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Abstract

To novel ideas must correspond novel fabrication techniques, that enable the transfer
of technologies from laboratories to the market. The success of microelectronics for
example can not be separated from the success of the revolutionary manufacturing
technology that has fed its expansion. The same is now true for nano- and biotech-
nologies that, to a large extent, have yet to find the technologies that will best answer
their processing needs.

The question is to find an approach that will enable the production of devices
with the required resolution, complexity and versatility, together with the necessary
reliability and potential for high-throughput. Supramolecular NanoStamping (SuNS),
a DNA based lithography technique developed in our group, is trying to answer to
this set of requirements.

In this thesis, I present a new development in this lithography technique, expand-
ing its application to a broad new range of substrates in a substrate-independent
fashion. This work, which I conducted during the course of my master, proves the
ability of SuNS to adapt to very diverse environments and applications.

Thesis Supervisor: Francesco Stellacci
Title: Assistant Professor
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Chapter 1

Motivation and Background

1.1 SuNS's principle

Supramolecular NanoStamping (SuNS) was introduced a couple of years ago in our

group[1, 2, 3]. The same concept was simultaneously developed in Crook's group[4].

Its concept is to imitate on a surface the DNA replication that occurs naturally in

our cells, in order to replicate 2-dimensional DNA patterns.

DNA molecules are long twisted helices made of two complementary strands held

together by weak hydrogen bonds. These two strands are themselves long chains made

of four different chemical groups called bases (adenine, cytosine, thymine, guanine),

organized in a specific sequence, and attached to a sugar phosphate backbone (the

DNA structure is schematically represented in figure 1-1). The complementarity of the

two strands making up a DNA molecule is defined by the one-by-one complementarity

of their constitutive bases: adenine can only bind to thymine, and cytosine can only

bind to guanine. Two free complementary strands standing in one of our cells, or in

a solution if it is in the laboratory, can recognize each other and hybridize, leading

to the creation of the DNA double helix. On the contrary when heated up the weak

hydrogen bonds that hold the two strands of the helix together can break and the

two DNA strands separate, or dehybridize.

SuNS exploits this triple mechanism: recognition, hybridization, dehybridization,

to reproduce 2D DNA structures.
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Figure 1-1: Schematic structure of a DNA double-helix (taken from www.scq.ubc.ca)

SuNS's method is comprised of three steps, shown in figure 1-2, starting with

an original template that consists of a patterned monolayer of single-stranded DNA

(ssDNA) molecules, also called oligonucleotides. The ssDNA of this pattern is first

hybridized to its modified complement (noted cDNA), then brought into contact with

another substrate, usually referred to as secondary substrate. The functionalized cD-

NAs end, pointing upwards, allows it to bind to the secondary substrate. Upon

heating of the two substrates the dehybridization of the two DNA strands occurs,

allowing the two substrates to come apart, with the cDNA staying attached to the

secondary substrate in a pattern that is a perfect replica of the master's pattern. The

master and replica obtained at the end of the process can then both be reused to

start a new cycle and print onto other surfaces.

SuNS has first been reported with the printing of DNA patterns from gold sub-

strates onto gold[l]) or poly(methylmethacrylate) (PMMA)[2]. DNA lines were suc-

cessfully printed on these substrates, with up to 40 nm in resolution on PMMA (see

figure 1-3)[2]. Printed substrates were also proven to be reusable as masters to print

onto other substrates, as can be seen in figure 1-4[2].
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Figure 1-2: Schematic of the working principle of SuNS

SuNS's ability to reproduce patterns with multiple molecules was then demon-

strated by printing two spots, each composed of a different sequence, A and B, in a

single iteration. The printed sample was hybridized to the fluorescence-labelled DNA

strands complementary to A and B, giving the result shown in figure 1-5. [1]
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Figure 1-3: AFM images of DNA wires printed on a PMMA substrate. The arrows
in (b) indicate the thinnest continuous part of the wire that was successfully printed.
In an isolated case, we could print down to a thickness of 25 nm. From [2]

Figure 1-4: AFM images of DNA wires. a) DNA assembled on a series of SiO2 parallel
wires that are 50 nm thick and coated with gold. The wires become 70 nm thick after
DNA assembly, probably due to assembly at the edges. b) DNA wires printed on a
PMMA substrate, the average thickness is 75 nm. c) and d) DNA wires printed on
gold-on-glass substrates using the sample shown in (b) as a master. (c) Printed first,
and (d) printed second after rehybridization. [2]

Figure 1-5: False color overlay of two fluorescence microscopy images obtained from
one sample printed via SuNS. The two dots shown are about 0.45 mm apart. [1]



1.2 One more lithography technique?

The development of reliable and scalable nano- and microfabrication techniques is

critical for the future of nanoscience and nanotechnology, and a set of promising fab-

rication tools has been reported over the past decades. This chapter will identify the

main trends, without trying to be exhaustive, and will see how SuNS as a lithography

technique is positioned in this environment.

1.2.1 "Hard" lithography, following the path of photolithog-

raphy

The leading technique in micro- and nanofabrication remains photolithography, the

workhorse of microelectronics since its invention in 1959, whose demise yet has been

predicted for many years. Photolithography is the process of transferring geometric

shapes from a mask first to a light-sensitive resist, using the light to selectively remove

either the part shown through the mask or the part hidden by the mask, then to the

surface of a solid wafer (usually silicon) by etching the areas where the resist has

been removed (working scheme shown in figure 1-6)[5]. It is therefore a parallel

process, able to reproduce large patterns in a single iteration, comprised of 3 steps.

The standard area patterned in a single iteration through photolithography in the

electronic industry is 30 cm in diameter.

Photolithography, though, suffers from an intrinsic limitation in resolution, im-

posed by the diffraction limit, which states that the minimum distance between two

optically resolvable points scales with the wavelength of the light used. As the demand

for ever higher resolution grows, the end of photolithography is predicted. There are

means, though, to postpone the end of photolithography, which namely consist in

finding ways to shorten the wavelength of the radiation used[6]. This involves first

going into the deep-UV regime[7], then the X-ray regime[8], or exploring other kinds

of radiations, which offer the advantage of shorter wavelengths for lower energies, such

as electron-beams[9]. Electron-beam lithography, nevertheless, in spite of its superior

resolution (linewidths of about 20 nm have been produced since the beginning of the
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Figure 1-6: Working principle of photolithography. From www.hitequest.com

1990's) is devoid of one of the main qualities of conventional lithography, which is

parallel processing. In electron-beam lithography the beam must be scanned over

the surface to create a pattern, which makes for very slow processing times and very

expensive products. For this reason, the primary use of electron-beam lithography

today is the fabrication of masks for photolithography.

An entirely different approach, going back to the ancient techniques of printing

and embossing, appeared in the 1990's, that reunites the need for very high resolution

and parallel processing, with the additional low-cost advantage. The technique, called

nanoimprint lithography, was developed by Chou's group and is based on the physical

deformation of the resist with embossing to create a resist pattern, rather than on

the modification of the resist chemical structure with radiation[10, 11]. The pattern

made in the resist can then be transferred to an underlying substrate through etching,

as it is the case in photolithography (scheme shown in figure 1-7). The difference in

principle makes nanoimprint lithography capable of producing sub-10 nm features

over a large area[12].

1.2.2 Soft lithography

Hard lithography, even if it manages to process devices shrinking to the required

lengthscales while keeping a high throughput, does not answer all the needs of current
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Figure 1-7: Schematic of nanoimprint lithography process: a) imprinting using a mold
to create a thickness contrast in a resist, and b) pattern transfer using anisotropic
etching to remove residue resist in the compressed areas. RIE = Reactive Ion Etching.
From [12]

and future micro- and nanotechnologies, which have grown way outside the boundaries

of microelectronics, to enter the fields of microsensors, microanalysis and more broadly

biotechnologies in general. There, the inability of hard lithography in introducing

chemical functionalities, its limitation to the patterning of resists that integrate very

well with silicon but not always with other materials such as glass, carbon, plastics

and ceramics, become a severe hindrance that has pushed researchers to look for

alternative techniques. A whole set of these alternative approaches are grouped under

the label "soft lithography", which owes its name to the fact that all these approaches

rely on the use of flexible molecules and materials, as opposed to the rigid inorganic

materials commonly in use in the microelectronics industry[14]. The leading technique

in the field is microcontact printing (/uCP), developed in Whitesides's group, where an

elastomeric stamp (e.g. Poly(dimethylsiloxane) (PDMS)), usually prepared by replica

molding (shown in figure 1-8), is inked with molecules which are then transferred to

the substrate by contact (see figure 1-9).[13, 15]

Microcontact printing is a parallel method, low cost and high throughput, that

introduces chemical information in the patterning of substrates, and has therefore

been a very successful approach in laboratories. Nevertheless it remains limited in

resolution (about 100 to 200 nm), and cannot easily transfer multiple molecules at a

time.

