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ABSTRACT

DYNAMIC STIFFNESS AND SEISMIC RESPONSE OF PILE GROUPS

by

AMIR MASSOUD KAYNIA

Submitted to the Department of Civil Engineering in January 1982
in partial fulfillmentof the requirements for the degree of

Doctor of Philosophy

A formulation for the analysis of pile groups in layered semi-
infinite media is presented. The formulation was based on the intro-
duction of a soil flexibility matrix as well as on dynamic stiffness
and flexibility matrices of the piles, in order to relate the dis-
cretized uniform forces to the corresponding displacements at the
pile-soil interface.

The result of pile group analyses showed that the pile group
behavior is highly frequency-dependent as the result of wave inter-
ferences taking place between the various piles in the group. Large
values for stiffnesses as well as large magnification factors for the
force on certain piles is.expected at some frequencies. As for the
seismic response, pile groups essentially follow the low-frequency
components of the ground motion, and the rotational component is negli-
gible for typical dimensions of the foundation.

A numerical study on the accuracy of the approximate superposition
method as well as the quasi-three-dimensional formulation, in which the
pile-soil compatibility conditions are accounted for in the formulation
only in the direction of vibration, showed that these solutions compare
very well with the full three-dimensional solution.

Thesis Supervisor: Eduardo Kausel

Associate Professor of Civil EngineeringTitle:
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CHAPTER 1 - INTRODUCTION

A pile is a structural element installed in the ground which is

connected to the structural frame, either directly or through a founda-

tion block, in order to transfer the loads from the superstructure to

the ground. Piles are seldom used singly; more often, they are used in

groups or clusters, in which case they are connected to a common founda-

tion block (pile cap).

Pile four~datiois, under certain circumstances, are preferred over

shallow founda..ions; for instance, in sites where near-surface soil strata

are so weak that either soil properties do not have the required strength,

or the settlement and/or movements of a shallow footing on such ground

would be intolera.ble.

Behavior of pile foundations, sometimes referred to as deep founda-

tions, has been a subject of considerable research. Most studies have

focussed primarily on short- and long-term static pile behavior, pile-

installation effects, estimation of ultimate load capacity and settlement,

prediction of ultimate lateral resistance, and estimation of lateral

deflection. Extensive field testings and experimental investigations

on different aspects of pile behavior have resulted in a number of empir-

ical and approximate analytical methods for the pile-foundation design.

In addition, other studies have resulted in more rigorous schemes for

pile analysis. Among these studies the works of Poulos (1968), Poulos

and Mattes (1971), Poulos (1971), Butterfield and Banerjee (1971) and

Banerjee (1978) are related to the present study. These researchers dis-

cretized the piles into several segments and related the displacements

of the segments to the corresponding forces in both the soil medium, using



Mindlin's fundamental solution (1936) and in the piles, using pile dif-

ferential equations (in discretized form). Introduction of the condition

of displacement compatibility between the soil and the piles and imposi-

tion of appropriate boundary conditions lead to the desired pile solution.

The results of these studies, especially by Poulos and his colleagues,

have hfghlighted the important aspects of static pile-group behavior, in-

cluding: distribution of loads among the piles in a group, stiffnesses of

pile groups, and tihe variation of these quantities with geometric param-

eters (spacin9 , lei.gzh, and number of piles) as well as material proper-

ties. For a comprehensive review of these results and other analytical

and empirical techniques of static pile-foundation analysis see Poulos

(1980).

The fact that -s.atic pile behavior studies were unable to provide any

qualitative infor;ration on dynamic aspects of the problem, along with an

increasing demand for the construction of nuclear power plants and off-

shore structures, have stimulated extensive research on dynamic pile be-

havior.. For these studies, which have dealt primarily with the behavior

of single piles, a variety of different models and solution schemes have

been used. Tajimi (1969), Nogami and Novak (1976), Novak and Nogami

(1977), Kobori, Minai and Baba (1977, 1981). Kagawa and Kraft (1981)

have obtained analytical solutions for the response of dynamically-excited

single piles. Finite-element techniques, on the other hand, have been

used byl Blaney, Kausel and Roesset (1975) and Kuhlemeyer (1979a, 1979b).

In additifon, less involved models based on the theory of beams on elastic

foundations, commonly referred to as the subgrade-reaction approach, were

used by Novak (197421, Matlock (1970),Reese, Cox and Koop (1974) and Reese

and Welch (1975). The advantage of this technique is that the results



of field testing can be directly incorporated in the model ("p-y" and

"t-w" techniques).

In spite of considerable achievements in characterizing the dynamic

response of single piles, the dynamic behavior of pile groups is not yet

well understood. In fact, only a few attempts have been made to study

this problem. The earlier contributions are due to Wolf and Von Arx

(1978), and to Nogami (1979). Wolf and Von Arx used an axisymmetric finite-

element schene to obtain Green functions for ring loads which were used to

form the soil flexibility matrix. The dynamic stiffness matrix of the

pile-soil syst:m wa: then obtained by simply assembling those of the soil

and piles. Using tiis formulation, Wolf and Von Arx studied some charac-

teristics of horizontal as well as vertical dynamic stiffnesses of pile

groups in a layered soil stratum resting on a rigid bedrock. Later this

methodology was employed by Waas and Hartmann (1981), who implemented an

efficient and rigorous technique for the computation of the Green's func-

tions (Waas, 1980), to study the behavior of pile groups in lateral vibra-

tion.

On the other hand, the vertical vibration characteristics of pile

groups in a uniform soil stratum underlain by a rigid bedrock has been

studied analytically by Nogami (1979). To incorporate in his model the

interaction of piles through the soil medium, Nogami used an analytical

solution to the axisymmetric vibration of the stratum obtained earlier by

Nogami and Novak (1976). Later he extended his studies to the case of

layered: strata (Nogami, 1980). For this case, however, the interaction

effects were obtained using an analytical expression for the displacement

field due to the ax-al vibration of an infinitely long rigid cylinder in

an infinite. m5dium ('Iovak, Nogami and Aboul-Ella, 1978).



The results of these studies indicate that: 1) behavior of pile

groups is strongly frequency-dependent; 2) spacing and number of piles

have a considerable effect on dynamic stiffnesses, but only a minor ef-

fect on the lateral seismic response; and 3) interaction effects are

stronger for more flexible soil media.

The objective of the present work is to study the three-dimensional

dynamic behavior of pile groups in layered semi-infinite media and to

investigate the accuracy of certain approximate approaches. Chapter 2

of this report is cevoted to the formulation and the associated analyt-

ical derivations. In Chapter 3 the results of the three-dimensional

analyses are prese'nted. These results include dynamic stiffnesses and

seismic response of pile groups as well as the distribution of loads

among the piles in the group. Special attention is paid to the effect

of frequency, spacing, and number of piles on these quantities. In Chap-

ter 4 the accuracy of a "quasi three-dimensional" solution is investi-

gated (a quasi three-dimensional solution here refers to the solution

obtained for symmetric rectangular arrangement of piles by assuming that

the dynamic effects in the vertical and in the two horizontal directions

of symmetry are uncoupled from one another).

The applicability of the superposition scheme to dynamic pile-group

analysis is examined in Chapter 5. In addition, the characteristics of

dynamic interaction curves (the influence of vibration of one pile on

another for a group of two piles) and their connection to pile-group be-

havior are studied.

Finally, Chapter 6 includes a summary of the important aspects of

the pile-group behalior as well as conclusions on the applicability of

approximate solutiion schemes.



CHAPTER 2 - FORMULATION AND ANALYTICAL LERIVATIONS

In the present study it is assumed that 1) the soil medium is a

viscoelastic layered halfspace, 2) the piles are made of linear elastic

materials, and 3) there is no loss of bondage between the piles and the

soil; however, the frictional effects due to torsion and bending of piles

are neglected. (The overall pile group behavior is controlled primarily

by the frictional and lateral forces caused by axial motion and bending

of the piles, respectively.)

In what follows, the formulation of the problem,along with the associ-

ated analytical derivations and their numerical implementation, are pre-

sented. Any time-de3endent variable such as u(t) used in this formulation

is of the form u(t) = u exp (iOt), in which u is a complex quantity, w is

the frequency of st3ady-state harmonic vibration, and i = V-T. However,

the factor exp (iwt) is deleted in the equations, since it is shared by all

time-dependent variables involved in the problem.

2.1 Formulation

Con'sider the pile group shown in Fig. 2.1. The actual distribution

of lateral as well as frictional forces developed at the pile-soil inter-

face are. shown for one of the piles in the group (pile j).

The pile is discretized into k arbitrary segments, and the pile-tip

is considered to be segment (z+l). The pile head and the center of the

pile segments define then (z+2) "nodes" ,,hich are assigned numbers 0, 1,

2, ... , (+1), respectively. Subsequently, the actual force distributions

are replaced by piecewise constant distributions which are also shown in

the figure. These :forces are assumed positive if they are in the positive

direction of axes.



actual distributio
of lateral forces
in the y-direction

Fiq. 2.1 - Distribution of Forces on the jth
Pile of the Group



Consider first the equilibrium of pile j under the pile-soil interface

forces. If one denotes the vector of the resultant of these forces by PJ,

that is:

PJ =[P P P 3 i + + T (2.1)x ly lz.......(+l)x (+l)y P(Il) T

and the vector of displacements of nodes 1 through (+1l) by Uj , that is:

U=[ u j  Uj U u U (2.2)lx ly uz ....... u (+l)x (+l)y u (+l)z

Then Uj can be expressed as the summation of the displacements caused by

the translations and rotations of the two pile ends when there are no

loads on the pile, and the displacements caused by forces on the piles

(-PJ) when the two ends of the pile are clamped. This can be expressed

as:

U3 TO UJ - F PJ (2.3)
e p

in which UJ is the vector of end displacements for pile j, given by:e

e [U o x u ( u (' z ](.

J is a (3(t+l)x 10) matrix defining displacements of the center of seg-

ments (nodes 1 through (£+1) due to end displacements of the pile when PJ

are not present (to be more specific, the ith column of -J defines the

three components of translation at the center of the segments due to a

unit harmonic pile end displacement associated with the i t h component of

Uj), and F is the flexibility matrix of pile j associated with nodes 1through ( ), for the fixed-end codition. (Since the ends of the pile
through (Z+l), for the fixed-end condition. (Since the ends of the pile



are fixed, the entries in FJ corresponding to node (f+1) are zero.)
p

If, in addition, one denotes the dynamic stiffness matrix of pile j

by Kj , and the vector of external forces and moments at the two ends of

this pile by PJ, that is

P=[R I M R J J Rj Rj  R R Ij  Ri+ T
e o= [Rx ox oy oy oz R(+l)x M(+l)x (Z+l)y (Z3+l)y R(Z+l)zT (2.5)

Then one can write

P= KjUj +U jT1 pj (2.6)e p e

The first term in Eq. (2.6) corresponds to pile-end forces due to

pile-end displacements (U ) when there are no loads on the pile, and the

second term corresponds to pile-end forces due to loads on the pile (-PJ)

when the two ends of the pile are fixed. Since the forces at the pile

tips are included in Pi and matrices FJ and yj are constructed such that
p

they contain the effects of forces and displacements at this point, one

has to set R+l)x R+l)y and R3 +l)z equal to-zero. In addition, for

floating piles M+l)x and M+)y are taken to be zero as well.

Defining now the global load and displacement vectors for the N piles

in the group:

Se p2 U e I
Se e (2.7)

as well as the matrices:



K1

pP

K-
p

K N
p

0
F
p

1

'P \

* FN
P

"N

One can then write the following equations for the ensemble of piles in

the group (compare with eqns. (2.3) and (2.6)):

U = U e - Fp P

Pe = Kp Ue + T P
(2.9)

Consider next the equilibrium of the soil mass under forces P (dis-

tributed uniformly over each segment; see Fig. 2.1). If Fs denotes the

flexibility matrix of the soil medium, relating piecewise-constant seg-

mental loads to the average displacements along the segments, then

U . Fs P

(2.8)

(2.10)



Finally combining eqns. (2.9) and (2.10) one getsi

P= [Kp + T (Fs + F )l ee K Ue (2.11)

Ke is a (10N x 10N) matrix which relates only the five components of

forces at each end of the piles to their corresponding displacements. In

other words, the degrees of freedom along the pile length have been con-

densed out without forming a complete stiffness matrix. It is also impor-

tant to notice that in the solution of eq. (2.11) it is not necessary

to invert (Fs + F p) as indicated; instead, one only needs to perform a

triangular decomposition of this matrix.

