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Abstract

In this thesis three algorithms for the estimation of parameters which occur nonlin-
early in dynamic systems are presented. The first algorithm pertains to systems in
discrete-time regression form. It is shown that the task of finding an update law for
the parameter estimates can be solved numerically by the formulation of a quadratic
programming problem. The algorithm does not depend on analytical knowledge of
the regressor function. In particular, a neural system model can be used to approx-
imate the required regression form for systems which cannot easily be transformed
into this form analytically. The second algorithm makes use of model-based param-
eterizations. It is shown that if some of the system parameters occur linearly, or
enter the model multiplicatively, an update law for these parameters can be found
analytically. The third algorithm makes use of convex properties of the regression
function and applies to a class of continuous-time systems. It is demonstrated how
the algorithms can be modified to make them robust in the presence of a bounded
disturbance. The performance of the algorithms and the nature of the parameter
convergence are illustrated in simulations of a magnetic bearing system and a low
velocity friction model.
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Chapter 1

Introduction

1.1 Motivation

In many problems concerned with identification and prediction in complex engineer-

ing systems, models that capture the dominant system behavior are available. These

models can be derived using physical laws such as conservation equations or constitu-

tive relations and the constants which characterize the behavior of these differential

equations have a physical meaning. In a large number of applications, including mag-

netic bearing systems, low velocity friction compensation, pH control and fermenta-

tion and combustion processes, some of the parameters enter the model nonlinearly.

Due to changes in the operating conditions and variations in the system character-

istics, there is uncertainty associated with these parameters. However, no general

analytical solution is available for the identification of parameters which occur non-

linearly in dynamic systems. In order to achieve analytical tractability, the original

system model is usually replaced by a linear black-box model. An extensive theory

has been developed for the estimation of the parameters of these models [11, 7] and

the wast majority of publications in the system identification literature are concerned

with these algorithms and their statistical properties. Although linear model struc-

tures work well for many applications, they limit the ability of the model to replicate

the actual physical characteristics of the process, since these often exhibit nonlinear

features. As a result, the model will only be valid for a limited range of operating



conditions.

1.2 Previous Work

Recently, considerable attention has been given to the development of nonlinear black-

box models for system identification. In particular, approaches based on neural net-

works have been investigated by a number of researchers, for example [13, 18, 19].

An attractive feature of these computational structures is that they are universal

approximators which can model any continuous function to any desirable degree of

accuracy [8, 151. The neural network architecture usually includes a large number of

parameters, some of which occur nonlinearly while others might occur linearly. These

parameters are estimated based on input/output data from the nonlinear function to

be approximated. The neural network is most efficient as a function approximator if

the parameters entering its architecture nonlinearly are adjusted. For example, multi-

layered neural networks with sigmoidal activation functions achieve an integrated

squared error of order -, where n is the number of nodes [3]. Thus the approximat-

ing error of the multi-layered network is independent of the input dimension of the

function to be approximated, which is a desirable property. The parameters of the

neural network can be estimated off-line with a nonlinear optimization method such as

the backpropagation technique or the Gauss-Newton algorithm. The resulting model

must then be validated to ensure that the optimization problem has not converged

to a local minimum. If only the neural network parameters occurring linearly are

adjusted, the approximating capabilities of the neural network are somewhat deterio-

rated and the integrated square approximation error of the neural network cannot be
2

made smaller than order () d, where n is the number of basis functions and d is the

input dimension of the nonlinear function being approximated [3]. Thus, in general,

such a network will consist of more basis functions and parameters. When the sys-

tem identification is to be performed on-line, this has proven a useful tradeoff for the

sake of analytical tractability, since in this case standard results from the adaptive

control literature can be used in the stability analysis. Results obtained with these



approaches indicate that when little prior information is available about the under-

lying system, they can lead to significant improvement. However, when a nonlinear

system model is available, the problem of estimating a few parameters which occur

nonlinearly in the original physical model is converted to the estimation of a large

number of parameters of the neural network. For on-line identification, this tradeoff

is questionable, since the estimation of a large number of parameters results in poor

transient performance and nonuniquness problems. Furthermore, the neural model

provides little insight into the structure and dynamics of the actual system since the

parameters of the network have no physical meaning.

In [1, 2] two novel, model-based uses of neural networks for system identification

tasks are proposed. In the first approach, which is referred to as the block estima-

tion method, the neural network is trained to learn the implicit function between

the system variables and the values of the physical parameters, 0, associated with

the system. The second approach is a recursive estimation method where the neu-

ral network updates the parameter estimates on-line based on new samples of the

system response. To distinguish these neural networks from those identifying the sys-

tem input-output characteristics, they are referred to as 0-adaptive neural networks

(TANN), since they adapt to the system parameters, 0. The training of the neural

network is performed off-line, so that the parameter estimates of the system model

can be obtained at each time instance by evaluating the neural network. As a result,

fewer parameters are estimated on-line, which results in better transient performance.

The resulting system model will be compact and the estimated parameters will have a

physical interpretation. This is desirable since many powerful control techniques exist

for nonlinear systems whose parameters are known [9, 21]. Furthermore, estimates of

the physical parameters of a process contain valuable information for tasks such as

fault detection and diagnosis.

Since, in general, it is not possible to derive analytical update laws for the esti-

mates of parameters which occur nonlinearly in dynamic systems, the neural network

in the recursive algorithm in [1, 2] has no direct target which can be used in its

training. Instead, the amount by which it is desired to decrease the squared norm of



the parameter estimation error is used as a distal target. The weights of the neural

network are adjusted by backpropagating the difference between the desired and the

actual decrease in the parameter error using the training with a distal teacher proce-

dure [10]. This is inherently a nonlinear optimization problem even if only the linear

weights of the neural network are adjusted. Furthermore, the neural network has to

be trained for variations in all the system variables and grows exponentially in size

when the number of variables is increased.

1.3 Contribution of the Thesis

In this thesis it is shown that the task of finding an update law for the estimates of

parameters which occur nonlinearly in dynamic systems can be solved numerically

by the formulation of a quadratic programming problem. If a model in discrete-

time regression form is available or a simulation model can be used on-line, then

this optimization problem can be solved on-line to yield a parameter update law at

each sampling instance. Analytical update laws are derived for parameters which

enter the regression equation linearly and parameters which multiply a nonlinear

function which depends on unknown parameters. Therefore the dimension of the

quadratic programming problem only depends on the number of parameters occurring

nonlinearly. This greatly reduces the computational resources needed to implement

the algorithm. If it is difficult to transform the system model into regression form, or if

a simulation model is only available off-line, a neural system model can be constructed

to approximate the unknown regression function. This neural network can then be

used as a system model in the algorithm. The algorithm is then applicable to a

large class of nonlinear systems. A modification to the estimation laws is presented

which guarantees the stability of the algorithms in the presence of a bounded additive

disturbance. The capabilities of the algorithms are demonstrated through simulation

results for a magnetic bearing system and a low velocity friction model.