To answer to the resolution requirement, together with the transfer of complex
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Figure 1-8: Schematic illustration of the procedure for casting PDMS replicas from a
master having relief structures on its surface. From [13]

chemical information, mainly one approach had been developed sofar, dip-pen nano-

lithography, which involves the transfer of an ink to a substrate directly from a coated

atomic force microscopy (AFM) tip. The resolution obtained is the resolution of an

atomic force microscope, on the order of a couple of nanometers, and since its in-

ception dip-pen has been extended to a variety of surfaces and molecules[16, 17].

Unfortunately, this remains a serial method, the patterned surface needing to be

scanned with the AFM tip, a long and therefore expensive process.

1.2.3 SuNS's contribution

It appears above that a gap needs to be filled, which requires a method for the parallel,

high throughput reproduction of patterns that have both the required resolution and

the ability to reproduce complex chemical information, while being compatible with

biotechnology applications. SuNS's approach fulfills this requirement, as can be seen

point by point from the advantages it offers, described below:

1. It is a stamping technique, and as such it is intrinsically a parallel method that

can produce large patterns in a single step.

2. SuNS is a "color" printer, able to print with high information density, since it

can print different DNA sequences at a time. This ability to reproduce chemical

information in addition to topological information (the geometry of a pattern) is
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Figure 1-9: Schematic illustration of procedures for ACP of hexadecanethiol (HDT)
on a gold surface: A) printing on a planar surface with a planar stamp (I: printing
of the SAM, II: etching, III: deposition); B) large-area printing on a planar surface
with a rolling stamp; C) printing on a nonplanar surface with a planar stamp. After
the "ink" (ca. 2 mm HDT in ethanol) was applied to the PDMS stamp with a cotton
swab, the stamp was dried in a stream of N2 (ca. 1 min) and then brought into
contact with the gold surface (ca. 10 + or - 20 s). From [13]

critical for many applications in view.

3. The molecular recognition on which it is based allows very high resolutions. A

resolution of up to 40 nm has already been demonstrated, in a laboratory setting,

without any optimization of the protocol.

Until now, the main limitation of SuNS, which is also a limitation for most of

the lithography techniques mentioned above, lied in the substrate-dependence of its

protocol and on the very small number of substrates on which it had proven successful.

The first results with SuNS were obtained using gold as a substrate, as well for the

template as for the replica[1]. Then a new protocol enabled its extension to a new

replica substrate, a cheap transparent polymer this time, poly(methyl methacrylate)



(PMMA)[2]. The following sections will present the possible strategies to extend

SuNS further to other surfaces, and how we have chosen the one that is the subject

of this thesis.

1.3 Motivation for the extension of SuNS to new

surfaces

To understand how the extension of Supramolecular NanoStamping to other sub-

strates than gold and poly(methyl methacrylate) (PMMA) is critical, we will review

here its main potential applications. The need for scalable and reliable surface DNA

patterning technologies is obvious in the variety of DNA-based devices that have been

developed over the two decades for use in genetic analyses and medical diagnostics.

We will distinguish here, and consider successively, the applications to DNA biosen-

sors, DNA microarrays and "lab-on-a-chip" configurations. Other interesting uses

of 2-dimensional DNA patterns, such as DNA-directed molecular self-assemblies and

DNA computing, won't be considered here due to their lower level of maturity.

1.3.1 DNA biosensors

A very active area is the field of biosensors, which exploit the powerful recognition

abilities of bioreceptors (e.g. gene probes, but also antibodies and enzymes) for the de-

tection of molecules, with applications in drug development and medical diagnostics.

Biosensors couple a biological recognition element and a transducer, that translates

the biorecognition event into an electric signal (schematically represented in figure

1-10)[18].

In the case of DNA biosensors, ssDNA probes, attached to the transducer's sur-

face, recognize and hybridize to their complementary DNA strands contained in the

analyte, and the hybridization is then detected and translated into an electrical sig-

nal by the transducer. The hybridization recognition methods are numerous (optical,

electrochemical, mass-sensitive...) and each favors a set of different surfaces and sur-
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Figure 1-10: Conceptual diagram of the biosensing principle. From [19].

face chemistries for the immobilization of DNA probes, mainly focused on the use of

gold, carbon and quartz[19].

1.3.2 DNA microarrays

DNA arrays, gene chips, or biochips are often intermixed terms that refer to a class of

multiple DNA detection systems which enable the rapid, miniaturized and accurate

analysis of nucleic acid samples. These DNA microarrays have revolutionized many

aspects of genetic analysis, from the diagnostics of genetic diseases, the measure-

ment of differential gene expression (e.g. figure 1-11), to drug screening, personalized

medicine and forensic analysis[20].

DNA chips, that are usually 1 to 2 cm 2 in size, can be comprised of millions of

reaction zones, each of them exhibiting oligonucleotide probes of different sequences,

that can recognize and hybridize to their complementary strands in the analyte so-

lution. Mass spectroscopy, and to a greater extent fluorescence imaging are the most

common hybridization detection methods. In the case of fluorescence imaging, the

scanning of the surface enables the detection of fluorescence-labeled DNA strands

from the analyte, hybridized at specific spots on the array. These hybridization chips

are usually fabricated on glass, silicon or plastic supports[21, 22].

One variant of the biochips applications is the idea to produce microchip biosensor

devices where the sensors, detectors, amplifiers, and the logic circuitry are integrated

on a single chip (see figure 1-12). Like a conventional DNA array the integrated

biochip allows simultaneous detection of multiple DNA targets, but the miniaturiza-

tion of all the detection and analysis steps in an integrated circuit allows its appli-



Figure 1-11: Example of microarray hybridization. A representative portion of a mi-
croarray shows the differential signals from two RNA samples. One RNA sample was
reverse transcribed into cDNAs labelled with red fluorophore, the other RNA sample
into cDNAs labelled with green fluorophore, and the cDNA mixture was hybridized
to spots of DNA representing different genes. Selective hybridization of cDNA from
either RNA sample to a DNA spot produces red or green signal; hybridization of
cDNA from both RNA samples produces yellow signal. In this example, red spots
represent RNAs enriched in hermaphrodites with wild type germ lines, and green
spots are RNAs enriched in glp-4(bn2) mutants with greatly diminished germ lines.
From [23].

cation under "in-the-field" clinical conditions[24]. This requires the surface used for

the DNA immobilization to be amenable to integration into a microelectronics format

and suggests the use of silicon.

1.3.3 "Lab-on-a-chip"

Another active field is the development of the so-called "Lab-on-a-chip" configuration,

which integrates multiple processes, from sample collection, DNA extraction and

amplification, to hybridization and detection, on a single microfluidic platform the size

of a credit card[25, 26, 27] (see figure 1-13 for an example of a lab-on-a-chip layout).

The integration of all these steps on a single chip offers tremendous advantages in

terms of sample and reagent consumption, contamination, efficiency, speed and cost.

In addition, the miniaturization and ease of use enable the analyses to be transported

from the laboratories to "in-the-field" conditions.

The technology is far from being mature, and although there have been efforts

to mimic the monolithic approach of the silicon microelectronics technology[28], a
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Figure 1-12: Schematic diagram of a DNA biochip concept. From [24].

variety of material technologies, with different levels of compatibility, are under de-

velopment, corresponding to the different requirements of microfluidics, optical and

electrical detection. However, some common materials and processing techniques are

evolving, often on the basis of silicon compounds and polymers. Semiconductors and

metals are obviously necessary components of electrical detection schemes and wiring,

while polymers are attractive for microfluidic uses[29]. They are cheap, easily manu-

factured, and can be bonded to other surfaces, such a silicon, to form fluid channels.

The set of examples presented above, which give an overview of the state of

technologies and research in the field of DNA detection, is representative of the wealth

of materials approaches currently under development. Technologies may in the end

not convergence fully, and the variety of tools now available may find its application

in the engineering of very diverse devices meeting the needs of specific diagnostics and

analyses. We can presume that this diversity will translate in a diversity of materials

solutions. Developing a technology for the patterning of DNA that can encompass

many different materials environments is therefore critical, with a first emphasis on

silicon and silicon-derived materials, and commonly used polymers such as PMMA

and PDMS.
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Figure 1-13: A) Schematic of the polycarbonate fluidic chip developed by Motorola
Labs. B) Photos showing the top (left) and bottom (right) views of the integrated
PCRelectrochemical chip. WE: gold working electrode; CE: Pt counter electrode;
and RE: Pt pseudo reference electrode. From [26].



