies.

Definition 2 Consider a pair of equilibrium strategies (sp, sp,) and some history ht at

which Player 2 can take action. A history ht is a revelation stage if it is the first history

at which the two types of Player 2 - with respective cost structures (c(wa),c(w )) equal to

(cH, CL) and (CL, CH) - take different actions. A revelation stage ht is said to be conclusive

(resp. inconclusive) when Player 2's type is such that she chooses to cooperate (resp. Player

2 chooses not to cooperate).

A history ht+, weakly following a revelation stage ht is called a confirmation stage if

it is the first history subsequent to ht at which Player 2 cooperates at an ambiguous state.
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In equilibrium, Player 1 will know Player 2's type after a revelation stage. Still, conclusive

and inconclusive revelation stages differ in the sense that after an inconclusive revelation,

Player 1 may worry that Player 2 simply misrepresented her cost to avoid cooperating in the

short run. For this reason, inconclusive revelations may have to be followed by inefficient

exit.

Proposition 3 (costly revelation) Assume that some cooperation is feasible under full

information and define

V pL ar = max (r; _ ( -- pcL) . (8)-- max l (7+p,)flr 1--(vp+ v+P)fl

If
- Viar ) <CL (9)

then, the revelation of Player 2's type is necessarily costly: no equilibrium of the game with

ambiguity that involves revelation on the equilibrium path can be on the full-information

Pareto frontier.

The value V~%iar corresponds to the min-max value that Player 2 can attain when she chooses

not to cooperate although her cost is low, and Player 1 never exits following actions that

are consistent with Player 2 being truthful'. Under this constraint, the only way Player 1

can detect misbehavior is when Player 2 does not cooperate at both ambiguous states. The

time multiplier comes from the fact that when there is no inefficient exit, Player 2 knows

that she will keep getting benefits from the partnership at least until the other ambiguous

state comes up.

As Proposition 3 suggests and Lemma 5 confirms, when Player 2's surplus is sufficiently

high, revelation is incentive compatible at no cost: because it is possible to discover past

misbehavior in finite time, when Player 2 gets enough surplus, she will reveal her type rather
1In other terms, VLar is the min-max value of Player 2 when she misbehaves and Player 1 uses a strategy

that would coincide with a Pareto-efficient equilibrium under full information.
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take the chance of causing the partnership breakdown in the near future. This result is

consistent with the usual folk theorem intuition2 . When Player 2 gets only moderate surplus

however, she can be tempted to misbehave and exploit Player l's confusion for a while. In

such a case, revelation will be induced only by having Player 1 exit on the equilibrium path,

which is inefficient.

The rest of this section focuses on the case where the revelation of Player 2's type is

costly, and characterizes the dynamics of optimal, ambiguity resolving, strategies.

Lemma 2 (revelation stages) On the Pareto frontier of game FA, revelation will occur

only at a history for which the current state wt is ambiguous, i.e. wt E {w1, w }.

Lemma 3 (forgiveness) For any Pareto-efficient equilibrium of game FA, once Player 2

has cooperated at an ambiguous state, then players behave according to some Pareto-efficient

equilibrium of the game with full information FFI.-

In other terms, if inefficient behavior must occur to induce revelation, it should not happen

any more once Player 2 has cooperated at an ambiguous state. Indeed, the sole purpose of

inefficient exit is to diminish the expected continuation value of Player 2 upon misbehavior.

Once confirmation occurs, Player 1 knows for sure that Player 2 cannot have misbehaved,

and hence there is no need for further punishment.

The next lemma concerns optimal behavior following an inconclusive revelation. It shows

that optimally, Player 2 should cooperate as much as is incentive compatible in order to

reduce Player 2's incentive to misrepresent her cost structure.

Lemma 4 (maximum cooperation) Consider a Pareto efficient equilibrium (sp1 , sp2) of

game FA that involves costly revelation. If revelation occurs at state w' with i E {1, 2}, then

1. Player 2 must cooperate with probability 1 the first time state w-' or w comes up;
2See for instance Fudenberg, Levine, and Maskin (1994).
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2. There exists an equilibrium of FA that gives players the same ex-ante values as (sp1 , sp2 )

and in which following 1) inconclusive revelation and 2) cooperation at a state w E

{w- i , w}, Player 2 cooperates at a rate rmax at all further states w E {w i , w}.

The rationale for maximum cooperation is that it minimizes the time that Player 1 needs

to identify for sure whether or not Player 2 has misbehaved. After an inconclusive revelation,

maximum cooperation will tend to bias surplus division in favor of Player 1, but this can

be undone by delaying the revelation stage itself. Finally, note that when revelation is not

costly, equilibria on the Pareto frontier need not exhibit maximum cooperation. However,

such equilibria are sufficient to describe the Pareto frontier. Using Lemmas 2, 3, and 4, we

can now characterize optimal revelation-inducing equilibria.

Proposition 4 (early dispute, fast forgiveness) Consider any equilibrium of FA that

involves revelation. There exists a weakly Pareto-dominating equilibrium in which exit - if

it happens at all - needs to happen only in the period immediately following an inconclusive

revelation of Player 2's type.

In other term, there is no option value in delaying confrontation. Delaying exit may

allow Player 2 to confirm its type in the meanwhile, but also makes the crisis more violent if

Player 2 isn't able to dispel doubts. Proposition 4 states that these two forces exactly offset

each other.

