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ABSTRACT

DYNAMIC STIFFNESS AND SEISMIC RESPONSE OF PILE GROUPS

by

AMIR MASSOUD KAYNIA

Submitted to the Department of Civil Engineering in January 1982
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

A formulation for the analysis of pile groups in layered semi-
infinite media is presented. The formulation was based on the intro-
duction of a soil flexibility matrix as well as on dynamic stiffness
and flexibility matrices of the piles, in order to relate the dis-
cretized uniform forces to the corresponding displacements at the
pile-soil interface.

The result of pile group analyses showed that the pile group
behavior is highly frequency-dependent as the result of wave inter-
ferences taking place between the various piles in the group. Large
values for stiffnesses as well as large magnification factors for the
force on certain piles is.expected at some frequencies. As for the
seismic response, pile groups essentially follow the low-frequency
components of the ground motion, and the rotational component is negli-
gible for typical dimensions of the foundation.

A numerical study on the accuracy of the approximate superposition
method as well as the quasi-three-dimensional formulation, in which the
pile-soil compatibility conditions are accounted for in the formulation
only in the direction of vibration, showed that these solutions compare
very well with the full three-dimensional solution.

Thesis Supervisor: Eduardo Kausel

Title: Associate Professor of Civil Engineering
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CHAPTER 1 - INTRODUCTION

A pile is a structural element installed in the ground which is
connected to the structural frame, either directly or through a founda-
tion block, in order to transfer the loads from the superstructure to
the ground. Piles are seldom used singly; more often, they are used in
groups or clusters, in which case they are connected to a common founda-
tion block (pile cap).

Pile fourdations, under certain circumstances, are preferred over
shallow founda.ions:. for instance, in sites where near-surface soil strata
are so weak thet either soil properties do not have the required strength,
or the settlement and/or movements of a shallow footing on such ground
would be intoleratle.

Behavior of pila foundations, sometimés referred to as deep founda-
tions, has been a subject of considerable research. Most studies have
focussed primarily on short- and long-term static pile behavior, pile-
installation effects, estimation of ultimate load capacity and settlement,
prediction of ultimate lateral resistance, and estimation of lateral
deflection. Extensive field testings and experimental investigations
on different aspects of pile behavior have resulted in a number of empir-
ical and approximate analytical methods for the pile-foundation design.

In addition, other studies have resulted in more rigorous schemes for
pile analysis. Among these studies the works of Poulos (1968), Poulos
and Mattes (1971), Poulos (1971), Butterfield and Banerjee (1971) and
Banerjee (1978) are related to the present study. These researchers dis-
cretized the piles into several -segments and related the displacements

of the segments to the corresponding forces in both the soil medium, using
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Mindlin's fundamental solution (1936) and in the piles, using pile dif-
ferential equations (in discretized form). Introduction of the condition
of displacement compatibility between the soil and the piles and imposi-
tion of appropriate boundary conditions lead to the desired pile solution.
The results of these studies, especially by Poulos and his colleagues,
have highlighted the important aspects of static pile-group behavior, in-
cluding distribution of loads among the piles in a group, stiffnesses of
pile groups, and tire variation of these quantities with geometric param-
eters {spacing, lergth, and number of piles) as well as material proper-
ties. For a comprehensive review of these results and other ané]ytical
and empirical techniques of static pile-foundation analysis see Poulos
(1980).

The fact that s:atic pile behavior studies were unable to provide any
qualitative inforration on dynamic aspects of the problem, along with an
increasing demand for the construction of nuclear power plants and off-
shore structures, have stimulated extensive research on dynamic pile be-
havior. For these studies, which have dealt primarily with the behavior
of single piles, a variety of different models and solution schemes have
been used. Tajimi (1969), Nogami and Novak (1976), Novak and Nogami
(1977), Kobori, Minai and Baba (1977, 1981). Kagawa and Kraft (1981)
have»obtaiﬁed analytical solutions for the response of dynamically-excited
single piles. Finite-element techniques, on the other hand, have been
used by Blaney, Kausel and Roesset (1975) and Kuhlemeyer (1979a, 1979t).
In addition, less involved models based on the theory of beams on elastic
foundations, commonly referred to as the subgrade-reaction approach, were
used by Novak (1971, Matlock (1970),Reese, Cox and Koop (1974) and Reese

and Welch (1975). The advantage of this technique is that the results
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of field testing can be directly incorporated in the model ("p-y" and
"t-w" techniques). |

In spite of considerable achievements in characterizing the dynamic
| response of single piles, the dynamic behavior of pile groups is not yet
well understood. In fact, only a few attempts have been made to study
this problem. The earlier contributions are due to Wolf and Von Arx
(1978), and to Nogami (1979). Volf and Von Arx used an axisymmetric finite-
element scheme to obtain Green functions for ring loads which were used to
form the 501! f?e#ibility matrix. The dynamic stiffness matrix of the
pile-soil systam was then obtained‘by simply assembling those of the soil
and piles. Using tiis formulation, Wolf and Von Arx studied some charac-
teristics of horizontal as well as vertical dynamic stiffnesses of pile
groups in a layered soil stratum resting on a rigid bedrock. Later this
methodoTogy was employed by Waas and Hartmann (1981), who implemented an
efficient and rigorous technique for the computation of the Green's func-
tions (Waas, 1980), to study the behavior of pile groups in lateral vibra-
tion.

On the other hand, the vertical vibration characteristics of pile
groups in a uniform soil stratum underlain by a rigid bedrock has been
studied analytically by Nogami (1979). To incorporate in his model the
interaction of piles through the soil medium, Nogami used an analytical
solution to the axisymmetric vibration of the stratum obtained earlier by
Nogami and Novak (1976). Later he extended his studies to the case of
layered strata (Nocami, 1980). For this case, however, the interaction
effects were obtained using an analytical expression for the displacement
field due to the ax4a] vibration of an infinitely long rigid cylinder in

an infinite3medium {ovak, Nogami and Aboul-Ella, 1978).
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The results of these studies indicate that: 1) behavior of pile
groups is strongly frequency-dependent; 2) spacing and number of piles
have a considerable effect on dynamic stiffnesses, but only a minor ef-
fect on the lateral seismic response; and 3) interaction effects are
stronger for more flexible soil media.

The objective of the present work is to study the three-dimensional

dynamic behavior of pile groups in layered semi-infinite media and to

investigate %the accuracy of certain approximate approaches. Chapter 2
of this report is cdevoted to the formulation and the associated analyt-
ical derivations. In Chapter 3 the results of the three-dimensional
analyses are presented. These results include dynamic stiffnesses and
seismic response of pile groups as well as the distribution of loads
among the piles in the group. Special attention is paid to the effect
of frequency, spacing, and number of piles on these quantities. In Chap-
ter 4 the accuracy of a "gquasi three-dimensional" solution is investi-
gated (a quasi three-dimensional solution here refers to the solution

| obtained for symmetric rectangular arrangement of piles by assuming that
the dynamic effects in the vertical and in the two horizontal directions
of symmetry are uncoupled from one another).

The applicability of the superposition scheme to dynamic pile-group
analysis is examined in Chapter 5. In addition, the characteristics of
dynamic interaction curves (the influence of vibration of one pile on
another for a group of two piles) and their connection to pile-group be-
havior are studied.

Finally, Chapter & includes a summary of the important aspects of
the pile-group beha-ior as well as conclusions on the applicability of

approximate solutious schemes.



15

CHAPTER 2 ~ FORMULATION AND ANALYTICAL DERIVATIONS

In the present study it is assumed that: 1) the soil medium is a
viscoelastic layered halfspace, 2) the piles are made of linear elastic
materials, and 3) there is no loss of bondage between the piles and the
soil; however, the friétional effects due to torsion and bending of piles
are neglected. (Thé overall pile group behavior is controlled primarily
by the frictional ana lateral forces caused by axial motion and bending
of the piles, respectively.)

In what follows, the formulation of the problem;along with the associ-
ated analytica! derivations and their numerical implementation, are pre-
sented. Any time-dziendent variable such as u(t) used in this formulation
is of the form u(t) = u exp (iwt), in which u 1is a complex quantity, w is
the frequency of stsady-state harmonic vibration, and i = /-T. However,
the factor exp (iwt) is deleted in the equations, since it is shared by all

time-dependent variables involved in the problem.

2.1 Formulation

Consider the pile group shown in Fig. 2.1. The actual distribution
of lateral as well as frictional forcés developed at the pile-soil inter-
face are shown for one of the piles in the group (pile j).

The pile is discretized into & arbitrary segments, and the pile-tip
is considered to be segment (2+1). The pile head and the center of the
pile segments define then (2+2) "nodes" which are assigned numbers 0, 1,
2, ... » {2+1), respactively. Subsequently, the actual force distributions
are replaced by piecewise constant distributions which are also shown in

the figure. These iorces are assumed positive if they are in the positive

direction of axes.
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Consider first the equilibrium of pile j under the pile-soil interface
forces. If one denotes the vector of the resultant of these forces by pJ,
that is:

]T

i J J h| J
1x p]y Plz =eveees p(JL+])_x p(2,+1)y p(52,+1)z (2.1)

and the vector of displacements of nodes 1 through (2+1) by UJ, that is:

J.pd 30,3 J J h| T
U [u1x uy, Uy, eeveees Ul )x Ylat1)y ”(2+])z] (2.2)
Then Uj can be expressed as the summation of the displacements caused by
the translations and rotations of the two pile ends when there are no
loads on the pile, and the displacements caused by forces on the piles
(—PJ) when the two ends of the pile are clamped. This can be expressed

as:

J_ooWdyd L gdpd
U \yJue Fy P (2.3)

in which Ug is the vector of end displacements for pile j, given by:

i_p¢d J 3 3 J 3 J J J h| T
e = [”ox Pox Yoy Poy Yoz Y(2+1)x %7 1+1)x U(g+1)y ¢(£&1)y u(ﬂ#])z] (2.4)

yj is a (3(2+1) x 10) matrix defining displacements of the center of seg-

ments (nodes 1 through (2+1) due to end displacements of the pile when pJ

th

are not present (to be more specific, the i~ column of yJ defines the

three components of translation at the center of the segments due to a

unit harmonic pile end displacement associated with the ith

component of
Ug), and Fg is the flexibility matrix of pile j associated with nodes 1

through (2+1), for the fixed-end cohditjon. (Since the ends of the pile
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are fixed, the entries in Fg corresponding to node (g+1) are zero.)
If, in addition, one denotes the dynamic stiffness matrix of pile j
by KJ, and the vector of external forces and moments at the two ends of

p ]
this pile by Pg, that is

Jorpd M o pd M i Rd M pd W R
P[%%%%%%m%m%m%m%mHm

Then one can write

T
Pl ul syl P (2.6)

The first term in Eq. (2.6) corresponds to pile-end forces due to
pile-end displacements (Ug) when there are no loads on the pile, and the
second term corresponds to pile-end forces due to loads on the pile (-Pj)
when the two ends of the pile are fixed. Since the forces at the pile
tips are included in PY and matrices Fg and y) are constructed such that
they contain the effects of forces and displacements at this point, one
has to set R%2+1)x’ R%Q+])y and R%2+1)z equal to-zero. In addition, for

floating piles M%

0 +1)x and M%2+])y are taken to be zero as well.