1.4 Immobilization of DNA on surfaces

Reproducing DNA patterns on surfaces using SuNS requires the ability to direct ef-

ficiently the immobilization of DNA strands on surfaces of our choice. This implies

the choice of an immobilization strategy, usually the prior preparation of the sub-

strates used and their chemical derivatization in the case of inert substrates like the

silicon-derived ones.

Characteristics of patterns printed with SuNS are strongly associated with the

properties of the surface used, such as the chemical and physical structure, the surface

architecture, surface tension, hydrophobicity and hydrophilicity. Therefore special

care must be taken in the choice of an immobilization strategy.

1.4.1 DNA modification for attachment on surfaces

The negative charge of the DNA backbone, or the many free amine groups provided

by the bases A, C and G in single stranded DNA, provide ways to attach unmodified

DNA strands to a range of reactive surfaces. Nevertheless, the use of unmodified

DNA, that links to surfaces through intra-chain bonds, has important drawbacks.

Mainly, some of the bases are linked very closely to the surface and are likely to

be less available for hybridization, which may detroy the hybridization properties

of the DNA strand. This is even more critical for SuNS, which not only requires

a good hybridization efficiency of the attached DNA strands, but also needs that,

once hybridized, the DNA helices have a free end able to bind to another surface.

Therefore, although it increases sensibly the processing costs, it is usually advised [30]

to use modified DNA strands, with functional groups attached to their 3' or 5' end

that can bind specifically to surfaces.

For this purpose, we have been using commercially available 5'-modified DNA

strands with two types of modifications: thiol and amine.



1.4.2 DNA immobilization chemistries on solid surfaces -

Common approaches

Choosing a strategy for the immobilization of DNA involves the choice of a combina-

tion surface / modification chemistry. Although the possibilities seem very broad, the

number of commonly used surfaces and their modifications is actually quite limited, a

small number of techniques being widely adopted, usually because of their simplicity

and robustness.

The most widely used surfaces for chemical derivatization are gold, and silicon and

silicon-related substrates. On gold the DNA immobilization is mostly based on thiol

compounds, while the methods are more diverse on silicon, either relying on silane

compounds for oxidized silicon and glass, or on the direct attachment of functional

groups through Si-C bonds to unoxidized silicon.

Gold

In the case of gold substrates, oligonucleotides are usually modified with a thiol-linker,

which covalently binds the strands to the surface. This immobilization method has

been extensively studied, and the mechanisms of interaction of gold and thiol-modified

oligonucleotides are now well-known[31]. In addition, both these studies and our

experience show that this attachment method is very favorable to SuNS. First, the

gold-thiol bond is reversible, therefore when a gold surface is in a solution of thiolated

oligonucleotides a dynamic equilibrium takes place between the attached molecules

and the molecules in solution, where molecules constantly adsorb and desorb from the

surface. This favors the formation of high quality monolayers, the oligonucleotides

having higher chances to tether to the surface in the most favorable conformation,

since this offers a better stability. The quality of the monolayer can then be increased

further by the use of a "backfilling" by a short thiol-ended molecule, like mercapto-

hexanol. A dense sublayer of these spacer molecules helps to remove the weakly

unspecifically bound oligonucleotides, and to make the attached nucleotides stand up

with a preferred orientation toward the substrate normal.[32, 33]



The good control that we have of DNA immobilization on gold surfaces, together

with the fact that the DNA conformation is very favorable to SuNS, have made

of gold our surface of choice for the fabrication of templates. I have experienced

important difficulties printing from non-gold custom-made templates, whereas those

same substrates, after being printed via SuNS from gold templates, could then be

used themselves successfully as templates. This suggests that the conformation of the

oligonucleotides was more favorable to SuNS on gold, and also that this conformation

was retained on the printed substrates.

Oxidized silicon and glass

Surfaces of glass and silicon with a layer of native oxide share the same chemical

properties. In order to enable covalent immobilization, a chemical modification of

the surface is necessary, so that the functionally inert silanols (Si-OH) of the glass

or oxidized silicon surface are modified to possess functionalities that react with the

modified oligonucleotides. Glass slides being the most common substrates for DNA

microarrays due to their optical properties, mechanical and chemical stability, a family

of surface derivatizations has been extensively used for their modification, involving

a monolayer of functionalized silane compounds, which at one end bind to the silanol

groups of the surface and at the other end can bind either directly or through linkers

to the modified oligonucleotides. The most common functional groups for the attach-

ment of oligonucleotides are thiol[35], aldehyde[36] and epoxy[37], shown in figure

1-14.

The amino group's modification is advantageous in that it offers several kinds of

immobilization strategies, using homo- or heterobifunctional linkers. On the other

hand, thiol, aldehyde or epoxy groups can bind covalently, without the assistance

of a linker, to thiol- or amino-modified oligonucleotides. Because of this advantage,

although immobilization of capture probe DNA molecules was reported to be less

efficient on these surfaces[34], they are widely used in the fabrication of DNA mi-

croarrays.

The silicone elastomer poly(dimethyl siloxane) (PDMS), which combines the prop-
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Figure 1-14: Surfaces modified with a thin layer of various functional groups and
immobilization methods of DNAs on the surfaces. DNA molecules can be immobilized
on a) thiol, b) amino, c) aldehyde, d) epoxy surface either covalently or ionically. From
[34].

erties of both plastic and silica-based substrates, can also be silanized after plasma

oxidation. Its modification was reported using 3-mercaptopropyltrimethoxysilane[38]

resulting in active thiol groups, or 3-aminopropyltriethoxysilane[39] resulting in active

amine groups.

Unoxidized silicon

Other, less common methods involve the direct functionalization of silicon substrates

without an oxide layer. These new attachment methods provide modified silicon

surfaces through direct carbon-silicon bonds. Two especially interesting approaches

result in surfaces with amino[40] or N-hydroxysuccinimide[41] groups, to be cou-



pled with thiol-modified oligonucleotides using a linker and amine-modified oligonu-

cleotides, respectively. Although these techniques are still in their infancy and have

been used in very few DNA array laboratories, they are very advantageous in that

they avoid the inhomogeneity and chemical variability of oxidized surfaces, and they

therefore look very promising.

1.4.3 Using silicon and glass silanization for SuNS

Being the most widespread and well-documented method for the functionalization

of oxidized silicon, silanization was our natural choice for SuNS. It first appeared

in the 1980's in the work of Sagiv[42] and has since then proved very attractive

mainly thanks to the simplicity of its mechanism and to the stability of the resulting

molecular platforms.

The silanes most currently used for surface derivatization are trifunctional, and

have the general formula RSiX3, with X = Cl, OMe, OEt. Their structure, shown on

figure 1-15, can be divided into three parts:

- a trifunctional head group is responsible for binding the molecule to the surface and

to the adjacent molecules.

- an alkyl chain, of variable length, assists in the formation of ordered molecular

structures through the inter-chain van der Waals interactions.

- a terminal functional group is chosen to attach subsequently to other molecules, in

our case oligonucleotides.

Terminal group

Alkyl chain~..................----------. --. ----------.....................
Si Si Si

Head group X / X X / X X /
X X X

Figure 1-15: Schematic of the structure of silane molecules

The mechanism of the formation of a self-assembled monolayer of silanes is gen-



erally considered to take place in four steps, represented schematically on figure 1-

16[43, 44]:
1. The silane molecules are physisorbed at the hydrated silicon surface.

2. In presence of the adsorbed water layer on the surface the silane groups -SiX 3 then

hydrolyse into highly polar trihydroxysilanes -Si(OH) 3.

3. The -Si(OH) 3 groups form covalent bonds with the hydroxy groups on the SiO 2

surface.

4. A compact monolayer is formed, driven by the lipophilic interactions between the

alkyl chains.

x x OH OH
0-H *b44 w~fW 10-1 0-H ol- M-&'ON

1) Physisorption 2) Hydrolysis 3) Covalent grafting on the substrate 4) In plane reticulati

X = Cl, OEt, OMe

Figure 1-16: Schematic of the steps involved in the formation of a silane self-assembled
monolayer on a hydrated silicon surface. Taken from [43].

The three silanol groups present in the trialkoxysilane trifunctional molecules are

not all reacting with the surface, and can react with adjacent molecules, leading to

the polymerization of the siloxane layer, which gives the monolayer a better resistance

to hydrolysis. Therefore, the formation of a silane monolayer is the result of two com-

peting phenomena: the condensation of the surface silanols with the silane molecules'

silanols, and the polymerization of siloxanes, both via Si-O-Si bonds. Both occur in

the presence of water, which is why a layer of water on the surface is necessary, but

the presence of water multilayers is likely to lead to the nonuniformity of the silane

on

1



layer, since the silane monomers polymerize before reaching the surface.

