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Abstract

Systems on modem naval vessels are becoming exclusively dependent on electrical power. One
example of this is the replacement of distilling and evaporator plants with reverse osmosis units.
As the system is in continuous operation, it is critical to have remote real-time monitoring and
diagnostic capabilities. The pressure to reduce shipboard manning only adds to the difficulties
associated with monitoring such systems. One diagnostic platform that is particularly well suited
for use in such an environment is the non-intrusive load monitor (NILM). The primary benefit
of the NILM is that it can assess the operational status of multiple electrical loads from a single
set of measurements collected at a central point in a ship's power-distribution network. This
reduction in sensor count makes the NILM a low cost and highly reliable system.

System modeling, laboratory experiments, and field studies have all shown that the NILM can
effectively detect and diagnose several critical faults in shipboard fluid systems. For instance,
data collected from the reverse osmosis units for two U.S. Coast Guard Medium Endurance
Cutters indicate that the NILM can detect micron filter clogging, membrane failures, and several
motor-related problems. Field-tested diagnostic indicators have been developed using a
combination of physical modeling and laboratory experiments.

Thesis Supervisor: Steven B. Leeb
Title: Professor of Electrical Engineering and Computer Science & Mechanical Engineering

Thesis Supervisor: Robert W. Cox
Title: Assistant Professor of Electrical and Computer Engineering, UNC Charlotte

Thesis Supervisor: Henry S. Marcus
Title: Professor of Marine Systems

3



Acknowledgements

The author would like to acknowledge the following organizations and individuals for their

assistance. This thesis would not have been possible without them.

" The Office of Naval Research's Control Challenge, ONR/ESRDC Electric Ship Integration

Initiative and the Grainger Foundation, all of whom provided funding

" Officers and Crew of the USCGC Escanaba

* Officers and Crew of the USCGC Seneca

* Professor Robert Cox for his enthusiasm, assistance, and feedback

* Jim Paris for his computer and NILM technical assistance

* Professor Henry S. Marcus for advisement as a thesis reader

* Professor Steven Leeb who provided me with a challenging and extremely rewarding

experience

* Finally, to my wife and kids who have been exceptionally supportive throughout my

graduate school experience

4



Table of Contents

A bstract ........................................................................................................................................... 3
A cknow ledgem ents......................................................................................................................... 4
Table of Contents............................................................................................................................ 5
List of Figures ................................................................................................................................. 7
List of Tables .................................................................................................................................. 8
1 Introduction............................................................................................................................. 9

1.1 N on-Intrusive Load M onitoring ................................................................................... 9
1.2 M otivation for Research............................................................................................. 10
1.3 Thesis Objectives ........................................................................................................ 10

2 Equipm ent and D escriptions............................................................................................... 12
2.1 N ILM Overview ............................................................................................................. 12
2.2 Pum ps and Filters........................................................................................................ 14

2.2.1 Centrifugal Pum ps .............................................................................................. 14
2.2.2 Positive D isplacem ent Pum ps............................................................................... 16
2.2.3 Filters and M em branes........................................................................................ 16

2.3 RC7000 Plus Reverse O sm osis (RO ) System ............................................................ 17
2.3.1 Reverse O sm osis Process.................................................................................... 17
2.3.2 Reverse Osmosis System Description and Operation.................... 18
2.3.3 Reverse O sm osis System N ILM Installation.......................................................... 21

2.4 Laboratory Test Stand ................................................................................................. 23
2.4.1 Laboratory Test Stand System D escription ............................................................ 23
2.4.2 Laboratory Test Stand N ILM Configuration .......................................................... 25

3 Basic Fluid System D iagnostic Indicators ............................................................................ 29
3.1 System Status D eterm ination ......................................................................................... 29

3.1.1 Pum p Starts and Stops ........................................................................................ 29
3.1.2 V alve A lignm ent Changes ................................................................................... 30
3.1.3 RO System Start Sequence ..................................................................................... 31

3.2 M aintenance Indicators ............................................................................................... 34
3.2.1 Abnorm al Event D etection ................................................................................. 34
3.2.2 Condition Based M aintenance ............................................................................ 43

3.3 Failure D etection ........................................................................................................ 46
4 Filter Condition M odeling ................................................................................................. 49

4.1 Filter Condition Influence on System Operation ........................................................... 49
4.2 M odel Form ulation...................................................................................................... 50
4.3 M odel Results................................................................................................................. 54

5 Filter Condition D iagnostics ............................................................................................. 56
5.1 Pum p M otor Steady-State Start Tim e .......................................................................... 56
5.2 Trend Analysis ............................................................................................................... 56
5.3 Laboratory Experim ents............................................................................................. 57

5.3.1 System Setup and Procedure................................................................................... 57
5.3.2 Laboratory Test Stand Results ............................................................................ 58

5.4 Field Experim ent ......................................................................................................... 63
5.4.1 Experim ent Setup and Procedure........................................................................ 64

5



5.4.2 Field Experim ent Results...................................................................................... 65
5.5 U nderw ay D ata............................................................................................................... 66

5.5.1 D ata Collection ................................................................................................... 66
5.5.2 Analysis M ethods.................................................................................................. 66
5.5.3 U nderw ay Results ............................................................................................... 67

6 Cost A nalysis for M onitoring Shipboard Fluid System s .................................................. 69
6.1 M otivation ...................................................................................................................... 69
6.2 Cost Considerations.................................................................................................... 70

6.2.1 M anning Costs ...................................................................................................... 70
6.2.2 M aintenance Costs ............................................................................................... 72
6.2.3 Operating Costs.................................................................................................... 74

6.3 Cost-Benefit A nalysis ................................................................................................. 74
6.4 Conclusions .................................................................................................................... 77

7 Future W ork and Conclusions .......................................................................................... 78
7.1 Proposed Future W ork ............................................................................................... 78

7.1.1 M aster Control Consol M onitoring...................................................................... 78
7.1.2 RO U nit Reactive Pow er Analysis...................................................................... 78
7.1.3 H P Pum p Start Overshoot Transient A nalysis..................................................... 78
7.1.4 N ILM Real-Tim e D iagnostic A lgorithm ................................................................ 79

7.2 Conclusion...................................................................................................................... 79
List of References ......................................................................................................................... 80
A ppendix A RC7000 Plus D etailed Line Draw ing [14].......................................................... 82
Appendix B Spectral Content Analysis MATLABO Script................................................. 83
A ppendix C Laboratory Test Stand M A TLAB* Scripts ..................................................... 84

D ata Conversion.................................................................................................................... 84
D ata Plotting ......................................................................................................................... 88

A ppendix D Thesis D ata CD Contents ................................................................................. 90

6



List of Figures

Figure 2-1: N ILM Signal Path Flow Diagram [7] ..................................................................................... 12
Figure 2-2: Centrifugal Pump Categories with Impeller Details [13].................................................... 15
Figure 2-3: Plunger Type Positive Displacement Pump Operation [13] ............................................... 16
Figure 2-4: Basket Type Filter Housing and Element [13].................................................................... 17
Figure 2-5: The O sm otic System [14]..................................................................................................... 18
Figure 2-6: Simplified Diagram of the RC7000 Plus RO Unit ............................................................. 19
Figure 2-7: RC7000 Plus Reverse Osmosis Unit Layout [14]............................................................... 20
Figure 2-8: The Escanaba's RO Unit Power Panel with the NILM Installation ................. 23
Figure 2-9: Laboratory Test Stand System Diagram ............................................................................. 24
Figure 2-10: Photographs of the Laboratory Test Stand, Filter Element, and Fouling Screen..............25
Figure 2-11: Laboratory Test Stand N ILM Setup...................................................................................... 26
Figure 2-12: Measured Laboratory Test Stand Pump Curves................................................................ 28
Figure 3-1: RO Unit Pum p Starts and Stops ......................................................................................... 29
Figure 3-2: Detail of HP "B" Pump Start from Figure 3-1 ................................................................... 30
Figure 3-3: RO Unit Major Valve Alignment Changes ........................................................................ 31
Figure 3-4: NILM Real Power Trace from Successful RO Start Sequence............................................... 32
Figure 3-5: An A ir Bound LP Pum p Start ............................................................................................. 33
Figure 3-6: M ultiple HP Pum p Restarts................................................................................................ 35
Figure 3-7: LP Pum p Pow er M odulation.............................................................................................. 36
Figure 3-8: RO Unit and ASW Seawater Supply....................................................................................... 37
Figure 3-9: Possible LP Pump Cavitation after the Product Water was Diverted Overboard ............... 38
Figure 3-10: Test Stand Pump Power while Throttling the Inlet Valve................................................ 39
Figure 3-11: Test Stand Pump Motor Frequency Magnitude while Throttling the Inlet Valve.............40
Figure 3-12: Abnormal HP Pump Power Modulation .......................................................................... 41
Figure 3-13: HP Pump Power Extreme Amplitude................................................................................42
Figure 3-14: RO HP Pump and Motor with 3.6:1 Ratio V-belt Drive .................................................. 43
Figure 3-15: Frequency Spectrum Analysis of Figure 3-13.................................................................. 44
Figure 3-16: 8.26 Hz Hourly Trend for RO Unit Hp Pumps ................................................................. 44
Figure 3-17: 8.26 Hz Magnitude Trending for RO Unit HP Pumps ...................................................... 45
Figure 3-18: Seneca RO Unit Membrane Seal Failure Detection......................................................... 46
Figure 3-19: HP Pump running without LP Pump due to Master Control Consol Failure .................... 47
Figure 4-1: Pump Motor Real Power from Filter Condition Model ...................................................... 54
Figure 4-2: Pump Volumetric Flow Rate for Fouled Filter Condition Model...................................... 55
Figure 5-1: Laboratory Test Stand Pump Power Comparison for Various Filter Conditions................59
Figure 5-2: Laboratory Test Stand Pump Flow Rate Comparison for Various Filter Conditions ...... 59
Figure 5-3: Complete Data Set for a Clean Filter Start on the Test Stand.............................................61
Figure 5-4: Complete Data Set for a Fouled Filter Start on the Test Stand ........................................... 61
Figure 5-5: Pump Motor Real Power Comparison for Clean and No Filter Conditions........................62
Figure 5-6: Pump Flow Rate Comparison for Clean and No Filter Conditions..................................... 63
Figure 5-7: Filters used for Escanaba LP Pump Start Transient Experiment....................................... 64
Figure 5-8: Real Power Traces for Escanaba LP Pump Start Transient Experiment ............................ 65
Figure 5-9: Sample of Collected Escanaba Underway Data .................................................................. 67
Figure 5-10: LP Pump Start Transient Steady-State Time Trend Analysis for January 2007 ............... 68
Figure 6-1: Electric Generating Capacity of U.S. Navy Destroyers (1910-2010 projected) [6]............69
Figure 6-2: Predicted RO Unit Maintenance and Repair Cash Flow Diagram.......................................76

7



List of Tables

Table 2-1: Snapshot File Format........................................................................................ 13
Table 2-2: RC7000 Plus RO Unit Component Details .............................................................. 19
Table 2-3: Seneca NILM Setup ................................................................................................... 22
Table 2-4: Escanaba NILM Setup............................................................................................... 22
Table 2-5: Laboratory Test Stand Component Details ........................................................... 24
Table 2-6: Laboratory Test Stand NILM Configuration.............................................................. 25
Table 5-1: Test Stand Filter Component Volumes .................................................................. 58
Table 6-1: RO Unit NILM Scenarios Net Present Values ........................................................... 76

8



1 Introduction

1.1 Non-Intrusive Load Monitoring

The Non-Intrusive Load Monitor (NILM) is a device that records electrical voltage and current

to monitor instantaneous power demand. It is capable of monitoring single or multiple loads

depending on where the sensors are mounted in relation to the electrical distribution system. The

NILM's non-intrusive aspect roots from the minimal infrastructure requirements for the voltage

tap and current transducer installations. Often the only physical sign of a NILM installation is an

extra wire leading from a power distribution panel. The NILM operating software can be

tailored to specific systems. The NILM's ability to monitor, detect, and diagnose system

operating characteristics and failures by tracking only the electrical power demand contradicts

recent marine industry trends [1]. These remote monitoring and automation technologies rely on

vast sensor networks increasing installation and maintenance costs while adding reliability issues

to an array of complex sensors.

Non-intrusive load monitoring research has been conducted at the Massachusetts Institute of

Technology's Laboratory for Electromagnetic and Electronic Systems (LEES) for over two

decades. The NILM has been previously utilized in residential, commercial, automotive, and

marine environments [2] [3] [4]. The research presented in this thesis is from the application of

NILM technology on shipboard fluid system diagnostics.

For the current shipboard NILM installation, the transient event detection and diagnostics

software has yet to be fully developed. To aid in the development of the NILM diagnostics

software, research is necessary to understand dynamics of shipboard systems. The research

presented in this thesis is an in-depth examination and isolation of diagnostic indicators on

shipboard fluid pump systems. To help understand the complex system dynamics a computer-

based model was developed to simulate the system and possible diagnostic methods. A

maintenance and repair cost analysis was also completed to illustrate possible advantages of

utilizing the NILM for condition-based maintenance and failure detection.
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1.2 Motivation for Research

The dependency on electric motive power for shipboard systems has continuously increased over

the last century. This growth can be attributed to improvements in operating efficiencies and

simplification of distributed systems. Electricity has proven itself as a reliable alternative to

steam for energy transport throughout a ship. It also provides a complete distribution network of

shipboard loads presenting the perfect platform for NILM type applications in remote system

monitoring and diagnostics.

Traditionally, the monitoring has been done with watchstanders taking logs and dedicated

sensors whose outputs are collected by a larger monitoring network. These sensors are often

intrusive, in that they must break system integrity to monitor such characteristics as pressure or

temperature. Additionally, these types of sensors require additional maintenance for calibration

and reliability. Modem propulsion plant monitoring systems can have over 8,000 sensors within

the main machinery space [1]. Most of the sensor available today are only capable of monitoring

single system parameters and often have redundant sensors within the same system to improve

the network reliability. As additional sensors are installed the wiring, complexity, weight, and

cost also increases for the monitoring network. Shipboard NILM installations have the potential

to avert those increases and reduce shipbuilding costs.

