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Abstract

Creating a physiologically relevant in vitro liver model requires reproducing the cellular
heterogeneity of in vivo liver in a functional state. However differentiated sinusoidal
endothelial cells (SECs), marked by SE-1 expression are difficult to maintain in culture
while stellate cells easily activate and over-proliferate. We hypothesized that recreating a
liver tissue system that captured in vivo like paracrine influences would foster survival of
these cells, and predicted that stimuli resulting from flow and oxygen gradients close to
physiological conditions would preserve the delicate balance between the cell types.
Spheroids containing hepatoctyes with incorporated non-parenchymal cells (NPCs) were
seeded into capillary bed sized channels in polycarbonate scaffolds, housed in a three-
dimensional perfused system, and maintained for two weeks. Micro-flow rates of
different media through the formed tissue units in scaffolds were controlled using
pneumatic pumps and microfluidics. Staining and confocal imaging of endpoint tissue
showed that lower flow rates closer to physiological regimes allowed the survival of SE-
1+ SECs, regardless of exogenously added growth factors in the medium. Higher flow
rates, exogenous growth factors, and scaffold contact were associated with activation of
stellate cells (alpha-smooth muscle actin staining). Since oxygen measurements in the
system coupled low flow rates with hypoxic tissue outlet concentrations, we parsed out
these variables by repeating flow experiments in low oxygen environments. Retention of
SE-i staining cells even in higher flow rates demonstrated that hypoxic conditions in the
tissue could play a role in aiding their survival by overcoming negative effects brought
about by high flow. The relationship of stellate cells with flow rate was unaffected by
oxygen concentrations. To explore if the negative effects of high flow on SE-i expression
were mediated by transforming growth factor-beta (TGF-0), we added a TGF-j3 inhibitor
SB-431542 in our cultures, and found that it greatly enhanced the presence of SE-1
staining SECs at high flow rates. In conclusion we successfully created a three-
dimensional flow controlled hepatic culture system that allows balanced survival of
hepatocytes and non-parenchymal cells, making it useful as a potential model for studies
such as cancer metastasis that require interactions between tumor cells and heterotypic
host tissue.

Key Words: Liver, In vitro, co-culture, sinusoidal, endothelial, stellate, oxygen, flow,
shear
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Chapter 1

In vitro Liver Culture:
Challenges And Approaches



1.1. Normal Liver Microenvironment:

1.1.1. Functional versatility matched by structural complexity

The liver is the one of the most important and versatile metabolic organs in the body

responsible for a repertoire of functions ranging from metabolism (of all classes of foods

-lipids, proteins and carbohydrates- and drugs and xenobiotics) to synthesis of a host of

endogeneous substances (various proteins, hormones and coagulation factors), as well as

detoxification and breakdown of endogenous nitrogeneous wastes into urea (1). The liver

is also the major site of storage of glucose (as glycogen), vitamin B12, iron, copper and

the main site of fetal red blood cell production. The reticuloendothelial system of the

liver acts as an immunological filter for antigens carried to it via the portal system. The

complexity of function of the liver goes hand in hand with unique structural features that

make it very different from all other organs. The liver is characterized by heterogeneous

cellular units that are perfused by sinusoidal networks to create a balanced

haemodynamic environment (Figure 1). The 3-dimensional architecture is described as

"isotropic parenchyma" (2), and no matter at whatever angle it is sectioned, it has the

same histologic appearance of a central vein surrounded by about 4-6 portal areas (each

consisting of a triad of structures - branches of a hepatic artery, portal vein and a bile

duct). Between the central veins and the portal triads lie the primary liver cells, the

hepatocytes, arranged in one cell thick plates that branch and anastomose in a continuous

labrynth with surrounding hepatic plates. The resulting intervening network of spaces are

lined by sinusoidal endothelial cells and are bathed in blood originating from the

branches of the hepatic artery and portal vein ultimately draining into the central vein.

Hepatocytes secrete bile into an anastomosing network of bile canaliculi, which then



drain peripherally into ductules at the margins of the portal triads, ultimately emptying

into the interlobular bile ducts. Macrophages (Kuppfer cells) and circulating

lymphocytes reside in the sinusoids whereas fat and retinoid storing stellate cells are

present in the narrow space of Disse between the hepatocytes and the endothelial cells.

Hepatic Plate

Sinusoid

Central Vein

Portal
Triad

Bile Canaliculi

Figure 1. Anatomy of a Hepatic Lobule [Figure adapted from Volwiler et al 2006 (3) ]
Hepatocyte plates, and intervening sinusoids are arranged radially around a central hepatic venule
with surrounding portal triads, (each containing a portal venule, a hepatic arteriole, and a
intralobular bile duct). Bile flows outward through bile canaliculi, draining into the bile ducts
while blood flows from the hepatic artery and portal vein inward through sinusoids draining into
the central vein.

Making the liver microenvironment different from other tissues is not just the numerous

cell types present, and their defined structural and functional interrelationships, but also

the unique circulatory pattern resulting from the dual blood supply it receives from the

portal vein and the hepatic artery. Unlike other organs that are uniformly perfused by

highly oxygenated arterial blood at a high pressure, the liver receives both venous blood

at low pressure through the portal vein as well as arterial blood at high pressure via the

hepatic artery. The complexity of both the flow and the cellular architecture of the liver

make it a challenging system to recapitulate in vitro.



1.1.2. Cellular component

Hepatocytes are the predominant cell type in the liver and form the liver parenchyma.

They comprise 60% of the total cells and 80% of the volume of liver(4). In their normal

healthy differentiated state, they perform a diverse array of functions ranging from

synthesis, catabolism, intermediary metabolism, and detoxification of drugs and

xenobiotics in the body. However, the harmonized activity of these cells depends greatly

on their cellular and non-cellular environment, and can be altered vastly in diseased states

as well as in vitro culture.

Hepatocyte Pit cell Kupffer cell

Fig 2. Histological architecture of a section of the hepatic lobule. Inset shows the sinusoids
between the hepatocyte plates lined by endothelial cells, the space of Disse, and the proximal
location of other non-parenchymal cell types to hepatocytes [Figures adapted from (left) Bloom
& Fawcett 1968 and (right) Wake et al. 1997 (5,6) ] .

The largest fraction of the non-parenchymal cells (NPCs) are the sinusoidal endothelial

cells that comprise about 19-21% of all liver cells (7). Lining the sinusoids, they separate

the hepatocytes from blood, and filter fluids, solutes, and particles between the blood and



space of Disse. They are differentiated from regular capillary endothelial cells by the

presence of numerous characteristic tiny pores called fenestrations, a sparse and

rudimentary basement membrane underneath the cells and the functional feature of

endocytosis. Fenestrations, with an average diameter of 160nm, are clustered in groups of

10 to 50, commonly referred to as sieve plates (8). The number and size of fenestrations

vary across species and in different regions of the liver, and can change in response to a

variety of hormones, drugs, toxins, diseases, and underlying extracellular matrix (8).

Hepatic stellate cells (HSC), previously called Ito cells, comprising about 5% of liver

cells by number are stromal cells, and a major player in hepatic regeneration as well as

fibrogenesis and cirrhosis (9-12). Present in the space of Disse, they are responsible for

producing extracellular matrix, controling microvascular tone, storing and metabolizing

vitamin A and lipid. When activated as in disease states, they transform into

myofibroblasts, express smooth muscle actin filaments and produce excess of

extracellular matrix giving rise to the characteristic changes seen in liver fibrosis.

The Kupffer's cells represent 15% of the liver cells (30% of sinusoidal cells) and are

derived from circulating monocytes (7,13,14). They are the body's largest population of

tissue macrophages and form an important part of the reticuloendothelial system. Their

major functions include phagocytosis of foreign particles, removal of endotoxins and

other noxious substances, and modulation of the immune response through the release of

cytokines and mediators of inflammation. Additionally there are a few more cell types

such as Pit cells, lymphocytes etc. present in small numbers that play a role in the

homeostasis of the liver.



1.1.3. Extracellular matrix

The extracellular matrix (ECM) refers to the network of various macromolecules that

comprise the scaffolding of the liver. ECM is important in the regulation and modulation

of hepatic function in both normal and diseased state (15,16). Being at the interface

between the blood flow and the parenchyma, any changes in ECM, whether quantitative,

topographic, or qualitative, have a direct effect on liver functions. ECM which forms 5 to

10% of the liver by weight, is mostly collagen (mainly types I, III, and V around the

portal tract and central vein and IV along the sinusoid wall). The ECM has numerous

other components including matrix metalloproteinases; the glycoproteins laminin,

fibronectin, vitronectin, undulin, nidogen (entactin); and proteoglycans such heparan

sulfate (15,17,18). Though the major function of ECM is mechanical support and

resistance of the liver, by virtue of its ability to trap and store secreted soluble factors, it

also has a role in major biological functions such as cell proliferation, migration,

differentiation, and gene expression.

1.2. Local environment determines cellular function and survival:

Understanding the complex effect that local environmental parameters, (surrounding

cells, matrix and local microcirculation) have on the survival and functionality of hepatic

cells is extremely relevant to any attempt at establishing a fully functional culture of liver

cells, whether for experimental studies or with the aim of creating a bio-artificial liver. In

an in vivo milieu, owing to the close spatial configuration of cells and matrix, the

phenotype and survival of each of the cell types in the liver is influenced by the

environment, either by paracrine effects of secreted soluble factors, or by direct cell



matrix and cell-cell interactions, and mechanico-chemical stimuli brought about by local

perfusion flow (Fig 3).

a ,Saidadal Ec.a... rKuoffu

Fig 3. Schematic of microenvironment
of liver showing spatial arrangement of
cell types allowing both chemical as
well as mechanical cues from each other
and extra-cellular matrix facilitated by
the flow through of blood. [Figure from
Griffith and Schwartz, 2006 (19)].

1.2.1. Paracrine Interdependence:

The paracrine effects of the different NPCs and hepatocytes in supporting each others

growth, survival and function has been the focus of research for a while. However, one

has to bear in mind that it is very difficult and almost impossible to view the effect of one

cell type, cytokine or parameter in isolation, since the interaction is always more complex

and multi-factorial. Furthermore, most studies examining these effects, are done in an in

vitro setting which in itself can impart very different properties to all the kinds of cells

being studied making their interaction harder to correlate with an in vivo setting.

Reductive isolated cell experiments can perturb the intimate relationships on which

paracrine influences depend and purity of the isolated cell population is always suspect,

resulting in activation of the cells before they can be studied. Lastly, in most cases the

key mediators of growth are often produced by more than one cell population.

Heparocyt

Mlood

meobr



Both in vitro experiments as well as liver regeneration studies show that NPCs influence

hepatocyte growth and survival either positively and/or negatively through the effect one

or multiple secreted cytokines (Fig 4.).

,+÷)

Fig 4. Hepatocyte Growth Factor (HGF) secreted by stellate and sinusoidal endothelial cells is the
major mitogen for hepatocyte growth and proliferation (others being interleukin-6 and tumor
necrosis factor -- a ) while transforming growth factor beta (TGF-p) secreted by all the cell types
except the biliary cells is inhibitory. [From Malik et al 2002 (13) ]

Kupffer cells release both pro-proliferative (e.g. TNF-a, IL-6) and anti-proliferative (IL-

1, TGF-P) cytokines (20-23) but there is rapid and phasic change in the production of



these after a stimulus such as partial hepatectomy. Hepatocyte Growth Factor (HGF), a

very strong mitogen for hepatocytes and is synthesized by quiescent HSCs (24). HGF is

stored within the extracellular matrix and early after a partial hepatectomy, there is

release of pre-formed HGF from the matrix, and cleavage of the active form from pre-

pro-HGF, mediated by plasminogen activator. Studies using co-cultures of hepatocytes

with sinusoidal endothelial cells (25,26) demonstrated that these cell types support long

term hepatocyte functional activity. Studies using hepatocyte co-cultures with endothelial

cell lines (27) show that hepatocytes can migrate towards endothelial vascular structures

in response to HGF secreted by endothelial cells and form sinusoid like structures. The

stability of these structures is further augmented and preserved by addition of supportive

fibroblasts. The inhibitory cytokine, transforming growth factor beta (TGF- [3) can also

be secreted from sinusoidal endothelial, stellate and Kupffer cells and is responsible for

the arrest of hepatic proliferation after hepatectomy.

The survival of sinusoidal endothelial cells which are notoriously hard to cultivate in

vitro has been prolonged by the use of hepatocyte co-cultures (28,29). The beneficial

effects of hepatocytes on their growth are attributed to the secretion of factors such as

vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF),

which are instrumental for their functioning. VEGF and angiopoietin produced by

hepatocytes are also believed to play a role in endothelial cell proliferation post-

hepatectomy (30-32) Along with survival, in the case of a differentiated functional cell

like the sinusoidal endothelium, it is important to preserve the phenotype. Studies

implanting fetal liver fragments into quail chorioallantoid membrane resulted in the

acquisition of a sinusoidal phenotype by the chorioallantoid microvessels (33)



demonstrating the effect of hepatocytes in maintenance of the specific sinusoidal

endothelial phenotype. Another recent study demonstrated that the paracrine effect of

hepatocytes and stellate cells in preserving sinusoidal endothelial cell phenotype was

mediated by VEGF (34). Transforming growth factor beta TGF-3 (secreted by all the cell

types) is known to change the phenotype and have a 'capillarizing' effect by stimulating

the synthesis of basement membrane proteins laminin, collagen type IV and entactin in

rat liver sinusoidal endothelial cells (35) .

In stellate cells, while the role of paracrine influence of surrounding cells like

hepatocytes, sinusoidal endothelial cells and especially Kupffer cells in supporting

survival is important, of greater consequence is their role in stellate cell activation.

Conversion of quiescent stellate cells to activated proliferative, fibrogenic, and contractile

myofibroblasts is seen in diseased and inflammatory states, and results in a self

perpetuating flare up of cytokines and subsequent fibrosis. Stellate cell activation is a

programmed response consisting of two stages. An early initiation or preinflammatory

stage mainly :results from paracrine stimulation caused by effects of liver injury on the

homeostasis of neighboring cells and from changes in ECM composition. The subsequent

perpetuation stage consists of cellular events amplifying the activated phenotype and

results from autocrine and paracrine stimulation, as well as from accelerated ECM

remodeling. While insulin-like growth factor I (IGF-I) and VEGF are mainly secreted

from hepatocytes, fibroblast growth factor (FGF), TGF-P 1, platelet-derived growth factor

(PDGF) and endothelin-1, secreted from endothelial cells can stimulate transcription

factors such as Spl, c-myb, nuclear factor kB (NF-kB), c-jun/AP1, STAT-1, and SMAD

proteins that regulate gene expression (36). Kupffer cells and sinusoidal endothelial cells



secrete IL-6 which can induce proliferation, but IL-6 stimulation can also occur via an

autocrine mechanism (13). The paracrine effects of microenvironment on activation of

stellate cells are summarized in Table 1.

Cytokine Cellular Source Main Effect

TGF-B Kupffer cells, Endothelial cells, Extracellular matrix
Lymphocytes, Platelets production, contractility

PDGF Kupffer cells, Endothelial cells Proliferation

VEGF Endothelial cells, Hepatocytes Proliferation

IL-6 Kupffer cells, Endothelial cells Matrix production

IGF -1 Endothelial cells, Hepatocytes Proliferation

bFGF Kupffer cells, Endothelial cells Proliferation

Endothelins Kupffer cells, Endothelial cells Contractility

Table 1. Some of the main cytokines involved in stellate cell activation.

Some of these soluble growth factors and cytoines like transforming growth factor-beta

(TGF-13), vascular-endothelial-cell growth factor (VEGF) and hepatocyte growth factor

(HGF) are bound by the ECM, greatly slowing their diffusion and modulating their local

concentrations and gradients (37). Alternatively binding with ECM can create locally

higher concentrations of autocrine growth factors, allowing smaller amounts of the factor

to signal more effectively (38).



1.2.2. Direct Cell- Matrix And Cell- Cell Signaling Effects.

Apart from the effects mediated by soluble factors, the architecture of the liver creates

close physical proximity between the different cells and matrix, and gives rise to direct

interactions between them. Some of these interactions are believed to affect their survival

and phenotype through integrin and cadherin mediated signaling.

In isolated hepatocytes integrin activation by extracellular matrix is known to contribute

to inhibition of apoptosis (39,40). These studies showed that embedding of hepatocytes

within their normal liver ECM surroundings maintains their survival. When detached

from their natural surrounding, hepatocytes enter into apoptosis, unless treated with anti-

1l-integrin antibodies or synthetic RGD (arginine-glycine-aspartate)- peptides. Similar

studies looking at sinusoidal endothelial cell survival have also shown that adhesion

molecules linking endothelial cells to each other or to perisinusoidal matrix plate play an

important role in cell viability (41,42). Others have shown that a detached endothelial

cell, with its integrin receptors free, irreversibly enters an apoptotic process, while an

endothelial cell in suspension, but with its integrin receptors blocked by RGD peptides

may survive (43). Normal sinusoidal endothelial cells are known to express a distinctive

set of cell-adhesion molecules (different from other endothelial cells), adapted to their

structural and microenvironmental characteristics. When the extracellular matrix changes

during liver cirrhosis leading to sinusoidal capillarization (deposition of ECM and

formation of a continuous basement membrane), this repertory is dramatically modified,

possibly as a consequence of the concomitant matrix changes (44). Additionally it has

been seen that in hepatic fibrosis, the number of fenestrations on sinusoidal endothelial

cells (reflective of their effective functionality) decreases corresponding to an increase in



interstitial collagen in the liver (8). This change correlates with deposition of extracellular

matrix in the space of Disse. In vitro experiments (45) have validated this finding by

demonstrating that maintenance of endothelial fenestrations requires a complex matrix

made of physiologically derived basement membrane (collagen types IV and V and

laminin) as opposed to interstitial collagen matrix (types I and III).

Adhesion to extracellular matrix is known to induce tyrosine phosphorylation of focal

adhesion kinase, and promote actin stress fiber formation and focal adhesion assembly in

stellate cells leading to an activated state(46). These events have been shown to be

inhibited by soluble RGD peptides. Stellate cells are also notorious for the alteration of

ECM subsequent to their activation (47) giving rise to the fibrotic changes seen in

cirrhosis. However it is also suggested that an initiating event in their activation can arise

as a result of modification of the surrounding ECM such as de novo synthesis of a spliced

variant of cellular fibronectin (48).

