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ABSTRACT 
 
 The computation of gas bubble-free surface interaction 
entails a time-stepping algorithm whereby a linear system is 
solved at each time-iteration.  In our investigation, the linear 
systems are derived from a desingularized boundary integral 
formulation and are poorly conditioned.  This leads to poor 
convergence rates when Krylov subspace methods are used to 
solve these systems.  The convergence rates may however be 
improved with proper preconditioning. 
 
 We limit our investigation to gas bubbles initiated at 
depths sufficiently small such that a spike forms on the free 
surface during the later stages of evolution.  Bubble dynamics 
dictate that for gas bubbles initiated at such depths, the stages 
through which the gas bubble and free surface evolve are 
similar.  Based on this fact, we propose to perform one 
computation run for a gas bubble initiated at one particular 
depth, obtain a judicious set of a priori basis preconditioners 
from this run and thereafter, use this set of preconditioners on 
computation runs for gas bubble initiated at different depths. 
  
 The computation time taken by the proposed method is, 
in general, 50% and 20% of the time taken by the present 
method (without preconditioning) with terminating criteria of 
1.0e-5 and 1.0e-7 in the infinity-norm respectively using the 
Bi-conjugate Gradient Stabilized solver.  The present method 
further enables computation to an infinity-norm terminating 
criterion of 1.0e-10 in a shorter time compared to the present 
method with a criterion of 1.0e-5. 
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INTRODUCTION 
 
 Bubbles surrounded by a liquid can be found in many 
applications.  Examples include bubble jet printers, boiling 
water and underwater explosions.  The chemical industry uses 
bubble columns to enhance chemical reactions and mixing. 
 
 The study of bubbles can be divided into two main areas.  
The first area, bubbles that do not undergo much change in 
volume, is studied extensively.  A seemingly simple problem 
of this kind, the terminal rise velocity of a single bubble in 
water, is still not yet fully understood.  The second area 
entails bubble dynamics pertaining to oscillating bubbles.  
Examples of these include cavitation bubbles and underwater 
explosion bubbles. 
 
 Underwater explosion bubbles is an active area of 
defense research.  An explosion or gas bubble is formed when 
an underwater explosion takes place.  Due to inertia, this 
bubble will overexpand and thereafter collapse.  If this 
collapse takes place near a solid surface, a high-speed jet will 
be formed, directed towards the solid surface.  On the other 
hand, if it takes place near a free water surface, the high-
speed jet will then be directed away from the free surface and 
a water plume or spike will be formed on the surface.  All 
these problems have been studied using the boundary integral 
method.  This method necessitates the meshing of the surface 
only and not the entire domain thereby greatly reducing the 
size of matrices to be solved. 
 
 In this paper, we seek to reduce the computation time 
taken to evolve a single gas bubble interacting with a free 
surface through use of preconditioning.  Limiting our 
investigation to gas bubbles initiated at depths such that a 
spike forms on the free surface, the preconditioners are 



 

chosen and computed based on some a priori knowledge of 
evolution of such bubbles initiated at different depths. 
 
 
MATHEMATICAL FORMULATION 
 
Mathematical Formulation 
 
 Assuming the fluid domain bounded by the gas bubble 
and free surface to be inviscid, incompressible and 
irrotational, the flow within the domain Ω  may then be 
described by a potential field ( )x, y, zφ , where the fluid 
velocity is given by φ∇ , that satisfies Laplace�s equation 
 

2 0φ∇ = . 
 
 The kinematic and dynamic boundary conditions 
governing the motion of the gas bubble with no buoyancy 
force, and free surface are 
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where ( )x, y, z=p  are the spatial coordinates of the field 
point in 3-D, t is the dimensionless time variable, γ  the 
dimensionless depth of initiation, ε  the dimensionless 
strength parameter, V the volume of the gas bubble, 0V  the 
initial volume of the gas bubble, λ  the ratio of specific heats, 
Ω∂  the domain boundary, S the portion of Ω∂  defined by 

the gas bubble and Σ  the portion of Ω∂  defined by the free 
surface (Best [1] and Wang et al. [2]). 
 
 The far field boundary condition is prescribed as 
 

( ) 0φ →p  as 2 2 2x y z= + + → ∞p . 
 
