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Abstract

The Navier-Stokes equations of continuum fluid mechanics fail to accurately describe dilute
gas flows when the characteristic lengthscale of the system is on the order of (or smaller
than) the molecular mean free path. At these lengthscales, gaseous hydrodynamics may
be described by a kinetic description, namely the Boltzmann equation. Currently, the
prevalent method for solving the Boltzmann equation is a particle simulation method known
as direct simulation Monte Carlo (DSMC). DSMC is very efficient for high-speed (more
generally, high signal) flows; unfortunately, due to the statistical sampling used to obtain
hydrodynamic fields, the computational cost of DSMC (for a given signal to noise ratio)
increases rapidly with decreasing signal. For example, the computational cost for calculating
the flow velocity with a fixed signal to noise ratio scales with Ma - 2 as Ma -- 0 (Ma is the
Mach number). As a result, simulation of many low-signal flows of practical interest (for
example, in micro- and nano-scale devices) is currently not feasible using DSMC.

This thesis describes how the above limitation can be alleviated through the use of
variance reduction techniques. In particular, we show that by simulating only the deviation
from equilibrium, one can devise a variety of numerical methods that have a computational
cost that is both small and independent of the magnitude of this deviation. For low-speed
flows, this leads to methods that are significantly more efficient than DSMC.

Two implementations of this variance reduction concept are presented. The first is a
particle method akin to DSMC, differing only in ways necessary to simulate the deviation
from equilibrium. This particle formulation retains the most important strengths of DSMC
- specifically, importance sampling (providing computational efficiency) and the ability to
capture discontinuities in the solution - while offering a significant computational advantage
compared to DSMC for low-signal flows. The second approach considered is a PDE-based
method using a discontinuous Galerkin formulation, which is able to treat travelling dis-
continuities. This PDE-based approach has the potential for high-order accuracy, as well as
implicit steady-state formulations which can be significantly more efficient when transient
phenomena are not of interest.

Thesis Supervisor: Nicolas G. Hadjiconstantinou
Title: Associate Professor
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Chapter 1

Introduction

Efficient numerical techniques for modeling small scale, dilute gas flows are expected

to be of increasing importance as micro- and nano-scale engineering becomes more

prevalent. This thesis discusses the development of efficient numerical methods that

can be used for the design and optimization of MEMS and NEMS (micro/nano elec-

tromechanical systems); additionally these methods can be used as a tool for gaining

a better understanding of the physics of dilute gas flow.

At present, the most prevalent method for simulating dilute gas flow is the direct

simulation Monte Carlo (DSMC) method [12, 2] (discussed further in Chapter 3).

This method has been extremely successful for simulating high-speed dilute gas flow

(for example in aerospace applications), unfortunately its computational efficiency is

very poor for low-speed (or more generally low-signal') applications. For example, in

DSMC, the computational cost associated with estimating the flow velocity u with a

relative uncertainty E. scales as (MaE,)- 2 where Ma is the flow Mach number[22];

as a result, the simulation of low-speed flows with DSMC is essentially intractable;

e.g. to obtain 1% statistical uncertainty in a 1m/s flow at room temperature, one

would need on the order of 5 x 10' independent samples per cell (and per timestep,

for transient calculations) [22].

This thesis describes the development and application of a general variance re-

'In the present context, low-signal means that the quantity of interest is small relative to the
appropriate normalizing factor. For example, both low Mach number flows and flows with small
temperature gradients would fall under this heading.



duction technique for efficiently evaluating the collision integral of the Boltzmann

equation, which is the governing equation for dilute gas flow. The central idea of

this variance reduction technique is to simulate the deviation from equilibrium in a

manner that yields a highly efficient method when this deviation is small (as will typ-

ically be the case for low-speed flows), while remaining accurate even if the deviation

is large. Thi;s variance reduction technique enables simulation of gaseous flows at low

speeds with a computational cost that is independent of the flow speed.

This variance reduction technique is sufficiently general to allow a variety of imple-

mentations; this thesis describes the use of this technique in both a particle simulation

method (similar to DSMC) and a PDE-based approach (based on the discontinuous

Galerkin method). As will be shown, both of these methods are able to provide

essentially noise-free solutions of the Boltzmann equation under arbitrary flow con-

ditions. In particular, accurate solutions of low-speed flows are readily obtained,

without sacrificing applicability to the general case.

1.1 Overview

The present chapter introduces the kinetic description for dilute gas flow and the

Boltzmann equation. The set of dimensionless units and the process for obtaining

hydrodynamic fields from the kinetic description are given. Additionally, the moti-

vation for solving the full Boltzmann equation, instead of a simplified equation, is

discussed.

In Chapter 2, the variance reduction concepts used in this thesis are discussed in

a general context. The application of variance reduction to the collision integral as

well as a brief discussion of the advantages and interpretations of these methods is

presented.

As mentioned previously, variance reduction can be implemented in a variety of

ways for the Boltzmann equation. In this thesis, two independent approaches sharing

the same core ideas are presented. The first implementation discussed is a particle-

based formulation drawing from DSMC.



To motivate this particle-based formulation, we first briefly discuss DSMC in

Chapter 3. We illustrate how DSMC uses one variance reduction method, specifically

importance sampling, to obtain its formidable computational efficiency (for high-

signal flows).

We then extend DSMC algorithm by incorporating an additional variance reduc-

tion technique. In Chapter 4 we show how one can develop a particle-based formula-

tion that enables the simulation of only the deviation from equilibrium. The resulting

method is similar to DSMC, and retains many of DSMC's traditional strengths - in

fact DSMC is retained as a special case. However, in contrast to DSMC, the resulting

method is extremely efficient for low-signal flows.

In Chapter 5, we show how the variance reduction ideas of Chapter 2 can be

extended to a direct numerical formulation. In this chapter, we use the Runge Kutta

discontinuous Galerkin (RKDG) method[17], which is a finite element formulation

applicable to hyperbolic equations. The resulting method combines the strengths

of the discontinuous Galerkin (DG) formulation - namely high order accuracy in

all dimensions and the ability to capture discontinuities - with high efficiency for

low-signal flows resulting from the variance reduction techniques used.

Finally, in Chapter 6 an iterative method for obtaining steady-state solutions

to the Boltzmann equation is developed using the variance-reduced discontinuous

Galerkin (DG) formulation from Chapter 5.

1.2 Kinetic description of gas flow

1.2.1 Flow regimes

At macroscopic length scales, gas flows are typically well described by the Navier-

Stokes equations. This continuum description is appropriate when the characteristic

length scale of the physical domain is much larger than the molecular mean free path

(the average distance molecules travel between collisions) and in the absence of steep

gradients in fluid properties (such as in the interior of a shock wave). However, as the



length scale of the flow decreases relative to the mean free path, the Navier-Stokes

equations cease to be valid and more general approaches must be used. It is these

regimes, in which the continuum description fails, that are of primary interest in this

work.

The breakdown of the Navier-Stokes equations can be quantified by introducing

the Knudsen number, Kn = A*/t*, the dimensionless ratio of the mean free path to

the characteristic length scale of the flow (in this thesis, dimensional quantities are

indicated by a * superscript). When Kn < 10- 3 or, in other words when the relevent

length scale is very large compared to the mean free path, the Navier-Stokes equations

(supplemented by the usual no-slip boundary conditions) hold. As the Knudsen

number increases, slip begins to become important at the domain boundaries. It can

be shown that by replacing the no-slip boundary conditions by the slip boundary

conditions, one can still obtain good approximations to the flow[14].

When Kn > 0.1, the Navier-Stokes equations are not valid, even in the interior of

the domain, and one must solve the Boltzmann equation, which governs the hydro-

dynamics of dilute gases at all Knudsen numbers and under general flow conditions2 .

For Kn > 10 (known as the free molecular flow regime) inter-molecular collisions are

so infrequent that they can be neglected. In this case, flow solutions can be obtained

by solving the collisionless Boltzmann equation, which is significantly more amenable

to analysis.

This thesis will focus primarily on the transition regime, 10-1 < Kn < 10, in which

neither the continuum flow approximations nor the collisionless Boltzmann equation

are applicable, and the full Boltzmann equation must be solved.

1.2.2 The Boltzmann equation

In the framework of the kinetic theory of gasses [14, 37, 12], the state of a dilute

gas is specified by the distribution function f* = f*(x*, c*, t*), defined such that

f* d3x* d3c* is the expected number of molecules with a position in the range d3x*

about x* and a velocity in the range d3 c* about c* at time t* [37]. (Recall that the
2See [37, 12, 14, 33] for a discussion of the assumptions inherent in the Boltzmann equation.



starred quantities are dimensional.)

The evolution of the distribution function in time is governed by the Boltzmann

equation [37, 12, 14]

Of* c f* a* Of* _ df*
S+ +c • + a" (1.1)

8t* 8x* 8 * dt coll

Here, a* = F*/m* is the acceleration resulting from the body force F* acting on a

molecule of mass m*. The Boltzmann equation is a conservation law for the distri-

bution function in the six dimensional phase space (three physical space dimensions

and three velocity space dimensions).

The term
Of* (1.2)at*

describes the change in the number of molecules with a position x* and a velocity

c*. There are three things that cause this change: the first is the molecules changing

position do to their velocity, accounted for by

* Of*c* a (1.3)

and the second is due to the velocity of particles changing because of the acceleration

due to body forces
af*

a* (1.4)

Finally, the third is encompassed in the right side of the Boltzmann equation, known

as the collision integral. The collision integral represents a source term due to in-

termolecular collisions impulsively changing the velocities of molecules. The collision

integral, col = []coll (x,* C*, t*) can be written in the form

df*co = (f'jf*' - f *f *) g*or* d2 d3c* (1.5)

Here, cl is a the molecular velocity of the "bullet" molecule, which collides with a

molecule of velocity c; together c* and c* are referred to as the pre-collision velocities.



The post-collision velocities, c*' and c*', are related to the pre-collision velocities

through the scattering angle O, which is a solid angle on the unit sphere. In this

thesis, integration over E extends over the unit sphere and integration over other

coordinates (here, cT) extends over the entire space, unless otherwise noted. We define

g* = IICT-c*| = II*C*'l-c*' to be the relative speed, equal before and after the collision

due to conservation of energy. The parameter a* is known as the (differential) collision

cross section; for a hard sphere gas of diameter d*, ard sphere * d2/4; expressions for

a* for other interaction potentials are also available [37, 12]. To simplify the notation,

we have defined

f* f *(x*, c*, t*) (1.6a)

f = f*(x*, c, t*) (1.6b)

f* t f*(x*, c*', t*) (1.6c)

ff ' f*(x*, c/, t*) (1.6d)

The post collision velocities are related to the scattering angle and the pre-collision

velocities by [2]

C* + +C 1
C + 2c*' (1.7a)

2 2
C C* +* 1 C2 c 2 (1.7b)

C1  2 2

where the post-collision relative velocity vector is given by [4, 2]

c' = g* [sin V cos ý, sin 0 sin ýp, cos V] (1.8)

where p is the azimuthal component and 9 is polar angle of the solid angle E on the

unit sphere.

For an detailed interpretation of the collision integral, we refer to reader to dis-

cussions in [37, 12]. For our purposes, it will be enough to recognize that the collision

rate between molecules of velocity c* and molecules with a velocity ct with a scatter-



ing angle e is given by fj*f*g*a* (where, in general, a* depends on the pre-collision

velocities and the scattering angle). The expression

- f f ff *g*o* d2 d3c1 (1.9)

is thus the total rate at which molecules of velocity c* are scattered by all collisions.

The negative sign indicates that these collisions reduces the number of molecules with

a velocity c*. Similarly it can be shown [37] that

ff f'f *'g** d2 d3c1 (1.10)

is the rate at which molecules of velocity c* are created by collisions; that is the rate

of collisions that have c* as a post-collision velocity.

In this thesis, we shall also make significant use of an alternative formulation for

the collision integral. We begin with the weak form of the collision integral [37]

[d= -1 - * *a* d*2E d 3 cld c  (1.11)

vi [ co,1 d1 c = (vv + v - vl - v2)f f1g a d2  3  d3c 1.11)

in which vl = vi(x*, c*) is a test function3 and g* = lcI - c11 = IIct' - c2'| is the

relative speed and [t ]co, - col, (x*, c*, t). To simplify the notation, we haved co dt co_, 1

defined

V 1 , V(X*, Cl, t*) (1.12a)

v2 - v(x*, C2, t*) (1.12b)

v1 Us ,c1 , ) (1.12c)

v2 = v(X*, c ,t*) (1.12d)

in a similar manner as in (1.6a) - (1.6d).
3 The function v could of course be replaced with a dimensional function v*.



If we take v1 = 6(c* - c*), we obtain the result

coll 2JJJ 2 -- 1 62)f- f g* a d2  d3c ld3c~ (1.13)

We note that this expression for the collision integral has a simple interpreta-

tion. The term ftf2fg*j* is the collision rate between molecules with velocity ct and

molecules with velocity c* and a scattering angle e. The expression (1.18) can thus

be interpreted as integrating the collision rate over all possible collisions, with the

delta functions selecting for those collisions involving (either as a pre- or post-collision

velocity) the velocity of interest c*. The delta functions at the pre-collision veloci-

ties have a negative sign; each collision for which a molecule of class c* is involved

reduces the number of molecules of class c*. Similarly, the positive sign for the delta

functions at the post-collision velocities indicates that collisions for which c* is the

post-collision velocity increase the number of molecules with velocity c*. We also

note that there is a factor of 1/2 to account for double-counting - interchanging ct

and c* yields an indistinguishable collision, but these are considered separately in the

above expression.

1.2.3 Non-dimensional units

It is convenient to introduce a set of dimensionless variables. We will use a character-

istic molecular mean free path A* as our characteristic lengthscale, the most probable

molecular speed 0* = 2k*TV as our characteristic velocity, and as a characteristic

timescale we will use eF - 4. Here, k* is Boltzmann's constant, T* is a reference

temperature, and m* is the molecular mass.

In the examples presented in this thesis, we will typically use the hard sphere

collision cross section 4; in this case, the molecular mean free path is given by

1

A* = (1.14)

4 None of the methods developed in this thesis are limited to hard spheres.



where n* is the reference number density.

will be the mean time between collisions.

We will then define our set of dimensionless variables as

1
t - tt*

1
X--X*

1
C -- C*

E*3
f= f*

n*

t*
a = -a*

a *= Bo*ar*a*

Using this nondimensionalization, the Boltzmann equation can be written

of ~/
t 2

dfdt collOf
ax

with the dimensionless form of the collision integral given by

(f'f' - f 1f) go d20 d3cl

The alternative form of the collision integral can be written

= / ('1 + 62 - 61 - 62)flf 2go d2 d 3C d 3c

and the weak form of the collision integral is given by

Vl [I Icoll,l d3C1 = \/-
4 JJJ(v1 + v2 - v1 - v2 )f 1f 2gcu d2 ( d3cl d3 c 2

(1.15a)

(1.15b)

(1.15c)

(1.15d)

(1.15e)

(1.15f)

(1.16)

[dt coil

df oll

(1.17)

(1.18)

(1.19)

Additionally, for the hard-sphere case *

=2



1.2.4 Maxwell-Boltzmann distribution

The equilibrium distribution for the Boltzmann equation is known as a Maxwell-

Boltzmann distribution, given by [37]

fMB (c) = nT-3/2T-3/2 exp (c - U)2 (1.20)

The nondimensional parameters describing a Maxwell-Boltzmann distribution are

the number density n = n*/i*, the temperature T - T*/T* and the mean velocity

U = U*/C * .