The idea of direct cell-cell interactions promoting survival was suggested and

subsequently demonstrated by reports that hepatocytes maintain their differentiated

phenotypes by forming spheroids or multi-layer cell aggregates, which require cell-cell

interactions mediatied by E-cadherin, an intercellular adhesion molecule known to

regulate hepatocyte cell functions (41,49). While similar spheroid studies have not been

carried out with sinusoidal endothelial cells, there are reports that endothelial cells that

apoptose in suspension even in the presence of survival factors such as VEGF and FGF-

2, survive when allowed to establish cell-cell contacts in three-dimensional spheroid

models (50).



1.2.3. Effects of local circulation on cell phenotype

A vital component of the hepatic microenvironment is the circulation. Blood flow not

only provides nutrients and oxygen to the cells, but is also responsible for transfer of

other soluble substances like hormones and cytokines and removal of toxic metabolites

produced by the hepatocytes. Flow through the tissue additionally provides stimuli in the

form of shear stresses that can potentially affect cellular signaling and phenotype.

Unidirectional sinusoidal blood flow along the metabolic hepatocytes from the portal

triad to the central vein causes a gradient in all the soluble factors as they get utilized by

the cells, dividing the lobule different zones, a phenomenon called zonation (Fig 5).

Fig 5. Zonation of the hepatic
lobule arising due to oxygen
gradient as blood flows from
portal triad to central vein.
[Adapted from Bloom and
Fawcett 1968 (5)]

Zone 1 Zone 3
(Periportal) Zone 2 (Pericentral)

The periportal region receiving blood directly from the hepatic artery is oxygen rich

wheras the pericentral zone is relatively hypoxic. The gradients in oxygen, nutrients,

hormones and soluble factors has effects on the phenotype and metabolic functions of

hepatocytes (51-53). Certain metabolic processes such as fatty acid oxidation,

gluconeogenesis, cholesterol synthesis and ureagenesis and bile acid production are much

higher in the periportal zone whereas glycolysis and lipogenesis are more common in the



perivenous zone. Of the drug metabolism processes, glutathione peroxidation is more

common in the periportal region while glutathione conjugation and and glucuronidation

are common in the perivenous zone.

The effects of zonation and the resulting oxygen gradient are not only limited to

hepatocyte function. Sinusoidal endothelial cells also show differences in phenotype

across the zones with larger number of fenestrations and greater porosity noted in the

hypoxic pericentral zone (54). Studies in the porcine liver (55) demonstrate a

heterogeneity in the morphology of stellate cells between the pericentral zones (more

dendritic with longer processes) and periportal regions (more desmin staining and

Vitamin A storage). In the case of Kupffer cells, a higher phagocytic and lysozomal

enzyme activity with increased oxygen radical production is noted in the periportal zone,

probably related to its status as the port of entry for antigens presenting in the liver (56).

Apart from zonation, the hepatic circulation is also different from other tissues due to the

unique circulation pattern resulting from the dual inflow from the portal vein and hepatic

artery into the sinusoids. The physiological flow of blood through the tissue exposes it to

shear stresses that are known to modulate the activity of some of the cell types.

Experimental studies where sinusoidal endothelial cells were subjected to physiological

shear stresses demonstrated an upregulation of various receptors such as VEGFR-1 and

VEGFR-2 (57). Stellate cells have long since been known to regulate sinusoidal

microcirculation pressure but a recent study shows that shear stress by the sinusoidal

stretching effect of increased blood flow can induce increased TGF-3 formation in these

cells (58).



1.3. Challenges of in vitro liver culture

Growing any heterotypic cellular system in vitro is challenging on account of the

inability to accurately recreate the multiple complex interactive components of in vitro

tissue dynamics outside the physiological system. This is especially true in the case of

attempts to create and maintain functional hepatic tissue in vitro, due to altered responses

of each of the various cell types in an environment lacking all the components and stimuli

provided by in vivo tissue. While a lot of literature and research efforts are directed at

retaining the differentiated status of hepatocytes in cultures, what is equally important in

any 'complete' in vitro hepatic model is balancing the survival, functioning and

phenotypes of the non-parenchymal cell types.

1.3.1. Preserving sinusoidal endothelial survival and phenotype

Sinusoidal endothelial cells are particularly difficult to cultivate in cultures. Not only are

they relatively cumbersome to isolate with high purity, they also have a low plating

efficiency (28). After plating, these cells rapidly develop vacuoles (Fig 6A) starting as

early as 8 hours of culture, leading to the formation of foamy cells after 3 days of

culture(59). Sinusoidal endothelial cells have a phenotype that is different from other

endothelial cells due to the presence of fenestrations, loose gap junctions and a sparse

basement membrane. The functionality of these cells (endocytosis and filtration) goes

hand in hand with the retention of their differentiated phenotype. Apart from the

difficulty in having these cells survive in culture, it is even harder to retain their

phenotype. Over a period of time they rapidly lose their phenotypic characteristics like

fenestrations (Fig 6B) and are known to undergo apoptosis in the absence of vascular

endothelial growth factor (VEGF) in the growth medium (60).
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Fig 6. Rapid de-differentiation of rat sinusoidal endothelial cells in vitro
(A). Rat liver sinusoidal endothelial cells in vitro. after 8 h culture incubated for 1 hr with FITC-
labeled collagen demonstrating perinuclear vacuolization [Smedsrod et al. 1985 (59)]
(B) Influence of the culture time on the number of fenestrae per micrometer squared. [DeZanger
et al., 1997 (61)]

The markers used to stain functional sinusoidal endothelium are also different from

regular vascular endothelium since these cells do not express the standard markers like

platelet endothelial cell adhesion molecule (PECAM 1 or CD 31), CD34 and E-selectin in

vivo (44). In fact, surface expression of CD31 on sinusoidal endothelial cells is

considered to be a marker reflecting a de-differentiated state (34). Appearance of CD31

staining on cell surface is associated with the disappearance of another important

functional characteristic - fenestrations. Methods that employ anti-CD31 antibodies as a

means of purifying endothelial cell fractions during isolation end up with a cell

population characterized by absence of fenestrations (62). Very few functional markers

are known to be specific to sinusoidal endothelium, and in the rat, SE-1 is one such

marker (63). In vitro studies looking at survival and functionality of rat sinusoidal

endothelial cells in in vitro look for either presence of fenestrations or SE-1 expression.

It/



The changes that occur in SECS in in vitro culture over time to produce a vascular

phenotype with loss of fenestration and formation of an organized basement membrane

are referred to as capillarization. Approaches to improve the survival of SEC while

retaining their differentiated state have included addition of glycine, dexmethasone,

heparin, and insulin to the growth medium (64-66). Some have used serum-containing

medium supplemented with either tumor cell-conditioned media (67), phorbol ester (60)

or vascular endothelial growth factor (VEGF) (68). While VEGF seems to be a frequently

used factor required for extending the survival and proliferation in vitro (66,69), most

studies also use serum while cultivating sinusoidal endothelial cells. Commercially

available standard endothelial growth medium also contains added growth factors such as

fibroblast growth factor, insulin like growth factor etc.

Interestingly, in a study where liver extracts were transplanted in chorioallantoid

membrane (which contains capillary type microvasculature), proximity to liver tissue was

found to induce the SEC phenotype in the proliferating vessels indicating the role of

hepatocytes in maintenance of the characteristic phenotypic features (33). In another in

vitro study where co-cultures of SECs with other liver cells were set up, a more stable

endothelial phenotype and function was noted (29). In instances where endothelial

survival has been attempted in serum-free medium (28), hepatocyte-conditioned medium

was used to provide the necessary growth factors, and noted to improve the survival in

culture till 5-6 days. This was attributed to a paracrine relationship between hepatocytes

and sinusoidal endothelial cells, with hepatocyte-made VEGF and hepatocyte growth

factor (HGF) :from sinusoidal endothelial cells being reciprocally beneficial for both the



cell types. However survival of endothelial cells occurred with concomitant overgrowth

of stellate cells (probably induced by some of the same factors).

A recent paper (70) using pig liver sinusoidal endothelial cells with various different

media and growth factors added, reports a much longer survival time (about 30 days).

However, even in their cultures, there is a loss of fenestrations by the 4 h day and their

chosen indicator of functionality, endocytic activity of the cells sharply declined after the

8 h day. So, regardless of the medium composition and culture system, existing in vitro

methods for survival of sinusoidal endothelial cells fail to retain functionally active cells

over a long period, and there is a need to develop systems that would support their

survival.

1.3.2. Controlling overproliferation and activation of stellate cells

Unlike sinusoidal endothelial cells, stellate cells are fairly resistant and tend to dominate

older in vitro cultures. Apart from proliferating in vitro, they also undergo the process of

activation, similar to the phenomenon seen in vivo in diseased and cirrhotic conditions. In

co-cultures containing hepatocytes, endothelial cells or Kupffer cells, not only do the

cytokines listed earlier in table 1 easily activate stellate cells, substrate and medium are

also known to play a major role in the process. Properties of the substrate such as rigidity

and presence of extracellular matrix can affect the phenotype of stellate cells. Various

studies show that stellate cells maintained on uncoated plastic, and plastic coated with

collagen proliferate rapidly and produce abundant amounts of type I collagen (reflective

of an activated state) as compared to when they are grown on a thick layer of matrigel

(71-73).



Fig 7. (A) Branched morphology of stellate cells that appear quiescent on a soft thick layer of

matrigel. (B) Proliferation and activation of stellate cells on rigid substrates along with
fibroblastic transformation [Senoo 1996 (74)]

Rigidity of the substrate is believed to exert its activating effect in part by shear caused

by the mechanical stretching of the cells and stimulation of TGF-3 (58). Another

important component in in vitro cultures that can activate stellate cells is the composition

of the medium. Most growth media used to cultivate hepatic cells contain various

individually added growth factors such as EGF, FGF, IGF, VEGF etc, each of which can

initiate the process of activation. Alternatively the presence of serum in the medium can

serve to activate the cells through any of the numerous uncharacterized growth factors it

may contain.

All the components of an in vitro heterotypic co-culture system that can potentially cause

the proliferation and activation of stellate cells have been summarized in Fig 8.
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Fig 8. Cellular and culture conditions cause stellate cells to activate and proliferate in vitro
[Adapted from Friedman 2000 (75)]

1.3.3. Hepatocyte dedifferentiation

A long standing problem in in vitro liver studies has been maintaining the functionally

differentiated state of the hepatocyte. When isolated and placed in culture, there is a rapid

loss of drug-metabolizing enzymes during the first few days along with loss of other

phenotypic features - a process known as de-differentiation. Research in the past has

focused on rectifying, or at least attempting to minimize this phenomenon. Approaches

have ranged from adjusting cell plating density, to altering medium composition to

incorporate a range of growth factors and anti-oxidants to changing the substrate rigidity

from plastic to surfaces coated with collagen monolayers or softer thicker gels like

collagen or matrigel (reviewed in (76)). It had been long noted that configurations that
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encourage a three-dimensional arrangement of hepatocytes allowing cell-cell contact

(like sandwiching between two layers of collagen gel and culturing on matrigel) better

preserve phenotype. Subsequent studies focused on setting up hepatocytes in three

dimensional cultures with or without other cell types (which progressed from initial

spheroids to seeding tissue into three dimensional scaffolds) and have been found to be

effective in retaining a differentiated status. (77-80).

1.4. Evolving Trends in in vitro liver culture

Over the last couple of decades a lot of effort in tissue engineering has been devoted to

recreating functional hepatic tissue in vitro. Running in parallel are two aims of this field

of research

1. Either achieving successful clinical therapies for replacing human liver

2. Or engineering liver-like tissue that can be used to study hepatic pathophysiology

in vitro and even test new drugs.

While both tracks have different goals, the underlying principles and ground rules

guiding them are the same. Both face the challenges of retaining functionality coupled

with viability of each of the cell types, as well as balancing their numbers in order to

generate a tissue that behaves as close to it should in a physiological setting. Cell-based

in vitro models not only need to be organotypic (i.e. recapitulate both the 3-D

organization and multicellular complexity of an organ) in order to be accurate, predictive

and physiologically relevant, but at the same time be designed to allow systematic

experimental intervention. As knowledge in the broader field of tissue engineering grows,



the trends in each of these areas changes while incorporating findings from across the

board that go towards creating a more balanced functional system.

1.4.1. From monocultures to co-cultures

Organs are rarely monotypic and usually comprise numerous cell types, matrices and

other environmental factors with interwoven autocrine and paracrine interactions. In

order to preserve the complex function arising out of these relationships and to study

them at a molecular and cellular level, reproduction of a total organ environment has to

be attempted in culture models. Tissue engineers across various organ systems are

displaying an interest in the broader role of the stroma in regulating normal epithelial cell

function (81,82).

In the case of liver, some of the earlier studies used purified hepatocyte populations for

their in vitro models. The biggest problem that these faced was poor long term survival

and extremely rapid dedifferentiation of the cells in culture with loss of metabolic

functionality. An abundance of literature (table 2) over the last few decades has shown

the beneficial effects of each of the non-parenchymal cell types in not only extending the

survival of hepatocytes, but also maintaining its differentiated state. This interaction has

been shown to be reciprocal in enhancing the survival and retention of phenotype of the

non-parenchymal cells as well.



Co-culture with Effect References
hepatocyte

Stellate cells Growth, Differentiation, Prolonged survival (83,84)

Endothelial Cells Differentiated function (25,26)

Kupffer Cells Inhibition, Cytotoxicity (85,86)

Biliary Cell Differentiated function (87,88)

Entire NPC fraction Growth, differentiated function (89,90)

Table 2. Effects of co-culture on hepatocyte function

1.4.2. From 2-D to 3-D

Across all kinds of tissue research, it is believed that a physiologically relevant model

should recognize that organs and tissues function in a 3-D environment (91-95). The

spatial constraints imposed by a 3-D environment on cells determines how they perceive

and interpret biochemical cues from the surrounding microenvironment (96-100).

Additionally it provides another dimension for external mechanical inputs and for cell

adhesion, dramatically affecting integrin ligation, cell contraction and associated

intracellular signaling (101,102). In a 3-D environment, the surrounding extracellular

matrix both not only controls solute diffusion, but also binds many effector proteins, such

as growth factors and enzymes, thereby establishing tissue-scale solute concentration

gradients, as well as local pericellular gradients. In the liver, the earliest 3-D systems

consisted of spheroids either of hepatocytes alone or co-cultured with non-parenchymal

cells (103-106). Over time, more complex 3-D setups have been developed across both

fields of liver tissue culture (107,108).



1.4.3. Towards facilitated microcirculation

Efforts at ensuring adequate delivery of oxygen to the tissue in the 3-D systems have

driven design considerations in bioartificial liver devices to attempt creating fluid flow

past the tissue surface. These include membrane-based reactors (in which cells are

cultured outside semi-permeable, hollow-fibre membranes), perfusion reactors (in which

cells are grown in porous scaffolds and fluid is pumped around them) and stirred-

suspension-culture reactors (in which aggregates of cells are kept in suspension) (109-

112). The large scale of these devices makes them impractical to use in basic research

applications. Perfusing flow thorough the tissue can overcome the oxygen transport

limitation by increasing the amount of oxygen available to cells deep in the tissue and

this can be achieved in small setups with the help of microfluidic pumps and valves.

These are designed to circulate culture medium through small culture units in the order of

a few thousand cells over a period of time (113) and are starting to be applied to 3-D

formats (77).

1.5. Special considerations while studvin2 Derfused 3-D systems

1.5.1. Determining scales based on predicted tissue requirements:

As with the liver in vivo, in a 3-D hepatic tissue unit, concentration gradients can exist for

any soluble and diffusible culture-medium component that is consumed or produced by

cells - from oxygen to basic nutrients or secreted factors, giving rise to localized

heterogeneity in cellular behavior, or certain gradient-dependent cell responses within the

tissue unit. In order to achieve a physiologically relevant 3-D microenvironment it is

important to know or predict the various cellular requirements and accordingly come up

with length scales for design. In the liver, oxygen is an important parameter and is



usually easily depleted due to its relatively low solubility in culture medium. Existing

experimental values of cellular utilization are available in literature (114,115) and can be

used as the basis for determining the upper bounds of length scales versus diffusion

limitations. However one has to take into account certain other factors that can affect

distance scales. Oxygen consumption in vivo is very heterogeneous across the whole

organ due to zonation. At periportal regions where gluconeogenisis occurs, the oxygen

consumption is higher than at pericentral regions where glycolysis occurs. Across the

organ, oxygen consumption also increases as it metabolizes xenobioltics. In cases of

floating spheroids where all the surfaces are exposed to oxygen saturated media, oxygen

transport by diffusion can support a cellular mass of greater diameter than when oxygen

transport can only occur across one plane - such as tissue packed into a well. Knowing

this, we are thus able to define length scales for design.
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Fig 9. Oxygen Diffusion Limits On Size Of 3-D Cultures [Matsumura & Thurman, Am. J.
Physiol, 1983 (116) , Matsumara et al 1992. (117)]
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For example (Fig 9), based on known oxygen consumption rates and cell size scales, a

spherical mass of tissue at an elevated oxygen consumption rate would need to be smaller

than 380gjm to allow oxygen to diffuse into the center. Likewise a static culture would

need to be less than 110 Om deep to allow for enough oxygen to reach the bottom layer of

cells.

One also has to account for the significant oxygen diffusion barrier posed by the height of

static unperturbed medium column on the tissue surface. It has been seen that at regular

cell densities used in tissue culture, a depth of 2 mm can reduce oxygen availability to as

low as 10-20 % of the oxygen concentration at the air-liquid interface (118).

1.5.2. Scaffold material and geometry:

In order to provide support for 3-D organization of cells, many models utilize a scaffold.