A majority of mechanical systems have electrical components whose operation not only depends

on the component itself, but also the mechanical system to which it is attached. NILM has the

ability to monitor these electro-mechanical systems with only a voltage tap and current

transducer signals. Developing diagnostic indicator tools for such systems would allow NILM to

provide reliable single-point monitoring at significantly less cost and complexity then

conventional sensor configurations.

1.3 Thesis Objectives

The research presented in this thesis is a continuation of work conducted by LCDR Jack S.

Ramsey, Jr., USN [5], LT Thomas W. DeNucci, USCG [6], and LT James P. Mosman, USN [7].

Previous research has concluded the applicability of NILM on various shipboard systems. Most

recently, LT Mosman developed a diagnostic algorithm for shipboard cycling systems.
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The objective of this thesis is to further explore and develop diagnostic indicators for fluid pump

system maintenance and failures. Additionally, an in-depth fluid pump start transient analysis is

developed to model and diagnose a filter element condition prediction method. Although the

research presented is for a specific pump and filter combination, the methodologies and

diagnostic indicators are applicable to many other shipboard fluid pump systems.
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2 Equipment and Descriptions

2.1 NILM Overview

As shown in Figure 2-1 the NILM uses voltage and current measurements to estimate real and

reactive power loads. Separate channels collect Voltage and current measurements using COTS

transducers. Each voltage channel and its associated current channel are known as pair. The

NILM records and analyzes the signals with a Pentium class PC [2] [8]. The NILM is typically

configured to capture current and voltage data at a sample rate of 8,000 Hz per channel for

monitoring and detecting load transients. This capture rate ensures accurate short-term transient

detection and permits the NILM to analyze the spectral content created by electro-mechanical

systems.

Powerr Pan__

V tage C urrent NILM
Measurements Measurements

Data Acquisition Module

Preprocessor Data Storage L- ..0 Operator
Interface

Event Detector

Control and
Command Diagnostics and Systems Management Module

Inputs

Command Outputs Status Reports

Figure 2-1: NILM Signal Path Flow Diagram [7]

The NILM is also capable of tracking the operating schedule of electrical loads on a power

distribution system [9]. It uses measurements of the current flowing into the stator terminals of

an induction motor to track and trend of key motor parameters and harmonics [10] [11]; thus

enable a platform for condition based maintenance (CBM). Finally, the NILM's real-time

monitoring makes it ideal for failure detection and diagnosis.

In a single-phase grounded system, power measurement with the NILM is relatively

straightforward. The NILM is supplied with voltage from line-to-neutral and current from any
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load downstream of the monitoring point. Real power is calculated using current, which is in-

phase with voltage, while reactive power is calculated from current components that are 900 out

of phase with voltage.

For a three-phase ungrounded electrical system, such as those on naval vessels, the power

measurement is more complex. The voltage observed by the NILM is typically line-to-line

(there is no ground). In addition, usually only one of the three phases is needed for the NILM to

function effectively. For the three-phase system applications examined in this thesis, voltage is

measured across two of the phases while the current is taken from the third.

The NILM output data can be recorded as raw or prepared (prep) data. On the hour, the NILM

compresses the previously recorded data into a snapshot file with a corresponding date-time

designator. The raw data is a two-column matrix of voltage and current at 8,000 Hz per channel

pair. The prep data output option is formatted as an eight-column matrix that contains values for

the real power, the reactive power, and their associated harmonics at only 120 Hz per channel

pair. The prep data hourly snapshot files are 88% smaller than the corresponding raw data

equivalent. In the case of the prep data, the matrix column corresponding to each of these power

quantities depends on the number of electrical phases in the measured system. In a single-phase

system, the values for the real power are contained in the first column of the matrix while the

values for the reactive power are contained in the second column. For three-phase power these

relationships are reversed; the values for reactive power are contained in the first column of the

matrix while the values for the "negative" real power are contained in the first column. Table

2-1 identifies the relationships between the data collection configuration and snapshot file

format.

Table 2-1: Snapshot File Format

Output Snapshot File

Data Collection Type 1s Column 2"d Column

Raw Data Voltage Current

Prep Data, Single-Phase System Real Power Reactive Power

Prep Data, Three-Phase System Reactive Power (-) Real Power
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Since the A/D convert quantizes data into values that range between 0 and 4096, the current, in

amps, is derived from the NILM prep data using Equation 2.1-1.

'NJLM DNILM) (G )(K ) (2.1-1)
INIM (64 4096) RNILMNr

Where: INILM = measured current from NILM (Amps)
DNILM = NILM real power prep data
G = peak-to-peak voltage corresponding to the PCI- 1710 card gain code

(gain=g, 0=10, 1=5, 2=2.5, 3=1.25)
KN = current transducer conversion ratio
RNILM = NILM measuring resister size (Ohms)

Using the current calculated in Equation 2.1-1 the real power is converted to watts with Equation

2.1-2.

PNILM VNILM 'NILM (2.1-2)

Where: PNILM = measured real power (Watts)
VNILM = measured NILM voltage (Volts)
INILM = measured current from NILM (Amps)

Although, the prep data from NILM provides a relative figure of power demand over time, by

converting it to Watts the data is easily compared between multiple NILM monitored systems.

2.2 Pumps and Filters

Since most shipboard fluid systems transport liquid from one location to another they require a

hydraulic forcing mechanism and a way to ensure the solution quality. These processes are

typically carried out by pump-filter combinations where the NILM can monitor system through

the pump motor power demand. The following sections review common pump and filter types

found in shipboard fluid systems.

2.2.1 Centrifugal Pumps

Centrifugal pumps have a wide range of uses in shipboard applications. The pump works by

accelerating a fluid through the centrifugal force generated by a rapidly revolving impeller [12].
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The impeller action adds kinetic energy (also known as velocity head) to the fluid. The volute

partially converts the fluid velocity head to static pressure head as it is discharged from the

pump. In general, centrifugal pumps are considered "constant head" machines meaning that the

pump speed and flow rate will vary while the discharge head remains constant [12]. This

situation can occur when throttling a valve. As the valve closes, the pump flow rate decreases

while the RPM increases with a constant discharge pressure. A pump curve describes the

pump's discharge head performance as a function of the flow rate for a particular speed.

Centrifugal pumps are classified by the manner in which fluid flows through the impeller. The

three basic types are:

" Radial Flow: the discharge pressure is developed wholly by centrifugal force. The fluid

is discharge perpendicular to the pump shaft.

* Axial Flow: the discharge pressure is developed by the lifting action of the vanes of the

impeller on the fluid. Usually the fluid is discharged parallel to the pump shaft.

* Mixed Flow - most common type of centrifugal pump where the discharge pressure is

developed by a combination of the centrifugal force and lift generated by the vanes of the

impeller on the fluid. Fluid discharge is usually perpendicular to the pump shaft.

Axial Flow Pump

MWPEILIR

/x

Pump
VOLUTE CASING

CLLER

\ / DISCH-ARGE

Radial Flow Pump

-

IMPELLER EYE

IMPELLER

Figure 2-2: Centrifugal Pump Categories with Impeller Details [13]
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2.2.2 Positive Displacement Pumps

Unlike centrifugal pumps, positive displacement pumps discharge a constant flow rate regardless

of outlet pressure. The reciprocating pump is the most common form of positive displacement

pump. This type of pump moves fluids by means of a plunger or piston that reciprocates inside a

cylinder [12]. Each plunger stroke displaces a constant volume of fluid; several plungers

arranged in series can achieve very high discharge pressures. Since a positive displacement

pump works independently of the outlet pressure, a relief or regulating valve is required to

control the system pressure.

RESERVOIR RESERVOIR

SUICION SUC71ON

OSCH-ARGE jDISCHARGE
SUCTION STROKE DISCHARGE STROKE

Figure 2-3: Plunger Type Positive Displacement Pump Operation [131

2.2.3 Filters and Membranes

Filters and membranes remove solids and impurities from a fluid. They are usually installed on

systems where foreign matter can adversely affect performance, such as the suction side of

pumps. Typically, debris is separated by straining the fluid through a tight mesh, only allowing

the smallest particles to pass. Membranes are used to remove molecule-sized matter. A filter or

membrane cleanliness is relative by the fluid pressure drop, or differential pressure, between the

inlet and outlet of the housing. Generally, a new filter will have a lower differential pressure

then a fouled one.
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Filter Housing

-ook

Filter Element

Figure 2-4: Basket Type Filter Housing and Element [131

2.3 RC7000 Plus Reverse Osmosis (RO) System

Most ships utilize one of two techniques to produce potable water from seawater. One method is

to distill the seawater by boiling it to produce steam. The steam is condensed and collected as

potable water. Unfortunately, the evaporator required for this technique is energy intensive and

difficult to operate. The other method is to force seawater through a semi-permeable membrane

to separate particles from the pure solution. This technique, known as Reverse Osmosis (RO), is

becoming the dominant potable water production method onboard ships. Simplified operations

and reduced maintenance account for the increased use of electric powered RO units. In fact,

starting in 2003, the U.S. Coast Guard began a program to replace the evaporator distilling plant

onboard the 270-foot Famous Class Medium Endurance Cutters (WMEC) to electric driven RO

units. The following sections discuss this system and the NILM installation.

2.3.1 Reverse Osmosis Process

Osmosis is a naturally occurring phenomenon in which a semi-permeable membrane separates a

pure and a concentrated solution (a semi-permeable membrane is a membrane that will

selectively pass some atoms or molecules but not others). The process is easily observed by

17
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placing an egg into a bowl of water and watching it "swell" up over time. Every fluid has an

inherent potential that is directly related to the type and amount of solids in solution.

ATMOSPHERIC HIGH
PRESSURE PRESSURE
(14.7 PSI) (800 PSI)

-~~~ .U E .~4N . .UR . . .. .
* SISLUTIC).N .. . .~U K .U . . . ~

SEMI-PERMEABLE MEMBRANE

OSMOSIS REVERSE OSMOSIS

Figure 2-5: The Osmotic System [141

In an osmotic system, shown in Figure 2-5, the less concentrated solution will attempt to

equalize the concentrations of both solutions by migrating across the semi-permeable membrane.

When enough pure solution migrates across the membrane such that the inherent potential

difference between the solutions in no longer higher than the osmotic pressure of the membrane,

the purer solution will stop flowing [14]. Reverse Osmosis is achieved by raising the pressure on

the concentrated solution to hydraulically force it against the semi-permeable membrane. This

only permits the pure solution to pass. The pressure required to achieve this condition is

approximately 800 to 1,200 psi [15].

2.3.2 Reverse Osmosis System Description and Operation

This reverse osmosis system installed on the USCG's Medium Endurance Cutters consists of a

low-pressure centrifugal pump, a 20 and a 5 micron filter in series, high-pressure positive

displacement pump, semi-permeable membranes, and a high-pressure regulating valve. Figure

2-6 illustrates the arrangement of the Village Marine Tec RC7000 Plus Reverse Osmosis (RO)

Unit (a detailed OEM line drawing is available in Appendix A). Note that after the low-pressure

18



pump the RO unit splits into two halves, referred to as "A" and "B" sides, which operate

independently of each other. Table 2-2 provides component details.

Side "A"
Cyclone

Potable Membrane HP Separator

Water Membrane Pump Micron
Filters

Overboard Y

Side"B"
Cyclone

Potable Membrane HP Separator

Water Membrane Pump Micron
Filters LP

Pump
Overboard Y

Sea Suction

Figure 2-6: Simplified Diagram of the RC7000 Plus RO Unit

Table 2-2: RC7000 Plus RO Unit Component Details

Component Manufacture, Model Description

LP Pump Motor Baldor, JMM7072T 5-Hp 30 AC Motor, 460V/6A, 3450 RPM

LP Pump AmpCo, KC2 Centrifugal Pump

Cyclone Separator VMT, CS3000-7000 Removes particles with a specific gravity

of >2.7 and a diameter of >6 microns

Micron Filter VMT, 33-2100/5100 20 and 5-micron filters remove debris

from feed water

HP Pump Motor Baldor, VM2334T 460/24, AC Motor, 30, 1760 RPM, 20 Hp

HP Pump Aqua-Pro Pumps, 5P50 5 Plunger, Positive Displacement Pump

Membrane Aqua-Pro, SW-6040 Separates NaCI from the feed water

Raw seawater from the sea-suction strainer is forced through the cyclone separator and micron

filters by a 5 Hp centrifugal pump, known as the low-pressure (LP) pump. The cyclone separator

discharges large suspended solids from the raw seawater while the filters trap the remaining

smaller debris. The high-pressure (HP) positive displacement pump increases the pretreated raw

seawater, known as feed water, pressure from 40 psi to over 800 psi. The HP pumps achieve this
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by using a series of five ceramic plungers with decreasing cylinder diameters. The pressurized

feed water then flows directly into the membrane array. The membrane array is a fixed

arrangement of two fiberglass pressure vessels that each contain two Model SW6040 RO

membrane elements that are 6" in diameter and 40" in length [14]. Reverse osmosis occurs as

the semi-permeable membranes separate the pressurized feed water into two streams; the high

purity product stream, referred to as permeate, and the concentrated reject stream, referred to as

the brine [14]. The brine is piped directly overboard while the permeate is sent to the potable

water storage tanks. Figure 2-7 shows RC7000 Plus RO Unit layout.

