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ABSTRACT

We present ab initio molecular calculations at different levels of density functional theory
(DFT) for the spiro-biphenalenyl neurtral radical in its singlet and triplet states. We
performed calculations on the dimer to study its conductivity by investigating the ground
state energy, HOMO-LUMO gap, charge localization, and reorganization energies, as
these are the main contributing factors to crystal conduction. We find that there is only a
slight difference between the singlet state and triplet state HOMO-LUMO gaps. In
addition, the negative charge spreads throughout both the interior and exterior units of the
molecule in both the singlet state and the triplet state, this is in disagreement with the
original argument that the conducting diamagnetic state is a result of the migration of the
unpaired electrons to the interior units of the molecule. Finally, we find that the triplet
state has higher reorganization energy than that of the singlet. Thus, if conduction were
assumed to proceed via a hopping mechanism, the experimental observations would be
explained.

Thesis Supervisor: Troy Van Voorhis
Title: Assistant Professor of Chemistry
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1 Introduction

The spiro-biphenalenyl radical dimer is a molecular conductor that simul-
taneously exhibits bistabilities in eletrical, optical, and magnetic channels.
Each biphenalenyl radical consists of two phenalenyl ring systems, spiro-
conjugated through a boron atom (Fig. 2), so that the two units of the rad-
ical molecule are orthogonal to each other. Their molecular crystals display
diverse physical properties. These multifunctional crystals have the poten-
tial to play a central role in the development of new types of electronic de-
vices, where multiple physical channels are essential for reading, writing, and
transfering information. In addition, the intriguing idea of molecular metals
is based on neutral 7-radicals [3]. In search of an intrinsic organic molecu-
lar metal, Haddon group has recently synthesized by far the best candidate,
cyclohexyl-substituted biphenalenyl radical [32], see Fig 1. Surprisingly, the
conductivity of the molecule increases by two orders of magnitude at the
phase transition from paramagnetic state to diagmagnetic state [25]. Vari-
ous conducting pathways of this spiro-biphenalenyl neutral radical molecular
crystals have been proposed [24, 28, 38]. For example, Huang and Kertesz
have suggested that a different band becomes the conduction band due to a
spin crossover at the phase transition. Their calcﬁlation indicates that the
energy gap (E,) increases from 0.12 eV of the low-temperature (diamagnetic)
polymorph to 0.23 eV of the high-temperature (paramagnetic) polymorph be-
cause it corresponds to a different occupancy causing a change in the number

of available charge carriers, explaining the change of conductivity by two or-



ders of magnitude. However, a more lucid conduction mechanism remains
open to discussion. More detailed understanding of the electrical property
will require further experimental and theoretical work. Here, we aim to eluci-
date the origin of conducting diamagnetic state and insulating para,magnetic
state of the biphenalenyl dimer using ab initio calculations.

A number of factors including ground state energies, binding energies,
HOMO-LUMO gaps, and charge localizations are known to play important
roles in dictating the conduction properties of conjugated organic polymers
[20, 6]. We consider these elements in Section 3. It will be seen that while
these factors suggest a desired trend, a more concrete explanation of the
odd conduction behavior is needed. We therefore focus our attention on the
reorganization energy (RE). It turns out that the RE scheme fits best to
the experimental observation. In the RE scheme, charge migrates from one
monomer unit (see Fig 2) to another overcoming the activation energy barrier

through thermal fluctuations.

R = Cyclohexyl

Figure 1: cyclohexyl-substituted biphenalenyl radical [32].
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Figure 2: Spiro-biphenalenyl neutral radical molecule. This is one monomer

unit of the dimer. Two monomers stack on top of each other to form a dimer.
2 Computational Methods

Other experimental and computational works [22, 25, 28, 38] have looked at
effects of different alkyl groups attached to the nitrogen N. We keep H as the
attached group, as we are investigating the general conduction mechanism
as opposed to the effects of substructures on the conduction. To have a
more detailed comparison of experimental and computational results, three
levels of DFT are employed in this work: LDA, GGA, and hybrids. At each
level of theory, the optimized geometry is obtained by successively optimizing
geometries of the dimer that were built in the graphical interface, Gaussview.
The optimized singlet dimer is shown in Fig.3. A larger basis set 6-311(d,p)
is used to carry out subsequent single point calculations. We performed

unrestricted DFT calculations for both the singlet and triplet states.



