
The Development of Palladium-Catalysts for Organic Synthesis

By

Joseph R. Martinelli

B.S. Chemical Engineering
University of Wisconsin - Madison, 2002

Submitted to the Department of Chemistry in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY IN ORGANIC CHEMISTRY

at the

Massachusetts Institute of Technology

June 2007

© 2007 Massachusetts Institute of Technology

All Rights Reserved

-J o% - /

Signtureof Athor I J --

Department of Chemistry
May 15, 2007

Certified by: , , -. .....
Stephen L. Buchwald

Camille Dreyfus Professor of Chemistry
Thesis Supervisor

Accepted by:

MASSACHUSETTS INSTITUTEr
OF TECHNOLOGY

JULBRARIES 1 12007

LIBRARI ES

Robert W. Field
Haslam and Dewey Professor of Chemistry

Chairman, Departmental Committee on Graduate Students

Signature of Authon.
61/-



This doctoral thesis has been examined by a committee of the Department of Chemistry as
follows:

Professor Timothy F. Jamison: L' -_m it
t is CommitteeChair

Professor Stephen L. Buchwald: T,-S
Thesis Supervisor

Professor Sarah E. O'Connor:



The Development of Palladium-Catalysts for Organic Synthesis

By

Joseph R. Martinelli

Submitted to the Department of Chemistry on May 15, 2007
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

at the Massachusetts Institute of Technology

ABSTRACT

Chapter 1.
Suzuki-Miyaura coupling reactions of aryl and heteroaryl halides with aryl-, heteroaryl and vinyl

boronic acids proceed in very good to excellent yield with the use of 2-(2',6'-dimethoxybiphenyl)-
dicyclohexylphosphine, SPhos. Additionally, a comparison of the reactions with SPhos and with 2-
(2',4',6'-triisoprocpylbiphenyl)-diphenylphosphine is presented that is informative in determining the
relative importance of ligand bulk and electron-donating ability in the high activity of catalysts derived
from ligands of this type. Further, when the aryl bromide becomes too hindered, an interesting C-H bond
functionalization-cross-coupling sequence intervenes to provide product in high yield.
Chapter 2.

The direct transformation of aryl bromides into the corresponding Weinreb amides via Pd-
catalyzed aminocarbonylation at atmospheric pressure is described. Electron-deficient, -neutral and -rich
aryl bromides were all efficiently transformed to product. Furthermore, the process tolerates a wide
variety of functional groups, is mild, and is operationally simple.
Chapter 3.

A general, functional group tolerant, and mild system for the Pd-catalyzed Heck carbonylation of
aryl chlorides into the corresponding benzamides has been developed. This catalyst operates at one
atmosphere of carbon monoxide using an inexpensive, air-stable and commercially available ligand. A
variety of aryl chlorides were all successfully transformed to the corresponding amides using primary, a-
branched primary, cyclic secondary, acyclic secondary, or aryl amines. Additionally, the mechanism of
this reaction was studied using in situ IR spectroscopy and revealed the unique effect of sodium
phenoxide in this reaction.
Chapter 4.

Pressurized microreactor systems greatly expand the range of reaction conditions and accelerate
gas-liquid mass transfer. Heck aminocarbonylation reactions exemplify the potential for quickly and
safely scanning of reagents and reaction conditions (1 to 15 bar and 100 - 160'C). The results reveal a
general trend of increased yield of amide with temperature and selectivity for a-ketoamide production at
lower temperature and higher pressure.

Thesis Supervisor: Stephen L. Buchwald
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Introduction

Since the discovery of nickel- and palladium-catalyzed cross-coupling processes in the 1970s,

these reactions have become extremely important techniques employed by chemists for forming C-C, C-N

(Buchwald-Hartwig) and C-O bonds.' Advances in catalyst design have fuelled a revolution in cross-

coupling chemistry and these reactions have become indispensable to the practicing organic chemist.

Many types of aryl nucleophiles have been successfully employed in cross-coupling reactions including

23aryl lithiums and Grignards (Kumada-Corriu), organotin compounds (Stille),3 aryl boronic acids and

boronate esters (Suzuki-Miyaura), 4 organozinc reagents (Negeshi), 5 aryl silanes (Hiyama), 6 amines and

anilines (Buchwald-Hartwig) 7 and alcohols8 (Scheme 1). In addition, cross-coupling type processes have

allowed efficient functionalization of olefins (Heck Arylation),9 alkynes (Sonogashira)'o and installation

of carbonyl functional groups (Heck Carbonyation)."

Scheme 1. General Pd-Catalyzed Cross-Coupling Reactions.

M = Li, MgX Kumada-Corriu

L / Pd = Sn(alkyl)3 Stille
Ar-X + Ar-M L Ar-Ar

= B(OH) 2 Suzuki-Miyaura
X = I, Br, CI, OSO 2R = ZnX Negishi

= SiR 3  Hiyama

Ar-X + R L/ Pd O R Ar Heck Arylation

Ar-X + R L /Pd R - Ar Sonogashira Arylation

AXL / Pd / CO(l) Heck Carbonylation
Ar-X + Nu-H Ar Nu Nu-H = RI(R 2)NH, ROH

Arguably, one of the most important C-C bond forming reactions is the Suzuki-Miyaura cross-

coupling reaction. This Pd-catalyzed reaction between an aryl halide (or sulfonate) and a boron reagent



(typically a boronic acid) allows for the rapid construction of C-C bonds. This reaction possesses several

advantages over other cross-coupling reactions due to the benign nature of the boron reagents. Boronic

acids are non-volatile, non-toxic, air- and moisture-stable solids that can be stored for long periods of time

and handled without special precautions. 12  Additionally, the mild reaction conditions tolerate the

presence of many functional groups.4" 3

The choice of ligand is instrumental in determining the efficacy of Pd-catalyzed Suzuki-Miyaura

reactions. The appropriate ligand, such as an electron-rich bulky biaryl-based monophosphine of the type

shown in Figure 1, can provide highly active catalyst.4c, 5b,7C Shown in Scheme 2 is a general catalytic

cycle for a Suzuki-Miyaura cross-coupling reaction: 1) the palladium catalyst undergoes oxidative

addition with the electrophile (in this case an aryl chloride); 2) the nucleophilic coupling partner

undergoes transmetalation (in this case an aryl boronic acid); 3) the biaryl product is formed via reductive

elimination of a C-C bond.4,13 Other cross-coupling reactions proceed through a similar sequence of

steps.

Me2N.
P(t-Bu)2 i-Pr

N

i-Pr
DavePhos JohnPhos XPhos SPhos

Figure 1. Selected Examples of Biaryl-Based Monophosphines.
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Scheme 2. Proposed Catalytic Cycle for the Suzuki-Miyaura Reaction.

L2Pd

AAr A+L _ . L
ArAr -- AfI
In-n

Reductive Elimination

L1 Pd

Ar
L1Pd A L Pd-Ar

Ar "Cl

0CI-B(Ol. G +0OR(rH) Ar-B(OH)
I ,- .... -  ,z  ( E

X X -X

Another important Pd-catalyzed reaction is the Heck carbonylation."1 This three-component

coupling reaction of an aryl halide, carbon monoxide (CO), and a nucleophile is a very powerful method

for the regioselective installation carbonyl functional groups into target molecules. 14 Although carbon

monoxide is a synthetically useful organic molecule, it is an excellent ligand for transition metals which

makes it a deadly poison (Scheme 3).15 CO binds very strongly to metals due to its ability to act as both a

a-donor and a K-acceptor (back-bonding).16 An analogous catalytic cycle for Pd-catalyzed carbonylation

is proposed in Scheme 4.17



Scheme 3. a) Orbital Interactions Between CO and a Transition Metal. b) Physical Effects of CO.

a) 9 =filled orbital b)

0 =empty orbital,
empty M d orbital CO orbital Concentration of CO in Air and Effect

empty M d orbital CO st orbital
) 0.005% Tolerable by healthy adults for hours.

+ M +  C 0.05% Tolerable by healthy adults for ~ 1 hour.
+ M+ -0

(ý) ~ 0.15% Dangerous for healthy adults after - 1 hour.

filled M d rbital CO k orbital 0.4% Fatal for healthy adults in less than 1 hour.

Scheme 4. Proposed Catalytic Cycle for the Heck Carbonylation Reaction.

A... '.1 I~J - I ~ II iE~% E-~

B*HX A^ I^ = , or, u, Uou 2 I

LnPd

Oxidative Addition

LnPd"
n X
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LnPd x%X

O

LnPdl'XAr"X

CO

I aryl Mvgration 3

Cross-coupling reactions have been called on countless number of times to solve ever more

challenging problems and each new challenge typically requires a new set of optimized reaction

conditions. This has led to great interest in finding ways to speed up the process of reaction optimization.

One strategy that has shown great promise is the use of microreactor technology as "micro-total-analysis-

systems" (gTAS).18 These microchemical systems have dimensions ranging from 10 - 1000 pm and are



typically operated in a continuous fashion.18 Some inherent advantages of these systems are enhanced

mass- and energy-transfer due to large surface-to-volume ratios, decreased material requirements per

experiment, and greatly increased safety considerations associated with the use of highly toxic or

dangerous materials." Such systems have been used successfully in a number of chemical applications

fueling further interest and their full potential has yet to be realized. 19

The work presented in this thesis details recent developments in the areas of Pd-catalyzed Suzuki-

Miyaura reactions and Heck Carbonylation reactions that should be of interest to the general organic

chemistry community. The work is presented in four chapters. In Chapter 1 work designing new ligands

for the improvement of Pd-catalyzed Suzuki-Miyaura cross-coupling reactions is described. Chapters 2

and 3 describe recent developments in the Pd-catalyzed Heck carbonylation reactions. In Chapter 2, a

convenient strategy for the synthesis of Weinreb amides by Pd-catalyzed aminocarbonylation of aryl

bromides at atmospheric pressure of CO is described. Chapter 3 describes the development of a system

for the efficient aminocarbonylation of aryl chlorides at atmospheric pressure of CO. Finally, in Chapter

4, a case study detailing the use of microreactor technology for the optimization of synthetically useful

reactions is presented.

References

(1) For reviews see: (a) Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; de Meijere, A., Diedrich, F.,

Eds.; Wiley-VCH: Weinheim, 2004. (b) Tsuji, J. Palladium Reagents and Catalysts, 2nd ed.; Wiley:

Chichester, 2004. (c) Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E.-I., de

Meijere, A., Eds.; Wiley: Chichester, 2002. (d) Tamao, K.; Miyaura, N. Top. Curr. Chem. 2002, 219, 1.

(2) (a) Corriu, R.J.; Masse, J.P. Chem. Commun. 1972, 144. (b) Tamao, K.; Kiso, Y.; Sumitani, K.;

Kumada, M. J. Am. Chem. Soc. 1972, 94, 9268. (c) Tamao, K.; Sumitani, K.; Kumada, M. J Am. Chem.

Soc. 1972, 94, 4374. (d) Martin, R.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3844.

(3) (a) Kosugi, M.; Sasazawa, K.; Shimizu, Y.; Migitia, T. Chem. Lett. 1977, 1423. (b) Milstein, D.;

Stille, J. K. J. Am. Chem. Soc. 1979, 101, 4992. (c) Littke, A. F.; Schwarz, L.; Fu, G. C. J. Am. Chem.

Soc. 2002, 124, 6343.



(4) (a) Miyaura, N.; Suzuki, A. Chem. Commun. 1979, 866. (b) Miyaura, N.; Yanagi, T.; Suzuki, A.

Synth. Commun. 1981, 11, 513. (c) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am.

Chem. Soc. 1999, 121, 9550.

(5) (a) Baba, S.; Negishi, E. J. Am. Chem. Soc. 1976, 98, 6729. (b) Milne, J. E.; Buchwald, S. L. J. Am.

Chem. Soc. 2004, 126, 13028.

(6) (a) Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918. (b) Hatanaka, Y.; Fukushima, S.; Hiyama,

T. Chem. Lett. 1989, 1711. (b) Powell, D. A.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 7788.

(7) (a) Kosugi, M.; Kameyama, M.; Migita, T. Chem. Lett. 1983, 927. (b) Guram, A. S.; Buchwald, S. L.

J. Am. Chem. Soc. 1994, 116, 7901. (c) Wolfe, J. P.; Wagaw, S.; Buchwald, S. L. J. Am. Chem. Soc.

1996, 118, 7215. (d) Driver, M. S.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 7217. (e) Huang, X.;

Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653.

(8) Vorogushin, A. V.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 8146.

(9) (a) Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5518. (b) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem.

Soc. Jpn. 1971, 44, 581.

(10) Sonogashira, K; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467.

(11) (a) Schoenberg, A.; Bartoletti, I.; Heck, R. F. J. Org. Chem. 1974, 39, 3318. (b) Schoenberg, A.;

Heck, R. F. J. Org. Chem. 1974, 39, 3327.

(12) Miyaura, N. Top. Curr. Chem. 2002, 219, 11.

(13) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (b) Kotha, S.; Lahiri, K.; Kashinath, D.

Tetrahedron, 2002, 58, 9633.

(14) (a) Beller, M.; Maigerlein, W.; Indolese, A.; Fischer, C. Synthesis, 2001, 7, 1098. (b) Skoda-F61des,

R.; Kolldr, L. Curr. Org. Chem. 2002, 6, 1097.

(15) Chemical Hazards of the Workplace, Proctor, N. H.; Hughes, J. P.; Fischman, M. L., Eds. J.B.

Lippincott Co.: Philidelphia, 1988.

(16) Stromnova, T. A.; Moiseev, 1. I. Russ. Chem. Rev. 1998, 67, 485.



(17) (a) Garrou, P. E.; Heck, R. F. J. Am. Chem. Soc. 1976, 98, 4115. (b) Milstein, D. Acc. Chem. Res.

1988,21,428.

(18) (a) Jensen, K. F. AIChEJ. 1999, 45, 2052. (b) Jensen, K. F. Chem. Eng. Sci. 2001, 56, 293.

(19) Jidhnisch, K.; Hessel, V.; L6we, H.; Baerns, M. Angew. Chem., Int. Ed. 2004, 43, 406.



Chapter 1.
Design and Development of Catalysts for Suzuki-Miyaura Cross-Coupling Reactions.



1.1 Introduction

In 1979, the seminal paper of Miyaura, Yamada and Suzuki' laid the groundwork for what now is

arguably the most important and useful transformation for construction of carbon-carbon bonds in modem

day organic chemistry. Although the original paper reported coupling reactions of alkenyl boronates with

alkenyl bromides, throughout the past 25 years contributions from myriad research groups 2 have led to

vast improvements on what now is known as the Suzuki-Miyaura cross-coupling reaction. Advances

have been made in way of reaction scope, including the use of aryl chlorides 3 as substrates and the ability

45to conduct couplings at very low catalyst loadings4 and at room temperature. Moreover, it is now

possible to couple hindered substrates6 and even asymmetric variations have been reported. 7

Improvements in Suzuki-Miyaura coupling reactions have relied a great deal on increased reactivity and

stability of the metal catalysts by use of increasing efficacious supporting ligands. The most common

ligands used today are phosphine-based, although a variety of others, including N-heterocyclic carbenes

(NHC) have been employed.5fh,i,8 Also of great importance are the procedures that utilize so-called

"ligandless" conditions.9 The ability to satisfy the diverse requirements of different Suzuki-Miyaura

couplings with a single ligand, however, remains unrealized. Herein, we present a full report of a catalyst

system that enables the coupling of heteroaryl, both electron-rich and -poor aryl and vinyl boronic acids

with very hindered aryl halides and a variety of heteroaryl halides at exceptionally low catalyst loadings.l0

Additionally, we present crystallographic data and computational studies to help explain the efficacy of

catalysts based on 1 impart in Suzuki-Miyaura cross-coupling processes. Further, a simply prepared

triarylphosphine, ligand 2, is described that also demonstrates high activity in the coupling of electron-

rich and hindered aryl chloride substrates.



/ PPh-
PCy 2  PrhI

MeO OMe i-Pr i-Pr

i-Pr
1 (SPhos) 2 (Ph2XPhos) 3 4

Figure 1. Ligands and a ligand precursor (3) for Suzuki-Miyaura Coupling Reactions

1.2 Results and Discussion

1.1.1 Synthesis of 2-(2 ,6 '-dimethoxybiphenyl)-dicyclohexylphosphine (1)

We have developed a direct and experimentally convenient one-pot protocol for the construction

of ligand 1, based upon a procedure developed by Schlosser who had nicely modified our original

procedure to provide aryl halides in a simple protocol." Although our previous synthesis of

dialkylbiarylphosphine ligands12 required an aryl halide precursor, the selection of the 1,3-

dimethoxybenzene moiety for the bottom (non-phosphine containing) ring, offered the advantage that it

can be installed by means of a directed metalation. The directed ortho-lithiation of 1,3-dimethoxybenzene

with n-BuLi in THF at room temperature, followed by cooling the reaction mixture to 0 'C, and slow

addition of neat 1-bromo-2-chlorobenzene generated 2-bromo-1l',3'-dimethoxybiphenyl (3). The latter,

produced via a rapid, tandem benzyne condensation-bromine atom transfer sequence, could be isolated in

81% yield. Compound 3, in THF at -78 'C, could be treated with n-BuLi and then

chlorodicyclohexylphosphine. However, for expedient access to 1, 3 was not isolated but was treated

sequentially, at -78 'C, with n-BuLi and chlorodicyclohexylphosphine followed by warming the reaction

to room temperature. Following workup and crystallization, 1 was produced in 59% overall yield. This

new procedure allows for the synthesis of 1 in a considerably shorter reaction time and with an easier

isolation procedure (no CuCl is required) than the route used previously to access such ligands.

,



(a)

MeO OMe 1. n-BuLi, THF, RT 1 1. n-BuLi, -78 "C2 , O eCBr
2. Br 0 C MeO . OMe 2. CY2PCI M

'-'I

3
Can be isolated
in 81% yield or
used in situ.

(b) Li B

MeO NOMeC (C Li -LiC

iLi

MeO OMe

Scheme 1. (a) One-Pot Synthesis of 1. (b) Benzyne Condensation-Bromine Atom Transfer Sequence.

1.1.2 Suzuki-Miyaura Coupling Reactions of Hindered Substrates

The ability to prepare extremely hindered biaryls via Suzuki-Miyaura coupling reactions has historically

proven to be a difficult task. Most challenging are examples with substrates that contain large ortho

substituents and/or ortho, ortho' substituents. However, with the use of 1, the coupling of an aryl

bromide that possesses two large ortho, ortho' substituents, 2,4,6-tri-isopropylbromobenzene, with

boronic acids as hindered as 2-biphenylboronic acid proceeded in excellent yield (Table 1, entry 3, 93%).

Unfortunately the reaction of 2,4,6-tri-isopropylbromobenzene and 2,6-dimethyl phenyl boronic acid with

1.5% Pd 2(dba)3 and 6% 1 at 100 *C for 14 h provided no desired product. Relatively bulky 1-naphthyl

boronic acid required only 0.1% Pd for its efficient combination with 2,4,6-tri-isopropylbromobenzene in

12 h to give product in 96% isolated yield (Table 1, entry 2). We previously reported the preparation of

2

3



biaryls possessing a 2,2',6,6' tetrasubstituted pattern with a phenanthrene-based phosphine ligand, 4.13

However, this system has several disadvantages, including the necessity of using between 4-10% Pd and

the fact that 4 is not commercially available. Gratifyingly, the use of ligand 1 allowed for the coupling of

2,6-dimethoxybromobenzene with 2,6-dimethylphenyl boronic acid with 3% Pd in 86% isolated yield

(Table 1, entry 4). The difficulty of this particular transformation exists not only from the steric

encumberance of both the aryl bromide and boronic acid, but also from the very electron-rich nature of

the aryl bromide. Additionally, we were able to couple 2-methyl-4,6-di-tert-butylbromobenzene with

phenyl- and 2-methylphenyl boronic acid (Table 1, entries 6 and 7). Although 10% Pd(OAc) 2 was

required to obtain full conversion of the aryl bromide, only a small amount of arene byproduct was

observed and isolated yields were greater than 80%. Taken together, the results shown in Table 1

represent, to our knowledge, the most hindered couplings of aryl halides and aryl boronic acids to date.



Table 1. Hindered Suzuki-Miyaura Couplings Using Ligand 1a

Entry Halide Boronic Acid Product mol% Pd Conditions Yield (%)b

i-Pr i-Pr

1 i-Pr

2

3

(HO)2B i-Pr 3 100 C, 2 h 94

.1 10 0°C, 24 h 95
Me i-Pr Me

I"- 1

(HO)2B / i-Pr \ / \ / 0.1 100 oC, 12 h 96

i-Pr

i-Pr

(HO)2B\ i-Pr 3 100 OC, 18 h 93

Ph i-Pr Ph

OMe Me MeO Me

4 \/ Br (HO)2B 3 100 OC, 10h 86

OMe Me MeO Me

Me Me Me

(HO)2B • Me -/ 4 110 OC, 18h 82c5

Me Me Me Me

t-Bu t-Bu

Me MeBr (HO - t-Bu 10 110C, 18h 82

Me Me

t-Bu

(HO)2B- t-Bu / 10 110 °C, 18h 897 t-Bu-

Me Me Me Me

a Reaction conditions: 1 equiv of aryl bromide, 2 equiv of boronic acid, 3 equiv of K3PO 4, toluene (2 mL/mol
halide), cat Pd2(dba)3, ligand 1, L:Pd = 2:1. b Isolated yield based upon an average of two runs. c 4 equiv
K3PO4 was used.

1.1.3 Tandem C-H Functionalization/Suzuki-Miyaura Coupling Reactions



In hope of further pushing the limit of the degree of steric hindrance of the aryl bromide that

could be successfully coupled, we examined the reaction of 2,4,6-tri-tert-butylbromobenzene with phenyl

boronic acid. We were surprised that only 2% Pd was required to promote full conversion of the aryl

bromide. The relatively low quantity of catalyst required was initially puzzling, as 10% Pd was needed

for the much less hindered 2-methyl-4,6-di-tert-butylbromobenzene. Examination of the 'H NMR

spectrum of the product from this reaction indicated that instead of the desired biaryl, the u,ax-dimethyl-p-

aryl hydrostyrene derivative, 9 (Table 2, entry 1), was produced. More hindered boronic acids, such as 2-

methylphenyl boronic acid and 2-biphenyl boronic acid also proved to be excellent coupling partners in

this type of transformation, with yields >96%. Scheme 2 contains a suggested mechanism for this

transformation. Following oxidative addition to the aryl bromide to give 5, cyclometalation occurs to

form a five-membered palladacycle, 6, via abstraction of one of the hydrogen atoms from the tert-butyl

group. A mechanism of this type has previously been proposed in the reactions of similar aryl

bromides.' 4 Selective protonation of the weaker"5 and less hindered sp2 C-Pd bond of 6 affords the alkyl

Pd" species, 7. This can undergo transmetalation with the boronic acid 8. Finally, reductive elimination

occurs with formation of a carbon-carbon bond to 9 with concomitant regeneration of LPd(0). One

possible reason for the efficiency of this reaction is that 7 lacks P3-hydrogens and therefore few side

reactions are available to it. Further work is ongoing on our laboratories to investigate the scope of this

tandem C-H activation/cross-coupling reaction.



t-Bu

LPd(O)

B

Me

(OH)2

t-Bu
5

-HBr

Me Me L
Pd

- +HX
t-Bu • H \ +HX

t-Bu

t-Bu

a

Scheme 2. Suggested Mechanism of the Tandem C-H Functionalization Suzuki-Miyaura
Coupling



Table 2. C-H Activation Followed by Coupling with Aryl Boronic Acids Using Ligand la

Entry Halide Boronic Acid Product Conditions Yield (%)b

Me Me
t-Bu

1 t-Bu / Br (HO)2B t-Bu 100 oC, 18 h 95
t-Bu t-Bu

Me Me
t-Bu Me

2 t-Bu -X/-Br (HO)2B t-Bu - B 100 °C, 18 h 96

t-Bu Me t-Bu

t-Bu MeMe

3 t-Bu • Br (HO)2B t-Bu / 100 -C, 18 h 99

t-Bu
t-Bu

a Reaction conditions: 1 equiv of aryl bromide, 2 equiv of boronic acid, 3 equiv of K3PO4, toluene (2 mL/mol
halide), 1% Pd2(dba)3, 4% ligand 1. b Isolated yield based upon an average of two runs.

1.1.4 Suzuki-Miyaura Coupling Reactions at Low Catalyst Loadings

The need to perform Suzuki-Miyaura coupling reactions at low catalyst loadings exists not only

to minimize the amount of palladium and ligand for reasons of cost, but as well as to allow for these types

of coupling processes to be used on large scale while minimizing the effort required for the removal of

palladium from the final product. 16 Using 1, efficient coupling reactions with quantities of palladium at

or below the allowable limit 16 can be achieved. For example, the coupling of 4-tert-butylbromobenzene

with 2-methylphenyl boronic acid using 10 ppm Pd(OAc) 2 at 100 °C for 1.5 h provides an 98% isolated

yield of product. Using catalyst loadings as low as 10 ppm Pd(OAc) 2, the coupling of 4-tert-

butylbromobenzene with the sterically demanding 2-biphenyl boronic acid proceeds to 85% isolated yield

in 24 h at 100 'C. These are, of course, very simple processes. However, these results represent the

smallest amount of palladium used in Suzuki-Miyaura couplings of unactivated aryl bromides with

boronic acids aside from phenyl boronic acid. This latter point is important as we find little degree of



extrapolation of results using phenyl boronic acid and those obtained with other aryl boron derivatives.

For example, the coupling of 2,4,6-tri-isopropylbromobenzene and phenyl boronic acid proceeded to 97%

isolated yield at 0.01% Pd in 16 h (Table 3, entry 3). However, only 50% conversion of aryl bromide was

observed under similar conditions when the catalyst loading was lowered to 0.001% Pd. Additionally, we

have achieved the coupling of an unactivated aryl chloride, 4-n-butylchlorobenzene with phenyl boronic

acid using 50 ppm Pd(OAc) 2 or 15 ppm Pd2(dba)3 at 100 "C to give 96% and 93% isolated yield of biaryl,

respectively (Table 3, entry 4).

Table 3. Suzuki-Miyaura Couplings at Low Catalyst Loadings Using Ligand la

Entry Halide Boronic Acid Product mol% Pd Conditions Yield (%)b

Me Me

1 t-Bu Br (HO)2B t 0.001 110C, 1.5h 98

2 t-Bu Br (HO)2B t-Bu 0.0005 100 OC, 24 h 895

tPh Pht-B00 C4

i-Pr

(HO)2B-K iPr • -0 0.01 100 °C, 16 h 9 7d3

i-Pr i-Pr

4 n-Bu / Cl (HO)2Bo n-Bu .3 0C, 0 h 96d,e0.003 100 °C, 24 h 93a~

a Reaction conditions: 1 equiv of aryl halide, 1.5 equiv of boronic acid, 2 equiv of K3PO4 , toluene (2mL/mmol
halide), cat Pd(OAc)2, ligand 1, L:Pd = 2.5:1. b Isolated yield based upon an average of two runs. c L:Pd = 2:1.
d Cat Pd2dba3 used with L:Pd = 2:1. e K3PO 4 * H20 used as base.

1.1.5 Suzuki-Miyaura Coupling Reactions Using Aryl Pinacol Boronate Esters

Although Suzuki-Miyaura coupling reactions are among the most mild and efficient methods to

construct carbon-carbon bonds, a drawback of using boronic acids is the structural ambiguity associated

with them. Under anhydrous conditions, boronic acids dimerize and trimerize to form anhydrides and

boroxines. 17 In normal laboratory conditions, a mixture of monomer, dimer and boroxine exist. This



drawback can be overcome by use of boronate esters or trifluoroborate salts," both of which are air- and

water-stable and exist only in a monomeric form. Further advantages of boronate esters include the

ability to purify them via chromatography and the ability to observe them via gas and liquid

chromatography. It is our belief that trace water, either from a hydrated base or through the addition of a

small amount of water to the reaction mixture, most likely hydrolyzes the boronate ester either partially or

fully to allow for transmetalation to occur efficiently.19 Table 4 illustrates several examples of Suzuki-

Miyaura coupling reactions with aryl boronate esters and aryl- and heteroaryl chlorides that all provide

product in excellent isolated yield. For example, the coupling of 2-chloro-m-xylene with 3-hydoxyphenyl

boronic acid was accomplished in 94% isolated yield using 1% Pd(OAc) 2 as precatalyst at 100 0C in 30

min (Table 4, entry 2).

Table 4. Suzuki-Miyaura Couplings of Pinacol Aryl Boronates Using Ligand la

Entry Halide Pinacol Boronate Ester Product Conditions Yield (%)b

Min

1 Me 0Me N\B/ \ 100°C,0.5h 88Me- u

Me Me
MeMe- .•O

2 Cl Me\ B 100 oC, 0.5 h 94
Me

Me OH Me OH

MeO OMe MeO OMe
Me o

Cl Me-3 e I Me d - Me/O 100 oC, 0.5 h 94
CN CF3  CN CF3

Me

4- Cl M B S RT, 24 h 91c
Me N Me U

Me N MeO Me N MeO
a Reaction conditions: 1 equiv of aryl chloride, 1.5 equiv of boronate ester, 2 equiv of K3PO4,
toluene:H20 (10:1) (2 mL/mol halide), 1% Pd(OAc) 2, 2% ligand 1. b Isolated yield based upon an
average of two runs. c 1% Pd(OAc) 2 and 1% Ligand 1 in THF:H20 (10:1) was used.



1.1.6 Suzuki-Miyaura Coupling Reactions at Room Temperature.

Our initial communication describing the activity of 1 included Suzuki-Miyaura couplings at

room temperature. Catalyst loadings as low as 0.5% Pd(OAc) 2 effected the reaction of ortho,ortho'

substituted and electron-rich aryl chlorides with ortho substituted boronic acids in very good to excellent

yield. Little or no effort was made to minimize the quantity of catalyst that was necessary.

The reason for the efficiency of bulky, electron-rich ligands is often-times ascribed to their

proclivity to donate electron-density to the intermediate Pd(0) complex to facilitate the rate of oxidative

addition. Alternately, it has been proposed that these ligands cause a reasonable amount of highly

reactive L1Pd species to form.20 In order to decipher the relative contribution of these two factors, we

prepared the triarylphosphine, 2 (Ph2XPhos). 2 1 Ligand 2 was then employed in various coupling

processes and it was ascertained that it was an excellent supporting ligand for Suzuki-Miyaura coupling

reactions, particularly those carried out at room temperature.

There have been several accounts of Suzuki-Miyaura coupling reactions of aryl chlorides at room

temperature. 5h ,5i,6,22 Despite the success that has been realized, limitations still exist. For example, in the

report of Nolan, NaOt-Bu was required as base and slow addition of the aryl chloride was necessary as

dehalogenation was observed as a side reaction.5' In a particularly impressive recent paper from Glorius,

the use of KOH (from KOt-Bu and water) was required for boronic acids possessing two ortho methyl

6substituents. In this work the scope of formation of tetraortho substituted biphenyls was expanded to the

highest level reported to date. Fu was able to employ KF, a milder base, in his work; only activated aryl

chlorides (heterocyclic and electron-poor), however, were used.22 Our reaction conditions using 2 allow

the use of a mild base, K3PO4"H 20, very hindered boronic acids and electron-rich aryl chlorides, and

without slow addition of any reagents. The generality of Suzuki-Miyaura couplings using this ligand is

demonstrated by the results shown in Table 5. Catalyst levels as low at 0.05% Pd(OAc)2 effected the

reaction of 3-chlorobenzonitrile with 2-biphenyl boronic acid in 93% isolated yield (Table 5, entry 2).

Additionally, the formation of previously described 2,2',6-trimethylbiphenyl can be achieved by the

coupling of 2-chloro-m-xylene with o-tolyl boronic acid or 2-chlorotoluene with 2,6-dimethylphenyl



boronic acid using 0.5% Pd(OAc) 2 in 94% and 93% isolated yields, respectively (Table 5, entries 8 and

9). In comparison, the reaction of 2-chloro-m-xylene with o-tolyl boronic acid described by Nolan

proceeded in 79% isolated yield with 2% of the preformed Pd complex,51 while Glorius used 3% Pd and a

reaction temperature of 50 'C to give the product in 85% yield. 5h Although most coupling reactions using

2-substituted boronic acids proceeded at room temperature in excellent yield with aryl chlorides, a

reaction temperature of 40 0C was required for certain electron-rich aryl chlorides (Table 5, entries 14-

16). This higher temperature is most likely necessary as oxidative addition is much slower for aryl

chlorides that possess an electron donation group in the 2- or 4- positions of the arene relative to the

chloride. For example, the coupling of very electron rich 2,6-dimethoxychlorobenzene with 2-biphenyl

boronic acid proceeded at 40 *C in 99% isolated yield using 0.5% Pd(OAc)2 (Table 5, entry 15).

We believe these results illustrate that the primary factor for the efficient Suzuki-Miyaura

coupling of unactivated aryl chloride substrates is the ability of biaryl-derived phosphine ligands to

maximize the concentration of monoligated palladium species within the catalytic cycle. Ligand 2, which

is nearly isostructural, but substantially less electron-rich than 1, promotes the reaction of hindered

substrates at low temperatures (:5 40 °C) and relatively low catalyst loadings (down to 0.25 % Pd) in

excellent yields. In these studies 1 is superior to 2 as the supporting ligand for all reactions described. As

the cost of preparing 2 should be considerably less than that for 1, 2 may have some advantage for large-

scale reactions in cases where the procedure can be optimized to reduce the amount of palladium

required. However, in most academic and industrial research laboratories this cost differential is of

minimal importance.



Table 5. Suzuki-Miyaura Couplings of Aryl Chlorides

Entry Halide Boronic Acid

Me

1

at Room Temperature using

Product

Me

NC

(HO)2B
Ph NC Ph

Me MeO Me

(HO)2B--

MeO

HO)2B- NMe 2  \ -/NMe 2

MeO 2C

/ Cl

NC

P/Cl

NC

MeO

Cl

MeO

CI (
P /Cl

Me0 2C

P/Cl

MeO 2C

CO 2Me

/Cl

CHO

O/Cl

Me

M/ Cl

Me

MeO

MeO 2C MeO

CO2Me

MeO

CHO

MeO

Me Me

Me

ligand 2a

mol% Pd Yield (%)b

0.05

0.05

0.1

0.5

0.5

0.5

0.5

0.5

Me Me

9Cl (HO)2B 0.5 93c

Me Me Me Me

10 9 -Cl (HO)2B / h 0.25 99
Ph Me Ph Ph MePh

a Reaction conditions: 1 equiv of aryl chloride, 1.5 equiv of boronic acid, 3 equiv. of K3PO4 H20, THF
(1 mL/mmol halide), cat Pd(OAc)2, ligand 2, L:Pd = 3:1. b Isolated yield based upon an average of two runs.
C 3 equiv of boronic acid was used. 30

MeO

(HO)2B-Ž

MeO

(HO)2BM

Me
(HO)2g-6

)

(HO)2B---



Table 5 (cont). Suzuki-Miyaura Couplings of Deactivated Aryl Chlorides using ligand 2a

Entry Halide Boronic Acid Product mol% Pd T (°C) Yield (%)b

OMe OMe

11 eCl (HO) 2B 0.5 RT 89

C(O)Me C(O)Me
OMe OMe

12 / Cl (HO)2B - ~0.25 RT 97

Me Me

OMe OMe

13 Cl (HO)2B h h 0.25 RT 97

Ph Ph

14 MeO Cl (HO)2B MeO / h 0.25 40 93

Ph Ph

OMe OMe

15 Cl (HO)2B 0.5 40 99

OMe Ph MeO Ph

OMe Me MeOMe

16 O / Cl (HO)2B 0.5 40 980

Me Me

a Reaction conditions: 1 equiv of aryl chloride, 1.5 equiv of boronic acid, 3 equiv of K3PO4 * H20, THF
(1 mL/mrnmol halide), cat Pd(OAc)2, ligand 2, L:Pd = 3:1. b Isolated yield based upon an average of two runs.
c 3 equiv of boronic acid was used.

1.1.7 Suzuki-Miyaura Coupling Reactions of Electron-Deficient Aryl Boronic Acids

Our attention next shifted to reactions of mono- and difluoroaryl boronic acids. The interest in

the Suzuki-Miyaura coupling of these boronic acids exists, in part, because of the difficulty of coupling

electron-poor boronic acids.23 Fluorinated aromatic rings are often used in medicinally active compounds

in which a fluorine is substituted for a hydrogen to help block oxidation of the aromatic ring,24 alter routes

of metabolism, 25 and increase lipophilicity which affects drug distribution. 26 Fortunately, nearly all
of metabolism, 2 and increase lipophilicity which affects drug distribution. Fortunately, nearly all



combinations of n-fluorophenyl boronic acids, where n=1 to 5, are commercially available.27 In spite of

the availability of this class of boronic acids, there exist only a few examples of Suzuki-Miyaura coupling

reactions, all of which are with aryl bromides or iodides. 28 A particularly challenging example, the

coupling of 2,4-difluorophenyl boronic acid with 2,6-dimethylbromobenzene, has previously been

reported.28b This reaction proceeded in 60% isolated yield; however, a reaction temperature of 130 0C

and the use of a non-commercially available ligand were required. In our present work, a wide variety of

substrates, including electron-rich, -poor and heterocyclic aryl chlorides, were coupled with fluorophenyl

and difluorophenyl boronic acids in very good to excellent yields. Of particular note is the reaction of 4-

chloroaniline with 2,4-difluorophenyl boronic acid, which proceeded at 80 'C to give a 96% isolated yield

of product (Table 6, entry 4). Although the Suzuki-Miyaura coupling of 4-chloroaniline has been

previously reported, 29 all accounts only use phenyl boronic acid as the coupling partner. Hindered aryl

chlorides also proved to be excellent coupling partners with 2-fluorophenyl boronic acid (Table 6, entry

1). The reaction with 2-chloro-m-xylene gives a 91% isolated yield of product using 0.5 mol% Pd(OAc) 2

in only 90 min. Additionally, the coupling of a heteroaryl chloride, 2-fluoro-3-chloro-5-

trifluoromethylpyridine, with 2,3-difluorophenyl boronic acid provided a highly fluorinated

heteroaromatic compound in 96% isolated yield (Table 6, entry 3). Disappointingly, reactions using 2,6-

difluorophenyl boronic acid and 2,4,6-trifluorophenyl boronic acid did not proceed efficiently.