Matrix Ke relates forces and displacements at the pile ends in a

group of unrestrained piles. In order to obtain dynamic stiffnesses of

a rigid foundation (pile cap) to which the piles are connected, one needs

to impose the appropriate geometric (kinematic) and force boundary condi-

tions at the pile heads and pile tips. (The boundary conditions at pile

tips, as discussed earlier, are zero forces at these points for floating

piles.) At pile heads, on the other hand, the boundary conditions are in

general a combination of geometric and force conditions, unless all the

piles are rigidly connected to the foundation, in which case only geome-

tric conditions should be considered. Once the pile head forces for the

possible modes of vibration (horizontal, vertical, rocking and torsional)

are computed, dynamic stiffnesses of the foundation at a prescribed point

are obtained b.- simply calculating, in each mode, the resultant of these

forces at the prescribed point.

To extend the formulation to seismic analysis, one only needs to

express the displacements U as the summation of seismic displacements



in the medium when the piles are.removed (i.e., soil with cavities) U,

and the displacements caused by pile-soil interface forces P, that is:

U = U + Fs P (2.12)

Combination of eqns. (2.8) and (2.12) results in

Pe = [Kp + T (Fs + Fp)l l] Ue - T (Fs + Fp)-l Y (2.13)

or

Pe = Ke Ue + P-e (2.14)

where Ke (as in eq. (2.11)) is the dynamic stiffness for the ensemble of

piles associated with the degrees of freedom at pile heads and pile tips,

and P = - (F + F)l p  defines consistent fictitious forces at

these points which reproduce the seismic effects.

In order to calculate the response of the rigid foundation to which

the piles are connected, one has to impose the necessary geometric and

force boundary conditions. (The procedure is similar to that described

for the calculation of foundation stiffnesses, except that for the seis-

mic case one has to use the fact that the resultant of pile-head forces

on the foundation is zero.)

From the development of the preceding formulation it is clear that

Fs is the flexibility of a soil mass which results from the removal of

the piles; in other words, Fs corresponds to the soil mass with N cavi-

ties. Similarly, U refers to the seismic displacements in the medium

with the cavities. Due to the fact that evaluation of the same quanti-

ties in a uniform soil mass, in which the cavities have been filled with



the soil, requires much less computational effort than the original

problem, it is very desirable to modify the formulation in order to make

use of this numerical efficiency. The following discussion pertains to

such a modification.

Consider the semi-infinite soil medium and the pile shown in Fig.

2.2a. It is assumed that p(z) and u(z) define lateral soil pressure and

lateral pile displacement, respectively. (For convenience, only one pile

and one type of force at the pile-soil interface are considered. The modi-

fication procedure, however, is independent of the number of piles and the

type of interaction force.) For a pile element shown in Fig. 2.2b, one

can write the equilibrium equation as:

dV + p Aw 2u = p (2.15)

in which A and Pp denote the cross-sectional area and mass density of the

pile, respectively.

Next, consider the same soil medium except that the pile is removed

and the resulting cavity is filled with soil such that the original uni-

form soil mass (before the installation of the pile) is obtained. The

dashed line in Fig. 2.2c shows the periphery of the added soil column.

Further, suppose that f(z) defines a force distribution along the height

of the soil column which causes approximately the same displacement u(z)

at the centerline of this soil column. Now consider the equilibrium of

forces on a soil differential element shown in Fig. 2.2d. (The vertical

sides of this element extend just beyond the dashed line); one can then

write:

dV-+ Aw2u + f = p' (2.16)dz s
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where p' is the lateral force on the element. This equation implies

that one can remove the soil column and apply the distributed force pi

on the cavity's wall to preserve the equilibrium of the soil mass. (This

is clearly an approximate scheme, since the effects of frictional forces

due to the lateral displacement of the soil column are neglected.)

If one takes p' to be equal to p, eq. (2.16) can be rewritten as

dV' + p A 2u + f = p  (2.17)

Thus the displacement u(z) due to a distributed force p(z) in the soil

mass with the cavity can be reproduced by the application of the distri-

buted force f(z) to the uniform (no cavity) soil medium. f(z) is given

by:

f = p - A 2 u - dV (2.18)

Similarly, the equilibrium of the differential pile element can be ex-

pressed in terms of the distributed force f; introducing eq. (2.17) into

eq. (2.15), one gets:

-d (V-V') + (p - Ps)A2u f (2.19)

Eq. (2.19) can be interpreted as the differential equation of a beam with

a mass density (Pp - Ps) and a modulus of elasticity (Ep - Es) and sub-

jected to a distributed force f(z). (Es is the elasticity modulus of

the soil.)

The approximate scheme presented here suggests that if one replaces

P in eqns. (2.9) and (2.10) by the vectorial equivalent of the distributed

forces f (say, F), then the soil flexibility matrix Fs should be taken



as that corresponding to a uniform (no cavity) soil mass and the matri-

ces Kp, Fp and T corresponding to piles with reduced mass density and

elasticity modulus (obtained by subtracting the mass density and elas-

ticity modulus of the soil from the corresponding quantities of the

piles). The final expression relating pile-head forces with displace-

ments is then of the same form as that given by eq. (2.11), except that

Fs corresponds to a soil without cavities, and Kp, Fp, ' to piles with

reduced properties.

A similar modification applies to the seismic analysis. In addition,

the seismic displacements in the soil mass with the cavities (U in eq.

2.12)) can be related to the associated free-field (no cavity) seismic

displacements. If the free-field displacements are denoted by U* and

the corresponding free-field forces are denoted by P*, then one can write:

(since P = 0):

U = U - F P (2.20)

However, the effect of free-field forces, in most pile-soil interaction

problems, can be neglected. Therefore one might approximate U by U in

the formulation of the seismic problem.

In what follows a numerical technique to evaluate a soil flexibility

matrix is presented, and expressions for the elements of Kp, Fp and '

are derived.



2.2 Response of Viscoelastic Layered Soil Media to Dynamic Stress

Distributions

The formulation presented in Sec. 2.1 requires the evaluation of

a dynamic flexibility matrix, Fs, for the soil medium. This matrix de-

fines a relationship between piecewise-uniform loads distributed over

cylindrical or circular surfaces (corresponding to pile shafts and pile

tips) and the average displacement of these regions. Although there

are a number of ways to obtain a value to represent the displacement of

a loaded region, the weighted averaging, originally proposed by Arnold,

Bycroft and Warburton (1955), is believed to provide the most meaningful

displacement value. In order to understand the basis for the weighted

average displacement, consider the response of a medium to a set of

distributed loads q', q2, .... acting on regions D1, D2 .... , respec-

tively. Suppose a virtual displacement v(x,y,z) is introduced in the

medium. If the component of this displacement in the direction of qi

is denoted by vi(x,y,z), then the virtual work done by the total dynamic

force Qi D= i q dA is given by:

Qi. := = i qi vi dA (2.21)

where vi is the weighted average virtual displacement in region Di. Equa-

tion (2.21) shows that, on the basis of the work done by the total force,

the weighted average displacement is the most appropriate quantity to

represent the displacement field. For uniformly distributed loads, as

eq. (2.21) indicates, the weighted average displacementis identical to

the average displacement in the region.



The objective of this section is to present details of a numerical

technique which enables one to compute displacements caused by loads

uniformly distributed over cylindrical or circular surfaces in layered

viscoelastic soil media. The types of load involved in the problem are

shown in Fig. 2.3; the loads on cylindrical surfaces are associated with

stresses on pile shaft and those on circular surfaces correspond to pile

tip stresses.

The method used here for response calculation is similar to that

presented by Apsel (1980). For the present work, however, the stiffness

approach, based on assemblage of layer stiffness matrices, is used.

2.2.1 - Solution of the equations of motion

If ur , ue and uz are the displacements in the radial, tangential,

and vertical directions, and fr' fe and fz are the associated external

loads per unit volume, the equations of motion of an elastic body in

cylindrical coordinates are:

(+2) TWz + 2p 1-+w 2 pu + f =0a r a I+ r r

Sr 8z 2(X+2u) 1 A 2p + 21 +r +w pU + f = 0 (2.22)
r a az ae (2.22)

(x+2p) 3  - 2P 2 (rm) + 211 mr 2
z r ar r e + puz + fz =

where X and p are Lame's constant, p is the mass density, and w is the

frequency of steady-state vibration; the dilatation A and the rotations

Wr' m and q are given by:
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Fig. 2.3 - The Type of Loads in the Soil Mledium.
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A -1 a (ru ) + 1 e a+
r Dr r r Be az

=1 1 Uz u8

S(rue) -a

(2,23)

(2.24)

For a viscoelastic medium with an internal energy dissipative be-

havior of the iyster*etic type, one only needs to replace X and 'P in Eqns.

(2.22) by the compl.:x Lame moduli given by:

Ic = X(l + 2Bi)

c = P(l + 2Bi)
where a is commonly referred to as the fraction of critical damping.

The first step in the solution of Eqns. (2.22) is to separate

variables. This can be achieved by expanding displacements and body

forces in a Fourier series in tangential direction, that is

(2.25)

ur (r, ,z)

Uo (r,o,z)

uz (r, ,z)

fr (r, ,z)

fr, (r, ,z)

fz (r, 8,z)

Z= Urn
n=O
0o

= U an
n=O

S uzY Uznn=O
Co

n=O rn

n=O
I X znn=O

(r,z) cos nO

(r,z) sin nO

(r,z) cos nO

(r,z) cos nO

(r,z) sin nO

(r,z) cos ne

(2.26)



Introduction of these expansions, along with Eqns. (2.23) and

(2.24), into Eqns. (2.22) leads to

= a u au 2 a 2U2 2 a 2r +rn 1 3Urn n + 1 ] +

n=O r 2 r ar r2 rn az ar
ar r az

-2 n + + 2P U + f}rn cos ne = 0 (2.27)

2 2
00n aUoen n2+1 2un n+ 0 u + _+!_ - (,+,j) n

VL r ar 2 un 2 n
= ar r az

-2, n urn + m2pn + fen sin ne = 0 (2.28)

2U2 a2U

{ 2z[ 1 u auzn n2  z2  ] znAn+ U + 2 + (X+)

n=0 ar r az

+ 2p Uzn + fzn cos ne = 0 (2.29)

where
au1 (ru) + n + azn (2.30)

Ln r ar rn r en z

In order that Eqns. (2.27), (2.28) and (2.29) be satisfied, it is

necessary that the terms in accolades be identically zero. If, in addi-

tion, one combines the two equations resulting from (2.27) and (2.28),

then the following three conditions, to be satified for any value of n,

are obtained:
2  2 2

P[-- (urn u )+e + (u +u )- (n +u rn+ ( U )]
2 rn en r ar rn en r2 Urn On 2  rn

ar r2 ae

+ ( ) ( nn) + p (Urn + Uen) + (frn + f ) = 0 (2.31)__5r- n T(rn + en rn on



2 2 22 (u - u ) +1 a (u - u ) - (n-1 ) (u - u  )+ a 2  ( u n - ) ]

2 l rn an r ar (urn n 2 rn nen 2 rn un
ar r az

+ (x+[) [-• +- n] + 2p (u3r r n rn

2
a2u iauC[-.•n + zn

ar

2n
-• Uznr

- u ) + f r n - fn ) = 0on irn

2

+ a z ]+ n I ) a + 2p uzn
az

+ fzn

(2.32)

= 0 (2.33)

If now the following Hankel Transforms are defined

Uln (k,z) + U3n (k,z) =

- Uln (k,z) + u3 n (k,z)

U2n (k,z) =

fln (k,z) + f3n (k,z)

- fin (k,z) + f3n (k,z)

fo (urn)o

= (urn

f 000

= ( rn0

= (f rn

0

+ Uon) Jn+l

- Uen) Jn-

(kr) rdr

(kr) rdr

uzn Jn (kr) rdrznn

(2.34)