1.4 Notation

In order to enhance readability the following notation will be adhered to throughout

the paper. The estimate of a quantity x will be denoted by i and the estimation error

of x will be denoted by 2, where 2 = i - x. The change in x between time t - 1 and

t is given by Axt = xt - xt-1. A function of several variables which are themselves

functions of time is denoted as ft if its arguments are evaluated at time t and possibly

at past instants t - 1, t - 2, .... For example, f(xt-1, yt-2) will be denoted as ft-1

and so on. ft corresponds to an estimate of ft with all of its arguments that are not

measurable replaced by their estimates.

1.5 Organization of the Thesis

The thesis is organized as follows. In Chapter 2 an algorithm for the estimation of

parameters occurring nonlinearly in dynamic systems is presented with a stability

proof. A modified version of this algorithm, which takes into account model based

parameterizations is given in Chapter 3. In Chapter 4 a continuous-time algorithm

is developed for systems where only one parameter occurs nonlinearly. The Thesis is

summarized in Chapter 5.



Chapter 2

A Recursive Parameter

Estimation Algorithm

2.1 Introduction

In this chapter we are concerned with dynamic systems which can be represented in

the regression form

Yt f(Ot-1, 9), (2.1)

where yt is the output of the system at time t, Ot-1 represents past values of the

measurable system signals and 0 is a vector of unknown system parameters. It is

assumed that f is sufficiently smooth and that 0 lies in the known, n dimensional box

E) defined by

E) = { 1 Oimi n _ Oi, < Oimax i 1, ,

where 90 is the ith component of 0. The task is to estimate 0. In particular, the

focus is on systems where f is a nonlinear function of the parameter vector 0, since

in this case few analytical tools are available for the identification of the parameter

vector. Under some standard assumptions on the system functions and the input, a

large number of models can be transformed into the form of Eq. (2.1) [2].

In Section 2.2 an algorithm is presented which applies when f is either known

analytically or a simulation model of the system is available on-line. In many cases,



it is difficult to find the transformation from a given model structure to the regression

form. Section 2.4 outlines how the existing system model can be used to train a

neural network to approximate f in Eq. (2.1). The neural model can then be used in

conjunction with the algorithm in Section 2.2 to estimate 0. In particular, the method

is applicable to nonlinear continuous-time and discrete-time state space models when

the state variables are not accessible. The algorithm also applies when a simulation

model of the system is only available off-line.

2.2 The Algorithm

In this section it is assumed that f is either known analytically or that a simulation

model is available such that, given kt and 0, Yt can be evaluated on-line. The recursive

estimation problem can be stated as follows. We want to find a function Ft such that

the algorithm

Ot = Ot-1 - Ft (2.2)

ensures that Ot -+ 0 as t -+ oc. If the system is linearly parameterized such that

Eq. (2.1) can be written as

Yt = f(Otl)TO,

then several algorithms are available for the estimation of 0 and conditions under

which accurate identification can be carried out are well known. The exact choice

of F depends on the criterion of best fit. If F is chosen so as to minimize the cost

function
1

J=- It- tl1 2,

2

subject to the constraint that i lies on the hyperplane

H = {0 : yt = f(¢t-1)T0},



then we obtain the well know projection algorithm (e.g. [6])

Ot = -t-1 - ktt-.ltf (t-1) (2.3)

where

ýt = f(0t-1)T- Yt

1
kt_ =

- + CT-1t-1

and A is a small positive constant.

If f in Eq. (2.1) is a nonlinear function of 0, then, in general, it is not possible to

find an analytical form for Ft. Therefor we propose to solve the problem numerically.

For this purpose, the following recursive algorithm is proposed to estimate 9

Ct = 9t-1 - ktdt, (2.4)

where

kt = d (2.5)

which represents a normalized version of Eq. (2.2). dt is a vector to be determined

numerically at each time instance t. A natural question to ask is under what con-

ditions there exists a vector dt which makes the parameter error decrease. This is

addressed in the following theorem.

Theorem 1 For the system in Eq. (2.1) and the parameter estimation algorithm

defined by Eqs. (2.4) and (2.5), a vector dt which guarantees that Otl - t_1| < 0 can

be found if and only if there exists a vector a and scalars b and c with e > 0, such that

a(Tt_l > b + - and aTO < b for all 0 in E which satisfy the equation yt = f (t- 1, 0).

Proof Let

Vt = 0oTt. (2.6)



The change in Vt is given by

V, Vt = vt- Vt -= t ýt - ýT_-1ft- I

If AVt < 0, then it follows that 10tl - 10t-1i < 0. After some algebraic manipulation

AVt can be expressed as

AV t = 2T [ t -9T t +,

where Ait = 0t - it-1. Substituting for A0t from Eq. (2.4) gives

Avt = -2ktdtt-_l + k drdt. (2.7)

By making use of the identity ktdTdt = 1, Eq. (2.7) can be written as

AVt = kt(-2dT t_1 + 1). (2.8)

Let Ly, be the level set

L,, = {0 e E I f (t-1, 9) = Yt}.

AVt is negative if and only if

d (it- L- 9) > (2.9)

for all 0 in L,,. If dt is chosen as

then
1 (b2cdt(Ot-1 ) = (• 1 - ) >2E +E-b) =

This establishes sufficiency. Necessity follows from the fact that if there exists no

vector a and scalars b and c with E > 0, such that aTO < b for all 0 in L,, and

(a __1 > b + e, then neither can a vector a and scalars b and e with e > 0 be found



such that

aT(ýtj - 9) > E.

If we choose a := dt and c = 2, then this contradicts Eq. (2.9). O

The theorem implies that a dt which makes the algorithm stable can only be found if

there exists two parallel hyperplanes which separate Ot-1 from all 0 in L,, by a finite

amount. This is illustrated in Figure 2.1. If 9t-1 is located anywhere in the shaded

region, then it is not possible to find a dt such that AVt < 0. We then set dt = 0 to

ensure such that AVt = 0.

01

Figure 2-1: Graphical illustration of Theorem 1.