Proposition 4 shows that optimal ambiguity-resolving equilibria take a simple form. Some

histories are designated as revelation stages. At a revelation stage, Player 2 either cooperates

or defects. If Player 2 cooperates then players play some Pareto-efficient equilibrium of the

full-information continuation game. If Player 2 defects then Player 1 exits with some prob-

ability in the next period. When exit does not happen, players follow some Pareto-efficient

equilibrium of the full-information continuation game. The probability of exit following an

inconclusive revelation is given by Lemma 5.
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Lemma 5 Let (sp, sp2 ) be a Pareto-efficient equilibrium with early dispute as defined in

Proposition 4. Consider a revelation stage h at which Player 2 would get a continuation
vue•Coop

value VjoP upon cooperation. Following an inconclusive revelation, Player 1 must exit with

probability
_[ y 0op -"Pý2 00P- C

L

1- q(VoP2) = 1-min , 1 . (10)

Lemma 5 implies that the likelihood of exit following an inconclusive revelation is decreas-

ing in Player 2's continuation value upon cooperation, Vc This means that transferring

surplus from the informed player to the uninformed player increases inefficiency: because

it increases Player 2's incentives to misrepresent its cost, Player 1 must exit with greater

probability following an inconclusive revelation in order to keep truthful revelation incentive

compatible. In fact, Section 3.2 will show that in some cases, the inefficiency can be so large

that Player 1 would rather have Player 2 cooperate only in the unambiguous state w, rather

than provide the costly incentives needed to induce revelation.

This section has shown that when states are indescribable, ambiguity is at the source of

a monitoring problem which generates inefficiencies. When ambiguous states occur, inde-

scribability creates an information asymmetry that Player 2 is tempted to exploit. Because

misbehavior on the part of Player 2 can be detected in finite time, ambiguity can be resolved

at no efficiency cost when the surplus is large enough. However, because Player 2 can benefit

from the partnership for multiple periods after she has misbehaved, Player 1 must resort to

inefficient exit following an inconclusive revelation when the surplus is moderate.

Optimal revealing equilibria take a simple form that is reminiscent of the bang-bang

property of Abreu, Pearce, and Stacchetti (1990): some histories are selected as revelation

stages. If revelation is conclusive, the continuation game is played according to some Pareto-

efficient full-information equilibrium. If revelation is inconclusive, Player 1 exits with some

probability. If exit does not happen, then players fall back to playing some Pareto-efficient

equilibrium of the full-information game. While learning occurs, the partnership will be
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sensitive to adverse economic shocks and termination will happen with positive probability

if an ambiguous state with high cost occurs. Once learning has happened, however, players

behave according to a Pareto-efficient full information equilibrium which does not involve

inefficient exit. In other words, once players have reached a common understanding, the

partnership becomes resilient to adverse shocks.

This section was restricted to revealing equilibria. However some cooperation can be

sustained in game FA without revealing Player 2's type. There are two ways to achieve

this: Player 2 can cooperate only in the unambiguous state w - this corresponds to under-

cooperation; or Player 2 can cooperate in both states w', w with the same probability

- this corresponds to over-cooperation. The levels of cooperation achieved in revealing

and non-revealing equilibria follow different dynamic patterns: revealing equilibria will ini-

tially exhibit some inefficient termination, later followed by greater cooperation, while non-

revealing equilibria will sustain constant intermediate levels of cooperation. In that sense,

resolving ambiguity is an investment in relational capital which comes at the immediate cost

of inefficient exit but yields the future benefit of efficient cooperation. Section 3.2 studies

the relative benefits of revelation and non-revelation and establishes that non-revelation, in

the form of either under- and over-cooperation, may sometimes be optimal.

3.2 Optimal learning

Section 3.1.2 showed that reducing informational asymmetries comes at an efficiency cost.

Given these costs, this section considers whether there should be any information revelation

on the Pareto frontier. It is shown that depending on the costs and benefits of revelation, it

can be optimal for Player 2 to under-cooperate or over-cooperate.
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3.2.1 Under-cooperation

This section maintains the assumption that c(w) = c(wa) = CL > 0, and c(w2) = c(7) =

CH = +00. Consider the region of the parameter space such that,

rmin E 0 and rmax E . (11
Ip+Pa (P+Pa

When condition (11) is satisfied, Player 2 needs to cooperate only in the unambiguous state

w to induce Player 1 to stay. Furthermore, under full information, it is incentive compatible

for Player 2 to cooperate with probability 1 in the unambiguous state w and with some

probability strictly less than 1 in the ambiguous state with low cost wl. This section shows

that under ambiguity, the efficiency cost of revelation can be so prohibitive that for all

equilibria on the Pareto frontier of PA, Player 2 should cooperate only in the unambiguous

state w. In this case, we say that under-cooperation is optimal.

Proposition 5 (sufficient condition for optimal under-cooperation) Whenever

b+ Pab < (pb - ), (12)1+ _ 0 b 1-•-

all equilibria on the Pareto frontier of the game with ambiguity involve under-cooperation.

Under this condition, on the Pareto frontier of the game FA, Player 2 will never cooperate

at an ambiguous state: even from the perspective of Player 1, the cost of inducing revelation

is greater than the potential benefit of full cooperation.

According to condition (12), under-cooperation will be optimal whenever the greatest

possible increase in benefit Player 1 could get from full cooperation, b + Pb, is smaller

than the value, -L--(pb r), it expects from having Player 2 cooperate whenever the state is

w. This will be the case when the unambiguous state w occurs with greater frequency than

the ambiguous state wl, and players' discount rate ,3 is close enough to 1.
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3.2.2 Over-cooperation

Section 3.2.1 showed that the efficiency cost of revelation can be so prohibitive that Pareto

optimal equilibria of game IPA simply do not involve cooperation at an ambiguous state.

Over-cooperation - meaning that Player 2 cooperates at both ambiguous states with equal

probability - is another possible non-revealing strategy. So far, over-cooperation was ruled

out by the assumption that c(w ) = CH = c00. In order to study potential over-cooperation,

this section considers the case where c(wa) = c(w_) = CL, c(w 2 ) = CH < +oo, and c(T) = 00.

It may now be possible for Player 2 to cooperate at an ambiguous state with cost CH. The

section begins by extending Propositions 2 and 3: there must be no exit on the Pareto

frontier of game FFI, while under ambiguity revelation may require inefficient exit on the

equilibrium path.

Lemma 6 (no exit) The Pareto frontier under full information is such that:

1. either it is reduced to a unique equilibrium for which Player 1 exits with certainty in

period t = 1

2. or Player 1 always chooses to stay following an action of Player 2 that is possible on

the equilibrium path.

Lemma 7 (sufficient condition for costly revelation) Define Iar -. When-

ever

(Max - VLiar) <c (13)

revelation is necessarily costly. In other terms, an equilibrium of the game with ambiguity

that involves revelation cannot lie on the Pareto frontier of the game with perfect information.