Figure 3: Spiro-biphenalenyl neutral radical dimer

3 Results and Discussion

3.1 Ground State Energy

From Table 1, we see that the energy difference between singlet and triplet
states, Ey;, — Ey, are very small, in the order of 0.1 eV. The small dif-
ference from each functional calculation hints that singlet and triplet states
are nearly degenerate, which is consistent; with the experimental observation.
We also see an interesting trend from Table 1, hybrid functionals (B3LYP,
B98, and B1B95) give E, — Eyi > 0, whereas LSDA and GGA’s (PW91
and PBE) give E,;, — Ey; < 0. It’s generally believed that hybrid functionals

are more accurate in predicting ground state energies [12], see also Appendix
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5.2. According to Becke’s argument [12], conventional LDA and GGA func-
tionals use physically inappropriate exchange-correlation potential energy at
the lower density limit. Hybrid functionals partially correct this problem by
including a fraction (i.e. 0.20 in B3LYP) of the exact exchange into the total
energy. However, since only like spins exchange, hybrid functionals correct
relatively more exchange energy, F,, of a triplet state than they do of a sin-
glet state. As a result, one sees E,;, — Ey > 0 from hybrid functionals and

Egin — Ey; < 0 from GGA functionals in Table 1.

Table 1: Energy differences between singlet and triplet states. Italic rows are
results from geometry optimization calculations with 6-31G* basis set. Non-
italic rows are results from single point calculations with basis set 6-311(d,p)
at the B3LYP/6-31G* geometry.

Functional/Basis  Ejingtet — Eiriplet (€V)

LSDA/6-81G* -0.190

PW91/6-81G* -0.019

B3LYP/6-31G* 0.218

B3LYP/6-311(d,p) 0.218

B98/6-311(d,p) 0.190

PBE/6-311(d,p) -0.027

B1B95/6-311(d,p) 0.136




3.2 Binding Energy and Intra-dimer Distance

Table 2 summarizes the geometric properties of singlet and triplet states. For
optimized geometries, LSDA gives the shortest intradimer distances: 3.0A
for singlet state and 3.1A for triplet state. LSDA is the only functional,
among all the functionals used, that gives intradimer distances shorter than
experimental X-ray data. LSDA distances are also the closest to experi-
mental data of 3.2A singlet and 3.3A triplet. This can be attributed to the
well known overbinding of LSDA functional as previously shown by others
[16, 17]. The overbinding tendency of LSDA is also apparent from the com-
parison of binding energies, LSDA exhibits the highest binding energy in both
singlet and triplet states. On the contrary, PW91 and B3LYP overestimate
the intramolecular distance by about 10 percent. GGA functionals (PW91
and PBE) also bind the dimer. However, the results are much smaller than
those obtained from LSDA. In addition, we found that B3LYP functional re-
sults in the smallest (even positive in the singlet case) binding energy among
all functionals. Notice also that hybrid functionals in general give smaller
binding energies than pure GGA functionals [14]. The same reasoning for
Eg — By in the previous paragraph holds valid in explaining the trend we
observed here. Hybrid functionals relatively correct more exchange energy of
the constituent monomers than they do of the dimer. Although our results
show that the singlet state is more tightly bound and has shorter intra-dimer
distance than the triplet state, the support seems weak when we compare

with the experimental result, where the conductivity increases by as much



as two orders of magnitude in going from triplet state to singlet state. It is
possible that the poor agreement is partly due to the difference in experi-
mental and theoretical sample enviroment. For example, in the theoretical
calculation, the Van der Waals interaction, which contributes to the binding
energy, between each monomer is ignored. In addition, since we performed

calculation on a single dimer, we also neglected crystal packing.