The problem of determining an update law for the parameter estimates consists

of first determining the existence of a dt which makes AVt negative and then finding

such a dt. Since these tasks are difficult to solve analytically, we propose the following

numerical procedure for finding dt. Let 9i, i = 1, ... , n be the components of 0. For

each 0 in L,, we have n - 1 degrees of freedom in choosing the components of 8. For

each i, i 0 j, divide 9i into q equally spaced intervals between 9imin and ima. and

form all possible qn"- combination of these components. The jth component of 0 is

then specified implicitly by Eq. (2.1). Since j can be any integer between 1 and n, it

02
" `i



is often possible to pick j such that 90 can be solved for explicitly as

9j = g(yt, t-i_, 01, ... , I 3-l, 0+i, *..., I ,)

If this is not possible, or if the system model is not available in analytical form, then,

assuming that f can be evaluated at different values of 0, Oj can be found using a

one-dimensional root finding algorithm, in which case the index j should be chosen

such that
df((t- 1, 8) #oaoj (2.10)

for all 0 in O. Then Oj is unique and the bisection method is guaranteed to find the

solution with a linear convergence rate [17]. If 0j does not satisfy Eq. (2.10), then

there might exist multiple solutions. If these roots are bracketed appropriately, the

bisection method will still find them. We now have q"-i samples of 0 which lie in Ly,.

Denote these by 91, ... , OR , where R = qn-1 and let T be the set defined by

T= U 0'.
1<r<R

(2.11)

If we define

t-1= •t- -r

and let
d1T

t-1l

At ,

~RT
t-1

then the constraint; given by Eq. (2.9), a

expressed as

is al

2

and bt = , (2.12)

pplied to o', r = 1,..., R, can be compactly

Atdt > bt, (2.13)

which represents a set of linear inequality constraints. Eq. (2.13) can have infinitely



many solutions. Of these we wish to choose the one which minimizes the cost function

J = d dt, (2.14)

since the magnitude of at, is proportional to . The task of minimizing the cost

function given by Eq. (2.14) subject to the constraints in Eq. (2.13) is a quadratic

programming problem. It can be solved efficiently with a modified version of the well

known simplex procedure for linear programming and is guaranteed to either find

the optimal solution in a finite number of iterations or to detect that the problem

is overconstrained [5, 22]. An overconstrained problem corresponds to a 9t-i in the

shaded region in Figure 2.1, which implies that there exists no two parallel hyperplanes

which separate 6t--1 from all 0 in L,, by a finite amount. If no feasible solution exists,

dt is set to zero such that Ot = Ot-1, which ensures stability. Computer code for

solving the quadratic programming problem is available in the Optimization Toolbox

in MATLAB.

If 0 is in T, the above procedure provides a stable algorithm for estimating 0.

However, for a real system, the probability of 0 being in T is zero. For this reason we

wish to modify the algorithm such that the nonincreasing property of the parameter

error is guaranteed for those 0 in L,, but not in T. How this can be done is described

in the following theorem.

Theorem 2 Let v be a positive constant. If Idtl < v and

1
dt((t_1 - ') ~r -+ D (2.15)

for all 0' in T, where

D= sup (mm 10- 0oi, (2.16)
06ELYt 1<j<R

then
1- e) > 1

-2

for all 0 in Ly.



Proof Choose any 0 in Ly. From Eq. (2.16) it follows that there exists a 0' in T

such that 1( - 0r < D. Eq. (2.15) then gives

d~T(ot_ - ~') - vD > -
-2

Since IdtI < v and 9 - 0r( < D, we can rewrite this as

d (0t_1 - o8 ) - Idt[e0 - 0r  . (2.17)
-2

From the triangle inequality it follows that IdtlI 9 - r' dT(9 - or). Substituting this

into Eq. (2.17) gives
1dT( A, - 0) > -.
2

A potential problem with the algorithm in Eqs. (2.4) and (2.5) is the possibility

of division by zero when dt is zero. This can be avoided by adding a small positive

constant, A, to the denominator of kt. Furthermore, for some systems, the convergence

rate for the different parameters can differ considerably. One way to solve this problem

is to include adaptation gains in the parameter update laws. It is readily verified that

these two modifications do not change the stability properties of the algorithm.

We are now ready to present a modified version of the parameter estimation

algorithm as follows

Ot = 9 t-1 - ktFdt,

where
1

kt =
A + dT Fdt'

A is a small positive constant, F is a diagonal matrix of positive adaptation gains and



dt is given by the solution of the quadratic programming problem

minimize dTd t

(2.18)

subject to Atdt > bt,

where
1T

1t-

At= ,

-RT
t-1

01, ... , OR are the elements of the set

+ vD

and bt =

+ vD

T as given by Eq. (2.11), v > 0 and

D= sup (min 10 - O).

dt is defined to be zero if no feasible solution vector exists or if the solution vector

does not satisfy

ldtl < v.

Since we know that 0 lies in O it is reasonable to restrict Ot to lie in E as well.

This can be done by implementing a parameter projection as discussed in [7]. If this

is done, Vt in Eq. (2.6) will retain its non-increasing property. In fact, the convergence

properties of the algorithm will be improved by restricting Ot to the compact set in

which it is known that 0 lies. The modified version of Eq. (2.4) for the ith component

would be

Oimin

it = Oimax

9i,-1 - ktdi,

if 9i - ktdit < imin

if Bi,-1 - k tdi, Oimax

otherwise.

If sufficient computational power to solve the optimization problem in Eq. (2.18)

at each time instance is not available, then it is possible to let the computation run

for a number of sampling periods and set dt equal to zero during this time. When

the computation has been performed the parameter estimates can be updated and

a new set of samples collected. The nonincreasing property of Vt will be retained,

(2.19)



but the rate of convergence will be slower than if the parameter estimates were up-

dated at each time instance. However, this approach allows the on-line estimation of

the parameters with reasonable computational resources while using a large enough

sampling rate such that the model remains an accurate description of the system.

2.3 Robustness to a Bounded Disturbance

The algorithm described in Section 2.2 was developed based on the assumption of

a perfect system model. This assumption rarely holds in practice, because of the

inevitable presence of uncertainty due to disturbances, modeling errors and measure-

ment noise. An approach to modeling these error terms is in the form of an additive

disturbance signal, wt. Eq. (2.1) then takes on the form

Yt = f(Ot-1, 9) + wt. (2.20)

If the algorithm described in Section 2.2 is used to estimate 0, then the presence of

wt could cause instability. In particular, we can no longer guarantee that AVt < 0.

The objective of this section is to modify the algorithm such that Vt retains its

nonincreasing property in the presence of wt. It is assumed that there exists a known

positive constant Q such that

sup IwtI < 2.

Furthermore, it is assumed that the parameter projection as given by Eq. (2.19) has

been implemented such that 0 e O. In Section 2.2 we made use of the fact that if the

true system is given by

Yt = f(Ot- , 9),

then it is known that 0 lies in the level set

LY, = {0 E 0 I f(Ot-_, 9) = Yt}.