+ fen ) Jn+1 (kr) rdr

rdr

fzn Jn (kr) rdr

where J (kr) is the nth order Bessel function of the 1st kind, and if

the following identities are used,

1 2 2  2 d2  2
[ + r + r]q Jmr(kr) rdr= (J- k) m(kr) rdr

Sar r Ra dz o

(2.35)

f2n (k,z)

- f n) Jn-I (kr)



dr rm T m (kr) rdro

( + m) Jm (kr) rdr : k Jm (kr) rdrTr- r fO

Then one can show that application of

(2.32) and (2.33) leads to:

2 - -

d- _ k 2 + 2 a] (u1  + ) + (X+2

2dz • 1 n 3nd k2  2 -uln+u 3n)+ (X+

d2 - k2  2 ] u2n dz
I dz

)(-k

p)(k

n+

where f f0 An J n (kr) rdr is the nth

Using Eqns. (2.36) and (2.37) and the fol

tions,

n J (kr) = + -d- J (kr)

r n shodr n

one dan show that

= ku, + --- u
n -In dz 2n

kel Transforms to Eqns. (2.31),

An) + fln + f3n = 0  (2.38)

An) n + f3n = 0 (2.39)

f2n = 0 (2.40)

order Hankel Transform of An.

lowing property of Bessel func-

+ k Jn+l (kr) (2.41)

(2.42)

Finally, if one introduces Eq. (2.42) into Eqns. (2.38) - (2.40),

and Eqns. (2.38) and (2.39) are combined (by adding and subtracting

them), the following ordinary differential equations are obtained:

(2.36)

(2.37)

' J



d2

[p - k2 (X+2p) +pw 2 Uln
dz

-(1+) k u2n + fn = 0

2
(+) k uln + [(d+2 ) 2 Pk2 2] U2n + 2n = 0

dz

2
d 2 2

( dz2 P- k + p ) u3n + f3n = 0
dz

(2.43)

(2.44)

(2.45)

Equations (2.43) and (2.44) define a system of two ordinary linear dif-

ferential equations for uln and U2n. U3n, on the other hand, is un-

coupled from uln and u2n and can be obtained by solving Eq. (2.45).

It is convenient at this point to introduce the following two

parameters:
cx = k2 pw2

S +2\a 2p
=- k2 2

C2
:

= k2 - ry
where Cs and Cp are the velocities of shear waves and pressure waves,

respectively. (For viscoelastic materials Cs and Cp are complex quanti-

ties). Introduction of these parameters into Eqns. (2.43), (2.44) and

(2.45) leads to:

(x+') k -uln +d 2 u2n 2n 2

+ fin= 0

= 0

(2.48a)

(2.48b)

d2  2
( 2 - y ) U3n + f3n = 0
dz

(2.49)

In order to obtain the homogenous solution of Eqns. (2.48), one

can take uln = Aenz and U2n = Be z and substitute in Eqns. (2.48). The

(2.46)

(2.47)• V
v



resulting system of algebraic equations for n and A/B yields four sets

of solutions, which can be used to define the general homogeneous solu-

tions for uln and U2n. Following this procedure, one obtains:

e zH +k1 k C e y zuH (k,z) = - kCln e +C 2n e - kC3neaz +yC4n ez

uH (k,z) = - aC e z + k C e- z + C ez - kC eYz2n ln 2n 3n 4n

(2.50)

where C1n(k), C2n(k), C(k)k) and C4n(k) are unknown constants. To ob-

tain a particular solution one can use the method of variation of

parameters; however, for the loadings involved in the present problem,

fln and f2n' as will be shown in section 2.2.4, are independent of z;

therefore particular solutions can be obtained by inspection. One

such set of solutions for uln and u2n are:

Finally, the solutions

P 1
Un= 2

a ( +2 .)

u2n 7 f2n

of Eqns. (2.48)

fln

(2.51)

are given by:

Cln e- O

l n (k z) -kY -k C2n e-YZ fn/2 (Xf +2) (2 52)
Uln (2.52)

u2n (k,z) L -a k a -k1  C3n e f2n

C4n eYZ

A similar procedure applied to Eq. (2.49) leads to the solution of

this equation:



C e-YZ 1C5n e
u (k,z) = [ 1 1] +n eY fy (2.53)3n C 6ey 2 3n 2 3

2.2.2 - Layer and halfspace stiffness matrices

In order to determine the unknown constants in Eqns. (2.52)

and (2.53) it is necessary to use the appropriate kinematic and force

boundary conditions of the problem. Since Eqns. (2.52) and (2.53) ex-

press displacements in the transformed space, it is necessary to derive

expressions for the associated transformed stresses.

The three components of stress on a plane perpendicular to the z-

axis in cylindrical coordinates are given by:

rz z  raz

au 1 au
Cz = (- + r ) (2.54)

auz
ozz = 2- + xz

If the Fourier expansion of ur , u0 and uz , given by Eq. (2.26),

are used in the above equations, one gets

0o

arz Z arzn cosnO
n=O

Co

= C 8zn sin nez n sin no (2.55)

a = zzn cos no
n=O



where orzn , a0 zn and ozzn are given by

rn = a( Uzn
rzn ar

+ -au
az

0 z =( aUen n ) nezn 5z r zn

S = azn
rzzn = 2 , az + XA

and An is given by Eq.

By combining Eqns.

(2.30).

(2.56) and (2.57) and reordering Eq. (2.58), one

can write:

+ auzn

rzn ezn ar

arzn

n a( + n )]
r Uzn z rn Uen

+n +n(u
r zn az rn

- Uon)]

azn
z = (X+2-) zzzn az Urn rn n+x(ar r r +n )ar r r en

If the following Hankel Transforms are defined,

+ a23n(k,z) = To
+ 0 23n(k,z) =

(arz n + )ezn) Jn+l(kr) rdr

(crzn - Oezn) Jn- (kr) rdr (2.60)

0zzn J n (kr) rdr

Then Hankel transforms of Eqns.

(2.56)

(2.57)

(2.58)

(2.59)

o21n(k,
z )

•021 n(k,z)

a22n(k,z)

auzn
a zn =  [arznezn Jr

f 
o

(2.59) leads to:



- a t o =

[ k +

d

+21n ' "23n L- 2 n dz Uln T U3n

- 21n + a 2 3n =I [ku 2n + ýz (- Uln + U3n)] (2.61)

du

2 2 n = (X+2p) -n + (kuln)
I, 22n ý ....

Finally by using the expressions obtained for uln, U2n, and U3n

(Eqns. (2.52) and (2.53)), one can express the transformed stresses

c21n a23n' arnd C22n as:

Cln e

a 21n(k,z) 2 rk -(k2 + 2)  -2ak (k2+y2) C2n e-Yz

S22n(k,z) :L Y2 )  -2Yk (k2  2) -2fk C 3n e

C4n eYZ

+ kf2n/Y (2.62)
Xkf In/a2 (X+2p)

SC5ne z

a23n(k,z) =i [-Y Y] Yz (2.63)

6n eYZJ

At this point it is convenient to distinguish between the solutions

corresponding to uln and u2n and those corresponding to u3n. Since the

solution of u3n involves only Y, all quantities associated with u3n will

be identified as "SH-wave" quantities. In a similar manner, "SV-P waves"

will be used to refer to quantities associated with uln and U2n.

Consider the layered soil medium shown in Fig. 2.4a. The medium

consists of M layer: resting on a halfspace. Fig. 2.4b shows the jth

A
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layer confined between the two planes denoted by A and B, and Fig.

2.4c shows the halfspace bounded by the plane C. The objective is now

to obtain a relationship between the transformed stresses on the two

planes A and B in Fig. 2.4b and the transformed displacements of these

planes. Such a relationship can be used to define layer "stiffness

matrices" as well as layer "fixed-end stresses." In a similar manner,

a relationship between stresses and displacements for plane C in Fig.

2.4c results in halfspace stiffness matrices. For a given value of k,

the stiffness matrices of the layers and the halfspace and the associ-

ated force vectors can be used to assemble the stiffness matrix and

the load vector for the layered medium; the resulting system of equa-

tions then yields the transformed displacements uln, U2n and u3n at

layer interfaces.

Layer stiffness matrix and load vector for SV-P waves

For the layer shown in Fig. 2.4b, one can use Eq. (2.52) to obtain

the expressions for the transformed displacements uln and u2n of the

two planes A and B associated with local coordinates z' = 0, and z' = h;

the result can be written in matrix form as

A

Uln - Uln

AuA u2n 2n
uB -n

u u2n u2n)

-k y -k y

-a k a -k

-ke--ah ye-h keCah yeYh

-ae -ah ke-yh cae.h -keYh

C
n

C2
n

(2.64)
C3n

4n

-



where uln and u2n are given by:

u fln -/ a (X+2! l)

U2n = f2n/Y P

Similarly, Eq. (2.62) can be used to express the transformed stresses

021n and c22n on the exterior side of planes A and B as:

A 1021n a21n

A + - i
022n +22n,

B
c21n -21n

a22n - '22n

= I

-2ak (k2 + 2)

-(k 2+y2 ) 2Yk

tke - a h -(k 2  2 )eyh

Sk2+2)e -ah -2Yke-y h

where a21n and a2 2n are given by:

2ak -(k2 + 2 )

-(k2 +y2 ) 2Yk

- 2akeah (k2 + 2 )eYh

(k2 +y 2)eh -2YkeYh

c21n = -kf2n

a22n = ~kfn/a2 (X+21p)

Finally a relationship between the transformed stresses (o21n and

c22n) on planes A and B and the transformed displacements (Uln and U2n)

of these planes can be obtained by deleting the unknown constants C1n,

C2n, C3n and C4n between Eqns. (2.64) and (2.67). The result can be

written in the form

AB = [KA ] { uABr -AB (2.70)"iCiSV plV SV _P] 0 + CSV _

(2.65)

(2.66)

In

C2n .

C3n

C4n

(2.67)

(2.68)

(2.69)



AB ABwhere { SV-P and usvP
displacement vectors, that is

denote the transformed stress and

[-AA

3AB_. is the vector

A
a21 n

A
a22n

B
02 1 n

B
022n

A
un

uAp} uAn
u _ P U2n

B
uU.1 n

B
U2n

of "fixed-end stresses" given by

(-AB = -KABI SV-P sv-f

Uln

u2n

Uln

u2n

- 21n
- 22n

'.21n

'22n

(2.72)

and the elements of the symmetric 4 x 4 layer stiffness matrix [KAB_

are given by the following expressions: (AB and SV-P are omitted.)

K11 = - p (k2- 2) [aySCY - k2 YCa]

K21 D pk [cy(3k2+ )(CY - 1) (k4 + k 2 + 2 u2 y2) SaSY]

K31 = pi(k - y 2 ) [k2S - cySO1

K41  pkay(k2 - y2 ) [CY - Ci ]

K22 =TY(k2 _ y2 ) [ ySYCa - k2Sa CY

K32 =- K4 1

(2.71)



K42 - y(k2 -y2) [k2Sc - cySY]

K33 = K11

K43 =- K21

K44 = K22  (2.73)

In these expressions

D =ay[-2k2 + 2k2CC - a2 + k4 SaSY] (2.74)

and Ca , C6 S: and :Y are used to denote the following quantities:

Ca  cosh(-h) ; S - sinh(ah)

(2.75)
CY _ cosh(vh) 

SY = sinh(yh)

For the case ii which -k--s<< T, one might use the asymptotic

values of these expressions to avoid loss of significant digits in the

operations (in fact for m=O the above stiffness terms become indefinite;

i.e., zero divided by zero). For this case, one can show that

2
K11 ~ D- k[kh(l-_ 2) - (1+s2 ) Skck]

K21 ~~~ k[k2h2(-E2) 2 _ 2(1+E2)(Sk)2]

K31 ~2 ~- k[(l+E2)S k - kh(l-c2)Ck]
D

K41 -- - -2 k[kh(1-E 2)Sk]
D

K22 ~_ Uk[kh(l-c ) + (l+E2) skck]D



K42 ~ - 1k[(l+E2)Sk + kh(l-E 2 )Ck] (2.76)
D

where

D=k2h2(1-~2) - (+:2) 2 (Sk)2 . (2.77)

S= Cs /C and Ck and Sk denote the following quantities

Ck cosh (kh) ; Sk  sinh(kh) (2.78)

Halfspace stiffness matrix for SV-P waves

To evaluate transformed displacements and stresses in a halfspace,

one can use Eqns. (2.52) and (2.62) provided that, for the forced-

vibration problems, the radiation conditions are satisfied. That is,

as z approaches inF-inity, the value of stresses and displacements should

tend to zero. This requires that the unknown constants C3n and C4n in

Eqns. (2.52) and (2.62) be set equal to zero. (The real part of a and y

is positive). Thus, for the halfspace shown in Fig. 2.4c, one can write

the following expressions for the transformed displacements and stresses

at plane C (surface of the halfspace) associated with the local coordin-

ate z = 0; (fln = f2n = 0)

Sn (2.79)

SC21n I -(k2 2) 2Yk Cn(2.80)

22n 2Y Kn

Combining Eqns. (2.79) and (2.80), one gets:



C
Kcj{ Ulnf

KSV- 
U Ca2n

where the symmetric 2 x 2 halfspace stiffness matrix is given by:

[K C 11LKSV-PJ k -ay
ar (k2 - y2 )

k(k 2 + y 2 2c y )

2 2k(k +y - 2ay)

y(k2 2 (2.82)
y(k - )J

and for the case in which I -<< 1_ by
and for the case in which Il-FU-<< 1 by

[KCSV-P] + 2k-2
1+e 2C

21 (2.83)

and E = Cs/C

Layer stiffness matrix and load vector for SH waves

Following the procedure described for SV-P waves, one can use Eqns.