3.3 HOMO-LUMO gap

Generally, one regards HOMO and LUMO energy levels in organic semicon-
ductors as analogous to valence and conduction energy bands respectively
in inorganic semiconductors. The same analogy holds between the HOMO-
LUMO gap and the band gap. Hence, smaller HOMO-LUMO gap corre-
sponds to smaller band gap, which would generally make the crystal more
conducting. Experimental transmittance spectra of a single ethyl-substituted
crystal above and below the phase transition showed that the optical gap
closes upon dimerization [25]. Furthermore, extended Hiickel theory predicts
that in the high temperature regime (T>100K, paramagnetic), the band gap
is 0.23 eV, whereas it falls to 0.1 eV below the transition (T<100K, dia-
magnetic) [22]. As shown in Table 2 of our calculation, the HOMO-LUMO
gaps from pure GGA functionals of the singlet state are about 0.13 eV, but
the gaps from hybrid functionals are about three times larger, 0.44-0.51 eV.
We suspect that the HOMO-LUMO gaps from pure GGA functionals were

underestimated due to the derivative discontinuity problem in DFT [4, 5].
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Hybrid functionals partially correct this problem and thus give rise to more
accurate results. Singlet and triplet results are similar to within an order of
magnitude for each given functional. In our study, we found that the HOMO-
LUMO gap of the singlet state is smaller than that of the triplet state from
all calculations with different functionals. This trend is consistent with the
experiment [25] and Extended Hiickel theory prediction [22]. However, con-
trary to the experimental results, there’s little evidence of the closure of the
HOMO-LUMO energy gap in the transition from the triplet to the singlet

state in our calculations.

3.4 Charge localization

The passage of current through a crystal requires a pathway for the movement
of electrons or holes. One way for the biphenalenyl molecular crystal to
conduct current is to have the unpaired electrons located at the interior units
of the dimer so that they can easily move from one monomer to another. This
conduction mechanism is what Haddon et. al. had suggested. We summed
the Mulliken atomic charges on both the interior and the exterior units of the
dimer. Asshown in Table 3, negative charges spread on both the interior and
exterior units. Also, we noticed a trend that the interior unit is slightly more
negatively charged than the exterior unit of the singlet state, on the contrary,
the interior unit is slightly less negative than the exterior unit of the triplet
state. From the DFT calculations, the differences between the two units are

smaller than 0.1le for both paramagnetic and diamagnetic states. This result
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weakly supports Haddon'’s conclusion: “in the paramagnetic state, unpaired
electrons are located in the exterior phenalenyl units of the dimers, whereas
in the diamagnetic state the eléctrons migrate to the interior phenalenyl
units and spin pair as a w-dimer.” [25] The Hartree Fock results show a
much greater charge difference (~0.5¢) between the interior and the exterior
units. Nonetheless, the charge is still delocalized throughout the molecule
in both states. Note that while DF'T generally delocalizes the charge too
much, Hartree Fock tends to do the opposite [23]. Although we can’t firmly
say that charge localization does not contribute to electrical conduction, it’s

only marginally convincing,.

3.5 Reorganization energy

Because the simple proposals above do not fit the experimental observations,
we seek the answer to the seemingly counter-intuitive experimental observa-
tion of conducting singlet state and insulating triplet state from the perspec-
tive of charge transfer reorganization energies. Other studies have suggested
that a hopping mechanism is involved in the conduction of oligomers [31, 33].
We further explore this hopping scheme in the Biphenalenyl dimer. A hole
transfer process between adjacent spatially separated molecules can be sum-
marized as,

M1+ M2t — M1t + M2 (1)

where M represents the neutral species undergoing charge transfer, and the

M™ species contains the hole. A similar representation can be used in

12



Table 2: HOMO-LUMO gap (eV), binding energy (eV), and intramolecular
distance (A) of biphenaleﬁyl molecule. Italic rows are results from geometry
optimization calculations with 6-31G* basis set. Non-italic rows are results
from single point calculations with basis set 6-311(d,p) at the B3LYP/6-31G*

geometry.

