

Acceleration of Gas Bubble-Free Surface
Interaction Computation Using

Basis Preconditioners

K. L. Tan, B. C. Khoo and J. K. White

ABSTRACT

 The computation of gas bubble-free surface interaction
entails a time-stepping algorithm whereby a linear system is
solved at each time-iteration. In our investigation, the linear
systems are derived from a desingularized boundary integral
formulation and are poorly conditioned. This leads to poor
convergence rates when Krylov subspace methods are used to
solve these systems. The convergence rates may however be
improved with proper preconditioning.

 We limit our investigation to gas bubbles initiated at
depths sufficiently small such that a spike forms on the free
surface during the later stages of evolution. Bubble dynamics
dictate that for gas bubbles initiated at such depths, the stages
through which the gas bubble and free surface evolve are
similar. Based on this fact, we propose to perform one
computation run for a gas bubble initiated at one particular
depth, obtain a judicious set of a priori basis preconditioners
from this run and thereafter, use this set of preconditioners on
computation runs for gas bubble initiated at different depths.

 The computation time taken by the proposed method is,
in general, 50% and 20% of the time taken by the present
method (without preconditioning) with terminating criteria of
1.0e-5 and 1.0e-7 in the infinity-norm respectively using the
Bi-conjugate Gradient Stabilized solver. The present method
further enables computation to an infinity-norm terminating
criterion of 1.0e-10 in a shorter time compared to the present
method with a criterion of 1.0e-5.

 K. L. Tan is a student with the Singapore-MIT Alliance (SMA), National
University of Singapore, 10 Kent Ridge Cresent, Singapore 119260. E-mail:
smap9055@nus.edu.sg. B. C. Khoo and J. K. White are SMA fellows.

INTRODUCTION

 Bubbles surrounded by a liquid can be found in many
applications. Examples include bubble jet printers, boiling
water and underwater explosions. The chemical industry uses
bubble columns to enhance chemical reactions and mixing.

 The study of bubbles can be divided into two main areas.
The first area, bubbles that do not undergo much change in
volume, is studied extensively. A seemingly simple problem
of this kind, the terminal rise velocity of a single bubble in
water, is still not yet fully understood. The second area
entails bubble dynamics pertaining to oscillating bubbles.
Examples of these include cavitation bubbles and underwater
explosion bubbles.

 Underwater explosion bubbles is an active area of
defense research. An explosion or gas bubble is formed when
an underwater explosion takes place. Due to inertia, this
bubble will overexpand and thereafter collapse. If this
collapse takes place near a solid surface, a high-speed jet will
be formed, directed towards the solid surface. On the other
hand, if it takes place near a free water surface, the high-
speed jet will then be directed away from the free surface and
a water plume or spike will be formed on the surface. All
these problems have been studied using the boundary integral
method. This method necessitates the meshing of the surface
only and not the entire domain thereby greatly reducing the
size of matrices to be solved.

 In this paper, we seek to reduce the computation time
taken to evolve a single gas bubble interacting with a free
surface through use of preconditioning. Limiting our
investigation to gas bubbles initiated at depths such that a
spike forms on the free surface, the preconditioners are

chosen and computed based on some a priori knowledge of
evolution of such bubbles initiated at different depths.

MATHEMATICAL FORMULATION

Mathematical Formulation

 Assuming the fluid domain bounded by the gas bubble
and free surface to be inviscid, incompressible and
irrotational, the flow within the domain Ω may then be
described by a potential field ()x, y, zφ , where the fluid
velocity is given by φ∇ , that satisfies Laplace�s equation

2 0φ∇ = .

 The kinematic and dynamic boundary conditions
governing the motion of the gas bubble with no buoyancy
force, and free surface are

D

Dt
φ= ∇

p
,

2 0D 1
1

D 2

V

t V

λφ
φ ε= + ∇ −  

  
 for Ω S∂ ∈ ,

and

2D 1
1

D 2t

φ
φ= + ∇ for Ω Σ∂ ∈

where ()x, y, z=p are the spatial coordinates of the field
point in 3-D, t is the dimensionless time variable, γ the
dimensionless depth of initiation, ε the dimensionless
strength parameter, V the volume of the gas bubble, 0V the
initial volume of the gas bubble, λ the ratio of specific heats,
Ω∂ the domain boundary, S the portion of Ω∂ defined by

the gas bubble and Σ the portion of Ω∂ defined by the free
surface (Best [1] and Wang et al. [2]).