Table 6. Suzuki-Miyaura Couplings of Mono- and Difluorophenyl Boronic Acids Using Ligand la

Entry Halide Boronic Acid Product mol% Pd Conditions Yield (%)b

1

Me

(HO) 2B - 0.5 90 -C, 1.5 h 91

F Me F

2 MeO- j CI (HO) 2B - F MeO - - F 0.5 80 0 C, 16 h 99

F F
F3C F3C

3 Cl (HO) 2B-4 1 90 *C, 16 h 96
N "

F F F F F F

4 H2N & Cl (HO)2 B - F H2N -O Q / F 1 80 "C, 10 h 96

F F

5 H Cl (HO) 2B-§ / 0.5 90 C, 3h 80

H F F H F F
0 0

a Reaction conditions: 1 equiv of aryl chloride, 1.5 equiv of boronic acid, 2 equiv of K3PO4, toluene (2 mL/mol
halide), cat Pd(OAc)2, ligand 1, L:Pd = 2:1. b Isolated yield based upon an average of two runs.

We recently reported the coupling of potassium 3-pyridyl trifluoroborate with a variety of aryl-

and heteroaryl chlorides using 1.30 However, we were unable to efficiently couple this trifluoroborate salt

with aryl chlorides possessing one or more ortho methyl substituents. Since an improved means for the

preparation of 3-pyridyl boronic acid and/or the corrosponding boroxine has been recently reported,3 the

coupling of 3-pyridyl boronic acid with aryl chlorides was attempted. Using conditions similar to what

we reported for the coupling of potassium 3-pyridyl trifluoroborate (i.e., 3% Pd(OAc)2, K2CO 3, ethanol at

reflux), low conversion (< 50%) of aryl chloride was observed. However, upon switching from ethanol to

1-butanol and increasing the reaction temperature to 90-100 'C, the coupling of 4-n-butylchlorobenzene

with 3-pyridyl boronic acid (Table 7, entry 1) produced the desired product in 96% yield. The higher

temperature required for the coupling of 3-pyridyl boronic acid is presumably due to the less nucleophilic

nature of the boronic acid relative to the trifluoroborate salt.32 Thus the transmetalation of the ligated



(aryl)PdCl complex is slowed down,33 which therefore slows down the entire catalytic cycle as

transmetalation is usually the rate limiting step for Suzuki-Miyaura couplings. Hindered aryl chlorides,

Table 7. Suzuki-Miyaura Couplings of 3-Pyridyl Boronic Acid Using Ligand la

Entry Halide Boronic Acid Product mol% Pd Conditions Yield (%)b

1 n-Bu-- ~ -CI (HO)2B- N  n-Bu-0 c 2 100 -C, 15h 96

Me Me

2 /-CI (HO)2B-- jO N 2 100 0C,20h 88

OMe OMe

3 /Cl (HO) 2B O\N/ 3 100 oC, 24 h 81
- O-N

OMe OMe

4 \/ Cl (HO) 2B- OJ N 2 90 0C, 24 h 87

CF 3  CF3

Me Me

5 Me- Br (HO)2B-- Me O 2 90 -C, 24h 83

Me Me

a Reaction conditions: 1 equiv of aryl chloride, 1.5 equiv of boronic acid, 2 equiv of K3 PO 4, 1-butanol
(2 mL/mmol halide), cat Pd2dba3, ligand 1, L:Pd = 2:1. b Isolated yield based upon an average of two runs.

such as 2-chlorotoluene and 2,6-dimethoxychlorobenzene (Table 7, entries 2 and 3) were also excellent

coupling partners giving product in isolated yields greater than 80%. The attempted combination of the

more hindered 2-chloro-m-xylene with 3-pyridyl boronic acid proved to be more difficult and 30% of m-

xylene, from competitive reduction of the aryl halide, was observed. This limitation could be partially

overcome as evidenced by the transformation of 2-bromomesitylene, which could be carried out at 90 'C

(Table 7, entry 5). To the best of our knowledge, there are no other examples of the coupling of 3-pyridyl

boronic acid with aryl halides possessing an ortho, ortho' substitution nor any examples of its successful

combination with unactivated aryl chlorides.



Usually electron-deficient aryl boronic acids (e.g., n-fluorophenyl and 3-pyridyl) tend to be

difficult coupling partners as they are less nucleophilic and hence, transmetallate more slowly than

electron-neutral analogues. Although we have no direct evidence, we believe that the ability of 1 to

maximize the concentration of a LPd(aryl)chloride species rather an a L2Pd(aryl)chloride species is the

key for successful coupling of these types of boronic acids. In reactions with poorly nucleophilic aryl

boronic acids, transmetalation may well be the rate limiting step in Suzuki-Miyaura coupling reactions.

Transmetalation processes are very sensitive to steric factors and should occur much more rapidly to a

LPd(aryl)chloride intermediate than to a L' 2Pd(aryl)chloride intermediate, even when L' is smaller than L.

A more detailed discussion on structural features of complexes derived from 1 follows below.

1.1.8 Suzuki-Miyaura Coupling Reactions of Vinyl Boronic Acids

Due to their aforementioned advantages, boronate esters are often the boron reagents of choice

for Suzuki-Miyaura coupling reactions. For example, the use of vinyl boronates was recently described in

Jacobsen's elegant asymmetric synthesis of quinine,34 where 1 was utilized in the coupling of an (E)-

alkenyl pinacol boronate ester with a 4-bromoquinoline derivative in excellent yield. To investigate the

generality of 1 in the coupling of vinyl boronate derivatives with aryl halides, we examined the

combination of (E)-octenyl boronic acid and (E)-3-styrene boronic acid with aryl halides. Optimization

of reaction conditions proved to be somewhat difficult as reaction at temperatures that we often use (60-

100 °C) produced a mixture of E- and Z-isomers. We found that a reaction temperature of 40 0C was

optimal for aryl halide substrates containing an ortho substituent and allowed full conversion of aryl

halide with no detectable Z-isomer. For substrates without an ortho substituent as large as methyl, the

reactions proceeded at room temperature. For example, 2-fluoro-5-cyanobromobenzene reacted with (E)-

octenyl boronic acid at room temperature to give product in 97% isolated yield (Table 8, entry 1).

However, the coupling of (E)-p-styrene boronic acid with 4-bromoaniline also required a reaction

temperature of 40 0C, probably due to the very electron-rich nature of the aryl bromide. Aryl bromides

possessing an ortho,ortho' substitution pattern were also efficient coupling partners as illustrated by the



coupling of 2-bromomesitylene with (E)-j3-styrene boronic acid (Table 8, entry 4), which proceeded in

99% isolated yield. A similar reaction has been reported by Molander using the potassium trifluoroborate

salt of (E)-decenyl boronic acid with 2-bromomesitylene. 35 However, under these conditions the product

was only isolated in 38% yield. Finally, we attempted to extend these conditions to the coupling of aryl

chlorides with vinyl boronic acids; however, reaction temperatures of >40 °C were required to promote

full conversion of the aryl chloride and alkene isomerization ensued.

Table 8. Suzuki-Miyaura Couplings of Alkenyl Boronic Acids Using Ligand la

Entry Halide Boronic Acid Product Yield (%)b

OMe OMe

1 / Br (HO1)21B,,%' \ / n-Hex 9

MeO MeO
F F

2 Br (HO)2B n-nHex n-Hex 97 c

NC NC

3

Me

(HO)2 B1' Ph /Ph 98

Me
Me Me

4 Me-- Br (HO)2B1 Ph Me Ph  99

Me Me

5 H2N-~ Br (HO)21 P h  H2Np h /88

a Reaction conditions: 1 equiv of aryl chloride, 1.5 equiv of alkenyl boronic acid, 2 equiv
of K3PO4, THF (2 mL/mmol halide), 1 % Pd(OAc)2, 2% ligand 1, 40 0C, >99:1 trans:cis
isomers. b Isolated yield based upon an average of two runs. c Reaction run at RT.

1.3 Conclusion

In conclusion, we report a new phosphine ligand that that can be used, in combination with a

suitable Pd compound to produce a catalyst system which overcomes many of the important limitations in

Suzuki-Miyaura coupling processes. Specifically, 2-(2',6'-dimethoxybiphenyl)-dicyclohexylphosphine, 1,



imparts unprecedented activity in the coupling of extremely hindered aryl boronic acids and aryl halides.

Additionally, the coupling of boronic acids with aryl bromides and chlorides can be conducted in

excellent yields with only 5 and 30 ppm Pd, respectively. Heterocyclic, electron-deficient and vinyl

boronic acids can be coupled with a wide variety of aryl- and heteroaryl chlorides and bromides at

minimal catalyst loadings using 1. This ligand is an air stable crystalline solid which allows for

extremely simple and rapid reaction setup. The wide scope and high reactivity that this ligand engenders

in Suzuki-Miyaura coupling procesess is unprecedented.

1.4 Experimental

1.4.1 General

All reactions were carried out under an argon or nitrogen atmosphere, unless otherwise noted. Elemental

analyses were performed by Atlantic Microlabs Inc., Norcross, GA. Unless otherwise noted, THF, Et20,

CH 2C12 and toluene were purchased from J.T. Baker in CYCLE-TAINER® solvent-delivery kegs and

vigorously purged with argon for 2 h. The solvents were further purified by passing them under argon

pressure through two packed columns of neutral alumina (for THF and Et20) or through neutral alumina

and copper (II) oxide (for toluene and CH 2C12).36 Unless otherwise stated, commercially obtained

materials were used without further purification. Aryl halides were purchased from Aldrich Chemical Co.

Aryl halides were purified by filtration through a thin pad of basic alumina prior to use. Pd(OAc) 2 was

purchased from Strem, Inc. or supplied by Englehard. Boronic acids were purchased from Aldrich

Chemical Co., Alfa Aesar or Frontier Scientific, Inc. Best results were obtained with newly purchased or

freshly recrystallized boronic acids. Alkyl boranes were prepared by the reaction of 9-BBN with the

requisite alkene in THF at room temperature for 4 h and were used without isolation. Magnesium powder,

-50 mesh, (99 %) and 1,2-dibromoethane (99+%) were purchased from Aldrich. 1-Bromo-2,4,6-

triisopropylbenzene (95 %) and 2-bromochlorobenzene (99 %) were purchased from Alfa Aesar.

Anhydrous CuCI (97 %) was purchased from Strem and stored in a nitrogen-filled glove box. CIPCy 2 and

C1PPh 2 was also purchased from Strem and stored under argon. Anhydrous tribasic potassium phosphate

was purchased from Fluka Chemical Co. and used as supplied Tribasic potassium phosphate



monohydrate was purchased from Fluka Chemical Co. and was finely ground (using a mortar and pestle)

prior to use. The source (and thus the particle size) of the base employed may be critical for achieving

efficient reactions.

All new compounds were characterized by 'H NMR, "3C NMR, and IR spectroscopy, in addition

to elemental analysis (Atlantic Microlabs, Inc) and/or low resolution mass spectroscopy. For those new

compounds for which a satisfactory elemental analysis was not obtained, copies of the 'H and 13C NMR

are attached Nuclear Magnetic Resonance spectra were recorded on a Varian Mercury 300, a Varian

Unity 300 or 500, or a Bruker 400 instrument. Infrared spectra were recorded on an ASI Applied Systems

ReactlR 1000 (neat samples were placed directly on the DiComp probe). All 'H NMR experiments are

reported in 6 units, parts per million (ppm) downfield from tetramethylsilane (internal standard) and were

measured relative to the signals for residual chloroform (7.26 ppm), methylene chloride (5.32 ppm) or

benzene (7.16 ppm) in the deuterated solvents. All 13C NMR spectra are reported in ppm relative to

deuterochloroform (77.23 ppm), deuteromethylene chloride (54.00 ppm) or deuterobenzene (128.39

ppm), and all were obtained with 'H decoupling. All 3 1P NMR spectra are reported in ppm relative to

H3PO 4 (0 ppm). All 19F NMR spectra are reported in ppm relative to trichlorofluoromethane (0 ppm).

Melting points (uncorrected) were obtained on a Mel-Temp capillary melting point apparatus. Gas

Chromatographic analyses were performed on a Hewlett-Packard 6890 gas chromatography instrument

with an FID detector using 25m x 0.20 mm capillary column with cross-linked methyl siloxane as a

stationary phase.

The yields in Tables 1-8 refer to isolated yields (average of two runs) of compounds estimated to

be >95% pure as determined by 'H NMR and GC analysis and/or combustion analysis. The procedures

described in this section are representative, and thus the yields may differ from those shown in Tables 1-

8.

1.4.2 Preparation of 2-Dicyclohexylphosphino-2 '6'-dimethoxybiphenyl [S-PHOS (1)]



MeO OMe 1) BuLi

2) 
Br

(CI

3) BuLi

4) Cy2PCI

To a cold (0 'C), stirred solution of 1,3-dimethoxybenzene (2.00 mL, 15.3 mmol, 1.1 equiv.) in dry THF

(35 mL) was added n-BuLi (6.20 mL, 2.5 M solution in hexanes, 15.5 mmol, 1.1 equiv.) dropwise via

syringe over 5 min. The reaction mixture was allowed to warm to room temperature and then stirred at

room temperature for 3.5 h. The mixture was re-cooled to 0 'C and neat 2-bromochlorobenzene (1.60 mL,

13.7 mmol, 1.0 equiv) was added dropwise via syringe over 15 min with vigorous stirring. The resulting

burgundy colored mixture was stirred at 0 'C for an additional 15 min. At this point, GC analysis of an

aliquot of the reaction mixture, quenched into ether/water, indicated that complete consumption of the

bromochlorobenzene starting material and clean conversion to 2-bromo-2',6'-dimethoxybiphenyl had

occurred. The reaction mixture was cooled to -78 'C and n-BuLi (6.20 mL, 2.5 M solution in hexanes,

15.5 mmol, 1.1 equiv.) was added dropwise via syringe over 5 min. The resulting mixture was stirred at -

78 0C (periodic swirling of the reaction flask by hand was required as stirring with a magnetic stirrer

became difficult) for 30 min. Neat chlorodicyclohexylphosphine (3.03 mL, 13.7 mmol, 1.0 equiv) was

then added via syringe. The reaction mixture was stirred at -78 'C for 1 h and then allowed to slowly

warm to room temperature. The resulting mixture was filtered through a pad of flash silica gel topped

with a layer of celite, eluting with ethyl acetate (400 mL). The filtrate was concentrated under reduced

pressure to provide a yellow solid. Recrystallization from acetone provided 2.90 g of 1 as a white solid.

Concentration of the mother liquor followed by trituration of the residue thus obtained with methanol,

provided additional solid material. This material was recrystallized from acetone to afford a further 0.42 g

of the title compound. The overall yield of 1 was 3.32 g (59%), a white solid, mp 162-162.5 oC. 'H NMR

(300 MHz, C6D6)8: 7.59 (dmin, Jfor the doublet = 7.2 Hz, 1H), 7.39-7.42 (min, 1H), 7.15-7.25 (m, 3H), 6.43

(d, J= 8.5 Hz, 2H), 3.33 (s, 6H), 1.60-1.94 (m, 12H), 1.06-1.36 (min, 10 H). '3C NMR (75 MHz, C6D6) 6:



158.49, 158.48, 144.3, 143.9, 137.3, 137.0, 132.82, 132.77, 132.4, 132.3, 129.2, 128.82, 128.81, 128.2,

126.8, 121.2, 121.1, 104.0, 55.2, 35.0, 34.8, 31.0, 30.8, 30.3, 30.1, 28.22, 28.15, 28.07, 28.05, 27.40,

27.39 (observed complexity due to P-C splitting; definitive assignments have not yet been made). 31P

NMR (121 MHz, C 6D 6) 8: -8.6. IR (neat, cm-'): 2921, 2848, 1588, 1470, 1459, 1430, 1245, 1109, 909,

722. Anal. Calcd for C2 6H350 2P: C, 76.07; H, 8.59. Found: C, 75.97; H, 8.61.

1.4.3 Preparation of 2-Bromo-2 ',6 '-dimethoxybiphenyl

To a cold (0 °C), stirred solution of 1,3-dimethoxybenzene (2.00 mL, 15.3 mmol, 1.2 equiv.) in dry THF

(30 mL) was added n-BuLi (9.60 mL, 1.6 M solution in hexanes, 15.4 mmol, 1.2 equiv.) dropwise via

syringe over 5 min. The reaction mixture was allowed to warm to room temperature and then stirred at

room temperature for 5 h. The mixture was recooled to 0 'C and neat 2-bromochlorobenzene (1.50 mL,

12.8 mmol, 1.0 equiv) was added dropwise via syringe over 15 min with vigorous stirring. The resulting

burgundy colored mixture was stirred at 0 'C for an additional 15 min. Methanol (0.25 mL) was added

via syringe and the resulting mixture was concentrated under reduced pressure. To the residue so obtained

was added diethyl ether (50 mL) and water (50 mL). The layers were separated and the aqueous phase

was extracted with diethyl ether (2 x 25 mL). The combined organic extracts were washed with brine (1 x

20 mL), dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to provide a

yellow solid. The crude product was recrystallized from methanol to afford the title compound (3.03 g,

81% yield) as a pale yellow solid, mp = 141-142 oC. 1H NMR (300 MHz, CDCl3) 8: 7.69 (dd, J= 6.9,

1.1 Hz, 1H), 7.34-7.40 (m, 2H), 7.20-7.28 (m, 2H), 6.68 (d, J= 8.5 Hz, 2H), 3.76 (s, 6H). 13C NMR (75

MHz, CDCI3) 6: 157.8, 136.25, 132.52, 132.47, 129.6, 128.8, 127.1, 125.4, 119.0, 104.2, 56.2. IR (neat,

cm-'): 2946, 1584, 1472, 1432, 1248, 1108, 1025, 783. Anal. Calcd for C15H25NO: C, 57.36; H, 4.47.

Found: C, 57.11; H, 4.47.

1.4.4 Preparation of 2,4,6-Triisopropyl-2'-diphenylylphosphinobiphenyl (2)

A flame dried 100 mL, 3 neck, round bottom flask equipped with a Teflon coated magnetic stir bar, reflux

condenser, glass stopper, gas inlet adapter and rubber septum was purged with argon and charged with

Mg powder, -50 mesh (0.58 g, 24.0 mmol), THF (13 mL) and 2,4,6-triisopropylbromobenzene (2.51 mL,



10.0 mmol). While stirring vigorously under argon, the reaction mixture was then heated to 65 TC in an

oil bath and 1,2-dibromoethane (40 giL) was added dropwise via syringe to initiate the reaction. After 40

- 60 min, Grignard formation was complete as judged by G.C. analysis, and 2-bromochlorobenzene (1.3

mL, 11.0 mmol) was added at 65 oC over 1.1 h with the aid of a syringe pump. After an additional 1 h of

stirring at 65 oC, the reaction mixture was cooled to room temperature. Then, anhydrous CuCl (0.05 g,

0.5 mmol) was weighed out in a nitrogen-filled glove box and removed from the glove box prior to its

addition by removing the septum and adding the CuCl as rapidly as possible. To this, CIPPh2 (1.85 mL,

10 mmol) was then added via syringe; the addition was preformed in a dropwise manner to control the

exotherm (Caution!). The resulting mixture was stirred at room temperature for 25 h. The reaction

mixture was then placed in an ice bath (as a precaution) prior to quenching with methanol (2 mL). The

mixture was transferred to a 500 mL round bottom flask and diluted with ethyl acetate (200 mL), stirred

for 15 min, concentrated to one third its original volume in vacuo and filtered by gravity through a pad of

celite eluting with additional portions of ethyl acetate (400 mL). The solvent was removed from the

combined organic layers and the crude product was dissolved in a minimal amount of diethyl ether via

sonication. An equal volume of methanol was then added to the homogeneous solution, the flask was

sealed and the solution was allowed to stand in a refrigerator (-40 'C) for 24 h. The resulting crystals (2.6

g, 56 %) were collected via vacuum filtration and washed with ice-cold diethyl ether. A second crop of

crystals was harvested from the mother liquor using the same procedure that was used to obtain the first

crop. The resulting crystals (0.72 g) were collected via vacuum filtration and washed with cold diethyl

ether. The crops of crystals were then combined and dried under vacuum for 24 h, yielding 3.3 g of 2 (7.1

mmol, 71 %) as a white crystalline solid, m.p. = 136 - 138 oC. (This procedure has been scaled to 50

mmol providing 14.4 g, 31 mmol, 62 %). 'H NMR (300 MHz, C6D 6) 6: 7.39 (ddd, J = 7.4, 3.3, 1.1 Hz,

1H), 7.23 - 7.35 (m, 5H), 7.20 (s, 2H), 7.12 (td, J = 7.4, 1.4 Hz), 6.98 - 7.08 (min, 7H), 2.85 (septet, J = 6.9

Hz, 1H), 2.72 (septet, J = 6.6 Hz, 2H), 1.24 (d, J = 6.9 Hz, 6H), 1.14 (d, J = 6.9 Hz, 6H), 1.07 (d, J = 6.9

Hz, 6H). 13C NMR (75 MHz, C2D2C12) 6: 148.7, 148.2, 147.8, 147.2, 138.4, 138.2, 137.3, 137.1, 136.9,

136.8, 135.9, 134.1, 133.9, 131.6, 131.5, 129.3, 129.0, 128.9, 128.8, 127.6, 121.0, 34.7, 31.3, 25.7, 24.4,



22.7 (observed complexity due to P-C splitting; definitive assignments have not yet been made). 31P

NMR (121 MHz, C6D6) 8: -17.5. IR (neat, cm-1): 3059, 2958, 2873, 1607, 1460, 1430, 1383, 1313, 1074,

1004. Anal. Calcd for C33H37P: C, 85.31; H, 8.03. Found: C, 85.02; H, 8.03. (Pumping on high vacuum

at 140 TC for 5 h was required to remove trace solvent trapped in the crystals)

1.4.5 General Procedure A: Pd-Catalyzed Suzuki-Miyaura Coupling ofAryl Halides with Aryl Boronic

Acids

An oven-dried resealable Schlenk tube containing a magnetic stir bar was charged with Pd(OAc) 2 (2.2

mg, 1.0 mol%), 1 (8.2 mg, 2.0 mol%), the boronic acid (1.5 mmol, 1.5 equiv.) and powdered, anhydrous

K3PO 4 (424 mg, 2.0 mmol, 2.0 equiv.). The Schlenk tube was capped with a rubber septum and then

evacuated and backfilled with argon (this sequence was repeated three times). Dry toluene (2.0 mL) was

added through the septum via syringe and the resulting mixture was stirred at room temperature for -2

min. The aryl halide (1.0 mmol, 1.0 equiv.) was added dropwise via syringe (aryl halides which were

solids at room temperature were added during the initial charge, prior to the evacuation/backfill cycles).

The septum was replaced with a Teflon screwcap and the Schlenk tube was sealed. The reaction mixture

was heated at 100 'C with vigorous stirring until the aryl halide had been completely consumed as judged

by GC analysis. The reaction mixture was then allowed to cool to room temperature, diluted with diethyl

ether (10 mL), filtered through a thin pad of silica gel (eluting with diethyl ether) and concentrated under

reduced pressure. The crude material obtained was purified by flash chromatography on silica gel.

For reactions conducted at low catalyst loadings (50.1 mol% Pd) the general procedure was

followed with the following modification: A separate vial was charged with Pd(OAc) 2 (1 mol%) and

ligand 1 (2 mol%). The vial was sealed with a Teflon coated screwcap, a needle was inserted through the

cap and the vial was then evacuated and backfilled with argon (this sequence was repeated three times).

Dry THF (1 mL) was added and the mixture was sonicated for -1 min to afford a homogeneous solution.

100 pL of this solution (0.1% Pd, 0.2% ligand 1) was removed via syringe and then added to the Schlenk

flask containing the base and boronic acid.



1.4.5 General Procedure B: Pd-Catalyzed Suzuki-Miyaura Coupling ofAryl Halides with Alkylboranes

or Alkylboronic acids

Procedure A was used with the following modifications: an alkyl boronic acid or an alkyl borane was

used in place of an aryl boronic acid and K3PO4*H 20 was used in lieu of anhydrous K3PO 4.

1.4.6 General Procedure C: Pd-Catalyzed Suzuki-Miyaura Coupling of Hindered Aryl Halides with

Aryl Boronic Acids

Procedure A was used with Pd 2(dba)3 (18 mg, 4.0 mol% Pd) and 1 (33 rmg, 8 mol%), and with 3 equiv. of

anhydrous K3PO 4 (636 mg, 3.0 mmol). The reaction temperature was 100-110 'C (as indicated).

1.4.7 General Procedure D: Pd-Catalyzed Suzuki-Miyaura Coupling of Aryl Chlorides with Aryl

Boronic Acids at Room Temperature

Procedure A was used with the following changes: a 16 x 100 mm culture tube fitted with a rubber

septum was used in place of a Schlenk tube, and the reaction were conducted in THF under nitrogen.

Also, for the indicated cases, degassed water (10 [L/mmol halide) was added and the mixture was stirred

for -10 min prior to the addition of the aryl halide

1.4.8 General Procedure E: Pd-Catalyzed Suzuki-Miyaura Coupling of Aryl Chlorides with Aryl

Boronate Esters

A screw-cap test tube containing a magnetic stir bar was charged with Pd(OAc) 2 (2.2 mg, 1.0 mol%), 1

(8.2 mg, 2.0 mol%), the aryl boronate ester (1.5 mmol, 1.5 equiv.) and K3 PO 4 (424 mg, 2.0 mmol, 2.0

equiv.). The tube was capped with a rubber septum and then evacuated and backfilled with argon (this

sequence was repeated three times). Deionized water (200 pL, sparged with argon for 10 min prior to use)

and dry toluene (2.0 mL) and were added sequentially via syringe through the septum and the resulting

mixture was stirred at room temperature for -2 min. The aryl halide (1.0 mmol, 1.0 equiv.) was added

dropwise via syringe through the septum (solid aryl halides can be added to the test tube during the initial

charge). The septum was replaced with a teflon-coated screwcap and the test tube was sealed. The

reaction mixture was heated at 100 'C with vigorous magnetic stirring until the aryl halide had been

completely consumed as judged by GC analysis (0.5-12 h). The reaction mixture was then allowed to cool



to room temperature, diluted with diethyl ether (10 mL), filtered through a thin pad of silica gel (eluting

with diethyl ether) and concentrated under reduced pressure. The crude material obtained was purified by

flash chromatography on silica gel.

1.4.9 General Procedure F: Pd-Catalyzed Suzuki-Miyaura Coupling of Aryl Chlorides with Aryl

Boronate Esters at Room Temperature

Procedure E was used with the following modification: Dry THF (2.0 mL) was used instead of toluene.

1.4.10 General Proceure G: Pd-Catalyzed Suzuki-Miyaura Couplings of Vinyl Boronic Acids

A screw-cap test tube containing a magnetic stir bar was charged with Pd(OAc) 2 (2.2 rmg, 1.0 mol%), 1

(8.2 mg, 2 mol%), the boronic acid (1.5 mmol, 1.5 equiv.) and K3PO4 (424 mng, 2.0 mmol, 2.0 equiv.).

The tube was sealed with a teflon-coated screw cap and then evacuated and backfilled with argon through

an 18 gauge needle (this sequence was repeated three times). The aryl halide (1.0 mmol, 1.0 equiv.) and

dry THF (2.0 mL) were added sequentially via syringe through the septum. The screwcap was quickly

replaced with a non-punctured teflon-coated screwcap. The reaction mixture was vigorously stirred at 40

°C or room temperature until the aryl halide had been completely consumed as judged by GC analysis

(12-24 h). The reaction mixture was then diluted with ethyl acetate (10 mL), filtered through a thin pad of

silica gel (eluting with ethyl acetate) and concentrated under reduced pressure. The crude material

obtained was purified by flash chromatography on silica gel.

1.4.11 General Procedure H: Pd-Catalyzed Suzuki-Miyaura Coupling of 3-Pyridyl Boronic Acid

Procedure G was used with the following modifications: Pd 2(dba)3 was used instead of Pd(OAc) 2, In-

BuOH (2.0 mL) was used instead of THF, and the reaction mixture was heated to either 90 or 100 *C.

1.4.12 General Procedure I: Pd-Catalyzed Suzuki-Miyaura Couplings of n-Fluorophenyl Boronic

Acids

Procedure G was used with the following modification: The reaction mixture was heated to either 80 or

90 0C.

1.4.13 General Procedure J: Pd-Catalyzed Suzuki-Miyaura Coupling of Aryl Chlorides with Aryl

Boronic Acids at Room Temperature using Ligand 2



An oven dried 4 mL vial containing a magnetic stir bar was equipped with an open top phenolic screwcap

preassembled with a securely seated septum, evacuated while hot, backfilled with nitrogen gas and cooled

under nitrogen. The vial was then charged with Pd(OAc) 2 (13.5 mg, 0.06 mmol) and 2 (83.6 mg, 0.18

mmol). The vial was then evacuated and backfilled with nitrogen gas (this sequence was repeated three

times). Then, dry THF (3 mL) was added via syringe and the catalyst stock solution was allowed to stir

for -30 min. An oven-dried resealable Schlenk tube containing a magnetic stir bar was equipped with a

Teflon coated screwcap, evacuated while hot, backfilled with nitrogen gas and cooled under nitrogen.

The tube was then charged with the boronic acid (1.5 mmol, 1.5 equiv.) and powdered K3PO4*H 20 (691

mg, 3.0 mmol, 3.0 equiv.). The Schlenk tube was capped with a rubber septum and then evacuated and

backfilled with nitrogen gas (this sequence was repeated three times). All liquid reagents were added: the

aryl chloride (1.0 mmol, 1.0 equiv.) was added dropwise via syringe (aryl halides which were solids at

room temperature were added during the initial charge, prior to the evacuation/backfill cycles), catalyst

stock solution (250 aL, 0.5 mol % Pd, 1.5 mol % 2) was added via micro syringe and dry THF (2 mL)

was added via syringe. The septum was replaced with a Teflon screwcap and the Schlenk tube was

sealed. The reaction mixture was maintained at room temperature with vigorous stirring until the aryl

halide had been completely consumed as judged by GC analysis. The reaction mixture was then diluted

with ethyl acetate (10 mL), filtered through a pad of Celite (eluting with ethyl acetate) and concentrated

under reduced pressure. The crude material obtained was purified by flash chromatography on silica gel.

1.4.14 Analysis and Characterization

i-Pr

i-Pr

i-Pr Me

2,4,6-Triisopropyl-2'-methylbiphenyl (Table 1, entry 1) (0.1% Pd). Following general procedure C, a

mixture of 2,4,6-triisopropylbromobenzene (251 uL, 1.0 mmol), 2-methyl phenyl boronic acid (272 mg,

2.0 mmol), K 3PO 4 (637 mg 3.0 mmol) and 200 ýtL of a catalyst solution composed of Pd 2(dba) 3 (4.6 mg,

0.005 mmol), 1 (8.2 mg, 0.02 mmol),and THF (2.0 mL) was heated at 100 'C in toluene (2.0 mL) for 24



h. The crude product was purified by flash chromatography on silica gel (hexane) to provide the title

compound as a white solid (279 mg, 95%), mp 95.5-96.5 'C. 'H NMR (300 MHz, CDCI3) 8: 7.13-7.27

(m, 4H), 7.05-7.08 (min, 2H), 2.94 (septet, J= 6.9 Hz, 1H), 2.44 (septet, J= 6.9 Hz, 2H), 1.99 (s, 3H), 1.31

(d, J= 6.9 Hz, 6H), 1.11 (d, J = 6.9 Hz, 6H), 1.03 (d, J= 6.9 Hz, 6H). 13C NMR (75 MHz, CDCI3) 6:

147.9, 146.3, 140.6, 136.9, 136.0, 130.3, 129.8, 127.0, 125.6, 120.8, 34.4, 30.5, 25.1, 24.3, 23.7, 20.5. IR

(neat, cm-'): 2962, 2869, 1607, 1461, 1362, 1057, 1007. Anal. Calcd for C22H30: C, 89.73; H, 10.27.

Found: C, 89.61; H, 10.42.

i-Pr

i-Pr / /

i-Pr

1-(2,4,6-Triisopropylphenyl)naphthalene (Table 1, entry 2) (0.1% Pd). Following general procedure

C, a mixture of 2,4,6-triisopropylbromobenzene (251 tL, 1.0 mmol), 1-naphthyl boronic acid (344 mg,

2.0 mmol), K3PC)4 (637 mg 3.0 mmol) and 200 [tL of a catalyst solution composed of Pd2(dba) 3 (4.6 mg,

0.005 mmol), 1 (8.2 mg, 0.02 mmol),and THF (2.0 mL) was heated at 100 'C in toluene (2.0 mL) for 12

h. The crude product was purified by flash chromatography on silica gel (hexane) to provide the title

compound as a white solid (324 mg, 98%), mp 169-170 'C. 'H NMR (300 MHz, CDCl 3) 6: 7.92 (d, J=

8.3 Hz, 1H), 7.89 (d, J= 8.3 Hz 1H), 7.30-7.56 (m, 5H), 7.15 (s, 2H), 3.03 (septet, J= 6.9 Hz, 1H), 2.36

(septet, J= 6.9 Hz, 2H), 1.38 (d, J= 6.9 Hz, 6H), 1.06 (d, J= 6.9 Hz, 6H), 0.97 (d, J= 6.9 Hz, 6H). 1
3C

NMR (75 MHz, CDCl3) 6: 148.4, 147.5, 138.8, 134.6, 133.6, 133.5, 128.3, 127.5, 127.2, 126.7, 125.94,

125.85, 125.5, 120.9, 34.5, 30.8, 25.0, 24.4, 24.1. IR (neat, cm-n): 3041, 2960, 2869, 1461, 1071, 907.

Anal. Calcd for C22H30: C, 90.85 ; H, 9.15. Found: C, 90.96; H, 9.21.

i-Pr

i-Prir

i-Pr Ph



2,4,6-Triisopropyl[1,1';2',1"lterphenyl (Table 1, entry 3). Following general procedure C, a mixture of

2,4,6-triisopropylbromobenzene (251 4L, 1.0 mmol), Pd 2(dba)3 (13.9 mg, 0.015 mmol), 1 (24.6 mg, 0.06

nmol), 2-biphenyl boronic acid (396 mg, 2.0 mmol) and K3PO4 (637 mg, 3.0 mmol) in toluene (2.0 mL)

was heated at 100 'C with vigorous stirring for 20 h. The crude product was purified by flash

chromatography on silica gel (hexane) to provide the title compound as a white solid (333 mg, 93%), mp

140-141.5 oC. 'H NMR (300 MHz, CDCl3): 6 7.33-7.52 (m, 3H), 7.23 (dd, J= 7.5, 1.3 Hz, 1H), 7.06-

7.14 (m, 5H), 6.91 (s, 2H), 2.88 (septet, J= 6.8 Hz, 1H), 2.55 (septet, J= 6.8 Hz, 2H), 1.26 (d, J= 6.8 Hz,

6H), 1.03 (d, J = 6.8 Hz, 6H), 0.86 (d, J 6.8 Hz, 6H). '3 C NMR (100 MHz, CDCl3): 6 148.1, 146.4,

141.4, 139.0, 135.8, 131.5, 129.9, 129.6, 127.7, 127.5, 126.9, 126.6, 120.7, 34.4, 30.6, 25.7, 24.3, 23.0.

IR (neat, cm-): 2958, 2869, 1463, 1382, 1007, 911. Anal. Calcd for C2 7H3 2 : C, 90.95; H, 9.05. Found: C,

90.83; H, 9.17.

MeO Me

MeO Me

2,6-Dimethoxy-2',6'-dimethylbiphenyl (Table 1, entry 4). Following general procedure C, a mixture of

2-bromo-1,3-dimethoxybenzene (217 mg, 1.0 mmol), Pd2(dba)3 (13.9 mg, 0.015 mmol), 1 (24.6 mg, 0.06

mmol), 2,6-dimethylphenyl boronic acid (300 mg, 2.0 mmol) and K3PO 4 (637 mg, 3.0 mmol) in toluene

(2.0 mL) was heated at 100 'C with vigorous stirring for 10 h. The crude product was purified by flash

chromatography on silica gel (95:5 hexane:diethyl ether) to provide the title compound as a white solid

(213 mg, 88%), mnp 107-109 oC. 'H NMR (300 MHz, CDCl 3) 8: 7.26-7.36 (m, 1H), 7.09-7.18 (m, 3H),

(dm, J for the d = 8.3 Hz, 2H), 3.77 (s, 6H), 2.01 (s, 6H). "C NMR (100 MHz, CDCl3) 8: 157.6, 137.3,

134.3, 128.9, 127.3, 127.0, 117.7, 104.1, 55.9, 20.3. IR (neat, cm-1'): 3012, 2958, 2838, 1590, 1468, 1432,

1283, 1246, 1108. 1003. Anal. Calcd for C16H,802: C, 79.31; H, 7.49. Found: C, 79.15; H, 7.45.

Me Me

Me

Me Me



2,2',4,6,6'-Pentamethylbiphenyl 37 (Table 1, entry 5). Following general procedure C, a mixture of 2-

bromomesitylene (199 mg, 1.0 mmol), Pd2(dba)3 (18 mg, 0.020 mmol), 1 (33 mg, 0.08 mmol), 2,6-

dimethylphenyl boronic acid (300 mg, 2.0 mmol) and K3PO4 (849 mg 4.0 mmol) in toluene (2.0 mL) was

heated at 110 'C with vigorous stirring for 10 h. The crude product was purified by flash chromatography

on silica gel (hexane) to provide the title compound as a colorless oil (184 mg, 82%). The spectra were in

agreement with those described in the literature.

t-Bu

t-Bu /

Me

4,6-Di-tert-butyl-2-methylbiphenyl (Table 1, entry 6). Following general procedure C, a mixture of 2-

Bromo-1,5-di-tert-butyl-3-methyl-benzene (59 mg, 0.21 mmol), Pd2(dba)3 (4.8 mg, 0.053 mmol), 1 (8.6

mg, 0.021 mmol), phenyl boronic acid (51 mg, 0.41 mmol) and K3PO 4 (177 mg, 0.84 mmol) in toluene

(1.0 mL) was heated at 110 'C with vigorous stirring for 18 h. The crude product was purified by flash

chromatography on silica gel (hexane) to provide the title compound as a colorless oil (50 mg, 85%). 1H

NMR (300 MHz, CDC13) 6: 7.03-7.52 (m, 7H), 1.85 (s, 3H), 1.37 (s, 9H), 1.17 (s, 9H). 13C NMR (100

MHz, CDCl3) 8: 149.3, 147,3, 143.5, 138.7, 137.3, 131.1, 127.8, 126.5, 124.6, 121.7, 37.1, 34.8, 33.1,

31.7, 22.4. IR (neat, cm-'): 3061, 2967, 2866, 1604, 1478, 1362, 1236, 1009. Anal. Calcd for C21H28: C,

89.94; H, 10.06. Found: C, 89.78; H, 10.17.

t-Bu

t-Bu

Me Me

4,6-Di-tert-butyl-2,2'-dimethyl-biphenyl (Table 1, entry 7). Following general procedure C, a mixture

of 2-Bromo-1,5-di-tert-butyl-3-methyl-benzene (59 mg, 0.21 mmol), Pd2(dba)3 (4.8 mg, 0.053 mmol), 1

(8.6 mg, 0.021 mmol), 2-methylphenyl boronic acid (57 mg, 0.41 mmol) and K3PO 4 (177 mg, 0.84 mmol)

in toluene (1.0 mL) was heated at 110 'C with vigorous stirring for 18 h. The crude product was purified

by flash chromatography on silica gel (hexane) to provide the title compound as a colorless oil (55 mg,



89%). 'H NMR (300 MHz, CDCl3) 8: 7.44 (d, J= 1.9 Hz, 1H), 7.09-7.28 (min, 5 H), 1.98 (s, 3H), 1.78 (s,

3H), 1.37 (s, 9H), 1.15 (s, 9H). '3 C NMR (100 MHz, CDC13) 8: 149.1, 146.7, 143.0, 137.3, 137.1,136.6,

131.0, 129.9, 126.9, 125.3, 124.7, 122.2, 37.1, 34.8, 32.5, 31.7, 21.7, 20.5. IR (neat, cm-'): 3060, 2964,

2868, 1604, 1479, 1361, 1236, 1004. Anal. Calcd for C22H30: C, 89.73; H, 10.27. Found: C, 89.50; H,

10.37.