homo-lumo gap Binding energy Intra-dimer distance

Singlet Triplet Singlet Triplet Singlet Triplet

LSDA 0.21 0.32 -1.09 -2.18 3.0 3.1
PwW91 0.13 0.10 -7.34 -0.22 3.5 3.7
B3LYP 0.44 0.65 0.16 -0.05 3.4 3.8
‘B3LYP 0.44 0.64 0.27 0.01

B98 0.47 0.86 0 -0.12

PBE 013  0.12 -0.13 -0.11

B1B9% 0.57 0.74 -0.01  -0.13

electrontransfer processes. One of the key parameters in a charge trans-
fer process is the reorganization energy, A, due to geometric relaxation. In
a redox rea,ctidn, the RE is the energy required for all structural adjust-
ments/reorganizations, which are needed in order that the acceptor and the
donor assume the configuration required for the charge transfer. To illustrate
the physical meaning of reorganization energy, we have represented in Fig.5
the potential energy surface (PES) of a hole transfer process of the type in
Eq.1 and Fig.4. Immediately after the charge migrates from M1 to M2, M1

becomes neutral but with cation geometry (Eg), and M2 becomes a cation
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Table 3: Comparison of charge localization from optimized geometries of

LSDA, PW91, and B3LYP. Calculations are done with 6-31G* basis set

Functional Interior (e) Exterior (e) Boron (e)

Singlet Triplet Singlet Triplet Singlet Triplet

LSDA -029  -023 -022 -028 0.1 0.51
B3LYP -040 -031 -034 -042 0.74 0.74
PWO1 -033 -029 -032 -0.36 0.66 0.65
HF -0.87 -0.21 -0.28 -093 1.16 1.14

but with neutral geometry (E7}). Now both M1 and M2 are energetically

unstable and will eventually relax to their equilibrium states, Fy and E.,.

Figure 4: Inter-molecular hole transport

The charge transfer process can be divided into two steps. First, there is

a vertical transition from the minimum of the neutral molecule to the cation
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Figure 5: Potential energy curves of a hole transfer reaction as a function of

various reorganization components A = Ay + Ag.

surface. The next step corresponds to the relaxation of the cation to its most
favorable geometry. As seen in Fig.5, the reorganization energy consists of

two terms:

Ao = By — Ey, (2)

Ay =E* —E,, (3)

The overall RE is the sum of these two terms, A, = Ag + A,,where subscript
“h” indicates that holes are the charge transport carriers. In Fig.5, the elec-
tronic states Fy and E, represent the energies of the neutral and cation
species in their equilibrium geometries, while Ej and E7 represent the en-

ergies of the neutral and cation species with the geometries of the cation
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and neutral species, respectively. Therefore, \¢ is the energy required for
the neutral system in its equilibrium geometry to adapt the cation geometry.
Similarly, A, is the energy required for the cation to adapt the geometry of
the neutral system. AFE is the adiabatic ionization energy of the molecule.

In a charge transfer process, the reorganization energy A is closely linked
to how fast the process occurs through Marcus theory and Arrhenius rela-
tionship. In Marcus theory, the activation energy for the charge transfer (the
energy barrier hindering the hole to migrate from M1 to M2 in Fig 4), AGH,
is given by

- A+ AG
AG o 4)

where AG? is the change in Gibb’s free energy of reaction at normal condi-
tions, which is zero for symmetric energy transfer. Eq.4 then can be used in

the Arrhenius relationship for the rate constant:
kpr = Aexp(—AGH /kgT), (5)

where kg is the Boltzmann constant. Eq.4 and Eq.5 can be applied to both
singlet and triplet states of the neutral molecule as illustrated in Fig.5. In the
singlet case, we denote the reorganization energy as A*" and charge transfer
rate as k*™. Similarly, in the triplet case, we have A\'* and k"*. By comparing
Eq.4 and Eq.5, we see that if A > A" then k¥ < k®™".