Defining now the global load and displacement vectors for the N piles

in the group:

\ ( )
p! u! [ P u)
p g P P2 | w2
P=d: 5 U=1! b3 %=$: s U= 18 )
N N N N
P" ] (U] L P, ) Ug

as well as the matrices:
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1
f N\
%
2
iy K
K, = P ;
L s
K3 )
1
F 3\
f P
Fy= Ff) * (2.8)
| TN
p
] \
2
¥y o= ¥ -
" N
\ LY

One can then write the following equations for the ensemble of piles in

the group (compare with eqns. (2.3) and (2.6)):

U =vyu, -F P

e P (2.9)
T
e Kp Ue +y P

o
u

Consider next the equilibrium of the soil mass under forces P (dis-
tributed uniformly over each segment; see Fig. 2.1). If FS denotes the
flexibility matrix of the soil medium, relating piecewise-constant seg-

mental loads to the average displacements along the segments, then

u sfr_P - (2.10)
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Finally combining eqns. (2.9) and (2.10) one gets:

= T -1 =
Pe = [Ky + v (Fg+ F)mwllg =K U o (2.11)

Ke is a (10N x TON) matrix which relates only the five components of
forces at each end of the piles to their corresponding displacements. In
other words, the degrees of freedom along the pile length have been con-
densed out without forming a complete stiffness matrix. It is also impor-
tant to notice that in the solution of eq. (2.11) it i$ not necessary

to invert (FS + F_) as indicated; instead, one only needs to perform a

p
triangular decomposition of this matrix.
Matrix Ke relates forces and displacements at the pile ends in a

group of unrestrained piles. In order to obtain dynamic stiffnesses of

a rigid foundation (pile cap) to which the piles are connected, one needs
to impose the appropriate geometric (kinematic) and force boundary condi-
tions at the pile heads and pile tips. (The boundary conditions at pile
tips, as discussed earlier, are zero forces at these points for floating
piles.) At pile heads, on the other hand, the boundary conditions are in
general a combination of geometric and force conditions, unless all the
piles are rigidly connected to the foundation, in which case only geome-
tric conditions should be considered. Once the pile head forces for the
possible modes of vibration (horizontal, vertical, recking and torsional)
are computed, dynamic stiffnesses of the foundation at a prescribed point
are obtained b, simply calculating, in each mode, the resultant of these
forces at the prescribed point.
To extend the formulation to seismic analysis, one only needs to

express the displacements U as the summation of seismic displacements
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-

in the medium when the piles are removed (i.e., soil with cavities) U,

and the displacements caused by pile-soil interface forces P, that is:

Uu=10+ FS P (2.12)

Combination of eqns. (2.8) and (2.12) results in

P, =[K

T -1 T - |
e +y (FS + Fp) v] Ue -y (Fs + Fp) U (2.13)

P
or

P =K U, +P (2.14)

where Ke (as in eq. (2.11)) is the dynamic stiffness for the ensemble of
piles associated with the degrees of freedom at pile heads and pile tips,
and ?é = - wT (Fs + Fp)'] U defines consistent fictitious forces at
these points which reproduce the seismic.effects.

In order to calculate the response of the rigid foundation to which
the piles are connected, one has to impose the necessary geometric and
force boundary conditions. (The procedure is similar to that described
for the calculation of foundation stiffnesses, except that for the seis-
mic case one has to use the fact that the resultant of pile-head forces
on the foundation is zero.)

From the development of the preceding formulation it is clear that
FS is the flexibility of a soil mass which results from the removal of
the piles; in other words, Fs corresponds to the soil mass with N cavi-
ties. Similarly, U refers to the seismic disp]aceﬁents in the medium

with the cavities. Due to the fact that evaluation of the same quanti-

ties in a uniform soil mass, in which the cavities have been filled with



"~
(%

the soil, requires much less computational effort than the original
problem, it is very desirabie to modify the formulation in order to make
use of this numerical efficiency. The following discussion pertains to
such a modification.

Consider the semi-infinite soil medium and the pile shown in Fig.
2.2a. It is assumed that p(z) and u(z) define lateral soil pressure and
lateral pile displacement, respectively. (For convenience, only one pile
and one type of force at the pile-soil interface are considered. The modi-
fication procedure, however, is independent of the number 6f piles and the
type of interaction force.) For a pile element shown in Fig. 2.2b, one

can write the equilibrium equation as:

dv 2
&t ep Awu=p (2.15)

in which A and pp denote the cross-sectional area and mass density of the
pile, respectively.

| Next, consider the same soil medium excent that the pile is removed
and the resulting cavity is filled with soil such that the original uni-
form soil mass (before the installation of the pile) is obtained. The
dashed line in Fig. 2.2c shows the periphery of the added soil column.
Further, suppose that f(z) defines a force distribution along the height
of the soil column which causes approximately the same displacement u(z)
at the centerline of this soil column. Now consider the equilibrium of
forces on a soil differential element shown in Fig. 2.2d. (The vertical
sides of this element extend just beyond the dashed line); one can then
write: _

dv' 2

—a-i—+psAu)u+f=p (2.]6)
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where pl is the lateral force on the element. This equation implies
that one can remove the soil column and apply the distributed force p'
on the cavity's wall to preserve the equi]ibrium of the soil mass. (This
is clearly an approximate scheme, since the effects of frictional forces
due to the lateral displacement of the soil column are neglected.)
If one takes pl to be equal to p, eq. (2.16) can be rewritten as
%%; + Py Ay + f = p , (2.17)
Thus the displacement u(z) due to a distributed force p(z) in the soil
mass with the cavity can be reproduced by the application of the distri-
buted force f(z) to the uniform (no cavity) soil medium. f(z) is given
by:

2 1
f=p-pSAwu~%vE— (2.18)

Similarly, the equilibrium of the differential pile element can be ex-
pressed in terms of the distributed force f; introducing eq. (2.17) into

eq. (2.15), one gets:

L(v-v') + (o - o)A = (2.19)

P

Eq. (2.19) can be interpreted as the differential equation of a beam with

a mass density (Dp - os) and a modulus of elasticity (E_. - E_) and sub-

p S

jected to a distributed force f(z). (E_ is the elasticity modulus of

S
the soil.)

The approximate scheme presented here suggests that if one replaces
P in eqns. (2.9) and (2.10) by the vectorial equivalent of the distributed

forces f (say, F), then the soil flexibility matrix FS should be taken
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as that corresponding to a uniform (no cavity) soil mass and the matri-
ces Kp, Fp and ¥ corresponding to piles with reduced mass density and
elasticity modulus (obtained by subtracting the mass density and elas-
ticity modulus of the soil from the corresponding quantities of the
piles). The final expression relating pile-head forces with displace-
ments is then of the same form as that given by eq. (2.11), except that

CFL, . .
p* Fp Y to piles with

FS corresponds to a soil without cavities, and K
reduced properties.

A similar modification applies to the seismic analysis. In addition,
the seismic displacements in the soil mass with the cavities (U in eq.
2.12)) can be related to the associated free-field (no cavity) seismic
displacements. If the free-field displacements are denoted by U* and
the corresponding free-field forces are denoted by P*, then one can write:
(since P = 0):

U=U -F_p | (2.20)

However, the effect of free-field forces, in most pile-soil interaction
problems, can be neglected. Therefore one might approximate U by U* in
the formulation of the seismic problem.

In what follows a numerical technique to evaluate a soil flexibility
matrix is presented, and expressions for the elements of Kp, Fp and ¥

are derived.
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2.2 Response of Viscoelastic Layered Soil Media to Dynamic Stress

Distributions

The formulation presented in Sec. 2.1 requires the evaluation of
a dynamic flexibility matrix, FS, for the soil medium. This matrix de-
fines a relationship between piecewise-uniform loads distributed over
cylindrical or circular surfaces (corresponding to pile shafts and pile
tips) and the average displacement of these regions. Although there
are a number of wéys to obtain a value to represent the displacement of
a loaded region, the weighted averaging, originally proposed by Arnold,
Bycroft and Warburton (1955), is believed to provide the most meaningful
displacement value. In order to understand the basis for the weighted
average displacement, consider the response of a medium to a set of
distributed loads Qs Qps - acting on regions D], D2 «... 5 respec-
tively. Suppose a virtual displacement v(x,y,z) is introduced in the
medium. If the component of this displacement in the direction of Q;
is denoted by vi(x,y,z), then the virtual work done by the total dynamic

force Qi = J 9; dA is given by:

Dy

Q; v, = JD. q; v; dA (2.21)
i

where V} is the weighted average virtual displacement in region Di' Equa-

tion (2.21) shows that, on the basis of the work done by the total force,

the weighted average displacement is the most appropriate quantity to

represent the disp]acement field. For uniformly distributed loads, as

eq. (2.21) indicates, the weighted average displacementis identical to -

the average displacement in the region.
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The objective of this section is to present details of a numerical
technique which enables one to compute displacements caused by loads
uniformly distributed over cylindrical or circular surfaces in lTayered
viscoelastic soil media. .The types of load involved in the problem are
shown in Fig. 2;3; the loads on cylindrical surfaces are associated with
stresses on pile shaft and those on circular surfaces correspond to pile
tip stresses.

The method used here for response calculation is similar to that
presented by Apsel (1980). For the present work, however, the stiffness

approach, based on assemblage of layer stiffness matrices, is used.

2.2.1 - Solution of the equations of motion -

If Ups U and u, are the displacements in the radial, tangential,

&

and vertical directions, and fr’ f_ and fz are the associated external

e
loads per unit volume, the equations of motion of an elastic body in

cylindrical coordinates are:

( an _ 2u %9 dwg 2 i

W2lge - 7 gt tw ol FF =0

oW AW

) 134 _ r z, 2 -

(x2u) w38 - 2L+ 2u—=Z+ W ou + f =0 (2.22)

2w
oA _ 2H 3 2u"r, 2 -

| (X+2“)az 3 (feg) * T g twou, + f, =0

where ) and u are Lame's constant, p is the mass density, and w is the
frequency of steady-state vibration; the dilatation A and the rotations

Wp> Wy and w, are given by:
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a) uniform horizontal load
on cylindrical surface

¢) uniform horizontal load
on circular surface
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b) uniform vertical load
on cylindrical surface

d) uniform vertical load on
circular surface

Fig. 2.3 - The Type of Loads in the Soil Medium.



A = %.g% (rur) + %-2;§-+ %;? (2,23)
$ug =% E%;? - 2;%1' (2.24)
oy B () - 5

For a viscoelastic medium with an internal energy dissipative be-
havior of the nysteretic type, one only needs to replace A and u in Egns.

(2.22) by the comalsx Lame moduli given by:

3= A(1 + 28i)

>
1}

(2.25)

LC o= (1 + 281)

where B is commonly referred to as the fraction of critical damping.
The first step in the solution of Eqns. (2.22) is to separate
variables. This can be achieved by expanding displacements and body

forces in a Fourier series in tangential direction, that is

u. (r,08,2) = E U (r,z) cos pe
n=0
ug (r,0,z) = _Z Ugn (r,z) sin né
, n=0
u, (r,6,z) = nEO u, (r,z) cos n@
] - (2.26)
fy (r.8,2) = nEO fop (rsz) cos né
f, (r,0,z) = ) fy (r,z) sin no
' n=0 "
L f, (r,0,z) = ngé f,, (r.z) cos ng
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Introduction of these expansions, along with Egns. (2.23) and

(2.24), into Egns. (2.22) leads to

pos W2 2
) {u[ 9 Upy + l.aurn n+ 1 ou Ay

rn-
- — - u,. * 1+ (\h) =
n=0 3r2 r ar . r2 rn 322

n 2 _
- A= Usn twou.,t frn} cos ng =0

r
2 2
o 3 u au 2 9 u
c% an 1 7en  ntl __onq¢ _ n
ngo {uL a;?~ ' roar r2 ue" ! az2 ] () r An
n =
-2u ;7'urn +w p Ugn + fen} sinng =0
2 2
3 u Ju 2 au 9A
n 1 Zn n zZn n
W35t L2 e 20 ()
n= { orl ro3r 2 Tzn 52° 9z
+ 2 =
w U, * fzn cos ng =0
where
ou
_]_a_ n n
by T ¥ r (rurn) * ¥ Yon 3z

(2.27)

(2.28)

(2.29)

(2.30)

In order that Eqns. (2.27), (2.28) and (2.29) be satisfied, it is

necessary that the terms in accolades be identically zero. If, in addi-

tion, one combines the two equations resulting from (2.27) and (2.28),

then the following three conditions, to be satified for any value of n,

are obtained:

2 2 2
3 . 13 (n+1) 3
w5 luru d o= (u tu)- = (u. +ug )+ (u
ar2 rn gn’ r r ‘"rn en v rn on 322 rn
9
+ (A+u)(7§? --% An) + ugp (urn + uen) + (frn + fen) =0

Fugy)]

(2.31)



2 ¢ LB PPN (.= | U O SO P
H arl Urn = Y5n’ " ¥ 37 Urn " Ygn 2 rn” Yen’ T 772 Hen ™ Ton
+ ((tu) [Eﬁﬂ!+ DA 1+ 2 (u_ -u )+F_-f )=0 (2.32)
ATW g T Fhpd Fwo Wy = Ugp) FWpep = Top .
2 2
3 u u 2 u 3A '
w5 +'%: ain - gyt =23+ Or) 57 +u’o Uzn ¥ Fzn = 0 (2.33)
ar : r 9z :
If now the following Hankel Transforms are defined
(U, (k,z) + Uz (k,z) = !0 (urn + uen) Jnt (kr) rdr
- uy, (kz) +uy (kz) = J: (Upp - Ugn) g (Kke) rer
Usp (k,z) = [o Uy Iy, (kr) rdr
4 o (2.34)
fin (ksz) + f5 (k,2) = J, (fon * fon) dpeq (kr) rdr
[ '
- fin (kyz) + fan (kyz) = Jq (frn - fen) Jno1 (kr) rdr
oo
| f2n (k,z) = ), fzn Jn (kr) rdr

th order Bessel function of the 15t kind, and if

where Jn (kr) is the n
the following identities are used,

2 2 2

2
[ sl m L3 16d (k) rdr = (5 - k2) [w J_(kr) rdr
E';;f rar T 27 2 % a2 o 7

(2.35)
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J (é%-- g)¢’dm+] (kr) rdr = -k ij¢ Jm (kr) rdr (2.36)
0 0 . .