When the inefficiency cost of revelation is high, non-revealing equilibria may be optimal.

An equilibrium will be non-revealing whenever Player 2 cooperates at the same rate in

both ambiguous states. Given a value Vp1 that Player 1 can obtain in a full information
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equilibrium, there may or may not be a non-revealing equilibrium that grants Player 1 the

same utility. Proposition 6 provides conditions under which, if there exists a non-revealing

equilibrium that grants Player 1 value Vp1 , then Pareto-efficient equilibria of IA that give

value Vp, to Player 1 are non-revealing.

Proposition 6 (sufficient condition for optimal over-cooperation) Assume that Player

1 can be granted value Vp1 in a non-revealing equilibrium of game FA. Whenever

0ma Liar)11 - Pa(CH - CL) <CL - (V - V2, (14)

the most efficient equilibrium of PA that gives value Vp, to Player 1 is non-revealing.

Note that condition (14) will be satisfied whenever CL is high enough for condition (13) to hold

and CH - CL is small enough. Proposition 6 is particularly interesting when rmin E~ (, 1),

since in that case Player 2 must cooperate in an ambiguous state in order to induce Player 1

to stay. In that case, non-revelation means that Player 2 would rather over-cooperate than

go through the potentially inefficient process of information revelation. Intuitively, revelation

generates inefficiencies because it creates a temptation for Player 2 to misrepresent her cost

and avoid cooperating in the short term. Because such misbehavior cannot be detected

immediately, Player 1 must resort to inefficient exit in order to provide adequate incentives.

Propositions 5 and 6 show that these efficiency costs can be greater that the gains of using

a precise cooperative arrangement that distinguishes between ambiguous states.

4 A model of empathy building

The simple model of ambiguity presented in Section 2, the fact that there are only two

states of the world results in a very stark learning process: whenever Player 2 cooperates

at an ambiguous state, Player 1 learns the cost structure c(w) perfectly. This section sug-

gests a framework in which to model richer information structures. The model presented in
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what follows is perhaps more about what might be called empathy-building than ambiguity-

resolution: Player 1 can observe a number of signals that may or may not be good predictors

of Player 2's cost for cooperation. As players gain common experience, Player 1 learns about

the relative predictive power of the various signals she observes, and can start using them

to provide flexible contingent incentives for cooperation. Section 4.1 describes the model.

Section 4.2 gives some examples of information structures that fit in this framework and

shows that it is a generalization of the ambiguity framework. Section 4.3 shows that the

essential properties of the ambiguity framework still hold.

4.1 The framework

Consider a game with two players, infinite horizon, t E {1,... ,+00}, and discount rate /.

The timing of each period is similar to that of Section 2:

1. Player 1 decides to either stay (S) at a cost n or exit (E) at zero cost. If Player 1 exits,

the game ends and both players get zero continuation values.

2. If Player 1 has stayed, an i.i.d. random variable E is drawn. It takes values in {CL, cH}

with respective probabilities (p, 1 - p).

3. Player 2 observes her cost of cooperation a. Player 1 observes a signal s of &. Both

players observe a payoff-irrelevant random variable that allows public randomizations.

Players can also exchange messages belonging to { "cooperation", "no cooperation" }.

4. Player 2 decides to cooperate (C) or defect (D). Conditional on Player 1 having stayed

in the first stage, final payoffs are given by

Player 1

Player 2

C D
7r- - 7r

b - -,
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where 7r, b, and r are common knowledge and strictly positive, and it is common

knowledge that the cost of cooperation a is either or CL or CH, with 0 < CL < CH = +00.

Empathy. At the beginning of each period t, Player 1 can choose to watch one signal s

from a family S of possible signals. Each of these signals is a real-valued i.i.d. stochastic

processe (st)tCN, normalized to share an identical distribution f, but that may or may not

be good predictors of E. The precision of a signal is given by the conditional distribution

D,(x) = Prob(6= CH I s = x). When Player 1 has watched signals {s,,..., s,} and chooses

to draw a new signal, the precision of the new signal is drawn according to a probability

distribution fs\{,...,} on [0, 11R (the set of functions mapping R into [0, 1]). Which signal

she observes is private information to Player 1. This game will be denoted by Fs.

In this framework, Player 1 may not be able learn how to perfectly predict the cost

structure c(w) immediately. In particular, when S is large, finding a good signal of Player

2's behavior will take time. As players gain common experience, Player 1 will be able to

better understand Player 2's cost of cooperation. This greater empathy will allow for the

provision of more efficient contingent incentives.

4.2 Some examples

This section gives a few examples of the empathy framework presented above. In particular

it shows that this framework generalizes the game with ambiguity FA defined in Section 2.

4.2.1 Ambiguity

This section shows that the game with ambiguity FA is a specific case of the framework

presented in Section 4.1. Let Z take values CL and CH with respective probabilities p = p + Pa

and 1 -p = p +Pa. The set of possible signals contains only two signals, S = {s_, s+} taking
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values in {-2, -1, 1, 2} with respective probabilities {p, pa, Pa, P} such that

1 if s_ = 2 1 if s_ = 2

0 if s_=1 1 if s=1
Prob( = CHI 8_) = and Prob(a = CHIs+) =

1 if s_ = -1 0 if s_ = -1

0 if s_ = -2 0 if s_ = -2

States w and U can respectively be defined as the events {s+ = 2 U s_ = 2} and {s+ =

-2Us- = -2}, while states w and w2 respectively correspond to events {s+ = 1Us = -1},

and {s+ =-1 Us = 1}.

4.2.2 Finding a reliable signal

The set of signals S can also be infinite. This would naturally be the case if states of

the world were infinite dimensional vectors, and Player 1 could pay attention only to a

particular dimension of the state of the world. This can be modeled as follows: S is an

infinite, countable, set of i.i.d. stochastic processes s such that for all t > 1, st takes values

in {-1, 1}, with respective probabilities (p, 1 - p). The precision of a signal s is entirely

characterized by the value d, = Prob(a = cH I s = 1). Each time Player 1 draws a new

signal from S, its precision d, is drawn from some constant distribution f over [0, 1].