Reorganization energy were thus performed on optimized biphenalenyl
dimer constrained at experirﬁental distances. We held the intermolecular
distance to experimental X-ray values: 3.2A for singlet state and 3.3A for

triplet state. Furthermore, for charge constrained cation and anion calcula-
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tions, we constrained the extra charge to one of the monomers in the dimer
and then optimized the geometries. Similarly, fof charge constrained sin-
glet .and triplet dimers, we put a positive charge on one monomer and a
negative charge on the other, so that the net charge on the dimer is zerov.
This charge constrained geometry optimization procedure is made possible
through the use of constrained DFT (CDFT) [34]. The key idea of CDFT
is to obtain the particular external potential that has the constrained state
as its ground state. Wu and Van Voorhis have shown that the same en-
ergy state that is the minimum with respect to the constfaint is actually
a maximum with respect to the constraint potential [34]. Inspired by the
direct method for optimized effective potential (OEP) [26, 27], they’ve also
established an efficient method to directly optimize the required potential
by performing an unconstrained maximization to find the correct potential
at each self-consistent iteration. This method gives the desired state and
the required potential at convergence. CDFT is implemented in NWChem
and is useful for our reorganization energy calculations. All charge con-
strained calculations were done with NWChem and all calculations without
charge constraint were done with Gaussian03. For these calculations, we used
B3LYP/6-31G* as functional/basis. It’s important to note that we held the
intra-molecular distance to the experimental X-ray values since the results
from B3LYP geometry optimizations were over-estimated, as shown in Table
2. From Table 4, we see that for hole transport, Af"® > Agi". This implies
that k! < k®*". In other words, the rate of hole transport is greater in the

singlet case than in triplet, and hence singlet state is more conducting than
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triplet state. Blom et. al. have demonstrated that in poly (p-phenylene
vinylene) (PPV), the electron current is smaller than the hole current, and
the hole mobility exceeds the electron mobility by more than an order of
magnitude at room temperature [15, 21]. Hence, it’s likely that holes are the
conduction carriers. Interestingly, it appears to be the opposite, A" < A%,
in electron transport. We postulate that the paramagnetic state would ex-
hibit higher conductivity than the diamagnetic state, if electrons were the
conduction carriers in biphenalenyl crystal, which might be achievable via
doping and careful sample preﬁa.ration. It is well known that organic con-
ductors are p-type, in which electrons are trapped, and consequently, holes
are the main conduction carriers [33]. We also considered the charge delocal-
ized case, where the extra charge is equally distributed to both monomers in
the dimer as opposed to being constrained to one monomer as in the charge
localized case. Note that charge delocalized systems show the same trend as
charge localized systems, Al > A" and A < A¥". For charge localized
systems, the difference between triplet and singlet state is slightly larger than
that of charge delocalized systems, see Table 4. The unusual display of high
conductivity in the singlet state can be understood as a consequence of the

relatively high rate of hole transfer from one dimer to another.

4 Conclusion

We have undertaken a detailed analysis of the HOMO-LUMO gap, charge lo-

calization, and reorganization energy of the spiro-biphenalenyl neutral radical
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Table 4: Inter-dimer reorganization energy of biphenalenyl molecule in eV
Hole (eV) Electron (eV)

localized delocalized localized delocalized
Triplet 0.25 0.14 0.08 0.11
Singlet 0.18 0.03 0.22 0.33

dimer. We saw no significant difference in the HOMO-LUMO gap, or charge
localization between singlet and triplet state dimers. The unusual conductiv-
ity increase in going from triplet to singlet state can be understood as a result
of the higher reorganization energy in the charge transfer from triplet state to
cation state, than in the charge transfer from singlet state to cation state. We
conclude that the oddity of the insulating paramagnetic state and conducting
diamagnetic state is mainly due to the higher rate of hole transport of the
latter. However, we should point out that we performed calculation on the
biphenalenyl dimer in its gaseous state rather than solid state. More complete
understanding of the conduction mechanism will require further experimen-
tal and theoretical work. It is worth noting that our geometry optimization
method did not provide the correct inter-monomer distance. Reorganization
energy were thus performed on optimized biphenalenyl dimer constraining at
experimental distance. More sophisticated methods are needed for geometry

optimization that gives accurate inter-monomer distance.
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5 Appendix