The Maxwell-Boltzmann distribution satisfies

[df1 =-0 (1.21)
" dt coll, MB

for any choice of parameters {n, T, u}.

1.2.5 Hydrodynamic fields

The distribution function provides a complete description of a dilute gas flow. On the

other hand, in typical applications one will be interested in macroscopic properties,

such as the fluid velocity, shear stress, temperature and heat flux. These quantities

can be obtained as moments of the distribution function.

n = f d3c (1.22a)

1ui = - cif dc (1.22b)
n

P,j = f (c - uj) (cj - uj) f d3c (1.22c)

T = •J c - u llf d3c (1.22d)

qi = I (c - ui) lc - u| f d3c (1.22e)2J \e -c I- -IJ-



Here, n is the number density, u is the fluid velocity, P is the stress tensor, T is the

temperature, q is the heat flux and i and j index the vector components.

The dimensional values for these quantities can be obtained as follows

n* = -*n (1.23a)

u* = c*u (1.23b)

P* = n*m*c*2P (1.23c)

T* = T*T (1.23d)

q* = m*n**3 q (1.23e)

1.3 Previous work on numerical solutions of the

Boltzmann equation

Experience has shown that one of the most difficult aspects of solving the Boltzmann

equation is the evaluation of the collision integral. Thus, much of this thesis will focus

on evaluating this term efficiently.

The collision integral is a five dimensional integral with an integrand that is, in

general, discontinuous. Moreover, in order to solve the Boltzmann equation, the col-

lision integral must be evaluated at a large number of points in phase space (physical

and velocity space) and time.

To cope with the difficulty in evaluating the collision integral, a variety of numeri-

cal solution techniques have been developed. Here, we will discuss two representative

approaches, both of which are typically implemented using deterministic approaches,

which do not suffer from statistical uncertainty limitations. The first is based on the

relaxation time (or BGK) model [37], in which the collision integral is approximated

as
df f f (1.24)
dt icoil, relaxation T

where T is an empirical relaxation time and fo is the assumed equilibrium distribution.

While this approach results in a simplified governing equation, the tradeoff is a lack



of fidelity resulting from this rather crude model. For example, this approximation

predicts the Prandtl number for an ideal gas to be 1 [37].

Another notable approach consists of obtaining direct numerical solutions of the

linearized Boltzmann equation, which can be written (in the absence of body forces)

MB c "r anfMB = 2 (nl + ?' -- _,q)- - ) f fMB ga d2 Ed 3cC (1.25)
at 2 ax 2

where 7 is a small perturbation from equilibrium, defined by the relationship f =

(1 + )fMB.

This approach is sufficient for many of the low-speed cases of interest in this

work. However, as will be shown later, evaluation of the right side of (1.25) by direct

quadrature has proven sufficiently costly that similarity solutions have been used to

reduce the dimensionality of velocity space from three to two [35]. Additionally,

for time-independent problems, the discontinuities in the distribution function are

stationary and can be aligned with mesh elements. Extentions of this method to

two spatial dimensions has been done with the collision integral replaced by the

BGK model, and velocity space again reduced to two dimensions [3]. While the

performance of computers has advanced immensely since these papers were published

(1989 and 2001, respectively), this author is unaware of any implementation that is

able to practically and accurately simulate flows of interest in two or three physical

dimensions, for the general case, using these methods.

Using the methods developed in this thesis, it is possible to retain the non-linear

terms of the Boltzmann equation in a way that leads to negligible additional com-

putational expense in the case where these terms are small, while maintaining the

applicability of the method to cases where these terms are not small. This allows

the user to apply the method without concern as to whether the non-linear terms are

relevant for a particular problem.

Additionally, in this thesis, all work will be done using the full three dimensional

velocity space. While the work presented here will use only zero or one dimensions in

physical space, the methods can be directly extended to higher dimensional problems.



Preliminary estimates indicate that problems in two physical dimensions should be

tractable on a single (circa 2007) workstation, while three dimensional problems are

feasible on a, small cluster.



Chapter 2

Variance reduction techniques for

evaluating the Boltzmann collision

integral

In this chapter, we will discuss Monte Carlo evaluation of the collision integral for

the nonlinear Boltzmann equation. We focus on the use of variance reduction tech-

niques, specifically importance sampling and control variate integration, to improve

the efficiency of the Monte Carlo integration. These variance reduction techniques

yield a highly efficient means by which to evaluate the collision integral, and form the

central theme of this thesis. In later chapters, we will illustrate how these variance

reduction techniques can be incorporated into a variety of solution methods for the

Boltzmann equation; however in this chapter we will focus on the variance reduction

techniques in isolation.

2.1 Standard Monte Carlo integration

The collision integral is a high-dimensional integral with an integrand that is, in

general, discontinuous. Thus, Monte Carlo techniques are a natural choice for its

evaluation [32, 27]. As a starting point, we consider direct application of Monte



Carlo integration to the problem at hand'

Monte Carlo integration [32] of a function y(r) over a region R in any number of

dimensions can be performed by approximating

Jy(r) dr = V x (y) (2.1)

r- y (ri) (2.2)

where V is the volume of the region R and ri E R is a point chosen at random with

a uniform probability distribution over R. Here (-) denotes the expected value.

The statistical uncertainty of this method scales with [32]

(y2) - (y)2
V (2.3)N

2.1.1 Standard Monte Carlo evaluation of the collision inte-

gral

To apply this Monte Carlo integration approach to the Boltzmann collision integral,

we restrict integration to a finite region in velocity space[4], instead of to infinity. In

practice, this truncation of velocity space introduces a negligible error if the maxi-

mum considered speeds are sufficiently large. Typical implementations will include

(dimensionless) speeds up to the order of 3 to 5.

Applying Monte Carlo integration to the form of the collision integral (1.17)

[df] ff (ff f,- fff) gad2 edc [1.17]

we obtain

4df7 fr v (fiN ,if - ,) oa (2.4)
coll i=1

Here, i indexes the Monte Carlo sample, V is the volume from which c1,i is randomly

1See [30] for an early implementation of standard Monte Carlo evaluation of the collision integral,
or [39] for a later review.



(and uniformly) chosen and 47r is the area of the unit sphere, from which Oi is chosen.

Evaluating the collision integral using equation (2.4) is straightforward, however

one must typically evaluate this sum for every point in phase space at every timestep

or iteration. This results in a method that is far too slow to be competitive with

DSMC, however we shall see that incorporating variance reduction techniques can

significantly improve the effectiveness of Monte Carlo integration.

To motivate the first variance reduction technique, let us examine equation (2.4)

more closely. In evaluating the collision integral for all points in velocity space,

IIcl| and Ic, 11 will often be large (that is, at the extremes of our finite region in

velocity space), and the corresponding value ff i go will be small 2 . One would also

expect the values for f'f'ga to be small in these cases. Thus, these terms will not

contribute significantly to the collision integral. Physically, this represents the fact

that collisions involving molecules with large speeds are very rare, because these

molecules are themselves rare. Similarly, collisions resulting in molecules with large

speeds are also rare.

In this Monte Carlo scheme, however, these rare collision events will dominate the

computational cost. Additionally, each of these rare collision events only contributes a

small amount to (2.4); however to obtain an accurate method these collisions must be

considered. One way to include these rare collisions, while maintaining a reasonable

computational cost, is to utilize importance sampling.

2.2 Importance sampling

In importance sampling, the sample points are distributed nonuniformly, with the

aim of focusing the samples on the regions where the integrand is most significant.

Assuming p(r) is a (normalized, by definition) probability distribution defined on ?R,
2 The magnitude of the distribution function for large molecular velocities is expected to decay

roughly as exp (-Ilcl12), much faster than the relative speed g increases



we can write

1 N
Jy(r) dr ,(r (2.5)

where ri is chosen with a probability p. The statistical uncertainty of this integration

method scales with [32]

N (2.6)

It is obvious that (2.6) corresponds to (2.4) when one takes p = 1/V. Furthermore,

if p is a "good" approximation (in the sense that ((y/p)2) - (y/p) 2 < (y2) - (y) 2 , or

in other words if the variance of y/p is less than the variance of y), we will obtain

better accuracy through the use of importance sampling. (Of course, it is necessary

that samples from the distribution p be efficient to generate.)

2.2.1 Importance sampling for the Boltzmann collision inte-

gral

The use of importance sampling for the Boltzmann equation (in a discrete velocity

context) was presented in [36]. As was noted in that paper (and will be discussed in

section 3.2), this method has much in common with particle methods, such as DSMC.

We can use importance sampling to evaluate the form (1.18) of the collision inte-

gral [36]. We write

cd oll= x- (JJ + 62 - 61 - 62) d2E d3cl d3c2  (2.7)

where we have multiplied and divided by the normalizing constant

x- Jf ff 2gor d2E d3c, d3c2  (2.8)

'Noting that i is a normalized probability distribution, we can perform importance



sampling and obtain

[d] N4N X-(6•,N• + 2,i - 61,i - 62,i) (2.9)
Scoll 4 i=1

where the collision parameters {cli, c2 ,i, ei} are chosen with a probability Xf•'•yig

We can think of this sum as considering collision events with a probability pro-

portional to the physical collision rate (fif 2ga). That means that the computational

cost associated with accounting for rare collision events (which do not significantly

contribute to the collision integral) will be small. This greatly improves the efficiency

of evaluating the collision integral, and is a key aspect of particle-based simulation

techniques such as DSMC.

2.3 Control variate integration

We can further improve the efficiency of evaluating the collision integral by using

control variate integration [18, 27]. We evaluate fz y(r) dr by writing

Sy(r) dr = z(r) dr + [y(r) - z(r)] dr (2.10)

(r) y(r)- z(r) (2.11)
S i=1 p(ri)

where we assume that z can be integrated analytically (or its value can otherwise

be determined efficiently and accurately). We have then performed Monte Carlo

integration (using importance sampling) on the remainder (y - z). The uncertainty

of this method can thus be expected to scale as

-N (2.12)



It is clear that this will be preferable if we can find an appropriate z that approximates

y well, or such that the difference (y - z) can be approximated3 well by a function

(proportional to) p.

2.3.1 Control variate integration of the Boltzmann collision

integral

We observe that low-speed flows are typically well-approximated by an equilibrium, or

Maxwell-Boltzmann distribution (1.20). We thus separate the distribution function

into an equilibrium and a deviational term

f = fMB + fd (2.13)

We note that;, in all work presented in this thesis, we do not rely on knowing the "cor-

rect" fMB; all analyses hold for an arbitrary Maxwell-Boltzmann distribution (though

the efficiency of the resulting methods will be affected by the Maxwell-Boltzmann dis-

tribution chosen).

If we substitute (2.13) into the expression for the collision integral (1.18), we

obtain

[dfdt coll

JJJ(6f + 6 1 - 6~ - 62) (fliBf2MB + fIMBfM2 + fdlf2MB + fdf ) g(d 2 d3c1 d3c24 1 2

(2.14)

We note that the integral involving ffMBf 2MB is identically zero, as this is the collision

integral for an equilibrium distribution. We also note that the integrals involving

f,MBf 2d and fdfi2MB are equal (formally interchanging cl and c 2 yields an equivalent
3Note that this method requires us to analytically know both the integral of z and p, where the

latter must have an integral of unity.



integral). Thus, we can write

[df co Q /((6L + 6 - 6• - 62) (2ffiB + fdf2d) god 2 d3c1 d3C2  (2.15)

We can separate this into two terms, and evaluate each using importance sampling.

So XMB,d ~1 -= - 61 -62) fM d2 d3  d3c2
d" coll 1 XMB,d

+ Xd,d 1 T 2 -+ 61 -- 62) d20 d3 C d3 C2  (2.16)
+ NXd,d

NMB,d

NMB,d 2 (61 2, + 621i - 61,i - J2,j)sgn(fiJ)

+ ~ (6'i + 6•,i - 6•,i - 62,i)sgn( fd)sgn(f fd ) (2.17)
Nd,d 4 i= 2

Here the collision parameters are chosen from the normalized probability distribution

tfilfMjIg in the first sum and Ifl If2 lfg" in the latter. The constants XMB,d and Xd,d are
XMB,d Xd,d

defined as

XMB,d - JIfd f2 MBgu d2 E d3 c 1 d3c 2  (2.18a)

Xd,d J- fid ifdlgfd 2 d23c dCd3c2  (2.18b)

In the limit of small fd, we expect XMB,d to scale with 1lfdll and XMB,d to scale

with |lfd1|2; thus we expect XMB,d to be the larger term. From equations (2.16), we

can then see that the collision integral is expected scale with Ilfd 1. More importantly,

from our perspective, is the fact the the statistical uncertainty in evaluating (2.17)

(with a fixed number of Monte Carlo samples) will also scale with 1 fd 1 |; in other

words we expect a constant signal to noise ratio. The physical interpretation of the

effectiveness of control variate integration is discussed further in section 4.1.2. In

brief, control variate integration neglects a large number of collisions "within" the

Maxwell-Boltzmann distribution that have zero net effect.

This constant signal to noise ratio was illustrated in [7]; in figure 2.1, we plot



the statistical uncertainty in evaluating the fluid velocity u, normalized by the wall

velocity, for Couette flow at a variety of wall speeds. We see that, when using the

variance reduction techniques described in this paper, we obtain a constant signal to

noise ratio in the output of interest, u, regardless of the flow velocity. The DSMC

trend illustrates the rapid growth in the signal to noise ratio as the wall velocity

decreases. The DSMC trend was scaled to approximately illustrate the crossover

point, at which the current method is more efficient than DSMC.
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Chapter 3

Direct simulation Monte Carlo

In this chapter, we briefly describe the DSMC algorithm, and show how one can

interpret it as an implementation of the variance reduction ideas discussed in section

2.2. The aim of this chapter is to illustrate how DSMC utilizes importance sampling

to obtain high computational efficiency, as well as to motivate the improvements to

DSMC that will be discussed in the next chapter.

3.1 DSMC algorithm

This section gives an short overview of the DSMC algorithm, with an emphasis on

the collision process. For a more complete discussion of DSMC, see [12, 2].

DSMC is a particle simulation technique; the state of the computational system

is defined by the positions and velocities of the simulated particles, with each particle

representing a number (Aeff) of physical molecules. DSMC utilizes a time splitting

scheme to simulate the Boltzmann equation; in other words each timestep is split

into two parts: an advection step, in which the positions of all particles are updated

without modifying the velocities1 , and a collision step, in which the velocities of the

particles are modified via the action of simulated collisions.