 The value of parameters used in our investigation is 

100ε = , for explosion bubble, and 1 4.γ = , for diatomic gas 
(Best [1]). 
 

Time Discretization 
 
 The Euler Forward time discretization scheme is used.  
The time discretized equations would thus be of the form 
 

1k k k tφ+ = + ∇ ⋅ ∆p p  
 
for the update of the position of the field points, and 
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for the update of potential at the field points.  For 
simplification, we shall write the above two equations as 
 

( )1k k k kF ,V tφ φ φ+ = + ⋅ ∆  
 
with F representing the appropriate function for Ω S∂ ∈  or 
Ω Σ∂ ∈ . 

 
 kφ∇  is updated by solving Laplace�s equation with 

boundary conditions given by kφ .  In our code, φ∇  is 
computed directly through the integral equation by 
differentiating the Greens function in the three principal 
directions.  An alternative method for computing φ∇  would 
be to obtain the normal component of φ∇  using the integral 
equation and the tangential components using finite 
differences (Wang et al. [2]). 
 
Solution of Laplace�s Equation 
 
 The Desingularised Indirect Boundary Integral Method 
(DIBIM) is used to solve Laplace�s equation (Zhang et al. 
[3]) in order to derive the updates to φ∇ .  Based on the 
above method, we have 
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where σ  is the unknown source strength, ( )i x , y , z=q  are 

the spatial coordinates of the source point, and i−p q  is the 



 

Euclidean distance between the field point and the source 
point. 
 
Initial Conditions 
 
 The initial bubble radius for the chosen value of ε  is 
0.1651, obtained by solving the Rayleigh equation modified 
for gas bubble (Best [1]).  Assuming an initial quiescent free 
surface and noting the initial velocity of the gas bubble 
surface to be negligible, the initial condition of 0φ =  may be 
prescribed for the boundary. 
 
 
DISCRETIZATION 
 
 The initial geometry of the gas bubble is a discretized 
sphere of 492 nodes with radius 0.1651 located at 
( ) ( )0 0x, y, z , ,γ= .  The initial quiescent free surface is 
discretized as a flat rectangular surface comprising 729 nodes 
spanning ( ) ( )5:5 5:5 0x, y, z , ,= − − .  The application of a 
truncated discretized free surface mesh is an approximation 
made possible by the far field boundary condition prescribed 
above. 
 
 A point collation scheme is used with the DIBIM 
described above.  The collocation is performed on the nodes, 
492 for the gas bubble and 729 for the free surface, defined 
by the discretization.  In order to have the number of 
unknowns equal to the number of known equations, we set the 
number of source points to be equal to the number of 
discretized nodes, with 492 points associated with the gas 
bubble and 729 points associated with the free surface.  This 
results in a system with N = 1221 degrees-of-freedom.  The 
source points are positioned in accordance with Zhang et al. 
[3]. 
 
 As mentioned above, the Euler Forward time-stepping 
scheme is used to evolve the gas bubble and free surface.  
The time-step is chosen such that the bound on the maximum 
change in potential φ∆  for any node is restricted to 0.04 at 
each time-iteration, 
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 The value of 0.04 is typical of the range of φ∆  chosen 
for such computations (Best [1] and Wang et al. [2]).  The 
expected nodal potential values would range from �1 to 3. 
 
 
PRESENT IMPLEMENTATION 
 
 Let ( ), ,j x y z=p  be the position of field point j, 

N∈φ !  be the vector of potentials at the N field points, 
N∈σ !  be the vector of source strengths at the N source 

points and K be the number of time-iterations to be taken. 
 
The present implementation is as follows: 
 
Set initial conditions: 0  1 : j j j N= ∀ =p p , =φ 0  where 0

jp  
is the initial position of the field point j. 
 