 The far field boundary condition is prescribed as

() 0φ →p as 2 2 2x y z= + + → ∞p .

 The value of parameters used in our investigation is

100ε = , for explosion bubble, and 1 4.γ = , for diatomic gas
(Best [1]).

Time Discretization

 The Euler Forward time discretization scheme is used.
The time discretized equations would thus be of the form

1k k k tφ+ = + ∇ ⋅ ∆p p

for the update of the position of the field points, and

21 01
1

2
k k k

k

V
t

V

λ

φ φ φ ε+ = + + ∇ − ⋅ ∆
  

    
 for Ω S∂ ∈ ,

and

21 1
1

2
k k k tφ φ φ+ = + + ∇ ⋅ ∆ 

  
 for Ω Σ∂ ∈

for the update of potential at the field points. For
simplification, we shall write the above two equations as

()1k k k kF ,V tφ φ φ+ = + ⋅ ∆

with F representing the appropriate function for Ω S∂ ∈ or
Ω Σ∂ ∈ .

 kφ∇ is updated by solving Laplace�s equation with

boundary conditions given by kφ . In our code, φ∇ is
computed directly through the integral equation by
differentiating the Greens function in the three principal
directions. An alternative method for computing φ∇ would
be to obtain the normal component of φ∇ using the integral
equation and the tangential components using finite
differences (Wang et al. [2]).

Solution of Laplace�s Equation

 The Desingularised Indirect Boundary Integral Method
(DIBIM) is used to solve Laplace�s equation (Zhang et al.
[3]) in order to derive the updates to φ∇ . Based on the
above method, we have

() ()i

i i

σ
φ =

−
∑ q

p
p q

where σ is the unknown source strength, ()i x , y , z=q are

the spatial coordinates of the source point, and i−p q is the

Euclidean distance between the field point and the source
point.

Initial Conditions

 The initial bubble radius for the chosen value of ε is
0.1651, obtained by solving the Rayleigh equation modified
for gas bubble (Best [1]). Assuming an initial quiescent free
surface and noting the initial velocity of the gas bubble
surface to be negligible, the initial condition of 0φ = may be
prescribed for the boundary.

DISCRETIZATION

 The initial geometry of the gas bubble is a discretized
sphere of 492 nodes with radius 0.1651 located at
() ()0 0x, y, z , ,γ= . The initial quiescent free surface is
discretized as a flat rectangular surface comprising 729 nodes
spanning () ()5:5 5:5 0x, y, z , ,= − − . The application of a
truncated discretized free surface mesh is an approximation
made possible by the far field boundary condition prescribed
above.

 A point collation scheme is used with the DIBIM
described above. The collocation is performed on the nodes,
492 for the gas bubble and 729 for the free surface, defined
by the discretization. In order to have the number of
unknowns equal to the number of known equations, we set the
number of source points to be equal to the number of
discretized nodes, with 492 points associated with the gas
bubble and 729 points associated with the free surface. This
results in a system with N = 1221 degrees-of-freedom. The
source points are positioned in accordance with Zhang et al.
[3].

 As mentioned above, the Euler Forward time-stepping
scheme is used to evolve the gas bubble and free surface.
The time-step is chosen such that the bound on the maximum
change in potential φ∆ for any node is restricted to 0.04 at
each time-iteration,

2 0

2

,
1

max 1
2

min

1
max 1

2

i

j

V
V

t

λ

φ

φ ε

φ

φ

∆

+ ∇ +

∆ =
∆

+ ∇

 
         
 
 

      

 The value of 0.04 is typical of the range of φ∆ chosen
for such computations (Best [1] and Wang et al. [2]). The
expected nodal potential values would range from �1 to 3.

PRESENT IMPLEMENTATION

 Let (), ,j x y z=p be the position of field point j,

N∈φ ! be the vector of potentials at the N field points,
N∈σ ! be the vector of source strengths at the N source

points and K be the number of time-iterations to be taken.

The present implementation is as follows:

Set initial conditions: 0 1 : j j j N= ∀ =p p , =φ 0 where 0

jp
is the initial position of the field point j.