Density functional theory (DFT) is an accurate, rigorous and popular method
for solving many-body problems in quantum chemistry and solid-state physics
[1, 2]. DFT has successfully predicted many useful properties of atoms,
molecules, and solids [9]. It is also useful in industry for the design of ma-
terials, reactions, pharmaceuticals and molecular dynamics [18]. In DFT,
chemical and physical properties are studied from the perspective of looking
at the electron densities rather than the many-body wave-function. Most
modern density functional calculations involve solving the Kohn-Sham equa-
tions for a set of N orbitals. In principle, the sum of these orbitals’ densities
equals the exact ground-state density, from which the ground-state energy
can be extracted. The exchange-correlation energy, E,.[n], accounts for a
critical part of the ground state energy, and is the main focus of this work.
We propose a new hybrid density functional, which incorporates (a high
percentage of) exact exchange, Meta-GGA exchange correlation, and cor-
relation from second order perturbation theory. We describe in details the
motivation behind the present work. We investigate the success and short-
comings of this functional by applying it to calculations of atomization ener-
gies of the G1 set, binding energies of Van der Waals complexes, and reaction
barrier heights. We present the performance of this functional by comparing
our results to those of other well established GGA, meta-GGA, and hybrid

functionals.
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5.1 Kohn-Sham Equation vs. Schrédinger Equation

In quantum mechanics, the time independent Schrodinger equation is ex-
pressed as

f{\Ifi(Xl, X2, .eny XN) = Ei\I’,'(Xl, X2, ...,XN), (6)

where H is the Hamiltonian operator and W;(X3,X2,...,Xn) is the many-
particle wavefunction. If we apply the Born-Oppenheimer approximation,
which states that the motion of the Nuclei is much slower than that of the

electrons, we have the Hamiltonian operator that looks like

H———ZV2 ZZT Z T+VN3+Vee (7)

i=1 A=1"i4

where the first term is the kinetic energy term, the second term is the nuclear
attraction term, and the last term is the inter-electronic repulsion term. It is
the last term that scales factorially, and thus makes the Schrodinger equation
difficult to solve accurately.

On the other hand, the Kohn-Sham equation avoids solving the many-
body wave-functions directly. Instead, Kohn-Sham equation involves only
one-particle wave-functions that give the same density as the ground state

density of the real system. Eq.8 below is the Kohn-Sham equation,
) .
{—'2‘V2 + vs(r)}¢i(r) = eigi(r), (8)
where the first term is the kinetic energy operator, the second term is the

effective potential, and ¢;(r) is the Kohn-Sham orbital of a single particle.

The potential energy term can be decomposed into three parts,
\ n\r VA 5Ea:c n
w)= [H -2 =S )

12 4 T1A
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In Eq.9, the first piece is the Hartree potential, the second piece is the nuclear
attractive potential, and the last piece is the exchange-correlation potential.
The exchange-correlation energy can be viewed as the Coulomb interaction
between the charge density and its surrounding exchange-correlation hole.
Both the Hartree and the nuclear attraction potentials can be expressed as
an explicit functional of the electron density, n. However, the exact form of
the exchange-correlation functional E,. is unknown, hence, must be approx-
imated in DFT for the computation of electronic properties. This leads to

our discussion of the levels of approximation to E. in the next section.

5.2 Motivation

According to Perdew et al. [29], the various steps forward in the development
of more accurate density functionals can be assigned to various rungs of
“Jacob’s ladder.” In that picture, the first rung of the ladder is the local
density approximation (LDA); the second rung is the generalized gradient
approxiamtion (GGA); the third rung is a hybrid functional; the forth rung
is the meta-GGA functional; and our proposed functional is on the fifth rung,
the hyper-hybrid functional. Here, we provide a brief description of each type
of functional going up the Jacob’s ladder. The LDA functional makes the
assumption that all electron densities are uniform, and E,. depends only on
the density, n. It’s a great approximation for metals, and has seen immense
success in solid state physics. However, the fact that densities in atoms and