While choosing a scaffold material, one has to take into account the physical and

chemical properties that could affect cellular behavior. For example certain materials may

not allow easy adhesion of cells and may need to be coated with substances to facilitate

attachment. Mechanical properties such as rigidity of the scaffold can result in activation

of certain cell types. Sometimes, the choice of scaffold material is guided by the kind of

procedures that the cultures are subjected to after the cultures are harvested. For instance,

if the tissue needs to be fixed and sectioned one may prefer polycarbonate to a silicon

scaffold. Or substances like peek may be avoided if fluorescent microscopy is intended.

Once the scaffold material is chosen, the geometry of the individual channels housing the

tissue is calculated, based on earlier described considerations. Based on the material used,

channels may be created by etching holes or drilling, and can be used to organize cells in

capillary bed sized dimensions (119).



1.5.3. Calculating physiologically appropriate flow rates:

In a system that is perfused, one has to keep in mind the potential effects of shear stresses

induced by the flow of culture medium through the tissue. Higher than physiological

shear rates such as seen after partial hepatectomy are known to perturb the different cell

types, giving rise to a range of cell signaling events and cell growth seen in hepatic

regeneration.

Reference flows
Interstitial velocity: 0.1 - 5 plm/s
Microvascular velocity: 100 - 300 prm/s

"Low" flow "Lu;W.." A. tli t
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Fig. 10. A 'high' flow rate of 1 gl/min falls in the realm of microvascular flow rates while a flow
rate as 'low' as 0.2 tl/min is closer to interstitial flow rates though still on the higher side.

We can get a sense of whether the flow rates used in a 3-D in vitro system, fall in the

realm of physiologically appropriate flow rates, based on known reference values for

microvascular and interstitial flow and the surface area of the channels or tissue being

perfused. (Fig. 10)

1.5.4. Measuring oxygen in live cultures

Various measurements are made in systems to look for temporal effects. However in

order to measure oxygen concentrations in the perfused in vitro systems, one has to adopt



methods that can do so without placing strain on the oxygen requirements of the live

cultures. In other words, not only would an ideal assay be non-toxic to cells in the

culture, it should also not utilize oxygen from within the system while measuring it.

There are chemiluminescence based assays that operate on the principle of particles

getting activated and luminescent in the presence of light and getting quenched by

interaction with molecular oxygen. These assays are known not to utilize oxygen in the

process and offer a suitable option for making oxygen measurements in live culture

systems.

1.5.5. Modeling complex 3-D systems

Mathematical modeling of variables within a system allows us to make prior predictions

about the effect changes in certain variables may have on others. In the case of perfused

hetrotypic culture systems, in addition to simple diffusion gradients of solutes and

oxygen, we have the added element of flow that provides a new level of complexity.

Finite element modeling methods are effective in such systems and work by dividing

them into a complex system of points called nodes that make up a mesh. This mesh is

programmed to contain the material and structural properties that define how the system

will react to certain conditions as described by selected Partial Differential Equations

(PDEs). Several PDEs can be linked or coupled together to arrive at a solution that

satisfies all the equations. As the equations are solved iteratively, one has to choose an

initial condition and make use of specific software for these finite element studies.

1.5.6. Choice of imaging techniques

Imaging 3-D tissue is a challenging process. Conventional wide field microscopy not

only suffers from the physical resolution limits imposed by using visible light as the



illumination source, but also from out-of-focus light degrading the image quality due to

specimen thickness. Although electron microscopy offers good resolution, it requires skill

in preparing and sectioning specimens and artifacts can often be introduced during

specimen preparation. Confocal microscopy and two-photon microscopy are two methods

that are very useful for studying the architecture of 3-D tissues but the latter is more

cumbersome and time consuming.

In confocal microscopy (Fig 11), a laser is reflected by a dichroic mirror and is focused

by the objective lens at the desired "Plane of Focus".

Serial Z-section images 3-D reconstruction of
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Fig. 11. Schematic of principle of confocal microscopy (see text for description) and recreation of
3-D tissue structures from Z-stacks [Adapted from Rigby 1999 (120)].

Fluorescence emitted by the specimen from the point of focus (red rays) and passes back

through the lens, mirror and confocal aperture to the detector. Fluorescence emitted from

planes above and below the plane of focus (blue and pink lines), are prevented from

reaching the detector by the confocal aperture. To collect a two-dimensional (2-D) image,



the laser beam is usually scanned across the specimen in the plane of focus. After each 2-

D image is collected, the plane of focus is moved in the Z direction to generate serial 2-D

images (Z-sections). These images are then stacked together using appropriate software

to reconstruct a 3-D image of the tissue. Since these images are digitalized they can be

also analyzed using cell-counting software if needed.

1.5.7. Choice of markers for imaging functional liver cells

As mentioned earlier, demonstrating the behavior of liver cells to be as close to 'in-vivo'

is as important as their survival, since the culture environment is known to change the

differentiation status. Hence while visualizing such systems, we need an adequate battery

of markers that reflect their existence in a specific functional state (differentiated or de-

differentiated in case of hepatocytes and sinusoidal endothelial cells, and quiescent or

activated in the case of stellate cells). These markers have to be adequately specific, and

yet sensitive enough for detection of small numbers of each cell type.

For sinusoidal endothelium, using conventional endothelial markers may not work, since

they do not consistently express a lot of the classical markers such as platelet endothelial

cell adhesion molecule (PECAM 1 or CD 31), CD34 and E-selectin on their surface. The

monoclonal antibody, SE-1, is known to specifically recognize and exclusively react with

a 45 kD (M.W.) antigen expressed only in rat liver SEC and in no other type of

endothelial cell (63,121). In the in-vivo rat liver, SEC associated directly with

hepatocytes (without basal lamina) express SE-1 antigen, whereas no SE-1 antigen

expression is seen in endothelial cells of the hepatic vein. While its nature and function is

not entirely characterized yet, the antigen is considered to be related to the specific

function of SEC in adult rat livers. Based on its cellular localization (surface of plasma



membrane and inner surface of pinocytotic vesicles), it is suggested to be a kind of

receptor molecule specifically expressed in SEC for that function. Newer markers like

stabilin have been developed that stain sinusoidal type of endothelial cells but they

additionally stain Kupffer cells and macrophages and hence would not be specific in a

hepatic co-culture. Apart from visualization of fenestrations, SE-1 antigen marker is the

best choice of marker to demonstrate phenotypic maturation of SEC. Though PECAM or

CD31 is present at intercellular junctions on most endothelium, it has been reported that

surface expression of PECAM on sinusoidal endothelial cells is a de-differentiation

marker(34). Normally expressed intracellularly, its appearance on cell surface of SECs

seems to coincide with the disappearance of fenestrations. However it is strongly

expressed on any large-vessel endothelium such as those lining the hepatic and central

veins in the liver.

Stellate cells present a different kind of problem since they are extremely hard to retain in

an inactivated state in vitro. Quiescent stellate cells express a couple of different markers

such as desmin, glial fibrillary acidic protein (GFAP), and vimentin that are fairly reliable

and predictive markers. In the activated state, they proliferate rapidly and acquire a lot of

features of myofibroblasts (which in the liver also originate from other non-stellate cell

types), develop stress fibers, over-synthesize basal lamina-like material and collagen

fibers, and classically express alpha smooth muscle actin (a-SMA), which is regarded as

a standard marker for activated stellate cells. However one has to keep in mind that this is

not absolutely specific and can is expressed by myofibroblasts from any other source.

Kupffer cells that serve a macrophagic function in the liver cultures can be identified by

macrophage markers ED1 and ED2 (122).



Hepatocytes being extremely metabolic cells, express a host of markers. Among them,

albumin and cytokeratin 18 (CK 18) are known to be specific for differentiated

hepatocytes.

1.6. 3-D Perfused Oreanotypic Liver Bioreactor Systems

1.6.1. Perfused bioreactor for in vivo like function

An early prototype reactor that integrated 3-D microscale tissue with flow, was

developed in our laboratory, taking the earlier described considerations into account

[Figure 12A, (78)]. The system consisted of a microfabricated 3-D scaffold with multiple

channels that was perfused with a chemically defined serum free medium by an

independent peristaltic pumping mechanism. It fostered the formation of 3-D tissue

structures from primary rat liver cells or spheroids that were seeded into the channels

(Fig. 12B,). Each of the channels within the scaffold held 500-1,000 cells forming a

functional tissue unit similar to capillary bed dimensions [Fig 12 C,(19)], and the overall

system could be scaled to hold in the range of 10,000-1,250,000 cells, by creating larger

scaffolds with different numbers of channels (77,123) . These tissue-like morphological

structures (Fig 12 D) formed in the microreactor, maintained liver specific functions like

albumin secretion and ureagenesis for at least two weeks (79,80). More importantly, they

retained several important liver-enriched genes, including drug-metabolizing enzymes

that are usually rapidly lost in culture, at levels much closer to in vivo expression and

activity than 2-D collagen gel sandwich culture controls (77). Studies that seeded cancer

cells into the hepatic tissue mimics of this system showed tumor like outgrowths even in



a serum free medium, demonstrating the potential of the system to be used as a cancer

model (Fig 12 E).
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Fig .12.(A) 3-D perfused bioreactor model containing a scaffold with channels encased in a
polycarbonate casing. (B) schematic of flow through system (c) Blow up of individual channel
with perfused tissue (D) SEM image of tissue mimic from channel (E) DU-145 cells seeded
into the liver tissue mimics produce outqrowths.

Though the results with the early prototype 3-D reactor were encouraging, there was

room for improvement on a couple of fronts. These reactors were limited by mechanical

peristaltic pumps that allowed flow of medium across the tissue, at rates considerably

higher than physiological levels that cells are exposed to in vivo. As a result, the tissue

was exposed to shear stresses that could have possibly have had an impact on non-

parenchymal function. Staining data from early prototype reactors set up showed few

endothelial cells and a number of activated stellate cells. Furthermore, the seeding





protocol in this model required hepatocyte spheroids to be injected into a closed system.

The exact number of spheroids used to pack the channels varied from experiment to

experiment making the input into the system variable and hard to quantify. Last but not

the least, this system was not high throughput enough to study the effect of more than one

variable at a time.

1.6.2. A high throughput system with controlled flow

A newer generation 3-D perfused reactor developed in the Griffith laboratory [Fig. 13

(124,125)] addresses most of the above-described issues. It keeps the same basic design

features, but is scaled up to a multi-well format, allowing for up to _106 cells per each

reactor (well) in the system. Channels have a diameter of 300 m and depth of 230p.m

and contain tissue in the size scale of a capillary bed. There are several hundred such

channels in each scaffold. Perfused flow enters the bottom of the scaffold through a 5gm

filter, which distributes the flow evenly and is given mechanical rigidity by a support

plate. Each reactor is coupled with a reservoir and flow of medium between the two is

through micro-fluidic channels and controlled by pneumatic pumps. The overall format is

of a 24 well plate (with 12 pairs of reactor-reservoir combinations) allowing for easy

integration with existing technologies. The easier multi-well set-up not only allows direct

seeding into the channels with a pipette tip, thereby giving better control over the input

into the system, but also allows in situ observation of cells by optical imaging.

Additionally it allows us to easily perturb functions and measure the associated response.

The pneumatic pumping system in this case is different from the earlier mechanical

pumps, and allows flow rates to be reduced by more than an order of magnitude

expanding the: regime of flow rates to interstitial regime. Most importantly, the multi-well





format allows easy comparison of different parameters such as flow rate or medium

composition in the same experimental setup, thereby minimizing animal to animal or

instrument variation between compared groups.

reservoirs

Scaffold it+
230 gm

Filter 5 g

750 Itm

Supp ort 300 gm

scaffold reactor reservoir

pumping berwe scaffol reservoir well
chamber well

Fig 13. Multiwell 3-D perfused bioreactor. (A) 3-D perfused microenvironment is formed in
each channel (B). A flow loop from reactor to reservoir maintained by a novel pneumatic
pumping system enables the re-oxygenation of media (C) The system contains 12 pairs of
reactor-reservoir units, housed in a (D) conventional 24 well plate format
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1.7. Hypothesis and Specific Obiectives

The working hypotheses guiding this thesis were that:

* Survival of differentiated sinusoidal endothelial cells may be achieved by

recreating a three dimensional co-culture environment that recapitulates the

necessary paracine interactions.

* Control of microscale flows and oxygen concentrations in the perfused 3-D

coculture system of hepatocytes and non parenchymal cells, would influence the

survival and proliferation of sinusoidal endothelial cells, Kupffer cells, and

stellate cells.

Based on this hypothesis the specific aims of this thesis were to:

* Create a 3-D co-culture environment that captures appropriate paracrine cell

interactions and demonstrate that it improves SE-1+ liver endothelial cell survival

* Study the effect of changing flow rates through the 3-D in vitro tissue, on SE-l+

cell survival and phenotype.

* Determine whether SE-I+ cell survival and phenotype at different flow rates is

regulated by oxygen tension within the paracrine environment.

Explore a potential mechanistic aspect of the effect brought about by flow or oxygen.



Chapter 2:

Characterizing The System And
Optimizing Operating Parameters



2.1 Characterizing The Cellular Input Into The System

While studying a heterotypic culture system, it is important to have an accurate idea

about the different cellular inputs into the system in order to draw inferences about the

effects of variables on individual cell types while assessing the tissue structures formed.

For our experiments we used purified hepatocytes and endothelial cells derived from two

different animals (one being wild type and the other genetically modified to express a

fluorescent protein) so that we could follow their individual fates easily by visual

imaging. Since most purification protocols are not absolute, we also employed the use of

specific markers that stained each cell type as a tool in our characterization efforts.

2.1.1. Materials and Methods:

2.1.1.1.Animals And Isolation Procedures For Hepatocytes And Endothelial Cells:

All animals used for the experiments were treated according to protocols approved by the

MIT Committee of Animal Care. Hepatocytes were isolated from male Fischer rats

(150g-250g) by a modification of Seglen's two-step collagenase perfusion procedure (77)

using a 25 mL/min flow rate (Details in Appendix 1). An enriched hepatocyte population

(-95% purity) was obtained by two sequential 50g centrifugation and washing cycles.

The viability of hepatocytes was determined by Trypan blue (Gibco, Carlsbad, CA)

exclusion test and was consistently over 85%.

Endothelial cells were isolated from 150-250g female GFP-positive Sprague-Dawley rats

by a second perfusion (Details in Appendix 2) using a 15 mL/min flow rate, and a

modification of the two-step Percoll density gradient procedure(126). These rats were

bred from EGFP-positive males that were a generous gift of M. Okabe (127). After the



collagenase perfusion procedure, supernatants from the 50g spins were subjected to two

sequential spins (5 minutes at 100g followed by centrifugation of the supernatant for 7

minutes at 350g). The pellets formed were re-suspended in PBS (Gibco), loaded very

gently on top of a two layer Percoll (Sigma-Adrich) density gradient (25% on top of

50%) and centrifuged for 20 minutes at 900g. Endothelial cells which formed a ring at the

interface were collected, diluted 1:1 with PBS, and subjected to an additional 10 minutes

of 900g spin. The resultant pellet contained non-parenchymal cells highly enriched in

liver endothelial cells. The viability and concentration of primary endothelial cells

isolations were determined by Hoechst (Molecular Probes) and Sytox Orange (Molecular

Probes) staining and were consistently above 90%.

2.1.1.2. Medium Used And Co-Culture Spheroid Preparation:

A serum-free hepatocyte growth medium (HGM) medium described previously (128)

was used with the following modifications (125): niacinamide. 0.305 g/l; glucose

2.25g/l; 1 mM L-glutamine; ZnC12, 0.0544 mg/l; ZnSO47H20, 0.0750mg/l;

CuSO45H20, 0.020mg/l; MnSO4 , 0.025mg/I; EGF (Collaborative, Bedford, MA), 20

ng/ml; and 0 ng/ml HGF (Detailed constituents listed in Appendix 3). Endothelial

Growth Medium (EGM-2 bullet-kit, Cambrex, Walkersville, MD) was mixed with HGM

1:1 (v/v) to create "mixed medium". Immediately after isolation, 20 million hepatocytes

and 40 million endothelial cells were added to 500 ml spinner flasks (Bellco Glass,

Vineland, NJ) containing 100 mL of mixed medium, and spun at 85 rpm for 48 hours to

produce spheroids of wild type hepatocytes with incorporated GFP positive sinusoidal

endothelial cells. Spheroids ranging from 50-300 lpm in diameter were selected by



sequential size exclusion filtration (nylon meshes from SEFAR, Depew, NY), and

resuspended in mixed medium.

2.1.1.3. Staining And Imaging Endothelial Isolates (Details in Appendix 4):

Characterization of the freshly isolated endothelial cell fractions was done by plating

them on collagen-coated (30 mg/mL collagen ) sterilized glass cover slips in 24-well

plates (300,000 cells per well). Cells were allowed to attach to the cover slips for 4 hours

before they were washed in PBS and fixed in 2% paraformaldehyde (EMS) for 20 min.

Each cover slip was stained with primary antibodies against SE-1 (IBL America), CD31

(Chemicon), ED2 (Serotec), GFAP (Serotec), or SMA (Sigma) followed by secondary

antibody goat-anti-mouse Cy3 (Jackson ImmunoResearch) and Hoechst nuclei stain

(Molecular Probes). Fluorecent Microscopy was used to acquire images from two

biological replicates and at least 6 images per replicate per group were used to quantify

the percentage of SE-l+, CD3 1+, ED2+, GFAP+ and SMA+ cells. Images were imported

into Metamorph (Universal Imaging) for quantitation.

2.1.1.4.Staining And Imaging Spheroids (Details in Appendix 9):

To estimate endothelial presence within the co-culture spheroids, we stained them for the

different NPC markers mentioned earlier. After 48 hours, the spheroids were removed

from the spinner flasks and selected by size-based exclusion to be in the 50-300 micron

range. These were resuspended in PBS and then fixed in 2% paraformaldehyde for 45

min. In order to stain them, we experimented with various embryo-staining protocols

before customizing the conditions to suit our protocol. To achieve penetration of the

stains into the cells in these three dimensional spheroids, we permeabilized them with

0.1% Triton-X for 30 mins, following which they were washed with PBS and then



blocked with 5% goat serum for an hour. The spheroids were then incubated overnight at

40C with primary antibodies for the various non-parenchymal cell markers mentioned

earlier. Following repeated washes with 2% BSA in PBS, they were incubated with

secondary antibody goat-anti-mouse Cy3 and Draq 5 (Alexis) nuclear stain for an hour

before washing and placing in chamber slides for Confocal microscopy.