1Assuming the absence of body forces.



The collisionless advection step integrates

8f* Of*+ c* =0 (3.1)t* 8-x*

while the collision step integrates

af* f d(3.2)
"• d-coll

During the collision step, binary collisions are processed between collision partners

chosen at random within the same computational cell. (We note that, with particle

methods, it is often more convenient to use dimensional units.)

For a timestep At* with each simulation particle representing NAfe molecules, the

DSMC algorithm can be outlined as follows

1. Collisionless advection step

* Update the position of all particles: x* (t* + At*) = x* (t*) + c* (t*) x At*

* Reflect any particles that collided with the boundaries back into the do-

main. For boundary conditions such as diffuse walls, this will entail select-

ing a new velocity from an appropriate probability distribution. See [12, 2]

or section 4.1.4 for further details.

2. Sort particles into cells (of volume V*). Denote the number of particles in a cell

by N.

3. Process collisions within each cell

* Choose N2 K ,r At* (g*u*)m.x pairs of molecules (collision candidates)

from each cell. Index each pair by i. Here, and (g*a*)max is a number

chosen to be larger than (g*a*)i in (almost) all cases.

* With a probability (g*a*)i/(g*a*)max, accept the collision by updating each

of their velocities to the appropriate post-collision velocity. If the collision

is rejected, do nothing and move on to the next pair of candidates.



4. Sample hydrodynamic properties.

We observe that the (expected) total number of collisions accepted in step 3

of the above algorithm is 2V' 2 Afe At* (g*a*). Recalling that each particle rep-

resents NAf molecules, we see that the effective number of physical collisions is

• (ANNef) 2 At* (g*U*) - this matches the number of collisions that would be ex-

pected to occur in the corresponding set of physical molecules if there were NeAfff

molecules in that cell[12].

3.2 Importance sampling in DSMC

The above summary shows that in DSMC collisions occur between particles with a

probability proportional to fjf2g*a*; picking a particle at random from the cell is

equivalent to picking with a probability proportional to the distribution function,

and collision candidates are accepted with a probability proportional to g*a*. In

other words the collision samples are chosen with a probability proportional to the

collision rate for physical molecules. This means that DSMC does not spend excessive

time processing rare collision events; this is analogous to the importance sampling

techniques described in section 2.2.

Let us take a closer look at equation (2.9), which in dimensional form, can be

written
[df l" *1 N
df X 1 + 8 2,i - 6 1,i - 62,i (3.3)d-t coil i=1

where the set of collision parameters (cf, c),, Oi} is chosen with a probability

f,, and we have defined

x* - ff f*;g** d20 d3c* d3 c (3.4)

We recall that the collision integral is (proportional to) the rate of change in the

number of particles at a given position in phase space due to the action of collisions.

We can see that equation (3.3) evaluates the collision integral this by processing a



set of 'collision events'. For each collision event, the set of collision parameters are

chosen with a probability proportional to the physical collision rate (i.e. f*f g*a*).

Collision events that have one of the pre-collision velocities (cl,i or c2,i) equal to c

will decrease the calculated value of the collision integral; collision events for which

one of the post-collision velocities equals c will increase the calculated value of the

collision integral. It is clear that this collision procedure is analogous to the DSMC

algorithm described above.

We will reconsider this interpretation, more carefully and in more detail, in later

chapters; the aim of this section was to illustrate how the DSMC collision process

utilizes importance sampling. In Chapter 4 we will show how one can incorporate both

importance sampling and control variate integration into a particle-based simulation

method.

3.3 Limitations of DSMC

DSMC has proven to be an extremely successful method for simulating the dilute

gas flows arising in aerospace and other high-speed applications. The strengths of

DSMC are numerous: it is highly efficient for high-speed flows, its formulation is

straightforward and physically motivated, and it does not require elaborate meshing

techniques to simulate complex boundaries. However, DSMC also has significant

weaknesses when dealing with the gaseous flows of interest in the present thesis.

First, in DSMC, quantities of interest are obtained by an averaging process; for

example the bulk flow velocity is estimated using the mean velocity of all of the par-

ticles in a cell. This averaging process leads to a degree of statistical error which is

proportional to N -1 /2 , where N is the number of (independent) samples used. How-

ever, more critically for low-signal flows, the statistical uncertainty is independent of

the magnitude of the signal. This leads to a signal to noise ratio that is inversely

proportional to the signal2 . As a concrete example, when calculating the mean ve-

20ne can see this by considering Monte Carlo evaluation of the integral (2.14); as fd -+ 0, the
statistical uncertainty is dominated by the flMBf2MB term, which does not depend on fd. Thus
the level of statistical uncertainty remains constant and the relative level of statistical uncertainty



locity of a low-speed gas, for a fixed number of samples the statistical uncertainty in

the velocity will be a constant. This is what leads to the relative level of statistical

uncertainty scaling with IlulK-' or, equivalently, the number of samples required to

obtain a fixed degree of statistical uncertainty scaling with JIuh - 2 [22].

A second disadvantage of DSMC is that boundary conditions are imposed by re-

emitting particles that impact on the boundaries, or by creating particle reservoirs.

Both of these require the generation of samples from a (potentially complex) distribu-

tion. For simple distributions, this is easily done, however this becomes more difficult

when more elaborate boundary conditions need to be imposed.

Finally, DSMC does not directly lend its self to iterative methods for steady state

solutions (though other methods, such as the equation-free-framework [1] can be

used).

In the next chapter we will discuss how the first limitation, high statistical uncer-

tainty, can be alleviated by incorporating control variate integration into a particle

formulation. The second two limitations are inherent to particle approaches; the

PDE-based discontinuous Galerkin approach of Chapter 5 does not suffer from these

issues.

increases.



Chapter 4

Variance reduced particle method

In this chapter, we develop a particle based simulation method' that is analogous to

DSMC; however, in contrast to DSMC, we will simulate the deviation from equilib-

rium using a set of particles. Simulating only the deviation from equilibrium, instead

of the full distribution function, will lead to a significant computational advantage

over DSMC for low-signal (i.e. low-speed) applications.

4.1 Formulation

Our starting point is the (dimensional) form of the collision integral analogous to

(2.15)

Scoil (6" + 6' - ,1 - 62) (2fd*f' M B* + 2d* g** d2 d3 cc* d3c (4.1)

Recall that we have split the distribution function according to (2.13)

f * = fMB* + fd* (4.2)

'The work described in this chapter will appear in [111. We note that [16] describes an indepen-
dently developed particle scheme that, while significantly different from the present method, shares
similar goals.



where fMB* is an arbitrary equilibrium distribution and fd* is the deviation from

(this particular) equilibrium.

This "variance-reduced" form of the collision integral, (4.1), exhibits reduced sta-

tistical uncertainty when evaluated using a Monte Carlo procedure because the inte-

grand, and thus the statistical error resulting from evaluating it via an appropriate

Monte Carlo method [32], scale with fd* as fd* -+ 0; consequently, in this limit,

the statistical error decreases linearly with the signal, leading to a constant signal to

noise ratio [8]. This result is independently verified for the present particle method

in section 4.2.

This variance-reduced form of the collision integral (4.1) is sufficiently general to

allow use both in numerical solution methods using standard numerical approaches

(as will be discussed in Chapter 5) and particle simulation methods [9]. The latter

is the focus of the present chapter: Starting from equation (4.1) we show how one

can develop a particle simulation scheme akin to DSMC. In addition to the overall

algorithm structure, the method presented here retains a number of DSMC features;

in fact, as explained later, DSMC is retained as a special case. The principal differ-

ence is that, as suggested by (4.1), we represent the distribution function using the

combination of an (arbitrary) underlying equilibrium (Maxwell-Boltzmann) distribu-

tion (that can, in general, vary as a function of space and time) and a set of particles

representing the deviation of the true distribution function from this equilibrium dis-

tribution. This is in contrast to DSMC, in which the entire distribution function is

represented using particles.

4.1.1 Simplifying assumptions

In this chapter we will focus on the case where there are no body forces acting on

the molecules; extension to case where F* $ 0 is straightforward. In the interest

of simplicity, for the remainder of this chapter we will assume that the underlying

Maxwell-Boltzmann distribution is identical in all spatial cells. In this case the ad-

vection step is identical to that of DSMC - the positions of all particles are updated

according to their velocities, while the velocities remain constant. The present method



differs from DSMC in processing the collisions and the boundary conditions; these

are discussed in more detail below.

4.1.2 Collision algorithm

As in DSMC, collisions are processed in physical cells of volume V* with collision

partners chosen within the same cell. The collision process, however, differs from

DSMC as required by the new form of the collision integral. To derive the collision

process we write equation (4.1) in the following form

df * = ff (6l + - -- j2) f2d*fMB*g*a*d 2 d3  d3c d (4.3)
dt col

+ J ( + - -62) fl*fd* d 20 d d 3c* (4.4)

and recall that according to the splitting method used here (and in Chapter 3),

the collision part of the algorithm integrates equation (3.2), via collisions between

simulation particles, by effecting a change equal to

Adf]* t* (4.5)
dt coll

onto the (deviational) distribution function (represented by the simulation particles).

In what follows we will discuss how equation (4.4) can be interpreted and implemented

in terms of inter-particle collisions. A more in-depth discussion is given in section

4.1.3.

DSMC, as discussed in the previous chapter, corresponds to the case fMB* =

0, (fd* = fj* > 0, fd* = f* > 0). In the more general case, equation (4.4) sug-

gests that there are two distinct contributions to the collision integral: those involv-

ing collisions between two deviational particles (corresponding to the term involving

fld*f d*) and those involving collisions between a deviational particle and the underly-

ing Maxwell-Boltzmann distribution (corresponding to the term involving fd*f2MB*).

As in the previous chapter, we will interpret a positive delta function as adding a

particle to the distribution function at that point, and a negative delta function as



removing a particle. However, the fact that fd* can be negative in a given region

of phase space can affect the sign of the generated particles (this is discussed in

significantly more detail below).

In the limit Ma -+ 0, the quadratic term (involving f1d*f2d*) will be negligible (if

f"B* is chosen appropriately). However, we retain this term so that the method will

remain applicable for all flow conditions2 and to facilitate comparison with DSMC at

Ma - 0.1 (the cost of DSMC calculations at the resolution required for the compar-

isons of the present chapter becomes prohibitive for Ma < 0.1).

Before we proceed with the implementation, let us repeat that, in general, fd*(x*, c*, t)

may be either positive or negative at any point in phase space. This is a natural con-

sequence of the fact that f* = fMB* + fd* for an arbitrary fMB*. A negative fd*

means that the number of physical molecules in the differential phase-space volume

element in question is less than that given by the underlying Maxwell-Boltzmann

distribution fMB*. In order to allow our particle formulation to capture a negative

deviation from equilibrium, we must allow for the possibility of negative deviational

particles.

Implementation

In the simulation, each computational particle represents ±Nefe (Afeff > 0) physical

molecules. We will refer to those simulation particles representing +A~ff molecules

as positive (deviational) particles and those representing -Neff molecules as nega-

tive (deviational) particles. These particles can be thought of as samples from the

deviational distribution function, that is,

fd* ) - (4.6)
V*cell d3C*

where (Jf + ) and (f+) are respectively the expected number of positive and negative

particles with a velocity in the range d3c* about c* and V*cen is the volume of the cell

2As will be seen in section (4.1.2), the computational cost associated with retaining the (fld * f2 * )

term will be small when this term is small, provided effective cancellation between deviational
particles takes place - see below.



in physical space.

From equation (4.6) we can see that a change in the distribution function is

equivalent to a change in the (expected) number of particles with a given velocity.

Our collision algorithm will update the set of particles (number and distribution) in

a manner consistent with the action of the collision integral by using an acceptance-

rejection scheme.

Several additional quantities that will be useful in describing the collision algo-

rithm are defined below: let nf be the total number of particles (both positive and

negative) in the cell of interest, nMB* = f fMB*d3c*, R a uniform random num-

ber on [0, 1), and (g*a*)max a parameter used as an 'effective ceiling' of (g*a*) in the

acceptance-rejection scheme (chosen such that the probability that (g*a*) > (g*a*)max

is negligible).

For a timestep At*, collisions in a physical space cell are performed by the following

algorithm:

1. Perform collisions between a deviational particle and a "particle" from the

Maxwell-Boltzmann distribution. This step updates the (deviational) distri-

bution function3 by adding

At* ( + 61 - 61 - 62) fd* MB*g **d 2  d3c* d3 c* (4.7)

to its value. This can be achieved by the following acceptance-rejection scheme:

(a) Select 47rANnMB*At* (g*a*)max pairs of pre-collision velocities and scat-

tering angles. The velocity c* is chosen with a (normalized) probability

fMB /nMB* and c* is the velocity of a deviational particle chosen randomly

from the cell. The scattering angle E is chosen with uniform probability

on the unit sphere.

(b) For each of these potential collision partners, or collision candidates (enu-

merated by i), if (g*a*)i / (g*a*)ma. > R accept the collision by:

3See [24] for an extension to the present method that updates fMB in addition to fd.



i. Setting the velocity of the particle to c', i* where, as before, a prime

indicates a post-collision velocity.

ii. Creating a particle with velocity c*,i and a sign opposite to that of the

deviational particle involved in the collision

iii. Creating a particle with velocity c2,i* and a sign equal to that of the

deviational particle involved in the collision

2. Perform collisions between two deviational particles. This step updates the

distribution function by adding

t*JJ(6 + 6 - 61 - 62) fd* f2d* g*ud 2  3C d 3cd (4.8)

to its value. This update is performed by the following acceptance-rejection

scheme:

(a) Select A'AfeffAt* (g*u*)m.x pre-collision velocities and scattering an-

gles with c* and c* being the velocities of distinct particles chosen at

random from the cell. The scattering angle E is chosen with uniform

probability on the unit sphere.

(b) For each of these potential collision partners (again enumerated by i), if

(g*a*)i / (g**)max > 7 accept the collision by:

i. If both particles are positive, updating the velocity of the particles to

c1,/* and c2, i* respectively

ii. If both particles are negative, creating a total of four particles: a

negative particle at each of c*,i and c,2i and a positive particle at each

of c', * and c'2,i

iii. If the particle with pre-collision velocity c*,i is negative and that with

pre-collision velocity cl, is positive, setting the velocity of the negative

particle to c',i* and creating a total of two particles: a positive particle

at c*,i and a negative particle at c2,i



iv. If the particle with pre-collision velocity c*,i is negative and that with

pre-collision velocity ct,i is positive, setting the velocity of the negative

particle to c2,i * and creating a total of two particles: a positive particle

at cl,i and a negative particle at c',*

In the present implementation, the (physical space) position of a newly created devi-

ational particle is the same as that of the corresponding deviational particle involved

in the collision.

Also, in the case where the number of collision candidates is not an integer, we

randomly choose (using the case of particle-Maxwell Boltzmann collisions as an ex-

ample) either L4i7r.VnMB*At* (g*o*)m•x or [47rAn"MB*At* (g*oj*)max] collisions such

that the expected number of collisions is correct ( L-J and [.1 are the floor and ceiling

operators, respectively).