4.3 Indescribability and costly revelation

This section shows that the class of games described in Section 4.1 satisfies the basic prop-

erties of the ambiguity framework.

Lemma 8 (no exit) Under full information the Pareto frontier is such that:

1. either it is reduced to a unique equilibrium for which Player 1 exits with certainty in

period t = 1
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2. or, Player 1 always chooses to stay following an action of Player 2 that is possible on

the equilibrium path.

Lemma 9 (ex ante truthful communication) Assume that there exists a signal s* that

is a perfect predictor of E - that is, for all x E R, D,.(x) E {0, 1} - and that Player 2

can inform Player 1 of this signal at a time t = 0, before the game begins. Then the Pareto

frontier of the game with private information and ex ante communication is the same as the

Pareto frontier of the game with full information.

In other terms, if Player 2 can costlessly inform Player 1 of which signal is a perfect predictor

of c, Player 2 can be induced to reveal her type without constraining continuation values.

Lemma 9 assumes that signals are describable. When this is not the case and the precision

of signals has to be learned from play, limited empathy will generate inefficiencies. As

in the game with ambiguity, the pervasiveness of these inefficiencies depends on how fast

misbehavior from Player 2 can be detected.

Definition 3 (slow learning) For all n E N, consider s = (si,... , s) a vector of signals

of S drawn using the joint distribution fs x fs\{1sx ... x fs\{s1 ,...,s11}. The family of signals

S exhibits slow learning whenever,

Vn E N, with proba 1, Prob(Z1 = cH Sn) > 0 and (15)

Prob(61 = cL sn) > 0.

When slow learning holds, no matter how much information Player 1 has access to, both

values of a are always possible given the signals she observes.

Definition 4 (fast learning) The family of signals S exhibits fast learning if and only if

1. when E, = cH, there exists n E N such that with strictly positive probability, Prob(a1 =

cL I sn) = 0
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2. when E, = CL, there exists n E N such that with strictly positive probability, Prob(a1 =

cn I sn) = 0.

Lemma 10 Whenever S exhibits fast learning and Player 1 can observe the past history of

the signals she pays attention to, there exists/3 < 1 such that for all /3> 8, Player 2 can be

induced to cooperate fully at no efficiency cost.

Lemma 11 (necessary exit) Whenever S exhibits slow learning, then, on any equilibrium

of game 1s, exit will happen on the equilibrium path with strictly positive probability.

In view of Lemma 8, this implies that in games with slow learning, limited empathy always

generates inefficiencies. The intuition for this result is straightforward: when learning is slow,

it is possible - though unlikely - that Player 2's true cost a is equal to CH for arbitrarily

long periods of time, independently of what the signal observed by Player 1 indicates. If

Player 1 did not exit no matter the length of these sequences, Player 2 would be tempted to

misrepresent her cost and claim her cost is cH independently of what the true cost is. Hence

exit must happen on the equilibrium path with some positive probability.

5 Conclusion.

This paper explored settings in which players agree on the principle of cooperation, but the

details of how cooperation should be implemented are ambiguous. It shows that although

there is no uncertainty about the sustainability of cooperation under full information, am-

biguity about the contingencies in which cooperation should happen can cause inefficient

termination on the equilibrium path. These inefficiencies are closely linked to the inde-

scribability of ambiguous states. In particular, if ambiguous states were describable in the

players' common language, Pareto-efficient equilibria would never involve termination on the

equilibrium path.
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Because ambiguous states are observable, the framework naturally authorizes learning

from the other player's actions. When learning takes place, cooperation exhibits interesting

dynamics: while learning occurs, the partnership is sensitive to adverse economic shocks, and

terminates with positive probability if an ambiguous state with a high cost of cooperation

occurs. Once learning is over, however, the players can sustain greater cooperation and the

partnership becomes resilient to negative economic shocks. Because inducing information

revelation has an efficiency cost, resolving ambiguity can be regarded as an investment in

relational capital that comes at the short run cost of potential early termination but yields

the future benefit of improved cooperation. When revelation cost are high, it may be optimal

for the uninformed player to remain uninformed and have the informed player either under-

or over -cooperate.

Finally, the paper shows that resolving ambiguity can be seen as a particular case of an

empathy building problem in which players learn how to predict each others' cost. In this

richer setup, the basic result that indescribability and lack of empathy hinder cooperation

and generate inefficient exit on the equilibrium path still holds. A full-fledged analysis of

optimal learning dynamics in this richer setup is beyond the scope of this paper but is an

interesting topic for future research.
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Appendix A: Extensions

A.1 Repeated game

This section examines the simplifying assumption made in Section 2 that Player 2's decision
is an exit decision. The setup used in this section is a variation on that of Section 2: now
Player l's decision to stay or exit is not irreversible any longer: each period, Player 1 decides
to participate (P) or not (NP). Player l's cost of participation is e > 0. This section shows
that Proposition 3 extends in this repeated game setup. The assumption that CH = +OO is

maintained. The timing of each period is the following:

1. Player 1 decides to participate or not.

2. An i.i.d. state of the world we T Ww1, } is drawn with probabilities (p, , Pa, Pa).

3. Player 2 observes her cost of cooperation c(w). Player 1 observes only w.

4. Player 2 decides whether to cooperate or defect. Final payoffs, are given by

C D
P (b - e, 7r - c(w)) (-e, 7r)
NP (b,-c(w)) (0, 0).

As in Section 2, states w and w2 are ambiguous from the perspective of Player 1.
Consider the following conditions,

pb < e; (-pcL)>c and (' - (Pa + p)CL) < CL (16)
(7r -- pCL) >CL and 1-0 161-/3 1-

Under Assumption 16, it is necessary for Player 1 to cooperate at some frequency at an
ambiguous state for Player 1 to be induced to stay. Moreover, Player 2 can be induced to
cooperate at an ambiguous state associated with cost CL in addition to cooperating in state
w, but not with probability 1.