Spinning disc confocal microscopy was done using the McBain spinning-disk confocal

with a Nikon TE2000U inverted microscope equipped with a laser fom Coherent (Innova

70C). The objectives chosen to were 20x with a working distance of 3 mm. From z-stacks

of images, we reconstructed top down view 3-D composite images superimposing all the

sections. For each stain, we analyzed at least six different images (with an average of 3-6

spheroids per field). Image acquisition, 3-D reconstruction and quantitative analysis

were performed by using Metamorph software (Universal Imaging).

2.1.2. Results:

2.1.2.1. Characterization Of Endothelial Isolates:

Staining for the different non-parenchymal markers followed by fluorescent microscopy

showed that most of the cells from the isolated endothelial purified cell fraction, plated

and fixed after 4 hours, stained positive for the functional sinusoidal endothelial marker

SE-1 (Fig 2.1). Few of the cells stained for the large vessel endothelial marker CD31

(PECAM). The various other non-parenchymal cells were also present in the isolate in

low numbers and stained for their respective markers such as ED-2 (for Kupffer cells),

GFAP (for quiescent stellate cells) and SMA (for activated stellate cells). These are

shown in Fig 2.2 (A-D).



Fig 2.1 (Left) Staining pattern of
the freshly isolated endothelial
fraction purified by our protocol
for endothelial cells shows about
80 % of the cells staining positive
for SE-1, a functional marker of
sinusoidal endothelial cells.
Scale bar 20 pim

Fig 2.2 Staining pattern of the freshly isolated endothelial fraction purified by our protocol for (A)
large vessel endothelial marker CD31 (PECAM) shows few cells. Kupffer cells staining for ED-2
(B), and quiescent stellate cells staining for GFAP (C) are scattered. Very few cells stain for
SMA, the marker of activated stellate cells at this point (D). Scale bar 20 ipm





Quantitative analysis of images stained for the non-parenchymal markers, from over 2

biological replicates (at least 6 images per replicate per group), using METAMORPH

software, demonstrated a purity of about 80% endothelial (mostly SE-i + but few CD31 +

cells), 10% Kupffer (ED2+), and 10% Stellate cells (including GFAP+ and SMA+). This

is represented in the form of a pie chart in Fig 2.3. These results were confirmed

separately in our laboratory by other investigators using a combination of staining and

flow cytometry (data not shown).

Stellate Cells ~ Kupffer Cells ~
10% 10%

* Endothelial Cells
* Stellate Cells
O Kupffer Cells

Endothelial Cells ~ 80%

Fig 2.3. Quantification of composition of 'purified endothelial isolate' by two-step Percoll
density gradient procedure. We consistently got a yield characterized by about 80% sinusoidal
endothelial cells and about 10% each of stellate and Kupffer cells.

2.1.2.2. Characterization Of Spheroids:

Unlike the high numbers of SE-i positive cells seen in our isolates, staining and confocal

imaging of the 48 hour spheroids for the NPC markers showed a much lower

incorporation rate (Fig 2.4. A & B). Counting the positively stained cells and expressing

them as a fraction of the total number of Hoechst stained nuclei in a spheroid showed SE-

1+ cells to be in the range of 15 %. The spheroids also demonstrated a large number of





GFAP and SMA positive activated stellate cells coating the surface (Fig 2.4. C&D). CD

31 expression seemed to follow a similar pattern as the SMA with some cells on the

surface of the spheroids expressing it while Kupffer (ED-2+) cells were few and scattered

inside the spheroids (data not shown).

Fig 2.4. Characterizing the NPC incorporation into 48 hour spheroids: (A & B) Sinusoidal
endothelial cells - Hoechst and SE-1 staining of same spheroids allowed estimation of
incorporation rates of endothelial cells estimated to be about 15 % (C) Activated stellate cells
/fibroblasts as evidenced by SMA staining coat the outer surface of the spheroids. (D) GFAP
staining confirms these surface fibroblasts to be of stellate origin. Scale bar 20 tpm





2.1.3. Discussion:

Characterizing the cellular composition of our isolate was an important first step not only

to judge the efficiency of isolation protocol and have an idea about the input, but also to

validate the staining markers that we were subsequently going to use in the study. Our

perfusion protocol for the isolation of endothelial cells was not entirely effective in

getting a 100% pure population of endothelial cells. There is considerable literature

devoted to improving endothelial purity ranging from simple techniques such as selective

adherence of Kupffer cells on glass slides to remove them(129), to more complex

methods such as elutriation (130) and immunomagnetic bead columns (131). However

we chose to stick with our protocol and work with an endothelial isolate with 80% purity

because we did not want to eliminate the other cell types entirely, as they contribute to

the recreation of an in vivo like paracrine environment. A finding of interest was that the

endothelial cells in our isolate hardly stained for CD31. The few cells that did could have

derived from the larger vessels like the central and hepatic veins during the perfusion, or

they may be dedifferentiated sinusoidal endothelium. The scarcity of CD31 staining from

the freshly isolated sinusoidal endothelial fraction supports literature that suggests they

do not express it in a differentiated state. Another observation to note is that at this stage,

stellate cells are mostly non-activated (with few SMA staining cells) in spite of the stress

of the perfusion procedure.

Spheroid seeding protocols are used since they select for the most viable cells and are

already compacted three-dimensional aggregates of the cells. Though we had already

quantified the composition of non-parenchymal cells in our fresh isolates, it was

necessary that to characterize their presence in the 48-hour co-culture spheroids, since



they were the actual input being seeded into our reactors. Interestingly the data from our

spheroid analysis showed that the actual incorporation of SE-1 cells into the spheroids

was much lower (in the range of 15%) than the composition of the isolates. This is

possibly due to the fact that hepatocytes aggregate much more effectively into spheroids

as compared to the endothelial cells. Liver endothelial cells do not have direct cell-cell

contact with hepatocytes in vivo and are normally associated with each other through

ECM interactions in the Space of Disse. Earlier studies done in our laboratory (Albert's

thesis), that used different methods of co-culturing these two cell types in the early

prototype reactor, noted an endothelial incorporation rate at least seven times in these co-

culture spheroids than spheroids prepared only from hepatocyte fractions. Going

forward, one has to bear in mind that in spite of the benefits of spheroid seeding, the

technique does handicap us with low starting numbers of endothelial cells.

The other finding of relevance was that fibroblastic cells covered these spheroids. This is

consistent with reports in literature (Hong-Fang Lu 2005) about spheroid formation. It

has been shown that the fibroblasts contract and envelope the aggregates of hepatocytes

in response to substances secreted by them when co-cultures are seeded on certain

surfaces. Our experiments showed a similar structure of the spheroids formed by rotation

in a spinner flask. Additional factors contributing to the activation in our case could be

the presence of serum and growth factors in the medium as well as the shear stress that

the spheroids are subjected to during the spinning process. Regardless of the causative

factors, the importance of this finding is that it highlights that we are introducing stellate

cells into our system in an already activated state.



2.2. Selection Of ODerating Conditions

For any new system to be developed, a lot of effort goes into determining the very basic

operational parameters for it's functioning. While a lot of these are based on the various

considerations described in chapter 1, and some are based on computational models, one

cannot overlook an iterative process of experimentally testing a lot of variables that have

to be established before using the system in any way. Described in this section are results

of some of the experimental and computational experiments that determined the working

conditions in our reactor system.

2.2.1. Optimizing Working Parameters

2.2.1.1 .Overall Design:

To optimize the working parameters, we set up co-cultures as per an experimental layout

shown in Fig 2.5. Briefly, spheroids were prepared from hepatocytes obtained from a

wild type rat and endothelial cells from a GFP expressing rats. Day 2 spheroids ranging

from 50-300 pm in diameter were selected by sequential size exclusion filtration (nylon

meshes from SEFAR, Depew, NY), resuspended in mixed medium, and seeded into the

channels of the reactor scaffolds. Since the multi-well reactor allowed direct seeding into

the reactor channels, the approximate number of spheroids seeded into the scaffolds was

controlled to be the same for all the wells. The reactors were followed up for 7 days

under different operating conditions described subsequently. Tissue structures formed

were examined by phase contrast and fluorescent microscopy (to track the GFP positive

endothelial cells) at different time points relevant to the operational conditions and the

end of the culture period.
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Fig 2.5. Two day co-culture spheroids prepared from wildtype hepatocytes and GFP +
endothelial cells isolated from two perfusions were seeded into the scaffolds in the reactor and
maintained under different operating conditions.

2.2.1.2. Parameters Tested:

Flow reversal:

In our three-dimensional perfused system, the microfluidic channels were designed to

flow medium through the tissue from below upwards. However at the time of seeding and

the initial hours following it, we needed to maintain a downward direction of flow in

order to pull the spheroids into the channels, and not regurgitate them out. Different flow

reversal times were tested, ranging from 2 to 24 hours to test for optimal tissue formation.

Phase contrast images were taken post seeding and compared with images taken after

reversal of flow for overall tissue distribution patterns.

48 hour spheroids formed in
'mixed' media and seeded into

reactor

Cultured for 7 days under
different experimental
conditions and examined by
phase contrast/ fluorescent
microscopy
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Scaffold material types:

Though the choice of scaffold material for our experiments was guided by the suitability

for specific experimental procedures that we had in mind in each situation, we wanted to

test the different scaffold materials being considered such as peek, polycarbonate, and

permanox, for their tissue attachment properties. Wells were set up with scaffolds made

up of each of the different materials, but with identical geometry (number and layout of

channels) under otherwise identical conditions. Fluorescent images from each of these

scaffolds seeded with co-culture spheroids were examined every day to look for overall

patterns of tissue formation.

Collagen coating of filters:

In an attempt to maximize tissue attachment and retention within the channels, we tried

coating the filters underlying the scaffolds with extracellular matrix constituents and

looked for tissue formation patterns. Wells having similar scaffolds and other identical

operating conditions were set up with filters which were either coated with rat-tail

collagen (BD Biosciences concn 30 gg/ml) for an hour or uncoated. Overall tissue

retention patterns were looked for after reversal of flow by using fluorescent microscopy.

2.2.1.3. Results:

Flow reversal: Of the various flow reversal times tested, it was seen that early reversal

times resulted in significant loss of tissue (Fig 2.6. A & B). This was evidenced by the

presence of many empty channels in these groups. At 8 hours, the tissue formation and

adhesion to scaffolds seemed strong enough and did not seem to be affected much by

flow reversal (Fig 2.6. C & D). Increasing the reversal to 24 hours (Fig 2.6. E & F) did

not seem to improve tissue retention as compared to the 8 hour time point.





Post Seeding Images

Fig 2.6. Effect of flow reversal time on tissue retention. Early flow reversal at 2 hours (B) causes
significant loss of tissue from post seeded state (A). Tissue retention seems optimal with flow
reversal at 8 hours with not much difference between post seeded (C) and post reversal state (D).
Retention is not improved further by increasing reversal time to 24 hours (E & F). Scale bar 500
gm

48 hour Images





Scaffold material:

Using the 8-hour flow reversal, we did not see significant differences in overall tissue

formation patterns between the different materials tested. Most of the channels in the

scaffolds were uniformly packed with cells from the co-culture spheroids, with the GFP

expressing endothelial cells aiding easy visualization. Figs 2.7. A & B show the

fluorescent images from permanox and polycarbonate scaffolds.

Fig 2.7. Effect of scaffold material on tissue adherence and retention: None of the materials
tested showed visible differences. Pictured here are fluorescent images taken at 48 hours of
(A) permanox and (B) polycarbonate scaffolds seeded with co-culture spheroids containing
GFP positive endothelial cells. Scale bar 500 pm

Collagen coating of filters:

The channels in scaffolds where the underlying filters were coated with collagen seemed

to display a better retention of tissue within the channels as compared to uncoated filters

(Figs 2.8. A & B). Due to better attachment to the filter, these channels were more prone

to loss of tissue during flow reversal in the case of filters that were not coated with

collagen and ended up empty.





Fig 2.8. Effect of collagen coating of filters on tissue adherence and retention: Collagen coating
of the filters seemed to result in better retention of the tissue structures within the channels of the
scaffold. Images at 48 hours show that uncoated filters (A) were associated with loss of tissue
and empty channels (white arrows) while this loss was minimized by collagen coating (B). Scale
bar 300 pm

2.2.1.4. Discussion:

Though downward flow through the channels is necessary for the initial formation of

tissue, we need to change flow in the upward direction over the main course of the

experiment, since it is more evenly distributed on account of the filter beneath the

scaffold. Additionally it serves to remove dead cells and debris from the channels. As

very early flow reversal results in some degree of loss of tissue, we needed to figure out

the a time point that that was relatively early in the course of our experiment and yet

allowed adherence between the cell-cell and cell-scaffold contacts. Based on these

results, we picked the 8-hour reversal for our subsequent experiments. Since all the

scaffold materials showed similar tissue attachment patterns, the only differences

between the scaffolds that were of consequence were physical properties. For instance





peek was associated with increased autofluorescence that made it unsuitable for our

experiments since they involved extensive fluorescent imaging. In the case of permanox,

it's low density made it float in solutions posing a hindrance during steps such as

sterilization with ethanol or coating with collagen. Our approach of maximizing tissue

retention in the channels by coating the filters with extracellular matrix components such

as collagen seemed to help in decreasing loss of tissue from the channels. This could be

on account of cell-matrix interactions between the seeded spheroids and the collagen

coating on the filter.

2.2.2 Predicting The Outer Bounds For Operational Flow Rates

2.2.2.1. COMSOL® Modeling For Oxygen Utilization Predictions:

COMSOL® Multiphysics modeling software was used to determine the outer bounds of

operational flow rates we could use in the system, without subjecting the entire tissue to

hypoxia. As an initial step, a geometric design representative of our system was created.

This design was then meshed, with the fineness of the mesh maximized around corners

and the tissue-medium interface. After making certain assumptions about our system, the

Navier-Stoke's partial differential equation was used for bulk fluid flow in the system

and the Brinkmann's equation for flow through the filter and tissue. The solutions from

Note: Matthew Lim, a visiting post-doctoral researcher in the laboratory of Linda G

Griffith, carried out the mathematical modeling presented in this section. Since the

data is relevant for the purpose of the further experiments planned in my thesis, I have

added it with his kind permission.



these were coupled to convection-diffusion equation (to account for mass transport of

oxygen and metabolites in the system and reaction rates of consumption of 02 by the

cells) across the whole model (Fig. 2.9.). Simulations were run to get steady state oxygen

concentrations in the system for different flow rates not only for conditions where media

was assumed to be fully saturated, but also taking into account experimentally measured

values of oxygen saturation measured in our system.

Navier Stokes equation p(u V)u= V I- p I+ (Vu+(Vu) )j+ F
T7 -,, -A

Brinkman q/u= V [-pI + q(Vu +(Vu)T J+F
V'u=0

Convection-diffusion equation V (- DV c) = R - u- Vc

Fig 2.9. COMSOL modeling of the system utilizes Navier-Stoke's equation for bulk fluid flow and
Brinkman equation for flow through the filter, scaffold and tissue region and couples them with to
convection-diffusion equation to account for mass transport of oxygen and metabolites in the
system.

2.2.2.2. Results:

In addition to flow patterns over the entire system, we were specifically interested in

oxygen data for single channels under different flow conditions. Steady state values of

oxygen concentration based on known oxygen consumption rates under ideal media



saturation values and experimentally measured of oxygen saturation values and two

different flow rates are shown in Fig 2.10.

0.2
pl/channel/min

02 uptake:
9.23 x 10-4

mole/(channel s)

1.0
pl/channel/min

02 uptake:
2.77 x 103

nole/(channel s)

0.02 0.04 0.06 0.08 0.10 0.12 0.14

0

Oxygen concentration (pmollcm3)

Fig 2.10. COMSOL modeling to predict outer bounds of flow rate. Steady state concentrations
were calculated for both ideal (fully saturated) media conditions (left) as well as experimentally
measured oxygen saturation values in media (right).

Though under ideal medium oxygen saturation conditions, at a flow rate of 0.2

jil/channel/min, the outlet concentration (of the medium exiting the tissue) would not be

in the hypoxic range, under experimental conditions it was predicted to be hypoxic.

Oxygen uptake rates were predicted to be higher in the higher flow rate

(1 gl/channel/min) as compared to the lower rate.

2.2.2.3. Discussion:

Our goal was to zero in on two different operational flow rates that would provide the

outer bounds for the flow conditions we wished to test in our system. We wanted a lower

flow rate that would allow an inlet concentration (of medium entering the tissue) in the

0.15



physiological range while producing outlet concentrations that were just about hypoxic so

that we might be able to create a gradient over our tissue height. The results of our

modeling helped us choose these flow rates to be 0.2 and 1.0 Al/channel/min. Based on

ideal values of oxygen saturation, we possibly could have gone for lower rates, but

measuring the actual oxygen saturation in medium under experimental conditions

provided different results. This highlights the need to constantly reinforce information

gained from modeling with experimental data. Our modeling is based on 2-D geometry

with the assumption of axial symmetry and it being representative of the 3-D system.

Additionally we make assumptions about evenly packed tissue channels giving rise to

uniform flow patterns across the scaffold. Though this may not be always possible in

actual experimental settings, the model does provide us with reference values to plan our

experiments on.



Chapter 3

Effect Of Medium And Flow Rate
On The Non-Parenchymal Cell

Survival And Phenotype



3.1. Overall Rationale

Our primary objective for this set of experiments was to study the effect of changing

perfusion flow rates through the tissue in the reactors, on non-parenchymal (particularly

sinusoidal endothelial) cell survival and phenotype. We also wanted to explore the

relationship between flow and oxygen in our system, and if the effects seen with flow

were independent of the type of medium used.