Do 1 :k K=

1. Form matrix G where
1

ij

j i

−
=

−
G

p q

2. Solve Gσ = φ for σ using iterative solver with set

terminating criterion

3. Compute material derivative ∇ φ = Hσ

 where
1

ij

j i

−
= ∇

−

 
 
 

H
p q

4. Compute time-step t∆

5. Update position of field points

 ()1 1 :k k

j j j
t j N+ = + ∇ ⋅ ∆ ∀ =p p φ

6. Update potential of field points

 ()1 , , 1 :k k

j j jF z V t j N+ = + ⋅ ∆ ∀ =φ φ φ

 where F is the kinematic boundary condition function

associated with node j

7. Compute new volume V

End

 The iterative solver used is the Bi-conjugate Gradient
Stabilized (BICGSTAB) solver. The G matrices generated

based on the DIBIM above have been found to be poorly
conditioned. A terminating criterion of

1.0e 5
∞

< −r

where N∈r ! is the vector of residuals, is used. This liberal
terminating criterion is chosen because of the poor
convergence characteristics associated with using a Krylov
Subspace solver on ill-conditioned matrices. The DIBIM is
also limited in that it starts to fail as opposite sections of the
bubble surface approach each other. In our investigation, we
set K = 150 so as to end our computation before this scenario
arises.

 The output based on the above implementation for the
evolution of free surface interaction with a single gas bubble
initiated at 1.0γ = − is shown in Figure 1.

(a)

(b)

(c)

(d)

(e)

Figure 1: Evolution of Free Surface Interaction with Gas

Bubble Initiated at 1.0γ = −

PROPOSED METHOD

 The bound on convergence rate of a Krylov Subspace
solver for the solution of a general linear system

Ax = b

is a function of the condition number of the matrix A ,
()κ A . In general, the better the condition of A , the higher

is the convergence rate and vice-versa.

Block Diagonal Preconditioning

 The use of preconditioning to achieve better convergence
properties for iterative solvers is not new. There are also
many forms of preconditioners (Saad [5]). In our
investigation, we choose to use block diagonal
preconditioners. The rationale for such a choice is explained
below.

 As stated in Step 1 of the implementation shown before,
the entries in the G matrix are

1
ij

j i

−
=

−
G

p q
.

 This means that the magnitude of entry ijG is inversely
proportional to the distance between field point j and source
point i.

 Let the 492 nodes associated with the gas bubble be
indexed 1 : 492j = and the 792 nodes associated with the
free surface be indexed 493 :1221j = . The resulting G
matrix generated would be of the form

=

   
   
   
       

 
    
    
    
    
    
    
       

G1 G3

G

G4 G2

where 492 492×∈G1 ! is the sub-matrix associated with the gas
bubble nodes only, 729 729×∈G2 ! is the sub-matrix associated
with the free surface nodes only, and 492 729×∈G3 ! and

729 492×∈G4 ! are the �cross-coupled terms�.

 It is observed from Figure 1a that during the initial stages
of evolution, the distance between two bubble nodes is much
smaller compared to the distance between a bubble node and
a free surface node. Because of the positioning of the source

points in accordance with Zhang et al. [3], it is expected that
the value of all entries in matrices G3 and G4 to be much
smaller in magnitude as compared to the value of the entries
in matrices G1 and G2 . As the gas bubble evolves, it is
observed that only the top section of the bubble surface
comes into close proximity with the free surface. This
implies that most of the �coupling� occurs within matrices
G1 and G2 , and not within G3 and G4 .

 Based on the above observation, if we are able to
construct a preconditioner M for the G generated at every
time-iteration such that

1

1

−

−

=

    
    
    
        
    
    
    
    
    
    
         

G1 0

M

0 G2

then (right-)preconditioning the matrix G with M would
yield

1

1

−

−⋅

=

⋅

    
    
    
       

 
    
    
    
    
    
    
       

I G3 G2

GM

G4 G1 I

,

resulting in a better conditioned matrix. It would however be
computationally expensive to invert sub-matrices G1 and
G2 at every time-iteration for use as preconditioners.

(a)

(b)

(c)

Figure 2: Gas Bubble and Free Surface Geometry at Time-

iterations 60 (a), 65 (b) and 70 (c) for 1.0γ = − .