In summary, this collision algorithm processes two types of collisions: those be-

tween two particles, and those between one particle and the equilibrium distribution.

The efficiency of this method comes in part from the collisions we do not process,

specifically those between a pair of molecules that are both in the equilibrium distri-

bution. Collisions of this type have zero net effect, yet explicitly performing them (as

is done with DSMC) could dominate the computation time.

We would like to emphasize that within the framework just described, any Maxwell-

Boltzmann distribution can be used for fMB*; this method does not depend on knowl-

edge of the "correct" equilibrium distribution, although the choice of the Maxwell-

Boltzmann distribution does affect efficiency.

4.1.3 Consistency of the collision algorithm

In this section, we show that (under appropriate conditions) the change in the distri-

bution function as a result of the collision process satisfies f*(t* + At*) = f(t) +

At* [ 1 II, or equivalently (for time-independent fMB*), fd*(x*, C*, t + At*) =

fd*(x*, C*, t*) + At* [ o on. The purpose of this discussion is to sketch a consis-

tency argument between equation (4.4) and the collision algorithm described above,



as well as to provide insight into the present algorithm.

For convenience, we will expand fd* = fd+* _ fd-*, where positive particles will

represent fd+* and negative particles fd-* (we require the functions fd+* and fd-*

to be nonnegative). Note that, for a given f* and fMB*, there exists a unique fd*,

but the choice of fd+* and fd-* is not unique; adding the same function to both fd+*

and fd-* yields an identical fd*. We also note that in our particle interpretation

fd+* - ff f(i+) (4.9)

V*celld 3 C*

where (NJV) is the expected number of molecules in the cell with a velocity in the

range d3C*. Of course, a similar equation holds for fd-*

If we substitute this expression for f* into the collision integral, we obtain

ol 62I (1+ - 61-62) MB* * f -*f xSdt coil = 2N 1 2 (f,

(f2MB* + fd+* fd-*) g**d 2 d3c d3c (4.10)

This expression can be rearranged to obtain

(6*+6 - •C -6 d2 e d3 ct d3 c;[df ]* Nf+ 61 61 - 62) fld+* fMB ** ( * 0 * d 2 E d 3 d3C
coll MB,d+

fd-*f2MB*g * . 2* 3

- XMB,d- (1 + ' - 61 -62) d1 2 M d 1 d3c1
XMB,d-

f d+* d-* * *
- X* J (6 + 6 - - 62 f2 9 U 20 d3c d3c*
+Xd+,d+ JJ -( -•2 - 62) d20 d3c d3 c

d+,d-

2 N d+,d+

*d , - + - d-f d-* * *
d-1 26 62 2 1 U d2 E d3c* d3c (4.11)

2 Xd-,d-

Here, we have defined the number X•,o as

X, f *f •g* *d20 d3c* d3c (4.12)Jig3f2'9



where a and / can each be any of the set {d+, d-, MB}.

We note that in the above integrals,

f 2'2 9 (4.13)
xa,3

is a normalized distribution function, so the above integrals can be evaluated by

importance sampling [32].

Thus, equation (4.11) can be approximately evaluated as

, NMB,d+
ColXlMB,d+ 1i + 61,i - 2,i)

dt coil NMB,d+ i= 1B

, NMB,d--

NMB,d- 1 + 621,i - 1,i 62,i)
NMB,d- i=1

Nd+,d-

Sd+,d i 62, - 6 1,i - 62,i)
Nd+,d- i=l

Nd+,d+

d, Nd-,d-

+ d-,d- (6 + 2,i - 6 1,i - 62,i) (4.14)
2 Nd-,d- i=l

Each of the above sums are computed using importance sampling [32], that is, No,l

sets of collision parameters (pre-collision velocities and scattering angle) are chosen

with set i having (normalized) probability equal to f ,* f2,i gi*oi ) /xa,." Of course,

for the Monte Carlo sums to be accurate, Na,p must be large.

Each of the terms in (4.14) can be seen to fall within one of the two types of

collisions described in section 4.1.2 - namely those between two deviational particles

and those between a deviational particle and the underlying equilibrium distribution.

However, note that collisions involving positive and negative particles need to be

treated separately. In the interest of brevity, we will discuss one such term, namely

the one representing collisions between the Maxwell Boltzmann distribution and a

positive particle. Other cases can be considered using a similar approach.



Maxwell-Boltzmann - particle collisions

In this section we show that collisions between positive particles and the Maxwell

Boltzmann distribution correspond to the first sum on the right side of equation

(4.14).

In the collision algorithm described in section 4.1.2, we choose 47rAn"B*At* (g*a*)max

collision candidates of the Maxwell-Boltzmann - particle type. The probability den-

sity that a chosen pair will belong to the Maxwell-Boltzmann-positive particle group

(MB, d+) and will be characterized by precollision velocities c* and c* and scattering

angle E is
f+ fdl+*f2MB*f f MB*d2d3(4.15)

A fff f d+*fM B*d2d3c1d3c

The probability that this particular collision will be accepted (assuming (g*a*)max

g*a*) is
g*a*g, (4.16)

(g*u*)max

Thus, the number of (MB, d+) collisions (per unit volume in phase space) with

collision parameters cD , c*, E that are accepted per unit time (assuming N is large) is

NMB,d+ =

ff+ fd+* fMB* *ga*SX (g* x 4INrAn ' (*a*) (4.17)
Nf fff f flMB*d2Ed3Cc•dc; (9*o*)maxmax

Using the fact that

J * J MB*d2 c*d c = n * en47 (4.18)

we obtain
*ell d+* MB***

NMB,d+ = 2ffeff1  2 (4.19)

The total number of (MB, d+) collisions, NMB,d+, accepted per unit time is

NMB,d+ = [[[NMB,d+d2ed 3Cd3C* = XVc);*i d+ (4.20)
JJJ J feff



Thus, the probability that an accepted (MB, d+) collision has parameters c*,c* and

O is
NMB,d+ fd+*f2 MB*g** (4.21)

(4.21)
NMB,d+ X*MB,d+

In other words, we are sampling with the probabilities indicated in equation (4.14).

We see that each accepted (MB, d+) collision leads to the addition of a particle

at each of the post-collision velocities and the subtraction of a particle at each of

the pre-collision velocities. Thus, the collisions of type (MB, d+) will lead to a net

change
NMB,d+

d3c* (6Z , + 62,i- 61,i- 52,i) (4.22)
i=1

in the number of particles (both positive and negative) with velocity in the range

d3 c* about c* per unit time.

From (4.6), (4.20), and (4.22), we can see that this change in the number of

particles leads to a change

NMB,d NMB,d+

( Bd+ (5k, + 32,i -51,i -22,i) (4.23)
•*ell i=1 MB,d+ i=

in the distribution function at c* per unit time. As the collision parameters are chosen

with a probability f d+* 2MB* *a*• *MB,d+, we can see that this is equal to the first

sum on the right side of equation (4.14) (in the limit where JA, and thus NMB,d+, is

large).

We make a few observations about this result. First, the number of collisions is

always such that in equation (4.14), the weight of each delta function is Afef/V*en,

which is the effect that a single particle has on the distribution function in equation

(4.9). This is of course necessary for a particle interpretation. Second, the collision

rate for negative particles, which were introduced for the purpose of computation, is

the same as for 'real' particles. Finally, the number of collision partners chosen for

particle-particle collisions matches that of DSMC.

Perhaps a more intuitive explanation of the collision process is as follows: Consider



a point in phase space where fd* > 0. This means that there are more molecules

with that velocity than are accounted for by the Maxwell-Boltzmann distribution.

Therefore, there should be more collisions involving these molecules. To correct for

this, we subtract from the distribution function at this point in phase space, as well

as for the other pre-collision velocity; we also add to the distribution function at the

corresponding post-collision velocities. In the opposite case (fd* < 0), there are fewer

molecules than the Maxwell-Boltzmann distribution indicates; thus, there should be

fewer collisions involving molecules at this point in phase space. To correct for this,

we must add to the distribution function at the pre-collision velocities and subtract

from the distribution function at the post-collision velocities.

4.1.4 Boundary conditions

In this work, we will focus on the diffuse wall boundary condition. This boundary

condition requires that the net mass flux at the wall equal zero and the distribution

function for particles leaving the wall be at equilibrium with the wall. In our case,

this is equivalent to

(c* i( fi) (f MB* + fd*) d3 C* = j (c* f i( ) (fMB* + fd*) dc* (4.24)

fMB* + fd* O fwall* for c* - i > 0 (4.25)

where fwan* is a distribution (with an arbitrary number density) at equilibrium with

the wall and i~ is a unit normal at the boundary pointing into the gas.

The mass flux incident upon the wall is due to two sources: deviational parti-

cles colliding with the wall and the flux of particles due to the underlying Maxwell-

Boltzmann distribution. Our boundary condition algorithm will consider these sources

separately. In the case of particles colliding with the wall, the algorithm is much like

that of DSMC, except pairs consisting of a positive and negative particle can be

cancelled because it is only the net mass flux that is of interest. The effect of the

underlying Maxwell-Boltzmann distribution is more subtle; the presence of this dis-



tribution implies both a molecular flux incident upon the wall, and a molecular flux

leaving the wall. Thus, deviational particles need to be created according to the dis-

tribution given by the difference in molecular fluxes between fwall* and fMB*, that

is

(c* ii) (of wall* - fMB*) (4.26)

Here,

fc.i<O (C* . ) fMB*d3C* nMB*TMB* (4.27)

- *-A>0 (c* -) fwall*d3C* nwall*/T-wi*/

where n* is the number density and T* the temperature. The second equality holds

if the wall distribution is a Maxwell-Boltzmann and both fWal* and fMB* have zero

velocity in the normal direction. The parameter 3 is necessary to ensure conser-

vation of mass; it is a consequence of allowing fwall* to have an arbitrary number

density. Generating particles according to equation (4.26) is accomplished by using

an acceptance-rejection scheme in the present implementation.

Let ./a+l and JNfa be the number of positive and negative particles, respectively,

that collided with the wall in the timestep of interest. We will also let V,* be a large

(but finite) volume in velocity space, A* be the cross sectional area of the boundary,

7R be a uniform variate on [0, 1), Dn, be a parameter used in the acceptance rejection

scheme, chosen to be greater than I(c* ) (Pfwall* - fMB*)I for (almost) all c* in V,.

In this case, the boundary condition algorithm for diffuse walls can be implemented

as follows

1. Process particle-wall collisions

(a) Remove min (~N,-al wall) pairs consisting of a positive and negative par-

ticle. Reflect the remaining particles (which will be either all positive or

all negative) with a velocity distribution proportional to (c* . i) fwall* (as

is done in DSMC).

2. Generate particles due to the difference between fwal* and fMB*

(a) Gener At*A*V*D* V
(a) Generate v-- trial velocities in the volume Vc with c*. i > 0. EachAr~ff



of these trial velocities is indexed by i.

(b) If I * (,faIl* _ fMB*) I > RiD xa, generate a particle at the wall with a

sign equal to sgn (c,i [pf wall* - fMB*])

(c) Finally, the positions of all particles that were created are updated for a

random fraction of a timestep.

If we allow the underlying Maxwell-Boltzmann distribution to vary between ad-

joining cells, a procedure analogous to the above would need to be used in the advec-

tion step to ensure molecular flux conservation across cell boundaries.

4.1.5 Particle removal

Both the collision process and boundary conditions described above involve the cre-

ation of particles (unless fMB* = 0 and the inital state does not include negative

particles, in which case the DSMC algorithm is obtained). For the method to remain

practical, one must have a means to remove excess particles and thus avoid rapid

growth in their number. To some extent this is done by the boundary conditions;

the diffuse wall boundary conditions as described above can reduce the total number

of particles in the system due to the cancellation of positive and negative particles.

This removal is sufficient in cases where collisions with the boundaries are relatively

frequent compared to collisions between molecules, i.e. when the Knudsen number

is large. For smaller Knudsen numbers an additional technique is necessary. Similar

challenges have been reported in [16].

We observe that a pair consisting of a positive and negative particle at the same

position in physical space and with the same velocity has no effect on the system;

this pair can be removed with no effect on the distribution function. Of course, in the

present method such a pair has essentially zero probability of occurring. Motivated

by this, in the present work we cancel pairs consisting of a positive and negative

particle that are in the same cell in physical space and for which the relative speed

of the molecules is less than a threshold value, termed the cancellation radius. This

introduces additional discretization into the present algorithm with its associated



Figure 4.1: Velocity profiles for Kn = 10 (snapshots at t* = 0, 0.011, 0.023, 0.045 and
0.12 t*)

potential for numerical error. The effect of this cancellation approach on the accuracy

of the overall method will be discussed below. A method that is derived from the

present formulation, but does not require a cancellation routine has been developed

and is presented in [24]

4.2 Comparison to DSMC simulations

In this section we present a comparison between DSMC solutions and solutions ob-

tained using the proposed particle scheme for the impulsively started shear flow prob-

lem. In this problem, the gas is initially at rest and bounded by two parallel, infinite

and fully accommodating walls. At time t = 0, the two walls are impulsively acceler-

ated to a velocity Uwall* = ±10-1"*, where c" is the most probable thermal speed. The

initial temperature of the gas (and walls) is Tall* = 300K, and the gas properties

used were a density of p* = 1.78kg/m 3 , a molecular mass of m* = 6.63 x 10- 26kg and

a hard-sphere diameter of d* = 3.66 x 10-10 m.
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Figure 4.2: Velocity profiles for Kn = 1 (snapshots at t* = 0, 0.11, 0.23 and 0.56 and
2.3 P)
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Figure 4.3: Velocity profiles for Kn = 10-1 (snapshots at t* = 0, 1.1, 2.5, 5.4 and 14
Pt)
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Figure 4.4: Shear stress for Kn = 10 (snapshots at t* = 0, 0.011, 0.023, 0.045 and
0.12 t*)

stress for Kn = 1 (snapshots at t* = 0, 0.11, 0.23 and 0.56 and 2.3Figure 4.5: Shear
P))
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Figure 4.6: Shear stress for Kn = 10-1 (snapshots at t* = 0, 1.1, 2.5, 5.4 and 14 *)
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Figure 4.7: Shear stress for Kn = 10-1 (snapshots at
This figure illustrates the use of a larger cancellation

t* = 0, 1.1, 2.5, 5.4 and 14 P).
radius than used for figure 4.6
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Figure 4.8: Scaling of relative statistical uncertainty in normalized flow speed as a
function of normalized wall speed

We note that this wall speed was chosen to make the DSMC calculation feasible;

the present method is efficient for arbitrarily low wall speeds. We also note that

the present test problem is in fact a stringent test of the accuracy of the proposed

method (particularly the cancellation routine) due to its impulsive nature and the

associated discontinuities in the distribution function originating at the wall at t* = 0

and propagating into the physical domain for t* > 0. This will be further discussed

in the next section.