This was illustrated in Figure 2.1. However, when wt is present as in Eq. (2.20), 0 is

no longer restricted to L,,, but can lie anywhere in the compact set 0, defined by

O, = {0 E E I f (t-1, 9) = Yt + w, Iw < }.

This is illustrated in Figure 2.3. It is clear that when IYt < Q, it is not possible to

find a dt which guarantees that AVt < 0 since 9 t-1 then lies in E, and we could have

Ot-i = 0. Therefore we set dt = 0 when I9t1 < -.

Given yt and t-_1, 0 could lie anywhere in O,. Therefore, one way to robustify

the algorithm of Section 2.2 in the presence of wt is to let T in Eq. (2.11) be made up

of samples of the entire set E, instead of samples of Ly,. EO is of a larger dimension

than L,, and, as a result, T would be considerably larger. The following theorem

shows that in order to derive a stable update law, it is only necessary that T consists

of samples of the the level set

La = {0 E E I f(Ot-1, 9) = Yt + sgn(&t)1}.

Thus the size of T need not be larger than in the case where no disturbance is present.

Theorem 2 For the system in Eq. (2.20), if IItl > Q and if a dt in Eq (2.4) is such

that AVt < 0 for for all 0 in LQ, then AV, < 0 for all 0 E O,.

Proof Choose any 0 = 98 E 0,, then 0, lies on the level set

L, = {0 E E I f (t-1, 8) = yt + w},

for some w, IwI < Q. Ot-1 lies on the level set

Lt, = {0 e E I f(tl-, 9) = 0)},

where it = f(¢t-1, Ot-,). Since Iwl < Q and &t - ytl > Q,

sgn(yt)(yt + w) < sgn(yt)y t + Q < sgn(&t)&t,



LQ lies between L, and L,. This combined with the convexity of E ensures that

a line segment between 0, on L, and 0t-1 on Lgý must intersect LQ in at least one

point. Let On be one such point. Then

(2.21)

for some c < 1. In Theorem 1 it was established that if 0 = Ow, then AVt < 0 if and

only if

dT(0,_, - O) >

By substituting for (Ot-1 - qn) from Eq (2.21) we have

1 1
d(t-1- 0 2) > - > -2c 2

and thus AVt < 0 for an arbitrary 0, in O,.

00

-.- I

01

Figure 2-2: Graphical illustration of Theorem 2.

A similar technique to that described in Section 2.2 can be used to discritize

La into R approximately equally spaced points. We can then form At and bt as in

m

Ot-i - Oan = c(Ot-_ - 0W, )

E)~

LOz



Eq. (2.12) and obtain dt by solving the quadratic programming problem in Eq. (2.18).

If a solution exists, then we are guaranteed that the resulting dt will cause Vt to

decrease.

2.4 Using a Neural System Model

A large class of nonlinear systems can be represented by the model

i= fc(x,, Ut, 9)
(2.22)

Yt = hc(x,, Ut, 0)

in continuous-time or
xt = fd(xt-1, Ut-1, 9)

(2.23)
Yt = hd(xt-l, ut-1, 6)

in discrete-time, where ut is the input, xt is the system state, yt is the output and 0

is a vector of system parameters. The parameter estimation algorithm developed in

the previous section requires the system model to be in the regression form

Yt = f(Ot-1, 9), (2.24)

such that yt can be evaluated based on the parameter vector 0 and Ot-1, which repre-

sents a vector of past values of the measurable system signals. The models given by

Eqs. (2.22) and (2.23) in general do not satisfy this condition if the state variables are

not accessible. However, under some standard assumptions on the system functions

and the input, the models given by Eqs. (2.22) and (2.23) can be transformed into the

form of Eq. (2.24) [2]. If this transformation can be found analytically, the algorithm

outlined in the previous section is applicable. In practice, this is often difficult. A

neural model can then be used to generate yt for desired values of kt-1 and 0. This

procedure is also applicable if a simulation model of the system is available off-line,

or if the parameters of the system can be determined in controlled experiments on



the real system or a pilot plant, using extra sensors and measuring equipment. The

off-line model or the experimental data can then be used to train the neural system

model. This scenario is feasible in the aircraft industry, where tables of aerodynamic

parameters and stability and control derivatives are created from wind tunnel exper-

iments and flight tests using physically based aircraft models and calculations based

on the structure and shape of the aircraft [16]. The input-output structure of the

neural network is depicted graphically in Figure 2.4.

Ot-1

0

Figure 2-3: Input-output structure of the neural system model.

For the training of the neural network it is assumed that f is sufficiently smooth

and that ¢t-1 E 14 C RP, yt e T C R and 0 E E C R n , where 4I and T are known

compact sets and E is a n dimensional box. It will also be assumed that the neural

network satisfies the property of a "universal approximator" [8].

In order to train the neural network it is necessary to form a training set. This

can be done as follows. Set 0 = 01 E O and measure the corresponding q and y for

a number of samples and variations in the system input. Let these measurements be

denoted 01, ,..., O and yl, ,..., y respectively. A typical set of data can then be

formed as

Ti= {(yl, o4, 91) 11 i <p}

By repeating this procedure for other values of 0 in E the data sets T2, ... , Tq can

be formed corresponding to 2, ... , q respectively. The complete training set is then

I

Yt

I



given by

Ttrain = U Tj.

The neural network can now be trained using qi and 9j as inputs and yJ as the

corresponding target. If a multi-layered neural network is used, a testing set, Ttest,

should also be formed for cross validation during training.

Because the neural network can only approximate the regression function f, there

will be an approximation error associated with the neural model. As long as an upper

bound on the magnitude of this error is available, the modified algorithm presented

in the previous section can be used ensure the stability of the estimator by treating

the approximation error as a bounded disturbance.



Chapter 3

Partially Linear Systems

3.1 Introduction

In this section, we consider the dynamic system

Yt = of(qti, 0) + d~Pa, (3.1)

where Yt is the output of the system at time t, Ot-1 and yct- represent past values of

measurable inputs and the output. a is an unknown scalar and 8 and a are vectors of

unknown system parameters in R' and R m respectively. It is assumed that f (t-1, 0)

is sufficiently smooth and that 0 lies in the known, compact set E. Furthermore, the

sign of a and an upper bound on its magnitude, .max, must be known. Without

loss of generality, a will be assumed to be positive. The task is to estimate a, 8 and

a. This can be done by direct application of the algorithm presented in the previous

section. However, this would result in a quadratic programming problem of dimension

n + m + 1 with n + m constraints. Instead, it would be desirable to exploit the fact

that the subsystem yotla is linear and that a multiplies f (t-1, 9) to reduce the

complexity of the optimization problem.