molecules are non-uniform makes it a poor approximation for these systems.
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Generalized gradient approximations (GGAs) take a step further by including
the gradient of the density, Vn, as a basic variable of E,.[n]. Examples of
GGA include PBE [13] and PW91 [10]. Going up a rung of the ladder,
we have hybrid functionals. Hybrid functionals are obtained by mixing a
fraction (with either empirical or non-empirical parameters) of the exact
exchange energy into GGA E,.[n]. An example of a hybrid with empirical
parameters is the famous and popular B3LYP [12]; PBEO [19] is an example
of non-empirical hybrid. The next type, meta-GGA, sees advantage over
GGA with the addition of kinetic energy density as a basic variable. The
TPSS functional, which is the functional of interest in the present work,
is a meta-GGA functional. Similar to but more advanced, and in many
cases more accurate than hybrid functionals, are hyper-hybrid functionals.
Hyper-hybrids have the ability to accomplish the “best of both worlds” since
they have embedded in them both the exact exchange energy and the second
order perturbation correlation energy. The equations below depict the unique

features of each type of functional.

BEPMfn) = [ dPrn(e)esm (m (x), my (1) (10)
EgGA[n] = /d3rnszc(nT,nl,VnT,an) (11)
Eprid = EGOA o (EFF — ESO) (12)
E;';GGA[n] = /d?‘rnszc(nT,nl,VnT,an,'rT,Tl), (13)
Wherg
occup | )
To = Z §|V¢ia(r)| (14)

1
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is the kinetic energy density for the occupied Kohn-Sham orbitals 1;,(r).

Bh = B0 o, (BHF — EPOSA) +b(EPT— EPOOA) o EF P —limy o EPA(ny))
(15)
The fifth rung of the Jacob’s ladder, Eq.15, is what we’re investigating.
The motivation behind mixing in exact exchange lies in the adiabatic

connection formula,
1
Exc = /0 U od), (16)

where A is an interelectronic coupling-strength parameter that “switches on”
the 1/r Coulomb repulsion between eletrons, and U} is the potential energy
of exchange-correlation at intermediate coupling strength A. The system is
the non-interacting Kohn-Sham system at A = 0, and fully interacting real
system at A = 1. Eq.16 conncets the Kohn-Sham system to the real system
through coupling strength integration. This coupling strength integration,
which via the Feynman-Hellman theorem, incorporates the kinetic contribu-
tion of the correlation, T, into a potential energy term. At the lower limit
A = 0, UF represents the exact exchange, ie. U ¥ = Ux. Becke [12]
argued that conventional LSDA and GGA functionals use physically inap-
propriate U}, near the A = 0 limit. Thus, even very sophisticated GGA
functionals suffer from the flaw of overbinding. Hybrid functionals partially
correct this problem by including a fraction (i.e. 0.20 in B3LYP) of the exact
exchange into the total energy. We take advantage of this partial lower limit
A = 0 correction by including some exact exchange energy into our proposed

functional.
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Now let’s describe the reason for including the second order correlation
E.? into the proposed energy functional. Gérling and Levy have developed
a perturbation theory (GLPT) [11] for the correlation with respect to the

coupling constant, A,
E [ny] = ecan] + Aecs[n] + )\260,4[77,] + ... (17)

They have shown that the high denisty limit (low A limit) of the correlation
energy, limy_oFE;[n,], can be explicitly expressed as the following second-

order result,

(18)

) e . NITO ~ |2
l’im,\_,oEc['n,,\] = ec’2[n] _ Z | <V |Ei=1[u(7"l,) + U:z:('rz)”"pk > |
k=1

E° — E?
This term is the long-range electron correlation that’s responsible for dis-
persive (i.e. Van der Waals) interactions. It contains virtual KS orbitals
(characteristic of the fifth rung of Jacob’s ladder), which are missing in cur-
rent GGAs and meta-GGAs. These virtual orbitals allow electron motion
to be correlated when the two-electron operator is introduced, by giving the
electrons the opportunity to move away from each other [35]. With the
presence of limy_oF.[n,] in our proposed functional, we hope to be able to
describe Van der Waals interactions to higher accuracy.