Do 1 :k K=  
 

1. Form matrix G  where 
1

ij

j i

−
=

−
G

p q
 

 
2. Solve Gσ = φ  for σ  using iterative solver with set 

terminating criterion 
 
3. Compute material derivative ∇ φ = Hσ  

 where 
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4. Compute time-step t∆  
 
5. Update position of field points 
 
 ( )1   1 :k k

j j j
t j N+ = + ∇ ⋅ ∆ ∀ =p p φ  

 
6. Update potential of field points 
 
 ( )1 , ,   1 :k k

j j jF z V t j N+ = + ⋅ ∆ ∀ =φ φ φ  
 
 where F is the kinematic boundary condition function 

associated with node j 
 
7. Compute new volume V 
 
End 
 
 The iterative solver used is the Bi-conjugate Gradient 
Stabilized (BICGSTAB) solver.  The G  matrices generated 



 

based on the DIBIM above have been found to be poorly 
conditioned.  A terminating criterion of  
 

1.0e 5
∞

< −r  
 
where N∈r !  is the vector of residuals, is used.  This liberal 
terminating criterion is chosen because of the poor 
convergence characteristics associated with using a Krylov 
Subspace solver on ill-conditioned matrices.  The DIBIM is 
also limited in that it starts to fail as opposite sections of the 
bubble surface approach each other.  In our investigation, we 
set K = 150 so as to end our computation before this scenario 
arises. 
 
 The output based on the above implementation for the 
evolution of free surface interaction with a single gas bubble 
initiated at 1.0γ = −  is shown in Figure 1. 
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Figure 1: Evolution of Free Surface Interaction with Gas 

Bubble Initiated at 1.0γ = −  
 
 
PROPOSED METHOD 
 
 The bound on convergence rate of a Krylov Subspace 
solver for the solution of a general linear system 
 

Ax = b  



 

is a function of the condition number of the matrix A , 
( )κ A .  In general, the better the condition of A , the higher 

is the convergence rate and vice-versa. 
 
Block Diagonal Preconditioning 
 
 The use of preconditioning to achieve better convergence 
properties for iterative solvers is not new.  There are also 
many forms of preconditioners (Saad [5]).  In our 
investigation, we choose to use block diagonal 
preconditioners.  The rationale for such a choice is explained 
below. 
 
 As stated in Step 1 of the implementation shown before, 
the entries in the G  matrix are 
 

1
ij

j i

−
=

−
G

p q
. 

 
 This means that the magnitude of entry ijG  is inversely 
proportional to the distance between field point j and source 
point i. 
 
 Let the 492 nodes associated with the gas bubble be 
indexed 1 : 492j =  and the 792 nodes associated with the 
free surface be indexed 493 :1221j = .  The resulting G  
matrix generated would be of the form 
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where 492 492×∈G1 !  is the sub-matrix associated with the gas 
bubble nodes only, 729 729×∈G2 !  is the sub-matrix associated 
with the free surface nodes only, and 492 729×∈G3 !  and 

729 492×∈G4 !  are the �cross-coupled terms�. 
 
 It is observed from Figure 1a that during the initial stages 
of evolution, the distance between two bubble nodes is much 
smaller compared to the distance between a bubble node and 
a free surface node.  Because of the positioning of the source 

points in accordance with Zhang et al. [3], it is expected that 
the value of all entries in matrices G3  and G4  to be much 
smaller in magnitude as compared to the value of the entries 
in matrices G1  and G2 .  As the gas bubble evolves, it is 
observed that only the top section of the bubble surface 
comes into close proximity with the free surface.  This 
implies that most of the �coupling� occurs within matrices 
G1  and G2 , and not within G3  and G4 . 
 
 Based on the above observation, if we are able to 
construct a preconditioner M  for the G  generated at every 
time-iteration such that 
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then (right-)preconditioning the matrix G  with M  would 
yield 
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resulting in a better conditioned matrix.  It would however be 
computationally expensive to invert sub-matrices G1  and 
G2  at every time-iteration for use as preconditioners. 
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Figure 2: Gas Bubble and Free Surface Geometry at Time-

iterations 60 (a), 65 (b) and 70 (c) for 1.0γ = − . 
 