En ine Mtke-U" In ater

Cyclo

M

Product Water

Overboard Discharge

Fresh Water Flush Inlet

Feed Water

ne Separator

embranes

HP Pump

HP Pump Motor

5 Micron Filter

20 Micron Filter

Figure 2-7: RC7000 Plus Reverse Osmosis Unit Layout [141
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There are several key valves used during normal RO operations. The following valve and

component numbers are found in the detailed drawing provided as Appendix A and reference

[14]. The HP Regulating Valve (valve number V6 "A/B") sets the pressure inside the

membranes. Due to the high operating membrane pressure, the HP pump normally starts in an

unloaded condition by using the HP Bypass Valve (valve number V7 "A/B"). This valve diverts

the discharge from the HP pump overboard without going through the HP Regulating Valve, thus

reducing the membrane pressure. Once the HP pump is running smoothly, it is gradually loaded

by manually closing HP Bypass Valve. The Product Water Solenoid Valve (valve number V 10

"A/B") automatically directs permeate to the potable water storage tanks (valve open) or

overboard (valve closed) based on the product salinity measured by the Water Quality Monitor

(component number MON "A/B").

2.3.3 Reverse Osmosis System NILM Installation

The RO unit NILM was first installed on the U.S. Coast Guard Cutter Seneca by LT DeNucci [6]

in 2005 for initial data collection. In April 2006, the NILM installation was modified to collect

voltage and current transducer (CT) measurements from the LP pump and "A" side HP pump on

four separate channels. Originally, the data collection was split between two computers, one for

the LP pump data and the other for the "A" side HP pump. A software modification in June

2006 allowed six channels, enough to cover the LP pump and two HP pumps, to be recorded by a

single computer. This enabled accurate time-synced data collection, simplifying the analysis

process.

In September 2006, a similar six-channel setup was installed on the U.S. Coast Guard Cutter

Escanaba's RO unit. The only major difference was the use of channels 5 and 6 to measure the

aggregate voltage and current demand to all three pumps. This was done to verify NILM's

ability to monitor multiple loads from a single pair of voltage and current measurements.

Unfortunately, during the first two months of data collection over 50% of the hourly snapshots

were missing or incomplete. The cause of the problem was isolated to a combination of

reference voltage loss while the RO unit was secured and an overloading of the transfer rate

between the PCI-1710 card and PC hard disk during prolonged 48,000 Hz data collection (i.e.

8,000 Hz per channel). Software modifications made in November 2006 resolved both issues.

21



The current Seneca RO Unit NILM configuration was made in December 2006. The software

and hardware were set to record a single voltage and current channel pair for the aggregate pump

loads, allowing the computer's hard drive to store three times as many hourly snapshots before

reaching capacity. The Escanaba received the same modification in January 2007. Table 2-3

and Table 2-4 outline the components and settings used for each NILM configuration.

Table 2-3: Seneca NILM Setup

Channel Component Resistance Gain Data

1 B-C Voltage 100Q 0
Raw

2 i-A LP Pump, CT: LA-1OOP 49.9f 1

20060618- 3 B-C Voltage 1000 0
_ Raw

20061216 4 i-A HP-A Pump, CT: LA-305S 49.90 0

5 B-C Voltage 1000 0
Raw

6 i-A HP-B Pump, CT: LA-305S 49.9K 0

20061216- 1 A-B Voltage 100 0
Raw

Present 2 i-C 3-Pump Aggregate, CT: LA-150S 30.1Q 0

Table 2-4: Escanaba NILM Setup

Channel Component Resistance Gain Data

1 A-B Voltage 100 0
Raw

2 i-C LP Pump, CT: LA-100P 1000 0

20060918- 3 A-B Voltage 1000 0
Raw

20070126 4 i-C HP-A Pump, CT: LA-150S 30.10 0

5 A-B Voltage 1000 0
Raw

6 i-C 3-Pump Aggregate, CT: LA-150S 30.10 0

20070126- 1 A-B Voltage 1000 0
Raw

Present 2 i-C 3-Pump Aggregate, CT: LA-150S 30.10 0

Figure 2-8 depicts the Escanaba RO unit's power panel with the NILM installation. The voltage

and current transducers (CT) connect to the NILM and data collection computer by way of

category 5 cable leads through the bottom of the power panel.
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Figure 2-8: The Escanaba's RO Unit Power Panel with the NILM Installation

2.4 Laboratory Test Stand

To facilitate a controllable environment for conducting fluid pump and filter experiments a

laboratory test stand was constructed. The test stand enabled a quick succession of experiments

to explore and corroborate field data while increasing system understanding.

2.4.1 Laboratory Test Stand System Description

The laboratory test stand is composed of a reservoir, centrifugal pump, three phase AC motor,

filter housing, and piping network. A flowmeter, tachometer, and two differential pressure

gauges in conjunction with a NILM attached to the AC motor measure and record system

23



properties. Figure 2-9 provides a detailed system diagram of the laboratory test stand.

Component and sensor details are available in Table 2-5.

DP Gauge

2-

Reservo r

Valve-1

DP Gauge

Valve-0

Pump

U
Filter
Housing

Valve-2 Valve-3

or ----- NL

Flowmeter

Tachometer

Figure 2-9: Laboratory Test Stand System Diagram

Table 2-5: Laboratory Test Stand Component Details

Component Manufacture, Model

Centrifugal Pump Sherwood, COP-BB5

AC Motor, 30, 3450 RPM GE, K156

NILM (see Table 2-6)

Filter Housing GE, GXWH35F

Filter Element GE, FXHSC

Flowmeter Omega, FP7001A

Tachometer Monarch Instruments, ROS-W25

Differential Pressure Gauge SETRA, 230
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Figure 2-10: Photographs of the Laboratory Test Stand, Filter Element, and Fouling Screen

2.4.2 Laboratory Test Stand NILM Configuration

The ultimate purpose of the laboratory test stand is to correlate measurable fluid system

properties with the pump motor power demand and transient characteristics. Table 2-6 provides

the NILM configuration used for laboratory experiments.

Table 2-6: Laboratory Test Stand NILM Configuration

Channel Component Resistance Gain

1 B-C Voltage 100 2

2 i-A Current Transducer, LA-55P 100 2

3 C-A Voltage 1 OM 2

4 i-B Current Transducer, LA-55P 100Q 2

5 Pump DP Gauge 49.9Q 2

6 Flowmeter - 0

7 Tachometer - 0

8 Filter DP Gauge 11092 2
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Figure 2-11: Laboratory Test Stand NILM Setup

The flowmeter and tachometer are square wave pulse generators where the time between up-

crossings is the cycle period. One cycle from the tachometer represents one revolution of the

pump motor shaft. Dividing a single cycle by its period calculates instantaneous pump shaft

RPM. One cycle from the flowmeter is a complete revolution of the sensor paddle wheel in the

pipe flow stream. For a 1.5-inch diameter PVC pipe, 29.46 cycles equates to 1 gallon flowing

past the sensor. Equation 2.4-1 converts the flowmeter cycles to gallons per minute (GPM) for

an 8,000 Hz data collection rate.

GPM = 8000-60 (2.4-1)
Kfactor-Ccrossing

Where: GPM = flow rate through test stand pump (gal/min)
Kfactor = flowmeter calibrated value provided by manufacture (29.46 cycles/gal)
Ccrossing = bits between up-crossings

To convert the SETRA differential pressure transducer output to a pressure value the A/D

converter output voltage data from channels 5 and 8 must be scaled for a range of -5 to +5 volts.
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Since the A/D converter quantizes data into values that range between 0 and 4096, Equation 2.4-

2a provides the appropriate conversion [6].

VSETRA = 10 (DSETRA - 2048) (2.4-2a)
4096

Where: VSETRA = measured transducer voltage (Volts)
DSETRA = recorded transducer data

Dividing the transducer voltage by the value of the measuring resistor the sensor output current

is found, as shown in Equation 2.4-2b.

ISETRA (2.4-2b)
RSETRA

Where: ISETRA = measured transducer current (Amps)
VSETRA = measured transducer voltage (Volts)

RSETRA = measuring resistor size (Ohms)

Finally, the differential pressure, in pounds per square inch (psi), is determined using Equation

2.4-2c [16].

DPSETRA - 50(ISETRA-0.004) (2.4-2c)

Where: DPSETRA = measured transducer differential pressure (lbs/in 2)
ISETRA = measured transducer current (Amps)

Figure 2-12 provides the measured pump curves for the laboratory test stand. The pump curves

were generated by measuring the flow rate through the pump at various pump speeds and system

heads. The pump speed was set using a variable speed drive (VSD) to alter the pump motor

RPM, while PVC pipe attachments with different outlet heights provided different system

operating heads.
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Measured Laboratory Test Stand Pump Curves
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Figure 2-12: Measured Laboratory Test Stand Pump Curves
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3 Basic Fluid System Diagnostic Indicators

The following chapter reviews events and conditions recorded by the NILM while monitoring

the RO units on the U.S. Coast Guard Cutters Seneca and Escanaba over the past year.

3.1 System Status Determination

One of the most observable NILM applications is determining the system status and alignment.

An "on" or "off' assessment is the first step in system monitoring, but as the following sections

illustrate many other system properties are easily evaluated from the power demand traces.

3.1.1 Pump Starts and Stops

With three pumps, the RO unit can have a significant range in power demand and on/off

sequencing. As shown in Figure 3-1, the NILM can determine the pump status by simply

measuring the power demand.

ESC-ROsnapshot-20060921-210001 3 mat
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Figure 3-1: RO Unit Pump Starts and Stops
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An interesting feature present in the HP pump start is what appears to be an overshoot from an

under-damped system as highlighted in Figure 3-2. Review of multiple HP pump starts indicates

that the overshoot is a characteristic of the system. As the HP pump is connected to the motor by

v-belt drive, as shown in Figure 3-14, this type of behavior is expected due to the belt's elastic

properties. A detailed analysis was not conducted for this particular feature, but similar to the

ASW pump coupling failure discussed in LT DeNucci's thesis [6], it could certainly lead to a

diagnostic indicator.
ESC ROsnapshot 20060921-210001 3 mat
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Figure 3-2: Detail of HP "B" Pump Start from Figure 3-1

By tracking the pump statuses NILM is able to record the accumulated running time for each

system component and alert the operator of time driven preventative and routine maintenance

items.

3.1.2 Valve Alignment Changes

In addition, the aggregate real power trace reveals valve alignment changes that affect the pump

load. As shown in Figure 3-3, when the high-pressure bypass valve (V7 "A/B") is closed the

power demand to the HP pump increases. Valve number V7 bypasses the membrane pressure-

regulating valve so that the HP positive displacement pump initially starts in an "unload"
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condition. As the valve closes the internal membrane pressure increases causing the HP pump to

demand more power. In some cases watchstanders start the HP pump with valve number V7

closed placing a tremendous amount of friction and stress on the ceramic plungers. Additionally,

the sudden increase in membrane pressure could damage the seals, leading to leaks and failures.

This practice will shorten the pump life and increase the RO unit's maintenance needs.

ESC-ROsnapshot-20061010-010001 3 mat
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Figure 3-3: RO Unit Major Valve Alignment Changes

Presently, there is no interlock to prevent incorrect operation of the bypass valve, but looking at

the real power demand difference between the open and closed valve positions it is clear that

NILM could detect this condition. With a connection between the NILM and the master control

consol, a detected HP pump start with the bypass valve closed could trigger the solenoid trip

valve already installed on the system, lowering the initial membrane pressure and pump loading.

3.1.3 RO System Start Sequence

Like most complex systems, the RO unit has a specific start procedure to minimize damaging

conditions during activation process. Using the "Normal Start-Up Procedure" outlined in
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Section 4.2 of the RC7000 Plus Manuel [14] it is easy to follow and verify a successful start

sequence from the NILM power trace as shown Figure 3-4.

Section 4.2, Steps 4 through 6:
4) Start the LP boost pump by depressing the LP Pump pushbutton located on the MCC.

5) Start the HP pump unit by depressing the HP PUMP Pushbutton located on the MCC. At least 10 psi must be indicated

on the discharge side of the Micron Filter Array Duplex Pressure gauge.

6) When flow through the reject discharge flow meter appears to be free of air bubbles, slowly close High Pressure Bypass

Valve (V7 A/B). It is important to monitor the pressure indicated on the Membrane Array Pressure Gauge (PG5 A/B).

3
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Figure 3-4: NILM Real Power Trace from Successful RO Start Sequence

Key features during a normal start sequence are identified in Figure 3-4. A common mistake

made by watchstanders is not allowing the HP pump inlet pressure to come up before trying to

start it. There is an interlock to prevent the HP pump from starting without at least 10 psi of inlet

pressure, but the interlock does not determine if the inlet pressure has stabilized. Starting the HP

pump before the inlet pressure has stabilized increases the likelihood of damage to the pump due

to unsteady flow and pressure oscillations. From the real power trace, the NILM can determine

when the pressure has stabilized by checking the LP pump power differential over time. When
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the differential goes to zero, as indicated at 42-seconds in Figure 3-4, the LP pump has reached

steady state and it is safe to start the HP pump.

A simple NILM diagnostic tool would evaluate the correctness of each start by comparing it to a

known baseline start. In doing so, the NILM could alert the watchstander of possible problems

or system misalignments, thus mitigating the harmful effects of improper equipment operation

before it causes severe damage.
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Figure 3-5: An Air Bound LP Pump Start

Figure 3-5 is an example of a faulty RO unit start, where the LP pump was air bound as indicated

by the sporadic power demand. After the initial start this condition was allowed to continue for

nearly 60 seconds before the system was properly vented. Using NILM to monitor the RO unit

start sequence could have alerted the watchstander of the possible problem and minimize

exposure to the pump damaging condition.

33

ESC-P-ROsnapshot-200701 16-190001 3 mat

-- - - -- -- - --- - -1- - - - - -- -- - - -1- - - - --- -- - - -- -- - -- - -- - -- -

------------- ----- ---K--- ---
-- ---------------------------------- ----- --------------------------------------------------------------------------------------------_------



3.2 Maintenance Indicators

Field tests have demonstrated the NILM's ability to detect conditions that precede serious pump

failures. Examples include abnormal operation in highly contaminated waters and large

oscillations in the steady-state power drawn by pump motors. Other indicators include spectral

content within the power demand that, when trended, provide a real-time measure for condition

based maintenance.