Table below shows that E¥® works well, this agrees with the common
claim that approximate functionals work best at the A = 1 end. The E?
piece is too big, in other words, (1-a) is too big, and thus higher order terms
were scaled down by too much. This perhaps could be improved if we scale
up higher order terms, since E, has the following form according to Gorling-

Levy perturbation theory.
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Ec[ny] = eca[n] + Aecs[n] + Necaln] + ... (19)

p Vp
EcA = Ec[}\?a F] (20)
_d oo A L dE)
E = d/\()\ E})=2XE}+ ) Y (21)
In the high density limit,
dE,
2o s = 2B s = 2 @)

5.3 Theoretical Details

We used the meta-GGA TPSS [29] functional for the ETCC4 in Eq.15. TPSS
functional is self-correlation free, and thus is desirable for systems containing
hydrogen. First, TPSS Kohn-Sham (KS) orbitals of the G1 set molecules
(shown in Table 1) were generated using Gaussian03 and NWChem. Then,
we used KS orbitals to calculate individual terms in Eq.15. We optimized the
parameters a,, b, and c in Eq.15 iteratively for the atomization energies of
the G1 molecules. At convergence, we obtained a set of best fit parameters.
We then put these parameters back into Eq.15 to calculate barrier heights
and Van der Waals binding energies. We used cc-pevqz basis set [39] for
atomization energy and barrier height calculations and cc-pvtz basis set [39]

for Van der Waals interaction calculations.
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5.4 Analysis

The coefficients we found from optimizing against the G1 set atomization
energies are a, =0.67, b=0.24, and c¢=0.13. The mean absolute error (MAE)
from atomization energy is 2.10 kcal/mol. It’s slightly better than B3LYP
result, and much better than TPSSh [30] result, as shown in Table 5. We see
better improvements in reaction barrier height calculations [36] in Table6.
The results from the new hyper-hybrid are much better than both B3LYP
and TPSSh results. As expected, the proposed functional gives substantially
smaller errors than existing hybrids of GGA and meta-GGA. This is manifest

from the comparison [37] in Table 7.

Table 5: Comparison of mean absolute errors (in kcal/mol) of atomization

energies of different functionals
Proposed B3LYP TPSSh

MAE 2.10 2.21 4.51

Table 6: Comparison of mean absolute errors (in kcal/mol) of barrier heights

of different functionals
Proposed B3LYP TPSSh

MAE 3.25 4.28 6.32

Note that we used Kohn-Sham orbitals to calculate the PT2 correlation.
The Kohn-Sham orbitals themselves have no physical significance besides
the relation, egoyo = —I, where egonro is the energy of the highest occu-

pied molecular orbital and I is the ionization energy. It’s fascinating to see
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Table 7: Comparison of mean absolute errors (in kcal/mol) of Van der Waals

binding energies of different functionals
Proposed PBE(O TPSSh

Rare-Gas Dimer 0.055 0.099 0.113
Alkaline-Metal and Zn2 0.694 1.89 2.16
Zn-Rare-Gas Dimer 0.078 0.118 0.147

how inclusion of virtual KS orbitals enables one to calculate Van der Waals

interaction to a much higher accuracy.

5.5 Remarks

Based on the physical ground of perturbation theory, we have climbed to the
current top rung of the Jacob’s ladder. The “best of both worlds”, namely,
the exact exchange and second order perturbation correlation energies are
proven to be essential in aspects of thermochemistry such as atomization
energy, reaction barrier height, and most notebly Van der Waals interaction.
It will be interesting to see how well the proposed functional performs on
systems with extended m — 7 interactions such as the biphenalenyl radical
dimer. More importantly, a further step can be taken to investigate more
accurate treatment of excited states in DFT without having to resort to time-
dependent DFT (TDDFT). The performance of present time non-TDDFT

on excited states is shown in Fig.6.

28



FETT
FET+
T F

Good Underestimate Overestimate

Figure 6: current performance of DFT on excited states
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