This is why the simplicity of the silanization reaction is only apparent. Although

the silanization of surfaces has been extensively used and reviewed[45, 46], and there

has been some efforts in the past decade to study the reliability and stability of

silanization conditions[47], the exact mechanisms and parameters are still not fully

understood. First, the original silicon oxide surface itself is prone to inhomogeneity

and variability in the relative number of Si-O-Si and Si-OH linkages. Then the level

of polymerization of the siloxane layer(s), as described above, is extremely hard to

control. This chemical variability can lead to a lack of reproducibility and stability,

especially when the silanization is carried out in liquid phase[50]. For this reason,

although silanization in liquid phase is easy and extensively used, it has often been

preferred anhydrous gas-phase reactions which, without solving all the problems re-

lated to silanization, have proven to give better and more reproducible results[51].

In my attempt to immobilize DNA on silanized silicon and glass, I chose to silanize

in gas-phase, using mainly two apparatus:

1. The first apparatus used an argon flow to carry the silanes to the surface, similar

to what was used by Hong et al.[50], and shown in figure 1-17.

2. The second apparatus used vacuum to vaporize the silanes and deposit them on

the surface. The samples and a beaker containing pure silanes were simply placed in

a vacuum desiccator before vacuum was applied.[52, 53]

Argon
flow

to let the argon flow out

Figure 1-17: Schematic of the apparatus using an argon flow for the vapor phase
deposition of silanes on oxidized silicon

The silanization was conducted in parallel on silicon wafers covered with a layer of



native oxide and on glass, and two types of silanes were used, 3-glycidoxypropyltrimethoxysilane

(GOPS) [37] and triethoxysilylbutyraldehyde (TESA) (formulas shown in figure 1-18),

whose terminal functions both react with amines.

HHC'OoSi O.H C'OH
H3C,O CH3  O 3C , H

,O' '0~ N"o
H3C 0 H3  H3C CH3

a b

Figure 1-18: Formulas of a) 3-glycidoxypropyltrimethoxysilane (GOPS); and b) tri-
ethoxysilylbutyraldehyde (TESA)

The DNA immobilization and control were carried out following the pattern be-

low:

1. The oxidized silicon surface was functionalized by silanization.

2. DNA dots were spotted on the surface, which was incubated in a humid chamber

during the time of the DNA immobilization (between 2 hours and overnight).

3. The surface was passivated in a solution of triethanolamine to prevent the subse-

quent non-specific attachment of nucleotides.

4. The surface was hybridized with fluorescently labelled complementary DNA.

Details are available in the experimental section.

The results were controlled mainly by fluorescence imaging of the resulting im-

mobilized DNA strands, after they were hybridized with their fluorescently labeled

complementary strands. AFM images were also taken at the different steps of the

silanization and DNA immobilization, but this imaging didn't give consistent results,

due to the inhomogeneity of the surfaces.

To face the difficulties that I encountered immediately with the immobilization of

DNA on the silanized surfaces, I tried to take advantage of the wealth of approaches

proposed in the literature[47, 48, 49), and worked on the optimization of the main

reaction parameters:

- The pre-silanization treatment, meant to provide a clean oxide layer with a high

density of silanol groups on the surface (Si-OH)



- The silanization method, mainly its temperature and reaction time

- The post-silanization method, aiming to improve the cross-linking of the silane layer:

with or without a baking step, with or without sonication

In spite of these long efforts spent in optimizing the reaction, the immobilization

and hybridization of DNA gave extremely variable and inconsistent results. This

could be attributed to two different causes: first, during the silanization reaction

itself, in addition to the precited parameters there were other parameters that I poorly

controled in the laboratory, mainly the humidity level and the level of cleanliness of

the samples. Then, given that the fluorescence control used occurred only at the

last stage of a long succession of events, the failure to obtain consistent levels of

fluorescence could be due to the inefficiency of steps subsequent to the silanization.

Most probably, the lack of control of the immobilization conditions, and particularly

of the humidity level, was responsible for a part of the lack of reproducibility of my

experiments.

1.5 A substrate-independent approach to surface

modification: reactive polymer coatings

Another approach for the immobilization of DNA exists, contrasting with the com-

plexity of the conventional DNA immobilization strategies presented above. The

latter involve, as was said, a strategy of selective couplings, between surfaces and the

functionalizations they can bear, and imply trade-offs that need to be reconsidered

differently for each material. The other approach we came to consider, developed in

Lahann's group[54, 55, 56, 57], is based on thin reactive polymer coatings, that can

be used on a variety of substrates. The method is substrate-independent, and can

therefore be used for any substrate envisioned for SuNS. What is more, the failure in

using silanes for silicon-derived surfaces pushed us to consider seriously this method

that offers very high reproducibility.

The technique is based on the chemical vapor deposition (CVD) polymerization



of substituted [2,2]paracyclophanes, to yield functionalized poly(p-xylylenes) coatings

(scheme shown in figure 1-19). The coatings can exhibit a wide variety of chemically

active groups, such as amines, esters, alcohols, aldehydes and anhydrides, thus able

to bind to DNA in different manners. The choice of a functionalization is therefore

decoupled from the choice of a substrate, and both can be chosen among a wide

spectrum. Moreover, this simple, one-step surface modification offers accurate control

of the composition and of the architecture of the films, and an excellent adhesion.
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Figure 1-19: Schematic of the CVD polymerization of substituted [2,2]paracyclo-
phanes, to yield functionalized poly(p-xylylenes). From [57]

For all these reasons, and keeping in mind the wealth of applications that could

benefit from the extension of SuNS to new materials, we have turned to these reactive

polymer coatings, creating a collaboration with Prof. Lahann's group. The objective

was to use Lahann's coatings to functionalize and print a variety of substrates with

a unique protocol. The experimental work done with these coatings and the results

obtained will be the focus of the following chapter.



Chapter 2

Printing on CVD coated substrates

This chapter presents the results obtained with the printing of various functionalized

poly(p-xylylenes) coated substrates using SuNS's method. Five substrates could be

printed thanks to this new approach, covering a very broad spectrum of material

types: silicon, quartz, polystyrene, acrylic and PDMS. In addition, different kinds of

patterns, with different scales, were used to print on these substrates, and 3 different

functionalizations of the polymer coatings were tried.

2.1 Methods

All the substrates used as templates in the results presented here have a gold surface,

to which single stranded DNA (ssDNA) binds via a thiol bond. A homogeneous

DNA monolayer is obtained by soaking the substrates 4 days in a solution of thiol-

modified ssDNA, followed by a 1 hour immersion in mercaptohexanol to backfill the

DNA monolayer and avoid the non-specific attachment of other DNA strands during

subsequent steps.[32, 33]

In a humid chamber the attached ssDNA is then left to hybridize under cover-slip

in a solution of amine-terminated cDNA. The functionalized poly(p-xylylenes) coated

secondary substrate, whose function is chosen to bind to the amine end of the cDNA,

is then brought into contact with the template, and a slight pressure is applied and

maintained overnight while the substrates are kept in a vacuum desiccator. After this



stamping step the two substrates are then heated at 90*C to dehybridize the DNA

strands, and separated.

2.2 Printing on silicon in the sub-micrometer range

Printing in the sub-micrometer range, with patterns that have features in the order of

hundreds of nanometers, in addition to the fact that it's a lengthscale that fits many

device applications, has another advantage: it makes it possible to check for pattern

transfer over very small areas, on the order of a few micrometers using atomic force

microscopy, therefore circumvening the problem of low printing coverage. This proves

very valuable at the early stages of development of a new method for SuNS, when

the printed areas are too small to make a large pattern transferrable.

2.2.1 Masters used

To print in the sub-micrometer range two types of templates were used. They were

gold coated silicon gratings with 50 nm deep trenches and a 100 nm or a 700 nm

pitch, schematically represented in figure 2-1.

Gold
Adhesion layer

Silicon oxide

Figure 2-1: Schematic of the gold coated silicon gratings used as templates for
nanoscale prints

- The 100 nm pitch silicon gratings were fabricated in the NanoStructures Lab-

oratory at MIT. The initial grating pattern was produced using a technique called

Achromatic Interference Lithography (AIL)[58]. The initial pattern was then trans-

ferred into silicon by reactive-ion etching. The silicon grating was then coated, by

e-beam deposition, with 3 nm of titanium followed by 7 nm of gold. A Scanning



Electron Microscopy image of one of these templates can be seen in figure 2-2.

- The 700 nm pitch silicon gratings were made in Prof. Ross's group, then coated,

by e-beam evaporation, with 5 nm of chromium followed by 5 nm of gold. Figure 2-3

shows an Atomic Force Microscopy image of one of these gratings.