3.2.1 Abnormal Event Detection

An analysis of the NILM data collected from the Escanaba and Seneca reveals a wide range of

RO unit operating conditions. It would be inefficient to develop an algorithm capable of

diagnosing every damaging condition the RO unit might experience. A more practical approach

would have the NILM monitor the power demand and its spectral content for characteristics that

exceed baseline parameters. The following sections examine several damaging situations where

it is clear that a simple abnormal event detection algorithm could immediately alert the

watchstander of detrimental operating conditions, enabling them to take action and mitigate the

effects.

3.2.1.1 Multiple Pump Restarts

Contamination can have a catastrophic effect on the positive-displacement pumps in the RO

system. It is well known that RO units are to be secured before entering harbors or other regions

that would overload the system's pretreatment capabilities (i.e. the micron filters). Occasionally,

however, the crew may not be aware that the vessel has entered a region that may cause

problems. If that happens, the pressure across the micron filters can increase, thus reducing the

pressure at the inlets to the positive-displacement pumps. As a precaution, the controller is

designed to secure the high-pressure pumps whenever their inlet pressures fall below a certain

threshold. If the pump inlet pressure fluctuates, however, the pump may experience multiple

restarts. Such activity usually goes unnoticed because manual inspections are performed only

periodically.
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Figure 3-6: Multiple HP Pump Restarts

Figure 3-6 shows the aggregate pump power drawn by RO unit during a period when the

Escanaba was passing through contaminated waters. Initially, the LP pump and one HP pump

were operating. Shortly before minute 10, the HP pump secured, re-started, and then secured

again for several minutes. During this time, the LP pump ran by itself. Around minute 14, the

HP pump re-started, likely because its inlet pressure increased. Several minutes later, the HP

pump secured and re-energized 4 times in less than 60 seconds. Engineering logs indicate that

this behavior was noticed by a nearby operator who subsequently secured both the HP pump and

the LP pump. After approximately 20 minutes, the system was brought back online, and

operated normally until about minute 96. At that time the HP pump again began to progress

through a series of starts and stops. Finally, nine starts were recorded during an approximately

two minute interval. The HP pump remained secured until shortly after minute 100. A short

while later, logs indicate that the system was secured after a watchstander noticed a high

differential pressure across the micron filters. The erratic behavior of the HP pump, which is

difficult for human operators to notice, was easily detected by the NILM. In this case, the NILM

could have acted to alert operators or automatically secured the system preventing further

component damage.
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3.2.1.2 Pump Cavitation

The power trace of the Seneca's LP pump motor, Figure 3-7, illustrates another abnormal and

component damaging event captured by the NILM in September 2006. The obvious box-shaped

modulation with a 30-minute period is extremely uncharacteristic of the RO system. Examining

the frequency spectrum using the MATLAB* script provided in Appendix B reveals the

magnitude at 29.5 Hz shifts between 6,000 and 34,500 on the "thin" and "fat" pulses. This

unusual signature disappeared after 12 hours.
SENHROsnapshot,20060501046O1.1 .mat
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Figure 3-7: LP Pump Power Modulation

Subsequent interviews with the crew indicate that the single LP pump has difficulty supplying

both the "A" and "B" sides of the RO unit if the sea suction strainers or micron filters are slightly

fouled. A likely cause of the large modulation is a combination of high auxiliary seawater

(ASW) system demand and a fouled sea-suction strainer. Upon tracing the seawater supply

piping it was confirmed that both the RO Unit and ASW system, as shown in Figure 3-8, tap into

the same sea-suction strainer. Additionally, the ship had just gotten underway the day before

from a two-month inport period. After this length of time, the sea-suction strainer basket is

likely fouled by marine growth if not properly cleaned.
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Figure 3-8: RO Unit and ASW Seawater Supply

The restricted flow rate through the fouled sea-suction strainer coupled with the high ASW

demand from the air conditioning/refrigeration (AC/R) unit's 15 minute chilling cycle "starved"

the RO unit's LP pump. The lower flow rate through the LP pump caused the pump inlet

pressure to drop, lowering the net positive suction head (NPSH). Equation 3.2-1 describes

NPSH available as a function of the pressure at the pump inlet minus the working fluid's

saturation pressure [17].

NPSHA = Psuction - Psaturation (3.2-1)

Where: NPSHA net positive suction head available

Psucon = fluid pressure at pump inlet

Psaturation = fluid saturation pressure

For a particular pump/piping system configuration a minimum NPSH, or net positive suction

head required (NPSHR), is needed to ensure correct pump operation. The pump will cavitate if

the NPSHA falls below the NPSHR [12] [17]. Cavitation results from cavities, or bubbles,

forming in the working fluid on the low-pressure, or suction, side of the pump. As the bubbles

pass across the impeller, to the high-pressure side of the pump, they collapse causing noise,

vibration, and impeller vane surface pitting. The suction pressure, Psuction, at the pump inlet is a

combination of the static fluid head due to system elevation changes and the head losses from the

pump suction piping. Other factors that can adversely affect the suction pressure are restrictions

to the available flow rate caused by shared supply systems or fouled piping and strainers. Both

conditions were present and likely caused the LP pump to cavitate resulting in the unusual power

modulations.
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Figure 3-9 provides a real power trace of the LP pump motor with the possible onset of

cavitation. In this case, the cavitation was likely initiated by the diversion of the product water

overboard. This RO unit configuration bypasses the semi-permeable membranes causing the HP

pump discharge pressure to drop and slightly increasing the flow rate. The change in system

flow rate increases the fluid velocity and reduces the pressure at the LP pump inlet (Psucion),

ultimately, lowering the NPSHA. As discussed previously, if the NPSHA is less than the NPSHR

there is a danger of pump cavitation.
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Figure 3-9: Possible LP Pump Cavitation after the Product Water was Diverted Overboard

The trace in Figure 3-9 clearly shows the real power amplitude increasing with the possible onset

of pump cavitation at time 35-minutes. This, time also corresponds to the overboard discharge

alignment noted in the Seneca's operating logs. Also, note that the average power demand

decreased by 0.25 kW, from 4.75 kW to 5.0 kW, at this same point. Examining the spectral

content using the code provided in Appendix B indicates a similar increase in magnitude at 9.8

Hz, 19.7 Hz, and 29.5 Hz to that identified in Figure 3-7. Unlike Figure 3-7, the dominate

frequency magnitude change in Figure 3-9 occurs at 19.7 Hz where it increased from 5,500 to

30,000 between the non-cavitating and cavitating states. The magnitude at 9.8 Hz also doubles
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between the two states. The difference between the telltale frequencies described in Figure 3-7

and Figure 3-9 may be attributed to the severity of the cavitation condition experienced by the

respective scenarios. The situation illustrated in Figure 3-7 more severely influenced the LP

pump flow rate than the one encountered in Figure 3-9. Ultimately, both figures illustrate clear

changes in the LP pump motor power demand between the non-cavitation and cavitating states.

The effects of cavitation are extremely damaging to the pump impeller. Immediate impacts

lower the pump's efficiency, flow rate capacity, and discharge head. Prolonged exposure can

drastically increase component failures, such as shaft seals and bearings, from excessive

vibration and impeller imbalances. Finally, severe cavitation over a significant period can bend,

and even break, impeller vanes, ultimately destroying the pump housing.

To verify the possibility of pump cavitation the laboratory test stand was used to replicate the

effects of the reduced flow rate through the pump. The fouled sea-strainer was modeled by

throttling the isolation valve between the test stand reservoir and the pump inlet, identified as

"Valve-0" in Figure 2-9.
Laboratory Test Stand Pump Powe J31-0403)
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Figure 3-10: Test Stand Pump Power while Throttling the Inlet Valve
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Incremental changes in the valve position slowly restricted the flow rate into the pump. As

shown in Figure 3-10 the pump motor power indicates a step change between each inlet valve

change. After the fourth valve change, the pump motor power amplitude gets very large, similar

to the power modulation shown in Figure 3-7 and Figure 3-9. Notably the decrease in average

power demand at the cavitation state found in Figure 3-10 corresponds exceptionally well to the

average power demand noted in Figure 3-9. Noise caused from bubbles collapsing inside the

pump detected at time 250 seconds corresponds to changes in the pump power amplitude and

spectral content agree with the field observations and suggest the presence of pump cavitation.

It should be noted that the difference between a cavitating pump and an air bound pump is very

slight and highly dependent on the balance of inlet and outlet pressures. The significant drop in

pump power records this small window at 200 seconds in Figure 3-10. The system was

extremely sensitive and a small change in valve position resulted in a significant impact on the

system performance. As the valve was slowly opened between 230 and 250 seconds, the pump

began to vibrate violently and make "popping" sounds from cavitating.

Measured Frequency Magnitude for Restrictued Flow
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Figure 3-11: Test Stand Pump Motor Frequency Magnitude while Throttling the Inlet Valve
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Figure 3-11 compares the pump power spectral content magnitude at 16 Hz to the pump flow

rate. Pump cavitation was most apparent between 75% and 85% of the nominal pump flow rate.

This region is also extremely sensitive to small inlet valve changes as indicated by the scatter of

the few data points obtained in this region. The pump became air-bound below 65% of the

nominal flow rate. This makes sense, as the impeded flow would make it difficult for the pump

impeller to remain submerged. As prolonged exposure to cavitating conditions will reduce a

pump's capacity, eventually destroying it, the NILM provides an inexpensive tool for monitoring

systems at risk.

Another abnormal condition captured by the RO NILM is illustrated in Figure 3-12. Although

the modulation is not as prevalent as in Figure 3-7 it is certainly detectable. Again looking at the

spectral content it is clear that the 8.26 Hz magnitude ranging from 2.75x10 4 to 14.5x10 4 is

driving the amplitude modulation. As it will be discussed in the following sections, this

particular frequency has telltale properties that pertain to the HP pump. Although the cause of

the modulation was never isolated, it is very similar the LP pump cavitation discussed earlier.
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Figure 3-12: Abnormal HP Pump Power Modulation
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3.2.1.3 Pump Power Oscillations

The large pump power oscillation shown in Figure 3-13 illustrates another abnormal condition

recorded by the NILM. This trace was observed during the start immediately following the

multiple restart behavior shown in Figure 3-6. When the HP pump came online, a large

oscillation was observed. This oscillation, which has a remarkably large amplitude, continued

for several days before it finally ended. The ship's crew had nothing to report when asked about

the presence of any unusual noises or vibrations from the RO unit.
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Figure 3-13: HP Pump Power Extreme Amplitude

The peak-to-peak time of the extreme amplitude wave shown in Figure 3-13 indicates a

frequency of 8.26 Hz, which corresponds to the 495.7 RPM, measured from the HP pump shaft.

This frequency can be isolated to the HP pump since the shaft is rotated by 1800-RPM motor

through a 3.60:1 ratio v-belt drive as shown in Figure 3-14. The presence of this oscillation is

clearly not healthy for the HP pump and requires immediate attention by the watchstander.

42

................... .......... t..

.................................. ........................ ............. ........

ji

-- ----------------------------------

............

..............................

-----------------

-------------------- -------------------- : --------------------

I

100 120 UO 160



Figure 3-14: RO HP Pump and Motor with 3.6:1 Ratio V-belt Drive

It would be difficult to develop a diagnostics for every condition experienced by a fluid pump or

the RO system, but by using the NILM to find abnormal power traces the operator can use this

information to troubleshoot internal system problems not easily detected through conventional

methods.

3.2.2 Condition Based Maintenance

Since the NILM monitors the power demand of a system in real-time with no interruptions, it

becomes the ideal platform for trending component power demands. As trend analysis is one of

the major pillars for a successful condition based maintenance program the NILM lends itself as

a key tool for minimizing maintenance costs and unexpected equipment failures. The followings

observations cover condition based maintenance indicators that have been resolved over the last

year.

Figure 3-15 shows the frequency spectrum of the real power waveform presented in Figure 3-13.

Note that there is significant spectral content at approximately 8.26 Hz and its harmonics. Later

analysis found that there is always some significant amount of spectral content at this frequency,

although its amplitude is not always so large.
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Figure 3-15: Frequency Spectrum Analysis of Figure 3-13

In fact, looking at a sample from each hour of the RO unit's operation indicates that the spectral

content at 8.26 Hz is, for the short term, relatively consistent. As shown in Figure 3-16, the

magnitude at this frequency for the Escanaba's RO unit during February 2007 has a standard

deviation of only 9.2%.
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Figure 3-16: 8.26 Hz Hourly Trend for RO Unit Hp Pumps
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Approximately two months after the discovery of the large HP pump power oscillation shown in

Figure 3-13, the pump in question failed. As a preliminary test, the amplitude of the 8.26 Hz

spectral peak was trended for over the past year. Figure 3-17 shows how the magnitude of this

peak varied on several selected days between September 30, 2006 and February 1, 2007. The

extremely high value recorded on October 30 corresponds to the behavior shown in Figure 3-13.

It is interesting to note that the pump was replaced on December 21 following the discovery of

damage to both the piston and the cylinder housing. Such a costly replacement could potentially

have been prevented if the magnitude of the 8.26 Hz spectral peak had been trended in real time.

8.26 Hz Measured Magnitudes
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Figure 3-17: 8.26 Hz Magnitude Trending for RO Unit HP Pumps

The spectral content at 8.26 Hz is also dominant in the Seneca's RO unit power demand.