 The need to compute preconditioners at every time-
iteration can be eliminated if we relax the requirement that 
the block preconditioner sub-matrices be exact inverses of 
sub-matrices G1  and G2 .  In fact, our aim is just to 
precondition the G  matrix such that it has better 
convergence properties and not to convert the diagonal sub-
matrices into identity sub-matrices.  Figures 2a, 2b and 2c 
show the gas bubble and free surface for 1.0γ = −  at time-
iterations 60, 65 and 70 respectively.  It is observed from 
Figure 2 that the change in geometry over several time-

iterations is limited.  This implies that the change in value of 
entries in the G  matrix from one time-iteration to the next is 
also limited.  In this case, we can compute the preconditioner 
for the G  matrix generated at a particular time-iteration and 
make use of this preconditioner to precondition the G  
matrices generated at time-iterations about that particular 
time-iteration from which the preconditioner is obtained.  In 
this case, what we obtain is 
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and after (right-)preconditioning 
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which would still result in a relatively well-conditioned 
matrix. 
 
 By judiciously choosing a handful of G  matrices 
throughout the entire computation run to generate the 
preconditioners from, effective preconditioning may be 
achieved for the entire computation run. 
 
 The above method may improve the condition of the 
matrix and therefore reduce the time taken to solve the linear 
system at each time-iteration.  However, this method would 
require a priori knowledge of the G  matrices so as to 
compute the preconditioners.  This would imply that, in order 
to accelerate the computation, we would have to perform the 
said computation first, which is somewhat inefficient.  An 
alternative method is to decide a priori at which time-



 

iteration to compute the preconditioners.  This would 
however necessitate the inversion of matrices during the 
computation run thus making the computation run expensive.  
In fact, there may not even be any savings in computation 
time in using this method over the present method. 
 
A Priori Computed Basis Preconditioners 
 
 Given in Figure 3 is the evolution of free surface 
interaction with a single gas bubble initiated at 1.1γ = − .  
Comparing Figures 3 and 1, it is observed that the gas bubble 
in both cases, though initiated at different depths, goes 
through the same sequence of evolution with small 
differences in geometry. 
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Figure 3: Evolution of Free Surface Interaction with Gas 

Bubble Initiated at 1.1γ = −  
 
 As mentioned before, our aim of preconditioning is not 
to generate identity sub-matrices but simply to improve the 
condition of the G  matrices generated such that they have 
better convergence properties.  It is therefore plausible to 
make use of preconditioners generated from the computation 
run of 1.0γ = −  for the computation run of 1.1γ = − .  This 
claim is substantiated by the observation above that for a 
single gas bubble initiated at various depths such that a spike 
forms on the free surface, the gas bubble and free surface 
would go through the same sequence of evolution with 
marginal differences in geometry  
 
 In this case, the need to have a priori knowledge of the 
G  matrices for each new computation run of a different γ  is 
eliminated.  In fact, we need only perform one computation 
run of one value of γ  using the present method, compute the 
preconditioners from the G  matrices obtained at judiciously 
chosen time-iterations and then make use of these 
preconditioners for other computation runs of any value of γ  
that results in spike formation on the free surface. 
 
 



 

Proposed Implementation 
 
 The proposed implementation is given below. 
 
 Perform only once to obtain the basis preconditioners: 
 
Judiciously select the time-iterations to compute the basis 
preconditioners from.  Let the number of basis 
preconditioners selected be n# . 
 
For a selected value of γ γ= # , perform computation run 
using the present method. 
 
If time-iteration k = one of the n#  pre-selected time-iterations 
above, 
 
1. Extract sub-matrices G1  and G2 , and compute 1−G1  

and 1−G2  
 
2. Form M  
 
3. Write M  to file 
 
 At the end of the computation run, there should be n#  a 
priori computed basis preconditioners. 
 
 To obtain the solution to any value of γ : 
 
Set initial conditions. 
 
Do 1 :k K=  
 
1. Form matrix G  
 
2. Precondition G  with the most appropriate M  from the 

set of n#  basis preconditioners 
 
3. Solve Gσ = φ  for σ  using iterative solver with set 

terminating criterion 
 
4. Compute material derivative ∇ φ = Hσ  
 
5. Compute time-step t∆  
 
6. Update position of field point  
 
 ( )1   1 :k k

j j j
t j N+ = + ∇ ⋅ ∆ ∀ =p p φ  

 
7. Update potential of field points  
 
 ( )1 ,   1 :k k

j j F V t j N+ = + ⋅ ∆ ∀ =φ φ φ  

  where F is the kinematic boundary condition function 
associated with node j 

 
8. Compute new volume V 
 
End 
 
 In Step 2 above, the �most appropriate M � would be the 
preconditioner whose geometry which it is computed from, 
most closely matches the geometry at time-iteration k, which 
matrix G  is computed from.  Right-preconditioning is used 
since this preserves the residual of the original linear system. 
 