Figure 2-2: Scanning Electron
grating fabricated using AIL

Microscopy image of a 100 nm pitch gold coated silicon

Figure 2-3: Atomic Force Microscopy image of a gold coated 700 nm pitch silicon
grating. Z range = 80 nm

2.2.2 Printing patterns with a 700 nm pitch onto aldehyde

functionalized coated silicon

3 functionalizations of the poly(p-xylylenes) were tried, all able to bind to the amine-

modification of our cDNA (see figure 2-4 for the molecular structures):



- aldehyde: poly(4-formyl-p-xylylene-co-p-xylylene) (noted ppx-cho)

- pentafluorophenol ester: poly[p-xylylene carboxylic acid pentafluorophenol ester-co-

p-xylylene] (noted ppx-pfp)

- anhydride: poly(p-xylylene-2,3-dicarboxylic anhydride) (noted ppx-anhydride)

Figure 2-4: Formulas of the poly(p-xylylenes) used on the secondary substrates

The best results were obtained with the aldehyde functionalized coatings, but

it's only when special care was given to the handling of the poly(p-xylylenes) coated

substrates to ensure their cleanliness and smoothness, both during their fabrication in

the laboratory of our collaborators and during the shipping, that I started obtaining

results.

I evaluated as about 50 pm x 50 pm large the printed areas, and these printed

areas were found mostly near the corners of the substrates, where the slight damage

of the polymer coatings suggested that the pressure was the highest. Images of prints

on aldehyde functionalized coated silicon are shown in figure 2-5 and 2-6.

aldehyde

pentafluorophenol ester

anhydride
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Figure 2-5: Atomic Force Microscopy height image and section of a ppx-cho coated
silicon substrate after it was printed with a 700 nm pitch master. Z range = 5 nm

Figure 2-6: Atomic Force Microscopy height image of a ppx-cho coated silicon sub-
strate after it was printed with a 700 nm pitch master. The sample is the same as
the one shown in figure 2-5. Z range = 5 nm

2.2.3 Trying other functionalizations of the polymer coatings

As was said above, the results were not as satisfying using other functionalizations

of the coatings, anhydride and pentafluorophenol ester, as with the aldefyde mod-

ification. Moreover, a difficulty appeared in the control of the results, due to a

combination of the printing of DNA and of the imprinting of the polymer coating.

Imprinting means the topological modification of the underlying coating due to a too

high pressure of the grating onto the surface[59]. An imprinted pattern can be up

to 50 nm deep, while the length of a single DNA strand is about 20 nm and a DNA



line rarely goes above 12 nm in height. When the pressure applied is too high and

imprinting occurs, it is hard to determine to what extent the substrates were printed:

the presence of patterns is not anymore an evidence for the presence of DNA.

Figure 2-8 shows how the image analysis is complicated by the imprinting. On

image 2-8 the 14 nm depth measured for holes present in the lines (shown in the

section of image 2-8) suggests imprinting, while the complex texture of these lines,

compared to a simple imprint like the one shown in figure 2-7, suggests that DNA

was nevertheless transferred.
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Figure 2-7: AFM image and section of an ppx-anhydride coated silicon substrate
which was imprinted when stamped from a 100 nm pitch master. Z range = 50nm
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Figure 2-8: AFM images of a ppx-pfp coated silicon substrate printed with a 700 nm
pitch master. Z range: a)=-10nm, b)=30nm. b) is a close-up view of what is seen on
(a). c) shows a section measured in (b).
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2.2.4 High resolution printing

Following the results obtained with the aldehyde functionalized (ppx-cho) coatings

they became our coatings of choice for all the subsequent printings. They were used

to test the resolution of our new printing approach, by printing from 100 nm pitch

masters. Results such as those shown in figure 2-9 were obtained.

osedion 0nlVes
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Figure 2-9: AFM images of a ppx-cho coated silicon substrate printed from a 100 nm
pitch master, a) z range=5nm; b) z range=10nm. c) section analysis along the black
line shown in (d)

There were variations from print to print in the density and continuity of the DNA

lines. In figure 2-10 for example the conformation is unusual, with a high density as

shown by the average height of the printed lines (9 nm), but many discontinuities

in the pattern. Such differences between prints obtained from a same template on a

similar type of surface have to be attributed to unequal qualities of contact during

the stamping step.
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Figure 2-10: AFM images of a polymer coated silicon substrate printed from a 100
nm pitch master. a) and c) z range=15nm. d) z range=10nm. b) shows a section
taken in (a). d) is a close-up view of the bottom left corner in (c).



2.3 Printing onto various other substrates

The success of SuNS on aldehyde functionalized poly(p-xylylenes) coated silicon sub-

strates suggested that these coatings could enable the stamping of all kinds of other

substrates. As was said above, the chemical vapor deposition technique used to ob-

tain these polymer coatings provides reactive surfaces of equal quality independently

of the substrate chosen. The adhesion of the coating can vary from one substrate

to another, but silicon, which is usually the most problematic in terms of adhesion,

proved safe for SuNS.

Four materials: quartz, polystyrene acrylic and polydimethylsiloxane (PDMS),

in addition to silicon, were coated with aldehyde functionalized poly(p-xylylenes)

and successfully used as replica surfaces for SuNS to print in the sub-micrometer or

micrometer range.

The results are shown in the following figures, on quartz, polystyrene, and acrylic,

printed from gold coated silicon gratings identical to the ones used to print on silicon.

a b

Figure 2-11: AFM images of ppx-cho coated quartz printed with a 100nm pitch
master, a) Z range = 15 nm. b) Z range = 6 nm
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Figure 2-12: AFM images of a ppx-cho
100nm pitch master. Z range=10nm

coated polystyrene substrate printed with a
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Figure 2-13: AFM images of a ppx-cho coated acrylic substrate printed with a 100nm
pitch master. Z range=20nm
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Figure 2-14: AFM images of a ppx-cho coated acrylic substrate printed with a 700nm
pitch master. Z range=10nm
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2.4 Using SuNS in the micrometer range

2.4.1 Motivation

Printing in the micrometer range enables the control by fluorescence microscopy,

which brings with it two advantages:

1. As opposed to scanning probe microscopies like AFM, which can only scan surfaces

on the order of 10 pm wide at a time, optical fluorescence microscopy can give us

information over large areas, therefore providing us for SuNS with insight in the

printing coverage.

2. The fluorescence control provides not only topographical information, but also

chemical information: the fluorescence signal is emitted by fluorescence modified

DNA strands that are hybridized to the ssDNA previously printed on the surface.

Therefore the fluorescence detection depends on the ability of the printed ssDNA to

hybridize with the expected DNA strand, which provides us with information on its

sequence.

These two advantages make the printing of micrometer scale patterns extremely

attractive for SuNS. This section presents the results obtained at that scale, together

with the controls made on our printed patterns, which exploit the quality of the

information obtained by fluorescence microscopy.

2.4.2 Printing onto polystyrene on PDMS in the micrometer

range

To print in that range a large contact area is needed during the printing step, therefore

the best candidates as substrates for replica were polymers that can conform to the

roughness of the template's surface, such as acrylic, polystyrene or PDMS. Acrylic

and polystyrene, although they are hard and brittle at room temperature, can indeed

become soft if heated up to 600 C. We use this property by heating up to 60'C for

15 minutes the template and replica just after they were put in contact in the press.

During this heating step the surface of acrylic or polystyrene conforms better to the



surface of the master, increasing the contact area. The samples are then cooled down

and left overnight in a vacuum desiccator as in a regular stamping protocol.

The masters used to print in that range were silicon substrates patterned with

photolithography, resulting in a pattern of 1 pm large gold squares on which a mono-

layer of thiolated ssDNA was assembled. After being printed (cDNA of sequence

A' is expected to be transferred) the samples were hybridized with fluorescent DNA

strands of the same sequence as the one present on the master (sequence A), and

imaged with a fluorescence microscope. Some results obtained with PDMS were ex-

tremely promising, showing a very high fluorescence intensity contrast as can be seen

on figure 2-15, but the results were on a whole very hard to reproduce with some

consistency, probably due to the lack of a good method to avoid the trapping of air

bubbles between the template and the replica. This will be treated in chapter 3,

covering the issues of contact printing and our approaches to solve that problem. On

polystyrene, nevertheless, good results could be obtained with consistency, as can be

seen on figure 2-16, where the fluorescent squares show that the printed DNA hy-

bridized succesfully. This proves first that the transferred DNA is in a conformation

favorable to its rehybridization and can be used actively for further experiments, and

also shows that it has the sequence expected according to SuNS's principle.

Printed areas up to 3 millimeter in diameter were obtained on polystyrene using

this method, with very shallow or no imprinting and damaging of the underlying

polymer coating.