Lemma 12 (full participation) Under Assumption 16 equilibria on the Pareto frontier of
the repeated game with full information are such that once the Player 2 has cooperated at
any state, Player 1 always participates following an action that is possible on the equilibrium
path.

Proposition 7 (sufficient conditions for costly revelation) DefineV-Liar 0_ (+ .
Under Assumption 16, whenever

x il/Max - iar (17)

(Vax- VAr) <CL (17)

then the Pareto frontier of the game with ambiguity lies strictly below the Pareto frontier of
the game with full information.
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Note that there is a non-empty set of parameter values such that Assumption 16 and in-
equality (17) are satisfied together.

Proposition 7 shows that ambiguity can generate inefficiencies even though Player l's
action is not an irreversible exit decision. Inefficiencies will occur whenever under efficient
strategies, Player 2 can hope to ride the partnership for a long enough time before her
deviation is detected.

A.2 Three-states ambiguity

Section 3 considered forms of ambiguity in which only two states were ambiguous. By
studying an example with three states ambiguity, this section makes the point that in all
generality, there can be different degrees of ambiguity revelation. As a consequence, it is
shown that on the Pareto frontier, the players may end up using cooperative agreements of
various precisions depending on the particular path of play.

Consider a model with the same payoff structure as that of section 2, but such that there
are no unambiguous states and three ambiguous states {w w), w ,}. Theses three ambiguous
states have the same likelihood Pa. Player 1 believes that (c(wi), c(w2), c(wa)) is uniformly
distributed over {(CL, CL, CH), (CL, CH, CL), (CH, CL, CL)}. We assume that CH = +00o.

Since CH = +oo and all states are ambiguous, some initial revelation must happen on any
equilibrium path for which there is some cooperation. As information is being revealed, there
are two levels of ambiguity that can be reached: if the state with cost CH is first revealed,
then there is no more ambiguity about the game; however, if a state with cost CL is revealed,
the two remaining states are ambiguous, and we are exactly in the case studied in Section 3.

In Section 3, we showed that it may be that under ambiguity, the entire Pareto frontier
involves under-cooperation on the part of Player 2. In such a case, on the Pareto frontier,
depending on the amount of ambiguity that is resolved initially, players will end up using
different long run cooperative agreements.

Appendix B: Proofs

Lemma 13 (No Exit) For any specification of the costs c(w 1) and c(w ), under full infor-
mation, the Pareto frontier of FFI is such that:

(i) either it is reduced to a unique equilibrium for which Player 1 exits with cer-
tainty in period t = 1

(ii) or, Player 1 always chooses to stay following an action of Player 2 that is
possible on the equilibrium path.

Proof: First, if there exist an equilibrium with some cooperation, it must Pareto dominate
immediate exit since both players can always guarantee the payoffs of exit.

Now, consider a subgame perfect equilibrium (sp1 , sp 2), involving some cooperation, and
such that there exists a history h, attainable on the equilibrium path, such that sp, (h) = E.
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Denote U the concatenation operator for histories, where h U h' means history h followed
by history h'. We say that h includes h' - denoted h' C h - if and only if there exists h"
such that h = h' U h".

Since sw(h) = E, no history of the form h' = h LU h" where h" • {E} is reached under
(sp1 , sp 2). Hence, without breaking incentive compatibility conditions or changing payoffs
on the equilibrium path, we can assume that at any history of the form h' = h U h" where
Player 1 makes a decision sp, (h') = E. From here, the proof is by construction: define the
pair of strategies 9p, and 9p, as follows:

1. whenever h' e 7- is of the form h' = huh", then 9p2(h') sp2(h") and 9p, (h') sw(h").

2. otherwise, when h' isn't of the form hUh", then p2 (h') Sp2 (h') and p, (h') sp, (h').

Let us first show that when they play according to (9p 1, 9P2 ) then at any history h' the players
have greater value than if they used (Sp2 , sp1 ). This is obvious at any history of the form
h' = h U h", since under (spl, sp 2 ) both the worker and the firm would get 0 utility, while
under (9p, SP2), by construction the firm and the worker are playing a Nash equilibrium
which must give them values weakly greater than 0. For any history h' such that h' Z h
and h Z h', the two pairs of strategies (sp•, sp2 ) and (9p 1 , gp) prescribe the same behavior
at all future histories, and hence they imply the same continuation values. Finally, for any
history h' for which there exists h" e 7- such that h' Li h" = h, the players play the same
actions for both pairs of strategies until h is reached and, we have just shown, obtain greater
continuation values with (9pi, sp2 ) once h is reached. It follows that at h' the players must
have greater continuation values under (9p, gp 2 ).

We now show that the pair (9p1 , gp 2 ) forms a subgame perfect equilibrium. At any
history of the form h" = h Lu h', by construction, the firm and the worker are playing a Nash
equilibrium. The same holds at any history h" such that h" Z h and h h". Now consider
a history h" such that h"U Li h' = h, with h' = 0. Note that at h", (sp1, sp2 ) and (p 1, §p, )
prescribe the same actions. Should the players deviate from their prescribed move, then
the resulting history cannot be connected to h and at any history following the deviation, s
and 9 prescribe the same behavior. Hence, should they deviate when playing according to
(9P1 , gP 2 ), the two players would get the same values they would have had under (spl, 8p 2 ).

Should they follow their prescribed move, we know that the players get greater continuation
value under (9p1 , gp2 ) than under (sp2 , sp). Since following their prescribed action was
incentive compatible under (sp2,Sp,), it must be incentive compatible under (9p,, §p,). It
follows that (9p1 , gp2 ) is indeed a subgame perfect equilibrium.

Since at any history where Player 1 stays, the expected value of Player 2 is weakly greater
than 7r > 0, equilibrium (9p, gp2 ) strictly dominates (sp2 , sp1). It follows that on the Pareto
frontier, Player 1 must always stay following actions on the equilibrium path, otherwise it is
possible to construct a strictly dominating equilibrium. U

Proof of Proposition 1: Consider the game with full information rFI where by convention
c(wi) = CL. The Pareto frontier of FFI is entirely spanned by equilibria in which Player 1
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exits with probability 1 following any action of player 2 that is not on the equilibrium path.
Consider such an equilibrium (sP1 , sp2 ) of FFI-.