3.2. Materials And Methods

3.2.1. Setting Up Co-Cultures:

Wild type hepatocytes and GFP + endothelial cells were isolated from different animals

using the isolation procedures described earlier. Day 2 spheroids ranging from 50-300 pm

in diameter were selected by sequential size exclusion filtration, re-suspended in 'mixed'

medium (a combination of hepatocyte growth medium described earlier and endothelial

growth medium in 1:1 ratio), and seeded into the channels of the reactor scaffolds. The

flow in the reactors was maintained in the downward direction through the channels for

the first 8 hours, following which the direction was reversed. After reversal of flow, one

row of wells in the plate (6 reactors) was maintained at an upward flow rate of 1

ýtl/channel/minute while the other was set at 0.2 pl/channel/minute. For each flow rate, 3

of the reactors were filled with medium that was only HGM, while the other 3 had

'mixed' medium. The reactors were maintained at 370C and 5% CO2 and medium was

changed every 24 hours for the entire duration of the culture. Partial pressure for oxygen

was maintained at 20% throughout. Cultures were monitored over 2 weeks by phase

contrast and fluorescent microscopy. At the end of 2 weeks, oxygen measurements were

made from one reactor in each group, followed by harvesting of the same scaffold for cell



number estimation by total RNA. The other two wells were fixed and stained for the

various non-parenchymal cell markers. The experimental layout is depicted in Fig 3.1 A

& B.

Rat I (WT)
Purified hepatocytes
"- 1 48 hour spheroids formed in 'mixed'

media and seeded into reactor
............................................................................................... II...........................

Rat 2 (P)

A

High
Flow

Low
Flow

Purified endothelial cellsv

Reactors

Reservoirs

B All at 5% CO 2 20% 02 and 37 0C

Fig 3.1. Experimental Design to evaluate effect of medium and flow:
(A)Two day co-culture spheroids prepared from wild type hepatocytes and GFP + endothelial
cells isolated from two perfusions were seeded into the scaffolds in the reactor and maintained
for 2 weeks. (B) Multiwell layout for simultaneous evaluation of two flow rates and medium
types.

* Cultured for 2 weeks under different
flow rates and medium composition.

* Tissue stained for NPC markers and
imaged at end point.

* Oxygen measurements, total RNA
also done at end point.
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3.2.2. Staining For NPC Markers

To characterize non-parenchymal cells in the tissue at the end of the experimental period,

we adopted a staining protocol similar to the one we used to stain spheroids. The

scaffolds were fixed in 2% paraformaldehyde for 60 minutes and then cut into multiple

segments (each containing numerous tissue channels) using a pair of sharp scissors. After

permeabilizing the scaffold segments containing channels of tissue with 0.1% Triton-X

for 45 minutes, they were washed with PBS, blocked with 5% goat serum for 60 minutes.

The scaffold segments were then separately incubated overnight with primary antibodies

for the various non-parenchymal cell markers (SE-1 for sinusoidal endothelial cells,

CD31 for large vessel endothelium and dedifferentiated SECs, ED2 for Kupffer cells,

GFAP for quiescent stellate and SMA for activated stellate cells). The next day,

following 3 washes with 2% BSA in PBS, the scaffolds were incubated with secondary

antibody goat-anti-mouse Cy3, for an hour before washing and placing in chamber slides

for confocal microscopy.

3.2.3. Confocal Microscopy And Image Processing

Spinning disc confocal microscopy was done using the McBain spinning-disk confocal

with a Nikon TE2000U inverted microscope equipped with a laser from Coherent

(Innova 70C). The objectives chosen to visualize one channel per field were 20x with a

working distance of 3 mm. For each condition, six channels (chosen to include at least

two completely filled and two partially empty tissue units) were imaged from top to

bottom with 4-5 micron z sections. From z-stacks of images, we reconstructed top down

view 3-D composite images superimposing all the sections as well as 3-D images with a

360 degrees view to get a lateral perspective. Image acquisition, 3-D reconstruction and



quantitative analysis were performed by using both Metamorph software (Universal

Imaging) and Imaris.

3.2.4. Oxygen Measurements

Oxygen measurements were made in the system using the PreSens Oxy-4 system and the

custom 02 dipping Probes (v 1.01) (shown in Fig 3.2 ).

Rxr
(Outlet)

02
probes

Res
(Inlet)

NLj

Scaffold with cells

02 Out

02ln

Fig 3.2. Measurement of oxygen difference across tissue units:
(A) PreSens Oxy-4 system was used to simultaneously measure the 02 concentrations in the
reservoir and the reactor to reflect (B) inlet and outlet 02 concentrations across the tissue in
the channels of the scaffolds.

Prior calibration of the probes was done using air saturated water at a known temperature

(for 100% 02), and Oakton Zero Oxygen Solution (Sodium Sulfide for 0 % 02).

Measurements were then made in the reservoir and reactor sides of the system, to reflect

inlet and outlet concentrations respectively, thereby giving us an idea of oxygen



utilization across the tissue in the scaffold. Briefly, the probes were sterilized and fitted

on the lid of the multiwell system, and adjusted to be immersed at a uniform depth in the

medium of all the reactor or reservoir wells being measured (1 mm above the scaffold

surface in reactors and lmm above the filter in the reservoirs). Multiple measurements

from each well were recorded using the Oxy 4 software with sampling rates every 5-15

mins until a steady state measurement was reached (usually within 2 hours). Data was

exported into excel format for analysis.

3.2.5. Total Cell Number By RNA Estimation

Total RNA was isolated from the scaffolds of the wells where oxygen measurements

were made, to estimate the total cell number for the purpose of normalizing the

measurements. After the oxygen measurements, one mL of Trizol (Invitrogen) was added

directly to scaffolds in 6 well plates and kept at -800 C until ready for RNA estimation.

RNA isolation was performed using the RNeasy mini kit (Qiagen) according to

manufacturer's protocols (for details refer to appendix). The concentration and quality of

purified RNA was determined by assessing the ratio of absorbance at 260nm to 280nm.

3.3.Results:

The data presented below represent the results consistently seen consistently in three

different biological replicates.

3.3.1.Effect Of Medium And Flow On Non-Parenchymal Cell Population:

Monitoring the cultures by phase contrast and fluorescent microscopy (for the GFP

expressing NPCs in the tissue) over 2 weeks showed tissue filled channels distributed

uniformly across the scaffolds an all the four groups. However, there were a higher



number of channels in the high flow rate group that doughnut shaped tissue structures

with a thick ring of tissue attached to the walls surrounding a central conduit. Also the

overall intensity of the green fluorescence appeared to be higher in the groups with mixed

medium as compared to the tissue in cultures grown in HGM only.

Staining for the NPC markers and confocal imaging demonstrated that the SEl+ cells

survive in serum-free medium (HGM only) within our system up to 2 weeks in perfused

co-cultures. Their survival was enhanced at low flow and with serum (Fig. 3.3). The

effect of flow rates on CD 31 staining pattern was the reverse of the effect seen on SE-1

staining, i.e. a higher staining was seen in the high flow rates as compared to the low flow

rates (Fig 3.4). Most of the CD31 staining was localized along the tissue fluid interface.

Stellate cells were found to be more prolific with serum & high flow (GFAP staining,

Fig.3.5). The vastly increased number of stellate cells seen in the serum groups correlates

with the earlier mentioned overall increase in green fluorescence. Additionally stellate

cells were seen to be activated by mechanical stresses such as contact with rigid scaffold

and high flow (SMA staining, Fig 3.6). Kupffer cells (ED2 staining, Fig. 3.7) were few

and scattered in the tissue consistently across both flow conditions and medium types. An

interesting observation noted on examining 3-D reconstructions of the images was that

these SE-1 + cells seemed to be consistently polarized at the upper end of the tissue (Fig.

3.8).



Low Flow
(0.2 jilchannellmin)

High Flow
(1 .llchannel/min)

Fig 3.3. Effect of flow rate and medium composition on sinusoidal endothelial survival and
phenotype. Confocal images of SE-1 (red) stained co-cultures from single representative
channels of reactors with either mixed medium (A & B) or HGM only (C & D) with flow rates of
either 0.2 pl/channel/min (A & C) or 1 pl/channel/min (B & D). Survival of SE-1 expressing
endothelial was seen to be enhanced by low flow rates and serum in the medium. Scale bar 50
um
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Low Flow
(0.2 pllchannellmin)

High Flow
(1 gllchannellmin)

Fig 3.4. Effect of flow rate and medium composition on sinusoidal endothelial phenotype.
Confocal images of CD31 (red) stained co-cultures from single representative channels of
reactors with either mixed medium (A & B) or HGM only (C & D) with flow rates of either 0.2
pl/channel/min (A & C) or 1 pl/channel/min (B & D). Expression of CD 31, a dedifferentiation
marker for sinusoidal endothelial cells was seen to be increased by high flow. Pronounced
staining of this large vessel endothelial marker was seen at the fluid tissue interface. Scale bar 50
pm.
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Low Flow
(0.2 pil/channellmin)

High Flow
(1 pil/channel/min)

Fig 3.5. Effect of flow rate and medium composition on hepatic stellate cell survival and
proliferation. Confocal images of GFAP (red) stained co-cultures from single representative
channels of reactors with either mixed medium (A & B) or HGM only (C & D) with flow rates of
either 0.2 pl/channel/min (A & C) or 1 ltl/channell/min (B & D). Survival of GFAP expressing
quiescent stellate cells was seen to be enhanced by high flow rates and serum in the medium.
Consistent localization of these cells is seen at the fluid tissue interface of tissue structures,
especially in the channels commonly seen in fast flow rate channels. Scale bar 50 pm

A





Low Flow
(0.2 il/channellmin)

High Flow
(1 pl/channellmin)

Fig 3.6. Effect of flow rate and medium composition on activation and fibroblastic transformation
of stellate cells. Confocal images of SMA (red) stained co-cultures from single representative
channels of reactors with either mixed medium (A & B) or HGM only (C & D) with flow rates of
either 0.2 pl/channel/min (A & C) or i pl/channel/min (B & D). Stellate cells were markedly
activated by high flow rates, serum in the medium and contact with the scaffold surfaces. Scale
bar 50 pm
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Low Flow
(0.2 gl/channellmin)

High Flow
(1 pilchannellmin)

D

Fig 3.7. Effect of flow rate and medium composition on Kupffer cell survival. Confocal images of
ED2 (red) stained co-cultures from single representative channels of reactors with either mixed
medium (A & B) or HGM only (C & D) with flow rates of either 0.2 pl/channel/min (A & C) or 1
pl/channel/min (B & D). Kupffer cells were few and scattered throughout the tissue and appeared
not to be influenced medium composition or flow rate. Scale bar 50 pm

C

GFP 1 IGM





Fig.3.8. Localization patterns in the 3-D reconstructions: The SE-1 staining patterns seen in low
flow conditions were consistently polarized at the upper end of the tissue. Scale bar 50 jim

3.3.2. Effect of flow rate on oxygen concentration differences across tissue

To assess if the differences seen between the two flow rates were also associated with

differences in oxygen concentration and uptake, we measured the change in oxygen

concentration across the tissue at both the flow rates. Measurements of the 02

concentrations in the reservoir and the reactor using the PreSens Oxy-4 system gave us an

idea of inlet and outlet 02 concentrations. The product of difference between the inlet

and outlet concentrations and the flow rate was adjusted to the cell number to give us

values for oxygen uptake. We noticed that in line with our earlier modeling predictions,

we found a reproducibly (n = 3) larger difference in oxygen gradient across the tissue in

the slow flow rate reactors as compared with the high flow rate (Fig 3.9.) and lower outlet

concentrations in the low flow rate groups.

The recovered cell numbers assessed from total RNA in both the flow rates were not very

different with around 5 x 104 cells in the low flow rate and 6 x 104 cells in the high flow.

On normalizing the data to cell number, and looking at oxygen uptake rates, it was seen
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that the uptake rates in the low flow rate group was 0.52 nmol/s/10 6 cells while that in the

high flow rate group was 1.32 nmol/s/10 6 cells (Fig 4.10).

02 concn)
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N Outlet
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(Rxr)

_ Pericentral

-
0.2 1

A 0 Flow rate (ull/channellmin)
Fig 4.9. Effect of flow rate on measured value of oxygen difference across tissue units:
(A) Oxygen concentration was measured in the reservoir and reactor to represent the inlet and
outlet concentrations respectively. (B) The difference in oxygen concentration across the tissue
was larger and the outlet concentration was lower in the slow flow rate as compared to the high
flow rate reactors.

02 utilization

(nmol/s/106 cells)

Flow rate
(gl/chan/min)

0O.2
Elo

flow rate

Fig 4.10. Effect of flow rate on oxygen uptake: Calculated oxygen uptake (normalized to
recovered cell number estimated by total RNA) was significantly higher in the high flow rates.
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3.4. Discussion:

Flow of blood in vivo, or of perfused medium in an in vitro system can directly provide

mechanical stimuli to cells in the form of shear stress. Within the liver, endothelial cells

and hepatic stellate cells are known not only to be major regulators of microvascular

pressure in the sinusoids (132) (75), but also to be affected by shear stresses as well. In

experimental studies, sinusoidal endothelial cells subjected to physiological levels of

shear stresses demonstrate an upregulation of various receptors such as VEGFR-1 and

VEGFR-2 (57). In our system in addition to flow rates close to physiological levels, we

additionally wanted to test the effects of higher levels of flow and its associated stress on

endothelial cells. High shear rates have also been demonstrated to have effects on other

non-parenchymal cells. In stellate cells, shear stress by the sinusoidal stretching effect of

increased blood flow is known to induce increased TGF-3 formation and consequent

activation (58). In cultured endothelial cells, fluid shear has been demonstrated to induce

transforming growth factor beta-i transcription and production (133).

Our experiments conducted in over three different biological replicates consistently

demonstrated opposing effects of a high flow rate on endothelial and stellate cell numbers

(as evidenced by immunostaining). The SE-1 staining pattern of endothelial cells that

decreased in high flow rates was simultaneously accompanied by an increased expression

of CD 31, a known marker of dedifferentiation in these cells (34). This finding is similar

to the phenomenon of capillarization (where sinusoidal endothelial cells dedifferentiate

and lose their phenotype) seen in vivo in cirrhosis and pathologic conditions (134) or

induced in vitro by certain toxins (135). Presence of serum and additional growth factors

in the medium was found to enhance SE-1 + survival in our experiment. This is expected
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given the beneficial effects of the exogenous VEGF in the mixed medium. However it

was interesting to note that even in the reactors containing only HGM (without

exogenous VEGF or serum), the 3-D co-cultures with hepatocytes at low flow rates

supported the survival of these cells. This points to the potential beneficial effects of the

other cell types in the system (either by direct spatial contact or by paracrine regulation)

supporting the sinusoidal endothelial cell survival under perfusion rates that lie closer to

the physiological regime.

Though there are a lot of reports of increased pressure and shear in portal

microcirculation as a result of stellate cell activation in fibrosis, no one has studied the

effects of shear stress on activation of hepatic stellate cells. In our experiments we

uniformly found a direct relation between increasing flow rates and stellate cell

proliferation and activation (as evidenced by the GFAP and SMA staining patterns in our

cultures). Though the mixed media increased the level of overall activation (once again

on account of the presence of serum exogenous growth factors), the difference between

the flow rates was maintained. A possible hypothesis about the increased proliferation

and activation of stellate cells could be effects mediated through TGF -P induction since

the mechanical stresses of increased flow rates, are known to increase TGF -P, a known

and established player in the activation process of stellate cells (75,136).

The oxygen measurements across both the flow rates confirmed our earlier modeling

predictions and the linked the variable of oxygen concentration with flow rates in our

system. Lower flow rates are associated with a larger difference between inlet and outlet

oxygen concentrations in the medium (across the height of tissue), probably due to the

increased transit time. Consequently we also note relatively hypoxic concentrations at the
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outlets in the low flow reactors. The consistent observation of localization of SE-1

staining cells at the upper end of the tissue in the low flow reactors could possibly

correlate with the constant relatively hypoxic outlet concentrations seen in the same

groups. When normalized to cell number, oxygen uptake rates by the cells are found to be

higher in the high flow rates probably related to the increased volume of medium flowing

through the tissue per unit time. These values are also slightly higher than those reported

in literature using two dimensional in vitro models (137).

Given the differences in oxygen patterns across the two flow rates, it was important to

parse out the effect of flow from oxygen on the non-parenchymal cells in our system. The

next chapter describes the experiments that we conducted to solve this problem.
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Chapter 4.

Uncoupling The Effects Of Oxygen And Flow
On

Non-Parenchymal Cell Survival And Phenotype.
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4.1.Overall rationale

Though our earlier experiments generated interesting observations about the effect of

flow on non-parenchymal cell phenotype and survival, they also demonstrated that the

different flow rates were coupled with differences in oxygen concentrations, making the

observed effects hard to comprehend. In an attempt to uncouple the effects of flow from

oxygen, we wanted to carry out experiments in a setup where we could decrease the

differences in oxygen concentration arising due to different flow rates. One way to

achieve this was to make the overall environment more hypoxic which would decrease

the inlet concentrations, and thereby possibly reduce the differences between inlet and

outlet.

4.2. Materials and Methods

4.2.1. Setting up co-cultures:

The experimental layout has been schematically depicted in Fig 4.1. Wild type

hepatocytes and GFP + endothelial cells were isolated as described before and co-culture

spheroids were produced in spinner flasks containing mixed medium (a combination of

HGM and EGM-2 in 1:1 v/v). Day 2 spheroids were then seeded into two separate multi-

well reactors and set up in two different incubators containing 10% and 20% 02

environments. The flow in the reactors was maintained in the downward direction

through the channels for the first 8 hours, following which the direction was reversed.

After reversal of flow, one row of wells in each multi-well plate (6 reactors) was

maintained at an upward flow rate of 1 dl/channel/minute while the other row was set at

0.2 gl/channel/minute.
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Rat 1 (WT)

/- Purified hepatocytes
- -* !

48 hour spheroids
formed in 'mixed'
media and seeded

into separate
reactors.

..................................................................

Cultured for 10 days
under different flow
rates and oxygen
environments.

Rat 2 (GFP) Purified endothelial cells

V\
* Tissue stained for

NPC markers and
imaged at end
point.

* Oxygen
measurements,
total RNA done at
end point.