(d + My (kr) rdr = &k fm J_ (kr) rdr (2.37)
J: ar T ¢ o ¢ Iy

Then one can show that application of Hankel Transforms to Egns. (2.31),

(2.32) and (2.33) leads to:

2

(e d 2 . 2
pl=> -k +w
dz

P ' -
H](“1n+”3n)+ (A+u) (-k An) +f,*t f3p =0 (2.38)

2 '
J Ll[ij - K42 %J(_u1n4-u3n)+-(x+u)(k A = Fip*f3, = 0 (2.39)
z

2
d 2 20 d ' _
L‘J[E;? - k"t EJ Uy # (A+u) T T oy =0 (2.40)

00

where A; = Jo A Jn (kr) rdr is the nth

order Hankel Transform of A

Using Egqns. (2.36) and (2.37) and the following property of Bessel func-

tions,
Dy (k) =+ 0 (kr) + K Jey (Kr) (2.41)
one can show that
B =kt (2.42)

Finally, if one introduces Eq. (2.42) into Egqns. (2.38) - (2.40),
and Eqns. (2.38) and (2.39) are combined (by adding and subtracting

them), the following ordinary differential equations are obtained:
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( [udi‘!—z- -~ k2 (>\+2Ll) +QUJ2] u'ln = ()\‘HJ) k '&qz' uzn + f"n =0 (2.43)
z .
| 2 ;
1 O kg g, + L2 :—22— - uk® 4ol uy + Fy = 0 (2.44)
& 2 4 ow) Uy *+ Fa =0 (2.45)
L (u 527' - uk™ +pu7) ug, 3 = .

Equations (2.43) and (2.44) define a system of two ordinary linear dif-

ferential equations for Utn and Uy Ug,s ON the other hand, is un-

n
coupled from Uin and Usp and can be obtained by solving Eq. (2.45).

It is convenient at this point to introduce the following two

parameters: X 2 2
2 ow 2
= K® -2 = kK™ - = -46
& A+2u Cg (2.46)
2 ‘?
y = kz_e:_)—_ - -\/k2-%_2- (2.47)
s

where CS and Cp are the velocities of shear waves and pressure waves,
respectively. (For viscoelastic materials CS and Cp are complex quanti-

ties). Introduction of these parameters into Eqns. (2.43), (2.44) and
(2.45) leads to:

,
(2l .,\—,,‘2‘3?—2—2 - a®T ug, - Oct) K goup, *+ = 0 (2.48a)
(x+n) k é%'uln ¥ u[éﬁgghji7" 72] Upp + fop = 0 (2.48b)
Zz
2
d&© 2 _
u( P ) ug, + fa =0 (2.49)

In order to obtain the homogenous solution of Eqns. (2.48), one

can take Uy, = Ae™ and Up, = Be™ and substitute in Eqns. (2.48). The



34

resulting system of algebraic equations for n and A/B yields four sets
of solutions, which can be used to define the general homogenéous solu-

“tions for u]ﬁ and u2n. Following this procedure, one obtains:

eG.Z+YC YZ

( H _ Az ! Yz _ ‘
Upn (k,z) = -kCy e +vyC, e k C an ©

In 2n 3n

(2.50)

u’é‘n (k,2) = - a C

-2 -Yz ! oz - Yz
L n © + k C2n e + o C3n e kC4n e

where C]n(k)’ CZn(k)’ C3n(k) and C4n(k) are unknown constants. To ob-
tain a particular solution one can use the method of variation of

parameters; however, for the loadings involved in the present problem,

f,. and f2n’ as will be shown in section 2.2.4, are independent of z;

n
therefore particular solutions can be obtained by inspection. One

such set of solutions for Uin and u,, are:
uP = L f
In az(MQu) Tn
' (2.51)
P _ 1
Uon = 7~ Fon
Y
Finally, the solutions of Eqns. (2.48) are given by:
( - 02)
n &
_ _ : -yz 2
Uy, (k,z)} k v -k Y" C2n e f]n/oa (+2u) (2.52)
= ) :
= oZ + 2
Uy (k,z)f L -a k o -k_J C3n e r f2n/Y u
YZ
L C4n € ]

A similar procedure applied to Eq. (2.49) leads to the solution of

this equation:
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.‘Yz\

{ C5n e ]
(k,z) =[1 1] + Tan A (2.53)

u .
3n : YZ
C6n e

2.2.2 - Layer ahd halfspace stiffness matrices

In order to'determine the unknown constants in Egns. (2.52)
and (2.53) it is necessary to use the appropriate kinematic and force
boundary conditions of the problem. Since Egns. (2.52) and (2.53) ex-
press displacements in the transformed space, it is necessary to derive
expressions for the associated transformed stresses.
The three components of stress on a plane perpendicular to the z-

axis in cylindrical coordinates are given by:

( ou,  ou,
rz = ulme 570

Q
]

9 au

u
=y (=2 4+1_2
1 %z = ¥zt ¥ ae) (2.54)
BUZ
Opp T 2Mgz *AA

If the Fourier expansion of U.» U, and u,, given by Eq. (2.26),

)
are used in the above equations, one gets

Opy = ngo Opyp COS NB
d = i

%0z n§0 Ogzn SN N9 (2.55)
L 0,, = go 0,,, COS NO

n
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where 9pzn’® %ozn and O,2n 2T€ given by
r."r'zn B “(a:in ¥ a:;n)
1 %%zn ~ “(iggﬂ"'% Uzn)
L Ozzn = zuj%ﬂ toAL,

and A is given by Eq. (2.30).

(2.56)

(2.57)

(2.58)

By combining Eqns. (2.56) and (2.57) and reordering Eq. (2.58), one

can write:
. ou
Zn n 3
+ =y[=zn_n + 2 (i
Orzn * %zn ul ar v Y T3z (urn uen)]
3u
zn . n )
- = —— e — + — -
{ %zn ~ %zn ul 3r r Y T3z (urn uen)]

aqu‘l aurn urn n )

Ozzn = (3+2u) 52 T A ( v T r v Yan

{

If the following Hankel Transforms are defined,

[ Opqp(ksz) + gp3,(ks2) = J: (070 + Tgzn) Ipeq (kr) rdr

"Oéln(k’z) + 623n(k’z) N J: (Gpgn - Gezn) JIp-p(kr) rdr

00

L 022n(k,z) = Io Oyon Jn(kr) rdr

Then Hankel transforms of Egns. (2.59) leads to:

(2.59)

(2.60)
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( Ta1n T Tp3p =W L= kuy, + é%'(“1n *ugp)]

_ d
19210 * %23n =HIkuy, + g7 (= uy, +ug)] (2.61)
' duZn‘
| Toon = (M21) —== + A(kuy )

Finally by using the expressions obtained for Uipe UYops and.u3n‘

(Egns. (2.52) and (2.53)), one can express the transformed stresses

T21p> Tp3p and Cpp, as:
( =-0Z
C]n
' 2 2.2 ¥
Iy (ks2) =1;(2ag (k22 ook (KP#2) | Cp €2 L
( O (Ks2) L(z‘+Y2) ok (KBaYP)  -ark Cap €
Yz
) | Yn €
-kf, /Y
L L (2.62)
AKFy /0% (M2u)
=Yz
e
C5n
Opan(ksz) =u[-Y Y] Yz (2.63)
C6n e

At this point it is convenient to distinguish between the solutions

corresponding to Uy, and Usp and those corresponding to u Since the

3n’
solution of Usp involves only v, all quantities associated with Usp will

be identified as "SH-wave" quantities. In a similar manner, "SV-P waves"

will be used to refer to quantities associated with u,_ and Upp

In
Consider the layered soil medium shown in Fig. 2.4a. The medium

consists of M layers resting on'a halfspace. Fig. 2.4b shows the jth
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/A
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z
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(c)

\INTERFACE j+1
B

C

. ‘4ERFACE M1

Fig. 2.4 - A Layered Soil Medium.
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layer confined between the two planes denoted by A and B, and Fig.
2.4c shows the halfspace bounded by the plane C. The objective is now
to obtain a relationship between the transformed stresses on the two
planes A and B in Fig. 2.4b and the transformed disp]acements of these
planes. Such a relationship can be used to define layer "stiffness
matrices" as well as layer "fixed-end stresses." 1In a similar manner,
a relationship between stresses and displacements for plane C in Fig.
2.4c results in haifspace stiffness matrices. For a given value of k,
the stiffness matrices of the layers and the halfspace and the associ-
ated force vectors can be used to assemble the stiffness matrix and
the load vector for the layered medium; the resulting system of equa-
tions then yields the transformed displacements s Uspy and Usn at

layer interfaces.

Layer stiffness matrix and load vector for SV-P waves

For the layer shown in Fig. 2.4b, one can use Egq. (2.52) to obtain
the expressions for the transformed displacements Uip and Usp of the
two planes A and B associated with local coordinates z' = 0, and z' = h;

the result can be written in matrix form as

3 r

A - - \
( Y1n = Ut -k Y -k Y r Cin |
uA -u - k a -k C
l 2n 2"# ] 72n
B = N -ch -vh ah vh } (2.64)
Uin = Y1p -ke ye -ke ye C3n
B — -ah -vyh ch vh
L Uspy = “2nJ L -qe ke oe -ke 1 C4n )



40
vihere Uip and.u2n are given by:

Uy, = f-ln,/az()\+2u) (2.65)

— _ 2 '
Uy, = Fpp/¥u (2.66)

Similarly, Eq. (2.62) can be used to e*press the transformed stresses

%1n and O9o, ON the exterior side of planes A and B as:

- - Y ( N
(010 * Tyl [ 20k (KP#?) 20k -(K%0) | | ¢
A, = 2,2 2,2
| O2en *Opzn| [T ak (G vk g G
Oin - Spin (2ake™ (PR - 20k (kB | cy)
B - /2.2y ~oh “th 2.2\ ch vh
| %220 " Opzn)  |WKTYT)e T -2vke (Ko )e™ -avke™™| | Cp
where o,, and o, are given by: (2.67)
Sor. = -kf, N2 (2.68)
21n 2n ’
Syon = AkFyp/af (+2n) (2.69)

Finally a relationship between the transformed stresses (021n and
022n) on planes A and B and the transformed displacements (u]n and u2n)
of these planes can be obtained by deleting the unknown constants C]n,
C2n’ C3n and C4n between Eqns. (2.64) and (2.67). The result can be

written in the form

AB A _
{Usv-u} B [Kss-p] {”25-9}+{°g$-p} (2.70)
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where {UQE—P} and {ués_P} denote the transformed stress and

displacement vectors, that is

A, A
)
921n u7n

A A

AB _ |l o ) AB - lu

B B

%21n Uin

B B

{ 922 \Upp

{625-P} is the vector of "fixed-end stresses” given by

[ Uin (- %1
-AB _ AB 3 Uén L - 6:22n
{SV-P} = TG ] R I (2.72)
In 21n
L Y2p L %2n |

and the elements of the symmetric 4 x 4 layer stiffness matrix [Kgs_P]

are given by the following expressions: (AB and SV-P are omitted.)

iy = g walko= %) Lays%eY - k2sTe?