3.2 The Algorithm

The prediction error for the system in Eq. (3.1) is given by

T ~
t t-1ft-i - aft-i + t-t-,

where ft-1 = f(Qt-1, 0) and ft-1 = f(Ot-1, Ot-1). After some algebraic manipulation

't can be expressed as

~t = t-1ft-i + (ft-1 - ft-1) + •1•it-1. (3.2)

Based on this error model the following parameter estimation algorithm is proposed

t = &Ot-1 - kt]tPýfot-i (3.3)

Ot = t-_1 - ktitpFrod (3.4)

=t = it-1 - ktytpPot-1 (3.5)

where

kt = 1 (3.6)
A + ,af2_-1 + amdTI dt + T t1

y, is a positive adaptation gain and Fe and F. are diagonal matrices of positive

adaptation gains. A is a small positive constant and dt is a vector to be determined.

p is a scalar supplied by the user. It is bounded by 0 < p < 1 and will be discussed

in more detail later.

As in the previous section we define a positive definite function of the parameter

errors

Vt = 7- T 1 T ±a-12 + aOT10t -'- 1•t.

Using the identity

AVt = 2(A--~ &ttt- + UA9Tr-ltt- + Za&T r it_)

+ (y-1i&t)2 + a'ATr A +1 a&TF-1A6t



and the fact that kt(fy-li + adT -1 dt + (p rFyt) < 1, the change in Vt can be

bounded by

AVt < ktp2(-2tp-l[t-_l l t- + d + t- + 2).

Thus if there exists a vector dt which satisfies the inequality

sgn(ýt)(ft_•& + adTt_l- + WTdtt) > Pljht, (3.7)

then A/V < -ktp 2  <5 O0. Eq. (3.2) can be rewritten as

+= -
t-1i + t-it-i ut -a(f - ft-1,

Using this in Eq. (3.7) gives

sgn(~t)d[Tt- 1 > sgn(yt)(ft-1 - ft-1) - P 1l. (3.8)
Omax

Since we cannot solve for dt analytically, we will again develop a numerical procedure

for determining dt. In the previous section, Eq. (2.1) restricted 0 to lie on the level

set, Ly,. In Eq. (3.1), since a and a are unknown, 0 can lie anywhere in e. Thus we

now have n degrees of freedom in choosing the n components of 0. The set T can

therefore be formed as follows. Divide each component of 0, 9i, into q equally spaced

points between limin and Oimax to obtain 01, ... , 0q Use these to form all possible

combinations of the vector 0 and denote these as 01, ..., 0 R , with R = qn. Then T

is defined by

T= U 8.
1<r<R

Eq. (3.8) has to be satisfied for all 0' in T. Note that as in the previous section,

we are somewhat conservative, since for stability we only need l-t I on the right hand

side of Eq. (3.7). This is to ensure that AVt < 0 for those 0 in O but not in T.



Let 9r = Ot- - o'. If we define the vector

at, = sgn(gt)r_1 (3.9)

and the scalar

bt, = sgn(~t)(ft - ft-1) - (1 - p)l l

and let

aT bt,

At = bt = (3.10)

then the smallest dt which satisfies the constraints given by Eq. (3.8) for all o8 can

be found by solving the quadratic programming problem.

minimize dTdt

(3.11)

subject to Atdt > bt.

Thus we have reduced a n + m + 1 dimensional optimization problem with qn+m

constraints to a n dimensional problem with q" constraints. Clearly, if m is large the

saving in computation time will be dramatic.

The role of p is clear from Eq. (3.8). If p = 1, then Eq. (3.8) reduces to

sgn(~t)d[6t-1 > sgn(t)(ft-1 - ft-_). Since 0 is a linear function of dOt_-1 and a

nonlinear function of ft-1 - ft-1, in general, there exists no dt which satisfies this in-

equality for all 0 in 6. However, as p decreases, the constraints become less stringent

and a dt might exist. However, since the bound on the change in Vt for all 0 = 0',

r = 1, ... , R is AV -ktp 2 t, the smaller p is, the smaller the decrease in Vt will

be. Thus there exists a tradeoff between how often Vt is decreased and by how much

is decreased each time.

If the model under consideration does not have a parameter which appears mul-

tiplicatively like u or a linear subsystem like oT_ a, then the algorithm can easily be

modified to accommodate for this. If both cr and T_ ia are removed the algorithm



reduces to that presented in the chapter 2. However, as long as at least one parameter

enters the regression model in the form of a or a, we do not need to or find points

on the level surface defined Eq. (2.1), since 0 can be anywhere in 9. In general, it is

advisable to exploit any type of special structure of the system model to simplify the

identification problem. Additional examples are presented in section 3.3 and chapter

4.

3.3 When 0 is a Scalar

This section is concerned with the case where 0 in Eq. (3.1) is a scalar. For simplicity,

a will be assumed to be known, but the algorithm can easily be modified if this is

not the case. Eq. (3.1) then reduces to

yt = f(¢t-1, 0) + +tTla.

Again it is assumed that f is sufficiently smooth and that 0 lies in the known, compact

set O defined by min •< 0 < Omax. For this system, Eqs. (3.3) through (3.6) reduce to

Ot = Ot-1 - kt~tpdt

where
1

A + dt + p_ lPt- 1

p plays the same role as in the previous section and dt should be chosen so as to

ensure the stability of the algorithm. This is discussed below.

Let

vUsing a similar procedure as in the previous section the following condition for the

Using a similar procedure as in the previous section the following condition for the



stability of the algorithm can be obtained

sgn(ýt)dtdt- 1 > sgn(yt)(ft-1 - ft-1) - (1 - p)hltl,

which is equivalent to

1
sgn(ýhtt-1)dt _ [sgn(yt)(ft-1 - ft-1) - (1 - p) |tl].

Let T be the set 01, ... , Oq obtained by dividing O into q equally spaced points

between Omin and Omax such that 'r $ Ot-1 for r = 1, ... , q. Let T + be the subset

of T consisting of all 0r such that &tft-_ > 0 and let T- be the subset consisting of

those 0r satisfying &tBt-1 < 0. Furthermore, let

dmin = max
Or ET + ft-1) - (1 - P)Nt]

and

dmax = min ET- [(f - ft-1)- (1 -P)Yt])

then Eq. (3.12) can be compactly expressed as

dmin < d < dmax.

If dmin > dmax, then the problem is overconstrained and we set dt = 0 to ensure

stability. Otherwise, the dt which minimizes d 2 is given by

d = dmin if Idminl • Idmaxl

dmax otherwise.