Calculations were performed at Knudsen numbers of 10-1, 1 and 10. A cancel-

lation radius of about 0.042c" (15m/s) was used for the Kn = 10- 1 , and Kn = 1

calculations, while no cancellation (other than that due to the boundary conditions)

was necessary for the Kn = 10 calculation. A total of 100 cells were used in physical

space for Kn = 10 and Kn = 1, while 200 cells were used for Kn = 0.1 calculations.

Times are reported in units of the collision time, i*. Although a large number of cal-

culations have been performed, here we present representative results. Insight gained

from other calculations will be discussed in the next section.

present methoc
typical DSMC

·I



In all calculations shown here, we have chosen fMB* to be a spatially homogeneous

Maxwell Boltzmann distribution with a mean velocity of zero and a number density

equal to the bulk number density. Choosing fMB* to vary in physical space in a

manner that reduces the magnitude of fd* would be expected to increase the efficiency

of the method; in the interest of simplicity, this is not implemented here.

Figures 4.1, 4.2 and 4.3 compare the normalized velocity profiles computed with

the proposed approach to DSMC results for Kn = 10, Kn = 1 and Kn = 10-1,

respectively. The agreement is excellent in all cases.

We also compare the shear stress profiles (normalized by p*.5 2 ) between DSMC

and the present method in figures 4.4, 4.5 and 4.6. There is excellent agreement

between the current method and DSMC for Kn = 10 and Kn = 1, but a small

degree of error is apparent for smaller Knudsen numbers. This is due to the various

forms of discretization involved in our solution; finer discretization or a more refined

cancellation algorithm reduces the discrepancy. Figure 4.7 illustrates the effect of a

larger cancellation radius (about 0.071E", or 25m/s) on the shear stress; note that

significantly more error is present compared to figure 4.6.

The most important advantage of the proposed method is that its relative sta-

tistical uncertainty remains (approximately) constant as flow speeds decrease (for a

fixed computational cost), in sharp contrast to DSMC. This is illustrated in figure

4.8, which shows the relative statistical uncertainty (specifically the maximum statis-

tical uncertainty over all cells, normalized by wall velocity) versus the wall velocity

(normalized by 6*) with wall velocities ranging from 10-45* to 10-'1" and a con-

stant computational cost. The Knudsen number for the test cases was 10-1 and the

cancellation radius was about 0.071E" (25m/s), and the DSMC trend is from [22].

Figure 4.8 shows that below a certain flow speed, the present method will have a

lower computational cost to obtain a given level of statistical uncertainty compared

to DSMC, with the relative advantage rising sharply with decreasing flow speeds

- specifically as (uwall *)-2. Note that figure 4.8 is only intended to illustrate this

trend; the actual location of the crossover point has not been determined (and will

be implementation dependent), though preliminary work places it at a wall speed on



the order of 10-1c* (about 35m/s at room temperature).

4.3 Discussion

We have presented and extensively tested a particle simulation scheme for solving the

Boltzmann equation which incorporates the variance reduction approach presented

in [8].
The primary challenge associated with this method is the particle cancellation

necessary to ensure a manageable number of simulation particles. Our numerical

results suggest that the method described here, in its present form, is very effective

for Kn > 1, whereas for Kn < 1 the direct numerical discretization of the Boltzmann

equation described in [8] is preferable. The primary reason is that, while one of the

main advantages of particle formulations such as DSMC is that they do not require

a direct velocity space discretization (thus eliminating the associated numerical er-

ror and storage requirements), the present particle cancellation scheme effectively

introduces a velocity space discretization.

Despite this, as shown in the previous section, the numerical error can be kept

to acceptable levels with a small cancellation radius. In fact, in the stringent 4 test-

problem of section 4.2, which involves propagating discontinuities, error was dis-

cernible only in the higher moments (shear stress) of the distribution function.

Moreover, the approach for removing particles described in this chapter is per-

haps the simplest of a number of possible approaches. A more sophisticated particle

cancellation scheme may extend the excellent computational efficiency of this scheme

for Kn > 1 to the whole range of Knudsen numbers of interest (0.1 < Kn < 10).

A further development of the current algorithm which removes the need for particle

cancellation is described in [24, 23].

We conclude by emphasizing that the new method exhibits a statistical uncertainty

that does not depend on flow speed in the low Mach number limit and is thus ideal for

.
4The particle cancellation method used here is expected to smooth-out discontinuities in the

distribution function; thus problems involving discontinuities present perhaps the most demanding
test of this method.



use in low-speed flows where low-signal-to-noise ratio presents the biggest challenge,

and in fact makes DSMC calculations intractable. Although our verification was

limited to one-dimensional flows in this chapter, the method is sufficiently general to

be applied directly to other flow configurations and to problems in a higher number

of physical dimensions.



Chapter 5

Variance reduced discontinuous

Galerkin method

In this chapter, we present an alternative to the particle simulation method discussed

in Chapter 4. Instead, we will incorporate the variance reduction ideas of Chapter

2 into a discontinuous Galerkin (DG)[17] framework1. Within this formulation, the

Boltzmann equation is discretized in physical and velocity space with a (discontinu-

ous) finite element approach, while the time integration is performed using a Runge

Kutta integration scheme. This combination is known as Runge Kutta discontinu-

ous Galerkin (RKDG)[17]. In the present RKDG implementation, variance reduction

techniques are used to provide an efficient means of evaluating the collision integral

term.

5.1 Formulation

As before, we separate the distribution function into equilibrium and deviational parts

f = fMB + fd [2.13]

'The work presented in this chapter has been submitted to Physics of Fluids [10].



where fMB is an arbitrary equilibrium (Maxwell-Boltzmann) distribution. For sim-

plicity, in this chapter we take fMB to be only a function of velocity space - that is

fMB is chosen to be independent of physical space and time2 . Using this definition

and equation (1.16), we can write

0 fd V/ fd fd df OfMB
t + - + a+ ---- = -aa (5.1)

at 2 Nx 8c dt Coll ac

To obtain the RKDG formulation of this equation, we closely follow the approach

laid out in [17]. We will suppose our computational domain is divided into elements,

denoted by 2, in physical and velocity space. We require that for any3 test function

v(x, c) defined to be zero outside of the element Q

sd + 6fd fd 6 V ad -a d60 (5.2)
a *t 2 -- a.c d6t Col ac

where the integrals extend over the element 2. We note that as v is defined to be

zero outside of Q, a similar equation also holds when the integrals extend over any

part of the entire domain.

Noting that the Boltzmann equation is a conservation law in 6-dimensional phase

space, we proceed with integration by parts to obtain

v d6 +1 vfd ( C.nx + a.nc) d5 _ fd C - -- d• =

v cott - a o d6Q (5.3)

Here, nx and n. are, respectively, outward-normal vectors of the element in physical

and velocity space and Inx 2 + In 12 = 1; F denotes the 5 dimensional surface of the

element Q in phase space.

In the present work, our interest lies in cases where body forces are negligible or

2A more involved approach might allow fMB to vary so as to reduce the magnitude of fd.
3 Provided integrability requirements are met, see [17].



not present; we will thus set a = 0 to obtain

v d6+ vhd jp 5d j d6 = jv coil d62 (5.4)

where we have defined h to be a flux function 4 that approximates fdx c! n + a ne

We expand fd (specifically, fd within a single element) and v in terms of our (now

taken to be finite5) set of basis functions Oi(x, c).

fd = d(t) Xi(X, C) (5.5)

v = (x, c) (5.6)

The functions qi are defined to be nonzero only within a single element (see

appendix A for a description of the shape functions used in the present work). No

continuity requirements exist between elements, allowing the formulation to capture

discontinuities in the solution. Substituting these expressions into (5.4) and requiring

the equation to hold for any set of coefficients ij (i.e. any i), we obtain

Oi d6 + j hds - - ff Lc- d clli i

(5.7)
which must hold for all j. Equation (5.7) defines a linear system of equations for

. We also note that, because the boundary conditions are weakly imposed on an

element, we can solve for 'i independently within each element; in other words if

there are Ne total elements and N, shape functions per element, one needs to solve Ne

N, x N, systems instead of one (NeN,) x (NeN,) system. Integrating in time using

a (strong stability preserving [17]) Runge Kutta method gives the time evolution of

fi, and thus fd

All integrals on the left side of (5.7) are evaluated using Gaussian quadrature
4 This will simply be an upwind flux as our convection term is linear.
5 To simplify the notation, we do not distinguish between the deviational distribution function

and its discretized form.



using standard methods [26]. In particular, this work utilizes tensor product shape

functions so the sum-factorization technique can be used to greatly speed evaluation

of the relevent integrals.

The shape functions used in this work are tensor products of Legendre polyno-

mials. However, tensor product bases have more components than strictly needed to

represent a polynomial function of given order. This fact will impact the evaluation of

the collision integral; as mentioned in appendix B, the current method used to eval-

uate the collision integral required the evaluation of distribution functions (and thus

the constituent shape functions) at a set of random points. This step in particular

could be sped by using a smaller set of shape functions.

5.1.1 Collision integral

To evaluate the term involving the collision integral in equation (5.7) we will use a

Monte Carlo integration technique which adapts the variance reduction ideas pro-

posed in [8] to the present DG formulation. Specifically, the variance reduction arises

from considering only the deviational distribution function fd [equation (2.13)] and

the use of importance sampling (see below).

Let us define

I(v) d- dv6= ] ot d3c d3X (5.8)

The second equality follows by using the fact that v is taken to be zero outside the

element in question and thus integration over both x and c can extend over all space.

Using the properties of the collision operator [37, 14], and the fact that integration

extends over all velocity space we can write

() = JJ (v' + v1 - V - v2) f1 2 g a d2 e d c dc 2 d
3x (5.9)

where vl = v(x, cl), v2 = v(X, C2 ), C = tX, C'2) and v' = v(x, c').

Using expression (2.13), noting that the collision integral for a Maxwell Boltzmann



distribution is identically zero, and taking advantage of the symmetry in the collision

operator [14], we can write

+2 XMB,d

+ Xd,d (V+ V2 - V1 - v2) go d20 d3c, d3c2d3x (5.10)

where we have defined the constants

XMB,d JJ ffMBd20 3C1 d d d3x = 4r (Jff2IMBd3c 2) f dcd3X
(5.11)

Xd,d JJJ f lf I fIfd2 d3  d3c2 d3x = 4rJ { ( f Ifdid3c) (f I fId3c2) d3x
(5.12)

with 47 being the surface area of the unit sphere.

Noting that f f2d/Xd,d and fdf ,MB/xMB,d in equation (5.10) are normalized prob-
ability distribution functions, we can perform importance sampling6 [32], obtaining

1 NMB

I(v) XMB,d E- [Vl, + v2,i - Vl,i - v2,i] gio-sgn(fld)
1 i=1

S-4-Xd,d- [i + v, - V1,i - V 2,] g +isgn( f)sgn(f2•j) (5.13)
i--1

where the set of collision parameters {xi, c1,i, c2,i, Ei} are chosen with a probability

I fi,iI•f2B IXMB,d in the first sum and Ifdil Idf2dil/Xd,d in the second (this implies 8 is

chosen with a uniform probability on the unit sphere in each case).

To implement (5.7), we must evaluate (the discretized version of) 1I(0j) for all

shape functions in all elements. To do this more efficiently, we note that the cost of

evaluating (5.13) (and thus the cost of this DG approach) can be reduced significantly

because this equation can be evaluated for all shape functions in all elements using

the same set of samples, namely the NMB collision events in the first term and Nd
6 Note that here, as opposed to in Chapters 2 - 4, we have not included go in the importance

sampling scheme.



collision events in the second term of equation (5.13). This is achieved by updating

the sum only for the cells containing pre- or post-collision velocities for each collision

event. This is possible because the shape functions are zero outside their associated

element, and thus only the elements containing a pre- or post-collision velocity for

a given collision event will be affected by that collision event. When fd is small,

XMB,d > Xd,d; in such cases, for improved computational efficiency, one could choose

NMB to be much larger than Nd.

We also note that the above derivation holds for an arbitrary fMB ("underlying

Maxwell-Boltzmann distribution"). The choice of fMB does not affect the accuracy

of the method (no approximation has been made), only its efficiency: in general, the

smaller the magnitude of the resulting fd, the greater the degree of variance reduction

and the higher the efficiency.

5.1.2 Boundary conditions

In this formulation, boundary conditions are imposed by specifying the (upwind)

numerical fluxes at the walls. In this work we used diffuse wall boundary conditions

[14, 34]; this model is by far the most widely used [21, 34], primarily because it appears

to capture the behavior of engineering surfaces of practical interest quite well.

The diffuse wall boundary condition can be expressed as

fMB + fd = nwallfwall for c -ii > 0 (5.14)

where fwall is a (normalized) distribution at equilibrium with the wall, hi is the unit

normal pointing into the fluid, and the constant nwall is determined by the mass

conservation requirement

<0 (c. f) (f MB + fd ) dc = 1>(c i) (nwall wall) d3C (5.15)

In our implementation, we took advantage of the fact that for the low-speed, isother-

mal flows presented here, nwall = n, and did not fully implement (5.15). For flows



were nw11n n, implementation of (5.15) is straightforward.

Imposition of other typical boundary conditions is also straightforward. For

boundary conditions that are more complex than diffuse or specular walls, appli-

cation of boundary conditions is an area where PDE-based approaches arguably have

an advantage over particle-based approaches; in both cases a fluxal quantity is re-

quired, however, in particle approaches, random samples from this distribution must

be generated, while here only the numerical value of the flux at the Gaussian quadra-

ture points is required.

5.1.3 Collision integral implementation details

The implementation of the advection terms follows standard approaches [171. We will

thus focus on the numerical evaluation of the collision integral using equation (5.13).

To simplify the implementation, we will assume that our mesh is a "tensor prod-

uct" of an (arbitrary) mesh in physical space and an (arbitrary) mesh in velocity

space 7 - in other words we assume that every element is part of a set of elements

having an identical extent in physical space that, as a set, span velocity space. This

simplifies the procedure for finding the element containing the post-collision velocities

in equation (5.13) as well as for picking the pre-collision velocities (because x is the

same for the two pre- and two post-collision velocities).

We also note that equation (5.10) holds when the integral is taken over an arbitrary

region in physical space (though the integrals must still extend over all of velocity

space). In particular, this means that we can independently evaluate (5.13) for each

set of elements sharing a common extent in physical space; this greatly simplifies the

implementation of a parallel code8 .

Implementing equation (5.13) is straightforward, provided an efficient method for

generating the collision parameters {xi, cl,i, c2 ,i, Oi} exists. The method used in the

present work is outlined in Appendix B.

7In the current code, a tensor product grid in all dimensions is used.
'The tradeoff in doing this is a smaller degree of variance reduction in cases where the magnitude

of fd varies significantly in physical space



5.2 Numerical results

We have validated this method using spatially homogeneous and one-dimensional

model problems. Extension to higher-dimensional cases and other interaction models

(e.g. variable hard-sphere gas [12]) is straightforward.

5.2.1 Spatially homogeneous case

The convergence properties of the RKDG method have been studied extensively[17].