Me

t-Bu

4-t-butyl-2'-methylbiphenyl 38 (Table 3, entry 1) (0.0005% Pd). Following general procedure A, a

mixture of 4-tert-butylbromobenzene (173 [tL, 1.0 mmol), 2-methylphenyl boronic acid (204 mg, 1.5

mmol), K3PO 4 (424 mg, 2.0 mmol) and 4 RL of a catalyst solution composed of Pd(OAc) 2 (1.1 mg, 0.005

mmol), 1 (5.2 mg, 0.01 mmol) and THF (4.0 mL) in toluene (3.0 mL) was heated at 100 'C for 24 h. The

crude product was purified by flash chromatography on silica gel (hexane) to provide the title compound

as a colorless oil (202 mg, 90%). The spectra were in agreement with those described in the literature.

t-Buh

Ph

2-(4-t-Butylphenyl)biphenyl (Table 3, entry 2) (0.001% Pd). Following general procedure A, a mixture

of 4-tert-butylbromobenzene (173 ptL, 1.0 mmol), 2-biphenylboronic acid (297 mg, 1.5 mmol), K3PO4

(424 mg, 2.0 mmol) and 8 [tL of a catalyst solution composed of Pd(OAc) 2 (1.1 Mg, 0.005 mmol), 1 (5.2

mg, 0.01 mmol) and THF (4.0 mL) in toluene (3.0 mL) was heated at 100 'C for 24 h. The crude product

was purified by flash chromatography on silica gel (hexane) to provide the title compound as a white

solid (276 mg, 96%), mp 55-56 'C. 'H NMR (300 MHz, CDC13) 6: 7.48-7.41 (m, 5H), 7.29-7.09 (m, 8H),

1.33 (s, 9H). 13C NMR (75 MHz, CDCl3) 6: 149.5, 141.9, 140.7, 140.6, 138.6, 130.9, 130.8, 130.1,129.7,

128.0, 127.6, 127.4, 126.6, 125.0, 34.6, 31.6. IR(neat, cm'): 3066, 2988, 1476, 1422, 1266, 896.



i-Pr

i-Pri

i-Pr

2,4,6-Triisopropylbiphenyl (Table 3, entry 3). Following general procedure A, a mixture of 2,4,6-

triisopropylbromobenzene (251 [tL, 1.0 mmol), phenyl boronic acid (183 mg, 1.5 mmol) and K3PO4 (424

mg, 2.0 mmol) and 20 iL of a catalyst solution composed of Pd2dba 3 (4.6 mg, 0.005 mmol), 1 (8.2 mg,

0.02 mmol) and THF (2.0 mL) in toluene (2.0 mL) was heated at 100 'C with vigorous stirring for 16 h.

The crude product was purified by flash chromatography on silica gel (hexane) to provide the title

compound as a white solid (278 mg, 99%), mp 120-121 0C. 'H NMR (300 MHz, CDCl3) 6: 7.32-7.44 (m,

3H), 7.19-7.23 (m, 2H), 7.08 (s, 2H), 2.97 (septet, J= 6.9 Hz, 1H), 2.62 (septet, J= 6.9 Hz, 2H), 1.33 (d,

J= 6.9 Hz, 6H), 1.10 (d, J= 6.9 Hz, 12H). 13C NMR (100 MHz, CDCl 3) 8: 148.0, 146.7, 141.1, 137.3,

130.0, 128.1, 126.6, 120.7, 34.5, 30.5, 24.4, 24.3. IR (neat, cmn'): 2960, 2929, 2867, 1609, 1459, 1362,

1069. Anal. Calcd for C21H28: C, 89.94; H, 10.06. Found: C, 89.66; H, 10.01.

n-Bu

4-n-Butylbiphenyl 39 (Table 3, entry 4) (0.003% Pd). Following general procedure A, a mixture of 4-n-

butylchlorobenzene (165 pL, 1.0 mmol), phenyl boronic acid (183 mg, 1.5 mmol), K 3PO 4 *H20(460 mg,

2.0 mmol) and 24 pL of a catalyst solution composed of Pd(OAc)2 (1.1 mg, 0.005 mmol), 1 (10.3 mg,

0.025 mmol) and THF (4.0 mL) in toluene (2.0 mL) was heated at 100 'C for 24 h. The crude product

was purified by flash chromatography on silica gel (hexane) to provide the title compound as a colorless

oil (195 mg, 93%). The spectra were in agreement with those described in the literature.

4-phenylquinoline 4 0 (Table 4, entry 1). Following general procedure E, a mixture of 4-chloroquinoline

(82 mg, 0.50 mmol), Pd(OAc)2 (1.1 mg, 0.005 mmol), 1 (4.1 mg, 0.01 mmol), 4,4,5,5-Tetramethyl-2-

phenyl-[1,3,2]dioxaborolane (153 mg, 0.75 mmol) and K3PO4 (212 mg, 1.0 mmol) in toluene (1.0 mL)



and water (100 iiL) was heated at 100 'C with vigorous stirring for 30 min. The crude product was

purified by flash chromatography on silica gel (4:1 hexane:ethyl acetate) to provide the title compound as

a colorless oil (91 mg, 89 %). The spectra were in agreement with those described in the literature.

Me

Me OH

3-(2',6'-Dimethylphenyl)phenol (Table 4, entry 2). Following general procedure E, a mixture of 2-

chloro-m-xylene (133 lxL, 1.0 mmol), Pd(OAc) 2 (2.2 mg, 0.01 mmol), 1 (8.2 mg, 0.02 mmol), 3-(4,4,5,5-

Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenol (330 mg, 1.50 mmol) and K3PO4 (424 mg, 2.0 mmol) in

toluene (2.0 mL) and water (200 RL )was heated at 100 'C with vigorous stirring for 30 min. The crude

product was purified by flash chromatography on silica gel (9:1 hexane:diethyl ether) to provide the title

compound as a colorless oil (189 mg, 95%). 'H NMR (300 MHz, CDC13) 8: 7.33 (t, J = 7.7 Hz, 1H),

7.12-7.23 (m, 3H), 6.85 (ddd, J= 8.3, 2.8, 1.1 Hz), 6.76 (ddd, J= 7.4, 1.2, 1.2 Hz), 6.65-6.67 (m, 1H),

5.09 (br s, 1H), 2.08 (s, 6H). '3C NMR (75 MHz, CDCl3) 8: 155.6, 143.0, 141.6, 136.2, 129.9, 127.4,

127.3, 121.9, 116.1, 113.8, 20.9. IR (neat, cml1): 3320, 3060, 2920, 1581, 1446, 1289, 1187, 999. A

satisfactory elemental analysis was not obtained for this compound. The 1H and 13C NMR spectra follow.
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MeO OMe

CN CF3

5,6-Dimethoxy-3'-trifluoromethyl-2-cyano-biphenyl (Table 4, entry 3). Following general procedure

E, a mixture of 2-chloro-3,4-dimethoxybenzonitrile (99 mg, 0.50 mmol), Pd(OAc) 2 (1.1 mg, 0.005

mmol), 1 (4.1 mg, 0.01 mmol), 4,4,5,5-Tetramethyl-2-(3-trifluoromethyl-phenyl)-[1,3,2]dioxaborolane

(204 mg, 0.75 mmol) and K3PO4 (212 mg, 1.0 mmol) in toluene (1.0 mL) and water (100 iL )was heated

at 100 'C with vigorous stirring for 30 min. The crude product was purified by flash chromatography on

silica gel (4:1 hexane:diethyl ether) to provide the title compound as a white solid (151 mg, 98%), mp 87-

88 °C. 'H NMR (300 MHz, CDC13) 8: 7.59-7.75 (m, 3H), 7.54 (d, J = 8.6 Hz, 1H), 7.02 (d, J = 8.6 Hz,

1H), 3.99 (s, 3H), 3.58 (s, 3H). 13C NMR (75 MHz, CDCl 3) 8: 157.2, 147.1, 138.3, 135.0, 133.3, 131.0,

130.6, 130.4, 129.0, 127.0, 126.9, 126.0, 125.53, 125.48, 122.4, 118.26, 112.32, 105.0, 61.1, 56.3

(observed complexity due to F-C splitting). IR (neat, cm'): 3061, 2948, 2846, 2228, 1590, 1484, 1332,

1126, 1031. Anal. Calcd for C16HI2F3NO2: C, 62.54; H, 3.94. Found: C, 62.55; H, 3.87.

S
Me N MeO

5-(2-Methoxyphenyl)-2-methyl-benzothioazole (Table 4, entry 4). Following general procedure F, a

mixture of 5-chloro-2-methyl-benzothiazole (184 mg, 1.0 mmol), Pd(OAc)2 (2.2 mg, 0.01 mmol), 1 (4.1

mg, 0.01 mmol), 2-(2-methoxy-phenyl)-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane (351 mg, 1.5 mmol) and

K3PO 4 (424 mg, 2.0 mmol) in THF (2.0 mL) and water (200 ttL ) was vigorously stirred at room

temperature for 30 min. The crude product was purified by flash chromatography on silica gel (9:1 to 9:2

hexane:diethyl ether) to provide the title compound as a thick colorless oil (244 mg, 96%). 'H NMR (300

MHz, CDCl3) 6:8.19 (dd, J= 1.7, 0.5 Hz, 1H), 7.86 (dd, J= 8.3, 0.5 Hz, IH), 7.57 (dd, J= 8.3, 1.7 Hz,

1H), 7.34-7.44 (min, 2H), 7.02-7.12 (m, 2H), 3.84 (s, 3H), 2.87 (s, 3H). 13C NMR (75 MHz, CDC13) 6:

167.3, 156.6, 153.6, 136.7, 134.4, 131.2, 130.2, 128.9, 126.7, 123.4, 121.1, 120.8, 111.3, 55.6, 20.3. IR



(neat, cm'): 3072, 2957, 2834, 1598, 1496, 1241, 1026. A satisfactory elemental analysis was not

obtained for this compound. The 'H and 13C NMR spectra follow.
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Me

NC

3-Cyano-2'-methylbiphenyl41 (Table 5, entry 1). Following general procedure J, a mixture of 3-

chlorobenzonitrile (137 mg, 1.0 mmol), 2-methylphenyl boronic acid (204 mg, 1.5 mmol), K3PO4 *H20

(691 mg, 3.0 mmol), Pd(OAc) 2 (0.11 mg, 0.0005 mmol) and 2 (0.7 mg, 0.0015 mmol) was maintained at

room temperature with vigorous stirring for 24 h. The crude product was purified via flash column

chromatography on silica gel (hexanes to 9:1 hexanes: ethyl acetate) to provide the title compound as a

colorless oil (182 mg, 94%). 'H NMR (300 MHz, CD 2C 2) 8: 7.51-7.70 (m, 4H), 7.17-7.38 (m, 4H), 2.26

(s, 3H). The spectra were in agreement with those described in the literature.

NC Ph

3-Cyano-2'-phenylbiphenyl (Table 5, entry 2). Following general procedure J, a mixture of 3-

chlorobenzonitrile (137 mg, 1.0 mmol), 2-biphenyl boronic acid (297 mg, 1.5 mmol), K3PO4*H 20 (691

mg, 3.0 mmol), Pd(OAc) 2 (0.11 mg, 0.0005 mmol) and 2 (0.7 mg, 0.0015 mmol) was maintained at room

temperature with vigorous stirring for 24 h. The crude product was purified via flash column

chromatography on silica gel (hexanes) to provide the title compound as a white solid (237 mg, 93%), mp

108-110 oC. 'H NMR (300 MHz, CD 2C12) 8: 7.30-7.55 (m, 8H), 7.22-7.29 (m, 3H), 7.09-7.17 (m, 2H).

13C NMR (75 MHz, CDCl3) 8: 143.3, 141.2, 138.8, 134.9, 133.7, 131.3, 130.8, 130.6, 130.4, 129.2, 128.9,

128.6, 128.3, 127.4, 119.2, 112.6. IR (neat, cm'): 3063, 3053, 2985, 1601, 1577, 1487, 1476, 1471,

1450, 1435, 1411, 1266, 1173, 1075, 1009 (-CN obscured by diamond probe). Anal. Calcd for CiHI3N:

C, 89.38; H, 5.13. Found: C, 89.40; H, 5.16.

MeO Me

MeO



3,5-Dimethoxy-2'-methylbiphenyl (Table 5, entry 3). Following general procedure J, a mixture of 3,5-

dimethoxychlorobenzene (173 mg, 1.0 mmol), 2-methylphenyl boronic acid (204 mg, 1.5 mmol),

K3PO4*H 20 (691 mg, 3.0 mmol), Pd(OAc) 2 (0.22 mg, 0.001 mmol) and 2 (1.4 mg, 0.003 mmol) was

maintained at room temperature with vigorous stirring for 24 h. The crude product was purified via flash

column chromatography on silica gel (hexanes to 95:5 hexanes: ethyl acetate) to provide the title

compound as a colorless oil (221 mg, 97%). 1H NMR (300 MHz, CD2C 2) 6: 7.22-7.30 (m, 4H), 6.47-

6.50 (m, 3H), 3.82 (s, 6H), 2.30 (s, 3H). "3C NMR (75 MHz, CDCI3) 6: 161.1, 144.5, 142.5, 135.9, 130.8,

129.9, 127.9, 126.2, 107.8, 99.3, 55.9, 20.7. IR (neat, cm-'): 2927, 2858, 1599, 1460, 1421, 1344, 1267,

1205, 1159, 1066, 1035. Anal. Calcd for C, 5HI60 2: C, 78.92; H, 7.06. Found: C, 78.88; H, 7.06.

/ / NMe 2

MeO 2C

Methyl-3-(4'-N,N-dimethylphenyl)benzoate 42 (Table 5, entry 4). Following general procedure J, a

mixture of 3-chloromethylbenzoate (171 mg, 1.0 mmol), 4-N,N-dimethylphenyl boronic acid (248 mg,

1.5 mmol), K3PO4*H20 (691 mg, 3.0 mmol), Pd(OAc) 2 (1.1 mg, 0.005 mmol) and 2 (6.9 mg, 0.015

mmol) was maintained at room temperature with vigorous stirring for 24 h. The crude product was

purified via flash column chromatography on silica gel (hexanes to 95:5 hexanes:ethyl acetate) to provide

the title compound as an off-white solid (247 mg, 97%), mp 140-142 oC. 'H NMR (300 MHz, CD 2C12) 6:

8.20-8.26 (m, 1H), 7.85-7.92 (m, 1H), 7.73-7.81 (m, 1H), 7.38-7.60 (m, 3H), 6.74-6.86 (m, 2H), 3.91 (s,

3H), 2.99 (s, 6H). 13C NMR (75 MHz, CDCl3) 6: 167.6, 150.9, 141.9, 131.2, 130.8, 129.3, 128.0, 127.9,

127.4, 127.3, 113.1, 52.5, 40.8. The spectra were in agreement with those described in the literature.

MeO

MeO2C MeO

Methyl-3-(2',6'-dimethoxyphenyl)benzoate (Table 5, entry 5). Following general procedure J, a

mixture of 3-chloromethylbenzoate (171 mg, 1.0 mmol), 2,6-dimethoxyphenyl boronic acid (364 mg, 3.0



mmol), K3PO4*H 20 (691 mg, 3.0 mmol), Pd(OAc)2 (1.1 mg, 0.005 mmol) and 2 (6.9 mg, 0.015 mmol)

was maintained at room temperature with vigorous stirring for 24 h. The crude product was purified via

flash column chromatography on silica gel (hexanes to 9:1 hexanes:ethyl acetate) to provide the title

compound as an off-white solid (267 mg, 98%), mp 91-93 oC. 'H NMR (300 MHz, CD 2C12) 8: 7.95-8.30

(m, 2H), 7.45-7.57 (m, 2H), 7.33 (t, J = 8.4 Hz, 1H), 6.69 (d, J = 8.4 Hz, 2H). 13C NMR (75 MHz,

CDC13) 8: 167.5, 158.1, 136.2, 135.5, 132.7, 130.4, 129.8, 128.3, 118.7, 104.6, 56.2, 52.4. IR (neat, cm

'): 3066, 3012, 2958, 2920, 2850, 1716, 1591, 1476, 1437, 1298, 1244, 1112, 1035. Anal. Calcd for

C 16HI60 4: C, 70.57; H, 5.92. Found: C, 70.65; H, 6.02.

CO2Me

MeO

Methyl-2-(2'-methoxyphenyi)benzoate 43 (Table 5, entry 6). Following general procedure J, a mixture

of 2-chloromethylbenzoate (171 mg, 1.0 mmol), 2-methoxyphenyl boronic acid (228 mg, 1.5 mmol),

K3PO4*H 20 (691 mg, 3.0 mmol), Pd(OAc) 2 (1.1 mg, 0.005 mmol) and 2 (6.9 mg, 0.015 mmol) was

maintained at room temperature with vigorous stirring for 24 h. The crude product was purified via flash

column chromatography on silica gel (hexanes to 9:1 hexanes:ethyl acetate) to provide the title compound

as a colorless oil (237 mg, 98%). 'H NMR (300 MHz, CD2Cl2) 8: 7.83 (dd, J= 7.7, 1.4 Hz, 1H), 7.56 (td,

J= 7.7, 1.7, 1H), 7.43 (dd, J= 7.7, 1.4 Hz, IH), 7.31-7.40 (m, 2H), 7.25 (dd, J= 7.4, 1.9 Hz, 1H), 7.05

(td, J = 7.4, 1.1 Hz, 1H), 6.93 (d, J = 8.3 Hz, 1H), 3.71 (s, 3H), 3.66 (s, 3H). The spectra were in

agreement with those described in the literature.

CHO

MeO

2-Formyl-2'-methoxybiphenyl"44 (Table 5, entry 7). Following general procedure J, a mixture of 2-

chlorobenzaldehyde (141 mg, 1.0 mmol), 2-methoxyphenyl boronic acid (228 mg, 1.5 mmol), K3PO4*H-

20 (691 mg, 3.0 mmol), Pd(OAc) 2 (0.22 mg, 0.001 mmol) and 2 (1.4 mg, 0.003 mmol) was maintained at



room temperature with vigorous stirring for 24 h. The crude product was purified via flash column

chromatography on silica gel (hexanes to 9:1 hexanes:ethyl acetate) to provide the title compound as a

colorless oil (208 mg, 98%). 1H NMR (300 MHz, CD 2C12) 8: 9.76 (d, J = 0.8 Hz, 1 H), 7.95 (dd, J = 1.4,

0.5 Hz, 1H), 7.66 (td, J= 7.4, 1.4 Hz, 1H), 7.51 (dt, J= 7.7, 0.8 Hz, 1H), 7.44 (ddd, J= 8.3, 7.4, 1.7 Hz,

1H), 7.29 (dd, J= 7.4, 1.7 Hz, 1H) 7.09 (td, J= 7.4, 1.1 Hz, 1H), 7.01 (dd, J= 8.3, 0.8 Hz, 1H), 3.74 (s,

3H). The spectra were in agreement with those described in the literature.

Me Me

Me

2,2',6-trimethyibiphenyl 45 (Table 5, entry 8). Following general procedure J, a mixture of 2-chloro-m-

xylene (141 mg, 1.0 mmol), 2-methylphenyl boronic acid (204 mg, 1.5 mmol), K3PO4GH 20 (691 mg, 3.0

mmol), Pd(OAc) 2 (0.22 mg, 0.001 mmol) and 2 (1.4 mg, 0.003 mmol) was maintained at room

temperature with vigorous stirring for 24 h. The crude product was purified via flash column

chromatography on silica gel (hexanes) to provide the title compound as a colorless oil (185 mg, 94%).

'H NMR (300 MHz, CD2C12) 8: 7.12-7.42 (min, 6H), 7.01-7.11 (m, 1H), 2.02 (s, 3H), 1.99 (s, 6H). The

spectra were in agreement with those described in the literature.

Me

Me Me

2,2',6-trimethylbiphenyl 45 (Table 5, entry 9). Following general procedure J, a mixture of 2-

chlorotoluene (127 mg, 1.0 mmol), 2,6-dimethylphenyl boronic acid (450 mg, 3.0 mmol), K3PO4 *H20

(691 mg, 3.0 mmol), Pd(OAc) 2 (0.22 mg, 0.001 mmol) and 2 (1.4 mg, 0.003 mmol) was maintained at

room temperature with vigorous stirring for 24 h. The crude product was purified via flash column

chromatography on silica gel (hexanes) to provide the title compound as a colorless oil (182 mg, 93%).

'H NMR (300 MHz, CD2C 2) 6: 7.12-7.42 (min, 6H), 7.01-7.11 (m, 1H), 2.02 (s, 3H), 1.99 (s, 6H). The

spectra were in agreement with those described in the literature.



Ph Me Ph

2'-Methyl-[1,1';3',1";2",1"']quaterphenyl (Table 5, entry 10). Following general procedure J, a

mixture of 3-chloro-2-methylbiphenyl (203 mg, 1.0 mmol), 2-biphenyl boronic acid (298 mg, 1.5 mmol),

K3PO4*H20 (691 mg, 3.0 mmol), Pd(OAc) 2 (0.56 mg, 0.0025 mmol) and 2 (3.5 mg, 0.0075 mmol) was

maintained at room temperature with vigorous stirring for 24 h. The crude product was purified via flash

column chromatography on silica gel (hexanes) to provide the title compound as a white solid (318 mg,

99%), mp 105-108 oC. 'H NMR (300 MHz, CD 2C12) 6: 7.26-7.52 (m, 7H), 7.10-7.25 (m, 10H), 1.74 (s,

3H). 13C NMR (75 MHz, CD 2C12) 8: 143.1, 142.9, 142.7, 142.1, 141.7, 141.4, 133.9, 131.7, 130.5, 130.3,

130.1, 129.8, 129.2, 128.6, 128.3, 128.2, 127.8, 127.3, 127.1, 125.6, 18.8. IR (neat, cm-'): 3059, 3028,

2927, 1576, 1460, 1429, 1074, 1004. Anal. Calcd for C25H20: C, 93.71; H, 6.29. Found: C, 93.89; H,

6.31.

OMe

C(O)Me
46

3-Acetyl-2'-methoxybiphenyl46 (Table 5, entry 11). Following general procedure J, a mixture of 2-

chloroanisole (143 mg, 1.0 mmol), 3-acetylphenyl boronic acid (246 mg, 1.5 mmol), K3PO4*H 20 (691

mg, 3.0 mmol), Pd(OAc) 2 (1.1 mg, 0.005 mmol) and 2 (6.9 mg, 0.015 mmol) was maintained at room

temperature with vigorous stirring for 24 h. The crude product was purified via flash column

chromatography on silica gel (hexanes to 9:1 hexanes:ethyl acetate) to provide the title compound as a

light yellow oil (201 mg, 89%). 'H NMR (300 MHz, CD 2C12) 6: 8.07-8.15 (m, 1H), 7.92 (dq, J= 7.7, 1.1

Hz, 1H), 7.74 (dq, J = 7.7, 1.1 Hz, 1H), 7.52 (td, J= 7.7, 0.6 Hz, 1H), 7.31-7.43 (m, 2H), 7.0-7.12 (m,

2H). The spectra were in agreement with those described in the literature.

OMe

Me



2-methoxy-2'-methylbiphenyl 47 (Table 5, entry 12). Following general procedure J, a mixture of 2-

chloroanisole (143 mg, 1.0 mmol), 2-methylphenyl boronic acid (204 mg, 1.5 mmol), K3PO4*H 20 (691

mg, 3.0 mmol), Pd(OAc) 2 (0.56 mg, 0.0025 mmol) and 2 (3.6 mg, 0.0075 mmol) was maintained at room

temperature with vigorous stirring for 24 h. The crude product was purified via flash column

chromatography on silica gel (hexanes to 9:1 hexanes:ethyl acetate) to provide the title compound as a

white crystalline solid (192 mg, 97%), mp 42-44 oC. 'H NMR (300 MHz, CD 2C12) 6: 7.37-7.46 (m, 1H),

7.17-7.35 (m, 5H), 7.01-7.12 (min, 2H), 3.81 (s, 3H), 2.18 (s, 3H). The spectra were in agreement with

those described in the literature.

OMe

Ph

2-methoxy-2'-phenylbiphenyl 48 (Table 5, entry 13). Following general procedure J, a mixture of 2-

chloroanisole (143 mg, 1.0 mmol), 2-biphenyl boronic acid (298 mg, 1.5 mmol), K3PO4*H 20 (691 mg,

3.0 mmol), Pd(OAc) 2 (0.56 mg, 0.0025 mmol) and 2 (3.6 mg, 0.0075 mmol) was maintained at room

temperature with vigorous stirring for 24 h. The crude product was purified via flash column

chromatography on silica gel (hexanes) to provide the title compound as a thick oil (252 mg, 97%). iH

NMR (300 MHz, CD2C12) 8 7.36-7.51 (m, 4H), 7.14-7.32 (m, 7H), 6.96 (t, J= 7.4, 1H), 6.77 (d, J= 8.3

Hz, 1H), 3.42 (s, 3H). The spectra were in agreement with those described in the literature.

MeO

Ph

4-methoxy-2'-phenylbiphenyl 49 (Table 5, entry 14). Following general procedure J, a mixture of 4-

chloroanisole (143 mg, 1.0 mmol), 2-biphenyl boronic acid (298 mg, 1.5 mmol), K3PO4*H 20 (691 mg,

3.0 mmol), Pd(OAc)2 (0.56 mg, 0.0025 mmol) and 2 (3.6 mg, 0.0075 mmol) was heated to 40 oC with

vigorous stirring for 24 h. The crude product was purified via flash column chromatography on silica gel

(hexanes) to provide the title compound as a viscous oil (241 mg, 93%). 'H NMR (300 MHz, CD2C12) 6



7.39-7.47 (m, 4H), 7.16-7.32 (m, 5H), 7.10 (d, J= 8.8 Hz, 2H), 6.79 (d, J= 8.8 Hz, 2H), 3.78 (s, 3H). The

spectra were in agreement with those described in the literature.

OMe

MeO Ph

2,6-dimethoxy-2'-phenylbiphenyl 50 (Table 5, entry 15). Following general procedure J, a mixture of

2,6-dimethoxychlorobenzene (173 mg, 1.0 mmol), 2-biphenyl boronic acid (298 mg, 1.5 mmol),

K3 PO4*H 20 (691 mg, 3.0 mmol), Pd(OAc) 2 (1.1 mg, 0.005 mmol) and 2 (6.9 mg, 0.015 mmol) was

heated to 40 TC with vigorous stirring for 24 h. The crude product was purified via flash column

chromatography on silica gel (hexanes) to provide the title compound as a white solid (287 mg, 99%), mp

102-103 oC. 'H NMR (300 MHz, CD2Cl 2) 6 7.34-7.48 (mn, 3H), 7.23-7.29 (m, 1H), 7.08-7.22 (m, 6H),

6.48 (d, J = 8.5 Hz, 2H), 3.54 (s, 3H). The spectra were in agreement with those described in the

literature.

MeO Me

Me

2,6-dimethyl-2'-methoxybiphenyl 5I (Table 5, entry 16). Following general procedure J, a mixture of 2-

chloroanisole (143 mg, 1.0 mmol), 2,6-dimethylphenyl boronic acid (450 mg, 3.0 mmol), K3PO4*H 20

(691 mg, 3.0 mmol), Pd(OAc) 2 (1.1 mg, 0.005 mmol) and 2 (6.9 mg, 0.015 mmol) was heated to 40 TC

with vigorous stirring for 24 h. The crude product was purified via flash column chromatography on silica

gel (hexanes) to provide the title compound as a colorless oil (207 mg, 98%). IH NMR (300 MHz,

CD2C12) 6 7.34-7.44 (m, 1H), 7.08-7.22 (m, 3H), 7.01-7.08 (m, 3H), 3.77 (s, 3H), 2.02 (s, 6H). The

spectra were in agreement with those described in the literature.

Me

Me F



2-Fluoro-2',4'-dimethylbiphenyl (Table 6, entry 1). Following general procedure I, a mixture of 2-

chloro-m-xylene (141 mg, 1.0 mmol), 2-fluorophenyl boronic acid (210 mg, 1.5 mmol), K3PO4 (425 mg,

2.0 mmol), Pd(OAc) 2 (1.1 mg, 0.005 mmol), and 1 (4.1 mg, 0.01 mmol) in toluene (2.0 mL) was heated

to 90 °C with stirring for 90 min. The crude product was purified via flash column chromatography on

silica gel (hexanes) to provide the title compound as a colorless oil (184 mg, 92%). 1H NMR (500 MHz,

CDCl 3) 6: 7.31-7.36 (m, 2H), 7.11-7.21 (m, 5H), 2.05 (s, 6H). 13C NMR (125 MHz, CDCI3) 8: 160.4,

158.5, 136.7, 135.2, 131.3, 131.3, 129.0, 128.9, 128.0, 127.9, 127.7, 127.2, 124.1, 124.1, 115.8, 115.6,

20.5. 19F NMR (282 MHz, CDCl 3) 8: -115.4. IR (neat, cm-1): 3064, 2923, 2863, 1577, 1447, 1208,

1110, 1006. Anal. Calcd for Cl 4H13F: C, 83.97; H, 6.54. Found: C, 83.74; H, 6.52.

MeO \ F

F

2,4-Difluoro-4'-methoxybiphenyl (Table 6, entry 2). Following general procedure I, a mixture of 4-

chloroanisole (143 mg, 1.0 mmol), 2,4-difluorophenyl boronic acid (237 mg, 1.5 mmol), K3PO 4 (425 mg,

2.0 mmol), Pd(OAc) 2 (1.1 mg, 0.005 mmol), and 1 (4.1 mg, 0.01 mmol) in toluene (2.0 mL) was heated

to 80 'C with stirring for 16 h. The crude product was purified via flash column chromatography on

silica gel (2% ethyl acetate in hexanes) to provide the title compound as a white solid (219 mg, 99%), mp

78-79 °C. 'H NMR (500 MHz, CDCl3) 6: 7.47 (d, J= 7 Hz, 2H), 7.37-7.41 (m, 1H), 7.01 (d, J= 9 Hz,

2H), 6.91-6.97 (m, 2H), 3.87 (s, 3H). 13C NMR (125 MHz, CDCl 3) 6: 162.9, 162.8, 160.9, 160.8, 160.6,

160.5, 159.2, 158.6, 158.5, 131.1, 131.0, 131.0, 130.9, 130.0, 129.9, 127.3, 127.2, 125.0, 124.9, 124.9,

124.8, 113.9, 111.5, 111.4, 111.3, 111.2, 104.4, 104.2, 104.2, 104.0, 55.2. '9F NMR (282 MHz, CDCl 3)

6: -112.7 (t, J= 6 Hz, IF), -114.1 (d, J= 6 Hz, 1F). IR (neat, cm-1): 3056, 2840, 1611, 1496, 1266,

1140, 965. A satisfactory elemental analysis was not obtained for this compound. The 'H and 13C NMR

spectra follow.
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3-(2,3-Difluorophenyl)-2-fluoro-5-trifluoromethylpyridine (Table 6, entry 3). Following general

procedure I, a mixture of 2-fluoro-3-chloro-5-(trifluoromethyl)pyridine (199 mg, 1.0 mmol), 2,3-

difluorophenyl boronic acid (316 mg, 2.0 mmol), K3PO 4 (637 rmg, 3.0 mmol), Pd(OAc) 2 (2.2 mg, 0.01

mmol), and 1 (8.2 mg, 0.02 mmol) in toluene (2 mL) was heated to 90 'C with stirring for 16 h. The

crude product was purified via flash column chromatography on silica gel (3% ethyl acetate in hexanes)

to provide the title compound as a pale yellow oil (265 mg, 96%). 'H NMR (500 MHz, CDCl3) 6: 8.59

(s, 1H), 8.11 (d, J1= 8 Hz, 1H), 7.17-7.34 (m, 3H). 13C NMR (125 MHz, CDCl 3) 8: 163.5, 160.2, 152.6,

152.4, 149.8, 149.6, 149.2, 149.1, 146.5, 146.3, 145.6, 145.5, 145.4, 145.4, 145.3, 145.3, 145.2, 145.1,

139.4, 139.3, 139.3, 139.3, 139.2, 125.8, 125.6, 125.5, 125.1, 125.1, 124.7, 124.7, 124.6, 124.6, 122.4,

122.3, 122.2, 122.2, 121.1, 118.6, 118.4, 118.2, 118.1, 117.8, 117.7. 19F NMR (282 MHz, CDCl3) 8: -

62.1 (s, 3F), -63.8 (q, J= 6Hz, 1F), -136.8 (q, J= 6Hz, 1F), -139.8 (m, 1F). IR (neat, cm-'): 3086, 1598,

1496, 1483, 1454, 1418, 1343, 1293, 1260, 1160, 1132, 1092. Anal. Calcd for C12HsF 6N: C, 52.00; H,

1.82. Found: C, 52.03; H, 1.83.

H2N F

F

2,4-Difluoro-4'-aminobiphenyl (Table 6, entry 4). Following general procedure I, a mixture of 4-

chloroaniline (128 mg, 1.0 mmol), 2,4-difluorophenyl boronic acid (237 mg, 1.5 mmol), K3PO 4 (425 mg,

2 mmol), Pd(OAc) 2 (2.2 mg, 0.01 mmol), and 1 (8.2 mg, 0.02 mmol) in toluene (2.0 mL) was heated to

80 °C with stirring for 10 h. The crude product was purified via flash column chromatography on silica

gel (1:4 ethyl acetate:hexanes) to provide the title compound as a pale brown solid (197 mg, 96%), mp

110-111 *C. 'H NMR (500 MHz, CDC13) 8: 7.34-7.40 (m, 3H), 6.89-6.96 (m, 2H), 6.77 (d, J = 8 Hz,

2H), 3.78 (bs, 2H11). 13C NMR (125 MHz, CDCl3) 6: 162.5, 162.4, 160.6, 160.5, 160.5, 160.4, 158.5,



158.4, 146.1, 130.9, 130.8, 130.7, 130.7, 129.8, 129.7, 125.3, 125.3, 125.2, 125.1, 124.8, 124.8, 114.9,

111.3, 111.3, 111.2, 111.1, 104.3, 104.1, 104.0, 103.9. 19F NMR (282 MHz, CDCl3) 6: -113.3 (quintet, J

= 6 Hz, IF), -114.2 (t, J = 6 Hz, 1F). IR (neat, cm-'): 3487, 3397, 3039, 1626, 1606, 1490, 1412, 1263,

1138, 1103. Anal. Calcd for C12H9F2N: C, 70.24; H, 4.42. Found: C, 70.04; H, 4.34.

H F FO0

3-(2,3-Difluorophenyl)-benzaldehyde (Table 6, entry 5). Following general procedure I, a mixture of 3-

chlorobenzaldehyde (141 mg, 1.0 mmol), 2,3-difluorophenyl boronic acid (237 mg, 1.5 mmol), K3PO4

(425 mg, 2.0 mmol), Pd(OAc)2 (1.1 mg, 0.005 mmol), and 1 (4.1 mg, 0.01 mmol) in toluene (2.0 mL) was

heated to 90 °C with stirring for 3 h. The crude product was purified via flash column chromatography

on silica gel (5% ethyl acetate in hexanes) to provide the title compound as a white solid (175 mg, 80%),

mp 42-43 'C. 'H NMR (300 MHz, CDCI3) 8: 10.0 (s, 1H), 8.01 (s, 1H), 7.89 (d, J= 8 Hz, 1H), 7.78 (d, J

= 7 Hz, 1H), 7.60 (t, J= 8 Hz, 1H), 7.13-7.22 (m, 3H). 13C NMR (125 MHz, CDCl3) 8: 191.8, 152.7,

125.5, 149.6, 149.4, 149.3, 149.2, 146.2, 146.1, 136.6, 135.5, 135.4, 134.7, 134.6, 130.0, 129.9, 129.7,

129.6, 129.2, 125.1, 125.1, 125.0, 125.0, 124.4, 124.3, 124.3, 124.2, 116.8, 116.6. '9F NMR (282 MHz,

CDC13) 6: -137.7 (quintet, J = 6 Hz, IF), -143.9 (t, J= 6 Hz, IF). IR (neat, cm'-): 3067, 2830, 1699,

1593, 1579, 1482, 1468, 1266, 1189, 1100, 986. Anal. Calcd for C13H8F20: C, 71.56; H, 3.70. Found: C,

71.35; H, 3.61.

n-Bu- \/

3-(4-n-Butylphenyl)-pyridine 5 2 (Table 7, entry 1). Following general procedure H, a mixture of 4-n-

butylchlorobenzene (169 mg, 1.0 mmol), 3-pyridyl boronic acid (185 mg, 1.5 mmol), K3PO 4 (425 mg, 2.0

mmol), Pd 2(dba)3 (9.2 mg, 0.01 mmol), and 1 (16.4 mng, 0.04 mmol) in n-butanol (2.0 mL) was heated to

100 'C with stirring for 15 h. The crude product was purified via flash column chromatography on silica



gel (5% ethyl acetate in hexanes to 10% ethyl acetate in hexanes) to provide the title compound as a pale

yellow oil (209 mg, 99%). The spectra were in agreement with those described in the literature.

Me

N

3-(2-Methylphenyl)-pyridine 45 (Table 7, entry 2). Following general procedure H, a mixture of 2-

chlorotoluene (127 mg, 1.0 mmol), 3-pyridyl boronic acid (185 mg, 1.5 mmol), K3PO 4 (425 mg, 2.0

mmol), Pd2(dba)3 (9.2 mg, 0.01 mmol), and 1 (16.4 mg, 0.04 mmol) in n-butanol (2.0 mL) was heated to

100 °C with stirring for 20 h. The crude product was purified via flash column chromatography on silica

gel (10% ethyl acetate in hexanes to 1:3 ethyl acetate:hexanes) to provide the title compound as a pale

yellow oil (149 mg, 88%). The spectra were in agreement with those described in the literature.