3.4 Robustness to a Bounded Disturbance

Consider the regression equation

Yt = Uof(kt- 1 , 9) + pý_Ita + Wt,

(3.12)

1
o- [(t-i -( 1t-1



where Wt is a disturbance bounded by Q as before. Is is assumed that 'min < o <

Umax, where 'min and Umax are known positive constants. The update laws for the

parameter estimates are given by Eqs. (3.3) through (3.5) as before. However, the

prediction error is now given by

at = t-ft-1 + a(ft-i - ft-1) + T lodt-1l - wt.

Thus the condition for the stability of the algorithm becomes

sgn(ýt)ad 9t- 1 Ž sgn(yt)[u(ft-1 - ft-1) - wt] - (1 - p)lytl,

which can be expressed as

sgn(ýh)d[ft_l > sgn(ht)(ft-. - ft-1) + (1 -p), I + sgn(ýt),

where

amin if (1 - p) It + sgn (y) > 0Smax otherwise.

If we let at, be defined as in Eq. (3.9) and let

(1 - p) (tI + sgn(jt)R
bt, = sgn(yt)(ft-x - ft-1) +

with At and bt as defined by Eq. (3.10), then dt can be obtained by solving the

optimization problem given by Eq. (3.11). If this problem has a feasible solution, then

the resulting dt is guaranteed make AVt negative. Thus algorithm can be modified

to ensure stability in the presence a bounded disturbance.



Chapter 4

A Continuous-time Algorithm

4.1 Introduction

In the algorithms developed for discrete-time regression models in the previous sec-

tions, AZO is obtained at each sample time by the solution of a quadratic programming

problem. In general it is difficult to extend these algorithms to continous-time since in

this case 8t must be available at all time and not just at discrete instances. However,

in Section 3.3 it was shown that when 0 is a scalar, the task of finding a parameter

update law is simplified substantially. In Section 4.2 this algorithm is extended to the

continous-time case. It is shown that the task of finding a parameter update law can

be formulated as a linear programming problem to be solved on line. To simplify the

computational burden a modified algorithm is presented where the parameter update

law is found by solving a one-dimensional least squares problem. In [14] it was shown

how the convexity of f can be utilized to derive an adaptive controller capable of

stabilizing a nonlinear system. This controller is however not capable of tracking a

reference input or identifying the parameters with a general input signal. In Section

4.3 it is shown that if all parameters except one occur linearly, and the regression

function f is convex or concave as a function of the nonlinear parameter, then the

parameter update laws can be derived analytically.



4.2 The General Case

4.2.1 The Algorithm

Consider the system

yt - uf (t, 0) + Ta, (4.1)

where yt is system state and ¢t-1 and pt-j represent known functions of the yt and

the inputs. a and 0 are unknown scalars and a is a vector of unknown system

parameters in Rm . It is assumed that f is sufficiently smooth and that 0 lies in the

known, compact set 9 defined by Omin • 0 <_ max. Furthermore, the sign of a and

an upper bound on its magnitude, amax, are known. Without loss of generality, a will

be assumed to be positive. The task is to estimate a, 0 and a.

Consider the estimator model

Yt = -ao YEt - at sat(-) ±+ 5tf(t, t) + P at,

where it = Yt - Yt,

yt, = st - csat("!) (4.2)

and e is a small positive constant. The relationship between Yt and &,t is shown

graphically in Figure 4.2.1. at is a positive function to be determined. The dynamics

of the prediction error is given by

Yt T -
t = -ao yEt - at sat(-) + &tft - rft + at, (4.3)

where ft = f(Ot, 0) and ft = f(Qt, 0). After some algebraic manipulation, Eq. (4.3)

can be written as

yt = -ao Y,t - at sat(-) + t + a(ft - ft) +t t.
E



Based on this expression for Yt the following estimator structure is proposed

Ot = EtYYft

St = -&Ehyodt

at = I, t

where y, > 0, yo > 0 are positive adaptation gains, P, is a diagonal matrix of positive

adaptation gains and dt is a scalar to be determined.

Figure 4-1: Relationship between yt and &,.

Let Vt be the positive definite function of & and the estimation errors given by

11(2 - -- -2 Trl&t )2 2 + -Y t + /Y U +

We pause here to make some comments regarding the estimator structure and the

choice of Vt. The form of the estimator and the adaptive laws resemble that used

in [12] in linear adaptive control with the addition of the term at sat(Y) where e

is a small positive constant. This term basically allows us to make the dynamics



of the estimator arbitrarily fast. The modification of ýt given by Eq. (4.2) closely

resembles the modification of the sliding mode error term st used in the adaptive

implementations of this algorithm [20]. As noted in [21], although the derivative of

n•t is discontinuous, the derivative of y,ý is continous with

1d 2

2dtW = YEtYt.
2 dt 

- -

In continous-time the requirement that AVt be less than or equal to zero is replaced

by the requirement that Vt be nonpositive. Vt is given by

= yty + y7 l tat + -Yý1cTo + c6t a at
-2 Yt) + ft ft t)

-ao Y + ••t[-at sat(-)± +- ( -f)

Thus Vt = 0 if Yt < e, and

V1 = -ao 2, + Yt [-at + a(ft - ft - dtet)]

when Yt > E. It follows that when Yt > E, Vt < 0 if

sgn(~,E)adtOt > sgn(,,)a(ft - ft) - at,

or, since Ua < Omax, Vt < 0 if

sgn(E,,)amaxdtdt + at 2 sgn(y,,) max(ft - ft). (4.4)

Let T be the set of q equally spaced points in 8, 01, ..., Oq. Then Eq. (4.4) must

be satisfied for each 0' in T. This leads to the following set of linear inequalities

Atxt ! bt, (4.5)



L at

sgn(&Et)UmaxO 11

At )

sgn(y,1)Umax tt

1

1

sgn(0,t)Umax(ft - fl)

and bt=

sgn(&ht)Umax(ft - ft 1)

In general there exists an infinite number of solution vectors which satisfy Eq. (4.5).

at is a measure of the time constant of the estimator. In general, it is not desirable

to have a very fast estimator since the parameter adaptation is driven by t,,. Thus

it is desirable to choose the solution vector which minimizes at. This leads to the

following linear programming problem

minimize at

subject to Atxt > bt.