20% 02, 5% CO2
and 370C

Mixed medium on day 1 followed by
only HGM

10% 02, 5% C02
and 370C

High
Flow

Low
Flow

Mixed medium on day 1 followed by
only HGM

Fig 4.1. Experimental Design to evaluate effect of medium and flow:
(A) Two day co-culture spheroids prepared from wild type hepatocytes and GFP + endothelial
cells isolated from two perfusions were seeded into the scaffolds in 2 reactors and maintained
under different oxygen environments for 10 days. (B) Multiwell layout for simultaneous evaluation
of two flow rates and oxvaen concentrations.
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The reactors were maintained at 370C and 5% CO 2 and medium was changed every 24

hours for the entire duration of the culture. After the first day, only HGM was used as

medium in all the wells. Cultures were monitored for 10 days by phase contrast and

fluorescent microscopy. At the end of the experimental period, oxygen measurements

were made from two reactors in each incubator at each flow rate, followed by harvesting

of the same scaffold for cell number estimation by total RNA. Three other wells were

fixed and stained for the various non-parenchymal cell markers while one was used for

live dead staining to assess overall viability of the cultures.

4.2.2. Staining for NPC markers and confocal microscopy:

Non-parenchymal cells in the tissue in each of the conditions at the end of the

experimental period were characterized as described in the previous chapter. Briefly the

scaffolds were fixed in 2% paraformaldehyde for 45 min and cut into multiple segments.

These segments were permeabilized with 0.1% Triton-X for 30, mins, washed with PBS

and blocked with 5% goat serum for an hour. After overnight incubation with primary

antibodies for the various non-parenchymal cell markers, they were washed with 2%

BSA in PBS, and incubated with secondary antibody, goat-anti-mouse Cy3, for an hour

before washing and placing in chamber slides for confocal microscopy. Spinning disc

confocal microscopy was done as described earlier and from z-stacks of images, 3-D

composite images were reconstructed Image acquisition and 3-D reconstruction were

performed by using both Metamorph software (Universal Imaging) and Imaris.

4.2.3. Oxygen Measurements And Total Cell Number By RNA Estimation:

Oxygen measurements were made from two of the reactors at each flow rate and oxygen

environment as described earlier using the PreSens Oxy-4 system and custom 02 dipping
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Probes (v 1.01). Probes were calibrated prior to use with air-saturated water and Oakton

Zero Oxygen Solution and measurements were made in the reservoir and reactor sides of

the system to reflect inlet and outlet concentrations respectively. The sterilized probes

were fitted on the lid of the multiwell system, and immersed at a uniform depth in the

medium of all the wells being measured. Multiple measurements from each well were

recorded using the Oxy 4 software until a steady state measurement was reached. Data

was exported into excel format for analysis. Total RNA to estimate the total cell number

was isolated from the scaffolds of the wells where oxygen measurements were made, to

normalize the measurements. One mL of Trizol (Invitrogen) was added directly to the

removed scaffolds in 6 well plates. RNA isolation was performed using the RNeasy mini

kit (Qiagen) according to manufacturer's protocols (for details refer to appendix). The

concentration and quality of purified RNA was determined by assessing the ratio of

absorbance at 260nm to 280nm.

4.3.Results:

The data shown below represent results seen over two biological replicates.

4.3.1. Overall tissue formation:

Over the period of the study, observing the channels in the reactors by phase contrast and

fluorescence microscopy showed the overall tissue formation in the hypoxic (10%

oxygen) reactors to be appearing relatively sparser as compared to the normal oxygen

(20%) reactors. This was later confirmed by the quantification of cell numbers as

estimated by total RNA. The live dead images also showed that the overall viability in the

hypoxic group was lower than regular oxygen concentrations (data not shown).
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4.3.2. Non parenchymal cell staining and oxygen measurements:

The staining results at the higher 02 (20%) environmental concentration reproduced what

we had consistently seen in our earlier experiments at that oxygen level. Enhanced

survival of SE-1 + cells was seen at low flow rates and increased stellate cell activation

and proliferation was noted at the high flow rates (Figs.4.2 A &B and 4.3., A & B

respectively). However, at the lower 02 environment, the differential effect of flow rate

on endothelial cell survival seemed to disappear, and we found SE-I+ cells at both the

flow rates (Fig 4.2. C & D). On the other hand, the staining pattern of stellate cells

seemed unaffected by the hypoxic conditions and showed the same trend (increased

proliferation and activation in higher flow rates) in both the oxygen environments (Fig

4.3.).

On measuring the oxygen concentration in the different flow rate reactors (Fig 4.4. A),

those maintained in a high oxygen environment showed the same trend as consistently

noted earlier (relatively lower oxygen outlet concentrations and greater difference across

the tissue in the low flow group as compared to high flow group). However

measurements done in the in the low oxygen environment, found the outlet

concentrations for both the flow rates to be in the hypoxic range even though the inlet

concentrations were higher. The oxygen uptake rates calculated as the product of the

difference in concentration across the tissue (normalized to cell number) and the flow

rate, was higher in the higher flow rates for both environments (Fig.4.4 B.), though not to

a factor of 5 times - the flow rate difference. The uptake values for each flow rate were

lower in the high oxygen groups as compared to the corresponding values of the same

flow rate in the hypoxic group.
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Low Flow
(0.2 pil/channellmin)

High Flow
(1 pllchannellmin)

Fig 4.2. Uncoupling the effect of oxygen and flow rate on sinusoidal endothelial cell survival and
phenotype. Confocal images of SE-1 (red) stained co-cultures from single representative
channels of reactors in either 10% oxygen (A & B) or 20 % oxygen (C & D) with flow rates of
either 0.2 pl/channel/min (A & C) or 1 pl/channel/min (B & D). While low flow rates aided the
survival of SE-1 + cells at high (20%) oxygen environments, at lower oxygen environments, this
effect low flow rate on SE-1 + cell survival was lost. Scale bar 50 ipm
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(0.2 gl/channellmin) (1 gl/channellmin)

Fig 4.3. Uncoupling the effect of oxygen and flow rate on stellate cell proliferation. Confocal
images of SMA (red) stained co-cultures from single representative channels of reactors in
either 10% oxygen (A & B) or 20 % oxygen (C & D) with flow rates of either 0.2
pl/channel/min (A & C) or 1 pl/channel/min (B & D). Activation and proliferation of stellate
cells was increased by high flow rates regardless of the oxygen concentrations. Nuclear
staining with Draq 5 (blue) is additionally shown in this image. Scale bar 50 pm
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Fig 4.4. (A) Effect of oxygen environment on oxygen differences across tissue at different flow
rates. Values for outlet concentrations at both flow rates in the low oxygen environment were in
the hypoxic range and the concentration differences across the tissue were approximated for
both rates. Values for high oxygen environment showed the same trend as seen earlier
(relatively lower oxygen outlet concentrations and difference across the tissue in the low flow
group as compared to high flow group). (B) Oxygen utilization rates calculated as the product of
the difference in concentration across the tissue (normalized to total cell number) and the flow
rate, was higher in the high flow rates. Overall utilization rates in the high oxygen groups were
lower as compared to the hypoxic groups.
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4.4. Discussion:

Our experiments were planned in two different environments; the normal environment

we routinely use in our cultures (with 20 % 02), and an artificially hypoxic environment

(with 10% 02). This was done with the aim of decoupling the effects of the oxygen

differences seen in reactors with different flow rates, from the direct effects of flow itself.

Measurement of oxygen concentrations in the reactors and reservoirs from the two

environments showed that we were successful in achieving this aim. Staining results from

two biological replicates showing that in a hypoxic environment, the SE-1 expression is

maintained at both high and low flow rates, went hand in hand with low outlet

concentrations seen at both the flow rates. This implies that the low oxygen

concentrations may be a factor responsible for endothelial survival and SE-1 expression.

The correlation of hypoxia with endothelial cell survival is strengthened by the fact that

hypoxia is well known to upregulate VEGF in most cell types including hepatocytes,

mediated via hypoxia inducible factor- alpha (HIFI- a) (138). So it is possible that the

indirect effects of relative hypoxia seen at the higher flow rates in the low 02

environment might be responsible for overcoming any potential inhibitory effects such as

loss of phenotype that the effects of high flow rates can have on the endothelial cells

(possibly mediated through the effects of increased mechanical stresses and TGF-13). As

expected from previous experiments, the sinusoidal endothelial cells in the normal

oxygen environment continue to survive in a differentiated state and express SE-i only in

the lower flow reactors on account of the combined effects of hypoxia as well as the

mechanical stimuli from flow rates in the physiological range.
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In our experiments the hypoxic environment did not seem to reverse the consequences of

high flow on stellate cells. We saw the same pattern of differences between both the flow

rates regardless of the oxygen in the environment. This can be explained by the fact that

the changes seen with high flow and corresponding increased mechanical stresses in

stellate cells (activation and proliferation), which are mediated by TGF-3, would be

unaffected by the hypoxic environment since the hypoxia induced VEGF increases would

not be expected to counter these effects. On the contrary, according to recent reports

hypoxia could potentially further increase TGF-P levels in stellate cells leading to

activation (139). The postulated mechanism and interactions by which flow and oxygen

affect the survival of non-parenchymal cells in our system has been summarized in Fig

4.5.

Another interesting finding is that while the cells in the normal oxygen environment

show measured oxygen uptake rates similar to what has been previously reported in

literature (137), the cells in a hypoxic environment display a markedly higher uptake of

oxygen when normalized to cell number (Fig 12.B). The explanation for this

phenomenon could be due to upregulation of various metabolic and respiratory genes in

hepatocytes induced by hypoxia, a finding that has already been reported in literature

(140). This would also explain why the calculated difference in oxygen uptake between

the low and high flow rates is not to the same extent as the factor of flow rate difference.
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Fig 4.5. Postulated interrelationship of flow and oxygen effects on non-parenchymal survival
and phenotype: (A) In a normal oxygen environment, the low flow rate gives rise to positive
stimuli for SE-1 survival and phenotype by relative hypoxia as well as physiological shear cues.
Higher flow rates are associated with high shear effects, TGF-0 upregulation and its effects on
SECs (loss of phenotype) and stellate cells (activation and proliferation). (B) However in a
hypoxic environment, the relative hypoxia effect is seen at both the flow rates overcoming the
effects of TGF-0 upregulation on sinusoidal endothelial cells. Stellate cells are unaffected by
the oxygen effects and continue to be activated by high flow rates.
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Though we have parsed out the effects of flow and oxygen, and suggested that the low

flow rate effects are mediated by the hypoxia, it would also be interesting to examine the

suggested high flow effects that we postulate are mediated by TGF-P3. The following

chapter addresses this and looks at the effect of inhibiting this molecule in our system

across both the flow rates.
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Chapter 5.

Effect Of TGF-3 Inhibition On
Non-Parenchymal Cell Survival And Phenotype.
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5.1.Overall rationale

Our experiments with flow rate and oxygen (described in chapter 4) demonstrated that

inhibitory effects of high flow rates on sinusoidal endothelial cells could be overcome by

creating a hypoxic environment, possibly due to a compensatory upregulation of other

factors. However it was also of interest for us to see if directly inhibiting the cytokine

transforming growth factor beta, which we postulated to be responsible for the effects of

high flow and shear, could achieve the same effect. After researching literature on

different inhibitors, we chose a compound SB- 431542, known for its property to inhibit

TGF-3 and designed experiments to test its effects in our system.

5.2. System Modifications from earlier experiments

There were a couple of differences in the current set up compared to our earlier

experiments. We chose to seed our reactors with freshly isolated cells instead of

spheroids in an attempt to overcome the limitations of low endothelial cell incorporation

and stellate cell activation that was known to occur prior to introduction of the spheroids

into our reactor. Another difference was in the design and overall number of cells seeded

into each reactor (Fig 5.1).

Reactor Reservoir Reactor Reservoir

125 channels 800 char

Narrow surface channel Wide surface channel

Fig 5.1. Reactor design modifications for larger array scaffolds used in current experiments
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The multi-well reactors that we used in our earlier spheroid experiments contained about

125 channels. In the current experiment, the scaffolds had a much higher number of

channels per scaffold (about 800). To compensate for the increased requirement of

oxygen mass transfer resulting from the larger number of cells seeded into each reactor,

the surface channels connecting the reactor well to the reservoir (that allowed re-

oxygenation of oxygen during flow) were widened considerably.

5.3.Materials and Methods:

5.3.1. Setting up co-cultures:

Wild type hepatocytes and GFP + endothelial cells were isolated from different animals

using the isolation procedures described earlier. Mixed medium containing freshly

isolated cells (300,000 hepatocytes and 600,000 endothelial cells) was seeded into the

scaffolds of each well of the multi-well reactor to fully pack the channels at the time of

seeding. Medium in the reactors was changed every 24 hours and the filter from the

reservoir side was replaced after the first day to remove any cells that could have

potentially floated over during seeding. For the first 2 days we used mixed medium in

our cultures, following which only HGM was used. The flow in the reactors was

maintained in the downward direction through the channels for the first 12 hours,

following which the direction was reversed. After reversal of flow, one row of wells in

the plate (6 reactors) was maintained at an upward flow rate of 1 gl/channel/minute while

the other was set at 0.2 dl/channel/minute. For each flow rate, in two wells we added the

TGF-j3 inhibitor SB-431542 into the medium at a concentration of 1 pM. The cultures

were maintained for 2 weeks at regular oxygen levels of 20%, 5% CO 2 and 370C. During

the course of the experiment, the cultures were observed by phase contrast and
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fluorescent microscopy. At the end of the 2-week period, scaffolds from 2 wells each

from each flow rate, either with or without the added inhibitor were fixed and stained for

non-parenchymal cell markers. Oxygen measurements were made from the remaining

wells in the system along with estimation of total cell numbers. The experimental layout

has been schematically depicted in Fig 5.1 A & B.

Rat 1 (WT)

r Purified hepatocytes Wildtype hepatocytes and GFP +
endothelial cells seeded into

reactor in 1: 2 ratio
.................................... I............................................. ......... ...............

Rat 2 (GFP)

A

Purified endothelial cells

Without TGFI

High
Flow

Low
Flow

With TGFI

Fig 5.1. Experimental Design to evaluate effect of TGF-p inhibition:
(A)Freshly isolated wild type hepatocytes and GFP + endothelial cells were seeded into the
scaffolds in the reactor and maintained for 2 weeks. (B) Multiwell layout for evaluating effect of
TGF-P inhibition.
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5% CO 20% 02
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5.3.2. Staining for NPC markers and confocal microscopy

Non-parenchymal cells in the tissue at the end of the experimental period were

characterized as described previously. Briefly, the scaffolds were fixed in 2%

paraformaldehyde for 45 min and cut into multiple segments. These segments were

permeabilized with 0.1% Triton-X for 30, mins, washed with PBS and blocked with 5%

goat serum for an hour. After overnight incubation with primary antibodies for the

various non-parenchymal cell markers, they were washed with 2% BSA in PBS, and

incubated with secondary antibody, goat-anti-mouse Cy3, for an hour before washing and

placing in chamber slides for confocal microscopy. Spinning disc confocal microscopy

was done as described earlier and from z-stacks of images, 3-D composite images were

reconstructed. Image acquisition and 3-D reconstruction were performed by using both

Metamorph software (Universal Imaging) and Imaris.

5.3.3. Oxygen Measurements And Total Cell Number By RNA Estimation:

Oxygen measurements were made from two of the reactors at each flow rate and oxygen

environment as described earlier using the PreSens Oxy-4 system and custom 02 dipping

Probes (v 1.01). Probes were calibrated prior to use with air saturated water and Oakton

Zero Oxygen Solution and measurements were made in the reservoir and reactor sides of

the system to reflect inlet and outlet concentrations respectively. The sterilized probes

were fitted on the lid of the multiwell system, and immersed at a uniform depth in the

medium of all the wells being measured. Multiple measurements from each well were

recorded using the Oxy 4 software until a steady state measurement was reached. Data

was exported into excel format for analysis. Total RNA to estimate the total cell number

was isolated from the scaffolds of the wells where oxygen measurements were made, to
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normalize the measurements. One mL of Trizol (Invitrogen) was added directly to the

removed scaffolds in 6 well plates. RNA isolation was performed using the RNeasy mini

kit (Qiagen) according to manufacturer's protocols (for details refer to appendix). The

concentration and quality of purified RNA was determined by assessing the ratio of

absorbance at 260nm to 280nm.

5.4. Results:

The data presented below is the result of one experiment. Replicate experiments are

currently ongoing.

5.4.1. Overall tissue formation:

The cultures were followed microscopically for the course of the experiment (2 weeks),

and no differences in pattern were seen between the groups with or without the presence

of the TGF-3 inhibitor SB-431542. However all the groups showed an overall uneven

distribution of tissue in the 800 channel scaffolds as compared to the earlier 125 channel

scaffolds we had used previously. Unlike the earlier experiments where almost all the

channels were filled with tissue, there were a lot of packed channels in this case

interspersed with some empty ones.

5.4.2. Non parenchymal cell staining and oxygen measurements:

Staining of the cultures for the non-parenchymal cell markers showed that addition of

SB-431542 reversed the effects of high flow on SECs at a concentration of 1 jtM. As a

result, a high amount of SE-1 staining was seen even in the high flow groups. The images

from the low flow groups also showed an abundant amount of SE-1 staining, with even

the layer of cells that were adhered on the surface of the scaffolds staining for the marker.
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Though the high flow rate group without the presence of inhibitor did not stain for SE-1,

the overall SE-1 staining pattern in the low flow group without added inhibitor was also

lower than that seen at the same flow rate in our earlier experiments.

Addition of SB-431542 at a concentration of 1 giM seemed to have no effect on the

stellate cells in both the flow groups, which demonstrated the same SMA and GFAP

staining patterns as noted in the earlier experiments (data not shown).