Ky = % 1k [w(3k2+y2)(c%y- 1) - (k4 + k2Y2 + 20L2Y2) s%Y]
Y

Kgy = g ualk® - v2) k%" - s

Kgp = 5 k(K2 - 42) [CY - ¢

K = -I* 2 2 2

22 7 D(KS - YC) [ySYCY - k4SO ]

Ko = = Kgp



42

|

Kep = 5y (KF - ¥2) [KFs® - aysY]

K33 = K1
Kgz = - Koy
Kea = Ky | (2.73)

In these expressions
' 2 4
D = ay[-2k% + 2k2c%CY - E'inaT’i—k- $%5Y] - (2.74)

and C@, CY, 5% and SY are used to denote the following quantities:

COL

o

Hi
i

cosh(xh) i S sinh(ah)

o (2.75)

1

cosh({h) s SY

sinh(yh)

<< 1, one might use the asymptotic

values of these expressions to avoid loss of significant digits in the
operations (in fact for w=0 the above stiffness terms become indefinite;

i.e., zero divided by zero). For this case, one can show that

2
K11 ~ 57 uklkn(1-¢7) - (1+) skck]

Ky ~ 2 2,2 ky2

21 D' uk[k (1 ) ]+e Y(ST)°]
Kyy ~ 2 uk[ (1+67)5K - kh(]-ez)Ck]

D
Kgy - 52— k[kh(1-€2)sK7
2

K22 ~ = 7 uklkn(1-€?) + (1+€%) skckg
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Ky ~ 2 uk[(142)5% + kn(1-e2)ck] (2.76)
D
where
p' = k%2(12)? - (142)2(sK)2 . (2.77)
g = CS/Cp and Ck and Sk denote the following quantities
k _ ook
C" = cosh (kh) 3 S" = sinh(kh) (2.78)

Halfspac2 stiffness matrix for SV-P waves

To evaluate transformed displacements and stresses in a halfspace,
one can use Egns. (2.52) and (2.62) provided that, for the forced-
vibration problems, the radiation conditions are satisfied. That is,
as z approaches infinity, the value of stresses and displacements should
tend to zero. This requires that the unknown constants C3n and C4n in
Eqns. (2.52) and (2.62) be set equal to zero. (The real part of a and y
js positive). Thus, for the halfspace shown in Fig. 2.4c, one can write
the following expressions for the transformed displacements and stresses
at plane C (surface of the halfspace) associated with the local coordin-

ate z = 0; (fln = fon = 0)

n
rk Y] Cln
= - (2.79)
C

(2.80)

c 2, &
[ 02]"} }V-ZOLk k™+ Y C-ln
=u
\ l‘-(.k2+Y2) 2vk Cap

Combining Eqns. (2.79) and (2.80), one gets:
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C c
%21n c “In |
- LKSV-P} (2.81)
0(Z:Zn | uS
: 2n

where the symmetric 2 x 2 halfspace stiffness matrix is given by:

2 2) 2

c ” alk® - Y k(k2 +y - Zay)
[Key_pl = (2.82)
SV-pd 7T oy k(K2 + Yz_‘ 2y ) Y(kz ) Y2)
and for the case in which IE%—|<< 1 by
s
1 €2
c ~ 2uk
(K 1 == (2.83)
VP e |2

de = .

Layer stiffness matrix and load vector for SH waves

Following the procedure described for SV-P waves, one can use Egns.
(2.53) and (2.63) to express transformed displacements and external

stresses associated with planes A and B in Fig. 2.4b as

A — (
U3y = U3y 1 1 Csn
= " " (2.84)
= -y Y
Usp = Usp e e C6n
A
[ 723n Y ‘f] C5n
B e e C
923n Y én

where s, = f3n/Y2u- : (2.86)



45

Combining Eqns. (2.84) and (2.85), one gets

{lexg} = {SH} { AE} {"SH} . - (28

where {cég } and {uéﬁ } denote the stress and displacement vectors,

that is
A A
AB 23n . ABY 3n
{ SH} B ’ {USH} =18 (2.88)
923n Uz .

Eég} is the vector of "fixed-end stresses" expressed as

{ AB} - [KAB] {E_:;n} (2.89)
9SH SH Usp ’

and the 2 x 2 1ayér stiffness matrix is given by:

cosh vh -1
[ SH| = STRA(YHY [_1 J (2.90)

cosh Y

Halfspace stiffness constant for SH waves

The use of Egns. (2. 53) and (2.63) with the imposition of the
radiation condition leads to the following expressions for the trans-

formed stress and displacement of plane C (Fig. 2.4¢).

c _
Usp = Cgp (2.91)
oS =vug (2.92)
23n 5n ’

Therefore, transformed stresses and displacements at the surface of the
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- halfspace for SH waves are related by the following expression
C

oan = yulzy - (2.93)

2.2.3 - Displacements within a Layer

In order to obtain the average displacement in the layer one
needs to compute the displacements at a number of points within the
layer; these displacement values along With those at the two planes
confining the laver can be used to define a displacement pattern across
the layer.

Consider aga’n the layer shown in Fig. 2.4b. Having computed the
transformed displacements of planes A and B, one can use Egns. (2.64)
and (2.84) to evaluate the unknown constants C]n, cee C6n' Then the
transformed displacements at a point within the layer can be evaluated
by using Egns. (2.52) and (2.53).

For the present study, in addition to layer interfaces, the displace-
ments of the middle of layers are computed. These displacement values
for each layer are used to define a Z"d degree polynomial to approxi-
mate the variation of displacements across that layer. The average
value obtained by using this interpolation function corresponds to the
well-known Simpson's Rule.

Explicit expressions for the mid-layer transformed displacements are

given next.

Mid-layer displacements for SV-P Waves

The transformed displacements of the mid-plane of the layer shown in

Fig. 2.4b (Plane E) are related to those of planes A and B by the follow-

ing expression:
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A - 3\
e r Un = Y1n m
u A — In
n u -u
g i - [TEV-P] 4 ;n 2n L + (2.94)
Uon J Un = Y1 Yo
B =
L L'Zn - u2n )

where the elements of the [TEV_P] are given by (E and SV-P are omitted):

T = %‘[GYkZ(CaCY/Z + Ca/ZCY) _ aZYZSaSY/Z _ k4sa/25y_ quz(Ca/z . CY/Z)]
i G/ Y /
Tpy = o oklo (C7S™2 - €7/26%) 4 1 2(s7/ %% - §Yc™2) + k25112 4 oys®'2

T22 - %v[aykZ(CYCujz N Cy/ZCa)_ 0LZ‘YZSYSOL/Z _ k4sy/25a_ OCYkZ(Cy/Z + Ca/Z)]

13=T1

T3 = - Ty

T = -T2

Toq = Tpp (2.95)

In these expressions, in addition to the previously-defined symbols,
D, C% €Y, S%and S (Eqns. (2.74) and (2.75)), ¢¥2, ¢¥/2, s¥2 4pq

SY/2 are used to denote the following quantities:

O(./Z

]

C

1

, Q2 .
cosh (&h/2) S sinh (ah/2)

/2 (2.96)

cY/2 sinh (vh/2)

1t

cosh vh/2) S

t
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Also U}n and Gén are given by Eqns. (2.65) and (2.66), respec-
tively.

For lkC [ << 1, one can show that the following expressions define

the asymptot1c value of the elements of [T SV- P]

k/2

Typ ~ —— [khC  (e2-1) +25%/2(14e2) I [kn(e2-1) - 2cK/ 25K/ 2(14¢2)]
.

11

Tyy - — kn(1-e2)s%/2[2(1+e2)sK/2cK/2 kn(1-62)]

2L

Ty~ Lk (1-€2)sK2[2(1462) 542K/ 2 4 n(1-€2)]

Tyy ~ = [kne*/2(1-6%) + 25%/2(146%)1[kn(1-€%) - 2c¥/ 2sK/2(142)]
2D’

(2.97)
where D', CK, and SK and ¢ are defined by Eqns. (2.77) and (2.78), and

k/2 and Sk/2 denote the following quantities:

c
M2 - cosh (kn/2) 5 SX2 = sinh (kh/2) (2298)

Mid-layer transformed displacement for SH waves

The following expression defines the transformed displacement of
plane E in terms of the transformed displacement of planes A and B (see

Fig. 2.4b),

E __ 1 A, By,
Mgy = T (ugp F Uz, - Zugy) + g (2.99)

2 cosh (1%1)

where Eén is given by Eq. (2.86).
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2.2.4 Integral Representation and Numerical Evaluation of Displacements

The preceding analytical solution scheme can be used to evaluate
the displacements in layered soil media caused by uniform load distribu-
tions over cylinﬁrica] or circular surfaces (see Fig. 2.3). For this
purpose, it is necessary to divide the soil medium into a number of lay-
ers such that each layer contains only one of the cylindrical load distri-
butions. In this way, the loads on the cylindrical surfaces can be trea-
ted as body fo-ces for which the "fixed-end stresses," (see sec. 2.2.3)
can be evaluatad, wsh2reas the loads on circular surfaces can be considered
as external forces a% the interface of two layers.

Consider the uriform horizontal and vertical loads on cylindrical and
circular surfaces ¢ gwn in Fig. 2.3. The loads on cylindrical surfaces
are associated with forces developed along the pile shafts, whereas the
loads on circular surfaces correspond to pile-tip forces. In the follow-
ing analysis, the radii of the cylinders and circular areas will be de-
noted by R, and the height of the cylinders by h. (R is the radius of the
piles, and h is the thickness of a layer). The load distribution in Fig.
2.3a (lateral load on a cylindrical surface) can be expressed in cylindri-

cal coordinates as

( fP(P,B,Z) = Qé%ﬁjd(r-R) cos o
J _ -1 :

fo(rs6,2) = 5opm 8(r-R) sin ¢ (2.100)
L fz(raesZ)' =0

where § is the Kronec'er delta function.
Comparing Egns. (2.100) with the expansion of loads in Egns. (2.26),

one can write
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]
fe1 = Zorp S(r-R)
4 - "1
fo1 = mgp S (r=R) (2.101)
\ f21 =0
and
fon = fon= =035 forn#l (2'102)

Since the amplitudes of the Fourier expansion of this load for values
of n other than one are zero, the corresponding displacements are similarly
contributed only by the terms associated with n=1; therefore the displace-

ment expansions reduce to the following expressions:

r

ur(r,e,z) = ur](r,z) cos 8

" ue(r,e,z) = ue](r,z) sin o (2.103)

] uz(r,e,z) = uzl(r,z) cos 0

On the other hand, application of Hankel transforms, according to

Egns. (2.34), to fr]’ fqp and f,, given by Eqns. (2.101) leads to

J_(kR)
f£.= .0
11 27h
f2] =0 (2.104)
J_(kR)
far = —
31 27h

The transformed displacements associated with these transformed
forces can be obtained by the techniques described in secs. 2.2.2 and
2.2.3. If Upps Uog and ugy are the transformed displacements correspond-

ing to fH = f31 = ?}ﬁ and f21'= 0, then actual transformed displace-




51

ment associated with f,y, f,; and f5; in Eqns. (2.104) are given by
—Jo(kR) Uyqs -Jo(kR) Upq and Jo(kR) ugys thus the Hankel transform of

displacements in Eqns. (2.34) can be written as (n=1)

700

Jo

(®
. Jo(kR) uyp * Jo(kR) Uy = )y (uw1 - ue]) Jo(kr) rdr (2.105)

The application of inverse Hankel transform to these equations leads

to:
[ Upp * ugy = J (-u]1 + u3]) Jo(kR) Jz(kr) kdk
0~ ,
{ Uy = Uy = J, (u]] + u3]) Jo(kR) Jo(kr) kdk (2.106)
Ok I: (~upy) 35(KR) J (kr) kdk

Fina]]y; by using the recurrence relations for the Bessel functions,

one can obtain the following integral representation for u_,, Ug and u,q:

rl

] J (kr)
(U = JO [ugy Jg(kr) 3 (R) + (ugq = uyq) = I (kR)] kdk

J](kr)

o1 " [m [ugq Jo(kr) 3 (KR} + (Upq = ug;) == J (kR)]kdk

Luyy = - J[o ugy Jq(kr) 35(kR) kdk (2.107)
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A similar procedure can be followed to obtain the integral repre-
sentation of displacements for the load distribution shown in Fig. 2.3b

(frictional force on a cy]indrica] surface). For this case, the load

distribution can be expressed as

/|
o

f.(r.0,2) =

(2.108)

1
o

§ Tglr.e,2)

F fz(r,e,z) = ZJRh s(r-R)

Comparison of these equations with the expansion for the loads in

Eqns. (2.26) leads to

[ fro =0

f.. =0 (2.109)

and

f.=f =f =03 n#0 (2.110)

Since the only nonzero term in the load expansion corresponds to
n=0, likewise, in the displacement expansion, only the n=0 term will have

non-zero value, and all other terms will vanish; that is,

u.(r,e,z) = u, (r.z)

0 (2.111)

[]]

ue(r,e,z)

uz(r,e,z) = uzo(r,z)
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Following a procedure similar to the one described for horizontal
loading, one can show that if Uy and,u.,0 are transformed displacements

due to transformed Toads f10 = 0 and f20 ='?%ﬁf; then U, and u,, are

0 0

given by

8

U, = fo Uy 9y (kr) 3, (KR) kdk
(2.112)

Uy = j: Usg Jo(kr) JO(kR) kdk

For the 1sads cistributed over circular surfaces (Fig. 2.3c and
2.3d) it is necassary to evaluate the corresponding transformed forces
directly. Consider “irst the load distribution shown in Fig. 2.3c (fric-
tional force on a circular surface). One can represent this loading by

the following expre;sions:

O”.rz=——2-c059
7R
L= -1 .
0z = ;E? sin o r<R (2.113)
LE—ZZ=0
Opy = gz =0,, = 0; r>R

If a Fourier expansion of these loads, similar to the expansion of
stresses in Eqns. (2.55), is compared with Eqns. (2.113), it can be con-

cluded that

( =

Trz1 T R2
P _ _.I .