OMe

\N)

OMe

3-(2,6-Dimethoxyphenyl)-pyridine (Table 7, entry 3). Following general procedure H, a mixture of 2,6-

dimethoxychlorobenzene (173 mg, 1.0 mmol), 3-pyridyl boronic acid (185 mg, 1.5 mmnol), K 3PO 4 (425

mg, 2.0 mmol), Pd 2(dba)3 (13.7 mg, 0.015 mmol), and 1 (24.6 mg, 0.06 mmol) in n-butanol (2.0 mL) was

heated to 100 'C with stirring for 24 h. The crude product was purified via flash column chromatography

on silica gel (1:3 ethyl acetate:hexanes) to provide the title compound as a off-white solid (177 mg, 82%),

mp 87-88 TC. 1H NMR (500 MHz, CDC13) 8: 8.60 (d, J= 2 Hz, 1H), 8.52 (d, J= 5 Hz, 1H), 7.69 (d, J=

8 Hz, 1H), 7.30-7.33 (m, 2H), 6.67 (d, J = 8 Hz, 2H), 3.74 (s, 6H). 13C NMR (125 MHz, CDCl3) 8:

157.6, 151.8, 147.6, 138.4. 129.9, 129.5, 122.6, 120.2, 115.6, 55.8. IR (neat, cm-'): 3004, 2939, 2837,

1588, 1473, 1407, 1260, 1102, 998. Anal. Calcd for C13H16NO 2: C, 72.54; H, 6.09. Found: C, 72.23; H,

6.08.

CF3



3-(3-Trifluoromethylphenyl)-pyridine s5 3 (Table 7, entry 4). Following general procedure H, a mixture

of 3-(trifluoromethyl)chlorobenzene (181 mg, 1.0 mmol), 3-pyridyl boronic acid (185 mg, 1.5 mmol),

K3PO4 (425 mg, 2.0 mmol), Pd 2(dba)3 (9.2 mg, 0.01 mmol), and 1 (16.4 mg, 0.04 mmol) in n-butanol (2.0

mL) was heated to 90 'C with stirring for 24 h. The crude product was purified via flash column

chromatography on silica gel (1:4 ethyl acetate:hexanes) to provide the title compound as a pale yellow

oil (200 mg, 90%). 'H NMR (300 MHz, CDCl 3) 6: 8.85 (d, J = 5 Hz, 1H), 8.64 (dd, J = 2, 5 Hz, 1H),

7.88 (ddd, J= 2, 5, 8 Hz, 1H), 7.81 (s, 1H), 7.75 (d, J= 8 Hz, 1H), 7.57-7.67 (m, 2H), 7.39 (dd, J= 5, 8

Hz, 1H). 13C NMR (75 MHz, CDCl 3) 6: 149.5, 148.5, 138.9, 135.5, 134.7, 132.0, 131.5, 130.7, 130.6,

129.9, 126.0, 125.1, 125.0, 125.0, 124.2, 124.1, 123.9, 122.4. 19F NMR (282 MHz, CDCl3) 8: -63.0. IR

(neat, cm-'): 3039, 1571, 1437, 1402, 1333, 1266, 1166, 1121, 1028, 1017.

Me

Me - / \ /

Me

3-(2,4,6-Trimethylphenyl)-pyridine (Table 7, entry 5). Following general procedure H, a mixture of 2-

bromomesitylene (199 mg, 1.0 mmol), 3-pyridyl boronic acid (185 mg, 1.5 mmol), K3PO 4 (425 mg, 2.0

mmol), Pd 2(dba) 3 (9.2 mg, 0.01 mmol), and 1 (16.4 mg, 0.04 mmol) in n-butanol (2.0 mL) was heated to

90 'C with stirring for 24 h. The crude product was purified via flash column chromatography on silica

gel (1:4 ethyl acetate:hexanes) to provide the title compound as a white solid (168 mg, 85%), mp 46-47

oC. 'H NMR (300 MHz, CDC13) 8: 8.60 (dd, J = 2, 5 Hz, 1H), 8.44 (d, J= 2 Hz, 1H), 7.50 (dt, J= 2, 8

Hz, 1H), 7.36 (dd, J= 5, 8 Hz, 1H), 6.98 (s, 2H), 2.35 (s, 3H), 2.01 (s, 6H). 13C NMR (75 MHz, CDCl3)

8: 150.3,148.0, 137.4, 136.9, 136.6, 136.1,134.9, 128.2, 123.3, 21.0, 20.7. IR (neat, cm •'): 3024, 2920,

2860, 1614, 1563, 1470, 1406, 999. Anal. Calcd for C14H15N: C, 85.24; H, 7.66. Found: C, 84.90; H,

7.67.

OMe

0' / -n-Hex
MeO



(E)-1-(2,4-Dimethoxyphenyl)-octene (Table 8, entry 1). Following general procedure G, a mixture of

2,5-dimethoxybromobenzene (217 mg, 1.0 mmol), (E)- 1 -octenyl boronic acid (234 mg, 1.5 mmol), K3PO4

(425 mg, 2.0 mmol), Pd(OAc) 2 (2.2 mg, 0.01 rmmol), and 1 (8.2 mg, 0.02 mmol) in THF (2.0 mL) was

heated to 40 'C with stirring for 24 h. The crude product was purified via flash column chromatography

on silica gel (4% ethyl acetate in hexanes) to provide the title compound as pale yellow oil (241 mg,

97%). 'H NMR (500 MHz, CDCl 3) 6: 7.00 (d, J = 3 Hz, 1H), 6.79 (d, J = 9 Hz, 1H), 6.73 (dd, J = 3, 9

Hz, 1H), 6.69 (d,J= 16 Hz, 1H), 6.22 (dt,J= 7, 16 Hz, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 2.23 (q, J=4 Hz,

2H), 1.48 (quintet, J= 7 Hz, 2H), 1.29-1.38 (m, 4H), 0.90 (t, J= 7 Hz, 3H). 13C NMR (125 MHz, CDC13)

8: 153.7, 150.7, 132.3,127.9, 124.0, 112.5, 112.1,111.8, 56.2, 55.7, 33.4, 31.7, 29.4, 28.9, 22.6, 14.1. IR

(neat, cm-'): 2996, 2926, 2864, 1583, 1496, 1282, 1218, 1060. A satisfactory elemental analysis was not

obtained for this compound. The 'H and '3C NMR spectra follow.
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(E)-1-(2-Fluoro-5-cyanophenyl)-octene (Table 8, entry 2). Following general procedure G, a mixture

of 3-bromo-4-fluorobenzonitrile (200 mg, 1.0 mmol), (E)-1-octenyl boronic acid (234 mg, 1.5 mmol),

K3PO 4 (425 mg, 2.0 mmol), Pd(OAc) 2 (2.2 mg, 0.01 mmol), and 1 (8.2 mg, 0.02 mmol) in THF (2.0 mL)

was stirred at RT for 24 h. The crude product was purified via flash column chromatography on silica

gel (4% ethyl acetate in hexanes) to provide the title compound as a yellow oil (224 mg, 97%). 'H NMR

(500 MHz, CDCI3) 8: 7.74 (dd, J = 3, 7 Hz, 1H), 7.46 (m, 1H), 7.11 (dd, J = 9, 10 Hz, 1H), 6.47 (d, J =

16 Hz, 1H), 6.37 (dt, J = 7, 16 Hz, 1H), 2.25 (q, J = 7 Hz, 2H), 1.47 (quintet, J= 7 Hz, 2H), 1.26-1.37 (m,

4H), 0.89 (t, J = 7 Hz, 3H). 13C NMR (125 MHz, CDC13) 8: 162.8, 160.8, 136.9, 136.8, 131.7, 131.6,

131.3, 131.2, 127.4, 127.3, 120.0, 119.9, 118.2, 117.0, 116.8, 108.5, 108.4, 33.3, 31.6, 28.9, 28.8, 22.5,

14.0. 19F NMR (282 MHz, CDC13) 6: -109.4. IR (neat, cm-1): 2967, 2927, 2868, 2234, 1606, 1488,

1246, 1104, 969. A satisfactory elemental analysis was not obtained for this compound. The 'H and '3C

NMR spectra follow.
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Me

S\-Ph

Me

trans-2,5-Dimethylstilbene (Table 8, entry 3). Following general procedure G, a mixture of 2-bromo-p-

xylene (185 mg, 1.0 mmol), (E)-p-styrene boronic acid (225 mg, 1.5 mmol), K3PO 4 (425 mg, 2.0 mmol),

Pd(OAc) 2 (2.2 mg, 0.01 mmol), and 1 (8.2 mg, 0.02 mmol) in THF (2.0 mL) was heated to 40 °C with

stirring for 24 h. The crude product was purified via flash column chromatography on silica gel (hexanes

to 5% ethyl acetate in hexanes) to provide the title compound as a white solid (211 mg, 97%), mp 42-43

°C. 'H NMR (300 MHz, CDCl3) 8: 7.50(d, J= 8 Hz, 2H), 7.28-7.40(m, 3H), 7.23 (d, J= 8 Hz, 2H), 6.96-

7.06 (m, 3H), 2.36 (s, 3H), 2.33 (s, 3H). 13C NMR (75 MHz, CDC13) 8: 137.7, 136.0, 135.4, 132.7,

130.3, 130.0, 128.6, 128.3, 127.4, 126.5, 126.4, 125.9, 21.0, 19.4. IR (neat, cm'): 3026, 2922, 1599,

1499, 1448, 1266, 961. Anal. Calcd for C16H16: C, 92.26; H, 7.74. Found: C, 92.00; H, 7.70.

Me

Me-p h
-e Ph

Me

trans-2,4,6-Trimethylstilbene (Table 8, entry 4). Following general procedure G, a mixture of 2-

bromomesitylene (199 mg, 1.0 mmol), (E)-[-styrene boronic acid (225 mg, 1.5 mmol), K3PO4 (425 mg,

2.0 mmol), Pd(OAc) 2 (2.2 mg, 0.01 mmol), and 1 (8.2 mg, 0.02 mmol) in THF (2.0 mL) was heated to 40

0C with stirring for 24 h. The crude product was purified via flash column chromatography on silica gel

(hexanes to 1% ethyl acetate in hexanes) to provide the title compound as a white solid (219 mg, 99%),

mp 49-50 0C. IH NMR (300 MHz, CDCl3) 8: 7.47 (d, J= 7 Hz, 2H), 7.34 (t, J= 7 Hz, 2H), 7.25 (d, J=

7 Hz, 1H), 7.08 (d, J= 16 Hz, 1H), 6.88 (s, 2H), 6.58 (d, J= 16 Hz, 1H), 2.33 (s, 6H), 2.27 (s, 3H). 13C

NMR (75 MHz, CDCI3) 8: 137.7, 136.2, 136.1, 133.9, 133.6, 128.7, 128.6, 127.4, 126.9, 126.2, 21.0,

20.9. IR (neat, cm-'): 3024, 2917, 1598, 1496, 1449, 1377, 1266, 970. A satisfactory elemental analysis

was not obtained for this compound. The 1H and 13C NMR spectra follow.
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trans-4-Aminostilbene (Table 8, entry 5). Following general procedure G, a mixture of 4-bromoaniline

(172 mg, 1.0 mmol), (E)-3-styrene boronic acid (225 mg, 1.5 mmol), K3PO4 (425 mg, 2.0 mmol),

Pd(OAc) 2 (2.2 mg, 0.01 mmol), and 1 (8.2 mg, 0.02 mmol) in THF (2.0 mL) was heated to 40 °C with

stirring for 24 h. The crude product was purified via flash column chromatography on silica gel (1:4

ethyl acetate:hexanes) to provide the title compound as a orange solid (171 mg, 88%), mp 147-148 TC.

IH NMR (300 MHz, CDCl3) 8: 7.47 (d, J= 7 Hz, 2H), 7.32 (t, J= 7 Hz, 4H), 7.20 (t, J= 7 Hz, 1H), 6.97

(q, J= 16 Hz, 2H), 6.66 (d, J= 8 Hz, 2H), 3.71 (bs, 2H). 13C NMR (75 MHz, CDCl 3) 8: 146.1, 137.9,

128.6, 128.5, 127.9, 127.7, 126.8, 126.1, 125.0, 115.1. IR (neat, cm-'): 3453, 3362, 3029, 1616, 1591,

1517, 1286, 1180, 969. A satisfactory elemental analysis was not obtained for this compound. The 'H

and 13C NMR spectra follow.



a

Goa.4D
-a.0

(11I



1.5 References

(1) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 36, 3437.

(2) (a) Miyaura, N.; Suzuki, A. Chem Rev. 1995, 95, 2457. (b) Suzuki, A. In Metal-Catalyzed Cross-

Coupling Reactions; Diederich, F.; Stang, P. J., Eds.; Wiley-VCH: Weinheim, Germany, 1998; Chapter

2. (c) Suzuki, A. J. Organomet. Chem. 1999, 576, 147-168. (d) Miyaura, N. Top. Curr. Chem. 2002,

219, 11. (e) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359.

(f) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633. (g) Bellina, F.; Carpita, A.; Rossi, R.

Synthesis 2004, 15, 2419.

(3) For a review on Pd-catalyzed couplings of aryl chlorides see: Littke, A. F.; Fu, G. C. Angew. Chem.,

Int. Ed. 2002, 41, 4176.

(4) (a) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9550. (b)

Zapf, A.; Ehrentraut, A.; Beller, M. Angew. Chem., Int. Ed. 2000, 39, 4153. (c) Alonso, D. A.; Najera,

C.; Pacheco, M. C. J. Org. Chem. 2002, 67, 5588. (d) Bedford, R. B.; Cazin, C. S. J.; Hazelwood, S. L.

Angew. Chem., Int. Ed. 2002, 41, 4120. (e) Bedford, R. B.; Hazelwood, S. L.; Limmert, M. E. Chem.

Commun. 2002, 2610. (f) Bedford, R. B.; Hazelwood, S. L.; Limmert, M. E.; Albisson, D. A.; Draper, S.

M.; Scully, P. N.; Coles, S. J.; Hursthouse, M. B. Chem. Eur. J. 2003, 9, 3216.

(5) (a) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 9722. (b) Zim, D.;

Gruber, A. S.; Ebeling, G.; Dupont, J.; Monteiro, A. L. Org. Lett. 2000, 2, 2881. (c) Netherton, M. R.;

Dai, C.; Neuschutz, K.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 10099. (d) Colacot, T. J.; Gore, E. S.;

Kuber, A. Organometallics 2002,21, 3301. (e) Kirchhoff, J. H.; Netherton, M. R.; Hills, I. D.; Fu, G. C.

J. Am. Chem. Soc. 2002, 124,13662. (f) Gst6ttmayr, C. W. K.; B6hm, V. P. W.; Herdtweck, E.;

Grosche, M.; Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1363. (g) Hu, Q.-S.; Lu, Y.; Tang, Z.-

Y.; Yu, H.-B. J. Am. Chem. Soc. 2003, 125, 2856. (h) Altenhoff, G.; Goddard, R.; Lehmann, C. W.;

Glorius, F. Angew. Chem., Int. Ed. 2003, 42, 3690. (i) Navarro, O.; Kelly, R. A., III; Nolan, S. P. J. Am.



Chem. Soc. 2003, 125, 16194. (j) Kwong, F. Y.; Chan, K. S.; Yeung, C. H.; Chan, A. S. C. Chem.

Commun. 2004, 2336.

(6) Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. J. Am. Chem. Soc. 2004, 126, 15195.

(7) (a) Cho, S. Y.; Shibasaki, M. Tetrahedron: Asymmetry 1998, 9, 3751. (b) Cammidge, A. N.; Cr6py,

K. V. L. Chem. Commun. 2000, 1723. (c) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2000, 122, 12051.

(d) Castanet, A. S.; Colobert, F.; Broutin, P. E.; Obringer, M. Tetrahedron: Asymmetry 2002, 13, 659. (e)

Herrbach, A.; Marinetti, A.; Baudoin, O.; Guenard, D.; Gueritte, F. J. Org. Chem. 2003, 68, 4897. (f)

Cammidge, A. N.; Cr6py, K. V. L. Tetrahedron 2004, 60, 4377. (g) Mikami, K.; Miyamoto, T.; Hatano,

M. Chem. Commun. 2004, 2082.

(8) (a) B6hm, V. P. W.; Gst6ttmayr, C. W. K.; Weskamp, T.; Herrmann, W. A. J. Organomet. Chem.

2000,595, 186. (b) Andrus, M. B.; Song, C. Org. Lett. 2001, 3, 3761. (c) Zhao, Y. H.; Zhou, Y. Y.; Ma,

D. D.; Liu, J. P.; Li, L.; Zhang, T. Y.; Zhang, H. B. Org. Biomol. Chem. 2003, 1, 1643.

(9) (a) Wallow, T. I.; Novak, B. M. J. Org. Chem. 1994, 59, 5034. (b) Campi, E. M.; Jackson, W. R.;

Marcuccio, S. M.; Naeslund, C. G. M. Chem. Commun. 1994, 2395. (c) Darses, S.; Jeffery, T.; Gen&t, J.-

P.; Brayer, J.-L.; Demoute, J.-P. Tetrahedron Lett. 1996, 37, 3857. (d) Bumagin, N. A.; Bykov, V. V.

Tetrahedron 1997, 53, 14437. (e) Badone, D.; Baroni, M.; Cardamone, R.; lelmini, A.; Guzzi, U. J. Org.

Chem. 1997, 62, 7170. (f) Goodson, E. F.; Wallow, T. I.; Novak, B. M. Org. Synth. 1998, 75, 61. (g)

Blettner, C. G.; K6nig, W. A.; Stenzel, W.; Schotten, T. J. Org. Chem. 1999, 64, 3885. (h) Bussolari, J.

C.; Rehborn, D. C. Org. Lett. 1999, 1, 965. (i) Kabalka, G. W.; Pagni, R. M.; Hair, C. M. Org. Lett. 1999,

1, 1423. (j) Chi, S. M.; Choi, J.-K.; Yum, E. K.; Chi, D. Y. Tetrahedron Lett. 2000, 41, 919. (k) Zim, D.;

Monteiro, A. L.; Dupont, J. Tetrahedron Lett. 2000, 41, 8199. (1) Ma, D.; Wu, Q. Tetrahedron Lett. 2001,

42, 5279. (m) Kabalka, G. W.; Namboodiri, V.; Wang, L. Chem. Commun. 2001, 775. (n) LeBlond, C.

R.; Andrews, A. T.; Sun, Y.; Sowa, J. R. Org. Lett. 2001, 3, 1555. (o) Sakurai, H.; Tsukuda, T.; Hirao, T.

J. Org. Chem. 2002, 67, 2721. (p) Molander, G. A.; Biolatto, B. Org. Lett. 2002, 4, 1867. (q) Molander,

G. A.; Biolatto, B. J. Org. Chem. 2003, 68, 4302.



(10) A portion of this work has previously been communicated: Walker, S. D.; Barder, T. E.; Martinelli,

J. R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2004, 43, 1871.

(11) Leroux, F.; Schlosser, M. Angew. Chem., Int. Ed. 2002, 41, 4272.

(12) Tomori, H.; Fox, J. M.; Buchwald, S. L. J. Org. Chem. 2000, 65, 5334.

(13) Yin, J.; Rainka, M. P.; Zhang, X.-X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 1162.

(14) For reviews of C-H activation, see: (a) Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 2879. (b)

Dyker, G. Agnew. Chem., Int. Ed. 1999, 38, 1698. (c) Miura, M.; Nomura, M. Top. Curr. Chem. 2002,

219, 211.

(15) There is precedent for such chemoselectivity: Caimpora, J.; L6pez, J. A.; Palma, P.; Valerga, P.;

Spillner, E.; Carmona, E. Angew. Chem., Int. Ed. 1999, 38, 147.

(16) (a) Garrett, C. E.; Prasad, K. Adv. Synth. Catal. 2004, 346, 889. (b) Bien, J. T.; Lane, G. C.;

Oberholzer, M. R. Removal of Metals from Process Streams: Methodologies and Applications. Topics in

Organometallic Chemisty, 2004, 6, 263.

(17) Onak, T. Organoborane Chemistry; Academic Press: New York, New York 1975.

(18) Vedejs, E.; Chapman, R. W.; Fields, S. C.; Lin, S.; Schrimpf, M. R. J. Org. Chem. 1995, 60, 3020.

(19) We were under the impression that studies were conducted demonstrating the necessity of water for

the efficient coupling of aryl boronate esters. We were, however, unable to locate any reports directly

illustrating this theory.

(20) (a) Paul, F.; Hartwig, J. F. J. Am. Chem. Soc. 1994, 116, 5969. (b) Hartwig, J. F.; Paul, F. J. Am.

Chem. Soc. 1995, 117, 5373. (c) Galardon, E.; Ramdeehul, S.; Brown, J. M.; Cowley, A.; Hii, K. K.;

Jutand, A. Angew. Chem., Int. Ed. 2002, 41, 1760. (d) Hills, I. D.; Netherton, M. R.; Fu, G. C. Angew.

Chem., Int. Ed. 2003, 42, 5749. (e) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.

2003,125, 13978.

(21) Liu, S.-H.; Choi, M. J.; Fu, G. C. Chem. Commun. 2001, 2408.

(22) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122,4020.



(23) Electron-poor aryl boronic acids are less nucleophilic and undergo transmetalation at a slower rate

than electron-neutral and -rich aryl boronic acids. Additionally, electron-poor boronic acids are prone to

homocoupling. For a recent report, see: Wong, M. S.; Zhang, X. L. Tetrahedron Lett. 2001, 42, 4087.

Electron-poor aryl boronic acids are more susceptible to metal-catalyzed protodeboronation. For a report,

see: Kuivila, H. G.; Reuwer, J. F.; Mangravite, J. A. J. Am. Chem. Soc. 1964, 86, 2666.

(24) For an example of aryl fluorides blocking oxidation, see: Rosenblum, S. B.; Huynh, T.; Afonso, A.;

Davis, H. R. Jr.; Yumibe, N.; Clader, J. W.; Burnett, D. A. J. Med. Chem. 1998, 41, 973.

(25) (a) Bush, I. E.; Mahesh, V. B. Biochem. J. 1964, 93, 236-255. (b) Abel, S. M.; Back. D. J.; Maggs, J.

L.; Park, B. K. J. Steriod Biochem. Mol. Biol. 1993, 46, 833.

(26) Park, B. K.; Kitteringham, N. R. Drug Metab. Rev. 1994, 26, 605.

(27) Prices from Sigma-Aldrich Co.: 2,3-difluorophenyl boronic acid, $52.40/5g; 4-fluorophenyl boronic

acid, $16.20/1g.

(28) For examples of Suzuki-Miyaura couplings with 2,4-difluorophenyl boronic acid, see: (a)

Thiemann, T.; Umeno, K. Wang, J.; Tabuchi, Y.; Arima, K.; Wantabe, M.; Tanaka, Y.; Gorohmaru, H.;

Mataka, S. J. Chem. Soc., Perkin Trans. 1 2002, 2090. (b) Feuerstein, M.; Berthiol, F.; Doucet, H.;

Santelli, M. Synlett 2002, 11, 1807.

(29) (a) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1998, 37, 3387. (b) Botella, L.; Najera, C. Angew.

Chem., Int. Ed. 2002, 41, 179.

(30) Barder, T. E.; Buchwald, S. L. Org. Lett. 2004, 6, 2649.

(31) Li, W.; Nelson, D. P.; Jensen, M. S.; Hoerrner, R. S.; Cai, D.; Larsen, R. D.; Reider, P. J. J. Org.

Chem. 2002, 67, 5394.

(32) (a) Batey, R. A.; Thadani, A. N.; Smil, D. V. Org. Lett. 1999, 1, 1683. (b) Batey, R. A.; Thadani, A.

N.; Smil, D. V. Tetrahedron Lett. 1999, 40,4289. (c) Batey, R. A.; MacKay, D. B.; Santhakumar, V. J.

Am. Chem. Soc. 1999, 121, 5075. (d) Batey, R. A.; Thadani, A. N.; Smil, D. V.; Lough, A. J. Synthesis

2000, 990. (e) Molander, G. A.; Ito, T. Org. Lett. 2001, 3, 393.

(33) Matos, K.; Soderquist, J. A. J. Org. Chem. 1998, 63, 461.



(34) Raheem, I. T.; Goodman, S. N.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 706.

(35) Molander, G. A.; Bernardi, C. R. J. Org. Chem. 2002, 67, 8424.

(36) (a) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics

1996, 15, 1518. (b) Alaimo, P. J.; Peters, D. W.; Arnold, J.; Bergman, R. G. J. Chem. Ed. 2001, 78, 64.

(37) Yin, J.; Rainka, M. P.; Zhang, X.-X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 1162.

(38) Wolfe, J. P; Buchwald, S. L. Angew. Chem., Int. Ed. 1999, 38, 2413.

(39) Littke, A. F.; Schwarz, L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 6343.

(40) Curran, D. P.; Kuo, S.-C. J. Org. Chem. 1984, 49, 2063.

(41) Huang, W., et al. Bioorg. Med. Chem. Lett. 2003, 13, 561.

(42) Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2004, 43,

1871.

(43) Cram, D. J.; Bryant, J. A.; Doxsee, K. M. Chem. Lett. 1987, 19.

(44) Zhao, Y., et al. Org. Biomol. Chem. 2003, 1, 1643.

(45) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 4020.

(46) Jung, Y. C.; Mishra, R. K.; Yoon, C. H.; Jung, K.W. Org. Lett. 2003, 5, 2231.

(47) Widdowson, D. A.; Zhang, Y.-Z. Tetrahedron 1986, 42, 2111.

(48) Hori, M., et al. Chem. Pharm. Bull. 1974, 22, 2004.

(49) Sato, T., et al. Bull Chem. Soc. Jpn. 1969, 42, 766.

(50) Kamikawa, T.; Uozumi, Y.; Hayashi, T. Tett. Lett. 1996, 37, 3161.

(51) Saa, J. M.; Martorell, G. J. Org. Chem. 1993, 58, 1963.

(52) Barder, T. E.; Buchwald, S. L. Org. Lett. 2004, 6, 2649.

(53) Nguyen, H. N.; Huang, X.; Buchwald, S. L. J Am. Chem. Soc. 2003, 125, 11818.



Chapter 2.
Synthesis of Weinreb Amides via Palladium-Catalyzed Aminocarbonylation of Aryl Bromides.



2.1 Introduction

N-Methoxy-N-methyl amides (Weinreb amides) are well-established acylating agents.1 Since the

original report by Nahm and Weinreb in 1981,2 significant effort has been devoted toward the

development of mild and general methods for their preparation. The ability of Weinreb amides to

undergo selective addition of one equivalent of a variety of organometallic reagents is key to their utility.

The importance of these amides as reliable and general acylating agents is reinforced by the frequency

with which they appear in advanced synthetic intermediates. 13

To access complex structures containing Weinreb amides more readily, new, mild and general

means for their preparation are required. The conversion of acid chlorides"c2 to Weinreb amides is

straightforward. In addition, esters4 are also commonly employed precursors. Carboxylic acids can also

be converted into the corresponding Weinreb amides by a number of one-pot protocols. Furthermore,

methods have been reported for the conversion of lactones, amides and anhydrides to Weinreb amides.1c

Murakami has also developed a strategy for the synthesis of vinyl and aryl Weinreb amides using a Stille-

type cross-coupling of N-methoxy-N-methylcarbamoyl chloride with vinyl or aryl stannanes.

Since its initial discovery by Heck in 1974, 7 the three component coupling of an aryl halide,

carbon monoxide and a nucleophile has been developed to allow the selective synthesis of benzannulated

heterocycles 8 and aromatic acyl derivatives such as esters,7a 9a P3-ketoesters, 9b amides,7b,9c,9d C-

ketoamides, 9e ketones, 9f aldehydes,9g and anhydrides. 9h Despite the considerable attention that

aminocarbonylation reactions have received, there is, to our knowledge, only one example of a Weinreb

amide synthesized in such a way. This reaction was reported, but not highlighted in the main text, by

Zhuang and coworkers at Merck.1o Herein, we report a general Pd-catalyzed process for the conversion

of aryl bromides to Weinreb amides that can be carried out at one atmosphere of carbon monoxide.

OsO [•e Pd /L/Base j1.i~
Ar-Br + CO (g) + HCI.HN OMe Pd / L / Base . Ar iNOMe

Me Me

Scheme 1. Synthesis of Weinreb Amrnides via Aminocarbonylation of Aryl Bromides.



2.2 Results and Discussion

Guided by the literature and our own results, we expected the most efficient ligands for the

aminocarbonylation process to be bidentate phosphines possessing a large bite angle.9a Thus, we began

our studies by examining the reaction shown in Table 1 using a series of bidentate phosphines as ligands.

In addition, based on our success using biaryl monophosphines in a variety of Pd-catalyzed processes,"

we also included SPhos as a representative of this ligand class. Despite the success of PPh3 at higher

pressures, reactions that employed PPh3 or SPhos (Table 1, entries 1 and 2) were both ineffective under

the atmospheric aminocarbonylation reaction conditions examined. A number of bidentate ligands that

have been shown to be useful for other Pd-catalyzed processes were completely ineffective as supporting

ligands as well. These included (S)-BINAP,9a ,12a dppp, 12b dppb, 12c dppf c 9f and DPEphos. 12d These are

ligands whose bite angles span a range firom 920 to 108,.13 Only van Leeuwen's Xantphos ligand, 14 with

the largest bite angle (1100), was effective for the synthesis of Weinreb amides from the corresponding

aryl bromides. We began our work using a Pd: Xantphos ratio of 1:1 based on previous work in our

labratory that showed excess Xantphos to be deleterious in Pd-catalyzed C-N bond forming reactions. 15

Using Xantphos as the supporting ligand, the reaction at 100 'C resulted in 36% conversion and 30% of

the desired product after only 2 hours. Unfortunately, allowing the reaction to run for 5 hours at 100 TC

resulted in only 90% conversion and 87% of the desired product. Surprisingly, lowering the temperature

to 80 oC and allowing the reaction to run for 5 hours led to the complete consumption of the aryl bromide

and 89% isolated yield of the desired product. This unexpected result may be attributed to enhanced

catalyst stability at lower temperatures. With these conditions in hand, we explored the range of this

method.



Table 1. Aminocarbonylation of 4-Bromoanisole using Various Ligands.a

MeC) Br

MeC)
+ HCI.HN OMe

Me

2 mol % Pd(OAc) 2
n mol % Ligand
CO (1 atm)

3.0 equiv Na2CO 3
toluene, 80 -100 0C,

O0
N OMe

MeO• Me

2-5h

entry n mol % Ligand Bite Angle T (oC) time % Conversionb % Yieldb

1 8 PPh3  145c 100 2 h < 1 0

2 5 SPhos 2 1 7c,d 100 2 h < 1 0

3 2.2 (S)-BINAP 92 100 2 h < 1 0

4 2.2 dppp 95 100 2 h < 1 0

5 2.2 dppb 99 100 2 h < 1 0

6 2.2 dppf 106 100 2 h < 1 0

7 2.2 DPEphos 108 100 2 h < 1 0

8 2 Xantphos 110 100 2 h 36 30

9 2 Xantphos 110 100 5 h 90 87

o10e 2 Xantphos 110 80 5 h 100 89f

Me Me

0
PPh 2  PPh 2

Xantphos

Ph2P -) PPh2n

dppp: n = 1

dppb: n = 2

PPh2  PPh2

DPEphos

SPhos

aReaction conditions: 2 mol % Pd(OAc) 2, n mol % ligand, 1 mnmol 4-bromoanisole, 1.5 mmol amine, 3 mmol base

in toluene (2 mL) at 100 oC. bDetermined by G.C., average of 2 runs. cCone angles. dSee reference 10c. 'Reaction

was run at 80 TC for 5 h. rIsolated yield, average of 2 runs.

ýP PPh2
Fe

d, --PPh2

dppf

(S)-BINAP



To detennrmine the scope of this process, a set of aryl bromides were examined as substrates with

which the method demonstrated good generality. This was exemplified by the high-yield transformation

of 3-bromonitrobenzene, 3-bromobenzonitrile and 4-bromo-2-fluorobenzonitrile to the corresponding

Weinreb amides (Table 2, entries 1-3). Similarly, a tert-butyl carbamate group was untouched during the

aminocarbonylation of tert-butyl N-(4-bromophenyl)carbamate (Table 2, entry 6). The high yield realized

with a methyl ester-containing substrate was surprising (Table 2, entry 8); no product resulting from

addition of the hydroxylamine to the ester group was detected. It is also important to note that the

selective aminocarbonylation of aryl bromides can be achieved in the presence of aromatic fluoride and

chloride groups (Table 2, entries 2 and 5). Electron-rich aryl bromides were also cleanly converted into

the corresponding Weinreb amides (Table 2, entries 4, 6, 7 and 10). The reaction of 3-bromothiophene

was of particular interest due to the common occurrence of the thiophene moiety in organic electronic

materials. 16 Though sodium carbonate was employed as the base in most reactions shown in Table 2, it is

also possible to use organic bases such as triethylamine (Table 2, entries 9 - 11).

Despite the wide scope indicated by the results described in Table 2, there were several substrates

that were not successfully converted to the corresponding Weinreb amides using this procedure.

Specifically, ortho-substituted aryl bromides were not satisfactorily converted to product. Given that

(Xantphos)Pd-based catalyst systems can be used to transform ortho-substituted aryl bromides in C-N

coupling reactions, 17 it is likely that the problematic step in this reaction involves the nucleophilic

addition of the amine to the Pd-acyl intermediate. 18 If this process is sluggish, the Pd-acyl intermediate

could be vulnerable to putative decomposition processes leading to an inefficient overall transformation.

Table 2. Conversion of Aryl Bromides to Weinreb Amides via Pd-Catalyzed Aminocarbonylation at 1 atm.



HCI*HN OMe
+ I

Me

2 mol% Pd(OAc)2
2 mol% Xantphos
CO (1 atm)

3.0 equiv Na 2 33.0 equiv Na2CO3

O

N NOMe
R-• Me

toluene, 80 0C, 5 - 22 h

entry ArBr Product % yieldb

NC ,•Br

BD
DI

NC

3 0 2 N : Br

r Br

B rS

CI•Br

t-BuO NBr
Me

N Br

MeO

0O
8 MeO • Br

0
9 0Br

Br

10
MeO

OMe

Ph 
Br

0
NC N NOMe

O•C OMe

0
2F NNOMe

NC: 
Me

NMC 002N N NOMe

O

S eNOMeCI eMe0
N'Oe
SN 

"OM e

t-BuO/.. N MMe

O 00 Nj:)ý N OMejN 'OMe

MeMe

MeO
0 0

MeO N NeOMeeOMe

o 0
o N NOMe

M e

N OMe
Me

MeO
OMe

0O

N N OMe
Me

Ph

r' N BrRy-

88

93c

89c

94c



aReaction conditions: 2 mol % Pd(OAc) 2, 2 mol % Xantphos, 1 mmol aryl bromide, 1.5 mmol amine, 3 mmol

Na 2CO 3 in toluene (2 mL) at 80 ,C. bYields are an average of 2 runs. c3 mmol of Et3N was used as base.

In an effort to overcome this limitation, the reaction conditions were reevaluated. During

optimization of the transformation of the test substrate, 2-bromo-p-xylene (Table 3, entry 1), it was found

that use of potassium phosphate as the base with a Pd:Xantphos ratio of 1:2 at 100 TC led to complete

conversion of the starting aryl bromide with formation of a high yield of the desired product. This new

procedure was also effective for a variety of other ortho-substituted substrates. Both 1-bromonaphthalene

and 2-bromobenzonitrile were efficiently converted to the corresponding Weinreb amides (Table 3,

entries 2 and 3). A slightly higher quantity of catalyst (3 mol % Pd, 6 mol % Xantphos) was required to

achieve full conversion in the case of (2-bromo)methylbenzoate and 2-bromoanisole (Table 3, entries 4

and 5). In the former case, the lower reactivity may possibly be attributed to the ability of the ortho-

substituent to coordinate to the Pd center. The same quantity of catalyst at a slightly higher temperature

(105 TC) was also effective for the aminocarbonylation of the electron-poor aryl chloride, 4-

chlorobenzonitrile (Table 3, entry 6).

Table 3. Conversion of ortho-Substituted Aryl Bromides to Weinreb Amides via Pd-Catalyzed Aminocarbonylation

at atm.a
at I atm.



HCI*HN OMe

Me

2.5 mol% Pd(OAc)2
5 mol% Xantphos
CO (1 atm)

3.0 equiv K3P 43.0 equiv K3PO4

0

SN.OMe
R- Me

toluene, 100 0C, 20 h

entry ArBr Product % yieldb

1 Me N Br

Me

2 NBr

Br

CN

4 '2ICO2MeBrC02 Me

5 Br

OMe

NC,

Br

CF 3

Me
NBr

<Br

10 FBCy

10 F N Br

v F

0O
Me , N'OMe

NMe
NOMe

N' NOMe
Me

0

N; e NMOMe

CO2MSe

O OMe

ON0

N NOMeMeNC 2Me

ON N'OMe

FMe

OMe0N N' OMe

O Me
0ON , OMe

yMe
CF3

Me 0

N OMe

eNMe

0

N' N'OMe

cF 
Me

Cy

0
F N' NOMe

Me

87

97

84

800

94e

78 e

9 0 f

Br
R- +



aReaction conditions: 2.5 mol % Pd(OAc) 2, 5 mol % Xantphos, 1 mmol aryl bromide, 1.5 mmol amine, 3 mmol

K3PO 4 in toluene (2 mL) at 100 °C. byields are an average of 2 runs. c3 mol % Pd(OAc) 2 was used. d3 mol %

Pd(OAc) 2 was used at 105 TC. c3 mol % Pd(OAc) 2 was used in min-xylene (2 mL) at 110 'C. '3 mol % Pd(OAc) 2

was used in m-xylene (2 mL) at 120 'C. g2.5 mol % Pd(OAc) 2 was used in m-xylene (2 mL) at 110 TC.

While these conditions were effective for most ortho-substituted aryl bromides, substrates with

large ortho-substituents and/or certain functional groups remained unreactive. The simplest way to

overcome this lack of reactivity was to use m-xylene as solvent and increase the reaction temperature to

110 or 120 TC. In this way substrates such as 2-bromobenzotrifluoride, 2-bromo-3-methylpyridine, 2-

cyclohexylbromobenzene and 2,5-difluorobromobenzene were successfully transformed into the

corresponding Weinreb amides (Table 3, entries 7 - 10).

2.3 Conclusion

In conclusion, a protocol for the direct transformation of aryl bromides into the corresponding

Weinreb amides via an aminocarbonylation protocol at atmospheric pressure has been developed.

Electron-deficient, -neutral and -rich aryl bromides were all efficiently transformed to product.

Furthermore, the process tolerates a wide variety of functional groups, is mild, and is operationally

simple.