Consider now the game with ambiguity and ex ante communication at t = 0. Player 2
can be induced to send a message of the form "State w1 [is/isn't] the low cost state" by
having Player 1 exit if Player 2 does not send a message at time t = 0. A message sent by
Player 1 defines a permutation a over {w1, w } such that a(wl) is the state with cost CL
according to Player 2's claim. Consider the strategy 9p, of Player 1 defined3 by 9p2 = Sp2 o 0.
When Player 2 tells the truth in period t = 0, then sp1 o a is a best-reply to sp 2 o a since
(sp , sp2 ) is an equilibrium of the full-information game FFI. Let us now show that when
Player 2 uses strategy §p2 in the subgame starting at time t = 1, it is incentive compatible
for Player 1 to tell the truth at time t = 0.

We use some intermediary results. Let us define zt = {W, x1 , ... , wt, xt}. For any pair
of strategies (si, s-i), we will denote by si(zt) the action prescribed by si when the state of
the world is zt and players have played according to their strategies in all previous periods.
Because (sp, sp2) is on the Pareto frontier of FFI, it must be that for any realization of zt,
on the equilibrium path,

Prob(at+i = coop. & c(wt+l) = CH I zt) - Prob(at+l = coop. & c(wt+-) = CL I zt). (18)

Indeed, otherwise, it is possible to improve players' values by shifting cooperation from the
high cost state to the low cost state.

Denote by a* the permutation defined by truth-telling, a' the permutation defined by
lying and a+" = a* o ae'. We know that sp2 o au* is a best reply to sp1 o a*. Let us now study
Player 2's best reply s- to sp o a'. Under sp, Player 1 exits whenever Player 2 does not play
according to sp2 . This implies that under s- , for a sequence zt of states of the world, either
s" coincides with sp2 o ao at all preceding periods or the game has ended because Player
1 has exited. Hence whenever s" deviates from sp2 o ae, Player 2 gets a value equal to 0.
This is weakly less than any value Player 2 obtains when players use (sp1 o a*, sp2 o a*). Let
us now compare the utility obtained by Player 2 in states where s" coincides with sp2 o a-.

Define Z" - {zt I Vt' < t, s'(zt,) = sp2 o -•(Zt')}. Let us show that there exists a set Z*

of states of the world zt such that there is an injective mapping m : Z" - Z* and for all
zt E Zt ,

up2 (SS p oa' ,zt) < up2 (sp2 oa*,sp, oa*,m(zt)) and Prob(zt) = Prob o m(zt)

where up2 denotes Player 2's flow payoffs. The existence of such a mapping m implies that
Player 2 obtains greater utility under (sp1 o a*,sp2 o a*) than under (spo or a,sp,2 0 a): at
states zt E Z _' states of equal mass can be found that provide greater flow payoffs; at states
zt < Z - , Player 2 gets value zero under (sp1 0 ao, sp2 o a-) and value weakly greater than
zero under (sp, 0 a*, sp2 o a*).

We now show that m does exist. At all these states, Pareto efficiency of (sp,, sp2 ) and
Lemmal3 imply that Player 1 will stay. The only difference is then the cost of cooperation.

3Where or also permutates ambiguous states within histories.
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For all states zt E Z - such that s-(zt) = D, then m is defined by m(zt) = a&(zt). Indeed, if
sp2 o0oU'(zt) = D then by construction Sp2 o a* o*a'(zt) = D. When s-(zt) = C and c(wt) = CL
then equation 18 implies that there exists an injective mapping (xt, wt) F- (x', w') such that
c(wt) = CL and Sp2({Zt-1, x, w'}) = C.. At such a zt, m is defined by m(zt) = {zt-, x', wf}.
Finally for any state zt such that s-(zt) = C and c(wt) = CH, any completion of m that
makes it a a bijection between the remaining states that maintains probability works. U

Proof of Proposition 2: This is a direct application of Lemma 13. U

Proof of Lemma 1: We know from Lemma 2 that on the Pareto frontier Player 1 always
stays following equilibrium actions. Furthermore, it is clear that Player 2 never cooperates
at states with cost CH = +oo. Hence, transfer of utility on the Pareto frontier is done
entirely by having the Player 2 be cooperating more or less frequently in states with cost
CL. Because players have the same discount rate the timing of these transfers does not
affect the efficiency of the equilibrium. The timing of transfers however will affect incentive
compatibility conditions and we look for the timing that minimizes the worst case temptation
to defect.

Consider a history h such that Player 2 has never cooperated when her cost was CL before.
Behavior at h does not affect any preceding or future incentive constraints. Therefore, as
long as cooperation at h is incentive compatible, the rate of cooperation at such a history
can be freely chosen. Note that at any history following a history at which Player 2 has
cooperated when her cost was CL, Player 2's behavior will affect past incentive compatibility
constraints. In this sense, there is something special about the first time Player 2 cooperates
with cost CL: no past promises need to be upheld.

For any Pareto efficient equilibrium (8p1 , s•), denote V;2 the continuation value of the
Player 2 at any history where she has to cooperate at a state with cost CL for the first time.
Note that in all generality, V,2 is a random variable, however, it must satisfy V; > CL/I. We
denote EVJ its expectation, it must satisfy EVJ Ž_ CL/I. We consider stationary strategies
in which Player 2 cooperates with probability 4 r' every time her cost is CL and Player

r2
1 enforces this by exiting when Player 2 does not comply. Denote V12 the continuation
value of the Player 2 at any of her decision point when she plays such a strategy. Since
such strategies continuously span behavior going from "cooperating always" to "cooperating

2
never", there exists r2 such that VrL = EVJ > CL/fl. By construction, this r2 makes' P2 i-
cooperation incentive compatible and the stationary strategy of with cooperation rate r is
sustainable in equilibrium.

Given this r, for all possible rL E [0, 1], consider strategies in which Player 2 cooperates
with rate ri at states of cost CL while she has never cooperated and starts cooperating at rate1 2

r once she has cooperated. Denote V; ,rL the value Player 2 expects at time t = 0 under

such a strategy. Let Vp2(0) denote the value expected by Player 2 at t = 0 under (sp, sp2 ).