 The need to compute preconditioners at every time-
iteration can be eliminated if we relax the requirement that
the block preconditioner sub-matrices be exact inverses of
sub-matrices G1 and G2 . In fact, our aim is just to
precondition the G matrix such that it has better
convergence properties and not to convert the diagonal sub-
matrices into identity sub-matrices. Figures 2a, 2b and 2c
show the gas bubble and free surface for 1.0γ = − at time-
iterations 60, 65 and 70 respectively. It is observed from
Figure 2 that the change in geometry over several time-

iterations is limited. This implies that the change in value of
entries in the G matrix from one time-iteration to the next is
also limited. In this case, we can compute the preconditioner
for the G matrix generated at a particular time-iteration and
make use of this preconditioner to precondition the G
matrices generated at time-iterations about that particular
time-iteration from which the preconditioner is obtained. In
this case, what we obtain is

1

1

−

−

′ =

    
    
    
        
    
    
    
    
    
    
         

G1 0

M

0 G2

∼

∼

and after (right-)preconditioning

1

1

−

−⋅

′ =

⋅

    
    
    
       

 
    
    
    
    
    
    
       

I G3 G2

GM

G4 G1 I

∼ ∼

∼ ∼

which would still result in a relatively well-conditioned
matrix.

 By judiciously choosing a handful of G matrices
throughout the entire computation run to generate the
preconditioners from, effective preconditioning may be
achieved for the entire computation run.

 The above method may improve the condition of the
matrix and therefore reduce the time taken to solve the linear
system at each time-iteration. However, this method would
require a priori knowledge of the G matrices so as to
compute the preconditioners. This would imply that, in order
to accelerate the computation, we would have to perform the
said computation first, which is somewhat inefficient. An
alternative method is to decide a priori at which time-

iteration to compute the preconditioners. This would
however necessitate the inversion of matrices during the
computation run thus making the computation run expensive.
In fact, there may not even be any savings in computation
time in using this method over the present method.

A Priori Computed Basis Preconditioners

 Given in Figure 3 is the evolution of free surface
interaction with a single gas bubble initiated at 1.1γ = − .
Comparing Figures 3 and 1, it is observed that the gas bubble
in both cases, though initiated at different depths, goes
through the same sequence of evolution with small
differences in geometry.

(a)

(b)

(c)

(d)

(e)

Figure 3: Evolution of Free Surface Interaction with Gas

Bubble Initiated at 1.1γ = −

 As mentioned before, our aim of preconditioning is not
to generate identity sub-matrices but simply to improve the
condition of the G matrices generated such that they have
better convergence properties. It is therefore plausible to
make use of preconditioners generated from the computation
run of 1.0γ = − for the computation run of 1.1γ = − . This
claim is substantiated by the observation above that for a
single gas bubble initiated at various depths such that a spike
forms on the free surface, the gas bubble and free surface
would go through the same sequence of evolution with
marginal differences in geometry

 In this case, the need to have a priori knowledge of the
G matrices for each new computation run of a different γ is
eliminated. In fact, we need only perform one computation
run of one value of γ using the present method, compute the
preconditioners from the G matrices obtained at judiciously
chosen time-iterations and then make use of these
preconditioners for other computation runs of any value of γ
that results in spike formation on the free surface.

Proposed Implementation

 The proposed implementation is given below.

 Perform only once to obtain the basis preconditioners:

Judiciously select the time-iterations to compute the basis
preconditioners from. Let the number of basis
preconditioners selected be n# .

For a selected value of γ γ= # , perform computation run
using the present method.

If time-iteration k = one of the n# pre-selected time-iterations
above,

1. Extract sub-matrices G1 and G2 , and compute 1−G1

and 1−G2

2. Form M

3. Write M to file

 At the end of the computation run, there should be n# a
priori computed basis preconditioners.

 To obtain the solution to any value of γ :

Set initial conditions.

Do 1 :k K=

1. Form matrix G

2. Precondition G with the most appropriate M from the

set of n# basis preconditioners

3. Solve Gσ = φ for σ using iterative solver with set

terminating criterion

4. Compute material derivative ∇ φ = Hσ

5. Compute time-step t∆

6. Update position of field point

 ()1 1 :k k

j j j
t j N+ = + ∇ ⋅ ∆ ∀ =p p φ

7. Update potential of field points

 ()1 , 1 :k k

j j F V t j N+ = + ⋅ ∆ ∀ =φ φ φ

 where F is the kinematic boundary condition function
associated with node j

8. Compute new volume V

End

 In Step 2 above, the �most appropriate M � would be the
preconditioner whose geometry which it is computed from,
most closely matches the geometry at time-iteration k, which
matrix G is computed from. Right-preconditioning is used
since this preserves the residual of the original linear system.