(2.53) and (2.63) to express transformed displacements and external

stresses associated with planes A and B in Fig. 2.4b as

uA U
3n U3n} r1
3n U3n e-Yh

SA

S23n

eY1 C56n

y=eYh Y
- ye C6n

where u3n f3ni/-y.

I C22n1121 n
Cy 2n

(2.81)

(2.84)

(2.85)

(2.86)



Combining Eqns.. (2.84) and (2.85), one gets

SAB BICTSHJ[KA B- AB -AB .KSH JW us 1rSH1 (2.87)

where {c AB} and {uAB } denote the stress and displacement vectors,
that is

A{ Al23n
c'2B3
023n

AAB {u3n{usHB B
u3n

(2.88)

is the vector of "fixed-end stresses" expressed as

AB = - 3n

CyASH = K KA U-3n
(2.89)

and the 2 x 2 layer stiffness matrix is given by:

,AB I Y1 cosh-yh -1hHalfspace stiffness constant for SH wavesh.

Halfspace stiffness constant for SH waves

(2.90)

The use of Eqns. (2. 53) and (2.63) with the imposition of the

radiation condition leads to the following expressions for the trans-

formed stress and displacement of plane C (Fig. 2.4.c).

uC
3n = C5n (2.91)

(2.92)C =YC
23n C5n

Therefore, transformed stresses and displacements at the surface of the

-AB



halfspace for SH waves are related by the following expression

C C (2.93)
a23n Y= U3n

2.2.3 - Displacements within a Layer

In order to obtain the average displacement in the layer one

needs to compute the displacements at a number of points within the

layer; these displacement values along with those at the two planes

confining the layer can be used to define a displacement pattern across

the layer.

Consider again tle layer shown in Fig. 2.4b. Having computed the

transformed displac.iments of planes A and B, one can use Eqns. (2.64)

and (2.84) to evalJ..Ite the unknown constants C1n, ... , C6n. Then the

transformed displacements at a point within the layer can be evaluated

by using Eqns. (2.52) and (2.53).

For the present study, in addition to layer interfaces, the displace-

ments of the middle of layers are computed. These displacement values

for each layer are used to define a 2nd degree polynomial to approxi-

mate the variation of displacements across that layer. The average

value obtained by using this interpolation function corresponds to the

well-known Simpson's Rule.

Explicit expressions for the mid-layer transformed displacements are

given next.

Mid-layer displacements for SV-P Waves

The transformed displacements of the mid-plane of the layer shown in

Fig. 2.4b (Plane E) are related to those of planes A and B by the follow-

ing expression:



E

E Iu"2n )

E[T
= [TsV-p

where the elements of the

T11 1 [Ecyk 2 (CCCy/2 + Cc

21 = a-k[x,(C T S( /2

T12 = Y k[Uy(C c S

T 1 [ ak 2 C a- U

22 [cy (CC/

Au1n
A

u
2n

Buuln
B
u2n

[T•Ev P]

+

Uln

2n

(2.94)

- Uln

- U2n
-Uln

- U2n2n-u

n. 1

are given by (E and SV-P are omitted):

/2CY ) _ 2 y2 aSY/ 2 - k4 S4/ 2 SY -_ cck 2 (C/2 + CY/2)]

- CY/2S a) + k2(Sy/ 2Ca -

- C /2SY ) + k2 (Sa/ 2CY -

+ CY/2C•a)- 2•2 SYSa/ 2 -

SYCC / 2) + k2S 2 + cYSa . 2

S CY/ 2) + k2 Sa/ 2 + cxySY / 2]

k4Sy/2Sa- cayk 2(Cy/2 + C/2)]

T13 = T11

T23 = T21

T14 = -T12

T2 4 = T2 2

In these expressions, in addition to the previously-defined symbols,

D, Ca, Cy, So"and SY (Eqns.

SY/ 2 are used

(2.74) and (2.75)), C u 2, Cy/ 2, 5a/2

to denote the following quantities:

CT/2 cosh (cah/2)

C/2 cosh ,'h/2)

S'/2 = sinh (ah/2)

= sinh (yh/2)

(2.95)

and

(2.96)



Also Uln and U2n are given by Eqns.

tively.

(2.65) and (2.66), respec-

For 1- << 1, one can show that the following expressions define

the asymptotic value of the elements of [T•Ep].SV-P30

2Sk/2(1+E2 )
k/2 2

T11 12 [khC (E2-1)+ 2Sk/2(1+E2)][kh(c21 )-2Ck
2D.

T21 ~ - kh(l0- 2 )Sk/2 [2(1+e 2 )Sk/2Ck/2 - kh(l-e 2)]
2C

T k(l )Sk/2[2(l+E2)Sk/2Ck/ 2 + kh(l-E 2 )]
12 ~

T 1 khCk/2(1E 2)+ 2Sk/2(1+E2 )][kh(l-. 2)- 2Ck/2sk/2(1+2
2D

(2.97)

where D , Ck, and Sk and E are defined by Eqns.

Ck/ 2 and Sk/2 denote the following quantities:

(2.77) and (2.78), and

Ck/2 E cosh (kh/2) Sk/2 E sinh (kh/2) (2.98)

Mid-layer transformed displacement for SH waves

The following expression defines the transformed displacement of

plane E in terms of the transformed displacement of planes A and B (see

Fig. 2.4b).

E 1
2 cosh (Yh)

A B . -)(u3n + U3n 213n) + U3n

where U3n is given by Eq.

(2.99)

(2.86).



2.2.4 Integral Representation and Numerical Evaluation of Displacements

The preceding analytical solution scheme can be used to evaluate

the displacements in layered soil media caused by uniform load distribu-

tions over cylindrical or circular surfaces (see Fig. 2.3). For this

purpose, it is necessary to divide the soil medium into a number of lay-

ers such that each layer contains only one of the cylindrical load distri-

butions. In this way, the loads on the cylindrical surfaces can be trea-

ted as body foaces for which the "fixed-end stresses," (see sec. 2.2.3)

can be evaluate,, whelreas the loads on circular surfaces can be considered

as external forces A•- the interface of two layers.

Consider the uniform horizontal and vertical loads on cylindrical and

circular surfaces snown in Fig. 2.3. The loads on cylindrical surfaces

are associated with forces developed along the pile shafts, whereas the

loads on circular surfaces correspond to pile-tip forces. In the follow-

ing analysis, the radii of the cylinders and circular areas will be de-

noted by R, and the height of the cylinders by h. (R is the radius of the

piles, and h is the thickness of a layer). The load distribution in Fig.

2.3a (lateral load on a cylindrical surface) can be expressed in cylindri-

cal coordinates as

fr(re,z) = r 6(r-R) cos afr(r ' 'z) - h 6

f6(r,e,z) 7Rh(r-R) sin e (2.100)

fz(r,e,z) = 0

where 6 is the Kronec':er delta function.

Comparing Eqns. (2.100) with the expansion of loads in Eqns. (2.26),

one can write



frf 1 6 (r-R)

f -1 (r-R) (2.101)
el 2rRh (r-R)

f, = 0

and
frn = On  fzn = 0 ; for n 1 1 (2.102)

Since the amplitudes of the Fourier expansion of this load for values

of n other than one are zero, the corresponding displacements are similarly

contributed only by the terms associated with n=l; therefore the displace-

ment expansions reduce to the following expressions:

Ur(ro,z) = url(r,z) cos a

u u0(r,e,z) = u61 (r,z) sin e (2.103)

L uz(r,e,z) = uzl(r,z) cos e

On the other hand, application of Hankel transforms, according to

Eqns. (2.34), to frl' fel and fzl given by Eqns. (2.101) leads toIo(kR)
11 2irh

f21= 0 (2.104)

J (kR)
f31  2rh

The transformed displacements associated with these transformed

forces can be obtained by the techniques described in secs. 2.2.2 and

2.2.3. If ull, u21 and u31 are the transformed displacements correspond-

ing to f 31 and f = 0, then actual transformed displace-
n 3of 1 = . and f21 '



ment associated with f11 f21 and f31 in Eqns. (2.104) are given by

-J0(kR) Ull' -Jo(kR) u21 and Jo(kR) u31; thus the Hankel transform of

displacements in Eqns. (2.34) can be written as (n=l)

-Jo(kR) 1 + J(kR) u31  o (Url + uel) J2(kr) rdr

1J (kR) ull + °0(kR) u31 = o (url - u 1) Jo(kr) rdr (2.105)

ýj " = r UzlJl(kr) rdr-Jo(kR) -21  Joz 1(kr) rdr

The application of inverse Hankel transform to these equations leads

to:
00o

Url + u = J (-ull + u3 1 ) Jo(kR) J 2 (kr) kdk

Url - Ul = o (u11 + u31) Jo(kR) J0 (kr) kdk (2.106)

Uzl = (-u 2 1) Jo(kR) J1(kr) kdk

Finally, by using the recurrence relations for the Bessel functions,

one can obtain the following integral representation for url, ue1 and Uz1"

I• l ~ cu J1(kr)

rl = 11  (kr) J(kR) + (u 31 - 11 kr Jo(kR)] kdk

= o J (kr)
u = - [u 3 1 do(kr) Jo(kR) + (U11 - U31) kr Jo(kR)]kdk

Uzl1  j u21 Jl(kr) J0 (kR) kdk (2.107)
)0



A similar procedure can be followed to obtain the integral repre-

sentation of displacements for the load distribution shown in Fig. 2.3b

(frictional force on a cylindrical surface). For this case, the load

distribution can be expressed as

fr(r,e,z) = 0

f6(r,e,z) = 0 (2.108)

fz (r,e,z) = 2Rh 6(r-R)

Comparison of these equations with the expansion for the loads in

Eqns. (2.26) leads to

fro = 0

feo = 0 (2.109)

1fzo = 6(r-R)Lzo 2TrRh
and

frn = fn = fzn = 0 ; n 0 (2.110)

Since the only nonzero term in the load expansion corresponds to

n=O, likewise, in the displacement expansion, only the n=O term will have

non-zero value, and all other terms will vanish; that is,

Ur(r,e,z) = Uro(r,z)

ue(r,e,z) = 0 (2.111)

Jz(r,e,z) = uzo(r,z)



Following a procedure similar to the one described for horizontal

loading, one can show that if ul0 and u20 are transformed displacements

due to transformed loads f 10  0 and f20 = ; then uro and uzo are

given by

Uro = ul J1(kr) Jo(kR) kdk

(2.112)

u = u20 Jo(kr) Jo(kR) kdk

For the lbads cistributed over circular surfaces (Fig. 2.3c and

2.3d) it is nec-essary to evaluate the corresponding transformed forces

directly. Consider -irst the load distribution shown in Fig. 2.3c (fric-

tional force on a cir'cular surface). One can represent this loading by

the following expreŽ;sions:

1
rz Tcos e

- = - sin r < R (2.113)ez - R2TrR

arz = ez = zz =0; r > R

If a Fourier expansion of these loads, similar to the expansion of

stresses in Eqns. (2.55), is compared with Eqns. (2.113), it can be con-

cluded that

l
0 rzl R2

-1
•6•.1 (2.114)

TrR

Ic f

ZZ

I

v



and

arzn = qezn = ozzn = 0 ; for n0 1 (2.115)

Therefore one only needs to consider the terms associated with n=l in

the expansion of displacements; that is, ur, u0 and uz can be expressed

by eqns. (2.103). The transformed loads associated with orzl' Fozl and

-zzl in Eqns. (2.114) can be obtained by the application of Hankel trans-

forms according to Eqns. (2.60), the result is:

SJl(kR)
c211 I kR

I 221 = 0 (2.116)

- 1 1(kR)
'231  _kR

A procedure similar to the one described for the loads on cylindri-

cal surfaces leads to the integral representation of url, ul0 and uzl

similar to those presented by Eqns. (2.107) except that the term J (kR)
Jl(kR)

should be replaced by kR . The transformed displacements u11 , u21

and u31 in these equations then correspond to transformed applied stres-

- 1 -
ses J211  221 = 0 and 0231

Finally for the load distribution shown in Fig. 2.3d (vertical force

on a circular surface) one can show that forces and displacements are

contributed only by the terms associated with n=O in the Fourier expan-

sions and that expressions for displacements are given by Eqns. (2.112)

except that in these equations the term Jo(kR) should be replaced by

Jl(kR)/kR; transforned displaements u10 and u20 in these equations then

correspond to tranc :ormed applied stresses a210 = 0 and a220 1 "



The expressions for displacements obtained in this section involve,

in general, integrals of the form

I n f n(kr) Jm(kR) dk (2.117)

in which the kernel, f, represents a function of k and is associated

with transformed displacements, and n and m are integers that can take

on values of zero and one.

The first step in the numerical evaluation of the above expression

is to approximacte t1-e semi-infinite integral by a finite integral, that

is: k

Ii P f J (kr) J (kR) dk (2.118)

in which ku is an upper limit of integration which can be defined on

the basis of the intagrand's rate of decay. The next step is to divide

the integration domain (0, k u), into a number of discrete intervals and

to use, in each interval, the value of the integrand at a number of

points in order to define an interpolation function. These functions,

which approximate the actual variation of the integrand, are used to per-

form the integration in each interval analytically. The final step is

then to sum the results of the numerical integration over the intervals.

Before describing the quadrature implemented in the present work,

it may be instructive to examine certain characteristics of the kernel f

(Eq. 2.118). This function represents a transformed displacement associ-

ated with a load distribution in the medium. Fig. 2.5a shows the plot

of the real part of u20 at the surface of a layered halfspace caused by

a uniform friction&l load on a cylindrical surface in the top layer. The
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medium consists of 5 layers resting on a viscoelastic halfspace; the

following table gives the properties of this medium.

Layer Thickness Shear wave Mass density Damping Poisson ratio
velocity

Top 1.0 1.0 1.0 0.05 0.40

2nd 1.5 1.5 1.0 0.05 0.40

3rd 2.0 2.0 1.0 0.05 0.40

4th 3.0 2.5 1.0 0.05 0.40

5th 4.0 3.0 1.0 0.05 0.40

Half-spacelf- 4.0 1.0 0.05 0.40
space

In addition, the frequency of vibration, w, is 1 rad/sec. Fig.

2.5b shows the plot of the real part of ull at the surface of this

medium caused by a uniform lateral load on a cylindrical surface in the

top layer. In the ensuing paragraphs, the region which contains the

peaks of the kernel f will be referred to as "region I," and the remain-

ing domain will be referred to as "region II." (Region I extends to

values of k which are of the order of :- , where Cs is the shear wave

velocity of the layer in which the load is applied.)

The plots in Fig. 2.5 show that the kernel f in region I is charac-

terized by pronounced peaks. These peaks, which are associated with

surface wave modes, become sharper as the r'aterial damping in the medium

decreases. In addition, more peaks appear in the variation of the kernel

as the number of layers increases. These plots suggest that for the pur-

pose of numerical integration in region I, one has to select, in general,



small intervals, so that the erratic nature of the integrand can be cap-

tured by the interpolation functions.

On the other hand, the variation of the kernel in region II, which

contains the decaying branch of the kernel, is very smooth (see Figs.

2.5a and 2.5b). The kernel, in this region, approaches zero ever faster

as the relative distance between the layer at which f is evaluated and

the layer in which the load is applied increases. This can be verified

by examining Figs. 2.6a and 2.6b, which show the variation of u20 and

U11 at the surface of the halfspace for the same medium and load condi-

tion associated with Figs. 2.5a and 2.6b, respectively. These observa-

tions suggest that, as far as the variation of the kernel is concerned,

for numerical integration one may select larger intervals in region II

than in region I.

As for the Bessel functions in the integrand, one has to make sure

that, for small arguments (kR and kr smaller than, say 4.0), the size

of the interval is small enough to allow a sufficiently accurate repre-

sentation of these functions at the integration points. (Since the wave-

length of a Bessel function is approximately 2r, in order to have, say,

10 intervals in a cycle, it is necessary that the size of the interval,

Ak, be selected such that (Ak)r < TO and (Ak)R < 2). On the other hand,10 n 10
for large arguments, one may use Hankel's asymptotic expansion to approxi-

mate the Bessel functions. Hankel's asymptotic expansion for J (y) for

large argument is given by:

-J(y) = [P(v,y) cos X - Q(vý,y) sin x] (2.119)J (y)

where
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X = y - ( + 4) 'T, (2.120)

P(v,y) P(-1) (v,2k) = 1 - (- 9)i (-1)(•-9)(I-425)(i-49)
(=O (2y) 2  2!(8y) 2  4!(8y)4

(2.121)

Q(v,y) Io(-l (v,2+1l) - 1-1 (P-1)(PJ-9)(Pi-25) + (2.122)
Z=O (2y.) 2 k- T  3!(Sy) 3

In these expressions i = 4 2.

Eq. (2.119) can be rewritten as:

JV(y) = AV(y) cos y + BI(y) sin y (2.123)

in which A (y) and B (y' are given by

A (y) = [P(v,y) cos ( + )T + Q(v,y) sin (1 v+-

(2.124)

B (y) = V [P(v,y) sin (1v + - Q(v,y) cos ( v+ 1)r]

Now consider an interval of integration between kI and k3 on the

k-axis. In addition, for the present study, an integration point with

k=k2 is used at the center of the interval so that a quadratic poly-

nomial can be defined to interpolate the integrand between these three

values of k. Depending on the value of klR and k1r, one of the follow-

ing four integration procedures is then applicable: (In the following,

6 is used as reference value to distinguish between small and large val-

ues of the argument for Bessel functions.)

1) klR < 6 and klr < 6 : If Fl , F2 and F3 denote the value of the

integrand, f Jn(kr) Jm(kR), at k1, k2 and k3. respectively, then one can,n m 21



obtain the quadratic polynomial which is defined by these values. It

can be shown that this polynomial is given by

F(k) = Pk2 + Qk + Sk

P 2  [F1 - 2F2 + F3]
(Ak)

Q ) [k 1 (4F2 - F, - 3F'3)
(Ak)

1 2 2
S =( [k1 F3 k3 F1 k 1

; k1 < k < k3

+ k3 (4F2 - 31  - F3 )]

k3 (4F2 - F1 - F3)]

and Ak = k3 - kI . The integration of the polynomial F(k) over the

interval [k 1 ,k3] then results in Simpson's rule (Ak x F1 + 4F2 + F33 6

2) kI R < 6 ar

Hankel's asympt

1 = ! k3

k1

k
3=f

k

k3

d k r > 6: For this case one can replace Jn (kr) byn
:otic expansion given by Eq. (2.123); thus one can write:

f(k) n(kr) Jm(kR) dk

f(k) Jm(kR)[A n(kr) cos (kr) + B (kr) sin(kr)] dk

(2.127)

f(k) Jm(kR ) A (kr) cos (kr) dk

f(k) Jm(kR) B (kr) sin (kr) dk

in which

(2.125)

(2.126)

k3

+ k I



Consider the first integral in Eq. (2.127): One can approximate

the coefficient of cos(kr) in this integral by a quadratic polynomial,

as described in the previous case. (In this case, however, Fl, F2 and

F3 are the value of f(k) J (kR) A (kr) at kl' k2 and k3 , respectively).

Therefore this integral is approximated by an integral of the form

[k3 (Pk2 + Qk + Sk) cos(kr) dk, which can be evaluated explicitly.
JkI

Since the oscillatory nature of the Bessel function is accounted

for by the trigonometric functions, the size of the interval is con-

trolled only by the degree of smoothness of the other functions in the

integrand.

3) k R > 6 and k r < 6: The procedure for this case is similar to

that of the previous one, except that now one has to use the asymptotic

expansion for J (kR).

4) klR > 6 and k1r > 6 : In this case one can use the asymptotic ex-

pansion for both Bessel functions in the integrand. Then, in the final

results, one gets integrals of the form:

Tk3 2 { cos(kR) cos(kr)

(Pk + Qk + Sk) 4 dk, in which the poly-

k1 sin(kR) sin(kr)

nomial (Pk2 + Qk + Sk) has replaced the actual functions appearing with

the trigonometric functions in the integrand. These integrals also can

be evaluated explicitly.



2.3 Lateral and Axial Vibration of Prismatic Members

in Sec. 2.1 certain response quantities of a dynamically excited

prismatic member (pile) were used to formulate the pile group problems.

More specifically, the formulation was based on the evaluation of the

dynamic stiffness matrix of the piles Kp, the dynamic flexibility matrix

of clamped-end piles, Fp, and the dynamic flexibility matrix of clamped-

end piles for harmonic end displacements, TYp. The objective of this sec-

tion is to derive the expressions for the response quantities that are

needed to construct these matrices.

2.3.1 - Lateral vi-)ration

The equilibri:mi equations for a differential element of a beam in

lateral vibration, including the effect of axial force, are given by

(see Fig. 2.7b):

d + m2 u = 0 (2.128)

dM duV + TZ + H -z = 0 (2.129)

in which m denotes mass per unit length of the beam and H is the constant

axial force in the beam. Using Eqns. (2.128) and (2.129) along with the
2

moment-curvature relationship, M = El d- -; (El being the bending rigidity
dz

of the beam), one gets:

du + d2dz2 -E )u = 0 (2.130)
dz dz

The solution of this differential equation can be expressed as:

u = C1 cos(n.:) + C2sin(nz) + C3 cosh(Ez) + C4 sinh(Ez) (2.131)
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Fig. 2.7 - A Beam in the Lateral Vibration.
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In order to evaluate the elements of Yp associated with the lateral

degrees of freedom, one needs to derive the expression for the lateral

displacement o-F the beam caused by the displacements at the two ends,

UA' 6A' UB and .r . To achieve this, one may use the equation for u (Eq.

2.131) along with i-s derivative to express the end displacements in

terms of Cl, C2, C3 and C4. If now the resulting equations are solved

for these unknown c:cnstants, one gets:

T (1 + L- T) U A  S S)
1  [( 4) uA T3 A + (C - C)uB - (±TI S B S)

C 1 [_+ 1 -2U
2 = [- T2uA ( - TA)1 A + (S + S )uB + -I (C - C )QB]

o

(2.133)

C3 - [(1 )uA T3 A - (C - C )uB + ( S SS )B
o

4 1 [T2uA + ( T4 +1 S) + S)uB - (C - C)-l4 To  T B B

In these expressions To, T1, T2, T3 ar.d T4 are given by :

T 2 -2C CS -)SnS
o T

T = C + n SS

in which:

(2.132)



T C2= CS - SICný2 5

T= SnC _- 1 CnOS
3 E

T = SnSE- n CnCE (2.134)
4

and Cn, Sn, CE and SS are used to denote the following quantities:

C" - cos (nL) ; Sn  sin (CL)
(2.135)

C' cosh (CL) SE5 sinh (CL)

and L is the length of the beam. Finally, the desired expression can

be obtained by intiroducing Eqns. (2.133) into Eqns. (2.131). (The ele-

ments of Yp associated with a point C of the beam are then the coeffi-

cients of uA, ýA' ug and B in the expression for the displacement of

point C).