Figure 2-15: Fluorescence microscopy image of a printed PDMS sample, after its
hybridization with fluorescently labeled complementary DNA strands
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Figure 2-16: Fluorescence microscopy images of a polystyrene substrate, taken after
hybridization of the printed DNA strands with fluorescently labeled strands

2.4.3 Control of the nature of the printed patterns

As was said above, the fluorescence imaging of the printed DNA patterns intrinsically

provides us with information on the sequence of the transferred DNA . To control this,

a pattern of printed DNA underwent two cycles of hybridization-dehybridization:

1. The printed ssDNA pattern (expected sequence A') was hybridized with fluores-

cently labelled DNA strands having the same sequence as the DNA present on the

master (sequence A), then imaged with a fluorescence microscope, and the fluores-

cence intensity was measured along a line.

2. The DNA was then dehybridized by heating up the sample at 90 0 C in deionized

water, it was imaged and the fluorescence intensity was measured along the same line

as before.

3. The ssDNA pattern was then rehybridized, this time with fluorescently labelled

DNA having a sequence different from the one present on the master (sequence B).

Again the sample was imaged with a fluorescence microscope and the fluorescence

intensity was measured along the same line as the previous times.

All the fluorescence measurements were taken using the same parameters of exposure.

The comparison of the three measurements done is presented in figure 2-17.
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Figure 2-17: Superposed plots of the fluorescence intensity count measured along a
same line in three different cases: a) The sample is hybridized to fluorescently labelled
DNA strands with the same sequence as the ssDNA present on the master. b) The
sample is dehybridized. c) The sample is hybridized with DNA strands of another
sequence.

2.5 Reprinting from a replica

Being able to use a printed substrate as master is one of the main specificities and

advantages of SuNS. Furthermore, the ability to reprint from a replica constitutes a

proof that the stamped pattern consists of DNA strands of the expected sequence

in a conformation that leaves them active for further manipulations. A nanoscale

pattern previously printed onto a silicon substrate coated with aldehyde functionalized

poly(p-xylylenes) (ppx-cho) was reprinted onto a polystyrene substrate also coated

with ppx-cho, following the same method described earlier. The pattern had a 100nm

pitch and could be reprinted with clarity over areas in the 50m range. Results are

shown in figure 2-18.
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Figure 2-18: Second generation printing, a) Tapping mode AFM image of a printed
ppx-cho coated silicon substrate used as a master b) Tapping mode AFM image of
a ppx-cho coated polystyrene substrate reprinted from the printed silicon substrate
shown in (a).



2.6 Printing on patterned coatings

Combining the pattern transfer ability of SuNS with the use of pre-patterned sec-

ondary substrates is a straightforward way to multiply the possibilities and increase

the complexity of the produced patterns (the principle is schematically represented

in figure 2-19). The CVD coatings from Prof. Lahann's group, due to the ease with

which they can be architectured, were good candidates to put this idea into practice.
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Figure 2-19: Principle of the cross-sectioning of SuNS's transferred patterns with
patterns on coatings. Figures are not to scale.

Two methods were used by Hsien-Yeh Chen in Prof. Lahann's group to produce

patterned coatings:

- The samples are covered with a PDMS membrane that acts as a mask during

the polymer deposition, allowing the coatings to form only in the 200 Ym to 500 pm

wide squares left open in the membrane. The membrane is then peeled off, leaving

only a pattern of poly(p-xylylenes) coated squares on the substrates. This way the

DNA can only be printed in the squares. This method has one practical advantage for

SuNS: the fact that the coating is discontinuous, present only on the squares, creates a

difference in topology that makes the squares' edges visible (though very dimly) with

an optical microscope. This helps greatly to find the printed patterns with atomic

force microscopy. This advantage, though, can turn into a major disadvantage: due

to the small size of each piece of coating it seems to be less firmly adhering to the

underlying substrate, the edges of each square uneven and usually damaged during

the stamping step, and the whole square's surface slightly undulating, which makes

the AFM imaging delicate.



- The samples are uniformly coated during the CVD step, but the coating is then

deactivated partially by microcontact printing (pCP), using biotin hydrazide as ink.

Biotin hydrazide reacts with the aldehyde in the contact areas, which are evenly

distributed 100 /m large squares, thus passivating the squares and leaving a grid

with active aldehyde functionalization. This way the DNA can only be printed out

of the squares. This method avoids any topology-related defects since the coating is

homogeneous, and although it is less practical for SuNS than the previous method

since the patterns are harder to find with AFM, it should theoreticallly be preferred.

Yet, for practical reasons (the patterns couldn't be found using the pCP coated

substrates) it is on a substrate patterned using a PDMS membrane that successful

results could be obtained. One such pre-patterned polystyrene sample was printed

from a 100 nm pitch grated master, and the printed DNA was hybridized with its

fluorescently modified complement. Fluorescence microscopy enabled me to check

that the DNA was transferred only in the coated squares (figure 2-20), while using

atomic force microscopy I could observe the nanometer scale printed patterns in the

coated squares (figure 2-21) and check that no pattern was visible out of the coated

squares.

Figure 2-20: Fluorescence microscope image of a pre-patterned polystyrene substrate,
after it was stamped with a 100 nm pitch master and hybridized with fluorescently
labelled complementary DNA strands. The square shown is 200 Mm wide.

We have proven here that substrates of very different types, silicon, quartz, polystyrene,



Figure 2-21: Fluorescence microscope image of a square element of a pre-patterned
polystyrene substrate, after it was stamped with a 100 nm pitch master and hybridized
with fluorescently labelled complementary DNA strands, and atomic force microscope
image of the printed pattern inside a square. Z range = 10 nm

acrylic and PDMS, could be succesfully printed using SuNS's approach thanks to the

poly(p-xylylenes) coatings deposited in Prof. Lahann's laboratory. All these stamp-

ings could be performed using a single protocol, which provides us with a universal

approach to the stamping of DNA patterns. Furthermore, fluorescence imaging on

large area prints with patterns in the micrometer range enabled us to control the

sequence of the printed DNA and its ability to hybridize to its complementary DNA

strand. To this first proof of concept was added the successful stamping of another

coated substrate using a previously printed coated silicon sample as master. This

success, in addition to confirming the nature of the printed patterns, proves that

the DNA conformation on the printed ppx-cho coated substrates enables them to

successfully act as masters. This is very promising and could be used for further

developments of SuNS. Indeed we have shown that we can produce complex patterns

on these ppx-cho coated substrates by combining SuNS's pattern transfer with the

patterning of the coatings themselves. This combination gives us a lot of freedom

for the fabrication of ppx-cho coated masters with complex DNA architectures, often

needed for SuNS's other projects and hard to obtain otherwise.
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Chapter 3

Enabling good contact during

printing - An engineering problem

SuNS is a printing technique very similar to its famous predecessor, the paper stamp-

ing press: an ink, for us the complementary DNA strands, previously deposited on

the template (in our case, hybridized to the DNA strands attached to the master),

needs to be transferred through contact to the "paper", or more generally to the

secondary substrate of our choice. As in all the more conventional stamping tech-

niques, the contact is therefore critical for the proper functioning of SuNS and requires

careful engineering.

This engineering, which has been the subject of many generations of improvements

in conventional paper stamping, could constitute a full project on its own and is for

a big part out of the scope of our current research, which aims first at enlarging

and defining new directions for the application of SuNS. Nevertheless, some technical

considerations, looking at what has been and is currently done in the field of contact

printing, can help us to improve sensibly our printing results in the laboratory and

increase the reproducibility of our experiments.



3.1 Review of contact approaches

Supramolecular NanoStamping is only one in many different printing methods which

all share the same concern for efficient contact during the printing step, although they

may solve the contact issue in different ways depending on their specificities. What

we present here is a brief review of these approaches to a successful contact, focus-

ing on the nanoimprinting application, which requires both very large homogeneous

stamping and very high resolution. The various approaches can be differentiated upon

the way they apply pressure during the printing step, using either mechanical or air

pressure.

3.1.1 Mechanical pressure

Mechanical pressure is what has been used in paper presses, and remains the most

widespread and straightforward way to contact a template and a secondary substrate

to print a replica. It is also the first approach that naturally came to our minds for

SuNS. Mechanical pressure, though, represesents a challenge in its implementation,

since only the perfect parallelism of two smooth plates can guarantee the homogeneity

of the pressure applied to the two substrates in contact, and parallelism is hard to

obtain with simple tools. The failure to solve that mechanical issue leads to the kind

of printing results shown in figure 3-1, where the uneven printed pattern reveals the

non parallelism of the plates used to bring the template and the secondary substrate

into contact. More dramatically, this lack of parallelism prevents the printing over

large areas, and in my case, using mechanical vices with hard plates I most of the

time printed only in thin bands of about 50 ym by a couple of millimeters.