2.4 Experimental

2.4.1 General

All reactions were carried out under a carbon monoxide atmosphere, Air Gas. Elemental analyses

were performed by Atlantic Microlabs Inc., Norcross, GA. Unless otherwise noted, THF, Et20, CH 2C12

and toluene were purchased from J.T. Baker in CYCLE-TAINER" solvent-delivery kegs and vigorously

purged with argon for 2 h. The solvents were further purified by passing them under argon pressure

through two packed columns of neutral alumina (for THF and Et20) or through neutral alumina and

copper (II) oxide (for toluene and CH 2C 2).
19 Unless otherwise stated, commercially obtained materials

were used without further purification. The following aryl bromides were purchased form Acros: 3-



bromothiophene (filtered through basic alumina prior to use) and 2-bromo-3-methylpyridine. The

following aryl bromides were purchased from Lancaster: 3-bromonitrobenzene, 4-bromo-2-

fluorobenzonitrile, methyl 3-bromobenzoate and 1-bromo-2-cyclohexylbenzene. The following aryl

bromides were purchased from Alfa Aesar: 3-bromobenzonitrile (Avocado Organics), 4-chloro-

bromobenzene (Avocado Organics), 4-bromoanisole (filtered through basic alumina prior to use), 1-

bromonaphthalene (Avocado Organics), 2-bromobenzonitrile, 2-bromobenzotrifluoride (filtered through

basic alumina prior to use) and 2-bromoanisole (Avocado Organics; filtered through basic alumina prior

to use). The following aryl bromides were purchased from Aldrich: 4-bromoveratrole (filtered through

basic alumina prior to use), 4-bromobiphenyl, 2-(3-bromophenyl)-1,3-dioxolane (filtered through basic

alumina prior to use), 2-bromo-p-xylene, methyl 2-bromobenzoate and 4-chlorobenzonitrile. The

following compound was purchased from PCR Inc.: 2,5-difluorobromobenzene (filtered through basic

alumina prior to use). tert-Butyl N-(4-bromophenyl)carbamate was prepared following literature

procedures 20 using 4-bromoaniline (Aldrich), Di-tert-butyl dicarbonate (Aldrich) and lodomethane (Alfa).

N, O-dimethylhydroxylamine hydrochloride was purchased from Aldrich and Alfa Aesar. Xantphos was

purchased form Strem and used without further purification. Pd(OAc)2 was purchased from Strem, Inc.

or supplied by Englehard. Sodium Carbonate was purchased from Mallinckrodt. Anhydrous tribasic

potassium phosphate was purchased from Fluka Chemical Co. and used as supplied. The source (and

thus the particle size) of the base employed may be critical for achieving efficient reactions.

All products of aminocarbonylation reactions were characterized by 'H NMR, '3C NMR, and IR

spectroscopy, as well as elemental analysis (Atlantic Microlab, Inc). Two new compounds failed to give

satisfactory elemental analyses. For these copies of 'H and 13C NMR spectra are included. Nuclear

Magnetic Resonance spectra were recorded on a Varian Mercury 300 Infrared spectra were recorded

using a Perkin-Elmer 2000 FT-IR. All 'H NMR experiments are reported in 8 units, parts per million

(ppm) downfield from tetramethylsilane (internal standard) and were measured relative to the signals for

residual chloroform (7.26 ppm), methylene chloride (5.32 ppm) or benzene (7.16 ppm) in the deuterated

solvents. All 13C NMR spectra are reported in ppm relative to deuterochloroform (77.23 ppm),



deuteromethylene chloride (54.00 ppm) or deuterobenzene (128.39 ppm), and all were obtained with 'H

decoupling. All 31P NMR spectra are reported in ppm relative to H3PO 4 (0 ppm). All 19F NMR spectra

are reported in ppm relative to trichlorofluoromethane (0 ppm). Melting points (uncorrected) were

obtained on a Mel-Temp capillary melting point apparatus. Gas Chromatographic analyses were

performed on a Hewlett-Packard 6890 gas chromatography instrument with an FID detector using 25 m x

0.20 mm capillary column with cross-linked methyl siloxane as a stationary phase.

The conversions in Table 1 were determined by G.C. using dodecane as an internal standard,

added during reaction workup. The yields in Table 1, entries 1 - 9 were also determined by G.C. using

dodecane as an internal standard. The yield in Table 1, entry 10, is an isolated yield (average of two runs)

and the procedure is given below. The yields in Tables 2 and 3 are isolated yields (average of two runs).

All compounds isolated were estimated to be a95% pure as determined by 'H NMR and GC analysis

and/or combustion analysis. The procedures described in this section are representative, and thus the

yields may differ from those shown in Tables 1 - 3.

2.4.2 General Procedure A: Synthesis of Wienreb Amides via Pd-Catalyzed Aminocarbonylation

An oven-dried culture tube (18 x 150 mm, VWR) equipped with a Teflon® coated magnetic stir bar was

sealed with a 14/20 rubber septum (inverted), evacuated, backfilled with nitrogen and cooled under

nitrogen. All solid reagents were added by briefly removing the rubber septum: Pd(OAc)2 (2 mol %, 0.02

mmol, 0.02 equiv., 4.5 mg), Xantphos (2 mol %, 0.02 mmol, 0.02 equiv., 11.6 mg), N, O-

dimethylhydroxylamine hydrochloride (1.5 mmol, 1.5 equiv., 146 mg), and Na2CO 3 (3 mmol, 3 equiv.,

318 mg). Then, all liquid reagents were added dropwise via syringe: aryl bromide (1 mmol, 1 equiv.; aryl

bromides which were solids at room temperature were added during the initial charge) and toluene (2

mL). After the addition of all reagents, the rubber septum was secured with several wrappings of

electrical tape. Then, the reaction was purged for - 30 seconds with CO(g); following the gas purge a

balloon was connected to the reaction using a short length of rubber tubing (- 1 in.), a needle adapter and

a 20 G needle. This balloon was then inflated with CO(g) and the reaction tube was submerged in a 80 TC

preheated oil bath. The reaction mixture was heated at 80 'C with vigorous stirring until the aryl halide



had been completely consumed as judged by GC analysis. The reaction mixture was then allowed to cool

to room temperature, diluted with ethyl acetate (- 10 mL), filtered through a plug of celite (eluting with

ethyl acetate) and concentrated under reduced pressure. The crude material obtained was purified by flash

chromatography on silica gel.

2.4.3 General Procedure B: Synthesis of Wienreb Amides via Pd-Catalyzed Aminocarbonylation of

ortho-Substituted Aryl Halides

An oven-dried culture tube (18 x 150 mm, VWR) equipped with a Teflon® coated magnetic stir bar was

sealed with a 14/20 rubber septum (inverted), evacuated, backfilled with nitrogen and cooled under

nitrogen. All solid reagents were added by briefly removing the rubber septum: Pd(OAc) 2 (2.5 mol %,

0.025 mmol, 0.025 equiv., 5.6 mg), Xantphos (5 mol %, 0.05 mmol, 0.05 equiv., 28.9 mg), N, O-

dimethylhydroxylamine hydrochloride (1.5 mmol, 1.5 equiv., 146 mg), and K3PO4 (3 mmol, 3 equiv., 637

mg). Then, all liquid reagents were added dropwise via syringe: aryl bromide (1 mmol, 1 equiv.; aryl

bromides which were solids at room temperature were added during the initial charge) and solvent (2 mL,

toluene or m-xylene). After the addition of all reagents, the rubber septum was secured with several

wrappings of electrical tape. Then, the reaction was purged for ~ 30 seconds with CO(g); following the

gas purge a balloon was connected to the reaction using a short length of rubber tubing (- 1 in.), a needle

adapter and a 20 G needle. This balloon was then inflated with CO(g) and the reaction tube was

submerged in a 100 - 120 oC preheated oil bath. The reaction mixture was heated at 100 - 120 oC with

vigorous stirring until the aryl halide had been completely consumed as judged by GC analysis. The

reaction mixture was then allowed to cool to room temperature, diluted with ethyl acetate (- 10 mL),

filtered through a plug of celite (eluting with ethyl acetate) and concentrated under reduced pressure. The

crude material obtained was purified by flash chromatography on silica gel.

2.4.4 Analysis and Characterization

0
NC' NNOMe

S Me



3-Cyano-N-methoxy-N-methyl-benzamide (Table 2, entry 1). Following general procedure A, a

mixture of 3-bromobenzonitrile (1 mmol, 0.182 g), Pd(OAc) 2 (2 mol %, 0.02 mmol, 0.02 equiv., 4.5 mg),

Xantphos (2 mol %, 0.02 mmol, 0.02 equiv., 11.6 mg), N, O-dimethylhydroxylamine hydrochloride (1.5

mmol, 1.5 equiv., 146 mg), Na2 CO3 (3 mmol, 3 equiv., 318 mg), and toluene (2 mL) was heated at 80 TC

for 8 hours. The crude product mixture was purified by flash column chromatography on silica gel (50 %

ethyl acetate in hexanes) to provide the title compound as a viscous light orange oil (181 mg, 95 %). 'H

NMR (300 MHz, CDCl 3) 8: 8.04-8.01 (m, 1H), 7.97-7.93 (dm, J for the d = 7.98 Hz, 1H), 7.78-7.73 (dm,

J for the d = 7.70 Hz, 1H), 7.55 (ddd, J = 0.55, 7.70, 7.98 Hz, 1H), 3.54 (s, 3H), 3.39 (s, 3H). ' 3C NMR

(75 MHz, CDCl 3) 6: 167.06, 135.02, 133.74, 132.48, 131.84, 128.93, 118.01, 112.10, 61.19, 33.06. IR

(neat, cm-'): 3075, 2975, 2938, 2821, 2232, 1647,1602, 1578, 1486, 1460, 1436, 1412, 1384, 1178, 986,

799, 734, 684. A satisfactory elemental analysis was not obtained for this compound: Anal. Calcd for

CIoHIoN 202: C, 63.15; H, 5.30. Found: C, 62.74; H, 5.22. The 'H and '3C NMR spectra follow.
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4-Cyano-3-fluoro-N-methoxy-N-methyl-benzamide (Table 2, entry 2). Following general procedure

A, a mixture of 4-bromo-2-fluorobenzonitrile (1 mmol, 0.200 g), Pd(OAc)2 (2 mol %, 0.02 mmol, 0.02

equiv., 4.5 mg), Xantphos (2 mol %, 0.02 mmol, 0.02 equiv., 11.6 mg), N, O-dimethylhydroxylamine

hydrochloride (1.5 mmol, 1.5 equiv., 146 mg), Na2CO3 (3 mmol, 3 equiv., 318 mg), and toluene (2 mL)

was heated at 80 TC for 18 hours. The crude product mixture was purified by flash column

chromatography on silica gel (20 % - 50 % ethyl acetate in hexanes) to provide the title compound as a

light yellow-orange solid (181 mg, 95 %), mp 43 - 44 oC. 'H NMR (300 MHz, CDC13) 8: 7.71-7.66 (m,

1H), 7.60-7.52 (m, 2H), 3.54 (s, 3H), 3.38 (s, 3H). '3C NMR (75 MHz, CDC13) 6: 166.38, 164.23, 160.79,

140.84, 140.74, 133.36, 124.70, 124.65, 116.64, 116.35, 113.42, 103.26, 103.06, 61.59, 33.17 (observed

complexity due to C-F splitting; definitive assignments have not yet been made). 19F NMR (282 MHz,

CDC13) 6: -106.1. IR (neat, cm-1): 3090, 2977, 2940, 2823, 2239, 1652, 1622, 1566, 1503, 1459, 1428,

1386, 1251, 1198, 1182, 1115, 990, 941, 887, 835, 750, 733, 714, 682, 668. Anal. Calcd for CIoH9FN20 2:

C, 57.69; H, 4.36. Found: C, 57.64; H, 4.37.

O
02N N NOMe

SMe

3-Nitro-N-methoxy-N-methyl-benzamide (Table 2, entry 3). Following general procedure A, a mixture

of 3-bromonitrobenzene (1 mmol, 0.202 g), Pd(OAc) 2 (2 mol %, 0.02 mmol, 0.02 equiv., 4.5 mg),

Xantphos (2 mol %, 0.02 mmol, 0.02 equiv., 11.6 mg), N, O-dimethylhydroxylamine hydrochloride (1.5

mmol, 1.5 equiv., 146 mg), Na 2CO 3 (3 mmol, 3 equiv., 318 mg), and toluene (2 mL) was heated at 80 TC

for 8 hours. The crude product mixture was purified by flash column chromatography on silica gel (50 %

ethyl acetate in hexanes) to provide the title compound as a tan colored solid (185 mg, 88 %), mp 41 -43

oC. 'H NMR (300 MHz, CDCI3) 6: 8.60-8.58 (t, J= 19 Hz, 1H), 8.35-8.31 (ddd, J= 1.1, 2.5, 8.2 Hz, 1H),

8.07-8.03 (dt, J = 1.4, 7.7 Hz, 1H), 7.65-7.59 (t, J = 8 Hz, 1H), 3.57 (s, 3H), 3.41 (s, 3H). 13C NMR (75
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MHz, CDCl3) 6: 167.02, 147.62, 135.43, 134.29, 129.22, 125.17, 123.41, 61.31, 33.13. IR (neat, cm-1):

3087, 2974, 2938, 2822, 1648, 1616, 1577, 1532, 1485, 1459, 1438, 1417, 1383, 1351, 1215, 1170, 1099,

983,918, 858, 815, 715. Anal. Calcd for C9HioN 20 4: C, 51.43; H, 4.80. Found: C, 51.43; H, 4.70.

O0
S N OMe

Thiophene-3- N-methoxy-N-methyl carboxamide (Table 2, entry 4). Following general procedure A, a

mixture of 3-bromothiophene (1 mmol, 0.163 g, 94 ptL, filtered through basic alumina prior to use),

Pd(OAc) 2 (2 mol %, 0.02 mmol, 0.02 equiv., 4.5 mg), Xantphos (2 mol %, 0.02 mmol, 0.02 equiv., 11.6

mg), N, O-dimethylhydroxylamine hydrochloride (1.5 mmol, 1.5 equiv., 146 mg), Na2CO 3 (3 mmol, 3

equiv., 318 mg), and toluene (2 mL) was heated at 80 TC for 21 hours. The crude product mixture was

purified by flash column chromatography on silica gel (50 % ethyl acetate in hexanes) to provide the title

compound as a very light yellow oil (155 mg, 90 %). tH NMR (300 MHz, CDCl3) 8: 8.09-8.06 (dd, J =

1.1, 3.0 Hz, 1H), 7.59-7.57 (dd, J= 1.1, 5.1, IH), 7.31-7.27 (dd, J= 3.0, 5.2 Hz, 1H), 3.66 (s, 3H), 3.37

(s, 3H). '3C NMR (75 MHz, CDCL3) 8: 163.57, 134.37, 130.79, 128.95, 124.77, 61.10, 33.17. IR (neat,

cm-'): 3109, 2970, 2936, 2819, 1627, 1518, 1458, 1427, 1387, 1350, 1217, 1182, 1153, 1078, 985, 931,

881, 851, 816, 792, 733, 707, 667, 621. Anal. Calcd for C7H9NO 2S: C, 49.10; H, 5.30. Found: C, 49.40;

H, 5.40.

a
N'. N O Me

CIMe

4-Chloro-N-methoxy-N-methyl-benzamide (Table 2, entry 5). Following general procedure A, a

mixture of 4-chloro-bromobenzene (1 mmol, 0.191 g), Pd(OAc) 2 (2 mol %, 0.02 mmol, 0.02 equiv., 4.5

mg), Xantphos (2 mol %, 0.02 mmol, 0.02 equiv., 11.6 mg), N, O-dimethylhydroxylamine hydrochloride

(1.5 mmol, 1.5 equiv., 146 mg), Na 2CO3 (3 mmol, 3 equiv., 318 mg), and toluene (2 mL) was heated at 80

TC for 19 hours. The crude product mixture was purified by flash column chromatography on silica gel

(50 % ethyl acetate in hexanes) to provide the title compound as a colorless oil (173 mg, 87 %). 1H NMR
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(300 MHz, CDC13) 6: 7.79-7.64 (mn, 2H), 7.41-7.36 (m, 2H), 3.54 (s, 3H), 3.37 (s, 3H). "3C NMR (75

MHz, CDC13) 6: 168.53, 136.62, 132.27, 129.82, 128.21, 61.06, 33.43. IR (neat, cm-1): 3067, 2970, 2935,

2818, 1917, 1643, 1594, 1567, 1490, 1460, 1416, 1380, 1275, 1213, 1176, 1148, 1111, 1091, 1016, 995,

979, 887, 840, 746, 691, 656, 627. Anal. Calcd for C9HIOCINO 2: C, 54.15; H, 5.05. Found: C, 54.23; H,

4.92.

O
0 •• NOMe

Me
t-BuO, Ni

Me

tert-Butyl N-methyl-N-(4- N-methoxy-N-methyl-benzamide)carbamate (Table 2, entry 6). Following

general procedure A, a mixture of tert-Butyl N-(4-bromophenyl)carbamate (1 mmol, 0.285 g), Pd(OAc) 2

(2 mol %, 0.02 mmol, 0.02 equiv., 4.5 mg), Xantphos (2 mol %, 0.02 mmol, 0.02 equiv., 11.6 mg), N, O-

dimethylhydroxylamine hydrochloride (1.5 mmol, 1.5 equiv., 146 mg), Na2CO 3 (3 mmol, 3 equiv., 318

mg), and toluene (2 mL) was heated at 80 oC for 13 hours. The crude product mixture was purified by

flash column chromatography on silica gel (50 % ethyl acetate in hexanes) to provide the title compound

as a light brown oil (210 mg, 95 %). 'H NMR (300 MHz, CDCl3) 6: 7.73-7.66 (m, 2H), 7.33-7.28 (m,

2H), 3.57 (s, 3H), 3.37 (s, 3H), 3.29 (s, 3H), 1.48 (s, 9H). 13C NMR (75 MHz, CDC13) 8: 169.01, 154.18,

145.69, 130.13, 128.71, 124.15, 80.58, 60.89, 36.83, 33.62, 28.14, 27.70. IR (neat, cmr'): 2976, 2934,

2819, 1791, 1703, 1644, 1607, 1569, 1512, 1477, 1456, 1422, 1367, 1315, 1300, 1279, 1254, 1216, 1153,

1109, 1065, 1018, 995, 977, 889, 851, 807, 770, 758, 734, 700. Anal. Calcd for CisH 22N204: C, 61.21; H,

7.53. Found: C, 60.91; H, 7.75.

O

•N'OMe
Me

MeO

4-N-Dimethoxy-N-methyl-benzamide (Table 2, entry 7). Following general procedure A, a mixture of

4-bromoanisole (1 mmol, 0.187 g, 125 ttL, filtered through basic alumina prior to use), Pd(OAc) 2 (2 mol
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%, 0.02 mmol, 0.02 equiv., 4.5 mg), Xantphos (2 mol %, 0.02 mmol, 0.02 equiv., 11.6 mg), N, O-

dimethylhydroxylamine hydrochloride (1.5 mmol, 1.5 equiv., 146 mg), Na2CO3 (3 mmol, 3 equiv., 318

mg), and toluene (2 mL) was heated at 80 oC for 8 hours. The crude product mixture was purified by

flash column chromatography on silica gel (50 % ethyl acetate in hexanes) to provide the title compound

as a colorless oil (210 mg, 95 %). 'H NMR (300 MHz, CDC13) 6: 7.77-7.70 (min, 2H), 6.94-6.88 (m, 2H),

3.85 (s, 3H), 3.57 (s, 3H), 3.36 (s, 3H). 13C NMR (75 MHz, CDCl3) 6: 169.21, 161.39, 130.39, 125.84,

113.11, 60.73, 55.16, 33.74. IR (neat, cm-'): 3074, 3002, 2966, 2936, 2840, 2559, 2048, 1639, 1608,

1575, 1512, 1462, 1421, 1375, 1304, 1255, 1216, 1173, 1112, 1064, 1029, 994, 977, 888, 842, 796, 756,

703, 676, 631, 593. Anal. Calcd for CIoH, 3NO3: C, 61.53; H, 6.71. Found: C, 61.29; H, 6.69.

O O

MeO NeOMe

I Me

N-Methoxy-N-methyl-isophthalamic acid methyl ester (Table 2, entry 8). Following general

procedure A, a mixture of methyl 3-bromobenzoate (1 mmol, 0.215 g), Pd(OAc) 2 (2 mol %, 0.02 mmol,

0.02 equiv., 4.5 mg), Xantphos (2 mol %, 0.02 mmol, 0.02 equiv., 11.6 mg), N, O-

dimethylhydroxylamine hydrochloride (1.5 mmol, 1.5 equiv., 146 mg), Na 2CO 3 (3 mmol, 3 equiv., 318

mg), and toluene (2 mL) was heated at 80 oC for 24 hours. The crude product mixture was purified by

flash column chromatography on silica gel (50 % ethyl acetate in hexanes) to provide the title compound

as a colorless oil (196 mg, 88 %). 'H NMR (300 MHz, CDC13) 6: 8.38-8.33 (t, J = 1.7 Hz, 1H), 8.17-8.10

(ddd, J = 1.4, 1.7, 7.9 Hz, 1H), 7.91-7.84 (ddd, J = 1.4, 1.7, 7.7 Hz, 1H), 7.54-7.46 (dt, J = 1.7, 7.7 Hz,

1H), 3.94 (s, 3H), 3.56 (s, 3H), 3.39 (s, 3H). 13C NMR (75 MHz, CDCl3) 8: 168.69, 166.18, 134.32,

132.41, 131.37, 129.88, 129.19, 128.13, 60.99, 52.13, 33.30. IR (neat, cm'): 3072, 2953, 1725, 1645,

1582, 1487, 1435, 1381, 1300, 1278, 1208, 1170, 1109, 1085, 991, 972, 922, 824, 772, 724, 665, 633,

575. Anal. Calcd for CI1H, 3NO 4: C, 59.19; H, 5.87. Found: C, 58.98; H, 5.78.
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3-[1,3]Dioxolan-2-yl-N-methoxy-N-methyl-benzamide (Table 2, entry 9). Following general procedure

A (a screw-capped test tube with a Teflon-lined septum was used in place of the culture tube and rubber

septum), a mixture of 2-(3-bromophenyl)-1,3-dioxolane (1 mmol, 151 gL, filtered through basic alumina

prior to use), Pd(OAc) 2 (2 mol %, 0.02 mmol, 0.02 equiv., 4.5 mg), Xantphos (2 mol %, 0.02 mmol, 0.02

equiv., 11.6 mg), N, O-dimethylhydroxylamine hydrochloride (1.5 mmol, 1.5 equiv., 146 mg),

triethylamine (3 mmol, 3 equiv., 420 mL), and toluene (1 mL) was heated at 80 oC for 15 hours. The

crude product mixture was purified by flash column chromatography on silica gel (67 % ethyl acetate in

hexanes) to provide the title compound as a colorless oil (220 mg, 93 %). 'H NMR (400 MHz, CDCl3)

7.78 (s, 1 H), 7.67 (d, 1 H, J= 7.5 Hz), 7.56 (d, 1 H, J= 7.5 Hz), 7.41 (dd, 1 H, J= 7.5 Hz), 5.83 (s, 1 H),

4.00-4.14 (m, 4 H), 3.53 (s, 3 H), 3.33 (s, 3 H). 13C NMR (100 MHz, CDCI3) d 169.4, 138.0, 134.1, 128.8,

128.6, 128.0, 126.3, 103.1, 65.2, 60.9, 33.6. IR (CDC13, cml ) 2972, 2937, 2892, 1639. Anal. Cald. for

C12H15NO4; C: 60.75, H: 6.37; Found C: 60.37, H: 6.35.

O

.•NOMe
I Me

MeO 
M e

OMe

3,4,N-Trimethoxy-N-methyl-benzamide (Table 2, entry 10). Following general procedure A (a screw-

capped test tube with a Teflon-lined septum was used in place of the culture tube and rubber septum), a

mixture of 4-bromoveratrole (1 mmol, 144 [tL, filtered through basic alumina prior to use), Pd(OAc)2 (2

mol %, 0.02 mmol, 0.02 equiv., 4.5 mg), Xantphos (2 mol %, 0.02 mmol, 0.02 equiv., 11.6 mg), N, O-

dimethylhydroxylamine hydrochloride (1.5 mmol, 1.5 equiv., 146 mg), triethylamine (3 mmol, 3 equiv.,

420 mL), and toluene (1 mL) was heated at 80 TC for 15 hours. The crude product mixture was purified

by flash column chromatography on silica gel (67 % ethyl acetate in hexanes) to provide the title

compound as a colorless solid (202 mg, 90 %), mp 55 - 57 oC. 'H NMR (400 MHz, CDCl 3) 7.39 (dd, 1 H,
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J= 2 Hz, 8 Hz), 7.32 (d, 1 H,J= 2 Hz), 6.87 (d, 1 H,J= 8 Hz), 3.92 (s, 3 H), 3.91 (s, 3 H), 3.58 (s, 3 H),

3.36 (s, 3 H). '3 C NMR (100 MHz, CDCl3) d 168.9, 150.8, 148.0, 125.9, 121.8, 111.7, 109.9, 60.7, 55.7,

55.6, 33.7. IR (CDCl3, cm') 2966, 2937, 1631, 1517. m. p. 56 - 57 'C. Anal. Cald. for C1IHisNO 4; C:

58.66, H: 6.71; Found C: 58.61, H: 6.77.

O

N'4- N'NOMephI,, Me

Ph eOMe

Biphenyl-4- N-methoxy-N-methyl carboxamide (Table 2, entry 11).21 Following general procedure A

(a screw-capped test tube with a Teflon-lined septum was used in place of the culture tube and rubber

septum), a mixture of 4-bromobiphenyl (1 mmol, 0.233 g), Pd(OAc)2 (2 mol %, 0.02 mmol, 0.02 equiv.,

4.5 mg), Xantphos (2 mol %, 0.02 mmol, 0.02 equiv., 11.6 mg), N, O-dimethylhydroxylamine

hydrochloride (1.5 mmol, 1.5 equiv., 146 mg), triethylamine (3 mmol, 3 equiv., 420 mL), and toluene (1

mL) was heated at 80 TC for 15 hours. The crude product mixture was purified by flash column

chromatography on silica gel (40 % ethyl acetate in hexanes) to provide the title compound as a colorless

solid (226 mg, 94 %), mp 80 - 82 TC, lit. mp 77 - 78 TC. 'H NMR (400 MHz, CDCl3) 7.77-7.81 (min, 2 H),

7.61-7.67 (min, 4 H), 7.37-7.50 (m, 3 H), 3.61 (s, 3 H), 3.40 (s, 3 H). 13C NMR (100 MHz, CDCl3) d 169.5,

143.2, 140.0, 132.7, 128.8, 128.7, 127.8, 127.1, 126.6, 61.0, 33.7. IR (CDCl3, cm-1') 2971, 2936, 1632.

O
Me N OMe

IMe
~Me

N-Methoxy-2,5,N-trimethyl-benzamide (Table 3, entry 1). Following general procedure B, a mixture

of 2-bromo-p-xylene (1 mmol, 0.185 g, 138 gL), Pd(OAc) 2 (2.5 mol %, 0.025 mmol, 0.025 equiv., 5.6

mg), Xantphos (5 mol %, 0.05 mmol, 0.05 equiv., 28.9 mg), N, O-dimethylhydroxylamine hydrochloride

(1.5 mmol, 1.5 equiv., 146 mg), K3PO 4 (3 mmol, 3 equiv., 637 mg), and toluene (2 mL) was heated at 100

TC for 20 hours. The crude product mixture was purified by flash column chromatography on silica gel

(50 % ethyl acetate in hexanes) to provide a mixture of rotamers (ratio not determined) of the title
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compound as a colorless oil (166 mg, 86 %). 'H NMR (300 MHz, CDCI3) 6: 7.12-7.06 (m, 3H), 3.56 (brs,

3H), 3.31 (brs, 3H), 2.32 (s, 3H), 2.29 (s, 3H). '3C NMR (75 MHz, CDCI3) 6: 169.8, 134.5, 133.9, 130.6,

129.2, 129.2, 129.0, 125.8, 59.9, 31.9, 19.8, 17.7. IR (neat, cm-'): 3018, 2969, 2932, 2818, 2736, 1903,

1844, 1651, 1612, 1577, 1502, 1459, 1422, 1375, 1287, 1242, 1181, 1157, 1126, 1062, 1041, 998, 980,

922, 887, 838, 816, 777, 746, 706, 694, 642, 597. Anal. Calcd for C1IH15NO 2: C, 68.37; H, 7.82. Found:

C, 68.28; H, 7.86.

NOMe
Me

Naphthalene-1- N-methoxy-N-methyl carboxamide (Table 3, entry 2). Following general procedure

B, a mixture of 1-bromonaphthalene (1 mmol, 0.207 g, 139 RL), Pd(OAc) 2 (2.5 mol %, 0.025 mmol,

0.025 equiv., 5.6 mg), Xantphos (5 mol %, 0.05 mmol, 0.05 equiv., 28.9 mg), N, O-

dimethylhydroxylamine hydrochloride (1.5 mmol, 1.5 equiv., 146 mg), K3PO4 (3 mmol, 3 equiv., 637

mg), and toluene (2 mL) was heated at 100 oC for 20 hours. The crude product mixture was purified by

flash column chromatography on silica gel (50 % ethyl acetate in hexanes) to provide a mixture of

rotamers (ratio not determined) of the title compound as a light orange oil (208 mg, 97 %). 1H NMR (300

MHz, CDCl3) 8: 7.94-7.85 (m, 3H), 7.58-7.47 (m, 4H), 3.4 (brs, 6H). 13C NMR (75 MHz, CDCl3) 8:

169.1, 132.7, 129.1, 128.9, 127.8, 126.3, 125.3, 124.3, 124.2, 123.7, 60.5, 32.4. IR (neat, cm 1): 3280,

3056, 3005, 2971, 2935, 2817, 1947, 1820, 1651, 1592, 1580, 1508, 1474, 1439, 1422, 1374, 1266,

11232, 1183, 1167, 1102, 1027, 1014, 975, 891, 865, 801, 779, 740, 697, 647, 629, 580. Anal. Calcd for

C13H,3NO 2: C, 72.54; H, 6.09. Found: C, 72.16; H, 6.12.

0

N NOMe
M e

CN
2-Cyano-N-methoxy-N-methyl-benzamide (Table 3, entry 3). Following general procedure B, a

mixture of 2-bromobenzonitrile (1 mmol, 0.182 g), Pd(OAc)2 (2.5 mol %, 0.025 mmol, 0.025 equiv., 5.6
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mg), Xantphos (5 mol %, 0.05 mmol, 0.05 equiv., 28.9 mg), N, O-dimethylhydroxylamine hydrochloride

(1.5 mmol, 1.5 equiv., 146 mg), K3PO4 (3 mmol, 3 equiv., 637 mg), and toluene (2 mL) was heated at 100

TC for 20 hours. The crude product mixture was purified by flash column chromatography on silica gel

(50 % ethyl acetate in hexanes) to provide a mixture of rotamers (ratio not determined) the title compound

as a colorless oil (161 mg, 84 %). 'H NMR (300 MHz, CDCl 3) 8: 7.74-7.70 (ddd, J= 0.55, 1.38, 7.7 Hz,

1H), 7.69-7.50 (m, 3H), 3.52 (brs, 3H), 3.40 (brs, 3H). 13C NMR (75 MHz, CDCl3) 8: 166.5, 138.2, 132.4,

132.3, 129.7, 127.3, 116.6, 109.9, 61.0, 32.3. IR (neat, cm-1): 3292, 3071, 2976, 2938, 2822, 2229, 1657,

1595, 1572, 1492, 1459, 1445, 1421, 1385, 1289, 1219, 1191, 1168, 1117, 1062, 1036, 982, 891, 772,

759, 720, 687, 634. Anal. Calcd for Cl0Hl0N20 2: C, 63.15; H, 5.30. Found: C, 63.42; H, 5.29.

O

N~ , OMeN OMe

CO2Me

N-Methoxy-N-methyl-phthalamic acid methyl ester (Table 3, entry 4). Following general procedure

B, a mixture of methyl 2-bromobenzoate (1 mmol, 0.215 g, 140 ptL), Pd(OAc)2 (3.0 mol %, 0.03 mmol,

0.03 equiv., 6.7 mg), Xantphos (6 mol %, 0.06 mmol, 0.06 equiv., 34.7 mg), N, O-

dimethylhydroxylamine hydrochloride (1.5 mmol, 1.5 equiv., 146 mg), K3PO4 (3 mmol, 3 equiv., 637

mg), and toluene (2 mL) was heated at 100 TC for 20 hours. The crude product mixture was purified by

flash column chromatography on silica gel (20 - 50 % ethyl acetate in hexanes) to provide the title

compound as a colorless oil (186 mg, 83 %). IH NMR (300 MHz, CDC13) 8: 8.04-7.97 (d, J = 7.7 Hz,

1H), 7.63-7.55 (dt, J = 1.4, 7.4 Hz, 1H), 7.52-7.45 (dt, J = 1.4, 7.7 Hz, 1H), 7.45-7.38 (d, J = 7.4 Hz),

3.91 (s, 3H), 3.74 (brs, 3H), 3.35 (brs, 3H). 13C NMR (75 MHz, CDCl3) 6: 172.0, 166.1, 137.2, 132.3,

129.7, 128.9, 127.7, 126.9, 60.9, 52.4, 33.1. IR (neat, cmt'): 3067, 2953, 2939, 2904, 2820, 2845, 1726,

1662, 1599, 1578, 1492, 1459, 1413, 1435, 1379, 1280, 1211, 1192, 1166, 1130, 1091, 1062, 1040, 991,

964, 883, 828, 802, 777, 739, 723, 703, 667, 631, 576. Anal. Calcd for CIHH3NO 4: C, 59.19; H, 5.87.

Found: C, 59.17; H, 5.90.
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N , OMe
Me

OMe

2,N-Dimethoxy-N-methyl-benzamide (Table 3, entry 5).22 Following general procedure B, a mixture of

2-bromoanisole (1 mmol, 0.187 g, 125 FtL, filtered through basic alumina prior to use), Pd(OAc) 2 (3.0

mol %, 0.03 mmol, 0.03 equiv., 6.7 mg), Xantphos (6 mol %, 0.06 mmol, 0.06 equiv., 34.7 mg), N, O-

dimethylhydroxylamine hydrochloride (1.5 mmol, 1.5 equiv., 146 mg), K3PO4 (3 mmol, 3 equiv., 637

mg), and toluene (2 mL) was heated at 100 TC for 20 hours. The crude product mixture was purified by

flash column chromatography on silica gel (50 % ethyl acetate in hexanes) to provide a mixture of

rotamers (ratio not determined) of the title compound as a colorless plates (174 mg, 89 %), mp 47 - 49

oC. 'H NMR (300 MHz, CDCl 3) 6: 7.40-7.32 (ddd, J= 1.6, 7.4, 8.2 Hz, 1H), 7.30-7.24 (dd, J= 1.4, 7.4

Hz, 1H), 7.01-6.95 (dt, J = 0.8, 7.4 Hz, 1H), 6.95-6.90 (d, J = 8.3 Hz, 1H), 3.84 (s, 3H), 3.49 (brs, 3H),

3.33 (brs, 3H). 13C NMR (75 MHz, CDCl 3) 8: 168.8, 155.2, 130.1, 126.9, 124.7, 119.9, 110.6, 60.4, 55.1,

31.6. IR (neat, cm'): 3067, 3003, 2970, 2938, 2939, 1651, 1601, 1584, 1495, 1465, 1437, 1418, 1381,

1284, 1249, 1209, 1182, 1164, 1116, 1064, 1045, 1022, 987, 940, 884, 795, 758, 697, 630. Anal. Caled

for C0oHi 3NO3: C, 61.53; H, 6.71. Found: C, 61.46; H, 6.76.

a
N "NOMe

NCI Me

4-Cyano-N-methoxy-N-methyl-benzamide (Table 3, entry 6). Following general procedure B, a

mixture of 4-chlorobenzonitrile (1 mmol, 0.146 g), Pd(OAc)2 (3.0 mol %, 0.03 mmol, 0.03 equiv., 6.7

mg), Xantphos (6 mol %, 0.06 mmol, 0.06 equiv., 34.7 mg), N, O-dimethylhydroxylamine hydrochloride

(1.5 mmol, 1.5 equiv., 146 mg), K3PO 4 (3 mmol, 3 equiv., 637 mg), and toluene (2 mL) was heated at 105

TC for 20 hours. The crude product mixture was purified by flash column chromatography on silica gel

(50 % ethyl acetate in hexanes) to provide the title compound as a colorless oil (149 mg, 78 %). IH NMR

(300 MHz, CDCl 3) 8: 7.81-7.64 (min, 4H), 3.53 (s, 3H), 3.38 (s, 3H). "3C NMR (75 MHz, CDCl3) 8: 167.7,
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138.2, 131.7, 128.6, 118.0, 113.8, 61.2, 33.0. IR (neat, cm'): 3093, 3066, 2974, 2938, 2821, 2230, 1937,

1651, 1609, 1560, 1507, 1461, 1422, 1383, 1286, 1215, 1180, 1149, 1115, 1065, 1020, 980, 889, 851,

7777, 754, 703, 668, 638, 575. Anal. Calcd for CIoHIoN 20 2: C, 63.15; H, 5.30. Found: C, 63.12; H, 5.33.

O

N N -OMe
e.Me

CCF3

2-trifluoromethyl-N-Methoxy-N-methy-benzamide (Table 3, entry 7). Following general procedure B,

a mixture of 2-bromobenzotrifluoride (1 mmol, 0.225 g, 136 RL, filtered through basic alumina prior to

use), Pd(OAc) 2 (3.0 mol %, 0.03 mmol, 0.03 equiv., 6.7 mg), Xantphos (6 mol %, 0.06 mmol, 0.06

equiv., 34.7 mg), N, O-dimethylhydroxylamine hydrochloride (1.5 mmol, 1.5 equiv., 146 mg), K3PO4 (3

mmol, 3 equiv., 637 mg), and m-xylene (2 mL) was heated at 110 TC for 20 hours. The crude product

mixture was purified by flash column chromatography on silica gel (20 - 50 % ethyl acetate in hexanes) to

provide the title compound as a colorless oil and a 1.1:1 mixture of rotamers (214 mg, 92 %). 1H NMR

(300 MHz, CDC13) b: 7.75-7.67 (d, J = 7.4 Hz, 1H), 7.65-7.50 (m, 2H), 7.46-7.40 (m, 1H), 3.89 (brs,

0.6H), 3.42 (s, 2.4H), 3.37 (s, 2.3H), 3.05 (brs, 0.7H). 13C NMR (75 MHz, CDCl3) 6: 169.1, 164.4, 133.7,

132.1, 131.3, 129.5, 128.9, 127.2, 126.8, 126.2, 1259, 125.3, 121.6, 118.0, 60.4, 59.7, 36.1, 31.9

(observed complexity due to C-F splitting; definitive assignments have not yet been made). 19F NMR

(282 MHz, CDCI3) 8: -60.2. IR (neat, cm'): 3071, 2977, 2941, 2823, 1667, 1606, 1584, 1503, 1426,

1445, 1416, 1384, 1317, 1272, 1213, 1171, 1130, 1077, 1049, 1034, 991, 961, 891, 879, 772, 742, 708,

655, 632. Anal. Calcd for C10H10F3NO2: C, 51.51; H, 4.32. Found: C, 51.61; H, 4.36.