Additionally, they experienced an HP pump failure in June 2006 in which the pump had lost oil

pressure and overheated, requiring complete replacement. Analysis of the before and after data

for the Seneca reveals a 502% drop in the 8.26 Hz magnitude after the pump was replace. Given

the availability of the spectral content at 8.26 Hz it is clear that a condition based maintenance

routine could be conducted using the NILM for trend analysis.
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3.3 Failure Detection

A sudden, unexplained, drop in system power demand is often one of the most easily detected

and reliable indicators of a major component failure. For example, a pump-motor coupling

failure would result in an immediate drop of motor power due to the sudden unloading. The

same principle applies to the RO membranes. Unfortunately, without the NILM, the only

indication of a membrane failure is a product water high-salinity alarm and the tripping of the

solenoid dump valve (valve number V10 "A/B"). The high-salinity alarm is a generic alarm that

can sound for any number of events and does not aid in troubleshooting the alarm origin. With

the installation of a NILM, the operator has a second sensor that provides correlated power

demand data for system components aiding in the isolation of a generic alarm.

Figure 3-18 depicts a 23% drop in the RO unit power demand due to a membrane failure

onboard the Seneca. It took the crew nearly two days to isolate the cause of the high-salinity

alarm and replace the membrane. During that time, the RO Unit was reduced to 50% capacity

and no redundancy.

SE ROsnapshot-2006101 1-10001.2 mat
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Figure 3-18: Seneca RO Unit Membrane Seal Failure Detection

Three semi-permeable membranes have failed in the past year between the Escanaba and

Seneca. The frequency of this type of failure and time required to detect and repair the

membrane make a strong argument for the NILM diagnostic capabilities. A simple algorithm
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that monitors for a sudden system power drop while the pumps are still running would prove

useful in detecting any number of major failures.

Another failure observed several times on both ships are the RO unit's HP pumps running while

the system was in standby. The crews commonly refer to this scenario as a phantom start. The

problem is so rampant that the watchstanders often open the circuit breaker to the RO unit after

securing it from the master control consol to ensure no power reaches the pump motors. This

type of failure significantly damages the positive displacement pumps as they are running dry

and hot. With the LP pump secured the feed water is not being supplied to the HP pumps

increasing the friction between the cylinder wall and plungers. Prolonged exposure to this

condition drastically shortens component life and increases the chance of a catastrophic failure,

where the ceramic plungers will disintegrate during normal operation. The phantom start

malfunction is further accented by the failure of the inlet low-pressure switch interlock to prevent

the HP pump running without sufficient feed water supply.
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Figure 3-19: HP Pump running without LP Pump due to Master Control Consol Failure

Figure 3-19 provides an example HP pump phantom start where the RO unit was in standby.

Note that the LP pump is not running during this time. The restart power spikes between 57.5

and 58.5 seconds are the result of the watchstander attempting to stop the HP pump from the
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master control consul before securing power to the RO unit from the circuit breaker. By using

the start sequence baseline discussed in Section 3.1, the NILM could diagnose an incorrect start

and immediately alert the crew. Several instances have found the HP pumps running dry for

over an hour before the crew detected the problem and secured the motor.
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4 Filter Condition Modeling

Contamination can have a catastrophic effect on the positive-displacement pumps in an RO

system. The following sections review the development and application of a filter condition

model.

4.1 Filter Condition Influence on System Operation

Most contaminants are removed from the RO units onboard the USCG Cutters by the actions of

the cyclone separators and the micron filters. As shown in Figure 2-6 and Appendix A, the

separators pass a certain amount of fluid overboard. This ejected water contains most of the

suspended solids found in the incoming feedwater with a specific gravity greater than 2.7; the

subsequent micron filters remove any remaining particulates with diameters greater than 5pm.

Over time, the filters become fouled with debris, resulting in an increase in the pressure loss, or

differential pressure, across the filters and a decrease in the absolute pressure at the inlet of the

positive-displacement pump. Because the loss in inlet pressure can result in harmful cavitation,

the filters must be routinely cleaned or replaced. To assess filter status, watchstanders check the

differential pressure across the filters each hour. To avoid human errors, relieve watchstander

burden, and prevent sudden failures in highly contaminated waters, it is desirable to assess filter

status using automated procedures.

One way to detect filter clogging in real time is to examine electrical power data. Robust,

model-based detection methods can be developed by considering the inter-domain interactions

that occur during a system start. As discussed in Section 3.1, the centrifugal (LP) pump is the

first component to be energized. During the period when that pump runs by itself, it is solely

responsible for pushing fluid through the micron filters and the overboard discharge. Thus, as

the filter volume fills with water, the state of the filter will have a strong influence on the pump

flow rate, which in turn will affect the current drawn by the pump motor. Because the positive-

displacement pumps will impose a relatively constant flow rate once they reach a steady speed,

[18], the filters have little effect on the flow once the HP pumps begin to operate. Thus, during

the initial charging period, there is a unique opportunity to probe the effects of a change in the

state of the micron filters.
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4.2 Model Formulation

A relatively simple model can be formulated to describe the salient features of the pump-fluid

interactions that occur during the initial filter-charging phase. Essentially, the centrifugal pump

is creating the pressure difference necessary to move fluid through the cyclone separators and the

micron filters. To a reasonable approximation, this means that the pump is driving fluid through

a long pipe that eventually splits, providing some water to the filters and some to the overboard

discharge path. In both the piping that follows the pump and the piping that carries discharged

water overboard, one can approximate the head loss, h(t), using the relation:

h(t) =- + f(Q) (4.2-1)
g*A dt

Where: h(t) = head loss
Q(t) = volumetric flow rate
g = gravitational constant
I = length of the pipe
A = pipe cross-sectional area
](Q) = energy loss due to the resistance of the pipe

This relationship, which considers only bulk fluid motion in the axial direction, is a

simplification that accounts for inertial effects and energy loss [19] [20] [21] [17]. The loss term

in Equation 4.2-1 is typically approximated using the D'Arcy-Weisbach formula, which states

that:

f(Q) = kQ 2  (4.2-2)

Where k is a constant that depends on both the geometry and properties of the pipe as well as the

properties of the flowing fluid [19] [20] [17] [22].

During an initial start, the filter housing slowly fills wither water. As the volume fills, the

amount of stored head increases. Assuming that there is a linear relationship between head and

volume, the constitutive relation for this device is:

h = CV (4.2-3)
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Where: V = amount of water stored in the filter housing
C = filter element capacitance constant

In direct analogy with electrical systems, this device can be viewed as a capacitor. Although this

model simplifies the actual physics, it does capture the relevant characteristics of the filter and it

is often used in similar models [22]. The filter element capacitance constant, C, is a function of

the filter element condition. In general, a clean filter would have a lower value for C than a

fouled one. Assuming that C does not vary as a function of time, the flow rate through the

device can be determined using the following relationship:

dt = C = CQ (4.2-4)

The above arguments can be used to produce an overall model for the fluid subsystem. The

model contains three states: the pump discharge capacity (QIN), the flow rate in the overboard

discharge piping (QDIs), and the head across the filters (houT). Neglecting any head loss in the

piping ahead of the filters, it can be assumed that the filters and the discharge piping form two

parallel paths with the same overall head loss, houT. Assuming that compressibility is negligible,

the continuity equation shows that:

QIN(t) = QDIS(t)+QFIL(t) (4.2-5)

Where: QIN = pump flow rate capacity
QDIs = flow rate in the overboard discharge piping
QFIL = flow rate through the micron filters

The three state equations in the model are the following:

hIN ( IN I N (4.2-6)

hoUT() = aDIS dQDIs + kDISQIs (4.2-6b)

C hOUT= QFILJ = QIN( - QDIS(t) (4.2-6c)
dt
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Where: a & k = represent system specific constants
houT = head loss

In this model, Equation 4.2-6a describes the bulk motion of the fluid that is expelled by the

pump, Equation 4.2-6b describes the bulk motion of the fluid in the discharge piping and

Equation 4.2-6c models the flow through the micron filters.

The remainder of the overall model must account for the mechanics of the centrifugal pump and

the dynamics of the motor that drives it. Such pumps produce an output head that exhibits a

nonlinear dependence on both speed and flow. The salient characteristics of this dependence are

captured using the relationship [19] [20] [23]:

hIN (t)= a, r + a 2orQIN + a3 IN (4.2-7)

Where: o, = pump mechanical speed
al,2, & 3 = set of empirical constants

Similarly, the torque required to produce the head defined in Equation 4.2-7 can be specified as

[19] [20] [23]:

Tm(t) = biwrQiw + b2QIN (4.2-8)

Where: mr, = motor shaft torque
b a2 = another set of empirical constants

For a given speed, it is clear that Equation 4.2-7 and Equation 4.2-8 produce curves that are

similar to those found in most manufacturer data sheets. Including viscous friction, the net

torque becomes:

J = Te - Tm - #(r (4.2-9)
at

Where: J = moment of inertia
Te = torque of electromechanical origin

p8 = coefficient of viscous friction
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The complete simulation model must include the electrical state equations for the three-phase

induction machine. In the synchronously rotating d-q reference frame, these equations are [24]:

a = vds + OJAs - rs ids

8aqs
= Vqs - ('A)ds - rsiqs

aAdr Vdr + (a - POr)tqr rtarat

a~qr Vqr- ( )- Par)tdr - rqr

(4.2-1Oa)

(4.2-10b)

(4.2-1Oc)

(4.2-1 Od)

Where: Ads

)Lqs

Adr
)Lqr

rs

rr

ids

iqs

idr
iqr

Vds

Vqs

Vdr

Vqr

p

(0r
W r
CO,.

= direct-axis stator flux
= quadrature-axis stator flux
= direct-axis rotor flux
= quadrature-axis rotor flux
= stator resistance
= rotor resistance
= direct-axis stator current
= quadrature-axis stator current
= direct-axis rotor current
= quadrature-axis rotor current
= direct-axis stator voltage
= quadrature-axis stator voltage
= direct-axis rotor voltage
= quadrature-axis rotor voltage
= number of pole pairs
= frame speed
= rotor mechanical speed
= pump mechanical speed

The overall eighth-order model consists of Equations 4.2-6a/b/c and Equations 4.2-10a/b/c/d.

Examining the equations it is expected that the pump motor will take longer to reach a steady-

state condition given a clogged filter. The steady-state condition is defined as the time the pump

motor power demand gradient goes to zero for the long term. The steady-state condition does

not occur at a local minima or maxima. Equation 4.2-11 expresses this sate as a derivative of the

pump motor power demand.
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apm(t) = 0 (4.2-11)
at

Where: P,(t) = pump motor power with respect to time

As shown by the model, the measured time the pump motor takes to reach the steady-state

condition is relative to the value of C and is an assessment of the filter element condition. This

measurement is referred to as the steady-state start transient time.

4.3 Model Results

MATLAB® was used to encode the pump start transient model for simulations with various filter

conditions. The data CD referenced in Appendix D provides the pump-filter simulation script

files. The filter condition was set by changing the value of the filter element capacitance

constant, C, from Equation 4.2-6c. A larger C indicates an increase in the filter clogging

condition.

Model Simulation Results (fouled & clean filters)
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Figure 4-1: Pump Motor Real Power from Filter Condition Model
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The results from the filter condition model simulation, shown in Figure 4-1, support the premise

that the steady-state start transient time is smaller for the clean filter condition. In this case,

there was a difference of approximately 4 seconds between the clean andfouled filter conditions.

Comparing the pump volumetric flow rate in Figure 4-2 to the fouled filter pump motor power

demand in Figure 4-1 demonstrates the relationship between the two parameters as indicated by

the similarity between their gradients. It is also interesting to note that both parameters have a

steady-state start transient time of approximately 9 seconds.

Pump Flow Rate for Fouled Filter Model Simulabon
20.

.............................. ...................................... ..........

--- --------------- --- -- --- ---- -- - -- --- -- -- -- - -- -- --- -- -- ------ -- -- --- --- --- -- --- -- -- --- ---- - --------------------- _ ------ ---------------- ----------------
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-- --- -- --- - -- --- -- ---- - --- - --- -- -- -- --- --- - -- --- -- -- -- -- --- -- -- -- --- -- -- - --- - - --- - -- ---

Dirty: Filter Steady-State
.............. ...................... ...... ....... 

------------ 
Start Tim e (-9s) 

....................----------------------- 4-------------------- -------- ---------- --------- ------ -------------------------------.................... ...................... ........ _\ ......... .........
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Figure 4-2: Pump Volumetric Flow Rate for Fouled Filter Condition Model

The filter condition model simulation clearly demonstrates the dependence between the pump

flow rate and power demand. This reliance can be used as a reliable way to determine the filter

condition based solely on the pump motor steady-state start transient time without the need for

additional sensors. In summary, the time at which the pump power demand gradient goes to zero

is directly relative to the condition of a down-stream filter.
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5 Filter Condition Diagnostics

5.1 Pump Motor Steady-State Start Time

The theory and model discussed in Chapter 4 indicates that the pump motor steady-state start

transient time is relative to the downstream filter condition. With this in mind, several

conditions must exist for independent pump start evaluation:

" For the steady-state start transient time to be comparable with other starts, the fluid

system must start from a consistent state. This means that fluid levels throughout the

system, including the filter housing, drain down to the same prestart condition before the

next pump start occurs. This condition stipulates that the pump transfers the same

volume of fluid to charge the system for each start.

* The steady-state start time is only valid for the initial pump motor start. If several pump

starts are initiated in quick succession, the first condition fails, as the empty system

volume is different for each start. This will adversely influence the steady-state start

time. If the system is allowed to settle to its normal prestart state then following start is

valid for measurement.

" A consistent pump start procedure is used for each start. This means the system valve

alignment and sequence of events is the same for each steady-state start time analyzed.

5.2 Trend Analysis

Progressively tracking the steady-state start time for each pump start will provide a trend of the

filter condition. As each filter and pump system is different, the absolute cut-off steady-state

start time, where the filter needs to be cleaned or replaced, will vary. Baseline measurements

can be used for a clean and fouled filter condition to assess the steady-state start transient times

indicative of a particular system configuration. Using trend analysis allows the operator to

observe changes in the systems performance over time and to evaluate each start based on the

requirements outlined in Section 5.1.
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5.3 Laboratory Experiments

Several sets of experiments were conducted to investigate filter condition indicators present in

the pump power start transient and confirm the model developed in Chapter 4 applicability. The

intent of these experiments was to model the reverse osmosis (RO) unit startup sequence

between the LP pump start and before the HP pump start and determine if there were any reliable

filter condition indicators present in the LP pump start transient power.