Measurement of oxygen concentrations from wells demonstrated the same trend in

differences as noted earlier between the two flow rates with higher differences seen in the

low flow group. However, both the inlet and outlet concentrations at both the flow rates

were higher than noted earlier for flow experiments carried out in the previous reactor

designs at the similar oxygen levels in the environment. The oxygen uptake rates also

followed the same trend as seen earlier, with higher uptake noted in high flow rates.
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Low Flow
(0.2 ullchannellmin)

High Flow
(1 pl/channel/min)

Fig 5.2. Effect of TGF-B inhibition on flow rate effects on sinusoidal endothelial cell survival and
phenotype. Confocal images of SE-1 (red) stained co-cultures from single representative
channels of reactors either without SB (A & B) or1 mol SB (C & D) with flow rates of either 0.2
pl/channel/min (A & C) or 1 IlI/channel/min (B & D). Scale bar 50 prm
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Fig 5.3. Effect of flow rate on oxygen concentrations and uptake in modified reactor
system:
(A) Observed concentrations in both reactor and reservoir sides were substantially higher
than those seen with the previous design. (B) Calculated oxygen uptake (normalized to
recovered cell number estimated by total RNA) followed the earlier observed trend and was
higher in the high flow rates.
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5.4. Discussion:

After the results from our previous experiments demonstrated that the effects of high

flow rates could be overcome in a hypoxic environment, the current set of experiments

were aimed at exploring the mechanistic aspect of high flow rates by directly inhibiting

the cytokine we suspected to be responsible for its effects. Shear stresses are associated

with TGF-31 production in endothelial cells (133,141). TGF -l1 is known to stimulate

the synthesis of basement membrane proteins laminin, collagen type IV and entactin (35)

in rat liver sinusoidal endothelial cells (signs of loss of sinusodal endothelial phenotype)

and is a major cytokine involved in the activation of stellate cells (75). The sources and

effects of TGF--1 in an in vitro perfused system have been depicted in Fig 5.4.

Fibroblastic
Stellate 4 transformation,

£' ,. I.• a . .

Fluid
Shear
Stress

Cells ECM

I

/ overproduction

Synthesis of
WO

Endotelia basement
A Cells membrane

proteins laminin,
Other Stimuli collagen type IV

Oxidative stress, and entactin
Substrate rigidity,
ExtracellularMatrix

Fig. 5.4. Possible sources and effects of TGF-3 in an in vitro hepatic system. TGF-3 is known
to induce effects associated with dedifferentiation in SECs and activation in stellate cells

We chose to explore the mechanistic aspect by examining the role of inhibition of TGF-3

on the effects seen with high flow rates. We picked a TGF-0 inhibitor, SB-431542, which

is known to inhibit the activity of TGF-P1 activin receptor-like kinases (ALKs), and is

selective specifically for ALK-4 (activin type I receptor), ALK-5 (TGFP type I receptor),

and ALK-7 (nodal type I receptor) (142). Studies using embryonic stem cell derived

endothelial cells (143,144) have shown that it stimulates their proliferation and
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differentiation and induces sheet formation at a concentration of 1 iM. Another study

(145) demonstrated its ability to prevent TGF-3 induced stimulation of collagen,

fibronectin, plasminogen activator inhibitor 1, and connective tissue growth factor gene

expression, as well as TGF-3 autoinduction, and myofibroblast transdifferentiation in

dermal fibroblasts, when used in a concentration of 10 gM. So far there are no reported

studies looking at its effects on adult sinusoidal endothelial cells or hepatic stellate cells.

We carried out flow rate experiments using SB-431542, with an additional modification

of seeding using freshly isolated cells instead of spheroids, in an attempt to maximize the

SE-1 positive cells and minimize the activated stellate cells we introduce into the system

at time zero. Staining results from day 13 demonstrated that SB-431542 reversed the

effects of high flow on SECs at a concentration of 1 giM, with a high amount of SE-1

staining seen in the cultures. This lends support to the postulated TGF-3 mediated

negative effects of high flow. The SE-1 staining pattern in the low flow group was also

increased dramatically as a result of use of SB-431542, possibly due to antagonism of

TGF-3 produced by non-flow stimuli such as oxidative stress, extracellular matrix,

substrate rigidity etc.

The results from our oxygen measurements showed a higher level of saturation of the

media compared to the earlier spheroid experiments with similar flow rates. This could

possibly be due to two reasons. Our system design modifications that were aimed at

ensuring oxygen transfer was enough to sustain the much higher number of cells used

were effective in doing so. Secondly the overall packing of channels in a large array

scaffold at the seeding density used was not as uniform as that we achieved for the

smaller array with spheroids. As a result the interspersed empty channels allow some

medium to pass through the scaffold without getting stripped of oxygen providing

reservoir and reactor side oxygen values that higher than our earlier experiments at the

same flow rates. However the higher oxygen concentrations were beneficial for the

purpose of this experiment since we were focusing on reversing the high flow rate effects

and any degree of hypoxia could have potentially confounded our results. The postulated

mechanism by which SB-431542 acts in our set up have been summarized and

represented in Fig 5.5.
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At the dosage used (1 rtM) , SB-431542 showed no demonstrable effect on stellate cell

activation by high flow. This could possibly be due to the fact that most published studies

using this compound show that a dosage an order of magnitude higher is required to

counteract activation due to TGF-13 in similar cell types like dermal fibroblasts (145,146).

This necessitates future experiments using a higher dosage of SB-431542 to in our

system to evaluate its role in preventing stellate activation under high flow rates.

Relative HIF-lat

Low hypoxia VEGFTLow (- at outlet VEGF

flow
SPhysii
shear

r I--------
High oxygen
environment

High
High -+ Shear-
flow effects

High level
_._t

•
'1- -•

Fig 5.5. Effects of TGF-3 inhibition on effects of high flow on non-parenchymal survival and
phenotype. SB-431542, a TGF-P 1 inhibitor was found to reverse the effects of high flow on
SECs at a concentration of 1 pmol. At the same dosage it showed no demonstrable effect on
stellate cell activation by high flow.

The above set of experiments has been completed once and results are awaited from a

second set of biological replicates.
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Chapter 6:

Summary of Conclusions
and

Future Directions
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6.1. Summary of Conclusions

At the outset, our objective was to design an in vitro system that fostered the survival of

differentiated sinusoidal endothelial cells by recreating a three dimensional environment

recapitulating the necessary stimuli arising out of in vivo heterotypic cell-cell contact as

well as paracrine interactions. We also wished to provide the necessary stimuli that liver

cells experience in vivo in the form of shear stresses arising from the flow of blood

through the tissue and solute gradients due to circulatory patterns, and evaluate their

effect on the survival and phenotype of non-parenchymal cells.

The results of our initial flow experiments with two different flow rates (a lower 0.2

dl/channel/min close to physiological values, and a higher 1 tl/channel/min

representative of pathological conditions such as cirrhosis and portal hypertension) and

medium with or without addition of serum and exogenous growth factors showed us that:

* Lower flow rates closer to physiological regimes allow the survival of SE-1

expressing sinusoidal endothelial cells, regardless of the presence of serum and

exogenously added growth factors in the medium.

* Higher flow rates, presence of serum and exogenous growth factors in the medium,

and scaffold contact were associated with increased proliferation and activation of

stellate cells

Though the results showed that microscale flow rates play a significant role in

maintaining the balance of non-parenchymal cells, oxygen measurements in the system

showed that low flow rates were consistently associated with hypoxic tissue outlet

concentrations. This made it important to determine whether the observed effects with
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different flow rates were the result of the flow per se or the associated oxygen

concentrations and gradients seen across the tissue. In order to decouple these variables

we repeated the flow experiments in a normal oxygen environment as before (with 20%

02) and a relatively hypoxic environment (with 10% 02). As a result of limited saturation

of the medium in the hypoxic environment we were able to achieve lower outlet

concentrations even in the high flow rate reactors effectively decoupling the flow and

oxygen variables. The experiments from this set of experiments showed us that:

* Retention of SE-1 staining cells was seen even both the flow rates demonstrating that

endothelial survival and phenotype at low flow rates was more a function of the

hypoxic concentrations, and inducing hypoxic conditions at higher flow rates could

even compensate for and overcome any negative effects brought about by direct

effects of the flow.

* The relationship of stellate cells with flow rate was unaffected by oxygen

concentrations.

While we theorized that hypoxia was helping us overcome negative effects of high flow

on sinusoidal endothelial phenotype, we still needed to explore whether the negative

effects were mediated by transforming growth factor-beta (TGF-P) that is known to be

induced as a result of increased mechanical stress. To achieve this, we added a TGF-P

inhibitor SB-431542 in our cultures and repeated the flow rate experiments under normal

oxygen concentrations. We found that:

* Inhibiting TGF-3 with SB-431542 at a dose of 1 pM greatly enhanced the presence of

SE-1 staining sinusoidal endothelial cells even at high flow rates suggesting that
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increased levels of the cytokine may have a role in the loss of phenotype of these

cells.

* At the current dosage used (1 uM), SB-431542 had no effect of decreasing the

effects seen on stellate cells.

In conclusion we successfully created a three-dimensional flow controlled hepatic culture

system that allows balanced survival of hepatocytes and non-parenchymal cells, making

it useful as a potential model for studies such as cancer metastasis that require

interactions between tumor cells and heterotypic host tissue.

Future Recommendations:

Our studies exploring the effect of flow on the survival and phenotype of SECs used SE-

1 (which is used as a staining marker of differentiation for SECs). It would be helpful to

confirm the findings of these studies with other phenotypic markers of differentiation

such as fenestrations that can be visualized by scanning electron microscopy.

Since our experiments using SB-431542 were aimed at inhibiting the postulated TGF-0

effects on SECs at high flow rates, we used a dosage of 1 ptM. At this dose, it did not

seem to affect stellate cell activation. Published literature using the same compound for

decreasing dermal fibroblast activation by TGF-0 use a ten fold higher dosage. It might

be interesting to plan experiments in our system and evaluate its ability to inhibit stellate

cell activation at high flow rates using that dosage, the findings of which could have

bearing for its use in cirrhosis.
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Appendix 1 - HGM formulation

HGM is made with the base medium DMEM (Gibco 11054-020) with the additives listed

below. For every 500mL bottle of DMEM add the following:

Chemical name Amount Final Stock Order
to add concentration concentration information

L-proline 0.015g 0.03g/L N/A Sigma P-4655
L-ornithine 0.05g 0.1 g/L N/A Sigma 0-6503
Niacinamide 0.153g 0.305g/L N/A Sigma N-0636
D-(+)-glucose 0.5g 2g/L N/A Sigma G-7021
D-(+)-galactose Ig 2g/L N/A Sigma G-5388
Bovine serum albumin lg 2g/L N/A Sigma A-9647

Trace metal:
ZnCl2 5tl of stock 0.0544 mg/L 5.44 mg/mL

ZnSO47H20 5gtl of stock 0.075 mg/L 7.5 mg/mL
CuSO45H20 5gil of stock 0.02 mg/L 2 mg/mL

MnSO 4 5jtl of stock 0.025 mg/L 2.5mg/mL
***Sterile filter the solution and add the following***

Penicillin- 0.5 mL 10 unit/mL 10,000 unit/mL Sigma P-0781
Streptomycin 10 tg/mL 10 mg/mL

L-glutamine 2.5 mL 1 mM 200 mM Gibco 25030-
081

Insulin-Transferrin- 500 Il 5 mg/L 5 g/L Roche 1074547
Sodium Selenite 5 mg/L 5 g/L

5 gg/L 5 mg/L

Dexmethasone 400 jtl 0.1 pM 0.05 mg/mL Sigma D-8893

EGF 200 ptl 20 ng/mL 0.050 mg/mL Collaborative
40001
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Appendix 2 - Protocol For Isolation and Viability Test of

Hepatocytes

Materials:

Ice Bucket, Pre-Autoclaved Funnel with 300pm mesh, Trypan Blue, Hemostat and tissue

forceps, DAG [500 ml DMEM (Gibco 11054-020) with 1 gm of added bovine serum

albumin (Sigma A-9647) and gentamycin]

Procedure:

1. Prepare an ice bucket with 4- 50mL centrifuge tubes filled with 40ml DAG.

2. Obtain the liver from the perfusionist. Also take with you a flat ice pack, an

autoclaved funnel with 100- m mesh, and a hemostat and tissue forceps with tips

wrapped in sterile gauze.

3. In the hood, gently pour the liver with 30ml DAPS into a 100mm petri dish. Use the

hemostat and forceps to peel back the capsule on each lobe.

4. Use the hemostat to clamp down on the connective tissue of the liver, and gently

agitate the liver by knocking the hinge part of the hemostat on the sidewall of the petri

dish. Your other hand should hold the petri dish to prevent it from sliding off the ice pack

which may become slippery due to condensation. Try to keep most of the liver

submerged under liquid and pay attention not to squeeze the liver between the bottom of

the dish and the tip of the hemostat. The tip of the hemostat should not touch the bottom

of the dish.

5. Break more areas of the capsules if the liver is not breaking up well. Otherwise, when

the solution looks like the color of caramel, the shaking should be enough.

6. Prepare a clean 50ml tube and place the funnel into it. Place the remains of the liver on

the mesh with the hemostat. Use a pipette to transfer all liquid into the tube through the

mesh.
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7. Replace the liver in the Petri dish and wash again with 40mL DAPS to isolate all the

cells you can. Filter this as before into another 50mL tube.

8. Dispose of the mesh and the liver remains. Equilibrate the two tubes by pouring the

liquid back and forth between the two tubes. Pour down the walls of the tube to

minimize stress to cells.

9. Spin the two cone tubes of cell solution at 50g for 3 minutes at 40 C.

10. Remove supernatant (save it if NPC's are needed). Re-suspend the cell pellets with

fresh DAPS, 40mL per tube. Carefully pour each tube of DAPS into the tubes with the

cell pellet. Be careful not to let liquid directly land on top of the pellets. Tilt both tubes so

that the liquid is flowing slowly on the tube wall. After both 40ml tubes of DAPS are

transferred, cap the tube with cells and start re-suspending cells by rocking both tubes

gently. Do this until the pellet is completely in suspension.

11. Spin again at 50g for 3 minutes at 40C.

12. During this spin, prepare the Trypan blue: 700uL DAPS, 200ul Trypan blue.

13. Remove supernatant (save it if NPC's are needed). Re-suspend each cell pellet with

20mL of fresh DAPS. Make sure that when pipetting in the liquid, the liquid flows

slowly on the wall instead of hitting the pellets directly. Pour one tube of solution into the

other to consolidate down to one tube (about 45mL total).

14. Take 100tm from the tube and place it into the Trypan blue tube. Use the

hemacytometer to count the cell viability and cell concentration as the first final count.

Count all 8 squares.

15. Record on the Hepatocyte count document and save under the date.
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Appendix 3 - Protocol For Isolation and Viability Test of Primary

Liver Endothelial Cells

Materials:

PBS (Gibco 10010-031); Percoll (Sigma-Aldrich P-4937); EGM-2 (Cambrex CC-3162);

Hoechst (Molecular Probes H-3570); Sytox Orange (Molecular Probes S 11368)

Procedure:

1. Perform perfusion as described in appendix 2 but with the flow rate at 15mL/min.

2. After the perfusion, reserve supernatants from the first two 50g spins. Save the

hepatocyte pellets if desired.

3. During the spins in step 2, layer the Percoll. Prepare 30 mL of 50% Percoll by mixing

15mL Percoll and 15mL PBS in a 50 ml conical tube. Prepare 30 mL of 25% Percoll by

mixing 22.5mL PBS and 7.5mL Percoll divide equally into two conical tubes. Using a 10

ml pipette, draw up about 14.5mL of the 50% Percoll and place the pipette tip at the

bottom of the 25% Percoll. Very gradually load the 50% Percoll underneath the 25%

Percoll in order to get two distinct layers.

4. Spin the supernatants from step 2 at 100g for 5min at 240C. Reserve the supernatant

and discard the pellets.

5. Spin the supernatants from step 4 at 350g for 7 min. Discard the supernatant. Break up

the pellets before re-suspending them in a total of 20mL of PBS.

6. Very gently load 10mL of cell suspension on top of 25% Percoll in the bilayer.

7. Transfer the two tubes to the centrifuge without disturbing them. Set brake setting to 0

and acceleration to 1. (Centrifuge 5804R) Spin at 900g for 20min.

8. You can now see two rings of cells separated out. Carefully suction liquid until the

total level reaches 20mL removing the first ring. Collect 10 ml including the cell layer
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forming the second ring (at about 15mL mark) until about 10mL is left in the tube. You

should now have 20mL of cell suspension in PBS/Percoll collected from 2 tubes.

9. Add to this tube equal volume of PBS. Spin at 900g for 10min. Suction off the

supernatant, break up the pellet, and re-suspend the pellet in EGM-2.

10. Combine 900Cl of EGM-2, 2pl of Hoechst, 2Wl of Sytox Orange, and 100l of cell

suspension. Count in a Hemocytometer using the DAPI filter. Sytox orange (dead nuclei)

show up as bright green, and Hoechst (all live nuclei) show up as blue.

11. The cells are ready to be used.
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Appendix 4 - Protocol for Immuno-Fluorescent Staining of

Isolated Non-parenchymal Cells

Materials:

PBS (Gibco 10010-031), 2% paraformaldehyde (EMS) primary antibodies [SE-1 (IBL

America), CD31 (Chemicon), ED2 (Serotec), GFAP (Serotec), or SMA (Sigma)],

secondary antibody goat-anti-mouse Cy3 (Jackson ImmunoResearch), Hoechst nuclei

stain (Molecular Probes)

Procedure

1. Place sterilized glass coverslips in the wells of a 24-well plate and coat them with type

1 rat tail collagen (30 gg / mL) for 2 hours before aspirating off the excess solution.

2. Plate freshly isolated endothelial cell fractions on the collagen-coated glass slips at

300,000 cells per well.

3. Allow cells to attach to the coverslips for 4 hours and wash cells quickly with lx PBS.

4. Fix cells in 2% paraformaldehyde in PBS for 20 minutes to 1 hour at room

temperature. If staining cannot be done right away, store cells in PBS at 40C until ready

to stain.

5. Rinse cells in PBS.

6. Permeablize cells in 0.1% Triton-X in PBS for 30 minutes at room temperature.

7. Wash well with PBS.

8. Wash cells with PBG (0.5% BSA and 0.15% glycine in lx PBS).

9. Block with 5% Goat serum for 30 minutes at room temperature.

10. Wash well with PBG.

11. Add the appropriate primary antibody (SE-1, CD3 1, ED2, GFAP, or SMA) diluted in

PBG and incubate for 2 hours at room temperature.
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12. Wash well with PBG at room temperature.