Me O

Ný N ' OMe
IeN Me

3-Methyl-pyridine-2- N-methoxy-N-methyl carboxamide (Table 3, entry 8). Following general

procedure B, a mixture of 2-bromo-3-methylpyridine (1 mmol, 0.172 g, 111 tL), Pd(OAc)2 (3.0 mol %,

0.03 mmol, 0.03 equiv., 6.7 mg), Xantphos (6 mol %, 0.06 mmol, 0.06 equiv., 34.7 mg), N, O-
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dimethylhydroxylamine hydrochloride (1.5 mmol, 1.5 equiv., 146 mg), K3PO 4 (3 mmol, 3 equiv., 637

mg), and m-xylene (2 mL) was heated at 110 TC for 20 hours. The crude product mixture was purified by

flash column chromatography on silica gel (50 - 60 % ethyl acetate in hexanes) to provide the title

compound as a light yellow oil and a 1:1 mixture of rotamers (140 mg, 77 %). 1H NMR (300 MHz,

CDCl 3) 8: 8.44-8.36 (dd, J = 0.8, 4.7 Hz, 1H), 7.60-7.48 (d, J = 7.1 Hz, 1H), 7.27-7.16 (dd, J = 4.9, 7.7

Hz, 1H), 3.89 (brs, 0.6H), 3.52 (s, 2.4H), 3.37 (s, 2.4H), 3.13 (brs, 0.6H). 13C NMR (75 MHz, CDCl3) 8:

168.8, 153.3, 145.7, 137.5, 129.8, 123.4, 61.1, 31.4, 17.1. IR (neat, cm'): 3055, 2977, 2938, 2821, 1655,

1575, 1485, 1446, 1407, 1384, 1274, 1260, 1238, 1186, 1169, 1119, 1072, 983, 896, 889, 818, 800, 743,

692, 639, 580. A satisfactory elemental analysis was not obtained for this compound: Anal. Calcd for

C9 H12N20 2 : C, 59.99; H, 6.71. Found: C, 59.53; H, 6.72. The 'H and 13C NMR spectra follow.
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MMe
Cy

2-Cyclohexyl-N-methoxy-N-methyl-benzamide (Table 3, entry 9). Following general procedure B, a

mixture of 1-bromo-2-cyclohexylbenzene (1 mmol, 0.239 g), Pd(OAc) 2 (3.0 mol %, 0.03 mmol, 0.03

equiv., 6.7 mg), Xantphos (6 mol %, 0.06 mmol, 0.06 equiv., 34.7 mg), N, O-dimethylhydroxylamine

hydrochloride (1.5 mmol, 1.5 equiv., 146 mg), K3PO4 (3 mmol, 3 equiv., 637 mg), and m-xylene (2 mL)

was heated at 120 TC for 20 hours. The crude product mixture was purified by flash column

chromatography on silica gel (30 - 50 % ethyl acetate in hexanes) to provide a mixture of rotamers (ratio

not determined) of the title compound as a viscous colorless oil (213 mg, 86 %). 1H NMR (300 MHz,

CDCl3) 8: 7.41-7.30 (m, 2H), 7.24-7.14 (m, 2H), 3.85 (brs, 1H), 3.38 (brs, 5H), 2.75 (brs, 1H), 1.60-1.95

(m, 5H), 1.2-1.58 (m, 5H). 13C NMR (75 MHz, CDCl3) 8: 171.1, 143.9, 134.2, 128.7, 125.6, 125.4, 124.8,

60.2, 41.0, 33.6, 31.6, 26.3, 25.5. IR (neat, cm-): 3292, 3061, 3025, 2926, 2851, 2817, 2668, 1651, 1599,

1575, 1489, 1448, 1410, 1378, 1264, 1218, 1193, 1168, 1140, 1117, 1093, 1060, 1044, 989, 893, 884,

863,829, 771, 755, 705, 644, 634, 625, 577, 530. Anal. Calcd for C15H21NO 2: C, 72.84; H, 8.56. Found:

C, 72.66; H 8.54.

O0
F N• NOMe

F Me

2,5-Difluoro-N-methoxy-N-methyl-benzamide (Table 3, entry 10). Following general procedure B, a

mixture of 2,5-difluorobromobenzene (1 mmol, 0.193 g, filtered through basic alumina prior to use),

Pd(OAc) 2 (2.5 mol %, 0.025 mmol, 0.025 equiv., 5.6 mg), Xantphos (5 mol %, 0.05 mmol, 0.05 equiv.,

28.9 mg), N, O-dimethylhydroxylamine hydrochloride (1.5 mmol, 1.5 equiv., 146 mg), K3PO4 (3 mmol, 3

equiv., 637 mg), and m-xylene (2 mL) was heated at 110 oC for 20 hours. The crude product mixture was

purified by flash column chromatography on silica gel (50 % ethyl acetate in hexanes) to provide the title
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compound as a colorless oil (140 mg, 70 %). 'H NMR (300 MHz, CDC13) 6: 7.19-7.03 (m, 3H), 3.56 (brs,

3H), 3.36 (brs, 3H). 13C NMR (75 MHz, CDCI3) 6: 164.7, 159.7, 156.4, 156.1, 152.9, 124.7, 124.6, 124.4,

124.3, 117.9, 117.6, 117.1, 117.0, 116.8, 116.7, 115.4, 115.1, 61.1, 31.9 (observed complexity due to C-F

splitting; definitive assignments have not yet been made). 19F NMR (282 MHz, CDC13) 6: -118.8, -120.4.

IR (neat, cm-1): 3074, 2977, 2940, 2823, 1659, 1599, 1495, 1437, 1405, 1383, 1266, 1251, 1205, 1149,

1104, 1059, 992, 939, 879, 851, 822, 786, 735, 706, 690, 640, 604. Anal. Calcd for C9H9F2NO2: C,

53.73; H, 4.51. Found: C, 53.50; H, 4.55.
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Chapter 3.
Palladium-Catalyzed Aminocarbonylation of Aryl Chlorides.
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3.1 Introduction

Carbonylation is a powerful method for the direct and regioselective incorporation of carbonyl

groups into molecules using carbon monoxide (CO). 1,2 However, despite the development of several

highly effective Pd catalysts for the efficient carbonylation of aryl bromides, 3 and recent developments in

the area of cross-coupling and Heck arylation processes, 4 few catalysts are capable of carbonylation

reactions with unactivated aryl chlorides (Scheme 1).' In particular, there is no general method for the

aminocarbonylation of unactivated aryl chlorides at atmospheric pressure. To the best of our knowledge,

Beller has reported the only example of such a reaction (chlorobenzene and di-n-propylamine). 5b Milstein

has also reported the Pd-catalyzed aminocarbonylation of unactivated aryl chlorides with secondary

amines at 150 oC under 70 psig of CO.5a Herein we describe our efforts towards the development of a

general and mild catalyst system for the aminocarbonylation of aryl chlorides under atmospheric pressure

of CO.

O
Ar-CI + CO (g) + HN(R')R 2  Pd / L / Base . ArA NR 1

II

R2

Scheme 1. Synthesis of Benzamrnides via Amrninocarbonylation of Aryl Chlorides.

3.2 Results and Discussion

Based on results reported in the literature, 3'4 we decided to focus our investigation on electron-

rich bidentate ligands. These ligands presumably aid in preventing catalyst poisoning resulting from the

coordination of multiple equivalents of CO to Pd.6 For the initial experiments, 4-n-butylchlorobenzene

and morpholine were chosen as test substrates, and the reactions were conducted under balloons filled

with CO (Table 1). The most effective ligand was 1,3-bis(dicyclohexylphosphino)propane 7 (dcpp), which

is similar to the ligand reported by Milstein and coworkers.a58 In our case, however, we elected to

introduce the ligand as the commercially available and air-stable tetrafluoroborate salt. Further

optimization studies revealed that the use of anhydrous DMSO was the best solvent for this reaction. In
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general, exclusion of extraneous water, accomplished through the use of activated 4 A molecular sieves,

was necessary to obtain high yields.

Table 1. Optimization of Atmospheric Pressure Aminocarbonylation of 4-n-Butylchlorobenzene.

2 mol% Pd(OAc)2
4 mol% Ligand O

CIl+ O CO (1 atm) N,

n-Bu N 2.0 equiv NaOPh n-Bu O
H 4 A Molecular Sieves

3 equiv. DMSO, 110 0C, 3 h

Me Me
l I "Fe _~P(i-Pr)2 CY2P 1,2PCy22HBF4

0 A -P(i-Pr) 2  n

PR2 PR2 4 6, n = 1

2, R =Ph 7, n =2
1 3, R = t-Bu 5, (Cy3P)2PdCI2  8, n = 3

Ligand: 1 2 3 4 5 6 7 8
Conversion: 6% 1% 6% 8% 7% 61% 92% 14%

Yield (GC): 0% 0% 0% 4% 0% 57% 91% 7%

Unexpectedly, the identity of the base proved critical to the success of the carbonylation reaction

(Table 2). The use of anhydrous organic bases, such as tri-n-propylamine, resulted in very low

conversion of the aryl chloride (Table 2, entry 1). The use of Na2CO 3, K3PO 4 (stored in air), or Cs2CO 3

(stored in a nitrogen filled glove box) resulted in the formation of a significant amount of carboxylic acid

due to moisture contained in the salt (Table 2, entries 2-4). Surprisingly, the use of the nucleophilic9 base

1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) resulted in a low yield of the desired product possibly due to

decomposition of the amidine baselo (Table 2, entry 5). In an effort to circumvent the side reaction with

water, 25 mol% phenol was added to a reaction in which Na2CO3 was used as the base and an increase in

the yield (>10%) of the desired product was observed (Table 2, entry 6). As this result suggests,

employment of anhydrous sodium phenoxide as base provided complete conversion of the aryl chloride

and an excellent yield of the desired amide was realized. More sterically encumbered derivatives of
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sodium phenoxide provided less promising results (Table 2, entry 7 and 8). Interestingly, the use of

sodium tert-butoxide as the base provided the aromatic amine" product exclusively over products derived

from CO insertion.

Table 2. Effect of Base on the Aminocarbonylation of 3-Chloroanisole.

2 mol% Pd(OAc)2

4 moO% dcpp*ZbH" 4
Cl p CO (1 atm)

+ O NH
q 2.0 equiv Base

OMe 3 equiv. 4 A Molecular Seives
DMSO, 120 OC, 15 h

Base

n-Pr3N

Na2CO3

Cs 2CO 3

K3PO4

DBU

Na2CO 3/ 25% PhOH

NaOPh

Me

ONa
Me

t-Bu
\ ONa

t-Bu t-Bu

Cony. ArCIl

11%

94%

> 99%

> 99%

78%

> 99%

> 99%

> 99%

80%

Yield 9

11%

52%

8%

62%

25%

70%

> 99%

9,Nu = -- N 0

10, Nu = OAr

11, Nu = OH

YiE ld 10 Yield 11

-- 38%

-- n.d.

-- n.d.

-- n.d.

-- n.d.

76% 22% --

60% < 2% n.d.

To determine the scope of this process, a range of aryl chlorides and amines were employed as

substrates (Table 3). Primary, secondary and aromatic amines are all readily converted to amides.

Additionally, electron-rich, -neutral, and -poor aryl chlorides are all compatible with these

aminocarbonylation conditions. The combination of a primary amine and an electron-poor aryl chloride
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1

2

3

4

5

6

7

8

9

DMSO, 120 *C, 15 h
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can be successfully transformed to the corresponding benzamide in 4h using only 0.5 mol% catalyst

(Table 3, entry 6). Not surprisingly, acyclic secondary amines require higher temperatures to afford

complete transformation to the desired amide (Table 3, entries 2, 4 and 7). It is also worth noting that

functional groups, such as the t-butyl ester and nitrile groups (Table 3, entries 8 and 14), and heteroaryl

chlorides, such as 3-chloropyridine and 3-chlorothiophene (Table 3, entries 10 - 13), were also amenable

to these reaction conditions.

Table 3. Substrate Scope of Atmospheric Pressure Aminocarbonylation with 7.a'b
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R CI + HN(R 1)R2

2 mol% Pd(OAc) 2
4 - 5 mol% 7

2.0 equiv NaOPh, CO (1 atm)
4 A Molecular Sieves

0

R-1 N(R)R2

DMSO, 100 - 120 °C, 15 h

entry ArCI amine product yield

2 Me c

3 MeO R Cl

4 MeO CIl

MeO I zyCl

MeO 11ýtCl

8 NC -yCl

Med:c:

10C
N

11 ICl

N

12 S Cl

13 S Cl

O

14 t-BuO - 1 CI

15Me •15 "aMe

O
0 HNH

n-Bu N-O
0

(n-Bu) 2NH Me N(n-Bu)2

O NH
O

MeO NO

O
(n-Bu) 2NH MeO -0 N(n-Bu)2

O
Me'+4 NH2  MeO-, N HRMe

O

Cy(Me)NH MeO e N(Me)Cy

O

Ph~ NH2  NNC kN ̂  Ph

O0

Ph~ NH2  M KN Ph

MeO , 
H• H

Me 0 NH2

Ph NH2

O

O Me
H
0

Nk P

Me NH2 4MeMe .LJ NH2NJ4M

Me

Ph NH2
99% ee

O Ph
N IMeý\ e H

O O
Ov.O0 NH t-Bu4 N

0
Me 4ý-NH 2  Me, N..-4Me

4 'eMIH 4

79%e

88%

93% f

97%c,g

65%

98%

92%

92%

99%

94%
99% ee

75%

86%c

aReaction conditions: 2 mol% Pd(OAc) 2, 4 -5 mol% 7, 1 mmol aryl chloride, 3 mmol amine, 2 mmol NaOPh, 150

mg 4 A molecular sieves in DMSO (1 mL) at 100 TC for 15 h. Yields are an average of 2 runs (isolated). 'Reaction
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time 4 h. dReaction temperature 110 TC. eReaction temperature 120 C. fReaction time 3 h. gLess catalyst used: 0.5

mol% Pd(OAc) 2, 2 mol% 7. h4 equiv. of amine used.

We were intrigued by the high reactivity of sodium phenoxide as base in this reaction. We

reasoned that its effectiveness was due either to its basicity or greater nucleophilicity amongst the bases

screened (Scheme 2). On one hand, phenoxide might be sufficiently basic (in DMSO) to achieve catalyst

turnover at an appreciable rate (unlike the less basic trialkyl amines) but not so basic as to substantially

deprotonate the amine and trigger direct C-N coupling (such as with the more basic tert-butoxide). On

the other hand, being both relatively small and negatively charged, phenoxide might be sufficiently

nucleophilic to react directly with acyl palladium intermediates and result in the initial formation of

phenyl esters. These phenyl esters might later be converted to the observed amide under the reaction

conditions.

L2 = CY2P PCy 2

dccp

m2Rlu NaOt-Bu
N.

L1-Pd-Ar
R2(R)NH CI

Rt(R )N-Ar

R2(R1)N-Ar
Ar

L2-Pd 1 0
CI NaOt-Bu Ar O' Buco0A Ot-Bu

L2-Pd Ar 0 "
Cl NaOPh Ar OPh

Ar OPh

Scheme 2. Potential Effect of Different Bases on Possible Intermediates in the Aminocarbonylation Reaction.

In an attempt to distinguish between the possible scenarios outlined above, the reaction of 3-

chloroanisole and di-n-butylamine was monitored using in situ IR spectroscopy. In the initial kinetic

experiments, the combination of Pd(OAc) 2 (2 mol%) and 7 (4 mol%) were used as the catalytic additives.
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These reactions displayed an irreproducible initiation period that ranged over a period of minutes to more

than an hour. We assume that this initiation period is due to the reduction of Pd(OAc)2 to Pd(0). In order

to improve reproducibility in the kinetics experiments, we prepared (dcpp)PdPhCl (12) from dcpp and

(Ph3P)2PdPhCl as the mono-toluene solvate. Using the combination of 12 (2 mol%) and 7 (2 mol %) as

the precatalyst eliminated the initiation period.

Figure 1 shows the reaction profile from the combination of 3-chloroanisole (0.33 M), di-n-

butylamine (1.0 M), phenoxide (0.66 M), 12 (0.66 mM) and 7 (0.66 mM) in DMSO at 120 'C. A signal

at 1736 cm -' (corresponding to phenyl 3-methoxybenzoate 13) was observed at the beginning of the

reaction. Shortly thereafter, a signal at 1632 cm 1 (corresponding to amide 14) was observed to increase

in intensity. After approximately 1 hour, the concentration of the ester ceased to increase and began to

decrease; the concentration of the amide continued to increase. At the end of the reaction, the ester had

been completely consumed and the amide was formed in 88% yield (determined by GC). Thus, the

phenyl ester appears to be an intermediate in the formation of amide 14. It should be noted that, despite

the initiation period, transient ester has also been observed with similar kinetic behavior in reactions

employing Pd(OAc)2 as the precatalyst.

In order to further confirm the intermediacy of the ester, we examined the kinetic competence of

the conversion of ester 13 to amide 14. Combining ester 13 (0.33 M) and di-n-butylamine (1.0 M) in

DMSO and heating to 120 'C did result in very slow formation of amide 14 (tl/2 - 10 h). However, when

the same reaction was conducted in the presences of PhONa (0.33 M), rapid conversion (tl/2 - 12 m) of

ester 13 to amide 14 was observed. 12
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Cl 2 mol% 12 0

+ HN(n-Bu)2 2 mol% 7 ,. Nu
3 equiv. CO (1 atm)

OMe 2.0 equiv NaOPh OMe
4 A Molecular Sieves 13 Nu = OPh
D M S O , 120 °C . .14, Nu = N(n-Bu) 2

d.t'l 1
0.Q3

0.3
0.25

0.2
Conc. (M)

0.15

0.1

0.05

0
0

0 2 4 6

Time (h) - O

Figure 1. Kinetic Profile for the Reaction of Di-n-Butylamine and 3-Chloroanisole as Determined by in situ

Reaction IR Spectroscopy.

The above observations suggest that sodium phenoxide is playing a dual role in the formation of

amide 14 (Scheme 3). First, due to its greater nucleophilicity compared to di-n-butylamine, phenoxide

intercepts the acyl palladium species resulting from oxidative addition of the aryl chloride and migratory

insertion of CO 13 and leads to the formation of phenyl ester 13.14,15 Subsequently, phenoxide acts as a

basic catalyst in the conversion of the intermediate ester to the observed amide product.
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(n-Bu) 2NH
NaOPh (cat.)

0 13

Ar L"OPh

- Ph
L-Pd 'C 12

Cl
+ CO, NaOPh

- PhCO 2Ph

L-Pd Ar-CIl

NaOPh

0

L-Pd "Ar
Cl

16

L = Cy2P PCY2

dccp

Ar-CI = C1

OMe

,Ar
L-Pd% 15

CI

Co

Scheme 3. Proposed reaction pathway for reactions involving acyclic 20 amines.

3.3 Conclusion

In conclusion, an efficient protocol for the aminocarbonylation of aryl chlorides at atmospheric

pressure of CO has been developed using an inexpensive, air-stable and commercially available ligand.

Electron-deficient, -neutral and -rich aryl chlorides were all successfully transformed to the

corresponding amides. Primary, a-branched primary, cyclic secondary, acyclic secondary, and aryl

amines were all productive in the reaction. Furthermore, the process tolerates a variety of functional

groups and is relatively mild. Additionally, in these studies we have discovered that sodium phenoxide is

a uniquely active basic additive, which can result in the formation of phenyl esters as intermediates in

route to amide products. Future studies will be directed at exploring the generality of this base in other

carbonylation protocols. Additional mechanistic studies will also be conducted to determine if phenyl

ester intermediates are also present in reactions with more nucleophilic amines, such as n-hexyl amine.
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3.4 Experimental

4.4.1 General

All reactions were carried out under a carbon monoxide atmosphere, purchased from Airgas.

Elemental analyses were performed by Atlantic Microlabs Inc., Norcross, GA. Unless otherwise noted,

THF, Et20, CH2Cl 2 and toluene were purchased from J.T. Baker in CYCLE-TAINER® solvent-delivery

kegs and vigorously purged with argon for 2 h. The solvents were further purified by passing them under

argon pressure through two packed columns of neutral alumina (for THF and Et 20) or through neutral

alumina and copper (II) oxide (for toluene and CH2CI2). 16 Dimethyl Sulfoxide was purchased from

Aldrich in a Sure/SealTM bottle, used as received and stored under Argon. Also, 4A molecular sieves

were purchased from Aldrich and activated (heat-gun or Bunsen burner heating under vacuum) prior to

use. The following aryl chlorides were purchased from the following companies and used as received or

purified as described: 4-n-butylchlorobenzene (Alfa Aesar, filtered through basic alumina prior to use), 4-

chlorotoluene (Aldrich, filtered through basic alumina prior to use), 3-chloroanisole (Acros, filtered

through basic alumina prior to use), 3-chlorobenzonitrile (Alrich, used as received), 3-

chlorobenzotrifluoride (Aldrich, distilled over CaH2), 4-chloroanisole (Acros, filtered through basic

alumina prior to use), 3-chloropyridine (Aldrich, filtered through basic alumina prior to use), 2-

chlorothiophene (Alfa Aesar, filtered through basic alumina prior to use), and 2-chloro-p-xylene (Aldrich,

used as received). 3-Chloro-tert-butylbenzoate was synthesized from 3-chlorobenzoic acid via the acid

chloride and following literature procedures. 7 The following amines were purchased from the following

companies and used as received or purified as described: morpholine (Aldrich or Alfa Aesar, used as

received from both sources), di-n-butylamine (Aldrich, distilled over CaH2), cyclohexanemethylamine

(Aldrich, distilled over CaHr), aniline (Aldrich, distilled over CaHr), 5-methylfurfurylamine (Aldrich,

distilled over CaH2), (R)-(+)-a-methylbenzylamine (Aldrich, distilled over NaOH), and n-hexylamine

(Aldrich, distilled over CaH2). The following ligands were purchased from the following companies, or

received as gifts, and used as received: 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene (Xantphos,
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Strem), 9,9-dimethyl-4,5-bis(di-t-butylphosphino)xanthene (t-Bu-Xantphos, Strem), (Cy 3P) 2PdCl 2

(Strem), 1,2-bis(dicyclohexylphosphino)ethane (dcpe*2HBF 4; Nippon), 1,3-

bis(dicyclohexylphosphino)propane (dcpp*2HBF 4; Nippon), 1,4-bis(dicyclohexylphosphino)butane

(dcpb*2HBF 4; Nippon), 1,1'-bis(di-isopropyl-phosphino)ferrocene (dippf; Strem). SPhos was

synthesized following the published procedure.' 8 Pd(OAc) 2 was purchased from Strem, Inc. or supplied

by Englehard. Sodium phenoxide, sodium 2,6-dimethylphenolate and sodium 2,4,6-tri-tert-butylphenolate

were all synthesized from the parent phenols using either Na(0) or NaH using modified literature

procedures and then stored in a glove box under nitrogen. 19 The following phenols were used as received:

phenol (Acros), 2,6-dimethylphenol (Acros) and 2,4,6-tri-tert-butylphenol (Aldrich). The aryl esters used

in the control experiments presented in Table S3 were all synthesized from 3-methoxybenzoyl chloride

(Aldrich, used as received) using modified literature procedures. 20 The bis-HBF4 salt of 1,3-

Bis(dicyclohexylphosphino)propane (dcpp.2HBF 4) was also synthesized using modified literature

procedures from dicyclohexylphosphine (Strem), 1,3-dibromopropane (Aldrich), n-butyl lithium

(Aldrich) and 48 wt % tetrafluoroboric acid (Aldrich). 2 1

All new compounds were characterized by 'H NMR, 13C NMR, and IR spectroscopy, in addition

to elemental analysis (Atlantic Microlabs, Inc) and/or low resolution mass spectroscopy. Nuclear

Magnetic Resonance spectra were recorded on a Varian Mercury 300 or Bruker 400 instrument. Infrared

spectra were recorded using a Perkin-Elmer 2000 FT-IR. All 1H NMR experiments are reported in 8

units, parts per million (ppm) downfield from tetramethylsilane (internal standard) and were measured

relative to the signals for residual chloroform (7.26 ppm), methylene chloride (5.32 ppm), benzene (7.16

ppm) or acetone (2.05 ppm) in the deuterated solvents. All 13C NMR spectra are reported in ppm relative

to deuterochloroform (77.23 ppm), deuteromethylene chloride (54.00 ppm), deuterobenzene (128.39

ppm) or deuteroacetone (29.84 ppm), and all were obtained with 'H decoupling. All 19F NMR spectra are

reported in ppm relative to trichlorofluoromethane (0 ppm). All 3 1P NMR spectra are reported in ppm

relative to H3PO 4 (0 ppm). All analyses by ReactlR were made using a Mettler Toledo iCl0 with a 6.3

mm 1-piece diamond (DiComp) tipped probe. Melting points (uncorrected) were obtained on a Mel-
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Temp capillary melting point apparatus. Gas Chromatographic analyses were performed on a Hewlett-

Packard 6890 gas chromatography instrument with an FID detector using 25 m x 0.20 mm capillary

column with cross-linked methyl siloxane as a stationary phase.

The conversions and yields in Tables 1, 2, 3, S1, and S2 were determined by G.C. using dodecane

as an internal standard, added during reaction workup. The conversions in Table 3 were also determined

using dodecane as an internal standard, added during reaction workup, and are uniformly > 99%. The

yields in Tables 3 are isolated yields (average of two runs). All compounds isolated were estimated to be

-95% pure as determined by 'H NMR and GC analysis and/or combustion analysis. The procedures

described in this section are representative, and thus the yields may differ from those shown in Table 3.

3.4.2 General Procedure: Pd-Catalyzed Aminocarbonylation ofArCl at Atmospheric Pressure

An oven-dried culture tube (18 x 150 mm, VWR) or screw-cap test tube equipped with a Teflon®

coated magnetic stir bar was charged with 4A molecular sieves then sealed with a 14/20 rubber septum

(inverted) or screw-cap and Teflon-lined septum. The tube was then evacuated, heated for - 1 min with

a Bunsen burner or for - 2-3 min with a heat gun to activate the molecular sieves, then the tube was

backfilled with argon and allowed to cool under argon. Then, the tube was taken into a glovebox (a

needle was inserted in the septum or the septum was removed upon entering the antechamber) and the

tube was charged with anhydrous NaOPh (2 mmol, 2 equiv., 232 mg). The tube was resealed inside the

glovebox and removed from the glovebox. All solid reagents were added, in the air, by briefly removing

the rubber septum: Pd(OAc)2 (2 mol %, 0.02 mmol, 0.02 equiv., 4.5 mg) and 1,3-

bis(dicyclohexylphosphino)propane (dcpp*2HBF 4) (4 - 5 mol %, 0.04 - 0.05 mmol, 0.04 - 0.05 equiv.,

24.5 - 30.6 mg). After the addition of all solid reagents, the rubber septum was secured by wrapping with

electrical tape. Next, all liquid reagents were added via syringe: DMSO (1 mL), aryl chloride (1 mmol, 1

equiv.; aryl chlorides which were solids at room temperature were added during the initial charge), and

amines (3 mmol, 3 equiv.). Once all reagents were added, a balloon was connected to the reaction vessel

using a short length of rubber tubing (- 1 in.), a needle adapter and a 20 G needle. The inert atmosphere

was then exchanged for carbon monoxide by briefly exposing the reaction vessel to vacuum (- 1-2 sec)
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and backfilling with carbon monoxide; the balloon was inflated with CO(g) directly following this

atmosphere exchange. The reaction tube was then submerged in a preheated oil bath (100 - 120 0C). The

reaction mixture was heated with vigorous stirring for 15 h or until the aryl halide had been completely

consumed as judged by GC analysis. The reaction mixture was then allowed to cool to room temperature,

diluted with methylene chloride or ethyl acetate (- 10 mL), filtered through a plug of celite (eluting with

methylene chloride or ethyl acetate) and concentrated under reduced pressure. The crude material

obtained was purified by flash chromatography on silica gel.

3.4.3 Reaction Optimization: Effect of Ligands and Solvents

Following the general procedure, a mixture of 4-n-butylchlorobenzene (1 mmol, 169 mg), Pd(OAc)2 (2

mol %, 0.02 mmol, 4.5 mg), DCPP (4 - 5 mol %, 0.04 - 0.05 mmol, 25 - 32 mg), morpholine (3 mmol,

262 tl), NaOPh (2 mmol, 230 mg), 4A molecular sieves (150 mg) and solvent (1 mL) was heated under

CO at 110 oC for 15 h. The reaction mixture was then allowed to cool to room temperature and dodecane

was added as an internal standard and the reaction mixture was diluted with methylene chloride (- 10

mL) and an aliquot was filtered through a plug of celite (eluting with methylene chloride) and analyzed

by GC. Some of this data is presented in the main text in Table 1.

Table S1. Effects of ligands and solvents on the atmospheric pressure aminocarbonylation of 4-n-

butylchlorobenzene with morpholine.
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n pBu CIl

n-Bu

O0

N
H

3 equiv.

2 mol % Pd(OAc)2
mol % Ligand
CO (1 atm)

2.0 equiv NaOPh
4 A Molecular Seives
solvent, 110 'C, 3 h

O

NK O
n-Bu ., K0o

Ligand

SPhos

Xantphos

t-Bu-Xantphos

(Cy3P)2PdCI2

dcpe

dcpp

dcpp

dcpb

dippf

dcpp

dcpp

dcpp

dcpp

dcpp

Solvent

DMSO

DMSO

DMSO

DMSO

DMSO

DMSO

DMSO

DMSO

DMSO

Sulfolane

dioxane

NMP

m-xylene

DMF

Ligand

4

4

4

4

4

4

5

4

4

5

5

5

5

5

Conversion

6

1

6

7

61

92

92

14

8

72

26

22

11

83

Yield

0

0

0

0

57

91

90

7

4

54

15

11

10

62a

)CY2P ,+ P Cy2 * 2HBF4

"eP(i-Pr)2 n
H12 FjF12  4- P(i-Pr) 2  UIJ.V =

dA

Xantphos: R = Ph cpp: n =

SPhos t-Bu-Xantphos: R = t-Bu dippf dcpb: n = 3

a14% n-butylbenzene, 6 % aryl amine product (no CO insertion).
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3.4.4 Reaction Optimization: Effect of Bases

Following the general procedure, a mixture of 3-chloroanisole (1 mmol, 123 mL), Pd(OAc)2 (2 mol %,

0.02 mmol, 4.5 mg), DCPP (4 mol %, 0.04 mmol, 25 mg), morpholine (3 mmol, 262 gl), base (2 mmol),

4A molecular sieves (150 mg) and DMSO (1 mL) was heated under CO at 120 oC for 15 - 18 h. The

reaction mixture was then allowed to cool to room temperature and dodecane was added as an internal

standard. Then the reaction mixture was diluted with methylene chloride (- 10 mL) and an aliquot was

filtered through a plug of celite (eluting with methylene chloride) and analyzed by GC.

3.4.5 Analysis and Characterization

0

n-Bu iN o

N-(4-n-Butylbezoyl)morpholine (Table 3, entry 1). Following the general procedure, a mixture of 4-n-

butylchlorobenzene (1 mmol, 0.168 g), morpholine (3.0 mmol, 3.0 equiv., 0.262 mL), Pd(OAc) 2 (2 mol

%, 0.02 mmol, 0.02 equiv., 4.5 mg), dcpp*2HBF 4 (5 mol %, 0.04 mmol, 0.04 equiv., 25 mg), sodium

phenoxide (2 mmol, 2 equiv., 0.32 g), 4A molecular sieves (150 mg), and DMSO (1.0 mL) was heated at

110 oC for 4 h. The crude product mixture was purified by flash chromatography on silica gel (50% ethyl

acetate in hexanes) to provide a mixture of rotamers of the title compound as a viscous oil (247 mg, 90%).

'H NMR (300 MHz, CD2C 2) d: 7.32-7.26 (m, 2H), 7.25-7.19 (m, 2H), 3.92-3.30 (brm, 8H), 2.67-2.59

(m, 2H), 1.66-1.52 (m, 2H), 1.43-1.25 (m, 2H), 0.92 (t, J= 7.3 Hz, 3H). 3C NMR (75 MHz, CD 2C 2) d:

170.3, 145.1, 133.3, 128.7, 127.7, 67.1, 48.3, 42.8, 35.7, 33.8, 22.7, 14.2. IR (neat, cm-'): 2957, 2928,

2857, 1633, 1567, 1511, 1455, 1427, 1362, 1300, 1278, 1258, 1204, 1182, 1155, 1115, 1067, 1067, 1026,

1013, 934, 894, 841, 759, 586, 556. Anal. Calcd for C 5H2NNO2: C, 72.84; H, 8.56. Found: C, 72.78 ;H,

8.56.
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OaMeO, N

N-(3-Methoxybezoyl)morpholine (Table 3, entry 3). Following the general procedure, a mixture of 3-

chloroanisole (0.98 mmol, 0.12 mL), morpholine (3.09 mmol, 3.09 equiv., 0.27 mL), Pd(OAc) 2 (2 mol %,

0.02 mmol, 0.02 equiv., 4.5 mg), dcpp*2HBF 4 (4 mol %, 0.04 mmol, 0.04 equiv., 25 mg), sodium

phenoxide (2 mmol, 2 equiv., 0.23 g), 4A molecular sieves (150 mg), and DMSO (1.0 mL) was heated at

100 TC for 15 h. The crude product mixture was purified by flash chromatography on silica gel (50%

ethyl acetate in hexanes) to provide the title compound as a viscous oil (194.6 mg, 90%). 1H NMR (300

MHz, CDCI3) d: 7.38-7.27 (m, 1H), 7.03-6.90 (m, 3H), 3.83 (s, 3H), 3.90-3.69 (bs, 4H), 3.69-3.55 (bs,

2H), 3.55-3.30 (bs, 2H). 13C NMR (75 MHz, CDCl 3) d: 170.2, 159.8, 136.7, 129.8, 119.1, 115.7, 112.6,

67.0, 55.5, 48.3, 42.7. IR (neat, cm'): 2855, 1636, 1462, 1432, 1289, 1114, 1023, 749. A satisfactory

elemental analysis was not obtained for this compound:Anal. Calcd for C12H15sNO3: C, 65.14; H, 6.83.

Found: C, 64.27; H, 6.85. The 1H NMR spectrum follows.
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O
MeO 4Me

SH 4

N-Hexyl-3-methoxybenzamide (Table 3, entry 5). Following the general procedure, a mixture of 3-

chloroanisole (0.98 mmol, 0.120 mL), n-hexylamine (3.03 mmol, 3.03 equiv., 0.40 mL), Pd(OAc) 2 (2 mol

%, 0.02 mmol, 0.02 equiv., 4.5 mg), dcpp*2HBF 4 (4 mol %, 0.04 mmol, 0.04 equiv., 25 mg), sodium

phenoxide (2 mmol, 2 equiv., 0.23 g), 4A molecular sieves (150 mg), and DMSO (1.0 mL) was heated at

100 TC for 3 h. The reaction mixture was filtered through Celite with methylene chloride. The solution

was rinsed with IM NaOH and the solvent was removed in vacuo. The residue was purified by flash

chromatography on silica gel (Biotage, 6-50% ethyl acetate in hexane gradient) to provide the title

compound as a viscous oil (217.5 mg, 94%). 'H NMR (300 MHz, CDCl3) d: 7.38-7.33 (m, 1H), 7.31-

7.22 (m, 2H), 7.04-6.93 (min, 1H), 6.60-6.40 (bin, 1H), 3.80 (s, 3H), 3.44-3.34 (m, 2H), 1.64-1.49 (m, 2H),

1.40-1.19 (m, 6H), 0.86 (t, J = 6.6 Hz, 3H). 13C NMR (75 MHz, CDCI3) d: 167.6, 159.9, 136.5, 129.7,

118.9, 117.6, 112.5, 55.5, 40.3, 31.7, 29.7, 26.8, 22.7, 14.2. IR (neat, cm-1): 3315, 2930, 1637, 1583,

1544, 1488, 1310, 1245, 1044, 754, 690. Anal. Calcd for C14H21NO2: C, 71.46; H, 8.99. Found: C,

71.49; H, 9.12.

0
MeO NN I4Me

o H

N-Hexyl-3-methoxybenzamide (Table 3, entry 6). Following the general procedure, a mixture of 3-

chloroanisole (1 mmol, 123 pl), Pd(OAc)2 (0.5 mol %, 0.005 mmol, 1.1 mg), dcpp*2H-IBF 4 (2 mol %,

0.025 rmmol, 12.5 mg), n-hexylamine (3 mmol, 396 pl), NaOPh (2 mmol, 230 mg), 4A molecular sieves

(150 mg), and DMSO (1 mL) was heated under CO at 120 oC for 4 h. The crude product was filtered

through celite and purified by flash column chromatography on silica gel (20 % EtOAc in hexanes) to
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provide the title compound as a colorless oil (228 mg, 97%). 'H NMR (400 MHz, CDCl 3) d: 7.39-7.36

(min, 1H), 7.35- 7.32 (d, J= 7.95, 1H), 7.30- 7.26 (m, 1H), 7.06- 7.03 (ddd, J= 8.07, 2.64, 1.03, 1H), 6.15

(br s, 1H), 3.89 (s, 3H), 3.49 - 3.44 (q, J = 6.73, 2H), 1.66- 1.59 (quintet, J = 7.44, 2H), 1.42-1.31 (m,

6H), 0.93-0.90 (t, J= 6.94, 3H); 13C NMR (100 MHz, CDCI3) d: 167.29, 159.76, 136.34, 129.48, 118.44,

117.46, 112.21, 55.38, 40.09, 31.47, 29.58, 26.63, 22.54, 14.01; IR (KBr, cm-1 ) 3316, 2930, 1638, 1583;

Anal. Calcd. for C14H 21NO 2: C, 71.46; H, 8.99. Found: C, 71.47; H, 9.09.