5.3.1 System Setup and Procedure

The laboratory test stand was modified to simulate the start sequence of the RO unit by capping

the discharge pipe from the filter housing. This setup models the blocked-flow effect caused by

the secured HP pump before it is started. A 0.10-inch diameter hole was drilled in the cap to

vent air as the filter housing was charging; this is similar to the "air/oil bleed" located at the top

of the RO unit's micron filter housing [14]. To simulate the constant discharge flow from the

RO unit's cyclone separators, valve-1 on the test stand was partially open with 2 turns while

valve-2 was completely closed. Valve-3, which leads to the filter housing, was completely open

for the experiments. The valve locations and nomenclature are identified in Figure 2-9.

Clogging was simulated by wrapping the filter element, shown in Figure 2-10, with paper towels

held in place using fiberglass window screen material and four rubber bands. A total of two

paper towel wraps and six screen wraps were used to represent a fouled filter. Initial testing

showed that complete coverage of the filter element by the fouling material is required to induce

the full clogging effect. Since the clean filter element is very porous, it has little influence on the

differential pressure across the filter housing. Any area of the element not covered by fouling

material will easily allow flow and skew the results.

To ensure that the empty volume of the filter housing was consistent for each start, the filter

housing was completely drained between each test run. Additionally, the greater volume of the

fouled filter was accounted for by adding 380 mL of water to the filter housing before the clean

filter starts. Table 5-1 provides a list of the measured volumes for the filter housing, clean filter

element, and fouled filter element.
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Table 5-1: Test Stand Filter Component Volumes

Component Volume

Filter Housing Volume 3200 mL

Clean Filter Volume 680 mL

Fouled Filter Volume 1060 mL

The experiment was divided into 13 runs. Each test run was initiated by starting the centrifugal

pump motor. After running the motor for 12 seconds, it was stopped and the filter housing

drained. If required, the filter condition was modified at this point. The start transients for four

different system configurations were examined:

" Fouled Filter: with 2 paper towel and 6 screen wraps

" Clean Filter: with 380 mL of water added prior to the filter housing before the start

* No Filter: with the filter element removed and 1060 mL of water added before the start

" Filter Bypassed: with valve #3 closed to bypass the filter housing before the start

Data was collected using an eight channel NILM as specified in Section 2.4.2 and Table 2-6.

Appendix C provides the MATLAB* scripts used to process, collate, and display the recorded

data from the test stand.

5.3.2 Laboratory Test Stand Results

The test stand experiments support the filter condition model and conclusions discussed in

Chapter 4. As shown in Figure 5-1, a noticeable difference exists between the pump motor real

power demand for each filter condition. In particular, it is interesting, and expected, that when

the filter housing was bypassed by closing valve-0 the pump motor immediately reached steady-

state in 0.5 seconds without the characteristic "hump" present in the other two examples. This

comparison clearly shows the effect of the filter housing being filled with fluid, or charging, has

on the pump power demand. Also, note the 1-second lag in the steady-state time between the

clean and fouled filters.
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Figure 5-1: Laboratory Test Stand Pump Power Comparison for Various Filter Conditions
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Figure 5-2: Laboratory Test Stand Pump Flow Rate Comparison for Various Filter Conditions
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Comparing the measured flow rate in Figure 5-2 for the same three tested conditions in Figure

5-1 confirms the relationship between the pump power and its flow rate. As discussed in

Chapter 4, when the slope of the real power traces goes to zero the flow rate also goes to zero

marking the steady-state start transient time. Note that the flow rates reach a steady-state value

of 40 GPM in each case. The small discrepancy in steady-state time for the flow rate is due to

the discrete nature of converting the flowmeter pulse period to a frequency. The 0.1-second

difference that exists between the real power and flowmeter steady-state time for the clean filter

condition is certainly within the experiment's tolerances needed for validating the filter condition

diagnostic. Although this was discussed extensively in Chapter 4, the test data confirms the

applicability of the developed system model.

One particularly interesting feature in Figure 5-2 that is present for the fouled and clean filter

flow rates is the noticeable dip in flow rate just after 1 second. This valley does not correspond

to any real power trace features shown in Figure 5-1. The experiments were not setup to

evaluate this particular characteristic, but one possibility is the slight change in flow

characteristics as the fluid initially discharges into the reservoirs from the piping system

connected by valve-1.

The complete, time synced, data sets from the clean and fouled filter conditions are available in

Figure 5-3 and Figure 5-4. Many conclusions can be easily drawn about impact of the filter

condition on the respective start transients by comparing the two figures. It is interesting that in

both cases the filter housing charging time is clearly indicated by the small oscillation from the

filter differential pressure sensor. Also, note that this sensor goes to zero, or its prestart level,

shortly after the filter charging is complete. This is expected as the pressure on both sides of the

filter housing has equalized by this time. The lag between the completion of the filter housing

charging and the pump real power steady-state time is the due to the system response to the

change in both flow rate and pump differential pressure. As the pressure of the filter housing

equals the pump discharge pressure, minus pipe losses, flow to the branch disappears as shown

by the gradual reduction flow rate through pump.
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Figure 5-3: Complete Data Set for a Clean Filter Start on the Test Stand

6-sec plot ef Brute fw 01-114423 mat

L
300 ......... ....... ............. ......... PUMP Power

Steady-State Time
200 ....... ...... ...... ......... I ................ ......... ...... ................ ................. I .. ............. .............. -

0-
1001

0 Os 1 5 2 26 3 35 4 45 5

3000
Pump DP

2800 ........ . ..... ..................... 4 .... ...... .......
Fiftef DP

a. 2600 ....... ------------ ...... ---- PUmp DP Stead . ....... -
Filter Charging Time (-2-5s) State Time

2400 ---------- ............. ...... -------- --------

0 Or5 5 2 2 5 3 3 5 45 5

- so --------------- - --------------- ---------------- -_------------ ---------------- -------
E ----------- -------------- -------------- -------

- ---------- X-A ----------------- ------------ ------------ I ---- ---------- ... ..... .............. --------

................ ........... .............. ............. .......

-- ----------------g 20 - - --- ---------------- I ------------------------------------- Flowrate Steady- tate -------- --------------------------- --------------
0
0 0 5 5 2 2.6 3 IS 4 4 5 6

3000 ...... .... ........... ............. ....... ...... ............... . ............................... 7 ..............

8 2000 ....... ......... .. ......... .........

11OHW --------- ----------------- r --------------- ----------------------------------- ; ------------------------------------------------------------------- --------------- -

0 05 1 15 2 26 3 15 4 45 5
Time Isec]

Figure 5-4: Complete Data Set for a Fouled Filter Start on the Test Stand
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Although it is difficult to see in Figure 5-3 and Figure 5-4, pump rotational speed increases by

approximately 20 RPM just as the pump motor power transitions to steady-state. This is

expected as the pump motor experiencing a smaller load at this point then during the start

transient as indicated by the flow rate, causing the pump motor to speed up. Although the flow

rate is halved during this transition the pump differential pressure does go up mitigating some of

the unloading effects.

A comparison of the pump motor real power and pump flow rate between the clean and the no

filter conditions indicates very little difference between the two start transients as shown in

Figure 5-5 and Figure 5-6. Since the measured differential pressure across the filter housing for

the clean filter condition was within 5% of the no filter condition these figures validate the

practice of adding fluid to the filter housing to maintain a consistent initial empty volume for

each start.
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Figure 5-5: Pump Motor Real Power Comparison for Clean and No Filter Conditions

It is also interesting to note that the steady-state start time is 0.25 seconds longer for clean filter

start as the measured differential pressure across the filter housing was slightly higher for this
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condition. The comparisons shown in Figure 5-5 and Figure 5-6 provide an excellent example of

how sensitive the pump motor power is to small filter condition differences. Finally, the dip in

the flow rate initially identified in Figure 5-2 is also present for the no filter pump start just after

1 second of running time.
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Figure 5-6: Pump Flow Rate Comparison for Clean and No Filter Conditions

The conclusive results attained from the laboratory test stand support the assumptions needed to

create the filter condition diagnostic model. Additionally, these experiments provided an

excellent starting point for analyzing the RO NILM data, where the only measured system

property is the LP pump motor power demand.

5.4 Field Experiment

The primary intent of the field experiment was to verify the start transient characteristics

measured from the laboratory test stand and to determine if the NILM unit could capture the

pump power steady-state time on the RO units. The Escanaba was very helpful in providing

personnel and allowing the experiments to be run while inport.
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5.4.1 Experiment Setup and Procedure

The field experiment runs were conducted in accordance with RO unit start procedure outlined in

the technical manual [14], also identified in Section 3.1.3. In general, the start procedure

assumes an initial system alignment where both the LP and HP pumps are secured and both the

raw water isolation valve (V2 "A/B") and the HP bypass valve (V6 "A/B") are opened. The

operator then starts the LP pump manually from the master control consol and the HP pump is

started after the inlet pressure has stabilized. The HP bypass valve (V6 "A/B") is finally closed

increasing the membrane pressure between 800 and 1,000 psi. At this point, the product water

was sent overboard using the mode selection on the master control consol. The RO unit was

allowed to sit idle for 5 minutes between each run. This allowed the filter housings to drain to

consistent state.

Figure 5-7: Filters used for Escanaba LP Pump Start Transient Experiment

The Escanaba graciously saved a set of fouled filter from their last underway. Figure 5-7

compares the fouled and clean filters used for the experiment. The measured filter differential
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pressure for the fouled filter was 18 psi while the clean filter had a differential pressure of only 4

psi. The experiment included eight starts recorded by the NILM; four for each filter condition.

5.4.2 Field Experiment Results

Comparing the real power traces between the fouled filter and the clean filter starts it is clear that

the steady-state start transient time increases with the filter differential pressure as found in the

laboratory experiment. Figure 5-8 provides the aggregate real power start transient demand for a

clean and dirty filter. The second power spike on the clean filter trace at 14 seconds is the HP

pump starting. At approximately 26 seconds, the LP pump steady-state start time for the fouled

filter condition is more than twice that of the clean filter's 12-second steady-state start time.
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Figure 5-8: Real Power Traces for Escanaba LP Pump Start Transient Experiment

The field experiment results collaborated nicely with the model and laboratory experiment data,

confirming the NILM's ability to monitor the LP pump start transient.
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5.5 Underway Data

The final step to verify the practical application of the steady-state start time as a filter condition

diagnostic tool was to sample and compare underway data to recorded micron filter differential

pressure readings from the operating logs.

5.5.1 Data Collection

Underway data was collected continuously using the NILM configurations stated in Section

2.3.3. The raw data was uploaded from the PC to the laboratory server and run through prep for

analysis. Initially, the 6-channel data collection on the Escanaba was hindered by PCI-1710 card

problems. Due to the uninterrupted 48,000 Hz collection rate, the data for each hour did not

completely transfer to the hard drive, only saving segments of each hour for analysis. The PCI-

1710 card software was modified in November 2006 to correct the data transfer rate problem and

the NILM was been working reliably since.

As this data was collected under a variety of operating conditions not every start was suitable for

start transient analysis. In general, about 10 to 20 percent of the recorded RO unit starts are not

in accordance with the procedure outlined in the manual [14] resulting in unusual power traces.

In most cases, the valves were misaligned or the watchstander attempted to start the HP pump

before the inlet pressure was sufficient to disengage the low-pressure interlock switch. Looking

at the examples available in Chapter 3 it is clear that a simple parametric could be used to

identify flawed RO unit starts.

Finally, as the ship was underway with a constantly varying position the data collected represents

a dynamic environment of changing raw water temperatures, salinities, and particulate

concentrations. These conditions provided a wide array of start situations for analysis and

enabled the opportunity to measure the robustness of the proposed filter condition diagnostic

indicator.

5.5.2 Analysis Methods

The first implementation of the steady-state start transient time diagnostic indicator was to use a

visual comparison. Although a mathematical approach would provide more consistency within
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the analysis the visual method was chosen to increase the number of suitable RO unit starts and

to observe the range of possible start profiles. The visual comparison was conducted using a

baseline start transient profile that was known to have a clean filter. The baseline was then

compared to each suitable start to consistently identify where the real power slope goes to zero.

5.5.3 Underway Results
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Figure 5-9: Sample of Collected Escanaba Underway Data

Although the underway LP pump start transients shown in Figure 5-9 were not as smooth as the

experimental and laboratory data they matched the filter condition model gradient developed in

Chapter 4 remarkably well. The difference between the steady-state power magnitudes is likely

a combination of the extremely dynamic shipboard environment and the several day lag between

starts. The samples shown are Escanaba LP pump start comparisons from before and after a

micron filter replacement on 30 January 2007. It is important to note that although these start

transients have different slope profiles than previously shown from the experimental data, the

steady-state time can still be determined by ascertaining where the real power demand slope goes

to zero. This exhibits the robustness of the steady-state start transient diagnostic algorithm.
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Figure 5-10: LP Pump Start Transient Steady-State Time Trend Analysis for January 2007

Figure 5-10 provides the LP pump start transient steady-state time trend analysis for January

2007 onboard the Escanaba. The apparent fluctuation between each steady-state start time is in

line with micron filter differential pressure variation recorded in the RO unit logs. The

differential pressure variation is the result of many factors such as non-uniform filter fouling and

abrupt changes in feed water quality. Even with the fluctuating steady-state start time the data

trend clearly indicates a drastic increase in time just before the filter is replaced due to the high

differential pressure across the micron filter housing.
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6 Cost Analysis for Monitoring Shipboard Fluid Systems

6.1 Motivation

Modem naval vessels are becoming increasing dependent on electricity for energy distribution.