Selection of Preconditioners 
 
 In the selection of preconditioners, we would not want to 
select too large a number since this would degrade the 
performance of the proposed method through excessive 
reading of files.  On the other hand, we would not want to 
select too low a number of preconditioners since this would 
not efficiently precondition the G  matrices and also degrade 
the performance of the proposed method. 
 
 For the computation of the basis preconditioners, we use 

1.0γ = − .  This value of γ  is used because it is 
approximately the mean of the range of γ  values that we are 
interested in investigating. 
 
 The selection criterion we choose is based on the amount 
of change in geometry within a range of time-iterations, rather 
than simply a uniform distribution based on the number of 
time-iterations or geometry of bubble.  The rationale for the 
above criterion is that if the geometry changes minimally over 
a wide range of time-iterations, there is no need for many 
preconditioners over that range of time-iterations on the basis 
of the limited change in geometry.  On the other hand, if the 
change in geometry is tremendous over a limited range of 
time-iterations, there is no need for many preconditioners 
over that range of geometry on the basis of the limited 
number of time-iterations taken to evolve over that range of 
geometry. 
 
 Since the volume of the gas bubble is solely a function of 
the geometry of the bubble, we can replace �geometry� in the 
above criterion with �volume of the gas bubble�.  We can 
also use the volume to establish the �most appropriate� 
preconditioner to use.  The alternative view is that we can 
determine the range of volumes that we use a particular 
preconditioner for. 
 
 Based on the above criterion, we look to the volume-
iteration plot given in Figure 4 to select the volume, and thus 
the time-iteration to compute the preconditioners from. 
 



 

 It is observed from Figure 4 that the increase in volume 
during the first 40 time-iterations is minimal.  The rate of 
increase picks up dramatically at about time-iteration 60, 
tapering off upon nearing maximum volume.  The rate of 
change in volume during the collapse phase is slightly less 
than that during the rapid expansion phase.  Based on the 
selection criterion detailed above, the volumes and the 
corresponding time-iterations we choose to compute the 
preconditioners for various ranges of volume are given in 
Table 1. 
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Figure 4: Gas Bubble Volume against Time-iteration Plot for 

1.0γ = − . 
 

Desired 
Volume 

Selected Time-
iteration 

Range of Volume 
Selected For 

∼  0.04 30 Initial � 0.08 
∼  0.75 63 0.08 � 1.5 
∼  2.25 76 1.5 � 3.0 
∼  3.75 85 3.0 � 4.5 
∼  4.0 100 4.5 � 3.5 
∼  3.0 116 3.5 � 2.5 
∼  2.0 133 2.5 � 1.5 

 
Table 1: Volumes Chosen for Computation of 

Preconditioners 
 
 Having determined the range of volume associated with 
each preconditioner, a new preconditioner is read into 
memory from file as and when necessary during the 
computation. 
 
 
 
 
 
 

RESULTS AND DISCUSSION 
 
 The cpu-time (CPU) and wall-clock (WC) time taken to 
complete a computation run of 150 time-iterations for various 
γ �s is given below.  The iterative solution method used is the 
BICGSTAB method with the terminating criterion being the 
infinity norm of the residual as is with the present method.  
Tables 2, 3 and 4 show the times taken with terminating 
criteria of 1.0e-5, 1.0e-7 and 1.0e-10 respectively.  Table 5 
shows a comparison of the total number of iterations taken by 
the iterative solver during the entire computation run of 150 
time-iterations. 
 
 It is observed from the results above that with a 
terminating criterion of 1.0e-5, the proposed method reduces 
the time taken by almost 50% over the present method.  Upon 
tightening the terminating criterion to 1.0e-7, the proposed 
method reduces the time taken by almost 80% over the 
present method.  There is no timing recorded for the present 
method with a terminating criterion of 1e-10.  However, an 
alternative way of interpreting the results would be that with 
the proposed method, we can achieve an improvement of 5 
orders in the infinity norm of residual over the present 
method while taking less time to complete the computation 
run. 
 