O =ﬁz ‘ (2.114)
L G =0
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and _ o B ‘ .
Oyzn = Sgzn = Ozzn = 03 fornf 1 (2.115)

Therefore one only needs to consider the terms associated with n=1 in

the expansion of displacements; that is, u_,, u, and u, can be expressed

r-e

by eqns. (2.103). The transformed loads associated with 5}21’ _621 and
V 3221 in Eqns. (2.114) can be obtained by the application of Hankel trans-

forms according to Egqns. (2.60), the result is:

C_ Jl(kR)
211 " "7 TKkR
1 Gons = 0 (2.116)
% .
. l'J](kR)
231 " 7 kR

A procedure similar to the one described for the loads on cylindri-

cal surfaces leads to the integral representation of Upps Ugy and U,

similar to those presented by Eqns. (2.107) except that the term Jo(kR)

J, (kR)
should be replaced by _lEﬂ__ . The transformed displacements Up1s Upq

and Usq in these equations then correspond to transformed applied stres-
1

Ses Tppy =% » Oppy = 0and Ty =1

Finally for the load distribution shown in Fig. 2.3d (vertical force
on a circular surface) one can show that forces and displacements are
contributed only by the terms associated with n=0 in the Fourier expan-
sions and that expressions for displacements are given by Egns. (2.112)

except that in these equations the term Jo(kR) should be replaced by

J](kR)/kR; transforried displaements uqyp and u,g, in these equations then

1

correspond to tranc-ormed applied stresses 0,.~ = 0 and 6?20 ==

210
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The expressions for displacements obtained in this section involve,

in general, integrals of the form

I = fo 73, (k) 3_(KR) dk (2.117)

in which the kernel, f, represents a function of k and is associated
with transformed displacements, and n and m are integers that can take
on values of zero and one.

The first step in the numerical evaluation of the above expression
is to approximzfe the semi-infinite integral by a finite integral, that

is: ku
1= [ £3_(kr) J_(KR) dk (2.118)
0

in which ku is an upper limit of integration which can be defined on
the basis of the intagrand's rate of decay. The next step is to divide
the integration dorain (O, ku), into a number of discrete intervals and
to use, in each interval, the value of the integrand at a number of
points in order to define an interpolation function. These functions,
which approximate the actual variation of the integrand, are used to per-
form the integration in each interval analytically. The final step is
then to sum the results of the numerical integration over the intervals.
Before describing the quadrature implemented in the present work,
it may be instructive to examine certain characteristics of the kernel f
(Eq. 2.118). This function represents a transformed displacement associ-
ated with a load distribution in the medium. Fig. 2.5a shows the piot
of the real part of Usg at the surface of a lTayered halfspace caused by

a uniform frictionzl Toad on a cylindrical surface in the top layer. The
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i 21TR«z(u2 )
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Fig. 2.5 - Transformed Displacemencs of the Surface of
a Layered Medium.
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medium consists of 5 layers resting on a viscoelastic halfspace; the

following table gives the properties of this medium.

Layer Thickness Shear wave Mass density Damping Poisson ratio

velocity

Top 1.0 1.0 1.0 0.05 0.40
2nd 1.5 1.5 1.0 0.05 0.40
3rd 2.0 2.0 1.0 0.05 0.40
4th 3.0 2.5 1.0 0.05 0.40
5th 4.0 3.0 1.0 0.05 0.40
Half-

space — 4.0 1.0 0.05 0.40

In addition, the frequency of vibration, w, is 1 rad/sec. Fig.
2.5b shows the plot of the real part of uqy at the surface of this
 medium caused by a uniform lateral load on a cylindrical surface in the
top layer. In the ensuing paragraphs, the region which contains the
peaks of the kernel f will be referred to as "region I," and the remain-
ing domain will be referred to as "region II." (Region I extends to
values of k which are of the order of éL s» Where CS is the shear wave
velocity of the layer in which the 1oadsis applied.)

The plots in Fig. 2.5 show that the kernel f in region I is charac-
terized by pronounced peaks. These peaks, which are associated with
surface wave modes, become sharper as tha raterial damping in the medium
decreases. In addition, more peaks appear in the variation of the kernel

as the number of 1ayer§ increases. These plots suggest that for the pur-

pose of numerical integration in region I, one has to select, in general,
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small intervals, so that the erratic nature of the integrand can be cap-
tured by the interpolation functions.

On the other hand, the variation of the kernel in region II, which
contains the decaying branch of the kernel, is very smooth (see Figs.
2.5a and 2.5b). The kernel, in this region, approaches zero ever faster
as the relative distance between the layer at which f is evaluated and
the layer in which the load is applied increases. This can be verified
by examining Figs. 2.6a and 2.6b, which show the variation of Usg and
U1 at the surface of the halfspace for the same medium and load condi-
tion associated with Figs. 2.5a and 2.5b, respectively. These observa-
tions suggest that, as far as the variation of the kernel is concerned,
for numerical integration one may select larger intervals in region II
than in region I.

As for the Bessel functions in the integrand, one has to make sure
that, for small arguments (kR and kr smaller than, say 4.0), the size
of the interval is small enough to allow a sufficiently accurate repre-
sentation of these functions at the integration points. (Since the wave-
length of a Bessel function is approximately 27, in order to have, say,
10 intervals in a cycle, it is necessary that the size of the interval,
Ak, be selected such that (Ak)r 5_%% and (Ak)R 5_%%). On the other hand,
for large arguments, one may use Hankel's asymptotic expansion to approxi-

mate the Bessel functions. Hankel's asymptotic expansion for Jv(y) for

large argument is aiven by:

3,(9) =/ [Py cos X - Qlu.y) sin ] (2.119)

where
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Fig. 2.6 - Transformed Displacements of a Plane in a
Layered Medium.
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X=y-(Fvegm, | (2.120)
P(\),.Y) . Z (-1 \2 (\),Zgg‘ =1- (U-])(lzl-g) +'(U-])(U-9)(U;25)(U-49) _
2=0 (2y)” 21 (8y) 4!(8y)
(2.121)
It ,2041)  _ u-1 (u=1)(u-9)(n-25)
Qvoy)~ T (-D* -—7—(” - = - + ... (2.122)
Ly (2yye¥1 B 31(8y)°
In these expressions u = 4v2,
Eg. (2.119) can be rewritten as:
Jv(y) = Av(y) cos y + Bv(y) sin y (2.123)
in which Av(y\ and Bv(y‘ are given by
A (y) = /% [P(vy) cos (hv + D+ Qlusy) sin v+ Pl
v TY i ? I i 2 4
| (2.124)

8,() = /2 [P(v.y) sin (v + Dn - Qvay) cos (v Dnd

Now consider an interval of integration between k] and k3 on the
k-axis. In addition, for the present study, an integration point with
k=k2 is used at the center of the interval so that a quadratic poly-
nomial can be defined to interpolate the integrand between these three
values of k. Depending on the value of k]R and k]r, one of the follow-
ing four integration procedures is then applicable: (In the following,
8§ is used as reference value to distinguish between small and large val-

ues of the argument for Bessel functions.)

1) k]R_g s and kyr < 8 @ If Fis F, and F3 denote the value of the

integrand, f Jn(kr) Jm(kR), at k1, k2 and k3‘ respectively, then one can



()]
—-—

obtain the quadratic polynomial which is defined by these values.

can be shown that this polynomial is given by

F(k) = P> +Qk + Sk 5 &

in which

- _2_
P = (Ak)z [F'I - 2|:2 + F3]
= ] - ar .
- (Ak)2 [k](4F2 - Fl B 3F3) * k3(4F2 B Jc] B FB):|

.1 2 2
S = W [k Fy + K5 Fy - kg kg(4F, - Fy = F3)]

and Ak = k3 - k]. :
1 2

The integration of the polynomial F(k) over the
¥ 4F, + F

interval [k],k3] then results in Simpson's rule (Ak x g

2) k]R < & and kyr > &:

For this case one can replace Jn(kr) by

It

(2.125)

(2.126)

Hankel's asymptotic expansion given by Eq. (2.123); thus one can write:

3
-7 (K 9 (k) 9 (kR) d

Ky

k
3

= [ £00 9, (RIDA (kr) cos (kr) + B, (kr) sin(kr)] di

k

k3

= [ £00) 9, (kR) A (kr) cos (kr) d

k

3
; [k F(k) 9y (kR) B, (kr) sin (kr) dk

(2.127)



62

Consider the first integral in Eq. (2.127): One can approximate
the coefficient of cos(kr) in this integral by a quadratic polynomial,
as described in the previous case. (In this case, however, F1, F2 and
F3 are the value of f(k) Jm(kR) An(kr) at ky» 'kz and k3, respectively).
Therefore this integral is approximated by an integral of the form
(3

) (Pk2 + Gk + Sk) cos(kr) dk, which can be evaluated explicitly.
k1 '

Since the oscillatory nature of the Bessel function is accounted
for by the trigonometric functions, the size of the interval is con-
trolled only by the degree of smoothness of the other functions in the

integrand.

3) kiR > 8 and kyr < &: The procedure for this case is similar to

that of the previous one, except that now one has to use the asymptotic

expansion for Jm(kR).

4) k]R > & and kyr > 6 : In this case one can use the asymptotic ex-

pansion for both Bessel functions in the integrand. Then, in the final

results, one gets integrals of the form:
k3 > cos(kR) , cos(kr)
j (Pk“ + Qk + Sk) { { dk, 1in which the poly-
k1 sin(kR) \ sin(kr)

nomial (Pk2 + Qk + Sk) has replaced the actual functions appearing with
the trigonomefric functions in the integrand. These integrals also can

be evaluated explicitly.
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2.3 Lateral and Axial Vibration of Prismatic Members

fn Sec. 2.1 certain response quantities of a dynamically excited
prismatic member (pile) were used to formulate the pile group problems.
More specifically, the formulation was based on the evaluation of the
dynamic stiffness matrix of the piles Kp, the dynamic flexibility matrix
of clamped-end piles, F_, and the dynamic flexibility matrix of clamped-

P

end piles for harmonic end displacements, ¥ The objective of this sec-

pi
tion is to derive the expressions for the response quantities that are

needed to construct these matrices.