For this reason, we will focus on the convergence results for the collision integral

formulation of section 5.1.1 as this represents the primary difference between the

present work and existing RKDG formulations.

We use the analytical solution [28] of the Boltzmann equation for spatially ho-

mogenous relaxation with Maxwellian molecules 9 as a testcase. Figure 5.1, shows the

convergence for evaluating [A] col as a function of the mesh size for zeroth-order (Po)

and first-order (pl) elements. The error reported in this case is the root-mean-square

difference between the calculated and exact value of the collision integral at a lattice

of points in velocity space (approximating an L2 error norm). This error is normalized

by the correct value of the collision integral at c = 0.

As expected, with Po elements we observe a linear convergence rate, while the

convergence rate is approximately quadratic with pl elements. This suggests that,

when higher levels of accuracy are needed, it will be advantageous to use higher order

elements, even when taking into account the fact that higher order elements have

more degrees of freedom and a higher computational cost per element.

Although calculations using P2 elements are certainly possible (as will be shown

in the next section), we were unable to observe the expected asymptotic convergence

rate for P2 elements. This is primarily because the associated error levels are too

low and decrease too quickly to accurately resolve with the Monte Carlo integration

method used: for example, with only 11 elements in each dimension we obtain nor-
9 Maxwellian molecules are defined such that o oc 1/g (the constant of proportionality is imma-

terial for the present test case).



malized error levels on the order of 5 x 10-3; the error levels in the asymptotic regime

will be much lower. Our inability to observe the asymptotic convergence rate does

not imply that there is no advantage in using P2 or higher order elements; to the

contrary, this low error level is precisely what one desires. However, the choice of the

optimum polynomial order will also depend on statistical uncertainty considerations;

this is discussed further in section 5.2.3. Additionally, note that the difficulty in re-

solving exceptionally low noise levels does not diminish the effectiveness of our Monte

Carlo method for its intended purpose - obtaining low-noise solutions for low-signal

flows. As will be shown later, our method is very effective at obtaining relative sta-

tistical uncertainties of significantly less than 1% for arbitrarily small deviations from

equilibrium.
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Figure 5.1: Error levels for collision integral as a function of number of elements used
in each dimension. The dashed lines illustrate linear and quadratic convergence rates
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5.2.2 Flow in a channel

In this section we present comparisons of our results with DSMC solutions of a tran-

sient Couette flow of a hard sphere gas, in which at t = 0, the system walls (at

x = -e/2 and x = £/2) are impulsively accelerated to a velocity of +±0.1. (This veloc-

ity was chosen to make comparison with DSMC possible; our method can solve this

problem at arbitrary speeds for the same computational cost.) This flow represents

a stringent test of the method, because it involves a discontinuity in the distribution

function propagating into the computational domain.

All calculations presented in this section were performed using nonuniform ele-

ments; refinement in velocity space near c = 0 was used in all cases. For Kn = 0.1,

refinement in physical space near the walls was also applied. Additionally, due to

the propagating discontinuity in the x-direction, a finer discretization is used in the

c, direction than for the other velocity components. These mesh refinements signifi-

cantly improved the quality of the results, although no attempt was made to optimize

the mesh used.

Figures 5.2 through 5.7 show the velocity and shear stress profiles at a variety

of Knudsen numbers, using pi elements. The discretization uses 20 elements in each

dimension, except for c, which uses 40. The results are compared against DSMC,

and show an excellent level of agreement'o. Figures 5.8 and 5.9 show velocity and

shear stress profiles for the Kn = 1 case using P2 elements. This discretization uses

10 elements in each dimension, (20 for cq), and overall uses 1/16 as many elements

to obtain a similar degree of accuracy as in the pi case".

Figure 5.10 shows the steady-state results for pressure driven flow (using the

linearized approach of [15]) for a Knudsen number of Kn = 2/V#-• compared to the

previously published results of [31]. A total of 244 nonuniform elements were used.

10To ensure accurate results for comparison, the DSMC runs used 400 cells in physical space and
a timestep such that a particle with a (dimensionless) normal velocity of 1 would take 10 timesteps
to cross a cell. While we used a highly refined DSMC calculation to ensure that our results are
correct, we base our performance characterization on a coarser discretization for DSMC.

"Note that a tensor product P2 element has 34 shape functions compared to 24 for a pl element;
this means that in this example the P2 case has about 1/3 the number of degrees of freedom as the
pi case.
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Figure 5.2: Velocity profiles for Kn = 10-1 using 40 x 203 p, elements
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Figure 5.4: Velocity profiles for Kn = 1 using 40 x 203 pl elements
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Figure 5.5: Shear stress profiles for Kn = 1 using 40 x 203 pi elements
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Figure 5.7: Shear stress profiles for Kn = 10 using 40 x 203 pi elements.
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Figure 5.9: Shear stress profiles for Kn = 1 using 20 x 103 P2 elements
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Figure 5.10: DG results for pressure driven flow (Kn = 2/ Vr , 1.1) using 244 P1
elements

5.2.3 Effect of number of Monte Carlo samples

The use of a Monte Carlo integration method means that there will be some level

of statistical uncertainty inherent in our evaluation of the collision integral. To find

the effect of this uncertainty on the solution we have measured the effect of the

number of Monte Carlo samples12 used on the flow velocity and the shear stress.

Specifically, we perform a steady-state shear flow calculation (using a Chapman-

Enskog distribution for boundary conditions to minimize edge effects) and measure

the mean standard deviation of the flow velocity and shear stress over a set of nodes

in physical space13 . These values are normalized by the boundary velocity and the

correct value for the shear stress, respectively, and will be referred to as the relative

12Here, the number of samples refers to the total number of updates done in equation (5.13).
When using order p elements, this will be 4 (NMB + Nd) (p + 1)4; there are 4 pre- or post-collision
velocities for each of the (NMB + Nd) collision events, and the sum in (5.13) is updated for each of
the (p + 1)4 shape functions in the corresponding elements. In the current implementation, NMB
and Nd are allocated at runtime, so the number of samples reported is an approximation.

13Note that the nodes in the middle of the domain will typically have a smaller variance in these
quantities; this is because fd is smaller there as the mean flow velocity is closer to zero, so our choice
for fMB is a better approximation to the distribution function. This could be alleviated, though at
the cost of a slightly more involved implementation than that discussed in section 5.1.3.



statistical uncertainties. For simplicity, in this section, all tests use a uniform mesh.

Figure 5.11 shows the dependence of the velocity and shear stress relative sta-

tistical uncertainties on the number of Monte Carlo samples per collision timel4 per

degree of freedom for po and pi elements using the same 15 discretization. The asymp-

totic convergence rate appears to be approaching N - 1/2 , which is expected of Monte

Carlo integration. In other words, the statistical uncertainty in the collision integral

evaluation seems to have an (asymptotically) proportional effect on the statistical

uncertainty of the hydrodynamic quantities of interest. When the number of samples

is small, this trend no longer holds; in fact the method becomes unstable if too few

samples are used.

Also, note that in both cases, higher order methods require fewer samples per

degree of freedom to obtain a given uncertainty level (though higher order methods

require more total samples for a given degree of uncertainty). In cases where extremely

low levels of statistical uncertainty are required, this consideration might affect the

choice of polynomial order and discretization used.

We can also see that the relative statistical uncertainty in the shear stress is typi-

cally an order of magnitude larger than the uncertainty in the velocity. Both, however,

are very small; typical values are of O(10 - 3 ) and 0(10-2) respectively which, as shown

in the previous comparisons of figures (5.2)-(5.10), are essentially imperceptible.

Figure 5.12 shows how the number of elements used affects that level of relative

statistical uncertainty for p, elements. We see that, when using more elements, fewer

samples are needed per degree of freedom to obtain a fixed degree of relative statistical

uncertainty (though the total number of samples needed is larger when more elements

are used).

We have not yet touched on perhaps the most important aspect of our method

for evaluating the collision integral: its performance for low-speed flows. Figure

5.13 illustrates how the degree of relative statistical uncertainty is affected by the

14The statistical uncertainty is not primarily affected by the number of samples per timestep, but
rather the number of samples per collision time.

15As opposed to, for example, discretizations that would lead to the same degree of discretization
error.



characteristic flow velocity (i.e. deviation from equilibrium). Two wall velocities

(+0.1 and +0.01) are shown; the figure shows that the relative statistical uncertainty

does not change significantly between these two cases. This is in sharp contrast

to DSMC, for which lower flow velocities are associated with much higher relative

statistical uncertainties [22] - for the same number of samples the level of relative

statistical uncertainty in a DSMC calculation would have increased by a factor of 10

while the number of samples required to bring the relative statistical uncertainty to

the same level would have increased by a factor of 100.

Our preliminary results show that the effect of the number of Monte Carlo samples

on the average value of the local flow velocity and shear stress is small - on the order

1% for the shear stress over the range shown in figure 5.11 and essentially negligible

for more than 50 samples per collision time per degree of freedom. The effect on the

flow velocity is even smaller.

Finally, we note that in the present method, only a relatively small number of

samples are necessary per collision time per degree of freedom to obtain small relative

statistical uncertainties. As the timestep is typically significantly less than a collision

time, even fewer samples are needed per timestep; this makes the present method for

evaluating the collision integral extremely computationally efficient.

5.2.4 Limiting

In general, RKDG methods require the use of a numerical limiter to ensure stability[17],

although we have not found this necessary for the (linear) flux function of the Boltz-

mann equation. However, the lack of a flux limiter leads to a non-physical overshoot

in the flow velocity and other hydrodynamic quantities at very short timescales due

to the propagating discontinuity created by the impulsive wall acceleration in our

Couette flow problem. An example is shown in figure 5.14; in this case collisionless

Couette flow was simulated both without a flux limiter and with the flux limiter de-

scribed in [17] (the flux limiter was only used for the initial 10 timesteps, during which

time the propagating discontinuity has the sharpest effect on the velocity profile).

Without the flux limiter, there is a non-physical overshoot apparent at short
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Figure 5.13: Effect of varying wall velocity on relative statistical uncertainty for
present method

times that disappears at longer timescales. Introducing a flux limiter removes this

overshoot. However, we observe that, except at very short timescales, we closely

match the analytic results either with or without the flux limiter (to the point where

the three different solutions plotted are essentially indistinguishable). Discerning the

full effect of slope limiting on the present method of solving the Boltzmann equation

will require further research, though our initial exploration suggests that, while the

use of a slope limiter is not necessary, in certain cases it can give qualitatively better

results.
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Figure 5.14: Effect of limiting on velocity profile for collisionless shear flow



Chapter 6

An iterative DG method

6.1 Time integration to steady-state

In practice, one is often interested in steady-state solutions for the Boltzmann equa-

tion. It is certainly possible to obtain these by integrating in time until steady-state is

reached, however this is typically inefficient. With the RKDG method, the timestep

is limited by a CFL condition, which can be approximated' for our one dimensional

case by [17]
1 AxminAt < min (6.1)

" 2p + 1 Cx,max

where p is the polynomial order, cx,ma, is the maximum velocity in the x direction

considered and AXmin is the smallest element length in the x direction. We note that

this is only an approximation for the true stability limit; however it will serve for our

discussion purposes.

For flows in the diffusive regime (small Knudsen numbers), the (dimensionless)

time to reach steady-state scales as

TSS _ f2 (6.2)

'This approximation assumes a p + 1 stage RK time integration, and is typically within 5% of
the numerically estimated threshold values when using a single velocity[17]. We have also neglected
the factor of 2• appearing in the Boltzmann equation for simplicity.



where e is the system length (normalized by A*); thus the minimum number of

timesteps required to reach steady-state scales as

N rj (2p + 1)2 x,max (6.3)
AZmin

In the high Knudsen number limit, the time to reach steady state scales as

•s, s - (6.4)
Cx,min

where Cx,min is the smallest velocity for which steady-state will be reached.

Regardless of the regime one is working in, the relative effect of refining the mesh

in the x dimension (and leaving the other parameters unchanged) is the same; the

maximum timestep will decrease, while the time to reach steady state remains fixed.

Thus, (assuming the computational cost per element per timestep is constant) the

overall computational cost will scale as

(Amin 2  (6.5)

The iterative method developed in this chapter will, for a fixed f, require a number

of iterations (roughly) independent of Axmin; in other words, in the above case of

refinement in the x dimension and constant cost per element, the computational cost

will scale as
m1 

(6.6)
Axmin

which is clearly a significant improvement.

We also note that the iterative method has other advantages besides a better

scaling as the discretization is refined. Typically, the iterative method will require

far fewer iterations (compared to the required number of timesteps when time inte-

grating) to reach steady state. While the precise comparisons are difficult to make,

a representative number of iterations required to reach steady state can be found in

section 6.7.



6.2 Previous work

Our work is based on the iterative approach described in [39] in which the collision

integral is split into gain and loss terms

=oLdf = ff 'gad2ed 3dc, - f fSgad2 Edc3 (6.7)dtcoil 2

-G - fL (6.8)

At each iteration I, the distribution function is chosen such that the (discretized)

Boltzmann equation would be satisfied if G and L remained unchanged from the

previous iteration; that is (ignoring discretization) f, is chosen such that

c - I = GI-1 - fILI-1 (6.9)2 Br

at each point in velocity and physical space. Here,

GI-1 N J 1 f"'rI-1gad2ed 3C (6.10)

L-'= / fff-'gad2Ed3'c (6.11)

In other words, at each iteration, we select shape coefficient coefficients such that

the Boltzmann equation is satisfied using an approximation for the collision integral

based on G and L from the previous iteration. It is clear that, if convergence is

reached, that is if f' = f'-', this method will yield a solution to the discretized

Boltzmann equation. We note that this approximation is implicit, that is, it involves

information at iteration I. Although, to our knowledge, rigorous numerical analysis of

this formulation has not been performed, an implicit formulation seems to be required

for stability [39].

The combination of this iterative method with the variance reduction techniques

described in this work is discussed in [7]. The work in [7] used a finite volume dis-

cretization for the distribution function. In the remainder of this chapter, we will



show how this method can be extended to the DG formulation. We will also demon-

strate the relationship between this iterative method and a more general Newton's

method.