Perfect parallelism is nevertheless achieved on a daily basis not only for industrial

applications but also in research laboratories. Optical equipments can be a good

source of inspiration, or the work of groups such as Willson's gives a good example

of high precision home-built systems.[59, 60]
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Figure 3-1: Atomic Force Microscope images of a ppx-cho coated silicon printed
from a 700 nm pitch master, using mechanical pressure in a vice with an imperfect
parallelism. Z range = 5 nm

um Chuck
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Figure 3-2: Step and Flash Lithographic Press, with detailed orientation stage. From
[59]



Prof. Willson's group, for the Step and Flash Imprint Lithography (SFIL), needed

as we do a good lithographic press, able to ensure the parallelism of the template

and the secondary substrate during the imprint step. In their home-built system

(apparatus shown in figure 3-2) much is done to ensure that parallelism is achieved.

In addition to a precision positioner constituted of two horizontal plates and linear

roller bearings they use an orientation stage to ensure the parallel contact of the two

substrates. When the template approaches the secondary substrate with controlled

force thanks to a linear actuator, the secondary substrate attached to the orientation

stage is free to orient itself to correct the imperfection of the positioner and achieve

parallel contact with the template. This is possible thanks to a flexure ring in the

orientation stage, which is deflected by the moment generated about the center of the

stage when the template contacts the secondary substrate.[59, 60)

With such a technique, Willson's group has been able to perform imprint lithog-

raphy homogeneously over 200 mm wafers. As a conclusion, this approach shows

that with the appropriate system the contact issue can be solved using mechanical

pressure. Nevertheless the complexity of the engineering involved prompted us to

look for alternatives.

3.1.2 Air pressure

The air pressure alternative is used in Chou's group for nanoimprinting. They have

developed an "air cushion" system for nanoimprinting that takes advantage of the

intrinsic uniformity of air pressure, without any need for smooth parallel plates as in

the case of mechanical pressure[61]. Furthermore, not only does the use of air pressure

simplify the engineering challenges of a printing press, it also has fewer requirements

on the smoothness and flatness of the master and template.

The advantages of air pressure are summarized in figure 3-3, while figure 3-4 pro-

vides a comparison of the pressure distribution in the solid parallel-plate press (SPP)

and the air cushion press (ACP). The pressure was measured using pressure-sensitive

films when a nominal pressure of 1.38 MPa was applied, and the measurement shows

that in normal conditions the actual pressure in the solid parallel-plate press varies
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Figure 3-3: Schematic and advantages of the air cushion press (ACP) nanoimprint
principle. From [611

over a factor of 5 across the 100-mm-diameter nanoimprint field[61].

Practically the air cushion method for contact printing is composed of three steps:

1. The two substrates are brought into contact, sealed and placed in a chamber.

2. Low vacuum is applied to the chamber: the air is expelled from the region between

the 2 samples. This is critical to avoid any air bubbles in the intersticial space between

the samples, which would prevent the two substrates from being pressed against each

other when pressure is applied to the chamber.

3. Air is introduced in the chamber to a pressure of typically 1.38 MPa without

penetrating between the two substrates, thus pressing them together.

Figure 3-5 presents a schematic of the air cushion press setup.

This system has been in use since shortly after the introduction of nanoimprinting

by Chou's group (1998). Since this change they have never come back to the more

conventional solid parallel-plate press, and a company, Nanonex created by Prof.

Chou, is now exploiting commercially the air cushion press system. This might explain

why the sealing method that lets the air out of the intersticial volume but doesn't let

it back in when pressure is applied remains unclear and could not be explained by

students in Prof. Chou's group.
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Figure 3-4: a) and b) Pressure distributions across a 100-mm-diameter imprint field
when a 1.38 MPa nominal pressure is applied using SPP and ACP, respectively. c)
Pressure vs color intensity calibration chart. d) and e) Schematics of experimental
setups for studying the effects of backside dust/topology in SPP and ACP, respec-
tively. f) and g) Pressure distributions across a 100-mm-diameter imprint field when
a paper piece of 2.6 x 2.6 cm2 in area and 0.1 mm in height is inserted on the back-
side of the mold, and a 1.38 MPa nominal pressure is applied using SPP and ACP,
respectively. h) and i) Schematics of experimental setups for studying the effects of
trapped dust in SPP and ACP, respectively. j) and k) Pressure distributions across
a 100-mm-diameter imprint field when a 0.1-mm high paper dust is trapped, and a
1.38 MPa nominal pressure is applied using SPP and ACP, respectively. From [61]

3.2 Using and improving mechanical pressure in

SuNS's process

Over the past one and a half year of research, efforts have been made to implement

better stamping conditions. Prior to this the only method used to provide good

contact and a slight pressure on the samples during the printing step was to place

a microscope glass slide on top of them. The first change was to switch to small

mechanical vices (shown in figure 3-6) that were modified to improve the quality of

a c
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Figure 3-5: Schematic of the air cushion press setup

the contact they provide. Such vices were used for all the prints presented in this

thesis.

Before using these rudimentary vices a first modification had to be made. It

consisted in covering the original non-parallel rough plates with pieces of a silicon

wafer and placing soft PDMS stamps between the original plates and the silicon ones

to correct for the lack of parallelism. The resulting smooth and approximately parallel

silicon plates were about 2 cm x 3 cm large. These were used for about one year,

until pressure-sensitive films' enabled us to control the efficiency of our setup.

Figure 3-6: Vice used as a stamping press

The pressure-sensitive films provided us with a mapping of the pressure distri-

bution in our samples during the printing step. They are composed of two layers

'Pressurex tactile pressure sensor films from Sensor Products Inc.



of material, one containing embedded micro-capsules of color-forming material, the

other one containing a developing product. When undergoing pressure, the micro-

capsules are broken, and the color is developed. A higher pressure causes a higher

density of broken capsules and therefore a higher color intensity. Therefore the color

map, without any further quantitative analysis, gives us an estimation of the pressure

distribution.

Using these films by placing them between the template and the replica substrates

before applying pressure through our usual setup, a first observation was made: hard

plates such as the ones described above were providing a highly uneven pressure,

most of the time concentrated only along one edge of the substrates due to a lack of

parallelism. Therefore we introduced an additional soft PDMS stamp between one

hard plate and the samples, in order to obtain a better correction of parallelism.

Up to now this little change in setup has brought very sensible improvement in the

quality of the printing.

Looking for further improvement, once this correction made, we modified the press

again and compared three different setups. Again, the comparison was obtained by

placing pressure-sensitive films between the two substrates, before applying with the

vice the same pressure as the one used in a real stamping trial. The results we

obtained, together with the setup they are related to, are presented on figure 3-7.

These controls have shown that we could easily improve the quality of the contact

by making small changes to our setup. A few characteristics appear critical:

1. A soft stamp like a piece of PDMS combined to a solid plate, instead of two hard

plates, can greatly increase the contact area by correcting for the lack of parallelism

or smoothness.

2. The plates should be of a size comparable to the size of the samples to provide

better homogeneity.

3. An interesting alternative to flat plates and stamps in order to provide a good

homogeneity in pressure can be to use the compliance of a material like PDMS in

a pyramidal or conic shape to have the pressure start from the center and spread

towards the edges of the sample.
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Figure 3-7: Schematics and results of modifications made to the stamping vices, a)
No modification made. b) In addition to one PDMS stamp underneath the samples a
pyramid-shaped PDMS stamp is added, that flattens at its apex and spreads onto the
secondary substrate when pressure is applied through the vice, enabling the contact
to spread from the center. b) In a setup similar to (a) all the plates are cut in order
to be of a width that is comparable to the width of our substrates (8 mm), to be
compared to the previous 20 mm-width.

3.3 Using air pressure for SuNS

As was said above, the use of air pressure in stamping could prove very valuable for

SuNS. A first approach, circumvening the setup of a vacuum/pressure chamber, is to

use inflatable balloons to apply air pressure.

The "balloon" approach is what I used to print onto PDMS. The specific advantage

offered by an inflatable balloon in the case of PDMS is that the pressure it applies

while being inflated starts from the center of the substrates and spreads towards the

edges, which should avoid the trapping of air bubbles between the PDMS and the

master it is printed from. A schematic of the setup is shown on figure 3-8.