 Further evidence of the positive effect of the proposed 
preconditioning method on the convergence characteristics of 
the G  matrices formed may be observed in Table 5, which 
shows the total number of iterations taken by the iterative 
solver for an entire computation run of 150 time-iterations at 
various γ �s. 
 
 Figure 5 shows the plots of number of iterations taken by 
the BICGSTAB solver at each time-iteration for 0.8γ = −  
using the present method and the proposed method with a 
terminating criterion of 1.0e-7. 
 
 It is observed from Figure 5 that the convergence rate is 
improved throughout the entire computation run. 
 
 



 

 
 Proposed Method Present Method Ratio 
 CPU (s) WC (min:s) CPU (s) WC (min:s) CPU WC 

γ = -0.8 252.82 4:12 483.67 8:03 0.523 0.522 
γ = -0.9 224.37 3:45 433.31 7:13 0.518 0.520 
γ = -1.0 213.28 3:33 411.77 6:51 0.518 0.519 
γ = -1.1 207.45 3:27 410.07 6:50 0.506 0.505 
γ = -1.2 211.40 3:32 423.31 7:04 0.500 0.500 

 
Table 2: Time taken for 150 Time-iterations with Iterative Solver Terminating Criterion of 1.0e-5 

 
 

 Proposed Method Present Method Ratio 
 CPU (s) WC (min:s) CPU (s) WC (min:s) CPU WC 
γ  = -0.8 294.12 4:54 1635.52 27:15 0.180 0.180 
γ  = -0.9 258.43 4:19 1502.76 25:03 0.172 0.173 
γ  = -1.0 245.30 4:06 1453.27 24:13 0.169 0.170 
γ  = -1.1 239.97 4:00 1439.76 24:00 0.167 0.167 
γ  = -1.2 245.85 4:06 1554.17 25:54 0.159 0.159 

 
Table 3: Time taken for 150 Time-iterations with Iterative Solver Terminating Criterion of 1.0e-7 

 
 

 Proposed Method 
 CPU (s) WC (min:s) 
γ = -0.8 368.55 6:08 
γ = -0.9 321.92 5:22 
γ = -1.0 295.61 4:55 
γ = -1.1 295.66 4:56 
γ = -1.2 308.84 5:09 

 
Table 4: Time taken for 150 Time-iterations with Iterative Solver Terminating Criterion of 1.0e-10 

 
 

Tolerance 1.0e-5 1.0e-7 1.0e-10 
Method Proposed Present Ratio Proposed Present Ratio Proposed 
γ = -0.8 799 3583 0.223 1060 14555 0.073 1536 
γ = -0.9 599 3070 0.196 822 13315 0.062 1223 
γ = -1.0 524 2870 0.183 738 12729 0.058 1057 
γ = -1.1 487 2873 0.170 705 12609 0.056 1060 
γ = -1.2 507 2987 0.170 746 13641 0.055 1145 

 
Table 5: Total Number of Iterations taken by Iterative Solver for 150 Time-iterations 
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Figure 5:  Comparison of Number of Iterations taken by 
Iterative Solver at each Time-iteration between Present 

Method and Proposed Method 
 
 
CONCLUSIONS 
 
 Based on some a priori knowledge of the evolution of 
free surface interacting with a single gas bubble initiated at 
the range of depths under investigation, a set of basis 
preconditioners is computed from the computation run made 
for one particular depth.  This set of basis preconditioners is 
then used to precondition the matrices generated at each time-
iteration for computation runs made for different depths. 
 
 Using this proposed method, the time taken to complete 
150 time-iterations of evolution of free surface interacting 
with a single bubble is 50% and 20% of the time taken by the 
present method with terminating criteria of 1.0e-5 and 1.0e-7 
respectively for the iterative solver used.  Furthermore, the 
proposed method allows computation to a tolerance of 1.0e-
10 in a time less than that taken by the present method to 
compute to a tolerance of 1.0e-5. 
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