The dynamic stiffness matrix of the beam is obtained by expressing

the forces at the two ends of the beam in terms of the displacements of

these points. This can be achieved by using Eq. (2.129) and the moment-

curvature relationship along with Eqns. (2.131) and (2.133); the result

can be written as:

VA uA

MA A

V = K (2.136)
VB  uB

MB PBi

in which the elements of the symmetric 4 x 4 dynamic stiffness matrix, K,

are given by:



E11 2 ( 2)( ,S C + n CT Sý)

K2 T  2)( - C C) + 2•S) S
0

EI ( 2 2)(n Sn + E SE)

K41 T 2 2 - )(C - Cn)0

K32 ( 2 + 2)(CE - Cs )41 T0

2 2

K42 - ( +  2)(cS - cn )
0

K42 = T E1 (E,
o

K3 3 = K 11

K4 3 = - K2 1

K44 = K22  (2.137)

In order to evaluate the elements of Fp associated with the lateral

degrees of freedom, it is necessary to derive the expressions for the

lateral displacement caused by a lateral point load in a fixed-end beam.

Consider the beam shown in Fig. 2.7c subjected to a point force, p, at

z = a. One can use Eq. (2.131) to express the displacements of the beam

as:

u = Alcos(nz) + A2 sin(nz) + A3cosh(gz) + A4sinh(gz) 0 < z < a
(2.138)

u = B lcos(nz) B2 sin(nz) + B3cosh(iz) + B4 sinh(ýz) a < z < L



(2.132). The unknown constants A ,

A2, ... B3, B4 , can be determined by imposing the kinematic boundary

conditions at the two ends (zero translation and rotation) along with

the displacement compatibility and equilibrium conditions

of application of the load.

at the point

The result is:

A = P
EIn(n2 + 52)T o

A2 7- 2)T
EI (;T-, 02 )

IT3(cosh(,a) - cos(ha)) + (T1
- 1) sin(na)

- (T4 + E) sinh(ýa)]

l)cosh(ýa) - (1 + • T4)
T, 4

cos (a)

+ T2( sin(na) - sinh(a)I2 ' ,
A3 = - A1

A4 = - A24 C 2

B1 = P
Erln(l 2 + 2)T o [T3(cosh(ca) - cos(qa)) + (T4

+ s)(. sin(ha)

- sinh(ga))]

= -PB2 2 - 2
EIn(2  + 52)To

B3 = - T1 B1 - T3 B2

B4 = T2 B1 + T4 B2

(T1 - 1)(cosh(ýa) - cos(na))

+ T2 (A sin(ha) - sinh(Ea))]

(2.139)

2.3.2 Axial vibration

The equilibriinm equation for a differential element of a beam in

axial vibration is given by

where n and , are given by Eqns.

(T1 -

(see Fig. 2.8b):
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dF 2dF + v = 0 (2.140)
dv

Introduction of the force-displacement relationship F = EA L  into

Eq. (2.140) leads to:

d2 v + i 2 v = 0 (2.141)
dz

The selection of this differential equation can be written as

v = C1 cos(Cz) + C2 sin(Cz) (2.142)

in which: 2 1/2 (2.143)

Following the procedure described for lateral vibration, one can

derive the expressions for C1 and C2 in terms of the end displacements

of the beam:

C1 VA
C2 1  iVAL [- cos(CL) vA + vB] (2.144)C2 =sin EL

Therefore Eq. (2.142), with C1 and C2 defined by Eqns. (2.144), can

be used to obtain the elements of T p associated with axial degrees of

freedom.

Similarly, the axial dynamic stiffness matrix of the beam can be

obtained following the procedure outlined in the previous section; one

can show that:

SFA cos(rL) -1 A
EAV= sin(CL) (2.145)

FB  -1 cos(C L) vB

Finally, the axial displacement in a fixed-end beam caused by an axial



point load p (see Fig. 2.8c) is given by:

v = A1 'cos(z) + A2 sin(ýz) 0 < z < a

(2.146)
v = B cos(Cz) + B2 sin(cz) a < z < L

The unknown constants Al, A2, B1 and B2 can be found by using the

kinematic boundary conditions at the two ends of the beam together with

compatibility and equilibrium conditions at the point of the application

of the load; one can show that:

rA =0

A = - [cos(ca) - cotan(CL) sin(ca)]
2 EAT

(2.147)

B1  - sin(ca)

2B = ~ cotan(ýL) sin(ca)

Eqns. (2.146) with Al, A2, B1 and B2 defined by Eqns. (2.147) can

be used to obtain elements of F associated with axial degrees of freedom.

The expressions derived in this section apply to the dynamic excita-

tion. The corresponding expressions for the static case are available

in the literature and therefore are not repeated here.



CHAPTER 3 - DYNAMIC BEHAVIOR OF PILE GROUPS

The objective of this chapter is to present the numerical results

obtained with the formulation outlined in chapter 2, and to investigate

certain characteristics of the vibration of pile groups. The quantities

of interest in this study are: 1) The dynamic stiffnesses of pile groups

corresponding to the horizontal, vertical, rocking and torsional modes

of vibration; 2) the seismic response of pile groups; and 3) the dis-

tribution of 1-n apTlied load (horizontal or vertical) on the pile cap

among the piles ir the group. While information on the distribution of

loads among the pilis is necessary for the design of the piles' section,

the stiffnesses, :long with the transfer function of the pile cap associ-

ated with a seismic: excitation, can be used, in the analysis of the super-

structure, to accoiunt for the foundation-structure interaction effects.

(In a conventional foundation-structure interaction analysis for seismic

excitation, first the stiffnesses of the foundation are evaluated (soil

springs); next the motions of the foundation in the absence of the super-

structure are obtained (kinematic interaction), and finally the dynamic

response of the superstructure mounted on soil springs and subjected at

the base to the motion obtained from the kinematic interaction analysis

is computed (inertial interaction). For details see, for example, Kausel

and Roesset (1974)>.

Although the results presented in this chapter cover only a limited

range of parameters, it is believed that they can be used to draw general

conclusions about certain aspects of the problem. In addition, these

results, along wit- those of chapter 5, can be helpful in gaining insight

into the mechanism cif the dynamic behavior of pile groups.



In this chapter, as well as in chapters 4 and 5, the elasticity

modulus, mass density, poisson ratio and material damping of the soil

are denoted by Es, ps' vs and Bs, respectively; and the corresponding

quantities for the piles are denoted by E p p, Vp and Bp. In addition,

Ap Ip L and d are used to denote the cross-sectional area, moment of

inertia, length and diameter of the piles, respectively. Also, N refers

to the total number of piles and s to the distance between adjacent piles.

Finally, a dfines the nondimensional frequency, i.e., a = --, in which
s

w is the frequency of harmonic vibration and Cs is the largest shear-wave

velocity of the soif profile.

In order to verify the numerical solution scheme developed in the

present study, the !'ollowing comparisons with the results of previous

investigations are presented. Figure 3.1 shows the horizontal and ver-

tical static stiffnesses of 3 x 3 pile groups in an elastic halfspace ob-

tained by Poulos and Davis (1980). The same quantities evaluated by the

present method are also shown in this figure (dashed line). These re-
E I

sults correspond to L = 25 and • = 10-3 for the horizontal case, and
E d-3 EsL

to = 25 and Es 10- for the vertical case. The figure shows that the

results of the present method for the vertical stiffness agree very well

with those of Poulos. For the horizontal case, on the other hand, the

results of the two studies display some discrepancies; these results, how-

ever, do not differ by more than 20%. Therefore it can be concluded that,

in general, there is a fairly good agreement between the present solution

and the Poulos solution.

Figure 3.2 dirslays a comparison between the results of the present

study and those rez:orted by Nogami (1979) for the vertical stiffness and
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damping of a 2 x 2 pile group. The soil medium in this case is a uni-

form viscoelastic stratum, with thickness H = 75 d, resting on a rigid

L - 35 abedrock, and the piles are characterized by 37.5 and 7-L- = 1 (P is

the shear modulus of the soil); also = 5. The figure shows that the

agreement between the two solutions is fairly good. The small discrep-

ancy observed between the two solutions is believed to be partly due to

the fact that, in the analysis of friction piles, Nogami introduced a

soil column beneath each pile so that he could use the formulation devel-

oped for end-bearing piles.

In the results presented in this chapter, as well as in chapters

4 and 5, it is assumed that the soil medium is a viscoelastic halfspace

with vs = 0.40 and s = 0.05, and the piles are made of elastic materi-
p5als with v = 0.25 and B = 0.00. In addition, it is assumed that PP

0.70 and j = 15. The response quantities examined in this chapter are

evaluated for a number of pile spacings (- = 2, 5 and 10) and group for-

mations (2 x 2, 3 x 3 and 4 x 4 square groups), as well as two soil con-

ditions (soft soil: E= 10- ; stiff soil: = 10-2), and the two types
P p

of pile-to-cap connection (fixed or hinged).

3.1 Dynamic Stiffnesses of Pile Groups

The stiffness functions, obtained with the present formulation, are

complex quantities which can be expressed as:

K = k + i a0 c (3.1)

For horizontal and torsional cases, the dynamic stiffnesses are

norimialized with respect to the horizontal static stiffness of a single



pile in the group, kxx(ao = 0) , whereas for the vertical and rocking

dynamic stiffnesses the vertical static stiffness of a single pile,

kz (ao = 0) , has been used for the normalization. More specifically,

the normalization factor for the horizontal, vertical, rocking and tor-

sional dynamic stiffnesses are: N k (a = 0), Nk5 (a = 0),XX 0 ZZ 0

zx kzz(ao 0), and Zr ks (a = 0), respectively: in these factors

x and r refer to the Cartesian and polar pile coordinates, respectively.

(In order to distinguish between the stiffnesses of pile groups and

single piles, a superscript "G" is used for the former and a superscript

"s" for the latter.)

Figure 3.3 sh)ws the horizontal and vertical stiffnesses and damp-

ings of a 2 x 2 pile group embedded in a halfspace, for different pile

spacing (s/d = 2, 53 and 10) and for Es/E = 10- 3 . This figure shows

that the behavior of a pile group for very close spacings and up to a

certain frequency, is very similar to that of a rigid footing; that is,

stiffnesses decrease with frequency and even become negative, indicat-

ing a behavior dominated by inertia effects, and radiation dampings dis-

play a frequency-independent characteristic. On the other hand, inter-

action effects among the piles start to dominate the overall behavior

of the group as frequency exceeds a certain limit. This can be verified

by examining the changes in the patterns of kxx and kzz for different

pile spacings. (For example, for s/d = 5, the figure shows that kxx and

kzz first decrease up to a certain freqe7ecy and then start to change

their pattern). The transition between the two modes of behavior occurs

at smaller frequencies as the distance between the piles increases.
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Figures 3.4 and 3.5 present the results for the horizontal and

vertical dynamic stiffnesses of 3 x 3 and 4 x 4 pile groups for the

same soil and pile parameters used for the 2 x 2 group (Fig. 3.3). In

addition to the general characteristics observed in Fig. 3.3, these

figures display a more pronounced group behavior as the number of piles

increases. Moreover, with an increase in the number of piles, more

peaks are introduced in the variation of stiffnesses and dampings.

An interwstin•c common feature of these results is the very large

interaction effect in the group; if there had been no interaction, the

curves would ha"Y:',e ;z)incided with those of a single pile, the real part

of which deviates ouily slightly from unity in the frequency range con-

sidered (dashed li:-e in Fig. 3.3). The large interaction effects, which

seem to be stronger for the vertical vibration than for the horizontal,

are essentially due to the out-of-phase vibration of piles. This point

will be discussed again when the superposition scheme is examined in

chapter 5.