6.3 Discontinuous Galerkin formulation

The focus of this chapter is on the treatment of the collision integral. The natural

extension of the above iterative approach to the DG method discussed in Chapter 5

is to use

I[terative(V) J v(G I- 1 - f'LI- 1) d3c d3 x (6.12)

as our approximation for

I ](v) --- v L oI d3cd3x (6.13)

We note that using the weak form of the collision integral (1.19), we can write

vG'-1 d3c = 4V4/ f (v'I + v') f-lft1 -lga d2 d3C1 d3c24N(1 2 C2' (6.14)

while from above we have

LI-1 Tr-ff

Substituting definition (2.13), taking

advantage of the fact that the weak form

fI-l gd 2 d3c 1 (6.15)

fMB to be independent of I and taking

of the collision integral is identically zero



for fMB yields

I (vGI- - vf'L I-') d3c d3x

SJfff (v + v•) •(2fd,-'fMB + -

x ga d2E d3c, d3c2 d3X

2 Jllv2 (fd,I-1MB +

d,I-1)

f M BfdI + dI-1 ,I

x go d28 d3cE d3c2d3x (6.16)

(6.17)S(v) -I(v)

We will consider the two terms in the above expression separately. The first term

can be rewritten as

(v) = (v + v ) fid,I-lf 2 gMBga d2E d3c1 d3c2 d3x+2 ](
+ f ff (Vi + V2) f~"'f-"gu d2 3C d3c dC 2 d3x

while

,C(v)= J" fJ v2 fdI1 fiMB ga d2E d3c1 d3 c2 d3x

+ v2 fiMB d,ga d2 0 d3c, d3c2 d3X2 d2d3 d3c2 d
V/7i 2f"8 1fdg d 2E) d 3c, d3c2

3X (6.19)

We now expand the term f2dI in terms of the shape function coefficients using

iterative(V)

(6.18)

=



equation (5.5) to obtain

12(v) VT= i 1 1 v2 jdI-lf2MB go d2B 0 d3C1 d3C2 d3x

+ v2qi, 2fBga d2M d 3c d3c2 d3X

+ ,I J J v2 i,2 f gd 2, dc 1 d3c2 d3x (6.20)

Recall that v and q are defined to be zero outside of the element in question.

Now, perform a standard manipulation by noting that formally interchanging cl

and c2 makes no difference in the value of integral, and of course "two quantities that

are equal to each other are each equal to one-half their sum" [37]

2(v) = v21 d 2I- MBg d20 d3
1 d3c2 3

+ 5 fd'i§ JJJJ v 2 qIJ 2 fMIBg d 2O d3cl d3
2 d3 x

i+ f +F f-1 dIf- 2 d3C1 d 3c2d 3X

(6.21)

This, along with (6.18) are the final expressions we will be using.

6.4 Evaluation of terms

In the present work, equations (6.18) and (6.21) are evaluated using the same impor-

tance sampling technique used in Chapter 5. This approach allows the calculation

of the correct collision integral at step I - 1, while evaluating the terms needed to

evaluate the estimate for the collision integral at step I; the evaluation of the correct

collision integral allows one to check the convergence of the method, and is beneficial

if one decided to implement a line search or similar algorithm[32].

This is certainly not the only possible implementation; in fact, as we will see

shortly, the present implementation requires the division by fd (with a probability



proportional to |fd|), in other words there is a small probability of dividing by a

number close to zero. A better importance sampling strategy is almost certainly

possible; but this has not yet been explored.

6.4.1 Terms in g

We follow the standard procedure explained in Chapter 5 to write

2111 (v + v) (fdI-l MB) g d2 d3Cl d3c 2d 3x

-xFXMB,d Vl,j

j=1
+ v2,j) gjjsgn (fl,-1)

where the collision parameters {xj, cl,j, c2 ,j Oj} are chosen from the probability dis-

tribution function f jMBIfdI-1 XMB,d.

We also write

14 X- f (vi + v;) (fd,I-1 fd,I-) go- d2 3Cl d3c 2d3x

V7 jXdd

j=1
( ,j + v2j) gjjsgn (f , sgn (ffd,I-1)

when the collision parameters are chosen with a probability If'dI- llf2d/I-Xd,d-

6.4.2 Terms in L

The only term in L that can be evaluated explicitly from information known at step

I - 1 is

-7- f dI-1 MB 2 3 3 3X MBd d,-1
-2 j v 2 fIf'Bga d2E d3c dC 2 d 2 N S v2,jgj-jsgn (flj

j=1

(6.24)

where the collision parameters {xj, c,4, c2,j, ej} are chosen with a probability f 2MB IfdI- I XMB,da

The other two terms in £ involve fd at step I; these must be evaluated by summing

(6.22)

(6.23)



over shape functions. The terms can be calcuated by

ivli,f2 MBga dEd d3c, d 3x MB leV i,1,j 12 2 N ~dI -l'--- --
j=1 1,

(6.25)

where the collision parameters are chosen with a probability Ifd,'-lfMB /xMB,d, and

1 + fd7 f f2  g d d 3c1 d3c2d3x -
4 \fd,I-

\/WXd,d 2, i,2,j (ji,1,j d,I-l(6 d26-
+ f, sgn , sgn f (6.26)

4 =1 J 2,j J 1, J

when the collision parameters are chosen with a probability If' -l flfd' -1I/Xd,d-

6.5 Implementation

Our focus in this chapter has been on the development of a scheme to approximate

a weak form of an implicit collision integral formulation. The approximation that we

have developed involves the (unknown) shape function coefficients 4i". The advection

terms (the left side of the discretized Boltzmann equation) are easily expressed in

terms of the shape function coefficients. This leads to a set of linear equations that

can be solved for the shape function coefficients fi"'. Forming and solving the matrices

involved is a standard procedure, so we will not discuss it at length here.

We do comment on the structure of the linear systems encountered. First, we note

that (with our present tensor product mesh) there is no coupling between elements

that have a different position in velocity space2 ; in other words we can solve for

the shape function coefficients ^f for each set of elements in physical space with a

particular range in velocity space independently of elements with a different range in

velocity space.
2 These terms are coupled via the collision integral but there is no coupling when solving the set

of linear equations.



Assume that we have Nc elements in each of 3 dimensions of velocity space and

N, elements in each of D dimensions of physical space and we are using pth or-

der tensor product shape functions. In three physical dimensions, we will have to

solve N3 sets of linear equations. Each of these sets of linear equations will have

N D (p + 1 ) D + 3 unknowns, and each corresponding matrix will have (approximately)

2DND (p + 1 )2(D + 3) nonzero terms. This number of nonzero terms results from the

fact that, for each element, all of the shape function coefficients in the the upwind

adjoining elements will contribute to the flux, and only the shape function coefficients

in that particular element will contribute to the collision integral terms.

For the cases in one physical dimension presented here, the cost in evaluating the

collision integral terms has been much larger than that required to solve the resulting

systems of linear equations.

This iterative method as presented here has a significant storage cost - one would

typically store the terms (6.22), (6.23), (6.24), (6.25) and (6.26) for all elements when

evaluating the collision integral. However, we note that (6.25) and (6.26) have to

be evaluated for all pairs of shape functions within a particular element. Thus the

overall storage cost will scale as NfN )2(D+3). For a fine discretization in a

large number of dimensions, this might strain the memory (or mass storage) limits

of the computer being used. There are several possibilities for alleviating this; for

example one could trade off CPU time for storage by evaluating (6.25) and (6.26) for

different elements at different times. For example, due to the upwind scheme used,

the resulting linear equations can often be solved by back-substitution.

6.6 Newton's method

6.6.1 Some definitions

In this chapter, we derived expression (6.17) based on a previous "empirically" de-

veloped iterative method. In this section, we will show how the present method is

related to Newton's method, a standard iterative method for solving nonlinear sys-



tems of equations [32].

We begin by defining

I [fd, fd; fMB] ()

f (v + v - v - v2) (2 fdf 2MB + f2d) go d2 d3c d3c2 d3x (6.27)
4 1 2

Z is the moment with v of the collision integral for the deviational distribution function

fd

We then define the Jacobian term by considering the change in I when fd is

changed. In particular, we will consider the modification of the coefficient for the

shape function , by an amount E.

lim z [fd + d + ,; fMB]() - [fd, fd; fMB](v)

= (v' + v' - vi - v2) (2V1f2MB + 1fZ + fld 2) go d2 d3c dc2 d3x

(6.28)

The term JO,, tells us the sensitivity of Z(v) to a change in the coefficient of the shape

function 4. In general, J will be nonzero for any two shape functions that share a

common region in physical space and zero otherwise.

With this Jacobian matrix, we can approximate the collision integral at iteration

I using a linear expansion

'Newton [fd fd; fMB] (v) d3c d3x
J Ldt coll, Newton

Jdcdf] dx + eJ-,- _ ,;-1 (6.29)

Here, i indexes all shape functions in all elements (or equivalently, all shape functions

in all elements sharing a common region in physical space with the element of interest).

Substituting (6.28) for J, and using (5.10) for the collision integral term at I - 1, and



using (5.5) to simplify yields

INewton [fd,I, fd,I
f MB] (V) = 4 ifJJ (1 + v - V 1 - V2 ) X

+ f,I-lfd ,I-1+
[ fd,I _ fdI-1] dI-1 dI-1 [fd,I d,I-1]

ga d20 d3cl d3c2 d3x

which can be rewritten as

INewton [fdSI fdI; f MB] (V) =

z [fd,I, fd,I; fMB] (V) - [fd, _ fd,I-1 fd, _ fd,I-1; 0] (V)

Let us again separate this into two terms, writing

INewton [fdI, fd,I; fMB] (v) = gNewton(V) - L~Newton(V)

where we have defined

gNewton (V) =

(2fadf' f2MB

SJJJJ(v +v') x4 aaf (1a

+ fId,I-lfI-1 +
[fdI _fd,-1] f2d-1 + fd,l-

1 f2dI Ifd,-1])

ga d20 d3c1 d3c2 d3 x

and

£Newton(V) = 4JJ
2 fdI MB + 1d,I-1 dI - 1

(v1 + v2) x

+ [fd,' -

(2fid' f 2 MB

(6.30)

(6.31)

(6.32)

(6.33)

fd I-1 X

gcr d2 d3c l d3C2 d3x

+fdl
I - 1 [

d ,

(6.34)

d,-1] ,dI-1



Using standard techniques, we can write £Newton in an alternative form

LNewton(V) =

2 fdI MB +MB dI+
V2 fl f2 -+r flf

fd 1-ld,1 + [fd ,I d1] fdI-1)

ga d2E d3 cl d3 c2 d3x (6.35)

6.6.2 Approximation to Newton's method

Let us now consider a modification to Newton's method, in which we retain only the

block diagonal3 terms in the Jacobian matrix, that is we write

'modified [fd, fd; fMB] () = v d Jcoll d3C d3X + >E 4I (I'1

where, in contrast to (6.29), s indexes only those shape functions that are nonzero in

the same element as v; we denote this element by Qv. We can also write

'modified [fd, fd; f MB] (v) -= 4 (l + 2 - V1 -- V2) X (2fg'I- I f M B+

fl-1 d-1+ 2 [,ii- fd'I-1] f M B + [fdI dI-1] d ,I- 1 dI-1 [ -d,I dI-1
2 -2dI]

god 20 d3cl d3c2 d3X

where

f d, = 
fd ,

fd,I
f2d,I j-
fd, I-1

if cl E Q,

otherwise

if c 2 E Qv

otherwise

(6.37)

(6.38)

3We assume that the terms are ordered with the element index most significant, and the index
of the shape function least significant. In other words, we are only considering the terms in the
Jacobian that correspond to shape functions in the same element.

2JI7TJ

8idJI-) (6.36)



The corresponding relations for LCmodified (v) and gmodified(V) are

£modified ()

S0 i fiff (fdI f2MB + fBidI + d,lI-ld [IdI - fdI-1] dI-1)

gu d20d 3C 1 d3C2 d3x (6.39)

and

gmodified(v)= • (•  i + V )

4 JiJi
2/I f2MB + fjd,I-1 fI-1 + ,I f1d ,I-1 d,I-1 f,-1 d,I d,I-1])

go d2 d3Cl d3c2 d3x (6.40)

where we have made use of the relationship f' I- f2
M B + [fd,I _ f1,-1] f 2

M B

fd,If2 M
B

6.6.3 Connection between present method and Newton's method

We will now show that the iterative method developed in this chapter can be related

to Newton's method. Specifically, we show that this method corresponds to Newton's

method in the case where only the block diagonal terms in the Jacobian are kept (after

some approximation), i.e. the modified method of section 6.6.2.

To see this more clearly, let us begin by comparing

9modified(V) = 4 J l(v + v2) X

(2fi',I M B + fd,'I-fdI- 1 + [if'- fd,,I-] 1 ,, 1 d [dI fd,-1])

ga d20 d3c1 d3c 2 d3x [6.40]



and

g(v) - 111 (v + v') ffdI-fIBg d 2 d 3C d3C1 3C2 d3X

+ - JJJ (vl + vi) f" ,- g d 2 d3c dc 2 d3x [6.18]

Let us examine the situation for a particular shape function v (and again denote the

element in which v is nonzero by Q~). In a "typical" collision event for which c' C Q,

or c E Qi (in other words, a "typical" collision event for which the integrand of G(v)

and Gmodified (V) is not necessarily zero) neither cl nor c 2 will be in element Qv. We

can see that, if we consider only these "typical" collision events, G(v) is clearly equal

to Gmodified (v) (because ff,'I = fl'I- and f2d, = f,I- in this case)

The approximation for G(v) (compared to Gmodified(V)) in our present iterative

method, is in the collision events for which either cl or c2 lies in the element Q,;

however these collision events are expected to be rare. For example, if both cl and c2

lie in Q,, g will be small. On the other hand, if g is large, there is only a small range

of E for which cl and either c' or c' can be in the element Q,. A similar argument

holds for c2.

We now move on to compare

£modified () =

V J JJ v2 (ffd'I MB+ f M B fdI + dd,I - 1 d,I [fd,'I d,I-1] fd,I-1

ga d2 d3
1 d3C 2 d3x [6.39]

and £(v), given by

£(v) = JJJJ Iv2f dI-l fMB d2 d3C 1 d3c2 d3x

+ v2 fiMBJfIga d20 d3C1 d3 2 d3X

+ v2fj1, f2"'g d2 0 d3
1 d3c 2 d3x [6.19]



In a "typical" collision event for which c2 lies in •, (that is, for which v 2 is not

necessarily zero), cl will not be in element Q,. In this "typical" case, = fd, I-1

and f~d ' = fd,. Clearly, when one considers only "typical" collisions, Cmodified(V) and

£(v) are equal. Our approximation for £(v) (as compared to £modified(V)) lies in the

case where both cl and c2 lie in the element Q,; of course collisions of this type are

expected to be have a small effect because g will be small in this case.

In short, our present iterative method can be viewed as a case of Newton's method,

in which we retain (after some approximation) only the block-diagonal terms. Of

course, the block diagonal terms in the Jacobian correspond to the terms that could

change the value of the distribution function in the element Q,; we can compare this

to the expression (6.9) in which only the change in the distribution function at a

point affects the (approximation for the) collision integral at that point. Physically,

this is reasonable; it corresponds to the assumption that modifying the distribution

function in a region will have a greater effect on the collision integral within that region

than elsewhere. The neglected terms (compared to the modified Newton's method)

correspond to lower-probability collision events; in the limit where the volume of

the element 1, goes to zero the neglected collision events will have essentially zero

probability. In Chapter 7, we will discuss further improvements to this iterative

algorithm.

We close by noting that using Newton's method provides a coupling among all of

the shape function coefficients f"', this requires a large amount of storage, as well

as the solution of a large linear system. Retaining only the block diagonal terms in

the Jacobian effectively decouples the elements with different velocities, thus greatly

simplifying the solution process.