Clearly there exists r such that 2 = V (0). By construction, such a strategy P2

4 Players make use of the public randomization.
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can be sustained in equilibrium. To conclude the proof, note that if rL • ri then one can
increase ri and decrease rA while keeping the initial value of Player 2 constant and weakly
relaxing all incentive compatibility constraints. U

Proof of Proposition 3: Consider an equilibrium (sp, sp2) on the Pareto frontier of PA.
Assume that this equilibrium yields values that are on the Pareto efficient frontier of FFI.

Then, Lemma 13 implies that under (Spl, sp2), Player 1 never exits following behavior that
is consistent with equilibrium behavior under full information for some cost structure c. At
a revelation stage, not-cooperating is consistent with both possible cost structures. Hence
Player 1 should not exit if Player 2 does not cooperate at the state w2 of a revelation stage
ht. For (sp1 , sp2) to yield values that are one the Pareto frontier of FFI the only moments
when Player 2 may exit following a revelation stage ht are at a state w-" or w where Player
2 does not cooperate. Hence, the value Player 2 can obtain when she does not cooperate at
wa even though c(wai) = CL is minimized when Player 1 demands cooperation the first time

wai occurs after ht and whenever wt = w until w-i occurs. Hence, the minimum value VLiar
that Player 2 can guarantee when she misrepresents her cost is

VLiar max 1 (1 - pcL)
V -max l_(+Pa)r; 1-(p+P+pa)3  - }

where the value depends on whether it is optimal for Player 2 to cooperate or not when
Wt =tW.

The fact that revelation is incentive compatible under (spl, sp2) implies that P(Vgax -

V~Liar) Ž CL. Hence, if P(V2ax - VLiar) < CL, then (8p 1, sp2 ) cannot yield values that are on
the Pareto frontier of the game FFI-.

Proof of Lemma 2: The only other circumstance where revelation can occur in equilibrium
is when wt = w. By cooperating or not cooperating at this state Player 2 can potentially
reveal information about ambiguous states. The incentive problem however is exactly the
same as at an ambiguous state. Any continuation equilibrium that induces revelation at
w w would induce revelation at wt E {w1, w2} and vice-versa. Player 2's temptation is
the same in both cases: by misrepresenting her cost structure, Player 2 can save a cost CL.
If revelation is potentially costly, it is weakly Pareto dominant to have revelation occur as
late as possible. Hence revelation may as well be delayed to ambiguous states. U

Proof of Lemma 3: The role of exit is to reduce the continuation value of Player 2 when
she misrepresents her cost. If she has misrepresented her cost, Player 2 cannot cooperate at
an ambiguous state without revealing she misbehaved. Since it occurs out-of-equilibrium,
it is clearly efficient for Player 1 to exit whenever past misbehavior is revealed: it reduces
the continuation value of Player 2 when she misbehaves without changing behavior on the
equilibrium path.

In these conditions, if she has misrepresented her cost, Player 2 will never choose to coop-
erate at an ambiguous state. Therefore, behavior that occurs after the Player 2 cooperates
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at an ambiguous has no impact on the continuation value of a misbehaving Player 2, and
hence behavior after Player 2 cooperates at an ambiguous state should be on the Pareto
frontier of the game with full information FFI. m

Proof of Lemma 4: Consider an equilibrium (sp, sp2) of game FA that exhibits exit on
the equilibrium path following some inconclusive revelation stage with state w*. The point
of Lemma 4 is that forcing Player 2 to cooperate is a more efficient way to reduce Player
2's incentive to misrepresent her cost structure than exit. This will bias values following an
inconclusive revelation stage in favor of Player 1 but does not restrict ex-ante values since
revelation itself can be delayed in order to transfer utility from Player 1 to Player 2.

Let us first consider the case where rmax < 1. Denote by h' the revelation stage under
(spl, sp2) and h' the first history following h' such that the state w is either w or w-.
Consider the strategies (9p, p2 ) such that at h1 , Player 2 cooperates with probability 1
and at all following states w E {w, w•'} Player 2 cooperates at a rate rmax. At h1 , the
continuation value of Player 2 when she has misrepresented her cost is weakly less than
her continuation value when her cost was truthfully revealed. Under (9p, gp) a truthful
Player 2 is weakly indifferent between cooperating or not. Hence it is an equilibrium of the
continuation game for a misrepresenting Player 2 not to cooperate at h' and hence trigger
exit. Hence there need not be any exit on the equilibrium path after h'. Using (9p, §p2)
reduces the need for inefficient exit but also transfers utility from Player 2 to Player 1.
This transfer can be undone by randomizing the initial revelation stage: with some constant
probability d > 0 the revelation stage is delayed to the next period where the same ambiguous
state occurs.

When rm•. = 1, even when she has misrepresented, Player 2 might want to cooperate at
state w to keep the partnership going. In those cases we cannot yet rule out exit occurring
on the equilibrium path after h'. However, some exit is unnecessary if Player 2 does not
cooperate with probability one at every state w E {w, w'}. Indeed, if Player 2 does not coop-
erate at such a history h, then one can demand Player 2 to cooperate at h. If cooperation is
not IC for Player 2 under truthful revelation, one can reduce future exit so that cooperation
becomes incentive compatible for the truthful type. This weakly reduces the utility of a
misrepresenting Player 2 since, she benefits weakly less from the possible reduction in exit.
As in the case where rmax = 1 this induces a transfer of utility from Player 2 to Player 1
that can be undone by randomizing the initial revelation stage. This concludes the proof.
U

Proof of Proposition 4: This proof builds on the proof of Lemma 4. We can restrict
our attention to the class of Pareto efficient equilibria described in Lemma 4 where Player
2 cooperates at the maximum possible rate following inconclusive revelation. Let us first
consider the case where rmax < 1. Denote by ht the inconclusive revelation stage. We first
show that having potential exit occur over ht+l and ht+2 does not improve upon exiting only
in period ht+l.