Selection of Preconditioners

 In the selection of preconditioners, we would not want to
select too large a number since this would degrade the
performance of the proposed method through excessive
reading of files. On the other hand, we would not want to
select too low a number of preconditioners since this would
not efficiently precondition the G matrices and also degrade
the performance of the proposed method.

 For the computation of the basis preconditioners, we use

1.0γ = − . This value of γ is used because it is
approximately the mean of the range of γ values that we are
interested in investigating.

 The selection criterion we choose is based on the amount
of change in geometry within a range of time-iterations, rather
than simply a uniform distribution based on the number of
time-iterations or geometry of bubble. The rationale for the
above criterion is that if the geometry changes minimally over
a wide range of time-iterations, there is no need for many
preconditioners over that range of time-iterations on the basis
of the limited change in geometry. On the other hand, if the
change in geometry is tremendous over a limited range of
time-iterations, there is no need for many preconditioners
over that range of geometry on the basis of the limited
number of time-iterations taken to evolve over that range of
geometry.

 Since the volume of the gas bubble is solely a function of
the geometry of the bubble, we can replace �geometry� in the
above criterion with �volume of the gas bubble�. We can
also use the volume to establish the �most appropriate�
preconditioner to use. The alternative view is that we can
determine the range of volumes that we use a particular
preconditioner for.

 Based on the above criterion, we look to the volume-
iteration plot given in Figure 4 to select the volume, and thus
the time-iteration to compute the preconditioners from.

 It is observed from Figure 4 that the increase in volume
during the first 40 time-iterations is minimal. The rate of
increase picks up dramatically at about time-iteration 60,
tapering off upon nearing maximum volume. The rate of
change in volume during the collapse phase is slightly less
than that during the rapid expansion phase. Based on the
selection criterion detailed above, the volumes and the
corresponding time-iterations we choose to compute the
preconditioners for various ranges of volume are given in
Table 1.

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

tim e-iteration

vo
lu

m
e

Figure 4: Gas Bubble Volume against Time-iteration Plot for

1.0γ = − .

Desired
Volume

Selected Time-
iteration

Range of Volume
Selected For

∼ 0.04 30 Initial � 0.08
∼ 0.75 63 0.08 � 1.5
∼ 2.25 76 1.5 � 3.0
∼ 3.75 85 3.0 � 4.5
∼ 4.0 100 4.5 � 3.5
∼ 3.0 116 3.5 � 2.5
∼ 2.0 133 2.5 � 1.5

Table 1: Volumes Chosen for Computation of

Preconditioners

 Having determined the range of volume associated with
each preconditioner, a new preconditioner is read into
memory from file as and when necessary during the
computation.

RESULTS AND DISCUSSION

 The cpu-time (CPU) and wall-clock (WC) time taken to
complete a computation run of 150 time-iterations for various
γ �s is given below. The iterative solution method used is the
BICGSTAB method with the terminating criterion being the
infinity norm of the residual as is with the present method.
Tables 2, 3 and 4 show the times taken with terminating
criteria of 1.0e-5, 1.0e-7 and 1.0e-10 respectively. Table 5
shows a comparison of the total number of iterations taken by
the iterative solver during the entire computation run of 150
time-iterations.

 It is observed from the results above that with a
terminating criterion of 1.0e-5, the proposed method reduces
the time taken by almost 50% over the present method. Upon
tightening the terminating criterion to 1.0e-7, the proposed
method reduces the time taken by almost 80% over the
present method. There is no timing recorded for the present
method with a terminating criterion of 1e-10. However, an
alternative way of interpreting the results would be that with
the proposed method, we can achieve an improvement of 5
orders in the infinity norm of residual over the present
method while taking less time to complete the computation
run.

 Further evidence of the positive effect of the proposed
preconditioning method on the convergence characteristics of
the G matrices formed may be observed in Table 5, which
shows the total number of iterations taken by the iterative
solver for an entire computation run of 150 time-iterations at
various γ �s.

 Figure 5 shows the plots of number of iterations taken by
the BICGSTAB solver at each time-iteration for 0.8γ = −
using the present method and the proposed method with a
terminating criterion of 1.0e-7.

 It is observed from Figure 5 that the convergence rate is
improved throughout the entire computation run.