O
MeO N N(Me)Cy

N-cyclohexyl-3-methoxy-N-methylbenzamide (Table 3, entry 7). Following the general procedure, a

mixture of 3-chloroanisole (0.98 mmol, 0.120 mL), N-methylcyclohexylamine (3.83 mmol, 3.83 equiv.,

0.50 mL), Pd(OAc) 2 (2 mol %, 0.02 mmol, 0.02 equiv., 4.5 mg), dcpp*2HBF4 (4 mol %, 0.04 mmol, 0.04

equiv., 25 mg), sodium phenoxide (2 mmol, 2 equiv., 0.23 g), 4A molecular sieves (150 mg), and DMSO

(1.0 mL) was heated at 120 TC for 15 h. The crude product was dissolved in methylene chloride and

filtered through Celite. Solvent was removed and the residue was purified by flash chromatography on

silica (Biotage, 8-66% ethyl acetate in hexane gradient) to provide a mixture of rotamers (59:41 ratio) of

the title compound as a viscous oil (221.0 mg, 91%). 'H NMR (300 MHz, CDCI3) d: 7.32-7.19 (min, 1H),

6.97-6.80 (m, 3H), 6.64-6.33 (bin, 0.36H), 3.79 (s, 3H), 3.56-3.32 (bin, 0.55H), 2.93 (bs, 1.76H), 2.75 (bs,

1.27H), 1.91-1.30 (bm, 8H), 1.18-0.89 (bin, 2H). "3C NMR (75 MHz, CDCl3) d: 171.5, 159.6, 138.8,

138.5, 129.6, 118.9, 118.3, 115.1, 112.1, 111.6, 58.3, 55.4, 52.8, 32.0, 30.9, 29.7, 27.6, 25.7, 25.5, 25.2

(observed complexity due to presence of rotamers, final assignments have not been made). IR (neat, cm

'): 2930, 1632, 1453, 1404, 1324, 1258, 1044, 797, 753. A satisfactory elemental analysis was not

obtained for this compound: Anal. Calcd for C15isH21NO2: C, 72.84; H, 8.56. Found: C, 72.24; H, 8.56.

The 'H NMR spectrum follows.
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0
MeO ~N(n-Bu)2

N,N-dibutyl-3-methoxybenzamide (Table 3, entry 4). Following the general procedure, a mixture of 3-

chloroanisole (0.98 mmol, 0.120 mL), dibutylamine (2.97 mmol, 2.97 equiv., 0.50 mL), Pd(OAc) 2 (2 mol

%, 0.02 mmol, 0.02 equiv., 4.5 mg), dcpp.2HBF 4 (4 mol %, 0.04 mmol, 0.04 equiv., 25 mg), sodium

phenoxide (2 mmol, 2 equiv., 0.23 g), 4A molecular sieves (150 mg), and DMSO (1.0 mL) was heated at

120 oC for 15 h. The crude product was dissolved in methylene chloride and filtered through Celite. The

organic solution was rinsed with IM NaOH and the solvent was removed in vacuo. The residue was

purified by flash chromatography on silica gel (Biotage, 5-44% ethyl acetate in hexane) to provide the

title compound as a viscous oil (219.8 mg, 85%). 1H NMR (300 MHz, CDC13) d: 7.31-7.22 (min, 1H),

6.93-6.82 (m, 3H), 3.79 (s, 3H), 3.53-3.35 (bm, 2H), 3.26-3.05 (bm, 2H), 1.74-1.25 (min, 6H), 1.22-1.03

(min, 2H), 1.03-0.87 (bm, 3H), 0.86-0.66 (bm, 3H). 13C NMR (75 MHz, CDCl3) d: 171.4, 159.6, 138.7,

129.6, 118.7, 115.0, 111.9, 55.4, 48.8, 44.5, 30.9, 29.7, 20.4, 19.9, 14.1, 13.8. IR (neat, cmu'): 2958,

1635, 1580, 1466, 1429, 1289, 1267, 1223, 1103, 1046, 792, 753. A satisfactory elemental analysis was

not obtained for this compound: Anal. Calcd for C16H25NO2: C, 72.96; H, 9.57. Found: C, 71.91; H, 9.54.

The 'H NMR spectrum follows.
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0

Me'N(n-Bu)2

Mee~

N,N-dibutyl-4-methylbenzamide (Table 3, entry 2). Following the general procedure, a mixture of 4-

chlorotoluene (1.01 mmol, 0.120 mL), dibutylamine (2.97 mmol, 2.97 equiv., 0.50 mL), Pd(OAc) 2 (2 mol

%, 0.02 mmol, 0.02 equiv., 4.5 mg), dcpp*2HBF 4 (4 mol %, 0.04 mmol, 0.04 equiv., 25 mg), sodium

phenoxide (2 mmol, 2 equiv., 0.23 g), 4A molecular sieves (150 mg), and DMSO (1.0 mL) was heated at

120 TC for 15 h. The crude product was dissolved in dichloromethane and rinsed with a IM NaOH

solution. Solvent was removed in vacuo and the residue was purified by flash chromatography on silica

(Biotage, 3-28% ethyl acetate in hexanes) to provide the title compound as a viscous oil (200.7 mg, 80%).

'H NMR (300 MHz, CDCl 3) d: 7.26-7.19 (m, 2H), 7.19-7.10 (m, 2H), 3.61-3.31 (bm, 2H), 3.31-3.00 (bm,

2H), 2.33 (s, 3H), 1.76-1.03 (bmn, 8H), 1.02-0.86 (bm, 3H), 0.86-0.61 (bm, 3H). 13C NMR (75 MHz,

CDCl 3) d: 171.9, 139.0, 134.5, 129.0, 126.6, 48.9, 44.5, 30.9, 29.7, 21.4, 20.4, 19.8. 14.0, 13.8. IR (neat,

cm-'): 2958, 1635, 1466, 1424, 1297, 829, 754. Anal. Calcd for C, 6H25NO: C, 77.68; H, 10.19. Found:

C, 77.41; H, 10.15.

0

,N Ph
MeOC H

N-benzyl-4-methoxybenzamide (Table 3, entry 9). Following the general procedure, a mixture of 4-

chloroanisole (1 mmol, 123 [l), Pd(OAc) 2 (2 mol %, 0.02 mmol, 4.5 mg), dcpp.2HBF4 (4 mol %, 0.04

mmol, 25 mg), benzylamine (3 mmol, 328 pl), NaOPh (2 mmol, 230 mg), 4A molecular sieves (150 mg),

and DMSO (1 mL) was heated under CO at 1 10 TC for 15 h. The crude product was filtered through celite

and purified by flash column chromatography on silica gel (20% EtOAc in hexanes) to provide the title
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compound as a white solid (237 mg, 98 %). mp 129-130 oC. 'H NMR (400 MHz, CDCl3) d: 7.79-7.75 (dt,

J= 8.87, 2.47, 2H), 7.36- 7.27 (m, 5H), 6.93- 6.90 (dt, J= 8.79, 2.38, 2H), 6.51 (br s, 1H), 4.63-4.62 (d, J

= 5.68, 2H), 3.84 (s, 3H); 13C NMR (100 MHz, CDC13) d: 166.90, 162.14, 138.41, 128.79, 128.69,

127.84, 127.46, 126.57, 113.68, 55.38, 43.97; IR (KBr, cm') 3267, 1632, 1256, 1030. A satisfactory

elemental analysis was not obtained for this compound: Anal. Calcd for Ci5HisNO 2: C, 74.67; H, 6.27.

Found: C, 72.04; H, 6.07. The 'H NMR spectrum follows.
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0 Ph

N Me

(S)-N-(1-phenylethyl)thiophene-2-carboxamide (Table 3, entry 13). Following the general procedure,

a mixture of 2-chlorothiophene (1 mmol, 92 [xl), Pd(OAc) 2 (2 mol %, 0.02 mmol, 4.5 mg), dcpp*2HBF 4

(4 mol %, 0.04 mmol, 25 mg), (R)-N-a-methylbenzylamine (99% ee) (3 mmol, 382 Rl), NaOPh (2 mmol,

230 mg), 4A molecular sieves (150 mg), and DMSO (1 mL) was heated under CO at 100 TC for 15 h. The

crude product was filtered through celite and purified by flash column chromatography on silica gel (20%

EtOAc in hexanes) to provide the title compound as a white solid (217 mg, 94 %). mp 127-128 oC. 'H

NMR (400 MHz, d6-acetone) d: 8.20- 8.18 (br d, J= 7.17, 1H), 7.83-7.82 (dd, J= 3.74, 1.1, 1H), 7.66-

7.65 (dd, J= 5.01, 1.1, 1H), 7.46- 7.44 (min, 2H), 7.35- 7.31 (t, J= 7.56, 2H), 7.26 - 7.22 (tt, J= 7.32,

1.25, 1H), 7.11 - 7.09 (dd, J= 5.01, 3.75, 1H), 5.32- 5.28 (quin, J= 7.46, 1H), 1.55 - 1.53 (d, J= 7.07,

3H); '3C NMR (100 MHz, d6-acetone) d: 160.61, 144.52, 140.46, 130.24, 128.27, 127.57, 127.53,

126.76, 126.18, 48.84, 21.49; IR (KBr, cm-') 3281, 3085, 2979, 1620, 1548. Anal. Calcd. for C13H, 3NOS:

C, 67.50; H, 5.66. Found: C 67.45; H, 5.63. The product was found to be of > 99% ee as determined by

HPLC analysis using a Chiracel OJ column with a 15% IPA/ hexane mobile phase, and a flow rate of 1

mL/min [a]21 +11.7 (c 0.62, CHCl 3).

0
S NtN Me
\ie H 4

N-hexylthiophene-2-carboxamide (Table 3, entry 12). Following the general procedure, a mixture of 2-

chlorothiophene (1 mmol, 92 gl), Pd(OAc) 2 (2 mol %, 0.02 mmol, 4.5 mg), dcpp*2HBF 4 (4 mol %, 0.04

mmol, 25 mg), hexylamine (3 mmol, 396 pl), NaOPh (2 mmol, 230 mg), 4A molecular sieves (150 mg),

and DMSO (1 mL) was heated under CO at 100 TC for 15 h. The crude product was filtered through celite

and purified by flash column chromatography on silica gel (20 % EtOAc in hexanes) to provide the title
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compound as a colorless oil (209 mg, 99%). 'H NMR (400 MHz, CDCl3) d: 7.51-7.50 (dd, J= 3.72, 1.17,

1H), 7.48- 7.47 (dd, J= 5.00, 1.17, 1H), 7.10- 7.08 (dd, J= 4.98, 3.69, 1H), 6.01 (br s, 1H), 3.47- 3.42 (q,

J = 6.76, 2H), 1.66-1.59 (m, 2H), 1.41-1.31 (m, 6H), 0.93- 0.89 (t, J= 6.78, 3H); 13C NMR (100 MHz,

CDCl 3) d: 161.77, 139.13, 129.56, 127.74, 127.52, 40.01, 31.45, 29.62, 26.58, 22.52, 14.00; IR (KBr, cm

') 3310, 2956, 1625, 1551, 1307; Anal. Calcd. for CIIH,7NOS: C, 62.52; H, 8.11. Found: C 62.55; H,

8.21.

O

N Me

N

N-((5-methylfuran-2-yl)methyl)pyridine-3-carboxamide (Table 3, entry 10). Following the general

procedure, a mixture of 3-chloropyridine (1 mmol, 94 pl), Pd(OAc)2 (2 mol %, 0.02 mmol, 4.5 mg),

dcpp*2HBF 4 (4 mol %, 0.04 mmol, 25 mg), 5-methylfurfurylamine (3 mmol, 334 p.l), NaOPh (2 mmol,

230 mg), 4A molecular sieves (150 mg), and DMSO (1 mL) was heated under CO at 100 TC for 15 h. The

crude product was filtered through celite and purified by flash column chromatography on silica gel

(EtOAc) to provide the title compound as a white solid (198 mg, 92 %). mp 94-95 TC. 'H NMR (400

MHz, CDCI3) d: 8.93 (d, J= 2.15, 1H), 8.57-8.56 (dd, J= 4.80, 1.42, 1H), 8.12- 8.10 (dt, J= 7.96, 1.83,

1H), 7.73-7.71 (t, J = 4.72, 1H), 7.29- 7.26 (dd, J = 7.90, 4.86, 1H), 6.09 (d, J = 2.99, 1H), 5.82 (d, J =

2.87, 1H), 4.51 (d, J= 5.36, 2H), 2.17 (s, 3H); 13C NMR (100 MHz, CDCl 3) d: 165.44, 151.92, 151.85,

148.91, 148.12, 135.29, 130.02, 123.33, 108.73, 106.28, 37.02, 13.42; IR (KBr, cm 1) 3305, 3072, 1642,

1545; Anal. Calcd. for CI2H12N20 2: C, 66.65; H, 5.59. Found: C 66.43; H, 5.61.

O
NC N Ph

-H
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N-benzyl-3-cyanobenzamide (Table 3, entry 8). Following the general procedure, a mixture of 3-

chlorobenzonitrile (1.00 mmol, 0.137 g), benzylamine (3.02 mmol, 3.02 equiv., 0.33 mL), Pd(OAc) 2 (2

mol %, 0.02 mmol, 0.02 equiv., 4.5 mg), dcpp*2HBF 4 (4 mol %, 0.04 mmol, 0.04 equiv., 25 mg), sodium

phenoxide (2 mmol, 2 equiv., 0.23 g), 4A molecular sieves (150 mg), and DMSO (1.0 mL) was heated at

100 TC for 15 h. The crude product was purified by flash chromatography on silica gel (Biotage, 8-66%

ethyl acetate in hexane gradient) to provide the title compound as a white solid (151.9 mg, 64%). m.p.=

119 oC. 'H NMR (300 MHz, CDCl3) d: 8.09-8.05 (m, 1H), 8.05-7.97 (m, 1H), 7.77-7.69 (m, 1H), 7.52 (t,

J = 7.8 Hz, 1H), 7.37-7.24 (m, 5H), 7.16-7.00 (bt, 1H), 4.59 (d, J = 5.6 Hz, 2H). 13C NMR (75 MHz,

CDCl 3) d: 165.5, 137.8, 135.6, 134.8, 131.6, 131.0, 129.7, 128.9, 128.0, 127.9, 118.2, 112.8. IR (neat,

cm'): 3308, 3066, 2232, 1645, 1541, 1301, 750, 699, 684. Anal. Calcd for C 5sHI2N 20: C, 76.25; H, 5.12.

Found: C, 76.01; H, 5.04.

0 0

t-BuO N

tert-butyl 3-(morpholine-4-carbonyl)benzoate (Table 3, entry 14). Following the general procedure, a

mixture of 3-chloro-tert-butylbenzoate (1.00 mmol, 0.213 g), morpholine (3.0 mmol, 3.0 equiv., 0.262

mL), Pd(OAc) 2 (2 mol %, 0.02 mmol, 0.02 equiv., 4.5 mg), dcpp*2HBF 4 (5 mol %, 0.05 mmol, 0.05

equiv., 32 mg), sodium phenoxide (2 mmol, 2 equiv., 0.23 g), 4A molecular sieves (150 mg), and DMSO

(1.0 mL) was heated at 100 oC for 15 h. The crude product was purified by flash chromatography on

silica gel (25% ethyl acetate in hexane, gradient) to provide the title compound as a viscous, colorless oil

(246 mg, 84%). 'H NMR (300 MHz, CD 2C 2) d: 8.06-8.01 (m, IH), 7.99-7.96 (m, 1H), 7.58-7.52 (m,

1H), 7.51 (m, 1H), 3.93-3.29 (brm, 8H), 1.79 (s, 9H). "3C NMR (75 MHz, CD 2C12) d: 169.5, 165.1, 136.2,

132.9, 131.3, 130.8, 128.9, 128.4, 81.7, 67.1, 48.6, 42.9, 28.3. IR (neat, cm'): 2976, 2929, 2867, 1714,

1638, 1582, 1481, 1457, 1437, 1421, 1393, 1368, 1308, 1272, 1250, 1155, 1115, 1082, 1069, 1026, 946,
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912, 867, 849, 125, 775, 761, 736, 696, 669, 637, 603, 563. Anal. Calcd for CI 6H2 1NO4 : C, 65.96; H,

7.27. Found: C, 65.99; H, 7.21.

O

N.PhH

N

N-phenylpyridine-3-carboxamide (Table 3, entry 11). Following the general procedure, a mixture of 3-

chloropyridine (1 mmol, 94 IlI), Pd(OAc) 2 (2 mol %, 0.02 mmol, 4.5 mg), dcpp*2HBF 4 (4 mol %, 0.04

mmol, 25 mg), aniline (3 mmol, 273 [l), NaOPh (2 mmol, 230 mg), 4A molecular sieves (150 mg), and

DMSO (1 mL) was heated under CO at 100 TC for 15 h. The crude product was filtered through celite and

purified by flash column chromatography on silica gel (gradient elution: 50% EtOAc in hexanes - EtOAc)

to provide the title compound as a white solid (185 mg, 94 %). Mp 119 -120 TC. 'H NMR (400 MHz,

CDCl 3) d: 9.05 (s, 1H), 8.76 -8.69 (m, 2H), 8.17 -8.16 (d, J= 6.68, 1H), 7.65 - 7.63 (d, J= 7.89, 2H),

7.36- 7.32 (m, 3H), 7.18- 7.15 (t, J= 7.37, 1H); '3C NMR (100 MHz, CDC13) d: 164.22, 152.21, 147.99,

137.55, 135.46, 130.85, 129.07, 125.01, 123.63, 120.65; IR (KBr, cm-1) 3346, 1652, 1524; Anal. Calcd.

for Cl2H10N20: C, 72.71; H, 5.08. Found: C, 72.39; H, 5.00.

O
Me N 4•• NMe

I MH 4
le Me

N-hexyl-2,5-dimethylbenzamide (Table 3, entry 15). Following the general procedure, a mixture of 2-

chloro-l,4-dimethylbenzene (1.01 mmol, 0.135 mL), n-hexylamine (3.03 mmol, 3.03 equiv., 0.40 mL),

Pd(OAc) 2 (2 mol %, 0.02 mmol, 0.02 equiv., 4.5 mg), dcpp*2HBF 4 (4 mol %, 0.04 mmol, 0.04 equiv., 25

mg), sodium phenoxide (2 mmol, 2 equiv., 0.23 g), 4A molecular sieves (150 mg), and DMSO (1.0 mL)

was heated at 110 TC for 15 h. The crude product was dissolved in dichloromethane and rinsed with a 1M

NaOH solution. Solvent was removed in vacuo and the residue was purified by flash chromatography on
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silica (Biotage, 5-40% ethyl acetate in hexanes) to provide the title compound as a white solid (200.3 mg,

85%). mp = 87 oC. 'H NMR (300 MHz, CDCl3) d: 7.10 (s, 1H), 7.10-7.00 (m, 2H), 6.04 (bt, 1H), 3.34 (q,

J= 7.4 Hz, 2H), 2.34 (s, 3H), 2.28 (s, 3H), 1.62-1.45 (m, 2H), 1.41-1.21 (m, 6H), 0.89 (t, J= 6.8 Hz, 3H).

13C NMR (75 MHz, CDCl3) d: 170.4, 136.8, 135.2, 132.6, 130.8, 130.3, 127.3, 39.8, 31.6, 29.7, 26.7,

22.7, 20.9, 19.3, 14.1. IR (neat, cm'): 3289, 2926, 1638, 1540, 1318, 816, 726. Anal. Calcd for

C 15H23NO: C, 77.21; H, 9.93. Found: C, 77.27; H, 9.98.

3.4.6 Synthesis of Aryl Esters

NOi2

OMe

Phenyl 3-methoxybenzoate. Following a modified literature procedure: 20 An oven-dried 300 mL round

bottom flask equipped with a Teflon® coated magnetic stir bar was sealed with a rubber septum, then

purged with and cooled under nitrogen gas and then charged with 3-methoxybenzoyl chloride (33.8

mmol, 5.77 g, 4.75 mL), triethylamine (37.2 mmol, 6.84 g, 9.4 mL), methylene chloride (40 mL) and

cooled to 0 oC in an ice water bath. Next, phenol (37.2 mmol, 3.5 g) was added to the cooled reaction

mixture as a solid in three equal portions by briefly removing the septum. The reaction mixture was

stirred over night and allowed to slowly warm to room temperature over this time. After approximately

12 h, water was added; the organic phase was separated and extracted with methylene chloride (2 x 50

mL). The combined organics were dried over MgSO 4 and purified by flash column chromatography on

silica gel (5 % EtOAc in hexanes) to provide the title compound as a slightly orange solid (5.3 g, 69 %).

mp = 53-54 oC 'H NMR (300 MHz, CDCl3) d: 7.85-7.80 (m, 1H), 7.73-7.71 (m, 1H), 7.48-7.39 (m, 3H),

7.32-7.17 (m, 4H), 3.89 (s, 3H). 13"C NMR (75 MHz, CDCI3) d: 165.2, 159.8, 151.1, 131.0, 129.8, 129.7,

126.1, 122.7, 121.8, 120.3, 114.6, 55.6. IR (neat, cm-'): 1729, 1599, 1486, 1467, 1457, 1431, 1327, 1278,

1221,1196,1165,1085,1038,993,925,899,872,841,806,788, 749,743,691,679.
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0 Me-o

OMeMe
OMe

2,6-Dimethylphenyl 3-methoxybenzoate. Following the general aminocarbonylation procedure, a

mixture of 3-chloroanisole (0.98 mmol, 0.120 mL), dibutylamine (2.97 mmol, 2.97 equiv., 0.50 mL),

Pd(OAc) 2 (2 mol %, 0.02 mmol, 0.02 equiv., 4.5 mg), dcpp*2HBF 4 (4 mol %, 0.04 mmol, 0.04 equiv., 25

mg), sodium 2,6-dimethylphenoxide (2 mmol, 2 equiv., 0.29 g), and DMSO (1.0 mL) was heated at 120

TC for 15 h. The crude product was dissolved in methylene chloride and filtered through Celite. The

product was purified by flash chromatography on silica gel (Biotage, 2-18% ethyl acetate in hexane

gradient) to provide the title compound as a white solid (207.2 mg, 82%). mp = 65 oC. 'H NMR (300

MHz, CDCl 3) d: 7.94-7.85 (min, 1H), 7.82-7.75 (mn, 1H), 7.47 (t, J= 8.1 Hz, 1H), 7.26-7.19 (m, 1H), 7.19-

7.07 (m, 3H), 3.92 (s, 3H), 2.24 (s, 6H). "3C NMR (75 MHz, CDCl3) d: 164.4, 159.9, 148.5, 130.7, 130.5,

129.8, 128.8, 126.1, 122.7, 120.3, 114.7, 55.7, 16.6. IR (neat, cmi): 2925, 1733, 1586, 1488, 1276, 1221,

1170, 1096, 1041, 770, 751. Anal. Calcd for C,6HIA60 3: C, 74.98; H, 6.29. Found: C, 74.81; H, 6.25.

n Me

2,6-Dimethylphenyl 3-methoxybenzoate. This compound was also synthesized following a modified

literature procedure: 20 An oven-dried 50 mL round bottom flask equipped with a Teflon® coated magnetic

stir bar and reflux condenser was sealed with a rubber septum, then purged with and cooled under

nitrogen gas and then charged with 3-methoxybenzoyl chloride (15 mmol, 2.56 g, 2.11 mL), triethylamine

(30 mmol, 3.04 g. 4.18 mL), THF (15 mL) and cooled to 0 oC in an ice water bath. Next, 2,6-dimethyl

phenol (22.5 mmol, 2.75 g) was added to the cooled reaction mixture as a solid in three equal portions by

briefly removing the septum. The reaction vessel was then placed in a preheated oil bath (c.a. 70 'C) and
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the reaction mixture was stirred over night at reflux. After approximately 12 h, the reaction mixture was

cooled and water was added; the organic phase was separated and extracted with ethyl acetate (2 x 50

mL). The combined organics were dried over MgSO 4 and purified by flash column chromatography on

silica gel (5 % EtOAc in hexanes) to provide the title compound as an off-white solid (2.9 g, 77 %). mp =

64-65 oC. 'H NMR (300 MHz, CDCI3) d: 7.94-7.85 (m, 1H), 7.82-7.75 (m, 1H), 7.47 (t, J= 8.1 Hz, 1H),

7.26-7.19 (m, 1H), 7.19-7.07 (m, 3H), 3.92 (s, 3H), 2.24 (s, 6H). "3C NMR (75 MHz, CDCl3) d: 164.4,

159.9, 148.5, 130.7, 130.5, 129.8, 128.8, 126.1, 122.7, 120.3, 114.7, 55.7, 16.6. IR (neat, cm-'): 2925,

1733, 1586, 1488, 1276, 1221, 1170, 1096, 1041,770,751.

2,4,6-tri-tert-butylphenyl 3-methoxybenzoate. Following a modified literature procedure: 20 An oven-

dried 100 mL round bottom flask equipped with a Teflon® coated magnetic stir bar and reflux condenser

was sealed with a rubber septum, then purged with and cooled under nitrogen gas. This glassware was

then brought into a glove box under nitrogen and was charged with NaH (24 mmol, 0.61 g, 95 %

Aldrich). Then, 2,4,6-tri-tert-butyl phenol (22.5 mmol, 5.91 g) was added to the reaction mixture as a

solid in three equal portions by briefly removing the septum; THF (20 mL) was then added and the

reaction mixture was stirred under nitrogen until bubble evolution ceased. Next, 3-methoxybenzoyl

chloride (15 mmol, 2.56 g, 2.11 mL) was added via syringe and rinsed down the condenser with

additional THF (10 mL); the reaction vessel was then placed in a preheated oil bath (c.a. 70 'C) and the

reaction mixture was stirred over night at reflux. After approximately 12 h, the reaction mixture was

cooled and water was added; the organic phase was separated and extracted with ethyl acetate (2 x 50

mL). The combined organics were dried over MgSO 4 and purified by flash column chromatography on

silica gel (5 % EtOAc in hexanes) to provide the title compound as an off-white solid (2.7 g, 46 %). mp=
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154-155 oC 'H NMR (300 MHz, CDCI3) d: 7.89-7.84 (mn, 1H), 7.77-7.75 (m, 1H), 7.51-7.44 (m, 1H), 7.39

(s, 2H), 7.24-7.17 (m, 1H), 3.91 (s, 3H11), 1.36 (s, 9H), 1.35 (s, 18H). "3C NMR (75 MHz, CDCl3) d:

172.3, 166.9, 160.0, 147.4, 145.9, 141.6, 132.2, 130.0, 123.6, 123.0, 119.8, 115.2, 55.7, 35.8, 35.0, 31.9,

31.8. IR (neat, cm-'): 2963, 1734, 1600, 1587, 1487, 1465, 1428, 1394, 1363, 1322, 1275, 1209, 1190,

1109, 1043, 995, 906, 879, 844, 751, 734, 682, 668, 648. Anal. Calcd for C 26H 360 3: C, 78.75; H, 9.15.

Found: C, 78.66; H, 9.19.

3.4.7 Preparation of the Ligand Salt 1,3-bis(dicyclohexylphosphino)propane*2HBF 4 (7)

The ligand obtained from Nippon Chemical Co. was used for the experiments published in the main text;

however, 7 can also be prepared following modified literature procedures: 2 1 A 200 mL round bottom flask

equipped with a Teflon® coated magnetic stir bar was evacuated, flame dried under vacuum, back filled

with nitrogen gas and cooled under nitrogen gas. Once cool, the flask, a 24/ 40 rubber septum, 10 mL

plastic disposable syringe (Normnject) and 21 G disposable needle were taken into a glove box under

nitrogen. In the glove box, the flask was charged with dicyclohexylphosphine (34.6 mmol, 2.2 equiv., 7

mL) using the syringe, the flask was sealed with the rubber septum and removed from the glove box. The

flask was kept under a positive pressure of nitrogen, THF (70 mL) was added and the flask was cooled to

0 'C in an ice water bath. Next, n-butyl lithium (36.3 mmol, 2.31 equiv., 14.8 mL of a 2.45 M solution in

hexanes) was added to the stirring, cooled solution drop-wise via syringe over -10 min and the solution

was allowed to stir for 1 h. Then, 1,3-dibromopropane (15.7 mmol, 1 equiv., 3.18 g, 1.6 mL; filtered

through a plug of basic Alumina immediately prior to use) was added to the stirring, cooled solution drop

wise via syringe. The solution was allowed to stir and slowly warm to 10 'C; then, the ice water bath was

removed and the solution was stirred at room temperature for an additional 5.5 h. Next, the solution was

cooled to 0 'C using an ice water bath and HBF 4 (5 mL, 7g of 48 wt% solution in water, 3.36 g HBF 4,

38.3 mmol, 2.4 equiv.) was added SLOWLYvia syringe to the stirring, cooled solution. This solution was

allowed to stir for -5 min after the addition was complete, then the bath was removed and the solution

was allowed to stir for an additional 20 - 30 min at room temperature. Then the crude reaction mixture

was transferred to a 500 mL sparatory funnel, CH 2C12 (-150 mL) was added and deionized water (-150
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mL) was added. The phases were separated and the aqueous phase was extracted with CH 2 CL2 (2 x 100

mL). The organics were combined, dried over MgSO 4, filtered and concentrated in vacuo. This crude

material was transferred to a 200 mL round bottom; significant foaming occurred upon exposure to high

vacuum and care was taken to avoid over filling the flask. After extended exposure to the high vacuum

(-48 h), the foam solidified and the crude material could be scraped from the flask to provide the crude

bis-HBF4 salt of the ligand as an off-white solid (8.16 g, 85%; crude) mp = 154-155 TC 'H NMR (300

MHz, CDCl 3) d: 5.9 (brd, JP-H = 471 Hz, 2H; the individual peaks are broad singlets located at 6.75 ppm

and 5.18 ppm), 2.80-2.35 (brm, 6H), 2.35-2.1 (brm, 2H), 2.35-1.6 (brm, 22H), 1.6-1.1 (brm, 20H). 13C

NMR (75 MHz, CDCI3) d: 28.9, 28.4, 27.7, 27.6, 27.5, 27.3, 26.9, 26.7, 26.5, 26.4, 26.3, 26.3, 25.9, 25.4.

31P NMR (121 MHz, C6D6) 8: 25.1.
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3.4.8 General Procedures for Kinetic Experiments

The glovebox (Vacuum Atmospheres Nexus One) was nitrogen filled and the internal atmosphere

maintained below 0.5 ppm 02 and 0.1 ppm H20. Glassware and stirbars were dried in a convection oven

200 'C under air for a minimum of 24 h and transferred into the glovebox while still hot. Toluene was

received and purified as described above, then further deoxygenated by transferring to a 1 L an oven-

dried Strauss flask under argon and purging with nitrogen for one hour before being taken into the

glovebox. Toluene was stored in the glovebox over activated Linde Type 3A molecular sieves. DMSO

was purchased anhydrous (Aldrich Sure-Seal®), transferred via cannula to an oven-dried Strauss flask

under nitrogen and purged with nitrogen for 2 h before being taken into the glovebox. Molecular sieves

were activated by heating approximately 200 g in 1 L round bottom flask equipped with a vacuum adapter

at 200 'C under high vacuum for 48 h and transferred into the glovebox under vacuum. Sodium

phenoxide was prepared as described above. Di-n-butylamine (Aldrich) was distilled from Call2 and

degassed via freeze-pump-thaw technique before being transferred into the glovebox. 3-chloroanisole

(Aldrich) was passed though a plug of neutral alumina and degassed via freeze-pump-thaw technique

before being transferred into the glovebox. The standard solution of 3-chloroanisole in DMSO was

prepared from the above materials in the glovebox using standard volumetric techniques. 1,3-

bis(dicyclohexylphosphino)propane (dccp; Aldrich) was used as received. 1,3-

bis(dicyclohexylphosphino)propane tetrafluoroborate salt (dcpp*2HBF 4; Nippon) was used as received.

(Ph3P)2PdPhCl was prepared using slightly modified literature procedures. 22

3.4.9 Preparation of (DCCP)PdPhCl

In the glovebox, (Ph 3P)2PdPhCl (910 mg, 1.22 mmol), 1,3-bis(dicyclohexylphosphino)propane (563 mg,

1.37 mmol) and toluene (10 mL) were combined in an 20 mL scintillation vial containing a small Teflon

coated stirbar. The vial was capped and the resulting colorless suspension was rapidly stirred atop a

magnetic stirplate in the glovebox for 12 h. During this time, ligand exchange occurs converting the

insoluble (Ph3P)2PdPhCl to insoluble (DCPP)PdPhCI. The resulting colorless suspension was filtered on

a medium porosity fritted glass Buchner funnel, and the solids were washed with toluene (5 mL). Upon
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washing, the solids were removed from the glovebox, transferred to a round bottom flask under air and

dried under high-vacuum to provide 852 mg (93%) of 1,3-bis(dicyclohexylphosphino)propane palladium

phenylchloride ((DCPP)PdPhC1) as the toluene mono-solvate ('H NMR). Attempts to remove the

solvating toluene by exposing the material to prolonged vacuum failed. The complex was characterized

and used as the mono-solvate ((DCPP)PdPhClotol): 1H NMR (400 MHz, CD 2C12) d 7.34 (t, J = 7.6 Hz,

2H), 7.23 (t, J= 7.6 Hz, 2H), 7.10-719 (m, 3H), 7.13 (td, J= 7.2, 2 Hz, 2H), 6.89 (t, J= 7.2 Hz, 1H), 2.33

(s, 3H), 2.10-2.30 (m, 6H), 1.10-2.02 (m, 42 H), 0.97 (qt, J= 9.6, 3.2 Hz, 2H); 13C NMR (100 MHz, CD-

2C12) .161.2, 160.0, 138.1, 136.9 (t, J= 2.1 Hz), 128.7 (d, J= 80.9 Hz), 126.9 (d, J = 8.3 Hz), 125.4,

122.9, 36.1 (d, J= 28 Hz), 34.6 (d, J= 20 Hz), 30.4 (d, 2H), 30.3 (d, J= 5 Hz), 28.8 (d, 2H), 28.6 (d, J=

3 Hz), 27.7 (d, J= 2Hz), 27.6 (d, J= 2 Hz), 27.2 (m), 26.5, 26.2, 22.6 (d, J= 6Hz), 21.3, 19.4 (m), 18.3,

18.2; 31"P NMR (162 MHz, CD 2C12) d 24.9 (d, J= 40.5 Hz), 5.2 (d, J = 40.5 Hz); IR (film from CH 2C12,

cm-') 3045, 2925, 2851, 1563, 1447. Anal. Calcd for C40H63ClP2Pd: C, 64.25; H, 8.49. Found: C, 64.45;

H, 8.36.

3.4.10 General Procedure for Kinetic Measurements

In the glovebox, solids materials were were added to a 10 mL round bottom flask equipped with a 14/20

ground glass joint and containing an teflon coated 5/16 X 1/2 inch polygon stirbar. Liquid reagents and

solvents were then added using auto-pipet with plastic dispensing tips. The flask was then fitted with a

gas adapter (Chemglass model AF-0500-01) and the resulting apparatus sealed with a 14/20 ground glass

plug. Ground glass joints were sealed with a light coating of high-vacuum silicon grease and secured with

standard taper joint clips. The sealed reactor was then removed from the glovebox while maintaining an

upright position.

In a well-ventilated fume-hood, the reactor was then attached to a standard vacuum/gas double

manifold (Shlenk line) using 1/4 inch ID rubber tubing. For reactions involving carbon monoxide, the gas

supply on this manifold was attached to a carbon monoxide (CO) source regulated to 0.5 psig (0-2 psig

AirGas regulator, part number Y12N1I75A350). For other reactions, the gas supply was attached to an

argon source regulated at ca. 0.5 psig. The gas-inlet to the reactor was evacuated and refilled with the
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working gas three times prior to opening the stopcock. Under positive backpressure of the working gas,

the ground glass stopper was removed and the reactor was attached to an in situ IR spectrometer (Mettler

Toledo ReactlR-iC10 with a Cl Fiber and a diamond tip) by passing the probe though the ground glass

joints of the gas-adapter and into the 10 mL flask. The reactor was secured to the probe using fitted with a

14/20 Teflon ground glass joint adapter (J-Chem model number 1414) and a standard taper joint clip. The

probe depth was adjusted to place the sensor approximately 1/8 inch below the surface of the DMSO

suspension before both the probe and the reactor were secured to a tall ring-stand using standard three-

prong clamps.

For reactions involving CO, the reactor was then quickly evacuated (vacuum achieved in reactor

approximately 0.5 torr as measured by a vacuum gauge attached to the manifold) and refilled with CO at

room temperature. This procedure was repeated four times for a total of five backfills. After the final

backfill, the reactor left open to the CO supply and the regulator pressure was adjusted (if needed) to

bring pressure in the reactor back to 0.5 psig CO. For other reactions, the reactor was maintained under

positive pressure of argon for the duration of the reaction once attached to the probe.

Once the atmosphere over the suspension was properly adjusted, an oil bath (pre-equilibrated to

120 'C) atop a magnetic stirplate was then raised to the reactor using a laboratory jack, such that the

bottom of the flask was position over the center of the stirplate about 1/4 inch from the bottom of the oil

bath to insure efficient stirring. The oil bath was stirred using a small paper clip and the temperature of

the bath was maintained via thermal-couple controlled heating at 120 ± 1 'C . The timer for the kinetic

run was triggered within 30 seconds of the flask entering the oil bath. IR spectra were collected every

minute for the duration of the amide formation, about 7 hours. At the end of the reaction, the oil bath was

lowered and the reactor was allowed to cool to room temperature and then opened. Docecane (227 gtL,

1.0 mmol) was added and the suspension was diluted with CH2C12 (10 mL). A sample of this suspension

was filter through celite for GC analysis using the dodecane as an internal standard for yield

determination.
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The data from the in situ IR spectroscopy was processed in the following manner. Solvent

subtraction was applied using a reference sample of DMSO at 120 'C. Baseline offset functions were also

applied using 1680 cm' as a reference (a region devoid of IR absorption peaks) to correct for baseline

fluctuations during the initial warming period. Phenyl 3-methoxybenzoate (13) concentrations were

measured by following the carbonyl absorption at 1735-1737 cm -'. N,N-dibutyl-3-methoxybenzamide

(14) concentrations were measured by following the carbonyl absorption at 1631-1633 cm-1.

Concentrations of both 13 and 14 were obtained by conversion of absorbance to concentration using a

correction factor derived from absorbance measurements using samples of each material at known

concentrations in DMSO at 120 'C and correlated well (within 5%) to measured GC yields.

3.4.11 In situ Monitoring of the Formation of N,N-Dibutyl-3-methoxybenzamide (14) from 3-

Chloroanisole

Using the general procedure for kinetic experiments, (DCPP)PdPhCI.tol (15.0 mg, 0.02 mmol),

DCPP*2HBF 4 (12.3 mg, 0.02 mmol), 4A molecular sieves (powdered, activated, 150 mg), NaOPh (232

mg, 2.0 mmol), a solution of 3-chloroanisole in DMSO (0.25 mL, 1.0 mmol, 4 M), Bu 2NH (neat, 0.5 mL,

3.0 mmol) and DMSO (2.25 mL) were combined to give a colorless slurry and reacted under an

atmosphere of CO. The concentration vs. time data for 13 and 14 from this experiment is presented in

Table S2. Data was plotted using Excel and is shown in Figure 1 in the main text. The measured GC

yield for 14 was 88%.

Table S2.