Since rmax < 1, we know there is no need for exit after cooperation occurs. Denote by
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q = (qi, q7, q') the staying rates at ht+l and ht+2, depending on what state is realized at
ht+1. Given that Player 2 cooperates as much as is incentive compatible, the players' values
at ht are,

v•L" = qi+ + q(P (+ Pa) (19)

v (q) = qi7 (r + q(Pa + P)(cL _V_• _)) (20)

+ qi(qiv+q9a /3(+a) ( +(Pa ± )(-cL+y; /3 a))
1 - t3(P + Pa)Vp,(q) = q ( + (P + P) (21)+ Pf) + (po +( ++aa)+ q, qP~2 Pa) lOf(P+ Pa) (r+(a+P L+P

Vp + (q) q,(-e + (p (- e +pa + p)(b + Vp,(

1 O( + Pa)
+ qi(q•p+ q2 aPa) 1 - (.+ Pa) (-e + (Pa + p)(b + f/V;,-a))

Any change in q that keeps V•iar (q) constant keeps Vp1 (q) and v2rth(q) constant. Hence
delaying exit by one period does not provide any efficiency gains.

This implies that there is also no efficiency gain from delaying exit over T + 1 periods
rather than T and by induction no efficiency gain from delaying exit over T + 1 periods
rather than 1. Given that delaying exit over an infinite number of periods can be arbitrarily
approximated by strategies in which exit can happen over long but finite horizons, delaying
exit over an infinite horizon does not provide efficiency gains either. A similar proof holds
for the case where rmax = 1. U

Proof of Lemma 5: We know that exit need only happen in the period following incon-
clusive revelation. Let us denote q the probability that Player 1 stays after an inconclusive
revelation. When she misrepresents her cost, Player 2 gets a value VLiar (q) qVpLiar, where

VYiar is defined in Proposition 3. Truthful revelation is incentive compatible if and only if

Vcoop _ Liar(q) > CL
P2  Y P2  - '

p 22 -- CL

which yields q < min 1, arc . Pareto efficient equilibria will use the greatest such q,
OVP2i

which yields the result. N

Proof of Proposition 5: Consider a Pareto efficient equilibrium with revelation and denote
VJa" the value expected by Player 1 at some revelation stage with ambiguous state wa'. The
maximum value Player 1 can get in an under-cooperating equilibrium is V11; ace = -e +

pb). Under-cooperation will be optimal whenever Vpp _< • -- (-e + pb), under-cooperation
will be optimal. Using Proposition 4 and Lemma 5, we obtain that

VRev = 1(b + Coop 1 , C , Voo l,2 rm.
:P (b+OV )+ -,8q(V, 2)p p,
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where V°oop is the value Player 1 would get should Player 2 cooperate, q(V ') is equal toPlyehgt Plyeecoerte qV") eqa
L VmCoop g easI ca

arV~ar and V P, '  is the greatest value Player 1 can obtain. Because Vp1 is linear inC001 1,R, T/Rev imaiieethrorTCoop rFi

VCooP V1 /Pv is also linear in ,o'. Hence V,e is maximized either for Vn= orrp2  P P2  P2 P2
Vjp""2 We have

Vp1Rev [1
r m ax 

•< 1 1-
Vpe2(V7ax) ((b + (-e + b(Pa + P)) (22)

VPe_(Vp2) (b +  (-e + b(pa + p)). (23)

Inequalities (22), (23) and simple algebra yield that whenever b + -2-pa b E(e + pb),
under-cooperation is optimal. U

Proof of Lemma 6: This is a direct application of Lemma 13. N

Proof of Lemma 7: Because at T, c(T) = +oo, Player 2 never cooperates at state W
on the Pareto frontier of FFI. Hence if some revealing equilibrium of PA is on the Pareto
frontier of rFI, then Player 2 must never cooperate at T. Hence under such an equilibrium,
Player 2 can guarantee a value greater than V Lar even when she misrepresents her cost. The
incentive compatibility of revelation implies that

-ax tLiar) > CL.
H eP2n

Hence whenever P2(Vx -_ V a) < CL, revelation must imply some inefficiency. U

Proof of Proposition 6: Consider a possible revelation stage and fix Player l's conditional
value Vp1 . There exists some non-revealing strategy of Player 2 that delivers Vp, and gives
Player 2 a value of the form Rev -P , (r - P-- par(cL+CH)), with r < 1. The question is
whether there exists an equilibrium with revelation that gives Player 2 a greater value VR~e,vP2

while keeping Player l's value constant.
When ax(VP -_ L ) < CL there must be inefficiency on the equilibrium path to induce

revelation. Whether this takes the form of exit or cooperation at what Player 1 presumes
is the high cost state. inefficient behavior is more costly to Player 2 when she has behaved
truthfully than when she has misrepresented her cost. Hence, if VFI is the value that Player
2 could expect under full information, we have

RVpe • • r V -F ( + y' - Vmax). (24)

Since
Y R P2 1 Pa(CH CL)Vone V'po (cH - L)(25)
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we get by combining inequalities (24) and (25) that whenever jl Opa(CH - CL) < CL - Pr•ax2 -

V iar), over-cooperation dominates revelation. U

Proof of Lemma 8: The proof is identical to that of Lemma 13. N

Proof of Lemma 9: Given that signals are unbiased, proof similar to that of Proposition
1 holds. Player 1 simply takes the information given by Player 2 seriously. From an ex ante
perspective, Player 2 does not benefit from Player l's confusion. U

Proof of Lemma 10: Under fast learning when Player 2 does not cooperate at a state where
her cost is CL, PLayer 1 may learn it with certainty in finite time by sampling n consecutive
signals. Hence, when 3 is large enough, there is an equilibrium in which Player 1 entirely
trusts the declarations of Player 2 but exits if she learns that Player 2 has misbehaved. U

Proof of Lemma 11:Under slow learning, it is possible that E = CH for arbitrarily long
sequences independently of the signals that Player 1 observes. If there was no exit on the
equilibrium path, then Player 1 would tolerate arbitrarily long sequences in which Player 2
does not cooperate. In that setting, it would not be incentive compatible for Player 2 to
cooperate. N
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