2.3.1 ~ Lateral vinration

The equilibrium equations for a differential element of a beam in
lateral vibration. including the effect of axial force, are given by

(see Fig. 2.7b):

oyl = 0 (2.128)
dM du _
v+ iz + H - 0 (2.129)

in which m denotes mass per unit length of the beam and H is the constant

axial force in the beam. Using Egns. (2.128) and (2.129) along with the

moment-curvature relationship, M = EI g—%, (EI being the bending rigidity
dz

of the beam), one gets:

4 2 2
d'u Hy d"u mw
—1 + (&%) - =Ju =0 (2.130)
déZ' EI dz? I

The solution of this differential equation can be expressed as:

u = C, cos{n:) + Czsin(nz) + Gy cosh(gz) + Cy sinh(gz) (2.131)
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Fig. 2.7 - A Beam in the Lateral Vibration.
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in which:

2 2 1/2 1/2
{1 )

2 2172 /2
E"{[(ZEI) + 7] 'ZE_I}

(2.132)

In order to evaluate the elements of Wp associated with the lateral
degrees of frezdom. one needs to derive the expression for the lateral

displacement of the beam caused by the displacements at the two ends,
Ups 4p> Y 274 5. To achieve this, one may use the equation for u (Eq.
2.131) aleng with i:s derivative to express the end displacements in
terms of C], C, :,3 and C4. If now the resulting equations are solved
for these unknown ccnstants, one gets:

1

G L0+ 5Ty g+ Trgay + (€7 - COu - (57 - g 5F)gy]

1 ] n, £ <& 1 (o0 _ (8
Cp= - [-%TZUA = (1= Tgy + (ST + 257ug + (€7 - €%)¢]

(2.133)
1 1 n_ et 1en_ 16
3 T—(—)— [(] = T ) A n T3¢A - (C -C )UB + (n S - 3 S )¢B]

In these expressions To’ T1, T2, T3 ard T4 are given by :

—
]

- 2cNct - (M _ &yenet
o = 2-2C7%C .(g n)S S

Iy

Ty = ot e 2sTs
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= (Neéy N eneé
T2 C''S>+ £ S'c

= eNe&_ 1 eneé
T3 S''C £ c''s

= encé_ n ek (2.134)
T4 S''S £ c'c

and C", s, ¢& and S° are used to denote the following guantities:

Cﬂ

i

cos (nL) ; sh

sin (ML)
(2.135)

Y

C” ¥ cosh (&L) . sé

sinh (EL)

and L is the Tength of the beam. Finally, the desired expression can
be obtained by introducing Egns. (2.133) into Eqns. (2.131). (The ele-
ments of wp associited with a point C of the beam are then the coeffi-
- cients of up, ¢ps ug and ¢p in the expression for the displacement of
point C).

The dynamic stiffness matrix of the beam is obtained by expressing
the forces at the two ends of the beam in terms of the displacements of
these points. This can be achieved by using Eq. (2.129) and the moment-

curvature relationship along with Eqns. (2.131) and (2.133); the result

can be written as:

¢ 3 1 3
Va Up
Ma | oA |
4 <
= K (2.136)
Vg up
L Mg ) . 95 |

in which the elemerts of the symmetric 4 x 4 dynamic stiffness matrix, K,

are given by:
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K,. = =2 (n2 + az)(rqsn Cg + £ ch Sg)

n ¢
K =%[(n2-g2)(1‘ " cE) + 2neS S ]

oy = = § o+ Pins0 + ¢ )

Koy = E2 (0% + £2)(CE - c)

0T
Kpp = T}; (2 —%)(g sncE - nghsh)
Kyp = - ;l»(yz + g2)(cE - ¢
0
Kyp = % (2= Enst - g 8N
K33 = Ky
Kaz3 = - Koy
Kaq = Koo (2.137)

In order to evaluate the elements of Fp associated with the lateral
degrees of freedom, it is necessary to derive the expressions for the
lateral displacement caused by a Tateral point load in a fixed-end beam.
Consider the beam shown in Fig. 2.7c subjected to a point force, p, at
z = a. One can use Eq. (2.131) to express the displacements of the beam

as:

A]cos(nz) + Azsin(nz) + A3cosh(gz) + A4sinh(gz) 0<z<a

J u
(2.138)
( u = Bycos(nz) + B, sin(nz) + Bjcosh(ez) + Bysinh(¢z) a<z<lL

| A
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Y

where n and £ are given by Egns. (2.132). The unknown constants A],

A 83, 84, can be determined by imposing the kinematic boundéry

2, . e o
conditions at the two ends (zero translation and rotation) along with
the displacement compatibility and equilibrium conditions at the point

of application of the load. The resuit is:

A = EIn(n2p+ EZ)TO [T3(cosh(ga) - cos(na)) + (T; - 1) sin(na)
- (Ty + g) sinh(ga)]
e A1 [Ty - Deosh(ga) - (14 £7,) cosira)
+ Tz(% sin(na) - s1’nh(£a))jl
Ay = - A
Ay=- 14,
- P '
By = EIn(n2 + gz)To [T\.,)(cosh(ia) - cos(ma)) + (T, + g)(% sin(na)
- sinh(ga)):l
82 = Ep 5 [(T] - 1)(cosh(za) - cos(na))
EIn(n™ + £7)T,
+ Tz(ﬁ sin(na) - sinh(ga))]
By=-Ty By - T3 B
B4 = T2 Bl + T4 82 (2.139)

2.3.2 Axial vibration

The equilibrium equation for a differential element of a beam in

axial vibration is civen by (see Fig. 2.8b):
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Fig. 2.8 - A Beam in the Axial Vibration
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2
%§-+ mwiy = 0 (2.140)

Introduction of the force-displacement relationship F = EA %%-into

Eq. (2.140) leads to:
2

d™v m 2 _
:j;?-‘-ﬁm v = 0_ (2.]41)

The selection of this differential equation can be written as

v =C cos(zz) + C, sin(zz) . (2.142)
. L= ["ﬂﬁ

Following the procedure described for lateral vibration, one can
derive the expressions for 61 and C2 in terms of the end displacements

of the beam:

1°Va

C2 = §7%—ZE'[' cos(rL) vy t vB] (2.144)

Therefore Eq. (2.142), with C; and C, defined by Eqns. (2.144), can
be used to obtain the elements of Wp associated with axial degrees of
freedom.

Similarly, the axial dynamic stiffness matrix of the beam can be
obtained following the procedure outlined in the previous section; one

can show that:

F

A cos(zL) -1 Va
EAZ

SED) (2.145)
FB -1 cos(zL) Vg

Finally, the axial displacement in a fixed-end beam caused by an axial
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point Toad p (see Fig. 2.8c) is given by:

<
i

A] cos(zz) + A, sin(zz) 0<z<a
(2.146)

<
i

= B] cos(zz) + B, sin(zz) a<z<L

The unknown constants A], A2, B] and 82 can be found by using the
kinematic boundary conditions at the two ends of the beam together with
compatibility and equilibrium conditions at the point of the application

of the load; one can show that:

(A, =
A] 0
= _.E.._ - i r
1A s [cos(za) - cotan(cL) sin(za)]
(2.147)
By = Eﬁi’ sin(za)
. By = %ﬁ% cotan(zL) sin(za)

Egqns. (2.146) with A], AZ’ B] and B, defined by Eqns. (2.147) can
be used to obtain elements of Fp associated with axial degrees of freedom.
The expressions derived in this section apply to the dynamic excita-
tion. The corresponding expressions for the static case are available

in the literature and therefore are not repeated here.
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CHAPTER 3 - DYNAMIC BEHAVIOR OF PILE GROUPS

The objective of this chapter is to present the numerical results
obtained with the formulation outlined in chapter 2, and to investigate
certain characteristics of the vibration of pile groups. The quantities
of interest in this study are: 1) The dynamic stiffnesses of pile groups
corresponding to the horizontal, vertical, rocking and torsional modes
of vibration; 2) the seismic response of pile groups; and 3) the dis-
tribution of un aprlied load (horizontal or vertical) on the pile cap
among the pilz: ir the group. While information on the distribution of
Toads among the pilas is necessary for the deéign of the piles' section,
the stiffnesses, alung with the transfer function of the pile cap associ-
ated with a seismi: excitation, can be used, in the analysis of the super-
structure, to account for the foundation-structure interaction effects.
(In a conventional foundation-structure interaction analysis for seismic
excitation, first the stiffnesses of the foundation are evaluated (soil
springs); next the motions of the foundation in the absence of the super-
structure are obtained (kinematic interaction), and finally the dynamic
response of the superstructure mounted on soil springs and subjected at
the base to the motion obtained from the kinematic interaction analysis
is computed (inertial interaction). For details see, for example, Kausel
and Roesset (1974)).

Although the results presented in this chapter cover only a limited
range of parameters, it is believed that they can be used to draw general
conclusions about certain aspects of the problem. In addition, these
results, along witr those of chapter 5, can be helpful in gaining insight

into the mecnanism of the dynamic behavior of pile groups.
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In this chapter, as well as in chapters 4 and 5, the elasticity
modulus, mass density, poisson ratio and material damping of the soil

are denoted by Es’ Pgs V and BS, respectively; and the corresponding

S

quantities for the piles are denoted by E and sp. In addition,

P’ Pp, Yp
Ap’ Ip, L and d are used to denote the cross-sectional area, moment of
inertia, length and diameter of the pi]es,'respectively. Also, N refers
to the total number of piles and s to the distance between adjacent piles.
Finally, 3 dafines the nondimensional frequency, i.e., do = %Qw in which
w is the frequency »f harmonic vibration and Cs is the 1argestsshear-wave
velocity of the soil profile. |

In order to verify the numerical solution scheme developed in the
present study, th: ‘ollowing comparisons with the results of previous
investigations are presented. Figure 3.1 shows the horizontél and ver-
tical static stiffriesses of 3 x 3 pile groups in an elastic halfspace ob-
tained by Poulos and Davis (1980). The same quantities evaluated by the
present method are also shown in this figure (dashed 1ine). These re-
sults correspond to %-= 25 and féfa = 10'3 for the horizontal case, and
to %-= 25 and §§-= 10'3 for the Jértica] case. The figure shows that the
results of the gresent method for the vertical stiffness agree very well
with those of Poulos. For the horizontal case, on the other hand, the
results of the two studies display some discrepancies; these results, how-
ever, do not differ by more than 20%. Therefore it can be concluded that,
in general, there is a fairly good agreement between the present solution
and the Poulos solution.

Figure 3.2 disalays a comparison between the results of the present

study and those rezorted by Nogami (1979) for the vertical stiffness and
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damping of a 2 x 2 pile group. The soil medium in this case is a uni-
form viscoelastic stratum, with thickness H = 75 d, resting on a rigid

2
bedrock, and the piles are characterized by %—= 37.5 and E%LK-= 1 (M is
p

the shear modulus of the soil); also §-= 5. The figure shows that the
agreement between the two solutions is fairly good. The small discrep-
ancy observed between the two solutions is believed to be partly due to
the fact that, in the analysis of friction piles, Nogami introduced a
soil column beneath each pile so that he could use the formulation devel-
oped for end-bearing piles.

In the results presented in this chapter, as well as in chapters
4 and 5, it is assumed that the soil medium is a viscoelastic halfspace

with Vg = 0.40 and B = 0.05, and the piles are made of elastic materi-

P
als with v, = 0.25 and g = 0.00. In addition, it is assumed that 5§-=
P
0.70 and %—= 15.  The response quantities examined in this chapter are

evaluated for a number of pile spacings (§-= 2, 5 and 10) and group for-
d

mations (2 x 2, 3 x 3 and 4 x 4 square groups), as well as two soil con-
E
ditions (soft soil: £ = 1073; stiff soil: & = 1072)
p p
of pile-to-cap connection (fixed or hinged).

, and the two types

3.1 Dynamic Stiffnesses of Pile Groups

The stiffness functions, obtained with the present formulation, are

complex quantities which can be expressed as:

K:k'*'iaoc ) (3.])

For horizontal and torsional cases, the dynamic stiffnesses are

noritalized with respect to the horizontal static stiffness of a single
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pile in the group, kS = 0) , whereas for the vertical and rocking

xx(ao
dynamic stiffnesses the vertical static stiffness of a single pile,
k;z(ao = 0) , has been used for the normalization. More specifically,
the normalization factor for the horizontal, vertical, rocking and tor-
sional dynamic stiffnesses are: Plkix(ao = 0),'Nk§7_(ao = 0),

Zx% k;z(a0 = 0), and Zr? kix(ao = 0), respectively: in these factors

x and r refer to the Cartesian and polar pile coordinates, respectively.
.(In order to distinguish between the stiffnesses of pile groups and
single piles., a suparscript "G" is used for the former and a superscript
“s" for the latter.)