Time [13] [14] 0.082 0.032 0.005 0.165 0.052 0.021

(h) (M) (M) 0.099 0.039 0.009 0.182 0.052 0.023

0.032 0.013 0.005 0.115 0.043 0.012 0.199 0.056 0.026

0.049 0.024 0.005 0.132 0.046 0.014 0.215 0.056 0.030

0.066 0.029 0.007 0.149 0.050 0.018 0.232 0.057 0.033
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0.249

0.265

0.282

0.299

0.315

0.332

0.349

0.365

0.382

0.399

0.415

0.432

0.449

0.465

0.482

0.499

0.516

0.532

0.549

0.565

0.582

0.599

0.615

0.632

0.649

0.059 0.037

0.063 0.041

0.062 0.045

0.065 0.049

0.067 0.051

0.067 0.057

0.069 0.061

0.068 0.064

0.073 0.068

0.074 0.072

0.076 0.077

0.078 0.082

0.077 0.084

0.080 0.088

0.083 0.093

0.083 0.097

0.086 0.102

0.088 0.105

0.087 0.109

0.090 0.114

0.092 0.118

0.093 0.120

0.093 0.124

0.097 0.128

0.097 0.132

0.665

0.682

0.699

0.715

0.732

0.749

0.765

0.782

0.799

0.815

0.832

0.849

0.866

0.882

0.899

0.915

0.932

0.949

0.965

0.982

0.999

1.015

1.032

1.049

1.065

0.099 0.137

0.101 0.139

0.103 0.143

0.103 0.146

0.105 0.150

0.108 0.155

0.109 0.158

0.109 0.160

0.111 0.164

0.113 0.167

0.115 0.169

0.118 0.174

0.117 0.175

0.118 0.180

0.122 0.184

0.123 0.186

0.126 0.189

0.124 0.193

0.125 0.195

0.122 0.197

0.119 0.199

0.116 0.202

0.115 0.205

0.112 0.207

0.107 0.208

1.082

1.099

1.115

1.132

1.149

1.165

1.182

1.199

1.215

1.232

1.249

1.265

1.282

1.299

1.315

1.332

1.349

1.365

1.382

1.399

1.415

1.432

1.449

1.465

1.482

160

0.107 0.211

0.106 0.214

0.103 0.216

0.098 0.216

0.098 0.219

0.095 0.221

0.094 0.222

0.091 0.224

0.089 0.225

0.088 0.227

0.087 0.230

0.086 0.231

0.084 0.232

0.081 0.233

0.079 0.235

0.078 0.237

0.077 0.237

0.074 0.239

0.074 0.241

0.075 0.242

0.073 0.242

0.069 0.243

0.070 0.244

0.066 0.245

0.067 0.248



1.499 0.064 0.249 1.915 0.044 0.270 2.332 0.028 0.280

1.515 0.065 0.249 1.932 0.042 0.269 2.349 0.026 0.278

1.532 0.062 0.251 1.949 0.041 0.269 2.365 0.027 0.281

1.549 0.062 0.251 1.965 0.041 0.271 2.382 0.027 0.281

1.565 0.061 0.253 1.982 0.039 0.270 2.399 0.026 0.281

1.582 0.0610 0.254 1.999 0.041 0.272 2.415 0.026 0.283

1.599 0.0610 0.255 2.015 0.038 0.271 2.432 0.027 0.284

1.615 0.059 0.255 2.032 0.038 0.272 2.449 0.026 0.283

1.632 0.059 0.255 2.049 0.038 0.273 2.465 0.025 0.284

1.649 0.056 0.256 2.065 0.039 0.273 2.482 0.025 0.283

1.665 0.05:5 0.257 2.082 0.037 0.274 2.499 0.024 0.285

1.682 0.054 0.259 2.099 0.039 0.275 2.515 0.025 0.286

1.699 0.054 0.259 2.115 0.033 0.274 2.532 0.023 0.285

1.715 0.053 0.260 2.132 0.035 0.274 2.549 0.025 0.286

1.732 0.052 0.261 2.149 0.033 0.273 2.565 0.022 0.285

1.749 0.052 0.262 2.165 0.033 0.276 2.582 0.021 0.285

1.765 0.049 0.263 2.182 0.032 0.274 2.599 0.021 0.286

1.782 0.050 0.265 2.199 0.032 0.276 2.615 0.021 0.285

1.799 0.048 0.263 2.215 0.031 0.278 2.632 0.021 0.286

1.815 0.050 0.265 2.232 0.030 0.278 2.649 0.020 0.286

1.832 0.046 0.266 2.249 0.032 0.278 2.665 0.021 0.288

1.849 0.048 0.265 2.265 0.031 0.278 2.682 0.021 0.286

1.865 0.046 0.265 2.282 0.029 0.281 2.699 0.022 0.287

1.882 0.045 0.267 2.299 0.028 0.279 2.715 0.021 0.287

1.899 0.044 0.267 2.315 0.028 0.280 2.732 0.020 0.289
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6.499 0.000 0.305 6.682 0.000 0.305 6.865 0.000 0.304

6.515 0.000 0.305 6.699 0.000 0.306 6.882 0.000 0.305

6.532 0.000 0.305 6.715 0.000 0.305 6.899 0.000 0.303

6.549 0.000 0.305 6.732 0.000 0.306 6.915 0.000 0.306

6.565 0.000 0.305 6.749 0.000 0.304 6.932 0.000 0.304

6.582 0.000 0.304 6.765 0.000 0.305 6.949 0.000 0.304

6.599 0.000 0.304 6.782 0.000 0.306 6.965 0.000 0.305

6.615 0.001 0.305 6.799 0.000 0.304 6.982 0.000 0.304

6.632 0.000 0.305 6.815 0.000 0.305 6.999 0.000 0.305

6.649 0.000 0.304 6.832 0.000 0.305

6.665 0.000 0.305 6.849 0.000 0.306

3.4.12 In Situ Monitoring of the Reaction of Di-n-butyl-amine with Phenyl 3-methoxybenzoate in the

Absence of Sodium Phenoxide

Using the general procedure for kinetic experiments, phenyl 3-methoxybenzoate (228.2 mg, 1.0 mmol),

Bu 2NH (neat, 0.5 mL, 3.0 mmol) and DMSO (2.5 mL) were combined and reacted under an atmosphere

of argon. The concentration vs. time data for 13 and 14 from this experiment is presented in Table S3.

Data was plotted using Excel and is shown in Figure SI (p. 169). At the end of the experiment (105 min),

the reactor the conversion (GC) of 13 was 2% and the yield (GC) of 14 was 4%.

Table S3. 0.0319 0.3294 0.0000 0.1153 0.3147 0.0000

0.0483 0.3231 0.0000 0.1322 0.3173 0.0000

Time [13] [14] 0.0653 0.3170 0.0000 0.1486 0.3154 0.0000

(h) (M) (M) 0.0819 0.3184 0.0000 0.1656 0.3154 0.0000

0.0153 0.3455 0.0000 0.0994 0.3154 0.0000 0.1817 0.3145 0.0000
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1.4486 0.3030 0.0181 1.5653 0.2999 0.0184 1.6817 0.2984 0.0194

1.4661 0.3011 0.0176 1.5819 0.3002 0.0190 1.6986 0.2986 0.0208

1.4819 0.3008 0.0171 1.5986 0.2994 0.0198 1.7153 0.2988 0.0211

1.4986 0.3014 0.0186 1.6150 0.2993 0.0176 1.7319 0.2977 0.0210

1.5150 0.3010 0.0180 1.6319 0.2977 0.0193 1.7486 0.2982 0.0220

1.5319 0.3008 0.0180 1.6492 0.3003 0.0197

1.5483 0.3003 0.0180 1.6653 0.2971 0.0193

3.4.13 In Situ Monitoring of the Reaction of Di-n-butyl-amine with Phenyl 3-Methoxybenzoate in the

Presence of Sodium Phenoxide

Using the general procedure for kinetic experiments, phenyl 3-methoxybenzoate (228.2 mg, 1.0 mmol),

NaOPh (232 mg, 2.0 mmol), Bu2NH (neat, 0.5 mL, 3.0 mmol) and DMSO (2.5 mL) were combined and

reacted under an atmosphere of argon. The concentration vs. time data for 13 and 14 from this experiment

is presented in Table S4. Data was plotted using Excel and is shown in Figure S I (p. 169). The measured

GC yield for 14 was 93%.

Table S4. 0.115 0.211 0.108 0.265 0.133 0.183

0.132 0.198 0.121 0.282 0.129 0.189

Time [13] [14] 0.149 0.187 0.129 0.299 0.121 0.194

(h) (M) (M) 0.165 0.177 0.139 0.315 0.115 0.199

0.032 0.293 0.024 0.183 0.168 0.146 0.332 0.113 0.205

0.049 0.269 0.043 0.199 0.158 0.156 0.349 0.105 0.210

0.065 0.251 0.063 0.215 0.152 0.164 0.365 0.101 0.213

0.082 0.235 0.078 0.232 0.145 0.169 0.382 0.096 0.214

0.099 0.224 0.094 0.249 0.140 0.178 0.399 0.094 0.218
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0.415 0.090 0.224 0.832 0.033 0.273 1.249 0.009 0.291

0.432 0.086 0.226 0.849 0.033 0.274 1.266 0.010 0.291

0.449 0.083 0.230 0.865 0.031 0.277 1.283 0.008 0.291

0.465 0.078 0.231 0.882 0.028 0.278 1.299 0.010 0.292

0.483 0.076 0.233 0.899 0.026 0.279 1.315 0.010 0.292

0.499 0.073 0.236 0.915 0.027 0.278 1.332 0.009 0.293

0.515 0.070 0.242 0.932 0.025 0.280 1.349 0.008 0.292

0.532 0.068 0.242 0.949 0.026 0.280 1.365 0.007 0.292

0.549 0.064 0.246 0.965 0.023 0.281 1.382 0.007 0.293

0.565 0.062 0.250 0.982 0.022 0.281 1.399 0.007 0.293

0.582 0.059 0.251 0.999 0.023 0.284 1.415 0.007 0.295

0.599 0.056 0.253 1.015 0.020 0.283 1.432 0.005 0.293

0.615 0.056 0.255 1.032 0.019 0.282 1.449 0.008 0.295

0.632 0.053 0.256 1.049 0.019 0.285 1.465 0.006 0.295

0.649 0.050 0.258 1.065 0.018 0.285 1.482 0.006 0.296

0.666 0.048 0.259 1.082 0.017 0.286 1.499 0.004 0.295

0.682 0.047 0.261 1.099 0.016 0.287 1.515 0.005 0.295

0.699 0.046 0.264 1.115 0.014 0.286 1.532 0.004 0.296

0.715 0.043 0.263 1.132 0.015 0.287 1.549 0.005 0.296

0.732 0.040 0.265 1.149 0.013 0.287 1.565 0.003 0.297

0.749 0.040 0.268 1.165 0.012 0.287 1.582 0.003 0.297

0.765 0.039 0.268 1.182 0.013 0.289 1.599 0.002 0.296

0.782 0.038 0.269 1.199 0.013 0.289 1.615 0.001 0.297

0.799 0.035 0.272 1.215 0.010 0.289 1.632 0.001 0.298

0.815 0.033 0.273 1.232 0.011 0.289 1.649 0.003 0.298
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1.665 0.001 0.298 2.082 0.000 0.301 2.499 0.000 0.303

1.682 0.000 0.299 2.099 0.000 0.301

1.699 0.001 0.299 2.115 0.000 0.300

1.715 0.000 0.298 2.132 0.000 0.302

1.732 0.001 0.298 2.149 0.000 0.302

1.749 0.000 0.299 2.165 0.000 0.303

1.765 0.000 0.300 2.182 0.000 0.302

1.782 0.000 0.300 2.199 0.000 0.304

1.799 0.000 0.299 2.215 0.000 0.302

1.815 0.000 0.300 2.232 0.000 0.303

1.832 0.000 0.300 2.249 0.000 0.303

1.849 0.000 0.301 2.265 0.000 0.301

1.865 0.000 0.300 2.282 0.000 0.301

1.882 0.000 0.300 2.299 0.000 0.301

1.899 0.000 0.300 2.315 0.000 0.302

1.916 0.000 0.302 2.332 0.000 0.302

1.932 0.000 0.300 2.349 0.000 0.301

1.949 0.000 0.301 2.365 0.000 0.302

1.966 0.000 0.300 2.382 0.000 0.303

1.982 0.000 0.300 2.399 0.000 0.303

1.999 0.000 0.301 2.415 0.000 0.301

2.015 0.000 0.299 2.432 0.000 0.303

2.032 0.000 0.302 2.449 0.000 0.304

2.049 0.000 0.302 2.466 0.000 0.303

2.065 0.000 0.301 2.482 0.000 0.304
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Figure Sl. Plot of Conc vs. Time for Conversion of 13 to 14 With and Without Phenoxide.
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Chapter 4.
Microchemical Systems for the Rapid Analysis of Aminocarbonylation Reactions.
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4.1 Introduction

The use of microreactors can greatly accelerate scanning and optimization of reaction conditions

because of enhanced heat and mass transfer, reduced reaction volumes, and the ability to run several

experiments within a sealed system (minimizing contamination by oxygen and water). These advantages

have been demonstrated in several studies over the past decade at conditions typically used in bench scale

synthesis.''o A major advantage of microreactors is the ability to perfornn reactions at conditions not

easily realized in conventional glassware, such as the use of standard solvents (e.g., toluene) at elevated

temperatures and pressures.4'9 Performing reactions under such circumstances is also one of the major

benefits of microwave synthesis.'11,12 Microreactors offer many of the advantages of microwave reactors

and have the additional advantages of continuous flow and not requiring a microwave generator.

Pd/ Ligand O O R1

Br N1¢/%" rCO (9) N" N, R2
R + HN(R 1)R2  B O R R- 1

Base/ solvent R2

Scheme 1. Pd-Catalyzed Heck Aminocarbonylation.

Realizing high pressure in glass-based microreactors has been complicated by difficulties in

interfacing with fluid inlet and exit tubes. For example, typical compression sealing techniques of glass

and silicon devices are cumbersome and typically limited to moderate pressures (-10 bar) to avoid

breaking the device. In this paper we used a recently developed solder based sealing technique' to

construct microreactors capable of reaching pressures exceeding 100 bar13 to demonstrate potential

advantages of operating above the boiling point of toluene in Heck aminocarbonylation' 4 reactions

(Scheme 1). The microreactor approaches enable rapid evaluation of effects of modifications to reaction

conditions on yield and selectivity as well as the use of experiments with several reagent solutions in

rapid succession. The ability to rapidly change reactants and conditions would be a powerful strategy for

high throughput synthesis of a diverse array of compounds as well as for catalyst screening. Chemical

parameters such as functional groups, ligand properties, and base strength could be rapidly varied along
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with reaction conditions. The continuous operation and scanning of reaction parameters provides

information that can lead to improved insight over typical batch or array based processes, which are often

limited to one-variable-at-a-time experimentation. The case study also illustrates the advantages of a

closed system in handling elevated pressures of a toxic gas (carbon monoxide) and air-sensitive Pd

catalysts.

4.2 Results and Discussion

The microreactor (Figure 1) is formed in silicon by defining the mixer and channel layout by

lithography and then etching channels in silicon.4 Subsequent oxidation of the silicon forms a glass layer

on the surface, so that when the channels are capped by bonding a Pyrex glass wafer to the oxidized

silicon device, the reaction channels become functionally equivalent to a glass reaction vessel. Moreover,

the top glass layer provides visual access to the reaction medium, which is particularly useful in

monitoring gas-liquid contact and detecting formation of solid by-products.

rized
on
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Figure 1. Pressurized Microreactor Setup.

In the initial studies with the reactor shown in Figure 1, a Xantphos-Pd catalyst' 5 was used with a

silicon microreactor we previously designed for general organic synthesis.5 The small dimensions of the

reactor channels required that the generation of precipitates be controlled and their potential to clog the

reactor minimized. The solid by-products of chief concern were palladium black, palladium carbonyl

complexes' 6 and protonated amine salts. While some precipitation was observed, the formation of solids

was minimal and occurred primarily along the reactor walls. Rinsing the microreactor daily with

methanol was sufficient to avoid any blockage of the flow.

The first Pd-catalyzed aminocarbonylation reaction explored was that of 3-iodoanisole, 1, and

morpholine, 2 (Scheme 2). The carbonylation was performed by delivering CO by syringe pump at 7.9

bar. The pulsation of the syringe pump induced minor changes in the residence times, but the average

reaction times (- 4 min) could still be determined from the active reactor volume (78 gL) divided by the

averaged volumetric flow rate (QL = 4 pL/min per syringe; QG = 12 [tL/min).

2 mol % Pd(OAc)2
2.2 mol % Xantphos 0

MeO"+ I + C CO(g) 100psig N N +
K N 2.0 equiv. DBU O

H solvent = toluene/2 (1:1)
Av. time = 4 min. me OMe

1 2 3 4

Scheme 2. Aminocarbonylation of 3-Iodoanisole.

In contrast to conventional bench-top reactions at near-atmospheric pressure, the

aminocarbonylation in the microreactor at elevated CO pressures produced significant quantities of the a-

ketoamide, 4, in addition to the amide, 3.14 This shift in product distribution is attributed to the superior

gas-liquid contact area, the resulting improvement in mass transfer and the greater amount of CO in

solution.' 7 Figure 2 shows measured yields of 3 and 4, for samples with greater than 90% conversion of
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3-iodoanisole and an average reaction time of 4 min. The amide yield increases with temperature. In

particular, temperatures above the normal boiling point of the solvent (toluene, 110 0C) produce a

significant shift towards the amide, underscoring the advantage of being able to conduct experiments at

elevated pressures. These initial results suggest that in addition to achieving faster reaction rates at

elevated temperatures, it could be possible to manipulate the relative yields of amide and a-ketoamide by

varying temperature and pressure. Increasing temperature will favor the amide whereas elevated CO

pressures will enhance a-ketoamide formation.

100--I uuJ

90
80
70
60

Yield 50.

% 40-

30-
20.

10.

0

* * I gv.

oso
OMe

1 3 + 4 OMe

S 1 1 1 15 12 1 1 1 1 1 1
95 100 105 110 115 120 125 130 135 140 145 150 155

Temperaturel/C

Figure 2. Aminocarbonylation Product Yields for Samples with Greater than 90 % Conversion of 3-lodoanisole.

Each Data Point Represents Individual Experiments.

In order to further demonstrate the flexibility of the microreactor to rapidly scan pressures and

temperatures and explore their effect on a-ketoamide formation, the selectivity of the aminocarbonylation

reaction of 4-bromobenzonitrile, 5, was profiled. Though carbonylation reactions of aryl bromides are

more challenging than those with aryl iodides, the greater diversity and lower cost of commercially

available substrates make the aryl bromide reactions more attractive. To accommodate the longer

reaction times required when using the less reactive aryl bromides, the selectivity study was performed

using the original microreactor design and a volume extension consisting of a 300 mm length of stainless
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steel tubing (0.046" internal diameter). The volume extension was connected to the reactor via the same

solder bonding technique used for the other connections and added a volume of 322 pgL, which was

submerged alongside the reactor into the oil bath, for a total heated reactor volume of 400 pL. Rather

than using the syringe pump with its complication of pulsating flow, the carbon monoxide was delivered

directly from the tank and controlled using needle valves.

2 mol % Pd(OAc)2

S. ••  l2 i 70 a ntLho

Br + CO (g) 50 - 200 psig+ ) * N

NCJ N 2.0 equiv. DBU OH solvent = toluene/2 (1:1) NC

5 2 Av. uime = mln. 6

Scheme 3. Aminocarbonylation of 4-Bromobenzonitrile.

Reaction data were collected at temperatures between 980 C and 1600 C and carbon monoxide

pressures of 4.5, 7.9 and 14.8 bar. For each sample, overall selectivity for the a-ketoamide 7 was

calculated as the ratio of ca-ketoamide to amide and plotted in Figure 3. The expected increase in

selectivity for formation of amide with increased temperature was observed along with enhanced

selectivity for production of ca-ketoamide with increasing pressure, corresponding to larger amounts of

dissolved carbon monoxide.
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Figure 3. Product Ratio of cc-Ketoamide (7) to Amide (6) for the Aminocarbonylation of 4-Bromobenzonitrile (5).

Each Data Point Represents Individual Experiments.

In addition to using the microreactor to rapidly scan the effect of reaction conditions on yield and

selectivity, several reagent solutions could be tested in rapid succession by installing injection valves to

the liquid reagent inlet lines. Thus, if one desired to run several combinations of substrates at the same

conditions, this could be accomplished by simply varying the solutions loaded into the inlet-sample loops.

This ability to rapidly change reactants and conditions is a powerful strategy for fast synthesis of a diverse

array of compounds as well as for catalyst screening.

We demonstrated this by switching between 4-bromobenzonitrile and 4-bromoanisole without

stopping the flow into the reactor. The system was brought to pressure with toluene loaded in the each

syringe and the sample loops were loaded with reagent stock solutions; Pd(OAc) 2, Xantphos and toluene
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in one and Ar-Br, DBU, dodecane (internal standard) and morpholine in the other. This system was

successfully used to test the aminocarbonylation of 4-bromoanisole (Table 1, entry 5).

The use of a pressurized microreactor system greatly expands the range of reaction conditions

available to the bench chemist. In this study, pressures from 4.5 to 14.8 bar and temperatures from 98 -

160 0 C were examined with greater flexibility, in terms of loading and sampling, than would be possible

with traditional high pressure chemical equipment such as a ParrR bomb or autoclave. In addition, the use

of injection valves on the inlet lines offers the possibility of using a wide range of substrates to efficiently

produce a library of products. Furthermore, with the microreactor system, the reaction conditions

themselves are improved. The significantly greater mass transfer area resulting from segmented gas-

liquid flow enables very rapid reaction times from the accelerated mass transfer.18

Table 1. Maximum Yields for Various Carbonylation Reactions.

/ Br
R 1

1

1 P (ba

2 % Pd(OAc) 2 / 2.2 % Xantphos

morpholine : toluene (1:1)
DBU, Temp., P(CO),
Av. time

r) Temp. (oC) Av. time (min.) Cony.

0O

R .N

Pl: n = 1
P2: n = 2

Yield P1 Yield P2

MeO I

MeO I

N C ' 
B r

@Br

NC M Bir
MeO

Br

7.9

7.9

2.7

14.8

2.7

146

116

160

109

150

3.3

4.2

7.1

6.6

12.7

100

100

100

99 32

180



4.3 Conclusion

The carbonylation case study demonstrates the considerable potential of continuous flow,

microreactor-based experiments at conditions not easily achieved in conventional bench experiments. In

particular, the technique provides a useful tool for quickly and safely scanning reaction conditions and

reagents. Using this technique we were able to test multiple aryl halides over a wide range of

temperatures and pressures much more rapidly than could be accomplished with batch experiments. For

instance, in the study of the effects of pressure and temperature on the aminocarbonylation of

4-bromobenzonitrile, 5, up to 36 samples were collected and analyzed in a single day. Table 1

summarizes the conditions where the maximum amide and act-ketoamide yields for each reaction were

observed. These results reveal the general trend of increased yield of amide with temperature and

selectivity for a-ketoamide production at lower temperature and higher pressure.

4.4 Experimental

4.4.1 General

All chemicals were reagent grade and used as supplied. 1,8-Diazabicyclo [5.4.0] undec-7-ene

(DBU) 98% was purchased from Acros Organics (New Jersey). Pentadecane 99%, 4-Bromobenzonitrile

99%, and 3-Bromoanisole 98% were purchased from Sigma-Aldrich in St. Louis, MO. Morpholine 99%

and 3-lodoanisole 98% were purchased from Alfa-Aesar Lancaster in Pelham, NJ.

9,9-Dimethyl-4,5-bis (diphenyphosphino) xanthene 98% (Xantphos) was purchased from Strem

Chemicals in Newburyport, Massachusetts. Palladium (II) acetate was obtained from the Engelhard

Corporation in Iselin, New Jersey and n-dodecane 99% was purchased from Avocado Research

Chemicals Ltd. in Heysham, Lancashire UK. Carbon monoxide cylinders were purchased from Airgas Inc

in Radnor, PA. Toluene was purchased in CYCLE-TAINER® solvent delivery kegs from Malinckrodt

Baker Inc. in Phillipsburg, New Jersey. Before use, the toluene was vigorously purged with argon for two

hours. The toluene was further purified by passing it under argon pressure through two packed columns of

neutral alumina. 9
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4.4.2 Characterization

All products of aminocarbonylation reactions were isolated by flash column chromatography on

silica gel and characterized by 'H NMR, "3C NMR, and IR spectroscopy, as well as elemental analysis

(Atlantic Microlab, Inc). Two new compounds failed to give satisfactory elemental analyses. For these

copies of 'H and 13C NMR spectra are included. Nuclear Magnetic Resonance spectra were recorded on a

Varian Mercury 300. Infrared spectra were recorded using a Perkin-Elmer 2000 FT-IR. All 'H NMR

experiments are reported in 8 units, parts per million (ppm) downfield from tetramethylsilane (internal

standard) and were measured relative to the signal for residual chloroform (7.26 ppm) or dichloromethane

(5.32 ppm) in the deuterated solvent. All 13C NMR spectra are reported in ppm relative to residual

chloroform (77.23 ppm) or dichloromethane (54.00 ppm) in the deuterated solvent and all were obtained

with 'H decoupling. Melting points (uncorrected) were obtained on a Mel-Temp capillary melting point

apparatus. Gas Chromatographic analyses were performed on a Hewlett-Packard 6890 gas

chromatography instrument with an FID detector using 25 m x 0.20 mm capillary column with cross-

linked methyl siloxane as a stationary phase.

4.4.3 Liquid Reagent Preparation

Liquid reagent mixtures were prepared under nitrogen in oven-dried glassware such that, once the

two inlet streams were combined, the concentrations of each component in the reactor would be 0.5 M

aryl halide, 1.5 M DBU, 0.5 M internal standard (dodecane or pentadecane), 0.01 M (2 mol % relative to

aryl halide) Pd(OAc) 2 and 0.011 M (2.2 mol % relative to aryl halide) Xantphos. The first reagent

mixture was 1 M aryl halide, 3 M DBU, and 1 M dodecane or pentadecane dissolved in morpholine. For

example, a typical experiment would require 546 mg 4-bromobenzonitrile, 900 uL DBU and 829 tL

pentadecane dissolved in 3 mL morpholine. The catalyst solution was 0.02 M palladium(II) acetate and

0.02 M ligand dissolved in neat toluene. For example, a typical experiment would require 13.5 mg

Pd(OAc) 2 and 34.8 mg Xantphos dissolved in 3 mL toluene. If particles were observed in either solution,

the mixture was filtered before loading. Filtration was performed by syringe over glass wool inserted into
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the luer end of an 18 Gauge needle. This filtered solution was transferred to a second dried flask under

nitrogen from which the mixture was drawn into the stainless steel syringe.

4.4.4 Gas Delivery via Syringe-Pump

Liquid reagents were loaded into high pressure stainless steel syringes (Harvard Apparatus

702267) and delivered by a syringe pump. A third stainless steel syringe was placed into a separate

syringe pump. All syringes were connected to the reactor chuck with 1/16" OD, 0.009" ID stainless steel

tubing. To control the pressure in the reaction zone, the outlet of the reactor was connected to a pressure

bomb. The gas cylinder outlet was split, with one branch connected to the microreactor gas inlet and the

second branch connected to the bomb makeup inlet. The bomb inlet was regulated by an on/off valve; the

syringe inlet was regulated by two three-way valves, with the first one (counting from the syringe)

regulating flow either to the reactor or to the tank (3-way #1), and the second one either flowing from the

tank to the syringe or venting the tank regulator to the atmosphere (3-way #2). The pressure bomb was

set up with outlet capillary tubing to allow for a slow constant leak from the headspace of the bomb and

permit gas flow through the system.

The syringes loaded with liquid reagents were placed into their syringe pump and the rear plate of

the pump was advanced into contact with the syringe plungers. The syringe pump was then run at 500

tL/min with a tissue held to the tip of the syringes until material was observed to flow from both

syringes. At this point, the syringes were attached to the inlet tubing and the reactor was primed with 100

p.L to 150 ýtL of material at a flow rate of 70 pL/min.

The gas syringe was emptied of air and installed into its syringe pump, with the rear plate of the

pump secured in place where the plunger was expected to be at 8 mL of syringe volume. The gas

cylinder was then opened slowly and brought to 120 psi, allowing 8 mL of the syringe to fill with

pressurized gas before shutting off the regulator. The 3-way #2 was then vented to the atmosphere and

closed. The valve to the bomb was opened to allow for simultaneous pressurization of the bomb, the

reactor, and the gas syringe. Liquid reagent flow was started at the desired flow rate. Gas was brought up

to the desired pressure gradually while monitoring optically the liquid flow through the reactor to ensure
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its forward progress. The 3-way #1 was set from syringe to reactor and allowed to equilibrate with the

gas pressure of the bomb, then closed. The sample loop (see Operation and Sample Collection) was

flushed with diluent and set to "Load." The 3-way #1 was again set from syringe to reactor, the gas flow

was turned on to 500 tL/min until gas slugs were observed, then set to the desired gas flow rate.

4.4.5 Gas Delivery Directly from Gas Tank

The delivery of carbon monoxide directly from the source cylinder was found to be more reliable

than syringe delivery. In this case, the system pressure was controlled by three needle valves

(Upchurch P-445). The cylinder outlet was split and each branch was connected to a needle valve. One

branch was connected to the microreactor gas inlet and the second branch was connected to the pressure

bomb makeup inlet. To compensate for the flow path's pressure drop and maintain sufficient pressure

within the system, the cylinder regulator was set to a pressure 5% higher than the desired system pressure

as measured by the pressure gauge on the bomb. The third needle valve was connected to the bomb outlet

tubing such that there was a controlled constant leak from the headspace of the pressure bomb.

Once loaded, the liquid reagent syringes were set up, prepared, and the reactor primed as

described in the previous procedure. Next, the carbon monoxide cylinder was opened and the delivery

pressure adjusted to the desired reactor pressure. The reactor gas inlet valve was opened slightly to allow

gas flow into the reactor. The bomb inlet valve was then opened to allow pressurization of the bomb. The

flow through the reactor was monitored and both the bomb and reactor inlet valves were adjusted to

ensure that the reagent flow progressed forward during pressurization.

When the bomb reached the desired pressure, all needle valves were closed and the cylinder

delivery pressure was raised an additional 5%. The liquid reagent flow rate was next set to the desired

reaction conditions and the reactor gas inlet was partially opened to allow gas flow and begin slug flow

equilibration. Additionally, the leak valve was slightly opened to allow the microsystem to come to steady

state. During operation, these two valves were used to maintain the desired flow rate as observed in the

reactor by measuring the speed of the slugs on a stopwatch (VWR Traceable® 4-Channel Alarm Timer).
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The bomb inlet valve remained fully closed unless the pressure in the bomb dropped below the desired

operating pressure, in which case the valve was opened to allow repressurization.

4.4.6 Operation and Sample Collection

To operate the system in slug flow large changes in the pressure drop across the system had to be

avoided. In addition to destabilizing the slug flow, large fluctuations in pressure could force reagents

backwards into the reactor gas inlet. In order to facilitate sampling of the system without interrupting the

flow through the reactor, an HPLC injection valve (Upchurch V-451) was connected to the reactor outlet.

The injection valve was plumbed such that it operated in reverse of that on a standard HPLC

system. Thus, when the valve was in the "Load" position (the position illustrated in Figure 1), flow from

the reactor outlet proceeded through the sample loop before flowing into the pressure bomb. When the

valve was turned to the "Inject" position, the reactor outlet flow bypassed the sample loop and proceeded

directly into the bomb, the sample loop would then be connected to the diluent inlet and sample outlet

ports. To prevent back-flow into the diluent supply, a check valve (Upchurch CV-3301) was installed to

the diluent inlet. Thus, upon decompression, the sample would flow into a collection vial, placed at the

outlet of the injection valve. The diluent was a 50 vol% mixture of dichloromethane and isopropanol.

This choice of solvents was compatible with the GC analysis method and the viscosity of this mixture

approximated the apparent viscosity of the slug flow through the sample loop. By matching the viscosity,

disturbances to the reactor flow were minimized.

After a stable slug flow had been achieved, the temperature of the oil bath was raised. The

temperature was controlled by a temperature controller with a K-type thermocouple and the actual bath

temperature was measured by an alcohol thermometer. Once equilibrated to the desired operating point,

the reactor was allowed to run until a full reactor volume had flowed through (78 [tL or 400 tL combined

flow). The sample loop was then flushed with diluent and set to the "Load" position to begin collecting a

sample. Sample sizes were collected in a 322 gL sample loop at liquid volumes between 100 pL and 160

tL as determined by the liquid flow rate from the syringe pump. Samples were collected by turning the

sample valve to "Inject" and delivering 1.5 mL of diluent through the sample loop into the collection vial,
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thus collecting properly diluted GC samples and rinsing the sample loop simultaneously. The valve was

then returned to the "Load" position to collect the next sample. Multiple samples were collected at each

set of reaction conditions before adjusting the temperature to the next data point. After the oil bath

reached the next temperature, the reactor was again flushed with a reactor volume of slug flow before

collecting the next set of samples.

4.4.7 Sample Analysis and Characterization

The samples were analyzed by gas chromatography on an Agilent 6890 Series gas chromatograph

with an FID detector. The samples were injected by an Agilent 7683 automatic liquid sampler, onto a 10

meter Agilent HP-1 capillary column (200 gm I.D. 0.11 jtm film thickness) with a lmL/min flow rate of

nitrogen. The oven temperature was raised from 70 0 C to 240 0 C over 6.5 minutes. Sample peak areas were

normalized to the peak area of the internal standard and multiplied by the response factor for the

compound divided by the response factor for the internal standard to determine the sample concentrations.

Compounds were isolated by column chromatography on the residue resulting from combining several

samples from a series of experiments using the same stock-solutions and removing the solvent.

0

OMe

N-(3-methoxybezoyl)morpholine (3). 'H NMR (300 MHz, CDCI3) 8: 7.35-7.27 (m, 1H), 6.98-6.91 (m,

3H), 3.98-3.36 (m, 11H; slow rotation of amide) 13C NMR (75 MHz, CDCl3) 8: 168.9, 158.8, 136.0,

128.8, 118.2, 114.6, 111.7, 65.9, 54.4, 47.3, 41.6 (observed complexity due to slow rotation of amide;

definitive assignments have not yet been made). IR (neat, cm-'): 3063, 2965, 2917, 2855, 1635, 1580,

1490, 1462, 1432, 1363, 1320, 1301, 1289, 1264, 1237, 1185, 1141, 1114, 1070, 1044, 1023, 946, 915,

862, 818, 794, 749, 709, 691, 634, 580, 488, 425. A satisfactory elemental analysis was not obtained for

this compound: Anal. Calcd for C12HisNO3: C, 65.14; H, 6.83. Found: C, 64.70; H, 6.89. The 'H and 13C

NMR spectra follow.
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OMe

1-(3-methoxyphenyl)-2-morpholinoethane-1,2-dione (4). 'H NMR (300 MHz, CD 2C12) 8: 7.52-7.40 (inm,

3H), 7.18-7.24 (min, 1H), 3.84 (s, 3H), 3.79-3.69 (min, 4H), 3.63-3.57 (dd, J = 4.9, 4.7 Hz, 2H), 3.36-3.30

(dd, J = 4.9, 4.7 Hz, 2H). 13C NMR (75 MHz, CD 2Cl2) 6: 191.8, 165.7, 160.6, 134.8, 130.6, 123.0, 121.8,

113.3, 67.1, 67.0, 55.9, 46.6, 41.9. IR (neat, cm'): 2969, 2920, 2856, 1680, 1646, 1596, 1582, 1486,

1465, 1445, 1388, 1362, 1291, 1272, 1250, 1174, 1196, 1114, 1068, 1038, 1014, 991, 933, 889, 876, 847,

820, 798, 759, 741, 682, 651, 588, 560, 437. A satisfactory elemental analysis was not obtained for this

compound: Anal. Calcd for C13H15NO4: C, 62.64; H, 6.07. Found: C, 61.50; H, 6.15. The 'H and "3C

NMR spectra follow.
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N-(4-cyanobezoyl)morpholine (6). mp 143 - 145 oC. 'H NMR (300 MHz, CDCI3) 6: 7.72-7.65 (dd, J =

7.9, 1.1 Hz, 2H), 7.52-7.44 (dd, J = 7.9, 1.1 Hz, 2H), 3.86-3.48 (m, 6H; slow rotation of amide), 3.33 (brs,

2H). 1
3C NMR (75 MHz, CDCl 3) 6: 167.6, 139.2, 131.9, 127.3, 117.6, 112.8, 66.1, 47.4, 41.9 (observed

complexity due to slow rotation of amide; definitive assignments have not yet been made). IR (neat, cm

'): 3119, 3087, 3035, 2982, 2931, 2905, 2862, 2228, 1950, 1625, 1607, 1507, 1463, 1442, 1401, 1364,

1332, 1301, 1281, 1261, 1195, 1182, 1155, 1112, 1026, 1014, 972, 933, 911, 897, 855, 841, 759, 733,

677, 647, 636, 612, 574, 534, 515, 481, 415. Anal. Calcd for C, 2H12N20 2: C, 66.65; H, 5.59. Found: C,

66.69; H, 5.49.

0 ro
ON

NC N

1-(4-cyanophenyl)-2-morpholinoethane-1,2-dione (7). mp 112 - 115 TC. 'H NMR (300 MHz, CDC13)

6:8.14-8.04 (m, 2H), 7.88-7.80 (m, 2H), 3.86-3.77 (m, 3H), 3.73-3.66 (m, 4H), 3.45-3.38 (m, 4H). '3C

NMR (75 MHz, CDC13) 6: 189.1, 163.9, 135.7, 132.7, 132.5, 129.8, 124.8, 117.5, 66.3, 45.9, 41.5. IR

(neat, cm-'): 2973, 2923, 2859, 2231, 1689, 1645, 1607, 1568, 1502, 1467, 1445, 1407, 1363, 1297, 1269,

1212, 1176, 1114, 1067, 1031, 1016, 982, 918, 856, 835, 780, 734, 663, 649, 576, 546, 483, 428. Anal.

Calcd for CI3HI 2N2 0 3 : C, 63.93; H, 4.95. Found: C, 63.95; H, 5.11.

0

NN

MeO 0

N-(4-methoxybezoyl)morpholine 20 (Table 1, entry 5). 'H NMR (300 MHz, CDCl3) 6: 7.43-7.34 (m,

2H), 6.95-6.88 (m, 2H), 3.83 (s, 3H), 3.80-3.40 (m, 8H; slow rotation of amide) 13C NMR (75 MHz,

CDC13) 6: 169.3, 160.1, 128.5, 126.6, 112.9, 65.9, 54.5, 47.2, 42.7 (observed complexity due to slow

rotation of amide; definitive assignments have not yet been made). IR (neat, cm-'): 2964, 2916, 2855,

1610, 1576, 1514, 1456, 1428, 1362, 1302, 1279, 1251, 1175, 1158, 1114, 1067, 1022, 1007, 934, 894,

841,795,763, 729, 681,631,612, 585,553,486.
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