 Proposed Method Present Method Ratio
 CPU (s) WC (min:s) CPU (s) WC (min:s) CPU WC

γ = -0.8 252.82 4:12 483.67 8:03 0.523 0.522
γ = -0.9 224.37 3:45 433.31 7:13 0.518 0.520
γ = -1.0 213.28 3:33 411.77 6:51 0.518 0.519
γ = -1.1 207.45 3:27 410.07 6:50 0.506 0.505
γ = -1.2 211.40 3:32 423.31 7:04 0.500 0.500

Table 2: Time taken for 150 Time-iterations with Iterative Solver Terminating Criterion of 1.0e-5

 Proposed Method Present Method Ratio
 CPU (s) WC (min:s) CPU (s) WC (min:s) CPU WC
γ = -0.8 294.12 4:54 1635.52 27:15 0.180 0.180
γ = -0.9 258.43 4:19 1502.76 25:03 0.172 0.173
γ = -1.0 245.30 4:06 1453.27 24:13 0.169 0.170
γ = -1.1 239.97 4:00 1439.76 24:00 0.167 0.167
γ = -1.2 245.85 4:06 1554.17 25:54 0.159 0.159

Table 3: Time taken for 150 Time-iterations with Iterative Solver Terminating Criterion of 1.0e-7

 Proposed Method
 CPU (s) WC (min:s)
γ = -0.8 368.55 6:08
γ = -0.9 321.92 5:22
γ = -1.0 295.61 4:55
γ = -1.1 295.66 4:56
γ = -1.2 308.84 5:09

Table 4: Time taken for 150 Time-iterations with Iterative Solver Terminating Criterion of 1.0e-10

Tolerance 1.0e-5 1.0e-7 1.0e-10
Method Proposed Present Ratio Proposed Present Ratio Proposed
γ = -0.8 799 3583 0.223 1060 14555 0.073 1536
γ = -0.9 599 3070 0.196 822 13315 0.062 1223
γ = -1.0 524 2870 0.183 738 12729 0.058 1057
γ = -1.1 487 2873 0.170 705 12609 0.056 1060
γ = -1.2 507 2987 0.170 746 13641 0.055 1145

Table 5: Total Number of Iterations taken by Iterative Solver for 150 Time-iterations

0 50 100 150
0

50

100

150

200

250
nu

m
be

r o
f B

IC
G

S
TA

B
 it

er
at

io
ns

t im e-iteration

present m ethod
proposed m ethod

Figure 5: Comparison of Number of Iterations taken by
Iterative Solver at each Time-iteration between Present

Method and Proposed Method

CONCLUSIONS

 Based on some a priori knowledge of the evolution of
free surface interacting with a single gas bubble initiated at
the range of depths under investigation, a set of basis
preconditioners is computed from the computation run made
for one particular depth. This set of basis preconditioners is
then used to precondition the matrices generated at each time-
iteration for computation runs made for different depths.

 Using this proposed method, the time taken to complete
150 time-iterations of evolution of free surface interacting
with a single bubble is 50% and 20% of the time taken by the
present method with terminating criteria of 1.0e-5 and 1.0e-7
respectively for the iterative solver used. Furthermore, the
proposed method allows computation to a tolerance of 1.0e-
10 in a time less than that taken by the present method to
compute to a tolerance of 1.0e-5.

REFERENCES

1. Best, J. P., 1991, �The Dynamics of Underwater
Explosions�, Ph.D. Thesis, The University of Wollongong,
Australia.

2. Wang, Q. X., Yeo, K. S., Khoo, B. C. and Lam, K. Y.,
1996, �Nonlinear Interaction Between Gas Bubble and Free
Surface�, Computers & Fluids Vol. 25, No. 7, pp. 607 � 628.

3. Zhang, Y. L., Yeo, K. S., Khoo, B. C. and Chong, W. K.,
1999, �Simulation of Three-dimensional Bubbles Using
Desingluarised Boundary Integral Method�, International
Journal for Numerical Methods in Fluids Vol. 31, No. 8, pp.
1311 � 1320.

4. Zhang, Y. L., Yeo, K. S., Khoo, B. C. and Chong, W. K.,
1998, �Three-dimensional Computation of Bubbles Near a
Free Surface�, Journal of Computational Physics 146, pp. 105
� 123.

5. Saad, Y., 1996, �Iterative Methods for Sparse Linear
Systems�, PWS Publishing Company.