In the past, many shipboard systems functioned on steam or compressed air, but the trend is for

greater reliance on electrical power with each new ship-class. This trend is illustrated in Figure

6-1 where the electric generating capacity of U.S. Navy Destroyers has consistently increased

over the last century.

US Navy Destroyers
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Figure 6-1: Electric Generating Capacity of U.S. Navy Destroyers (1910-2010 projected) [61

Although concepts like the "all electric ship" and rail gun certainly add to the need for additional

electric power generation capacity, they are not the only reason for continued increases. Systems

that were originally steam driven have been replaced by the electrical equivalent during major

ship availabilities. This process is an effort to increase the life of the ship while simplifying the
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primary energy distribution system and improving overall energy conversion efficiency. One

prime example of this process is the back-fit of the U.S. Coast Guard's Famous Class Medium

Endurance Cutters from steam powered distilling plants to electric reverse osmosis units (RO)

for water making. Although the back-fit eliminated the need for shipboard steam generation, it

added a significantly more complex computer-driven water making system. The additional

complexity of the RO unit, although more reliable, requires substantially more sensors and

monitoring. In fact, the RC7000 RO unit has 18 sensors and monitors compared to the original

distilling plant's 6 gauges and one sensor [14].

Increasing shipboard sensor and monitoring requirements is a contradiction to efforts for

reducing ship's force personnel. Not only do the sensors require monitoring, they also have

maintenance and calibration needs. The sum of monitoring, maintaining, and calibrating these

sensors throughout the entire ship can account for a significant portion of crew man-hours. The

GAO report titled, "Navy Actions Needed to Optimize Ship Crew Size and Reduce Total

Ownership Costs", specifically details the need for human systems integration to effectively

reduce shipboard personnel requirements [25]. Systems that require more monitoring and

maintenance, unless properly integrated, could actually increase watchstanding needs and drain

available man-hours. Balancing improved system energy conversion and distribution

simplification with reduced manning clearly results in lower ship operating costs. NILM can aid

with human integration elements while simplifying system-monitoring and reducing

maintenance requirements.

6.2 Cost Considerations

6.2.1 Manning Costs

The U.S. Navy actual Military Personnel (MilPers) costs for FY06 was $37.8B accounting for

28.7% of the Department of the Navy's (DoN) $131.9B budget [26]. With the DoN's average

active strength, including sailors and marines, at 364,684 the direct cost per sailor is $103,700

[27]. This does not include training and infrastructure support costs, which are included in the

DoN's $40.6B Operational and Maintenance (O&M) costs. The U.S. Coast Guard (USCG) and

DoN utilize the same pay scale and similar rating (job) structure, therefore individual sailor costs
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are assumed to be similar. Looking at these numbers it becomes very clear that placing extra

quality personnel onboard ships cost prohibitive.

During normal operations, the sound and security watch visits the auxiliary space where the RO

unit is located to log gauge and sensor readings each hour. It takes approximately 2 minutes to

read and record the 18 RO data outputs. A supervisor does not usually review these logs until

the end of the four-hour watch or after a failure. In practice, the RO unit operates unmonitored

97% of the time, delaying the initiation of casualty control actions. In fact, given the nature of

the watch, most RO unit failures go undetected for several rounds, as the first indications are not

prevalent in the hourly readings. These circumstances were observed in four of the six failures

analyzed from field data collection. The two failures immediately detected were during

equipment starts and catastrophic in nature with pressurized water leaking. Even these failures

had early indications that were not detectable in hourly readings.

Although it does not seem like much, 2 minutes of watch per RO unit operating hour adds up to

an average of 72 hours per year. Removing unnecessary man-hours from the ship's routine

operation has been a major initiative over the last several budget cycles. It can be concluded that

initial efforts have eliminated the obviously man-hour wastes. Remaining are incremental steps

found in optimizing the smaller aspects of shipboard operation. By reducing the need and time

for routine evolutions, such as logging hourly readings, the watchstander's hours are available

for other necessary tasks. The summation of multiple man-hour saving increments ultimately

results in the reduction of shipboard personnel.

NILM has shown, in Chapters 3 and 5, the ability to replace nine of the RO unit's output gauges

and sensors on a real-time basis. These sensors include discharge pressure gauges and operating

hour tachometers. Eliminating the need to log these sensor outputs cuts the time to record the

readings in half. Another benefit is a reduction in sensor calibration time. Since these gauges

would no longer be logged, the 15 minutes per year needed to calibrate each one is removed

from the ship's maintenance man-hours.
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Measures that can reduce ship man-hour demands, if they can be reliably integrated into the total

ship system, are very attractive given today's budget tightening initiatives. The key, however, is

taking existing man-hours off the ship without adding additional training or support equipment

requirements. NILM, in its current form, has been operational onboard two U.S. Coast Guard

Cutters for more than four years. During this time the computers and data collection boards have

had no failures, in fact support needs have only included occasional software upgrades. This is

very remarkable considering these components are "off-the-shelf' and not hardened against the

high humidity, corrosive, and motion-intensive shipboard environment. Future versions of

NILM machines promise to be even more reliable as subassemblies mature and become smaller.

6.2.2 Maintenance Costs

NILM provides a ship's crew with three major maintenance tools: condition-based maintenance,

trend analysis, and immediate failure detection. Although these tools are already employed in

current shipboard maintenance practices, they are not utilized on a full-time basis. NILM is

capable of monitoring and providing real-time analysis that can be used by ship's force to initiate

immediate and future maintenance actions. The use of NILM could, in practice, eliminate

unnecessary preventative maintenance and reduce the occurrence of major equipment failures.

First, it measures electrical signals for unusual profiles and frequencies. This enables condition-

based maintenance (CBM) on many system components. For example, vibration analysis tests

are conducted on motors to measure bearing and shaft conditions. The results of these tests can

lead to motor overhaul or replacements. Unfortunately, a vibration analysis team, special

equipment, and pier-side access are required to perform the test, which counters timely problem

detection. For a critical crew support system, like the RO unit, an untimely underway motor

failure would severely affect the entire ship's mission capabilities. As shown in Section 0,

NILM is capable of detecting CBM indicators in real-time for failing motors and pumps by

assessing electrical signal demands. With a software modification, NILM could provide early

detection of imminent component failures allowing the crew lead-time to optimize equipment

repairs and order critical materials.
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Second, by continuously monitoring a system's electrical power demand, NILM has inherent

trend analysis capabilities. As shown in Chapter 5 and reference [6], mechanical systems often

have key parameter trends that precede a failure. Tracking and reporting these trends is an ideal

use for current NILM configuration.

Finally, immediate failure detection followed by controlling actions is a common method used to

mitigate equipment damage. Unfortunately, as shipboard systems becoming more complicated

and autonomous, their failures are less obvious and harder to detect, often increasing the scope

and cost of the repairs. These circumstances occurred twice, as discussed previously in Section

3.3, on the RO units within the last year. An internal membrane seal failure prevented the RO

unit from making freshwater for two days while the crew tried to reset the system. This failure

was captured immediately by NILM with a noticeable power demand drop to the HP pump.

Access to this information would have prompted the crew to secure the RO unit, preventing

contamination of the potable water storage tanks and reducing the overall time to effect repairs.

The other incident was the $28,000 HP positive displacement pump replacement caused by

debris ingestion into the piston cylinders. Over the course of the several weeks, the ceramic

pistons destroyed the pump cylinders walls as they deteriorated leading to a catastrophic failure

of the entire assembly. Again, NILM caught the early stages of the failure and, if properly

configured, could have alerted the crew of the problem. An immediate repair upon first

detection would have only cost $300 for a new set of ceramic pistons. Mitigating the magnitude

of equipment failure is a major precept of engineering casualty control procedures used by the

U.S. Navy and Coast Guard. A properly integrated NILM could shorten response times for

initiating these procedures, ultimately reducing the magnitude and cost of equipment failures.

As shipboard engineering plants become more dependent on remote sensors to monitor system

operation [I] the maintenance demand and reliability of the sensor networks becomes a burden.

A convenient facet of NILM is that it only requires two additional sensors to provide the crew

with a detailed array monitoring and diagnostics tools. Additionally, these sensors, a current

transducer and voltage tap, are solid-state devices with better reliability and configurability than

other, more complex, types of monitors.
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6.2.3 Operating Costs

During normal underway conditions, the RO unit produces enough potable water for a 24-hour

period in 12 hours of operation. Reducing the number of hours required to run the RO unit

would cut energy and the annual maintenance costs. Improving the RO unit operating efficiency

through condition-based maintenance is one approach. Another method is to "tune" the RO unit

using real-time operating parameters, such as salinity and temperature, to increase product

production rates and reduce component wear. At this point, NILM's ability to monitor these

types of performance parameters and optimize the production rate has not been explored.

Further study is needed for potential operating costs savings associated with this type of NILM

application.

6.3 Cost-Benefit Analysis

The best way to measure the benefit of new system is to consider the potential cost savings. As

this is a method of predicting future circumstances, several assumptions are needed for a

thorough analysis. For this analysis, the RO unit operational cost was compared for two

scenarios: cost of operating the equipment with and without the NILM. Since current NILM

applications would not change actual potable production rate, it is assumed that the power

demand for both scenarios is the same throughout the life of the RO unit. This means that costs

of energy to run the RO unit is not included in the analysis. The analysis focuses on the cost of

installing and maintaining the NILM as compared to savings outlined in the previous sections.

The following assumptions, not already discussed, are based on events encountered during the

last two years of NILM field data collection.

General assumptions for both scenarios:

* A USCG Cutter is underway for 180 days per year
* 30 years is the minimum "lifetime" of a Cutter
* The RO unit is used only underway
" The RO unit is online for 12 hours each day underway
* The average cost of a sailor in the U.S. Coast Guard is $103,700 per year
* The average sailor stands 8 hours of watch per day underway
* The average sailor does 6 hours of equipment maintenance and repair work per day

underway
* The average cost of a sailor per hour of work or watch underway is $20.29/hour
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0 3% is the average inflation rate for the next 30 years

RO unit costs without NILM assumptions:

* A major failure has a mean time to failure (MTTF) of 8,640 hours with a material cost of
$20,000 and 28 man-hours to repair

* A minor failure has a MTTF of 4,320 hours with a material cost of $8,000 and 12 man-
hours to repair

* The watch takes an average of 2 hours to diagnose and initiate controlling actions for a
failure

* The watchstanders requires 2 minutes of each hour while the RO unit is operating to log
the gauge and sensor readings

RO unit costs with NILM assumptions:

* NILM does not change the RO unit potable water production rate
0 A major failure has a MTTF of 8,640 hours with a material cost of $10,000 and 16 man-

hours to repair
* A minor failure has a MTTF of 4,320 hours with a material cost of $2,000 and 10 man-

hours to repair
0 The watch takes an average of 5 minutes to diagnose and initiate controlling actions for a

failure using NILM
0 The watchstanders requires 1 minute of each hour while the RO unit is operating to log

the minimum gauge and sensor readings
0 The commercial version of the RO unit NILM software will be a one-time cost of

$10,000 to develop and test
& The initial RO unit NILM installation will cost $800 and 12 man-hours per ship[7]
* RO unit NILM maintenance will cost $100 and 1 man-hour per year
* A NILM failure has a MTTF of 12,960 hours with a material cost of $500 and 2 man-

hours to repair

Applying the above assumptions, the maintenance and repair costs models with and without the

NILM were analyzed. Figure 6-2 represents the predicted cash flow diagrams for the two

scenarios and a third scenario without the $10,000 RO unit NILM development and testing cost.

Cost savings for the installation of NILM on additional ships based on economy of scale for

repair and maintenance were not included. These savings are dependent on supplier availability

and number of units required, making them very hard to predict. Looking at the diagram it

becomes very clear that mitigating failure magnitude is crucial to cost savings.
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30-year RO Unit Maintnenance & Repair Cash Flow Diagram
Bw/o NILM owl NILM (1st Ship-) EoW! NILM (Add'I hps)

$32

' $28 -- - - -

f-
o. .. .. . .............. .. ......... . ......... ...... ..... ......

LL

$ 20 ------ ----- --------

o- -.-- - ----- --------.-. ---- - - -

$16 -- _ -- - ...----

2 s12

4-

$4

.......... ............. - - .... ....... - .......... .. ......... ......

Ea LI
in LOW Ic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Year[starting FY07]

Figure 6-2: Predicted RO Unit Maintenance and Repair Cash Flow Diagram

Costs associated with mission degradation due to vital equipment failure were purposely not

examined. These costs include ripple effects on fleet-wide operations, as other ships need to

augment their schedules to fill mission gaps. Unfortunately, these costs are not understood until

after the event occurs and, even then, hard to quantify. Table 6-1 provides the net present values

of the three scenarios illustrated in Figure 6-2.

Table 6-1: RO Unit NILM Scenarios Net Present Values

Scenario Net Present Value [$FY07I

RO Unit without NILM $522,515

RO Unit with NILM (1" ship) $237,465

RO Unit with NILM (Add'1 Ships) $227,156

Although the savings realized by using NILM may seem small compared to the ship's billion-

dollar total life cycle cost, they only reflect the benefits to the RO unit. The cost savings could
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quickly multiply if NILM is simultaneously installed on other vital shipboard systems and able to

provide similar maintenance tools. Additionally, if the savings are applied to an entire ship class

they can easily become millions of dollars per year.

6.4 Conclusions

The cost of allowing the continued operation of failing equipment becomes very prohibitive over

the life of a ship. The NILM's real-time monitoring and power demand diagnostic capabilities

provide the operator significant advantages with equipment failure prevention and detection.

These advantages ultimately translate to major cost savings over the lifetime of the RO unit and

can enhance ship dispatch reliability. Although NILM technology is primarily used on an

experimental basis, its proven field deployment has shown that commercial versions are only a

matter of demand.