If it is computationally too demanding to solve this problem on-line at each time

instance, then a suboptimal solution can be found by solving a one-dimensional least

squares problem. To do this, set at equal to zero in Eq. (4.5) and equate the two

sides. Let

sgn(y&t )OmaxOt 1

ht =--

sgn(&,,)Omax•tq

and bt =

sgn(9yt)max(ft - ft )

sgn(&et)Umax(ft - ft)

We then wish to find dt such that

htdt = bt.

where

and



This is an overconstrained problem. The least squares solution is given by

hTbt
t h= ht

at is then chosen as

at = Omax max[sgn(yt,)(bt - htdt)]

to ensure that Eq. (4.5) holds for all 0 in T. For both approaches it is necessary to

add a positive constant to at to ensure that Eq. (4.5) is satisfied for those 0 in Ly

but not in T.

4.2.2 Application to a Magnetic Bearing System 1

In this section the algorithm is applied to a magnetic bearing system. We consider

the thrust bearing in a turbo pump used to create a vacuum environment for semi-

conductor manufacturing. The relationship between the vertical displacement z and

the control current u is given by [23]

(io + 0.5ut) 2

(ho - Zt) 2
-K(io - 0.5ut)2

(ho + Zt) 2

K = 2 0A
4m

The numerical values of the parameters are given by

ho = 4.0 x 10- 4 m

n = 133 turns

A = 7.0 x 10- 4 m 2

io = 0.5 Amps

m = 2.2 kg

(nominal bearing gap)

(number of turns)

(pole face area)

(bias current)

(rotor mass)

1This example was prepared in collaboration with Dr. Ssu-Hsin Yu, Postdoctoral Fellow in the
Adaptive Control Laboratory at MIT.

where

(4.6)- g,



p0 = 1.26 x 10- 6 H/m (permeability of air)

The magnetic bearing system is open loop unstable. Therefore, a controller must

be used to stabilize it to allow for the parameters to be estimated. By multiplying

out Eq. (4.6) and completing squares the following feedback linearizing controller can

be derived

hI(2Kio)-l(g - c2z) if z = 0
ut (hoz) - Ii(h - zo) 2 + hoz(h - z) 2 (h + z)2(g - c2it - clzt + rt) -

io(hozt)- 1 (h2 - zo) otherwise

cl and c2 are positive constants which define the linearized dynamics and rt is the

reference input. In practice the parameters are unknown and only their estimates

can be used in the control law. However, since the focus here is on identification, the

nominal parameter values were used to avoid stability problems due to uncertainty

in the control law.

The algorithm in the previous section was derived for a first order system. Since

the state variables are accessible, we can construct a first order estimator model of

the magnetic bearing system by defining a velocity variable vt as

vt = zt.

The estimator is then given by

vt = -ao vEt - at sat(-t) + Ktf (ut, zt, hot) - g.

This leads to the error model

vt = -ao Et, - at sat(v-) + Ktf (ut, zt, hot) - Kf(ut, zt, ho),

which is in the form required by the algorithm. In order to speed up computation, the

least squares solution was used to find dt and at. rt was chosen as a random signal



with standard deviation 0.1. The estimates of K and ho are shown in Figures 4-

2 and 4-3. The system is highly nonlinear. For this reason it was found that the

parameter estimates depended substantially on the initial conditions used. As can

be seen in the Figures, the parameter estimates converge towards their true values,

but stop before they get there. This is because v,, goes to zero before the parameter

errors. If the linear programming solution to the update laws had been used, the

performance of the algorithm would most likely have been better.

4.3 When f is concave or convex in 0

4.3.1 The Algorithm

We consider here the same system as in Section 4.2, but with the additional assump-

tion that, for given 4t, f, satisfies the following condition

(A) V 0 E O, f (qt, 6) is either

(a) convex with respect to 0 or

(b) concave with respect to 0.

As we shall see, this allows us to derive analytical update laws for the parameter

estimates. In the subsequent discussion the terms convex and concave will refer to

the convexity and concavity of f with respect to 0.

We will make use of the same estimator model and adaptation laws as in the

previous section. Thus V is given by

Vt = -ao 9y + &, [-at sat( ) + a(ft - ft - dtt)]. (4.7)

We show below that time functions dt and at can be found such that Vt < 0

everywhere. We present our argument by considering three separate cases (a) Jlt1 <

E, (b) Yt > E and (c) Yt < -E. The arguments are outlined for the case where f is

convex in 0. How dt and at can be found when f is concave in 0 is mentioned at the

end of the section.

(a) If 9tl _< c, then 9t, = 0 and thus Vt = 0. Therefore stability is assured for any
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choice of dt and at.

(b) From Eq. (4.7) it can be seen that Vt < 0 if the following condition holds

sgn(E&t)adtft > sgn(9,,)a(ft - ft) - at,

or, since a _< max, Vt < 0 if

sgn(,t)dtfst > sgn(&,t)(ft - ft) - at (4.8)
Omax

Since Ot, f()t, 9) is convex in 0,

Of(it, 0) -ft.

This is a result of the fact that for a convex function, the tangent line to f(0t, 0)

at Ot always lies below the graph of f (t, 0). This is illustrated in Figure 4.4. Since

&t > e, 9,t > 0. Hence, if we choose

dt - and at= 0, (4.9)

then the inequality given by Eq. (4.8) is satisfied and hence Vt < 0.

(c) Since E,, < 0 in this case, the desired inequality becomes

dtet t (ft - ft) + a (4.10)
Umax

Ideally we would like to choose dt such that dtOt • ft - ft. In Figure 4.4, this corre-

sponds to a line through 9 with slope dt which is always above the graph of f (t, 0).

As can be seen from Figure 4.4, there exists no such dt. The best we can do is to

minimize the maximum distance by which the line is below the graph of f (t, 0). This

corresponds to choosing a dt which results in a minimum magnitude of at. This is

desirable since at represents a measure of the time constant of the estimator. If the

estimator is too fast, the parameter estimates will not have time to converge to their



true values before the &E, reaches zero. We can therefore pose the task of finding dt

and at as the following optimization problem

minimize at

(4.11)

subject to ct > dt(O - 8) + (ft - ft),

where
at

Ct -
Umax

The solution to this optimization problem is given by

ftmax - ftmin

0max - 0min

amax[(Ot - Omin)(f

This is established in the following theorem.

Theorem 3 The solution to the optimization problem in Eq. (4.11) is given by

Eqs. (4.12) and (4.13).