Figure 3.6 shows the horizontal as well as vertical stiffnesses

and dampings of 3 x 3 pile groups in which the piles are hinged to the

cap. Comparing the results in this figure with those in Fig. 3.4 (cor-

responding to groups in which the piles are rigidly connected to the

cap), one can see that there is a considerable reduction in the hori-

zontal stiffnesses and dampings, as expected. These quantities, however,

have the same features as were displayed by plots of kxx and cxx in

Fig. 3.4.

Figure 3.7 she s the horizontal and vertical dynamic stiffnesses

for a stiffer halfs•pce (Es/E = 10-2) and for groups with different
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number of piles (2 x 2, 3 x 3 and 4 x 4). For all these pile groups,

s/d = 5. This figure displays basically the same features observed for

the groups in the soft soil medium (Figs. 3.3, 3.4 and 3.5). How-

ever, the interaction effects seem to be less pronounced for the stiffer

soil medium.

Another interesting characteristic of these results is that, for

low frequencies, the radiation damping increases as the width of the

foundation (pile cE.p) is increased.

Figures 3.8 to 3.12 show the rocking and torsional dynamic stiff-

nesses associated with groups for which the horizontal and vertical

dynamic stiffnesses were presented in Figs. 3.3, 3. 4 , 3.5, 3.6

and 3.7, respectively. (The pile and soil parameters are indicated

in the figures.) Host of the observations on the characteristics of the

horizontal and vertical dynamic stiffnesses, such as the dependence of

group stiffnesses and dampings on the pile spacing, the number of piles

and the stiffness of the soil medium, apply to the torsional and rocking

dynamic stiffnesses as well. Greater interaction effects for these cases

are, however, associated with the in-phase vibration of piles.

An important characteristic that differentiates between the behavior

of pile groups and single piles is associated with the concept of a

pressure bulb. The pressure bulb is defined here as the zone in the

neighborhood of the foundation where stresses (and strains) are signifi-

cant. As a result, the characteristics of this zone play a major role

in the behavior of the foundation. Since this zone extends to depths

which are comparable to the size of the foundation, one is led to expect

that the characteristics of the deeper layers influence, to a greater
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extent, the overall response of pile groups than they do the response

of single piles, where behavior is controlled primarily by the near-

surface soil-pile properties. This can be verified, in fact, by examin-

ing the results in Fig. 3.13. In this figure the ratio of the absolute

values of the stiffnesses of a pile group, embedded in two different

soil media, are compared. The first medium is a homogeneous halfspace

with Es/E p = 10 2, and the second, a halfspace similar to the former,

but overlain by a surface layer with thickness h=d and stiffness ratio

Es/E p = 103 (i.e., 10 times softer). This second case might also be

considered as a simple model to account for the nonlinear effects that

may be expected in~ the neighborhood of the pile heads as a result of

soil yielding and pile-soil separation. The results clearly show that,

as the number of piles increases, the stiffness ratio at low frequencies

increases, and approaches unity. Therefore, pile groups are less influ-

enced by conditions near the surface than single piles are. This obser-

vation also bears on the accuracy of the techniques which use the re-

sult of single-pile nonlinear analyses (or field tests on single piles)

along with the empirical group reduction factors to derive group stiff-

nesses.

3.2 Seismic Response of Pile Groups

As was stated earlier in this chapter, for a conventional founda-

tion-structure interaction analysis for seismic excitation, one needs to

evaluate the motions of the foundation (pile cap) in the absence of the

superstructure. In the present study, it is assumed that the seismic

mction is due to 'crtically propagating shear waves in the halfspace that
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produce a free-field ground-surface displacement ug. These waves in-

duce both a translation and a rotation in the pile cap. The transfer

functions for these quantities are complex-valued functions and will

be presented in terms of their absolute values.

Figure 3.14 presents the absolute value of the transfer functions

for the horizontal displacement, u, and rotation, q, of the pile cap

for 2 x 2 pile groups with different pile spacings (s/d = 2, 5 and 10)

and with Es . p = 19- 3 (these are the same pile groups for which the

stiffness cha ~acte·i1stics were studied in Fig. 3.3) . The transfer func-

tion for the pile-Iead displacement of a single pile is also shown in

the figure (the dashled line). This figure shows that as the foundation

width increases, .th absolute value of the transfer function for the

translation, jUI/u, approaches unity at low-frequency values. This

implies that the pile cap essentially follows the ground motion, although

it filters out to some degree its high-frequency content. For example,

if Cs = 70 m/sec (soft soil), d = 1 m and s = 10 m (s/d = 10), then the

fact that the values of jul/ug up to a = 0.2 are very close to one,

implies that the filter function is essentially unity up to the frequency

f = 2.25. Since the seismic motion at the ground surface for the soft

soil medium considered here will be characterized by low-frequency com-

ponents, it can be concluded that the motion of the pile cap and the soil

will be very similar.

On the other hand, the figure displays a significant dependence of

]pJ on the width of the foundation. More specifically, as the foundation

width increases, [j'j tends rapidly to zero. This implies that for foun-

dations having larce width, one can neglect the rotation of the foundation

in seismic analyses.
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Figures 3.15 and 3.16 present the absolute value of transfer

functions for the translation and rotation of the pile cap for 3 x 3

and 4 x 4 pile groups for the same soil and pile parameters considered

for the 2 x 2 group. These figures, in general, exhibit the same char-

acteristics that were displayed by Fig. 3.14. It is especially inter-

esting to note the significant reduction in 10l for s/d = 10 in Fig.

3.16 (the 4 x 4 group).

Fig. 3.17 shows the variation oflul and 41ý for 3 x 3 pile groups

in which the piles are hinged to the cap. As pile spacing increases in

this case, values of lul for the group approach those of a single pile;

hence the foundation tends to amplify low-frequency components of the

earthquake. On the other hand, values of j1q are considerably smaller

for these groups than for groups with rigid pile-to-cap connections

(compare with Fig. 3.15).

Finally, Fig. 3.18 presents the transfer functions for groups with

different numbers of piles with s/d = 5, embedded in a stiff halfspace,

Es/E = 10-2. (The parameters in this figure are the same as those in

Fig. 3.7). Comparing these results with those for soft soil conditions

(Figs. 3.14, 3.15 and 3.16), one can conclude that pile groups in stiffer

media follow more closely the ground motion and that they filter out only

the high-frequency content of the earthquake (lul/ug is essentially unity

up to ao = 0.4 in this figure)

3.3 Distribution of Loads in Pile Groups

With the present formulation the forces (reactions) developed at

the pile heads due to harmonic forces applied on the pile cap are complex
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quantities which can be expressed as:

R = IRI e-  (3.2)

where IRI is the maximum value of the reaction and p defines the phase

lag between the reaction and the applied force. In this section a num-

ber of examples are investigated in order to determine the variation of

IRI with pile spacing, pile-to-cap fixity condition and frequency, for

the different piles in a group. The fact that, at a given frequency,

the value of ' is not the same for the different piles in the group im-

plies that the forces on the pile heads do not attain their maximum

values at the same time: One might have then to consider this fact in

interpreting the results to be presented.

Figure 3.19 shows the distribution of loads among the piles of the

3 x 3 group studied in Fig. 3.4 (Es/E p 
= 10 3 ). The four plots in the

top correspond to the shear, Rx, and the moment, Mx , at the pile heads

due to a horizontal force, Fx, on the cap. The results are normalized

with respect to the shear that would be observed in each pile if there

were no interaction effects (i.e., Fx/N). These plots show that for the

static case, the corner piles carry the largest portion of the load,

while the piles closest to the center carry the smallest. However, this

observation is no longer valid in the dynamic case. In fact, for some

frequencies, a load distribution favorable to the corner piles may take

place. This Lan be verified, for instanue, by examining the variation

with frequency of the shear force on piles I and IV for s/d = 5. The

plots for these two cases show that the maximum shear in pile IV, for

values of a between 0.6 and 0.8, is almost twice the maximum shear in
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in pile I. These results reveal that the magnification factor at these

frequencies is considerably larger for the piles closest to the center

than the corner piles. The piles on the edges of the cap, on the other

hand, seem to be only slightly affected in their share of the applied

load. As far as the moment at the pile heads is considered, the plots

in Fig. 3.19 show that this quantity displays essentially the same char-

acteristics as the shear does. It is very interesting to note that the

plots of moment very closely follow the patterns exhibited by the plots

of shear.

The remaining plots in Fig. 3.19 correspond to the axial forces,

Rz , observed at pile-head level, caused by a vertical force, Fz , on the

pile cap; the results are normalized with respect to the average verti-

cal force (Fz/N). These plots show basically the same characteristics

that were observed in the distribution of a horizontal force. The dy-

namic effects are, however, more pronounced for the vertical case (for

example, observe the significant dynamic amplification of the axial force

for some frequencies, which is as large as 4, on pile IV for s/d = 5).

Figure 3.20 presents the distribution of horizontal as well as

vertical forces in 4 x 4 pile groups. The plots in this figure exhibit

the general features of load distribution that were observed for the

3 x 3 group.

Finally, Fig. 3.21 shows the distribution of forces in 3 x 3 pile

groups in whichl the piles are hinged to t'le cap. Comparing this figure

with Fig. 3.19, one can see that there is only a slight change in the

distribution of shear as a result of the change in the pile-head fixity

condition. There is, however, no change in the distribution of axial

force, as expected.
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CHAPTER 4

THREE-DIMENSIONAL VS. QUASI-THREE-DIMENSIONAL SOLUTIONS

In the formulation outlined in chapter 2, it was assumed that the

forces developed at the pile-soil interface consisted of lateral for-

ces in the x-and y-directions, as well as frictional forces in the z-

direction. These forces were then related to their corresponding dis-

placements in the soil mass through a soil flexibility matrix. Similarly,

these forces and the corresppnding displacements in the piles were related

by certain pile "flexibility matrices." The final step in the formulation

was the imposition of the compatibility between the displacements in the

soil medium and in the piles.

Clearly, for a three-dimensional pile group analysis one has to de-

velop a formulation which guarantees the full compatibility between the

soil and the piles in all three directions (the formulation presented in

chapter 2, which was briefly described above, is an example of a three-

dimensional solution.) A quasi-three-dimensional solution, on the other

hand, refers here to a formulation in which the compatibility condition

in at least one direction is relaxed. An example of such a formulation

is the one for the analysis of vertical vibration of pile groups in

which only the frictional forces at the pile-soil interface and the

associated displacements are taken into consideration. Most of the

existing pile group solutions are, in fact, of the quasi-three-dimen-

sional type. The underlying assumption for quasi-three-dimensional analy-

ses is that the forces in the direction for which the compatibility con-

dition is relaxed hardly affect the displacements in the main direction.
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Clearly, a quasi-three-dimensional formulation requires much less compu-

tational effort than a three-dimensional one does; this is due to the

fact that the former involves fewer degrees of freedom. Therefore, if

justified, a quasi-three-dimensional solution is preferred over a fully

three-dimensional one. It is important to point out that quasi-three-

dimensional formulations are useful only for the analysis of symmetric

pile groups. This is due to the fact that the motions of an unsymmetric

pile group in the pincipal directions are coupled, and a quasi-three-

dimensional f-ornula:ion is not, in general, capable of modeling the

coupling effect.

In what follows the results of a number of quasi-three-dimensional

solutions are presented and compared with their three-dimensional counter-

parts, which were presented in chapter 3.

Figure 4.1 sh,,is the horizontal and vertical dynamic stiffnesses

for 4 x 4 pile groups in the soft soil medium (Es/E = 10-3). The hori-

zontal dynamic stiffness is obtained by considering, in the formulation,

only the horizontal pile-soil interface forces in the direction for which

the stiffness is evaluated, whereas the vertical dynamic stiffness is ob-

tained by considering only the vertical forces at the pile-soil interface

(frictions and pile-tip forces). Comparison between this figure and Fig.

3.5, which was obtained by the three-dimensional formulation, shows that

the two solutions are almost identical, even for close spacing.