13. Dilute secondary antibody (goat-anti-mouse Cy3) in PBG (1:100 dilution) and

incubate for 1 hour at room temperature. Cover with foil to avoid light exposure.

14. Wash with PBG.

15. Wash with PBS.

16. Incubate with nuclear stain (Hoechst dye) for about a minute and immediately wash

with PBS.

17. Mount cover slip with mounting medium and allow it to set.

18. Slides can be stored at 40C until ready to image.
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Appendix 5 - Assembly And Priming Of Multiwell Reactors

Materials:

1 Lid (A 96 Well Plate Lid works fine), .1Polyurethane Membrane, 1. Fluidic Plate, 1

Pneumatic Plate, 14 Hex Screws, 1 Hexdriver, 1. Reactor Controller, 50 mL warm mixed

medium (370C).

Procedure (Done entirely inside a sterile hood under sterile conditions)

Reactor Assembly:

1. Sterilize base of pneumatic plate by spraying ethanol being careful not to get it in the

fluidic channels.

2. Dry pneumatic plate and place polyurethane membrane on top of the pneumatic plate

aligning the holes in the membrane around the screw holes. Make sure to eliminate folds

and when handling the membrane, try to only touch the corners and keep the membrane

as sterile as possible.

4. Place fluidic plate over the pneumatic plate and membrane.

5. Flip the assembly over and make sure that the membrane covers all the fluidic

channels.

6. Tighten screws starting from the middle and working outward. Do not tighten all the

way first. Screw in all screws, and then go back and tighten until the membrane becomes

clear between the fluidic and pneumatic plates. This is a sign that you have a good seal.

7. Once you have a good seal, cover the fluidic plate with the lid; you are ready to prime

the reactor.

Priming the Reactor:

1. Fill each reservoir well with roughly 1.5 mL of mixed meedium.
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2. Connect the pump controller to the vacuum and pressure sources. Both gauges should

read 30 ± 5 kPa when flowing.

3. Connect the tubing from the controller to the reactor assembly.

4. Turn on the controller to UPWARD setting.

5. Begin flowing in the UPWARD setting.

6. Look to see if fluid is pumping into the reactor well.

7. Once you have verified that your system is functioning, fill reactor wells and make

sure fluid connects across the surface channel.

8. You should set up your reactor the day before and allow running overnight in incubator

and refreshing media before seeding cells.
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Appendix 6 - Protocol For Co-culture Spheroid Formation

Materials:

1 500 mL spinner flasks (Bellco Glass Vineland, NJ), Sigmacote (Sigma), Plastic funnel,
Glass beaker, 50jtm- and 300gtm-pore size filters (SEFAR America)

Procedure

1. Prepare the spinner flasks a day before the perfusion by coating its inner walls and

paddle attachments with Sigmacote. Let it air dry and rinse with milli-Q water. Autoclave

the flask with 100mL of milli-Q water for 45min of sterilization under the wet cycle.

6 6
2. Immediately after cell isolation, seed 40x10 endothelial cells and 20x10 hepatocytes

into the spinner flask with 100mL of mixed medium (containing 50 ml each of HGM and

EGM-2). Let it spin at 85rpm in the incubator set at 370C and 8.5% CO 2 for 48 hours.

3. Cut a 10cm x 10cm square of 50gtm filter and use a rubber band to secure it onto a

100mL glass beaker. Cut a 10cm x 10cm square of 300 pm filter and secure onto a plastic

funnel with autoclave tape. Wrap both in separate autoclave blue papers and autoclave for

at least 45min of sterilization under the dry cycle.

4. On the day of seeding, assemble and prime reactors as described in appendix 4.

5. In the sterile hood, fill a 100mm Petri dish with 30mL of mixed medium and set it on

an ice pack. On the side, prepare another 30mL of mixed medium in a 50mL tube and set

it on ice.

6. Using a 50 ml pipette, sieve the spheroids from the flask through the 300jm-filter

funnel into two 50mL tubes.

7. Pipette the contents from the 50mL tubes through the 50jpm-filter beaker to select out

all spheroids between 50jm and 300[tm in diameter.

8. Carefully remove the rubber band and invert and submerge the filter in the Petri dish.

Shake it in solution to release all the spheroids. Collect the solution into a 50mL tube.
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9. Spin at 40g for 2 minutes at 40C.

10. Remove supernatant and resuspend cells with the mixed medium set aside earlier.

Store it on ice.
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Appendix 7 - Setup and Seeding the Multiwell Reactors

Materials:

1 Assembled Reactor, Prior autoclaved components: Packed Filters (24), Gaskets (12),

Filter Supports (12), Glass Dish (1), Sterile Tweezers (1) and Tamping Tool (1), Prior

ethanol sterilized polycarbonate scaffolds that are soaked in Type 1 rat tail collagen (30

gtg / mL) for 2 hours and dried for an hour (12), P1000 Pipette, Wide Orifice Tips,

Reactor Controller, Spheroids OR cell isolates, Mixed medium, Sterile PBS,

Procedure (Done entirely inside a sterile hood under sterile conditions)

Setting Up Reactor Wells:

1. Place all filter supports in 50 mL Falcon Tube.

2. Fill Falcon Tube with PBS and tap the bottom of the tube to remove trapped bubbles

from filter supports.

3. Place all gaskets in dish of PBS.

4. Place gaskets in all of the reactor wells. Push down with tamping tool.

5. Pour filter supports into glass dish or 90 mm petri dish.

6. Place filter support in all reactor wells with concentric rings facing up.

7. Push down with tamping tool.

8. Rinse filter gently in PBS and then place one filter in all wells.

9. Rinse scaffolds gently in PBS, and gently place one in each reactor well.

10. Put one retaining ring in each well. Push them down firmly enough to ensure that the

ring is tight and the path of the fluid is through the filter and scaffold and not around it.
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Seeding Spheroids/Cells

1. Aspirate as much media as possible from both the reactor and reservoir leaving a thin

layer of media above the scaffold in the reactor well and the filter in the reservoir well as

to not introduce air bubbles beneath the filter.

2. Add back cold, fresh medium to the reactor well only. Do not create a fluidic

connection between the reactor well and reservoir well.

3. Make sure that the reactor is set for downward flow through the scaffold.

4. Pause flow

5. Using a P1000 pipette, hold pipette straight up and slowly pipette the desired amount

of the spheroids/ cell suspension in a pattern over the scaffold.

6. Check seeding under microscope. If poorly distributed, using the wide orifice tips

aspirate from periphery in a circular motion and pipette over channels again

7.Resume downward flow and fill reservoir to fill line with media (approximately 2.5 mL

- 2.7 mL). Make sure that you have no dry spots across the fluidic channel.

8. Set the controller for reverse flow and select a flowrate. Set a reversal time of 8 hours.
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Appendix 8 - Maintaining And Disassembling The Multiwell

Reactors

Materials:

1 Assembled Reactor, Prior autoclaved components: Packed Filters (12), 10 ml pipette,
Aspirator, Sterile Tweezers (1) and Tamping Tool (1), Petri Dish (2), 1% BSA Solution

Reactor Controller, 50 ml medium warmed to 370C (HGM or mixed depending on

experiment design), Sterile PBS, Hexdriver, Bleach solution, 1-3% 7X Solution

Procedure (Done entirely inside a sterile hood under sterile conditions)

Changing Reservoir Side Filters (only 24 hours post seeding) and Medium (Every Day):

1. Soak 12 new filters in petri dish filled with 1% BSA Solution.

2. Remove the reactor from the incubator and transfer it carefully to the hood without

spilling media from the channels.

3. Under the hood, remove the lid from the reactor and aspirate off any media from the

lid and on the surface of the reactor plate. Aspirate media from the reservoirs by taking

your aspirator tip and bringing it to the top of the retaining ring and aspirating off the

media. Be careful to not aspirate off media to the point of creating air bubbles under the

filter as this interrupts the flow through the reactor.

4. Aspirate media from reactor wells by taking your aspirator tip near the wall of the

reactor well. Be sure not to aspirate media directly from above the cells. Be sure to leave

approximately 1 - 2 mm of media above the cells as to not disrupt them significantly.

5. (Done only 24 hours post seeding) Remove retaining ring from reservoir side, and

place aside in petri dish filled with PBS. Remove filters from reservoir and discard.

Gently place new BSA-soaked filters in reservoir. Tamp in place. Put one retaining ring

in each well, and push down firmly with tamping tool to ensure tight fluidic seal.
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6. Put 2.5 ml of new warm media in each reservoir well being careful to keep your pipette

clear of bubbles. Make sure that you have no dry spots across the fluidic channel as this

will disrupt oxygen transport.

7. Cover your reactor and return your reactor to the incubator.

8. Make sure the pressure and vacuum gauges are set between 30 + 5.

Harvesting Samples from the Reactor

1. Stop the controller. Remove the retaining ring from above the scaffold.

2. Gently grab both sides of the scaffold with a tweezers and remove scaffold for the

analyses your experiment requires.

3. Remove remaining reactor components and place in bleach solution.

4. Perform a mechanical diagnostic to verify that flow rates in all wells were functional

and accurate. Aspirate media from reactor well and the bridge between the reactor and

reservoir wells and then from reservoir wells making sure to not introduce air bubbles in

pumping system. Add 500 [tL to reservoir well. Select and test the flowrate by begining

UPWARD flow and recording the time taken to empty the reservoir wells.

Disassembling The Reactor.

1. To disassemble and clean your reactor, unscrew assembly screws and clean screws, if

needed.

2.Separate fluidic and pneumatic plate.

3. Discard polyurethane membrane. Soak fluidic and pneumatic plates in bleach solution for

an hour. Rinse with deionized water and soak in 7X Solution for 2 hours.

5. Rinse with milliQ water and dry. Clear debris in channels using compressed air.
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Appendix 9 - Protocol For Immuno-Fluorescent Staining Of Co-

Culture Spheroids Or Tissue From Reactor Scaffolds

Materials:

PBS (Gibco 10010-031), 2% paraformaldehyde (EMS) primary antibodies [SE-1 (IBL

America), CD31 (Chemicon), ED2 (Serotec), GFAP (Serotec), or SMA (Sigma)],

secondary antibody goat-anti-mouse Cy3 (Jackson ImmunoResearch), Hoechst nuclei

stain (Molecular Probes)

Procedure

1. If staining spheroids, obtain them as described in Appendix -6 and resuspend them in

10 ml of PBS. Dispense about 500 gll of the spheroid suspension into separate 2 ml

centrifuge tubes for each of the primary antibodies and a negative control and spin them

down.

OR

In case of the reactor polycarbonate scaffolds, remove them as described in Appendix 8

and place them in the wells of 12 well plates. Wash once with PBS.

2. Aspirate out the PBS gently from the samples.

3. Fix spheroids/reactor tissue by adding 1000 jil of 2% paraformaldehyde in PBS for 1

hour at room temperature. Make sure that the spheroids are resuspended in the centrifuge

tubes. Use a nutator to constantly mix the tubes/12 well plates. If staining cannot be done

right away, store samples in PBS at 40C until ready to stain.

5. Spin down the spheroids. Wash spheroids/reactor scaffolds with PBS.

6. Permeablize spheroids in tubes/ reactor samples in plates by adding 500 )il of 0.1%

Triton-X in PBS. Continue rotating the tubes/12 well plates on a nutator for 45 minutes at

room temperature.

7. Spin down the spheroids. Wash spheroids/reactor scaffolds with PBS.
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8. Spin down the spheroids. Wash spheroids/reactor scaffolds with 2% BSA in lx PBS.

9. Spin down the spheroids. Block spheroids/reactor scaffolds with 500 il of 5% Goat

serum. Continue rotating the tubes/12 well plates on a nutator for 60 minutes at room

temperature.

10. Spin down the spheroids. Wash spheroids/reactor scaffolds with 2% BSA in lx PBS.

11. Cut the scaffold into multiple pieces with each piece containing numerous channels

filled with tissue. Transfer these pieces into separate wells of a 24 well plate labeled for

the respective primary antibody being stained.

12. Add the appropriate primary antibody (SE-1, CD31, ED2, GFAP, or SMA) diluted in

2% BSA in lx PBS and incubate overnight at 40C. The dilutions are as per manufacturers

instructions or adjusted for the specific instance. Continue rotating the tubes/24 well

plates on a nutator overnight at 40C while they are incubating with the antibody.

13. Spin down the spheroids. Wash spheroids/reactor scaffolds three times with 2% BSA

in lx PBS.

14. Dilute secondary antibody (goat-anti-mouse Cy3) in 2% BSA in lx PBS. (1:100

dilution) and incubate for 1 hour at room temperature. Incubate simultaneously with

nuclear stain (1:5000 dilution) Draq 5 (Alexis). Cover with foil to avoid light exposure.

15. Spin down the spheroids. Wash spheroids/reactor scaffolds three times with lx PBS.

16. Resuspend spheroids in 200ptl of PBS. Add spheroids using a wide orifice pipette tip

into the channels of a Labtek chamber slide. In the case of reactor scaffolds, place them

in similar chamber slides and submerge in PBS.

17. Samples are now ready for confocal microscopy. After microscopy, the chamber

slides can be sealed with parafilm and stored at 40C.
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Appendix 10 - Protocol For Oxygen Measurement In Reactor

System

Materials:

Oxy 4 meter, custom 02 dipping Probes (v 1.01), reactor assembly with seeded tissue,

Oakton Zero Oxygen Solution (Sodium Sulfide) MilliQ Water, magnetic stirrer bar,

thermometer.

Procedure:

Calibration

1. Air saturated water value (100%): Fill a wide beaker filled with MilliQ Water stirred

constantly with a magnetic stirrer bar and record the temperature. First use the Fibox 3

single dipping probe to make 02 measurement at 5-min intervals till the reading stabilizes

reflecting air saturated water value (100%). Now immerse the custom probes for the Oxy

4 into the water. Start the Oxy 4 software. Make measurements by setting all intervals to

1 min and the temperature set to the thermometer reading. Calibrate probes by clicking

on the Calibration tab and entering the pressure and temperature of the 100% standard

followed by choosing the "Calibrate all" option.

2. Zero 02 solution (0 %) 02: Fill a 500 ml bottle with the zero 02 solution with a stirrer

bar in the bottom. Follow the rest of the calibration steps as described above.

Wash all the probes with MiiliQ water to get rid of any remaining zero 02 solution.

Measurement in Reactors

1. Mount the probes on the lid and make sure the heights of all the probes are adjusted to

the same desired depth by placing a reference sheet of uniform thickness across the lid.

2. Spray the lid and probes down thoroughly with ethanol and leave under the hood

sitting on its side allowing it to dry for 30 minutes under cover of an aluminium foil.
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3. Replace the lid with the mounted probes onto the reactor under sterile conditions and

replace the reactor with the lid and probes into the incubator. Attach the probes to the

connectors of the optic fibre cables (preferably coming in from the back of the incubator

to minimize bending of the cables).

4. Ensure all the connectors are properly attached to the probes before running the Oxy 4

software. On the logging tab select all channels specifying where you want the file it

creates to be saved. On the measurement tab check the box marked "locked" under the

sampling rate and channel temperature to have similar settings for all probes.

5. Set 02 sampling measurements at 5-15 mins for a steady state measurement. Click the

"All Channels" button and after 2 readings are made, monitor the data by clicking on the

"All Channels" tab to display all the readings concurrently.

6. To stop logging click on the "All channels" button under the measurement tab before

you start disconnecting the probes.

7. Data can be exported and read in Excel using the import feature. The data set is

semicolon delimited and each channel is stored as a separate text file.

Cleaning up and Storage

1. Wash the probes with MilliQ water and spray down with Ethanol and blow dry very

gently with air. At all times be very careful with the tips of the probes.

2. Replace inside box and cover with Aluminium foil to prevent the sensors from photo

damage.
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Appendix 11 - Protocol for RNA isolation from samples in Trizol

(Adapted from the Trizol and RNeasy Kit user manuals)

Materials:

Trizol (Invitrogen), chloroform (Sigma-Aldrich), ethanol, RNeasy Kit (Qiagen), RNAse-

free water.

Procedure:

1. For reactor samples, drop each scaffold into a well of a 6 well plate with 1000 pL

trizol. Freeze the samples immediately in the -800 C freezer.

2. Thaw samples on ice. Homogenize the tissue with a 3mL syringe connected with 20-

gauge needle for at least 5-10 cycles of pumping in and out. Repeat this step with a 25-

gauge needle.

3. Transfer trizol solution to a centrifuge tube. Each tube should contain lmL or less of

Trizol solution. For every mL of Trizol, add 250pl of chloroform. Vortex on the highest

setting and let settle for 2 minutes at room temperature.

4. Spin at 12,000 rpm for 15 minutes in the cold room.

5. Fill a centrifuge tube with RNAse-free water and warm it to 550 C.

6. Remove the aqueous phase on top and place into a new centrifuge tube. Add equal

volume of ice-cold 70% ethanol. Pipette up and down to mix. If the total volume at this

point is more than 650gL, repeat step 6-7 until all solution has been passed through the

column. Return the rest of the Trizol sample to -800 C freezer for further DNA or protein

isolation.

7. Load the mixture onto an RNeasy column with maximum volume of 650pl. Spin for

15 sec. at 10,000 rpm at room temperature.

8. Collect the flow-through and run it through the column again using step 6. Discard the

flow-through.
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9. Add 700pl RW1 to the column. Spin for 15 sec. at 10,000 rpm. Discard the flow

through and replace the collection tube with a new one.

10. Add 500gl RPE buffer (make sure ethanol has been added) and spin for 15 sec. at

10,000 rpm. Discard the flow-through.

11. Repeat the last step.

12. Spin the column again to collect any excess liquid. Discard the collection tube and the

flow-through. Place the column into a 1.5mL collection tube with a closeable top.

13. Load 30-50pl of 550C RNAse-free water into the column. Spin for 1 min at 10,000

rpm to elute the RNA.

14. If more than 30gg of RNA is expected, repeat the last step with the same tube.

15. Store in the -800C freezer.
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