Although this rudimentary setup doesn't provide a good reproducibility (difficulty

to quantify the pressure applied, possible air leaks during the stamping), it offered

some promising results for the printing of microscale patterns onto PDMS. The mas-

ter used to print onto PDMS in that case was a silicon substrate patterned with

t
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Figure 3-8: Stamping setup using an inflatable balloon

photolithography, resulting in a pattern of 1 pm large gold squares on which a mono-

layer of thiolated ssDNA was assembled. After printing on PDMS and hybridizing the

printed DNA with its fluorescent complement, images such as the one presented on

figure 3-9 were obtained, very locally, on the PDMS sample. The area exhibiting the

high contrast shown is about a millimeter in diameter, and corresponds to the area

where the highest pressure was applied by the balloon. Around the printed area, the

homogeneous fluorescence tends to prove that the poor quality of the contact enabled

the formation of a water meniscus between the two substrates, in which the fluores-

cent complementary DNA was dehybridized from the DNA strands attached to the

template and was transferred homogeneously onto the printed substrate. This was

made possible by the fact that the stamping is performed out of a vacuum desiccator

to limit the risk of leaks from the pressurized balloon.

50P

Figure 3-9: Fluorescence microscopy image of a PDMS sample printed using an in-
flatable balloon setup and hybridized with fluorescently labeled complementary DNA
strands.

What precedes is just a first attempt at using the possibilities offered by air-

pressure stamping. Not enough has been done so far to really apply the advantages



of air pressure to our SuNS protocol, but it remains an area of interest that should

be explored further.

3.4 Adapting the stamping method to the sub-

strate's specificities

As shown in this thesis, SuNS can be applied to a broad variety of materials with a vir-

tually identical protocol, thanks to substrate-independent reactive polymer coatings.

Yet, one thing remains to be tailored depending on the kind of substrate we are print-

ing onto: the method used to provide contact between the master and the secondary

substrate during the stamping step itself. Our current substrates of choice exhibit

very different hardnesses and roughnesses, and therefore require different approaches

for the solving of the contact issue.

- Hard substrates like silicon and quartz are simply stamped using a mechanical

vice adapted with soft PDMS plates.

- Polymeric substrates like polystyrene and acrylic, albeit also printed in the same

kind of vice, are softened at the beginning of the stamping step by rising the tem-

perature to 600C, enabling them to conform better to the intrinsic roughness of the

template's surface, thus increasing the printed area, as has proven our experience.

- A soft material like PDMS is stamped using air pressure, via an inflatable bal-

loon placed between the coupled samples being stamped one onto another and the

upper plate of the vice. As it is inflated, the balloon applies a growing pressure on

the substrates that decreases gradually starting from the center of the substrates,

therefore avoiding the trapping of air bubbles between the samples.

What precedes only constitutes an example of how we can creatively use the

wealth of stamping approaches currently in use in many diverse applications, to tailor

systems that best adapt to the materials we want to print onto. In the scope of this

thesis, we have already proven how sensible improvements in the printing quality



and coverage could be obtained thanks to simple considerations and controls in the

stamping techniques: on a hard polymer like polystyrene printing coverages of the

order of 3 millimeter in diameter were obtained, while on a soft substrate like PDMS

sensible improvements in the fluorescence contrast could be managed.



Chapter 4

Experimental methods

The substrates used are usually about 0.25-0.5 cm2 in size.

DNA

The oligonucleotides are 50 mers purchased from Integrated DNA Technologies with

commercially available 5' modifications.

Sequences used:

A: 5'- TCC CAA AGA ACA GTG GTG GCT CAA GCT ACG GCC CCT CAT

GAA AAT CCT GG -3'

Complementary sequence A': 5'- CCA GGA TTT TCA TGA GGG GCC GTA GCT

TGA GCC ACC ACT GTT CTT TGG GA -3'

Non-complementary sequence B: 5' TGA CTG CTG TAG TTC AGA AGA GGT

TTG GCT TTC CAG AGG GCA GTG TAG AG -3'

Modifications used:

5' thiol modifier C6 S-S for attachment on gold

5' amino modifier C6 for attachment on polymer coated substrates

5' RhodamineRed -X NHS Ester for fluorescence control



DNA immobilization on gold

The gold substrate is soaked 4 days in a solution of 5'hexyl-thiol modified 50mer

single-stranded DNA of sequence A (4 pM in 0.5 M potassium phosphate buffer).

It is then rinsed with Millipore water, subsequently immersed for 1 hour in a 1

mM 6-mercapto-1-hexanol (bought from Sigma-Aldrich) aqueous solution to limit

non-specific adsorption of DNA during subsequent manipulations, rinsed again abun-

dantly, and dried with a dust remover.

DNA hybridization on gold

A few micro litres of a 1 p/M solution of single-stranded complementary DNA (se-

quence A) in hybridization buffer are dropped on the substrate and covered with a

glass cover-slip. The hybridization buffer is 1 M NaCl in TE buffer for hybridization

on gold. The substrate is then left a minimum of 2 hours up to overnight in a sealed

humid chamber. It is subsequently rinsed with 4xSSC buffer, diluted twice, followed

by a brief rinse in Millipore water, and dried with a dust remover.

DNA hybridization on GOPS and TESA modified surfaces, or on poly(p-

xylylenes) coated substrates

The sample is first passivated by putting it in a solution of 0.1 M Tris/0.05 M

ethanolamine for 5 minutes at room temperature. After rinsing with Millipore water a

few micro litres of a 1 pM solution of single-stranded complementary DNA (sequence

A) in hybridization buffer are then dropped on the substrate and covered with a glass

cover-slip. The hybridization buffer is 4xSSC, 0.1% SDS. The substrate is then left a

minimum of 2 hours up to overnight in a sealed humid chamber. It is subsequently

rinsed with 4xSSC buffer, diluted twice, followed by a brief rinse in Millipore water,

and dried with a dust remover.



DNA dehybridization

The substrate is soaked twice 15 minutes in Millipore water at 90'C and rinsed abun-

dantly.

Fabrication of the masters

The gratings were fabricated in the NanoStructures Laboratory at MIT. The ini-

tial 100 nm pitch gratings were obtained using Achromatic Interference Lithography

(AIL) [57]. The pattern was then transferred into silicon by reactive-ion etching. The

silicon grating was then coated, by e-beam deposition, with 3 nm of titanium followed

by 7 nm of gold. The 700 nm pitch silicon gratings were made using interference

lithography, then coated by e-beam evaporation with 5 nm of chromium followed by

5 nm of gold.

The square patterns were obtained from silicon substrates by photolithography, fol-

lowed by the deposition of a 5 nm adhesion layer of chromium followed by 25 nm of

gold, by e-beam evaporation.

General SuNS procedure

The patterned gold master is prepared as described above for the immobilization of

thiol modified ssDNA of sequence A, followed by the hybridization with complemen-

tary amine terminated ssDNA (sequence A'). The aldehyde functionalized poly(p-

xylylenes) coated secondary substrate is then brought into contact with the master,

and a slight pressure is applied and maintained overnight while the substrates are

kept in a vacuum desiccator. The two substrates, while still under pressure, are sub-

sequently placed in an oven at 90 0 C for 30 minutes to dehybridize the DNA strands,

the pressure is then released, and a droplet of 0.1 M NaCl in TE buffer is put on

the coupled samples to help them to come apart. The samples are then rinsed with

Millipore water and blown dry with a dust remover.



Characterization

Tapping Mode AFM images were obtained using a Digital Instrument MulitMode

Nanoscope IIIa, using both a J scanner. All experiments presented in this paper

were performed ising Veeco NanoprobeTM tips (Model nb: RTESP, length: 125 m,

resonance frequency: about 300 kHz).

Fluorescence microscopy images were obtained using a Zeiss Axioplan 2 with a mer-

cury lamp. The imaging was performed using Rhodamine Red modified oligonu-

cleotides, and the filters used in excitation and collection had maximum transmittance

at 546 nm and 590 nm, respectively.



Chapter 5

Conclusion

This thesis has shown how SuNS could be used to pattern a variety of substrates

with very different properties: silicon, quartz, polystyrene, acrylic and PDMS, with a

single protocol. This was accomplished thanks to functionalized thin polymer coatings

realized in Lahann's group, from the University of Michigan. These coatings, whose

chemical functionalities can be tailored to the needs of their specific applications,

provide us with high quality molecular platforms independently of the underlying

substrate. Therefore, the success of stamping using these coatings provides SuNS with

a virtually infinite spectrum of substrates and chemical approaches to the binding of

DNA. This versatility will probably prove critical for SuNS as it makes it capable

to serve a very wide range of DNA-based applications, adapting to their specific

environments, materials and chemistries of choice.

Nevertheless, to pursue this track and become a serious option for the many appli-

cations that could benefit from its unquestionable advantages, SuNS needs to become

more reproducible and reliable. This implies first to work on identifying and under-

standing the parameters that determine its success, but also to tackle the mechanical

engineering problems related to the stamping itself. The lack of a standardized pro-

cess, at this stage, can only slow down the expansion of SuNS, to new materials, new

lengthscales, and new applications.
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