Figure 3.3 shows the horizontal and vertical stiffnesses and damp-
ings of a 2 x 2 pile group embedded in a halfspace, for different pile
spacing (s/d = 2, 5 and 10) and for ES/Ep = 10'3. This figure shows
that the behavior ¢f a pile group for very close spacings and up to a
certain frequency, is very similar to that of a rigid footing; that is,
stiffnesses decrease with frequency and even become negative, indicat-
ing a behavior dominated by inertia effects, and radiation dampings dis-
play a frequency-independent characteristic. On the other hand, inter-
action effects among the piles start to dominate the overall behavior
of the group as frequency exceeds a certain limit. This can be verified
by examining the changes in the patterns of kxx and kZZ for different
pile spacings. (For example, for s/d = 5, the figure shows that kxx and
kZZ first decrease up to a certain freyuency and then start to change

their pattern). The transition between the two modes of behavior occurs

at smaller frequencies as the distance between the piles increases.
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Figures 3.4 and 3.5 present the results for the horizontal and
vertical dynamic stiffnesses of 3 x 3 and 4 x 4 pile groups for the
same soil and pile parameters used for the 2 x 2 group (Fig. 3.3). In
addition to the general characteristics observed in Fig. 3.3, these
figures display a more pronounced group behavior as the number of piles
increases. Moreover, with an increase in the number of piles, more
peaks are introduced in the variation of stiffnesses and dampings.

An interastinc common feature of these results is the very large
interaction &ffect in the group; if there had been no interaction, the
curves would have coincided with those of a single pile, the real part
of which deviates only slightly from unity in the frequency range con-
sidered (dashed 1is¢ in Fig. 3.3). The large interaction effects, which
seem to be stronger for the vertical vibration than for the horizontal,
are essentially dus to the out-of-phase vibration of piles. This point
will be discussed again when the superposition scheme is examined in
chapter 5.

Figure 3.6 shows the horizontal as well as vertical stiffnesses
and dampings of 3 x 3 pile groups in which the piles are hinged to the
cap. Comparing the results in this figure with those in Fig. 3.4 (cor-
responding to groups in which the piles are rigidly connected to the
cap), one can see that there is a considerable reduction in the hori-
zontal stiffnesses and dampings, as expected. These quantities, however,
have the same features as were displayed by plots of kXx and Cyx in
Fig. 3.4.

Figure 3.7 shc's the horizontal and vertical dynamic stiffnesses
%)

for a stiffer halfsozce (ES/Ep = 10°°) and for groups with different
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number of piles (2 x 2, 3 x 3 and 4 x 4). For all these pile groups,
s/d = 5. This figure displays basically the same features observed for
the groups in the soft soil medium (Figs. 3.3, 3.4 and 3.5). How-
ever, the interaction effects seem to be less pronounced for the stiffer
soil medium.

Another interesting characteristic of these results is that, for
low frequencies, the radiation damping increases as the width of the
foundation (pile cep) is increased.

Figures 3.8 to 3.12 show the rocking and torsional dynamic stiff-
nesses associated with groups for which the horizontal and vertical
dynamic stiffnesses were presented in Figs. 3.3, 3.4, 3.5, 3.6
and 3.7, respectively. (The pile and soil parameters are indicated
in the figures.) lost of the observations on the characteristics of the
horizontal and vertical dynamic stiffnesses, such as the dependence of
group stiffnesses and dampings on the pile spacing, the number of piles
and the stiffness of the soil medium, apply to the torsional and rocking
dynamic stiffnesses as well. Greater interaction effects for these cases
are, however, associated with the in-phase vibration of piles.

An important'characteristic that differentiates between the behavior
of pile groups and single piles is associated with the concept of a
pressure bulb. The pressure bulb is defined here as the zone in the
neighborhood of the foundation where stresses (and strains) are signifi-
cdnt. As a result, the characteristics of this zone play a major role
in the behavior of the foundation. Since this zone extends to depths
which are comparable to the size of the foundation, one is led to expect

tha” the characteristics of the deeper layers influence, to a greater
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extent, the overall response of pile groups than they do the response
of single piles, where behavior is controlled primarily by the near-
surface soil-pile properties. This can be verified, in fact, by examin-
ing the results in Fig. 3.13. In this figure the ratio of the absolute
values of the stiffnesses of a pile group, embedded in two different
soil media, are compared. The first medium is a homogeneous halfspace

'2,vand the second, a halfspace similar to the former,

with ES/Ep =10
but overlain by & surface layer with thickness h=d and stiffness ratio
ES/Ep = 107" (i.e., 10 times softer). This second case might also be
considered as a simple model to account for the nonlinear effects that
may be expected in the neighborhood of the pile heads as a result of
soil yielding and pile-soil separation. The results clearly show that,
as the number of piles increases, the stiffness ratio at low frequencies
increases, and approaches unity. Therefore, pile groups are less influ-
enced by conditions near the surface than single piles are. This obser-
vation also bears on the accuracy of the techniques which use the re-
sult of single-pile nonlinear analyses (or field tests on single piles)

along with the empirical group reduction factors to derive group stiff-

nesses.

3.2 Seismic Response of Pile Groups

As was stated earlier in this chapter, for a conventional founda-
tion-structure interaction analysis fnr.seismic excitation, one:needs to
evaluate the motions of the foundation (pile cap) in the absence of the
superstructure. In the present study, it is assumed that the seismic

mction is due to ertically propagating shear waves in the halfspace that
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produce a free-field ground-surface displacement Ug- These waves in-
.duce both a translation and a rotation in the pile cap. The transfer
functions for these quantities are complex-valued functions and will
be presented in terms cf their absolute values.

ngure 3.14 presents the absolute value of the transfer functions
for the horizontal displacement, u, and rotation, ¢, of the pile cap
for 2 x 2 pile groups with different pile spacings (s/d =2, 5 and 10)
and with ES/Ep = 10'3 (these are the same pile groups for which the
stiffness characte~istics were studied in Fig. 3.3) . The transfer func-
tion for the pile-Fead displacement of a single pile is also shown in
the figure (the dashed 1ine). This figure shows that as the foundation
width increases, h2 absolute value of the transfer function for the
translation, |u!/ug, approaches unity at low-frequency values. This
implies that the pile cap essentially follows the ground motion.Aalthough
it filters out to some degree its high-frequency content. For example,
if Cs = 70 m/sec (soft soil), d =1 mand s = 10 m (s/d = 10), then the
fact that the values of |uj/ug up to a; = 0.2 are very close to one,
implies that the filter function is essentially unity up to the frequency
f = 2.25. Since the seismic motion at the ground surface for the soft
soil medium considered here will be characterized by low-frequency com-
ponents, it can be concluded that the motion of the pile cap and the soil
~wWill be very similar.

On the other hand, the figure displays a significant dependence of
|¢| on the width of the foundation. More specifically, as the foundation
width increases, || tends rapidly to zero. This implies that for foun-

dations having larce width, one can neglect the rotation of the foundation

in seismic analyses.
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Figures 3.15 and 3.16 present the absolute value of transfer
functions for_the translation and rotation of the pile cap for 3 x 3
and 4 x 4 pile groups for the same soil and pile parameters considered
for the 2 x 2 group. These figures, in general, exhibit the same char-
acteristics that were displayed by Fig. 3.14. It is especially inter-
esting to note the significant reduction in [¢| for s/d = 10 in Fig.
3.16 (the 4 x 4 group).

Fig. 3.17 shows the variation of [u| and |¢| for 3 x 3 pile groups
in which the piles are hinged to the cap-As pile spacing increases in
this case, values of |u| for the group approach those of a single pile;
hence the foundation tends to amplify low-frequency components of the
earthquake. On the other hand, values of |¢| are considerably smaller
for these groups than for groups with rigid pile-to-cap connections
(compare with Fig. 3.15).

Finally, Fig. 3.18 presents the transfer functions for groups with
different numbers of piles with s/d = 5, embedded in a stiff halfspace,

'2. (The parameters in this figure are the same as those in

Es/Ep =10
Fig. 3.7). Comparing these results with those for soft soil conditions

(Figs. 3.14, 3.15 and 3.16), one can conclude that pile groups in stiffer
media follow more closely the ground motion and that they filter out only
the high-frequency content of the earthquake (]ul/ug is essentially unity

up to a, = 0.4 in this figure)

3.3 Distribution of Loads in Pile Groups

With the present formulation the forces (reactions) developed at

the pile heads due to harmonic forces applied on the pile cap are complex
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quantities which can be expressed as:

R=[Rl ¥ - (3.2)
where |R| is the maximum value of the reaction and y defines the phase
lag between the reaction and the applied force. In this section a num-
ber of examples are investigated in order to determine the variation of
|R| with pile spacing, pile-to-cap fixity condition and frequency, for
the different piles in a group. The fact that, at a given frequency,
the value of ¥ is not the same for the different piles in the group im-
plies that the forces on the pile heads do not attain their maximum
values at the same time: One might have then to consider this fact in
interpreting the results to be presented.

Figure 3.19 shows the distribution of loads among the piles of the
3 x 3 group studied in Fig. 3.4 (Eg/E, = 1073). The four plots in the
top correspond to the shear, Rx’ and the moment, Mx’ at the pile heads

due to a horizontal force, F_, on the cap. The results are normalized

X
with respect to the shear that would be observed in each pile if there
were no interaction effects (i.e., FX/N). These plots show that for the
static case, the corner piles carry the largest portion of the load,
while the piles closest to the center carry the smallest. However, this
observation is no longer valid in the dynamic case. In fact, for some
frequencies, a load distribution favorable to the corner piles may take
place. This can be verified, for instance, by examining the variation
with frequency of the shear force on piles I and IV for s/d = 5. The

plots for these two cases show that the maximum shear in pile IV, for

values of a, between 0.6 and 0.8, is almost twice the maximum shear in
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in pile I. These results reveal that the magnification factor at these
frequencies is considerably larger for the piles closest to the center
than the corner piles. The piles on the eéges of the cap, on the other
hand, seem to be only slightly affected in their share of the applied
load. As far as the moment at the pile heads is considered, the plots
in Fig. 3.19 show that this quantity displays essentially the same char-
acteristics as the shear does. It is very interesting to note that the
plots of moment very closely follow the patterns exhibited by the plots
of shear.

The remaining plots in Fig. 3.19 correspond to the axial forces,
Rz’ observed at pile-head level, caused by a vertical force, Fz, on the
pile cap; the results are normalized with respect to the average verti-
cal force (FZ/N). These plots show basically the same characteristics
that were observed in the distribution of a horizontal force. The dy-
namic effects are, however, more pronounced for the vertical case (for
example, observe the significant dynamic amp]iffcation of the axial force
for some frequencies, which is as large as 4, on pile IV for s/d = 5).

Figure 3.20 presents the distribution of horizontal as well as
vertical forces in 4 x 4 pile groups. The plots in this figure exhibit
the general features of load distribution that were observed for the
3 x 3 group.

Finally, Fig. 3.21 shows the distribution of forces in 3 x 3 pile
groups in whica the piles are hinged to tie cap. Comparing this figure
with Fig. 3.19, one can see that there is only a slight change in the
distribution of shear as a result of the change in the pile-head fixity
condition. There is, however, no Ehange in the distribution of axial

force, as expected.
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CHAPTER 4

THREE-DIMENSIONAL VS. QUASI-THREE-DIMENSIONAL SOLUTIONS

In the formulation outlined in chapter 2, it was assumed that the
forces developed at the pile-soil interface consisted of lateral for-
ces in the x- and y-directions, as well as frictional forces in the z-
direction. These forces were then related to their corresponding dis-
placements in the soil mass through a soil flexibility matrix. Similarly,
these forces and the corresponding displacements in the piles were related
by certain ﬁi]e "flexibility matrices." The final step in the formulation

was the imposition of the compatibility between the displacements in the

soil medium and in the piles.

Clearly, for a three-dimensional pile group analysis one has to de-

velop a formulation which guarantees the full compatibility between the
soil and the piles in all three directions (the formulation presented in
chapter 2, which was briefly described above, is an example of a three-

dimensional solution.) A quasi-three-dimensional solution, on the other

hand, refers here to a formulation in which the compatibility condition

in at least one direction is relaxed. An example of such a formulation

is the one for the analysis of vertical vibration of pile groups in

which only thé frictional forces at the pile-soil interface and the
associated displacements are taken into consideration. Most of the
existing pile group solutions are, in fact, of the quasi-three-dimen-
sional type. The underlying assumption for quasi-three-dimensional analy-
ses is that the forces in the direction for which the compatibility con-

dition is relaxed hardly affect the displacements in the main direction.
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Clearly, a quasi-three-dimensional formulation requires much less compu-
tational effort than a threeQdimensional one does; this is due to the
fact that the former involves fewer degrees of freedom. Therefore, if
justified, a quasi-three-dimensional solution is preferred over a fully
three-dimensional one. It is important to point out that quasi-three-
dimensional formulations are useful only for the analysis of symmetric
pile groups. This is due to the fact that the motions of an unsymmetric
pile group in the p~incipal directions are coupled, and a quasi-three-
dimensional fornulazion is not, in general, capable of modeling the
coupling effect.