6.7 Results

The primary advantage of the present iterative method is that it requires far fewer

iterations to reach convergence than the number of timesteps needed to time-integrate

to steady-state. This is illustrated in figure 6.2 using Po elements. (Verification of the



present iterative method using higher order elements is in progress.) Of particular

interest is that, with the present iterative method, the convergence rate is (roughly)

independent of the discretization needed. In contrast, using time integration, the

number of timesteps required increases as a finer discretization is used. Figure 6.2

shows results using relatively coarse meshes; as the degree of refinement increases,

the advantage of the iterative approach becomes more pronounced.

The number of iterations / timesteps required to reach steady state is not the

only consideration in evaluating a method. As we are using Monte Carlo integration

to evaluate the collision integral, the effect of statistical uncertainty in the collision

integral on the statistical uncertainty of the solution needs to be evaluated. It was

found that the (present) iterative method is much more sensitive to this noise than

time integration; figure 6.3 shows the number of Monte Carlo samples needed to

obtain a given level of convergence, but with the level of statistical uncertainty in

the velocity fixed, for the iterative and the time integration method. We can see

that the additional sensitivity of the iterative method means that more Monte Carlo

samples are necessary, thus negating its advantage. We note that figure 6.3 is only

for a particular refinement; assuming that the number of samples required to obtain

a given degree of statistical uncertainty scale with the discretization in the same

manner for the iterative and time-integration method, the advantage illustrated in

figure 6.2 will lead to the iterative method being preferable for finer discretizations.

Based on figure 6.3, we can estimate this crossover point at about 100 elements in

the x-dimension or when the minimum element size is approximately 0.1. As one

would typically use a nonuniform discretization, for example concentrating elements

near the boundaries to capture the Knudsen layer, the crossover point at which the

iterative method becomes preferable would occur at a smaller number of elements.

The present iterative method appears to be competitive with time integration

for a range of problems, particularly when using finer discretizations; however, its

higher sensitivity to noise diminishes its principal advantage - namely the fact that

it converges in a very small number of iterations, with the number (roughly) inde-

pendent of the discretization used. In Chapter 7, we will discuss some possible ways



to alleviate this problem. In particular, one could use the connection to Newton's

method discussed in this chapter to devise an iterative method that converges in even

fewer iterations. Additionally, there are several possibilities for reducing the degree

of statistical uncertainty in the collision integral (even evaluating it by determinis-

tic methods); this will allow better use of the faster convergence rate (measured in

number of iterations) of the iterative method.

x 10
-3

-5 -4 -3 -2 -1 0 1 2 3 4 5
position

Figure 6.1: Comparison of steady
method. Results for 84 uniform po

state velocities for iterative
elements with Kn = 0.1

and time-integration



0 50 100 150 200 250
number of iterations or timesteps at CFL

Figure 6.2: Comparison of convergence rates for iterative and time-integration
method. RMS error level in the velocity is compared to the number of iterations
(iterative method) or the number of timesteps at the CFL limit (time-integration).
Results for 84 and 164 uniform po elements with Kn = 0.1
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Figure 6.3: Comparison of convergence rates for iterative and time-integration
method. RMS error level in the velocity is compared to the number of Monte Carlo
samples necessary (for the same degree of statistical uncertainty for both iterative
and time-integration methods). Results for 84 uniform Po elements with Kn = 0.1



Chapter 7

Conclusions

In this thesis, we have shown how numerical methods that are highly efficient for

simulating low-signal dilute gas flows can be developed through the use of appropri-

ate variance reduction techniques for evaluating the collision integral. In particular,

control variate integration, manifested as simulating only the deviation from equilib-

rium, was combined with importance sampling to yield two independent methods -

a particle simulation approach and PDE-based approach - for solving the Boltzmann

equation. Both methods were shown to be capable of providing efficient and accurate

solutions for a wide variety of testcases in zero and one physical dimension. Addi-

tionally, due to the general nature of the methods developed, it is expected that both

can be extended to general flows in two or three physical dimensions.

Much of the efficiency of the present methods derives from simulating the deviation

from equilibrium, and the fact that this deviation is typically small in cases of interest.

However, the methods are applicable regardless of the magnitude of this deviation; the

computational efficiency will be lower if the deviation is large, but the methods are still

accurate. Additionally, though the hard sphere interaction potential is emphasized

in this work, the use of other potentials with these methods is straightforward.

The particle method presented in Chapter 4 can be viewed as a direct extension to

DSMC; the method is modified only in ways necessary to allow the simulation of the

deviation from equilibrium. In the formulation presented in this thesis, the collision

process leads to a growth in the number of particles, thus a cancellation routine was



required. This cancellation introduced an additional level of discretization in velocity

space, and an associated degree of numerical error. The necessity for cancellation has

been remedied in the work of [24], which has extended the present method by allowing

for the underlying equilibrium distribution to change as a function of physical space

and time.

The discontinuous Galerkin approach presented in Chapter 5 uses a well-known

and extensively studied formulation for hyperbolic equations to discretize the Boltz-

mann equation [17]. The collision integral is accurately and efficiently evaluated using

Monte Carlo integration combined with the variance reduction techniques presented

in Chapter 2. As with the particle method, the DG approach provides an efficient

and accurate means of obtaining low noise solutions of the Boltzmann equation.

Additionally, an iterative steady-state formulation within the DG framework is

presented in Chapter 6. This has the potential of providing much more efficient

solutions when resolving transient phenomena is not necessary. The method presented

here is a natural extension of previous iterative methods for the Boltzmann equation

to the present DG framework; this approach is shown to be a variant of Newton's

method.

7.1 Comparison of direct and particle-based meth-

ods

As two different realizations of the same fundamental idea have been described in

this thesis, the question arises as to which method is better. Naturally, the answer to

this question will depend on the application of interest (and the possibility of future

extensions to the present work). However, at present it appears that the particle

formulation holds the advantage for high Knudsen numbers, and the DG method for

lower Knudsen numbers (and possibly when very high levels of accuracy are required).

The particle formulation naturally and accurately handles discontinuities as a

direct consequence of simulating the (deviational) distribution function with a set of



particles. In particular, discontinuities in velocity space are 'exactly' captured by the

particle approach. It is difficult to make a concrete statement about discontinuities in

physical space because discretization is introduced by the collision and cancellation

process; however, the effect of intermolecular collisions is expected to be small in the

high Knudsen number limit.

While the DG formulation can manage discontinuities, it is not as effective as

the particle method. However, for smaller Knudsen numbers, discontinuities in the

distribution function are expected to be of less consequence, and the ability to pre-

cisely represent smooth functions with the DG formulation are expected to make

this method more effective. Additionally, in the limit where very high accuracy is

required, the higher order convergence rate of the DG method might again prove to

be a deciding advantage. We do need to point out that the statistical uncertainty in

the collision integral negates some of this advantage, to the extent that even though

the benefit from higher order approximations is evident (see figures 5.8 and 5.9), the

asymptotic convergence rates can not be observed (see discussion for figure 5.1).

7.2 Directions for future work

7.2.1 Direct evaluation of the collision integral

While the Monte Carlo methods discussed in this thesis are highly efficient, they are

still bound to a N - 1/ 2 convergence rate. For problems where extremely low numer-

ical error is required, perhaps direct numerical evaluation of the collision integral

using standard quadrature techniques may be a better approach. Possible candidates

for this analysis include the linearized form of the collision integral for hard spheres

[37, 14] in which the dependence on the scattering angle E can be integrated analyt-

ically (leading to a lower dimensionality). Although such an approach may present a

significantly more complex algorithm and a higher computational overhead, provided

the computational resources are available it may be competitive with the approaches

proposed here when very low error levels are required.



If such a method were developed, the method could be extended beyond the lin-

earized Boltzmann equation for hard spheres using control-variate integration. In

essence, instead of solving for the deviation from an equilibrium distribution, as was

done in this thesis, one would use a Monte Carlo approach to solve for the difference

between the true solution and the solution obtained via the linearized Boltzmann

equation for hard spheres. As before, if the linearized solution were a good approx-

imation, this method would be highly efficient, while remaining valid in the general

case.

7.2.2 Control variate using the deviation from a non-equilibrium

distribution

The control variate approach used in this thesis does not necessarily have to be

based on an equilibrium distribution; it only requires knowledge of a distribution

(that presumably approximates the true distribution function) for which the collision

integral is analytically known, or easily evaluated. For low Knudsen number flows, one

expects Chapman-Enskog distribution function [20] (which corresponds to the Navier-

Stokes equations) to provide a better approximation to the distribution function than

a Maxwell Boltzmann distribution would. Additionally, the collision integral for the

Chapman-Enskog distribution can be easily calculated. This yields the possibility of

a hierarchical system for solving the Boltzmann equation - one solves the Navier-

Stokes equations, then uses the techniques developed in this thesis to solve for the

difference between the Boltzmann solution and the Navier-Stokes solution.

7.2.3 Improved iterative techniques

The iterative method presented in Chapter 6 can be much more efficient than time

integration to steady state in some cases, but still has the potential for improvement.

For example, the number of iterations required will be lower if the initial distribution

is close to the correct distribution; one could use a solution based on a coarser mesh

or lower order polynomial to obtain a good value for this initial distribution. Another



possibility is to use an alternative importance sampling formulation for the evaluation

of (6.25) and (6.26); this has the potential to avoid division by Ifdl and to reduce the

degree of statistical uncertainty.

We have also noted that the iterative approach presented in this thesis neglects

many terms in the Jacobian matrix in order to obtain a manageable set of equations -

it is currently infeasible to include all terms. The terms not included are, in essence,

set to zero. However, it is possible that a small set of the terms currently neglected

could be included. For example, the JO,v, terms, where 0o is the po shape function,

would likely be more significant than the others. One could also attempt to devise

another useful low-rank approximation for this matrix. A better approximation for

the Jacobian matrix could have significant consequences. In particular, we note that

for low-speed flows, we expect the deviational terms to enter linearly' in equation

(6.31); in other words, Newton's method utilizing the full Jacobian matrix should

yield extremely rapid convergence. Of course, using a better approximation for the

Jacobian matrix will lead to a (much) larger set of equations to be solved - one will

no longer be able to solve independently for each velocity - however iterative solvers

for linear sets of equations have the potential to do this efficiently.

'The f dff2 term will typically be small.



Appendix A

Shape functions

In this chapter, we briefly describe the shape functions used in this thesis. We refer

the reader to any finite element reference (i.e. [26]) for a full discussion of shape

functions; this appendix is only included for completeness.

The shape functions used in this thesis are tensor products of Legendre polyno-

mials (although the implementation used does not depend on this choice of shape

functions). That is, the shape functions can be written in the form

(, 2, 3, 4, 5, 6) nl() n2 () X O)n 3 (3) X 'n 4(O4) X /)n5 (5) X n6 (•6) (A.1)

on the reference element. Here 4~, is the Legendre polynomial of order ni - that is

the order of the Legendre polynomial used in the it h dimension. Different values for

the various ni give rise to different shape functions.

Because the Legendre polynomials are defined on the range [-1, 1], we have defined

the shape functions on a reference element; the range of (i in our reference element is

defined as [-1, 1]. We can introduce a mapping between an element in our mesh and

this reference element. For the particular case of rectangular elements (as used in

this thesis), this mapping will be linear, and one can map (x, y, z, c y,, c,) onto ((1,

ý2, ý3, ý4 ,•5, &6) respectively. For example, if the value for x in a particular element



ranged from Xmin to Xmax, we would have the mapping

1 2 Xmin - 1 (A.2)
Xmax - Xmin

Of course, in the general case this mapping is not so simple and one can not typically

map each dimension in phase space onto a single coordinate (i.

The Legendre polynomials are well known; the first few are

0o(0) = 1 (A.3a)

1M()-= - ý(A.3b)

2 1 (3(2 - 1) (A.3c)
2

3( = (5ý3 - 3() (A.3d)2

As tensor-product shape functions are used in the present work, a sum-factorization

technique [26] can be used to efficiently evaluate the sums arising from Gaussian

quadrature. However, in generating the random samples for the collision integral

(see section 5.1.1 or appendix B) we can not use this approach; thus it may be more

efficient to use a non-tensor product basis, as this could be constructed using fewer

shape functions.
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Appendix B

Generating collision samples for

DG collision integral

This sections describes how one can efficiently generate random samples from the dis-

tribution IfdI f2MB/xMB,d and If dllfIdl/Xd,d for use in evaluating the collision integral

(5.13). This implementation is used in the present work, however it is certainly not

the only possibility. Generating these random samples consumes a significant fraction

of the computational time; a more efficient algorithm would significantly improve the

overall computational cost of the DG implementation.

For simplicity, this algorithm assumes that we are computing the collision integral

for a set of cells with the same extent in physical space that, as a set, span velocity

space. We also assume that fMB is only a function of velocity.

We will use a combination of the alias method [13], which is a method for generat-

ing points from a discrete distribution in constant time (with a linear setup time), and

the acceptance-rejection method [32] to correctly generate points from our continuous

probability distribution'. We use the alias method to generate samples from a func-

tion that bounds our desired distribution from above, and then perform acceptance-

rejection on these samples to obtain the correct distribution.

'A more efficient algorithm for this process could lead to a significant improvement of the overall
speed of the code.
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We begin with the distribution If'If 2/MBXMB,d, where

XMB,d = 47 (J f2MBd3c2) f IfdId3c d3x (B.1)

1. We first generate an upper bound for Ifdl in each element; let us denote this

by fd ak where k indexes the element. As we use tensor products of Legendre

polynomials, each shape function has a maximum magnitude of 1, so fam,k

-i I(fd) kl is an upper bound. (In general, a tighter upper bound would be

preferable.)

2. Loop:

(a) We then use the alias method[13] to randomly pick a cell with a probability

proportional to Ckfmax,k where Ck is the volume of the cell k in velocity

space.

(b) A random point in phase space {x, cl } within the cell k is chosen using a

uniform probability distribution

(c) This point is either accepted with a probability Ifd(x, cl) I/fdaxk or re-

jected and a new cell is chosen and the process repeats.

3. Generate three Gaussian random numbers to find cl [32].

4. Generate O on the unit sphere [2].
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The distribution IfI If2dl/Xd,d is slightly more complex because both fd and fd have

a dependence on x.

1. We use the same upper bound for 1fdJ in each element as in the previous algo-

rithm.

2. Loop:

(a) We then use the alias method to randomly pick a two cells independently

with a probability Ckfmax,k. Let us denote the indices of the two cells

selected by kI and k2.

(b) The vector {x, c1 , c2 } is chosen from a uniform distribution such that cl

is in cell k1, c2 is in cell k2 and x is in both cell kl and cell k2 (recall that

we have assumed that all cells have the same spatial extent).

(c) This (entire vector) {x, cl, c2} is accepted with a probability Ifd(x, Cl)l/fdax,ki X

Ifd(x, c2) I/fmdax,k2 or (the entire vector is) rejected and a new pair of cells

is chosen and the process repeats.

3. Generate E on the unit sphere.
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