77



7 Future Work and Conclusions

7.1 Proposed Future Work

During the course of data collection and analysis, several areas presented themselves with

possible NILM applications. The following sections provide an outline of proposed future work

with respect to the RO unit.

7.1.1 Master Control Consol Monitoring

With the multitude of controller problems reported by the crew, monitoring the master control

consol (MCC) could certainly help isolate these problems and further develop the NILM as a

monitoring device for the RO unit. The current NILM installation only monitors the 450-volt

power to the three pump motors, since the MCC operates on 120-volt power a NILM channel

would have to be dedicated to record this data. By monitoring the MCC, the NILM should be

able to diagnose solenoid valve and sensor faults, ultimately aiding system diagnostics and

troubleshooting.

7.1.2 RO Unit Reactive Power Analysis

The data analysis conducted to this point has strictly focused on the real power component of the

pump motor demand. The reactive power was never evaluated for what type of information it

could provide the equipment user. Given the number of transients the RO unit encounters during

normal operations an examination of the reactive power may reveal another set of diagnostic

indicators.

7.1.3 HP Pump Start Overshoot Transient Analysis

As shown in Figure 3-2 the HP pump power demand has an overshoot transient similar to that

found in an under-damped system. Although this was observed and briefly mentioned, further

analysis was not conducted on the HP pump start transient and what types of diagnostic

indicators could be derived from its characteristics. By profiling the magnitude or spectral

content of the overshoot signature, perhaps, the HP pump plunger wear could be determined.
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7.1.4 NILM Real-Time Diagnostic Algorithm

NILM becomes most powerful when the equipment operators have immediate access to the

collected data and diagnostic tools. For this type of information to be readily available to the

watchstander a suite of algorithms must be developed that can analyze and diagnose equipment

power demands in real-time. Several equipment condition diagnostic indicators have been

discussed in this and other theses that would revolutionize current maintenance practices.

In conjunction with the diagnostic algorithm development an intuitive user interface that allows

the watchstander to access and interpret data with very little training is needed for the NILM to

be excepted as a true shipboard maintenance and monitoring tool. The challenge for the user

interface is to balance something that is easy to use, but capable of handling the wide range of

diagnostics derived from the NILM data.

7.2 Conclusion

The NILM has proven successful in capturing power demand transients and signatures with

enough detail to provide a wide array of diagnostic tools. These tools range from spectral

content analysis to real power demand changes. The previous chapters have demonstrated its

ability to monitor, identify, and diagnose conditions on a complex and highly integrated fluid

system. With its constant real-time monitoring capabilities the NILM is an ideal platform for

fault detection, condition based maintenance, and trending equipment performance without the

added cost and maintenance of extensive sensor networks. By monitoring the shipboard power

demand, the NILM is able to provide insight on the status of many systems, both fluid and

mechanical, throughout the ship without the cost and reliability issues associated with a complex

sensor network.
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Appendix B Spectral Content Analysis MATLAB Script

% fft_code.m

% r contains the data to be examined.

r=P; %load data
st=3.5e5; %starting point of analysis

y=detrend(r(st:st+1e3)); % Remove the mean, default range of data 1e3

%plot(y);

N = 2048; % Number of points in fft

f_sample = 120; % NILM sampling frequency

Y = fft(y' .*hanning(length(y))',N);

f=[0:1:N/2-1]*(fsample/N);

figure(1);
clf;
hold off;
semilogy(f,abs(Y(1:length(Y)/2)));
xlabel('Frequency: Hz');

ylabel('Magnitude');

figure(2);
clf;
hold off;
plot(f,abs(Y(1:length(Y)/2)));
xlabel('Frequency: Hz');
ylabel('Magnitude');
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Appendix C Laboratory Test Stand MATLAB® Scripts

Data Conversion

% brute convystarts('f:\matlab7l\work\Brute data')

function bruteconvstarts(path)
%path='c:\matab7\work\Brute\test';

strPl = sprintf('%s/*Pl.txt',path);
strQ1 = sprintf('%s/*Ql.txt',path);
strP2 = sprintf('%s/*P2.txt',path);

strQ2 = sprintf('%s/*Q2.txt',path);
strDPP = sprintf('%s/*DPP.txt',path);
strFL = sprintf('%s/*FL.txt',path);
strRM = sprintf('%s/*RM. txt',path);

strDPF = sprintf('%s/*DPF.txt',path);

filesP1 = dir(strPl);
filesQi = dir(strQl);
filesP2 = dir(strP2);
filesQ2 = dir(strQ2);
filesDPP = dir(strDPP);
filesFL = dir(strFL);
filesRM = dir(strRM);
filesDPF = dir(strDPF);

info = size(filesPl);

power = struct([]);
disp('working...');
path = regexprep(path, '\', '/');

for i=1:1:info(l)
i

%% Run Time Setup %%
str = sprintf('%s/-s',path,filesDPP(i).name);
data=load(str);
time=length(data)/8000; %time=number of seconds

countrawa=length(data);
countraw=length(data);

% Start Time
x=[]; j=1; %resets x and

Al = diff(data);
while j <= length(Al)

if Al(j)>40 %adjusts
countraw_a = j;
break

end

j=j+1;

j

upcrossing threshold
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end

% Cross Check
str = sprintf('%s/%s',path,filesDPF(i).name);
data=load(str);

x=[]; j=1; %resets x and j
Al = diff (data);
while j <= length(Al)

if Al(j)>40 %adjusts upcrossing threshold

countraw = j;
break

end

j=j+e;
end

if countrawa < countraw
countraw = countraw a;

end

rtime = length(data)/8000 - 1;

tstartraw = countraw/8000;

%% count prep data
str = sprintf('%s/%s',path,filesPl(i).name);
data=load(str);
time=length(data)/8000; %time=number of seconds

countprep_a=length(data);
countprep=length(data);

% Start Time

x=[]; j=1; %resets x and

Al = diff(data);
while j <= length(A1)

if Al(j)>40 %adjusts
countprepa = j;
break

end

j=j+e;
end

3

upcrossing threshold

% Cross Check
str = sprintf('%s/%s',path,filesDPF(i).name);
data=load(str);
x=[]; j=1; %resets x and j
Al = diff(data);
while j <= length(Al)

if Al(j)>40 %adjusts upcrossing threshold

countprep = j;
break

end

j=j+e;
end

if countprep_a < countprep
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countprep = countprepa;
end

tstartprep = countprep/120;

%% IMPORTING DATA using countprep and coutraw
%% Power 1 %%

str = sprintf('%s/%s',path,filesPl(i).name);
strl = sprintf('%s/%s',path,filesQ(i).name);
data=load(str);
datal=load(strl);
data=data(1:round(rtime*120));
datal=datal(1:round(rtime*120));
power(1).name = str;

P1 = vertcat(0, 0, abs(data(countprep:length(data),1)));
Qi = vertcat(0, 0, abs(datal(countprep:length(datal),1)));
power(1).data = Pl;
power(1).Qdata = Qi;

Ptime=(length(P1)-2)/120;
c=length(P1)-2;
t=1:c;
t=(t'./c)*Ptime;
t=vertcat(0, tstartprep, t+tstartprep);

power(1).time = t;

%% Power 2 %%

str = sprintf('%s/%s',path,filesP2(i).name);
str2 = sprintf('%s/%s',path,filesQ2(i).name);
data=load(str);
data2=load(str2);
data=data(1:round(rtime*120));
data2=data2(1:round(rtime*120));
power(2).name = str;

P2 = vertcat(0, 0, abs(data(countprep:length(data),1)));
Q2 = vertcat(0, 0, abs(data2(countprep:length(datal),1)));
power(2).data = P2;
power(2).Qdata = Q2;

Ptime=(length(P2)-2)/120;
c=length(P2)-2;
t=1:c;
t=(t' ./c)*Ptime;
t=vertcat(0, tstartprep, t+tstartprep);

power(2).time = t;

%% Pump Diff Pressure %%

str = sprintf('%s/%s',path,filesDPP(i).name);
data = load(str);
data=data(1:rtime*8000);
power(3).name = str;
power(3).data = data(:,1);
t=1:length(data);
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t=t'./8000;
power(3).time = t;

%% Flow Meter %%
str = sprintf('%s/%s',path,filesFL(i).name);
data = load(str);
data=data;
power(4).name = str;

Al = abs(diff(data));
top=[countraw; j=l;
while j <= rtime*8000

if Al(j)>100 %adjusts upcrossing threshold

top = [top,j];
j=j+10; %adjusts spacing after upcrossing

else

j=j+1;
end

end
kfactor = 29.46; %cycles/gal
gpm = (8000*60)./(kfactor.*diff(top)); %gal/min

gpm = horzcat(0, 0, gpm, 0);
power(4).data = gpm;
power(4).rawData = data./max(data);

t=top./8000;
t=vertcat(0, t', rtime);
power(4).time = t;

%% Pump Motor RPM %%

str = sprintf('%s/%s',path,filesRM(i).name);
data=load(str);
data=data;
power(5).name = str;

top=[]; j=l; %resets top and j
Al = (diff(data));
while j <= rtime*8000

if Al(j)>100 %adjusts upcrossing threshold

top = [top,j];

j=j+10; %adjusts spacing after upcrossing

else

j=j+l;
end

end
rpm = (8000*60)./diff(top); %rev/min

rpm = horzcat(0, 0, rpm, 0);
power(5).data = rpm;

t=top./8000;
t=vertcat(0, t', rtime);
power(5).time = t;

%% Filter Diff Pressure %%

str = sprintf('%s/%s',path,filesDPF(i).name);
data = load(str);
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data=data(l:rtime*8000);
power(6).name = str;
power(6).data = data(:,1);
t=l:length(data);
t=t'./8000;
power(6).time = t;

path = regexprep(path, ' '\');
str = regexprep(filesPl(i).name, 'Pl.txt', '.mat');

s = power;
save (str,'s

%

delete(filesPl(i).name);
delete(filesQi(i).name);
delete(filesP2(i).name);
delete(filesQ2 (i).name);
delete (filesDPP(i) .name);
delete(filesFL(i).name);
delete(filesRM(i).name);
delete(filesDPF(i) .name);

power = struct([]);
end

Data Plotting

% brute_plot.m Version: 1.0

% By: Gregory R. Mitchell Updated: 13 SEP 2006

% Use to plot Brute multi-channel NILM data from '.mat' file format.

% INPUTS %
% use 'path' to set directory, example: 'c:\matlab7l\work\ROLP\PQ'

% use 'file-name' to ID starting point, example: '20060501-05'

% OUTPUTS %
% 'brute' is the file that was used for the plots

% INPUT LINE EXAMPLE %
% [brute]=bruteplot('c:\matlab7i\work\brute data','1_2_0927');

% FOR TESTING %
%path='c:\matab7\work\RO';datetime=20060813-05;time=24;type=3;chan=4;

function [brute] = brute_plot(path,file_name)

% DATA FILE COLLECTION %

str = sprintf('%s/*.mat',path);
files = dir(str);
info = size(files);

% DATA FILE SEARCH %
for i=l:info(l)

z = regexp(files(i).name,file name);
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if z > 0,
n=i;
break

end
end

% DATA COLLECTION %

str = sprintf('%s/%s',path,files(n).name);
brute = load(str);

P1 = brute.s(1).data;
tPl = brute.s(1).time;
P2 = brute.s(2).data;
tP2 = brute.s(2).time;
DPP = brute.s(3).data;
tDPP = brute.s(3).time;
FL = brute.s(4).data;
tFL = brute.s(4).time;
RM = brute.s(5).data;
tRM = brute.s(5).time;
DPF = brute.s(6).data;
tDPF = brute.s(6).time;

% PLOTTING %
figure(2)
subplot(4,1,1);
plot(tPl, P1, tP2, P2)
title(sprintf('%2.0f-sec plot of Brute run: %s', max(tPl), files(n).name));

ylabel ('Power');
axis tight
grid on;

subplot (4, 1, 2);
plot(tDPP, DPP, tDPF, DPF)
ylabel('DP Gauges');
axis tight
grid on;

subplot(4,1,3);
plot(tFL, FL)
ylabel('Flowmeter [gpm]');
axis tight
grid on;

subplot(4,1,4);
plot(tRM, RM)
ylabel('Tachometer [rpm]');
xlabel('Time [secl');
axis tight
grid on;
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Appendix D Thesis Data CD Contents

The Thesis Data CD is available in The Laboratory for Electromagnetic and Electronic Systems

(LEES) or on the lab's data storage network (buc ke t .mit . e du).

Disk Title: Fluid System Diagnostics using NILM

Folders and Files:

Documents
ASNE Papers - NILM related papers written over the last year
Brute - Laboratory Test Stand component specification sheets and pictures
CT Specs - NILM current transducer specification sheets
Line Drawings - Seneca line drawings for the ASW, RO, and steering systems
NILM Theses - Previous NILM theses
Presentations - Thesis poster and power points of RO NILM progress
References - Various references used to analyze and model fluid systems
RO - RO component specification sheets, pictures, and spreadsheets used for analysis

MATLAB Files
Data

Brute - Data files from clogging, cavitation, and pump curve experiments
CBM - Condition based maintenance files used for the RO HP pump
RO - Snapshot files from RO NILMs

Figures - Figures generated from collected data used in thesis
Brute - Figures generated from Brute data used in thesis

Scripts
Brute - m-files used to analyze Brute data
RO - m-files used to analyze RO data
CBMfft.m - code used to conduct condition based maintenance analysis
fftcode.m - code used to plot real power spectral content
P_convert.m - code used to convert prep data from NILMs to kilowatts
prep to current.m -calculates the conversion factor used in Pconvert.m

Pump-Filter Model - m-files used for simulating the pump-filter start transient

Thesis
Mitchell Thesis.docx - Word 2007 thesis document
Mitchell Thesis.pdf - PDF of final thesis version
Thesis Figures.pptx - Power Point 2007 figure slides
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