In what follows the results of a number of quasi-three-dimensional
solutions are prescnted and compared with their three-dimensional counter-
parts, which were prasented in chapter 3.

Figure 4.1 shaws the horizontal and vertical dynamic stiffnesses
for 4 x 4 pile groups in the soft soil medium (E(/E, = 10°3). The hori-
zontal dynamic stiffness is obtained by considering, in the formulation,
only the horizontal pile-soil interface forces in the direction for which
the stiffness is evaluated, whereas the vertical dynamic stiffness is ob-
tained by considering only the vertical forces at the pile-soil interface
(frictions and pile-tip forces). Comparison between this figure and Fig.
3.5, which was obtained by the three-dimensional formulation, shows that
the two solutions are almost identical, even for close spacing.

Figure 4.2 presents the horizontal and vertical dynamic stiffnesses
for pile groups with s/d = 5 in the stiff soil medium (ES/Ep = ]0'2). Com-
parison of these resuylts with those in Fig. 3.7 again shows an excellent

agreement between the two solutions.
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For the rocking mode of vibration, both the horizontal and ver-
tical forces at the pile soil interface have nonnegligible effects on
the behavior of the group; therefore, for a quasi-three-dimensional
analysis, it is assumed that the vertical forces as well as the horizon-
tal forces in the direction of rocking are present. In addition, in
order to introduce the basic assumption of quasi-three-dimensional solu-
tions, it is assumed that horizontal forces produce only horizontal dis-
placements and vertical forces cause only vertical displacements. Simi-
larly, for the torsional mode of vibration, only the two components of
the horizontal forces at the pile-soil interface, which are assumed to
be uncoupled, are included in the analysis. Fig. 4.3 shows the rocking
and torsional dynamic stiffnesses for 4 x 4 groups in the soft soil med-
jum, and Fig. 4.4 shows the same quantities for groups with s/d = 5 in
the stiff soil medi.im. Comparison of these results with the correspond-
ing results by the three-dimensional analysis (Figs. 3.10 and 3.12, re-
spectively) suggests that the results of these two solutions agree fairly
well, except for a slight discrepancy observed in the torsional stiff-
nesses.

Finally, Figs. 4.5 and 4.6 present a number of examples for seismic
analyses by a quasi-three-dimensional formulation, similar to the one
used for the evaluation of rocking stiffnesses. Fig. 4.5 shows the abso-
lute value of the transfer functions for displacement and rotation of the
pile cap for the 4 x 4 group in the soft scil medium and Fig. 4.6 shows
the same quantities for different pile groups with s/d = 5 in the stiff
soil medium. Comparing plots in Figs. 4.5 and 4.6 with those in Figs.

3.15 and 3.18, ¢1@ can conclude that the results of the two solutions
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agree fairly well in the frequency range of interest for seismic anal-
ses.

Therefore; in general, quasi-three-dimensional formulations are
capable of accurately characterizing the dynamic responses of symmetric
pile groups and they can replace the more involved three-dimensional

solutions.



111

CHAPTER 5 - THE SUPERPOSITION METHOD

The three-dimensional formulation presented in chapter 2, as well
as the modified version of it, namely the quasi-three-dimensional formu-
lation described in chapter 4, require, in general, solution of a large
system of equations. This is due to the fact that on each pile segment
there are a number of unknown interaction forces that have to be related
to their corresponding displacements, through the soil or pile flexibil-
ity matrices As the number of piles in a group increases, the size of
these matrices Do32% considerable computational difficulties on the analy-
sis. Therefore, it is highly desirable to develop simplified solution
schemes which enable one to analyze large pile group systems by reducing
them to smaller a~n1 simpler systems. The superposition method is an
example of such simplified pile group solution schemes.

The superposition method originally proposed by Poulos (1968, 1971)
is frequently used to formulate pile group problems. In this approximate
scheme, only two piles are considered at a time in the formation of a
global flexibility matrix which relates the forces and displacements only
at the pile heads. The method clearly relies on the observation that the
presence of other piles does not significantly affect the motion of the
two piles under consideration.

The entries in the global flexibility matrix are usually obtained
from tabulated solutions for two piles that are commonly referred to as
interaction factors; these factors are presented in terms of the distance
separating the piles and the material properties of the system.

The available tabulated sélutions for the interaction factors are

for static lcads cr'y. In order to extend the applicability of the method
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to dynamic loads it is necessary to develop appropriate factors for
this purpose. -

A dynamic interaction factor for two piles (in which a unit harmon-
ic load is applied on the first pile and the displacements are evaluated
for the second one) is defined as follows:

_ Dynamic displacement of pile 2

Interaction factor = Static displacement of pile 1,
considered individually

in which the vord cdisplacement is used to denote either a translation

or a rotation. Ir addition to interaction factors, for the purpose of
assembling the global flexibility matrix of the group, one also needs the
dynamic load factcrs for individually loaded piles (single piles), which
are available in tne literature.

Figures 5.1 and 5.2 present interaction factors for the piles embed-
~ded in an elastic halfspace with Es/Ep = 10'3 and for s/d = 2, 5 and 10.
(These parameters are the same as those used for the pile groups for
which the stiffness characteristics were examined in Figs. 3.3, 3.4 and
3.5). In Fig. 5.1, Iu F refers to the horizontal displacement of pile 2

X X

due to the horizontal force on pile 1. Other interaction factors: Iu F o
2z

Iu M and I define, in a similar manner, the connection between the
X X

¢xMx :
applied force and the induced displacement.

The plots in Figs. 5.1 and 5.2 give the interaction curves for 6=0
and 6=n/2 only. For any other angle, tne interaction factors can be ob-
tained from those for 9=0 and §=n/2. Consider the two piles shown in

Fig. 5.3a. If Fx.and F. are the two components of the horizontal force

, y
on pile 1, then ore can write
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(a) perspective

(b) plan view

Fig. 5.3 - Forces and Displacements at the Head
of Two Piles.
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1 (
Fr ] | cos 8 sin g FX

= . (5.1)
Fe -sin g }cos ) Fy

where Fr and Fe are the components of the horizontal force in the radial
and tangential directions. If U, and u, are the radial and tangential
components o€ the displacement of pile 2, then one can use the inter-

action factors for =0 and 6=r/2 in order to relate u_ and ue to Fr

r
and Fe. If the interaction factors for 6=0 and 9=n/2 are denoted by I0

and 190, respectively, then one can write

ur IO 0 Fpe
- (5.2)
o) L ° fag) | Fo
On the other hand, U, and uy are related to ur and ug as
Uy cos 8 -sin® Uy,
= (5.3)
uy sin 6 cos 6 Ug

Finally, combining Egns. (5.1), (5.2) and (5.3), one gets:

2 . 2 .
( U, IOcos 9 + 190 sin” @ (IO- 190) cos 6 sin 8 F

= (5.4)
uy, ) (IO- 190) cos § sin 9 Iy sin26-+ Igg cosze F

Therevor2, for an arbitrary angle g, quFie) is given by:

2 .2
I () =1 (0) cos“® + 1 (r/2) sin®s (5.5)
uXFX u F uxe

X X
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The relation in (5.4) can be used for other interaction factors
involving horizontal forces or moments, as well. For the vertical
forces, on the other hand, the interactior factors are independent of o.

Once the global flexibility matrix of the group is assembled, the
foundation (pile cap) stiffnesses are obtained in a manner similar to
that outlined in chapter 2 (by imposing kinematic and force boundary
conditions at pile heads). Figures 5.4 and 5.5 show the dynamic stiff-
nesses (horizontal, vertical, rocking and torsional) for the same pile
groups of Figs. 2.% and 3.10 (4 x 4 groups in the soft soil medium,
ES/Ep = 10'3) but computed using the superposition method. Comparison
of these figures chows that the approximate superposition method yields
results that are in good general agreement with those obtained from the
full three-dimensional analysis. The accuracy of the method improves as
the pile spacing is increased, as expected. Also, Figs 5.6 and 5.7 pre-
sent the dynamic stiffnesses for the same groups of Figs. 3.7 and 3.12
(groups with s/d = 5 in the Stiff soil medium, E(/E, = 10°2). Again,
the results of the superposition analysis agree very well with those of

the three-dimensional analysis.

The dynamic interaction curves are also helpful in gaining insight
into the behavior of pile groups. Certain important aspects of the prob-
lem, such as the large peaks in the variation of dynamic stiffnesses and
the considerable dynamic amplification of forces on certain piles can,
in fact, be physically interpreted with the help of interaction curves.

Consider, for example, the variation of horizontal stiffness in
Fig. 3.3, for s/d = 5. This figure displays a large peak at a frequency

a, + 0.8. At this frequency the interaction factor, I, g (0.0) in Fig.5.1
X X
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Groups in a Soft Soil Medium by the Superposition Method.
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is a real, negative number, the physical meaning of which is that the
waves set up by the loaded pile excite the second pile in an antiphase
motion. Therefore, a larger force (stiffness) must be applied on the
piles in the group to enforce the condition of uniform displacement of
the pile heads required by the presence of the pile cap.

It is also possible to interpret the similarity between the plots
of stiffnesses for different spacings by the similarity between the cor-
responding interaction curves. In addition, the fact that the inter-
action effects dirinish with an increase in spacing, accounts for the
Tess pronounced variation in stiffnesses for larger spacings. Using
these observations, one can then predict that the plot of horizontal
stiffness for s/Z = 2 in Fig. 3.3 has a peak at a,= 2, which is larger
than the one correeponding to s/d = 5.

As far as the force distribution is concerned, Fig. 3.19 shows that
the dynamic amplification factor for pile IV and s/d = 5 is a maximum
again at a, = 0.80. An argument similar to the one for the stiffness

can be brought forward to explain this phenomenon too.
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CHAPTER 6 - SUMMARY AND CONCLUSIONS

The purpose of the work presented in the preceding chapters was to
investigate the dynamic behavior of pile groups in semi-infinite media and
to examine the validity of certain solution schemes.

The formulation was based on the introduction of a soil flexibility
matrix as well as dynamic stiffness and flexibility matrices of the piles,
in order to relate the discretized uniform forces to the corresponding
displacements at the pile-soil interface. A numerical solution for the
evaluation of th: ¢oil flexibility matrix, along with analytical solutions
for the pile stiffrecs and flexibility matrices were then presented.

The results of pile group analyses presented in chapter 3 suggested

the following:

1) The dynamic pile group behavior is highly frequency-dependent. This
is due to the characteristics of the waves generated by the piles and

the interference of these waves with the different piles of the group.

2)  For close spacings the characteristics of group stiffnesses are simi-
lar to those of footings; for large spacings, however, the group be-

havior is dominated by the interactions among the piles.
3) Interaction effects are stronger for softer soil media.
4) Radiation damping generally increases with foundation size.

5) Pile groups subjected to seismic excitations essentially follow the
Tow-frequency components of the ground motion, while filtering to a

large extent its intermediate and high-frequency components. ‘The
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rotational component, on the other hand, is negligible for typical

dimensions of the foundation.

The distribution of applied dynamic loads on the pile cap is differ-
ent from that of static loads. For certain frequency intervals, the
piles closest to the center take the largest portion of the load.

Also, large dynamic amplification factors for the forces in these piles

are expected.

Pile groups are less influenced by conditions near the ground sur-
face than sincle piles are. Therefore, the accuracy of the tech-
niques, which us2 the result of single-pile nonlinear analyses, or
field tests on single piles, along with empirical group reduction

factors to derive group stiffnesses is less than expected.

Other subjects addressed in this study were the questions on the accur-
of the quasi-three-dimensional method, and the superposition method for

solution of pile groups. These studies showed that:

Quasi-three-dimensional solutions, in which the pile-soil compatibil-
ity conditions in a given direction are relaxed and only the effect of
pile-soil interface forces in the other directions are taken into

account, compare very well with the full three-dimensional solution.

The superposition scheme suggested first by Poulos gives reasonable

results not only for static loads, but for dynamic loads, as well.
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