Figure 4.2 presents the horizontal and vertical dynamic stiffnesses

for pile groups with s/d = 5 in the stiff soil medium (Es/E = 10-2). Com-

parison of these results with those in Fig. 3.7 again shows an excellent

agreement between the two solutions.
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For the rocking mode of vibration, both the horizontal and ver-

tical forces at the pile soil interface have nonnegligible effects on

the behavior of the group; therefore, for a quasi-three-dimensional

analysis, it is assumed that the vertical forces as well as the horizon-

tal forces in the direction of rocking are present. In addition, in

order to introduce the basic assumption of quasi-three-dimensional solu-

tions, it is assumed that horizontal forces produce only horizontal dis-

placements and vertical forces cause only vertical displacements. Simi-

larly, for the torsional mode of vibration, only the two components of

the horizontal forc,-s at the pile-soil interface, which are assumed to

be uncoupled, are inzluded in the analysis. Fig. 4.3 shows the rocking

and torsional dynam::ic stiffnesses for 4 x 4 groups in the soft soil med-

ium, and Fig. 4.4 shrws the same quantities for groups with s/d = 5 in

the stiff soil med"i~im. Comparison of these results with the correspond-

ing results by the three-dimensional analysis (Figs. 3.10 and 3.12, re-

spectively) suggests that the results of these two solutions agree fairly

well, except for a slight discrepancy observed in the torsional stiff-

nesses.

Finally, Figs. 4.5 and 4.6 present a number of examples for seismic

analyses by a quasi-three-dimensional formulation, similar to the one

used for the evaluation of rocking stiffnesses. Fig. 4.5 shows the abso-

lute value of the transfer functions for displacement and rotation of the

pile cap for the 4 x 4 group in the soft scil medium and Fig. 4.6 shows

the same quantities for different pile groups with s/d = 5 in the stiff

soil medium. Comparing plots in Figs. 4.5 and 4.6 with those in Figs.

3.15 and 3.18, cie can conclude that the results of the two solutions
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agree fairly well in the frequency range of interest for seismic anal-

ses.

Therefore, in general, quasi-three-dimensional formulations are

capable of accurately characterizing the dynamic responses of symmetric

pile groups and they can replace the more involved three-dimensional

solutions.
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CHAPTER 5 - THE SUPERPOSITION METHOD

The three-dimensional formulation presented in chapter 2, as well

as the modified version of it, namely the quasi-three-dimensional formu-

lation described in chapter 4, require, in general, solution of a large

system of equations. This is due to the fact that on each pile segment

there are a number of unknown interaction forces that have to be related

to their correspon!ing displacements, through the soil or pile flexibil-

ity matrices As !he number of piles in a group increases, the size of

these matrices PosŽ- considerable computational difficulties on the analy-

sis. Therefore. it is highly desirable to develop simplified solution

schemes which enable one to analyze large pile group systems by reducing

them to smaller anid simpler systems. The superposition method is an

example of such sir4plified pile group solution schemes.

The superposition method originally proposed by Poulos (1968, 1971)

is frequently used to formulate pile group problems. In this approximate

scheme, only two piles are considered at a time in the formation of a

global flexibility matrix which relates the forces and displacements only

at the pile heads. The method clearly relies on the observation that the

presence of other piles does not significantly affect the motion of the

two piles under consideration.

The entries in the global flexibility matrix are usually obtained

from tabulated solutions for two piles that are commonly referred to as

interaction factors; these factors are presented in terms of the distance

separating the piles and the material properties of the system.

The available tabulated solutions for the interaction factors are

for static lcads or y. In order to extend the applicability of the method
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to dynamic loads it is necessary to develop appropriate factors for

this purpose.

A dynamic interaction factor for two piles (in which a unit harmon-

ic load is applied on the first pile and the displacements are evaluated

for the second one) is defined as follows:

Interaction factor = Dynamic displacement of pile 2
Static displacement of pile 1,
considered individually

in which the ,ocrd cisplacement is used to denote either a translation

or a rotation. Ir addition to interaction factors, for the purpose of

assembling the global flexibility matrix of the group, one also needs the

dynamic load factcr; for individually loaded piles (single piles), which

are available in tLie literature.

Figures 5.1 and 5.2 present interaction factors for the piles embed-

ded in an elastic halfspace with Es/E p = 10- 3 and for s/d = 2, 5 and 10.

(These parameters are the same as those used for the pile groups for

which the stiffness characteristics were examined in Figs. 3.3, 3.4 and

3.5). In Fig. 5.1, Iu F refers to the horizontal displacement of pile 2

due to the horizontal force on pile 1. Other interaction factors: Iu F

IUxMx and I xMx define, in a similar manner, the connection between the

applied force and the induced displacement.

The plots in Figs. 5.1 and 5.2 give the interaction curves for 0=0

and 0=iT/ 2 only. For any other angle, the interaction factors can be ob-

tained from those for e=0 and e=rr/ 2 . Consider the two piles shown in

Fig. 5.3a. If Fx and Fy are the two components of the horizontal force

on pile 1, then or:e can write



E 10-3
E

9

113

Ld15;
d

0.2 0.4 0.6 0.8 1.0
a.

Ps-07P 0.7
PP

0.6

0,4

0.2

0.0

- 0.2

-0.4

- 0.6
-0.60.0 02 0.4 0.6 0.8 1.0

-s

REAL PART

IMAG. PART

u F horizontal displacement of
xFx pile 2 due to horizontal

force on pile 1

Fu F vertical disp
z z pile 2 due to

on pile 1.

1acement of
vertical force

0.2 0.4 0.6 0.8 1.0

Fig. 5.1 - Interaction Curves
ment of Pile 2 due

for the Horizontal and Vertical Displace-
to the Horizontal and Vertical Forces on
Pile 1.

-
U.~

0.4

0.2

0.0

- 0.2

-0.4

-0.6
0.0

0.0

2"'ý- d
T



114

L=15;
d

ES 10 - 3

E
9

0.3

0.2 04 0.6 0.8 1.0
ao

REAL PART

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

P: 0.7
PP

I

0.0 0.2 0.4 0.6 0.8 1.0
ao

--- IMAG. PART

0.2 0.4 0.6 0.8 1.0
a.

= rotation of pile
horizontal force

2 due to
on pile 1

0.0 0.2 0.4 0.6 0.8 1.0

I E rotation of pile 2 due to
x x moment on pile 1.

Fig. 5.2 - Interaction Curves for the Rotation of Pile 2 due to the
Force and Moment on Pile 1.

0.2

01

0.0

-0.1

-0.2

-0.3
00

0.0

I F
xFx

Horizontal



115

oDII C 4 "

PILE2

u y

x

(a) perspective

PI

(b) plan view

Fig. 5.3 - Forces and Displacements at the Head
of Two Piles.



116

(5.1)
Fre Cos sin] Fx}
F -sin a cos YF

where Fr and F, are the components of the horizontal force in the radial

and tangential directions. If ur and u0 are the radial and tangential

components of the displacement of pile 2, then one can use the inter-

action factors for e=0 and e-r/2 in order to relate ur and u0 to Fr

and Fe. If the interaction factors for e=0 and 6O=T/2 are denoted by 10

and 190, respectively, then one can write

u L 0 19

On the other hand, ux and uy are related to

Fr
Fe

ur and u0 as

u x cos -sin
uv sin e cos u

Finally, combining Eqns. (5.1), (5.2) and (5.3), one gets:

(0- 190) cos e sin ( Fx
(5.4)

10 sin 20+ 90 cos 2 Fy

0cos 0 + 190 sin 0

IO - 190) cos 0 sin e

Therefor2, for an arbitrary angle 0, lu F(O) is gi'ven by:
xx

u F () = I (0) cos2 + I (/2) sin2
x x x x x x

(5.2)

(5.3)

uI UX

u y)

(5.5)
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The relation in (5.4) can be used for other interaction factors

involving horizontal forces or moments, as well. For the vertical

forces, on the other hand, the interaction factors are independent of e.

Once the global flexibility matrix of the group is assembled, the

foundation (pile cap) stiffnesses are obtained in a manner similar to

that outlined in chapter 2 (by imposing kinematic and force boundary

conditions at pile heads). Figures 5.4 and 5.5 show the dynamic stiff-

nesses (horizontal, vertical, rocking and torsional) for the same pile

groups of Figs. 3.E and 3.10 (4 x 4 groups in the soft soil medium,

Es/E = 10- 3 ) bit computed using the superposition method. Comparison

of these figures shows that the approximate superposition method yields

results that are in good general agreement with those obtained from the

full three-dimensional analysis. The accuracy of the method improves as

the pile spacing is increased, as expected. Also, Figs 5.6 and 5.7 pre-

sent the dynamic stiffnesses for the same groups of Figs. 3.7 and 3.12

(groups with s/d = 5 in the stiff soil medium, E/E p = 0-2). Again,

the results of the superposition analysis agree very well with those of

the three-dimensional analysis.

The dynamic interaction curves are also helpful in gaining insight

into the behavior of pile groups. Certain important aspects of the prob-

lem, such as the large peaks in the variation of dynamic stiffnesses and

the considerable dynamic amplification of forces on certain piles can,

in fact, be physically interpreted with the help of interaction curves.

Consider, for example, the variation of horizontal stiffness in

Fig. 3.3, for s/d = 5. This figure displays a large peak at a frequency

ao .: 0.8. At this frequency the interaction factor, IuxF (0.0) in Fig.5.1
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is a real, negative number, the physical meaning of which is that the

waves set up by the loaded pile excite the second pile in an antiphase

motion. Therefore, a larger force (stiffness) must be applied on the

piles in the group to enforce the condition of uniform displacement of

the pile heads required by the presence of the pile cap.

It is also possible to interpret the similarity between the plots

of stiffnesses for different spacings by the similarity between the cor-

responding interaction curves. In addition, the fact that the inter-

action effects din-inish with an increase in spacing, accounts for the

less pronouncedl variation in stiffnesses for larger spacings. Using

these observations, one can then predict that the plot of horizontal

stiffness for s/, ' 2 in Fig. 3.3 has a peak at ao- 2, which is larger

than the one corresponding to s/d = 5.

As far as the force distribution is concerned, Fig. 3.19 shows that

the dynamic amplification factor for pile IV and s/d = 5 is a maximum

again at a = 0.80. An argument similar to the one for the stiffness

can be brought forward to explain this phenomenon too.
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CHAPTER 6 - SUMMARY AND CONCLUSIONS

The purpose of the work presented in the preceding chapters was to

investigate the dynamic behavior of pile groups in semi-infinite media and

to examine the validity of certain solution schemes.

The formulation was based on the introduction of a soil flexibility

matrix as well as dynamic stiffness and flexibility matrices of the piles,

in order to relate the discretized uniform forces to the corresponding

displacements at the pile-soil interface. A numerical solution for the

evaluation of s.e soil flexibility matrix, along with analytical solutions

for the pile stif4-ehs and flexibility matrices were then presented.

The results of pile group analyses presented in chapter 3 suggested

the following:

1) The dynamic pile group behavior is highly frequency-dependent. This

is due to the characteristics of the waves generated by the piles and

the interference of these waves with the different piles of the group.

2) For close spacings the characteristics of group stiffnesses are simi-

lar to those of footings; for large spacings, however, the group be-

havior is dominated by the interactions among the piles.

3) Interaction effects are stronger for softer soil media.

4) Radiation damping generally increases with foundation size.

5) Pile groups subjected to seismic excitations essentially follow the

low-frequency components of the ground motion, while filtering to a

large extent its intermediate and high-frequency components. The
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rotational component, on the other hand, is negligible for typical

dimensions of the foundation.

6) The distribution of applied dynamic loads on the pile cap is differ-

ent from that of static loads. For certain frequency intervals, the

piles closest to the center take the largest portion of the load.

Also, large dynamic amplification factors for the forces in these piles

are expected.

7) Pile groups are less influenced by conditions near the ground sur-

face than sincle piles are. Therefore, the accuracy of the tech-

niques, which us. the result of single-pile nonlinear analyses, or

field tests on single piles, along with empirical group reduction

factors to derive group stiffnesses is less than expected.

Other subjects addressed in this study were the questions on the accur-

acy of the quasi-three-dimensional method, and the superposition method for

the solution of pile groups. These studies showed that:

1) Quasi-three-dimensional solutions, in which the pile-soil compatibil-

ity conditions in a given direction are relaxed and only the effect of

pile-soil interface forces in the other directions are taken into

account, compare very well with the full three-dimensional solution.

2) The superposition scheme suggested first by Poulos gives reasonable

results not only for static loads, but for dynamic loads, as well.
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