Proof Since f is convex in 0 and dtO is linear in 8,

dt(Ot - 9) + (ft - ft) (4.14)

is convex in 0. Therefore Eq. (4.14) takes on a maximum at either mrin or Omax or

both. The constraint in Eq. (4.11) can be thus be expressed as

ct > de(Or - 0min) + (fmin - ft)

ct Ž d(6 t- 9max) + (fmax - t)

(4.15)

(4.16)

These two inequalities can be converted to equalities by adding slack variables e1 > 0

max - It) - (Omax -

(0max - Omin)

t)(A - ftmin)]

(4.12)

(4.13)



and E2 > 0. This gives

ct= d(,- 0min) + (fmin - ft) + 61

ct = d=(Ot - 0max) + (fmax - ft) + 62

We now consider the three cases where a dt and ct have been found such that

Eqs. (4.15) and (4.16) are satisfied with (a) e1 > 0, 62 > 0, (b) E1 > 0, 62 = 0

and (c) E1 = 0, E2 > 0.

(a) Let d; = dt and choose cf = ct - max(qe, 62). Then Eqs. (4.15) and (4.16) are

satisfied by d* and c* < ct. Thus ct is not optimal.

(b) Choose

d* = ex
t Omax - Omin

and let

t - f(Omax - Ot-1)
Ct -max - 0 min

then

ct = d(Ot - min) + (fmin - ft) (4.17)

ct = d (O - max) (fmax) x - f). (4.18)

Thus Eqs. (4.15) and (4.16) are satisfied by d* and c* < ct. Therefore ct is not optimal,

since c* < ct.

(c) Let

d* 62
t Omax - Omin

and let
Ec 2 (t-1 - Omax)

C = Ct -
t 8max - 0mint

Then d* and c* satisfy Eqs. (4.17) and (4.18) and therefore also Eqs. (4.15) and (4.16).

It follows that ct is not optimal, since c* < ct.

Since ct is not optimal for case (a), (b) or (c), it must be optimal when e1 = 62 =

0. Thus Eqs. (4.17) and (4.18) hold. These equations represent two linear simulta-



neous equations in the two unknown variables dt and ct. The solution to Eqs. (4.17)

and (4.18) is given by Eqs. (4.12) and (4.13). EO

In order to complete the algorithm we need to specify dt and at when Yt 5 E. This

should preferably be done in such a way that dt and at are continous. We then obtain

the following algorithm

Estimator model:

Yt +y, = -ao yE, - at sat(-) + ±tf(¢t, O) +t c6z

where

a O amax[(Ot-omin)(ftmax-ft)-(Omax-0t)(ft-ftmin)]at -sat() (OmaxOmin)
e (0max -0min),~

if Pt > 0

otherwise.
(4.19)

Adaptation laws:

ot = -PEthrft

Ot = -t~-yedt

~t = -&troaPot

where

dt = {sat() axoe

-sat( ) fmax -fmin
f Omax-Omi

n

If f (Ot, 9) is instead concave in 0, then dt and at should be chosen as given by Eq. (4.9)

when yt < 0 and as given by Eqs. (4.12) and (4.13) when Pt > 0.

4.3.2 Application to a Low-velocity Friction Model

Friction often acts as a limiting factor for the performance of servo mechanisms de-

signed for high precision positioning and low velocity tracking tasks. The use of a

detailed friction model to predict and compensate for the effects of friction has the

if &t > 0

otherwise.
(4.20)
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Figure 4-4: If f is a convex function of 0, then the first order Taylor expansion around
0 underestimates f.

potential to improve the performance of these machines considerably. However, the

local nature of low velocity friction effects require these models to be nonlinearly

parameterized, which makes it difficult to use conventional techniques to estimate

the parameters associated with the models. In this section the algorithm described

above is used to estimate the parameters of the following steady-state friction model

from [4]
dvt s.)2

t= t - Fcsgn(vt) - (Fs - Fc)sgn(vt)e- ()2 (4.21)

where v is the angular velocity of the motor shaft, T is the input torque, Fc represents

the Coulomb friction, Fs stands for static friction and vs is the Stribeck parameter.

Considerable attention has been given to the estimation of parameters in models of

this type. In particularly, the term including the static and Stribeck friction parame-

ters has been studied extensively since these parameters enter the model nonlinearly

and therefore are difficult to estimate. Figure 4.3.2 shows a plot of the friction force as

a function of velocity and illustrates the role of the friction coefficients. For simplicity

the inertia of the load and the viscous friction coefficient have not been included in

the model. If desired, these parameters can be included and estimated in a straight



forward manner since they enter the model linearly.

F

FS

-N

kvs

Figure 4-5: Friction force as a function of velocity. k is a constant indicating that the
velocity at which the Stribeck curve flattens out is proportional to vs.

7t is given by the proportional control law Tt = K(rt - vt), where rt is the reference

trajectory and K is the gain of the controller. The model in Eq. (4.21) can be put

into the form

t = of(4t, f ) + t a,

where

f(4t, 6) = -sgn(yt)e-e •

0= 1

Pt =
sgn(vt)

o=[-]

Fc

Simulation results are shown in Figures 4.6 through 4.9. The reference input was

a random signal with variance 0.015. The actual parameter values are marked by

] =
ýtL A .

a = Fs-Fc

FC

k



a dotted line in the Figures. Because of the local nature of the static friction and

the Stribeck effect, the convergence of the parameter estimates to their actual values

depends on the input. The parameter estimates were also fairly sensitive to the choice

of adaptation gains.
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Figure 4-8: Estimates of vs
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Chapter 5

Conclusion

Estimates of the physical parameters of a system provide valuable information for

tasks such as control and fault detection. For systems which are nonlinearly param-

eterized however, few analytical techniques are available for parameter estimation.

In [2] a novel, model-based approach to neural network based system identification

was proposed where the neural network is trained to provide an estimate of the system

parameters at each instant of time. This algorithm thus has the potential to improve

the performance of control and fault detection schemes for dynamic systems in the

presence of nonlinearities. However, the neural network has to be trained for varia-

tions in all the system variables and grows exponentially in size when the number of

variables is increased. Furthermore the training of the neural network is a nonlinear

optimization problem.

In this thesis it is shown that the task of finding an update law for the parameter

estimates of the class of systems considered in [2] can be solved numerically by the

formulation of a quadratic programming problem. The algorithm does not depend

on analytical knowledge of the regressor function. In particular, a neural system

model can be used to approximate the required regression form for systems which

cannot easily be transformed into this form analytically. It is shown that if some of

the system parameters occur linearly, or enter the model multiplicatively, an update

law for these parameters can be found analytically. This greatly reduces the amount

of computation needed to implement the algorithm. Algorithms are also presented



which apply to continuous-time systems where only one parameter occurs nonlinearly.

An analytic solution is given for the case were the regression function is either concave

or convex in the system parameter. It is demonstrated how the algorithms can be

robustified with respect to a bounded disturbance. The performance of the algorithms

is illustrated in simulations of a magnetic bearing system and a low velocity friction

model.
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