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Abstract

Reliability of a computer architecture may be increased through fault tolerance.
However, fault tolerance is achieved at a price of decreased throughput. The Fault Tolerant
Parallel Processor at the Charles Stark Draper Laboratory maintains high levels of reliability
and throughput by combining technologies of fault tolerance and parallel processing. The
architecture is based on a Network Element (NE), which performs the functions of fault
tolerance and parallel processing. A design for two field programmable gate arrays
(FPGAs) is proposed herein which will replace much of the NE and perform the
communication, synchronization, and redundancy management functions within the NE.
This will yield increased reliability, reduced size, and reduced power dissipation. These
FPGAs will be integrated with the next implementation of the Fault Tolerant Parallel
Processor.
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Chapter 1
Introduction

1.1 Problem Statement

The requirement of ultra-reliable computing has led to increasing research in the
field of fault tolerant computing. Life critical and mission critical computing systems of the
future will have performance and reliability requirements that the current fault tolerant
computing systems cannot meet. These systems may be used in the decision-making
processes of autonomous mechanisms, which may be used for both military and
commercial purposes. An example of a military purpose would be a system to monitor
incoming enemy missiles and destroy them when necessary. An example of a commercial
purpose would be an automated air traffic controller.

Several fault toleraat computing systems have been designed according to the rules
of Byzantine Resilience, such as the Fault Tolerant Multiprocessor (FTMP) [AH78],
designed by the Charles Stark Draper Laboratory, and the Software Implemented Fault
Tolerance (SIFT) Computer [JG84, JHW78, RWB86], designed by SRI International.
However, the SIFT Computer proved inadequate for real-time operation due to the
overhead resulting from the implementation of fault tolerance. The AIPS Fault Tolerant
Computer (AIPS FTP) [AIPS84], designed by the Charles Stark Draper Laboratory, and
the Network Element Based Fault Tolerant Processor (NEFTP) [TAA88], designed by the
Charles Stark Draper Laboratory are more recent designs which can meet the performance
requirements for real-time operations. The Charles Stark Draper Laboratory is in the
process of designing a Cluster Three Fault Tolerant Parallel Processor (C3 FTPP), which
surpasses previous fault tolerant systems regarding performance issues by combining
properties of fault tolerance and parallel processing. Fault tolerance is necessary for high
reliability and parallel processing enhances performance. The C3 FTPP requires a
mechanism to provide fault detection and correction, synchronization, and inter-
communication in a manner that is compact and reliable.
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1.2 Objective

The primary objective of this thesis is to design and develop two field
programmable gate arrays (FPGAs) which will be used for error detection/correction,
synchronization, and communication purposes in the C3 FTPP. These FPGAs are named
the Fault Tolerant Clock (FTC) FPGA and Voter FPGA, collectively known as the Data
Path Chip Set. The FTC FPGA will handle the Network Elemr:nt (NE) synchronization
and inter-NE communication. The Voter FPGA will handle the error detection/correction.
The FPGAs provide compactness, reliability, and low power dissipation for the C3 FTPP
design. They provide a significant reduction in physical size over previous designs. The
two sixty-eight pin FPGAs support the circuit equivalent of over forty TTL-type chip
packages. Numerous design improvements result in increased reliability. CMOS FPGA
technology allows for low power dissipation within the FPGAs, which also increases
reliability. A design for these FPGAs is developed and fabricated.

1.3 Approach

This study begins with the discussion of some of the fundamentals of fault tolerant
processing, in particular, the Byzantine Resilience approach. Several existing fault tolerant
computers are then discussed, including tbe design of the C3 FTPP. The FPGA hardware
is examined and the functional blocks for each FPGA are designed. The FPGAs are
simulated and a general evaluation is made.
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Chapter 2
Fault Tolerance Fundamentals

This chapter discusses some of the fundamentals of fault tolerance. The major
motivation for fault tolerance is the need for ultra-reliable computing. As the demand for
automated processes increases, those that are mission-critical and/or life-critical need ultra-
reliable computing processes. For instance, a mission-critical operation might involve an
unmanned spaceflight to another planet while a life-critical system might operate the life-
support system of a space colony. Fault tolerant computing, as its name suggests, is
computing that is able to tolerate faults in such a manner that errors can be detected and
corrected prior to propagation throughout the system. Although no system can be 100%
error-proof, a fault tolerant system can come close. In today's computer systems, fault
tolerance is achieved through the use of redundancy. This redundancy can be done in
either hardware or software, or both. An example of software redundancy would include
multiple execution and comparison of the same software routines. Multiple processors
executing the same software, or the same process in different manners is an example of
hardware redundancy.

2.1 Fault Tolerance Requirements

Two key factors in comparing the fault tolerance of different computer architectures
are performance and reliability. Performance is roughly measured by the throughput in
millions of instructions per second (MIPS), while reliability can be measured as the
probability of failure per hour. The throughput requirement on a fault tolerant system
depends on the system's function. Most of today's real-time systems have throughput
requirements ranging from one to ten MIPS. However, it is conceivable that a future
system, such as an autonomous space mission, may have a throughput requirement of 100
MIPS. Typically, the allowable failure probabilities range from 10 to 106 per hour for
mission-critical functions and 10-6 to 10-10 per hour for vehicle-critical and crew safety
functions [JJD88].

There are two basic approaches to fault tolerance, the ad hoc approach and the
Byzantine Resilience approach.
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2.2 Ad Hoc Approach

The ad hoc approach provides fault tolerance for only those modes that are
predicted to be likely to occur. This approach is taken in many commercial computers to
provide minimal hardware redundancy. In the ad hoc approach, the probabilities of certain
failure modes are estimated. Hardware is then designed to tolerate those modes judged to
have a sufficiently high probability of occurrence. For instance, a system that operates in
an area with faulty power lines may be designed with a backup power supply. Another
example would be a data storage/retrieval system that stores multiple copies of data and
uses checksums to retrieve correct data. ’

The ad-hoc approach is inadequate for ultra-reliable computing due to the fact that
only the likely failure modes are tolerated, and because human assumptions can be
unreliable. Even if the likely failure modes were completely tolerated, which itself is
unlikely, the probability of failure is still the sum of the probabilities of all unlikely failure
modes. For instance, the system with a backup power supply could easily be defeated by a
faulty backup supply or any flaws the system itself has. The data storage/retrieval system
could easily be defeated by a checksum that randomly matches corrupt data, or a faulty
read/write mechanism.

2.3 Byzantine Resilience Approach

The Byzantine Resilience approach provides tolerance for all failure modes,
including malicious failures, which are the worst possible failures that can occur. This
approach is taken by several academic and research organizations. Although the probability
of malicious failures cannot be determined, they must have a likelihood of less than 10-6
per hour to allow non-Byzantine resilient architectures to even have a chance of meeting the
reliability requirements discussed in Section 2.1 The Byzantine Resilience approach is
argued to yield much more reliable processes than the ad hoc apprcach since all failure
modes are covered, not only those that are predicted.

The hardware cost of Byzantine resilient system is high, but is argued to be the only
practical approach to ultra-reliable computing. The Byzantine Resilience approach is also
much more beneficial than the ad-hoc approach since failure modes do not need to be
estimated beforehand, thus eliminating the chance of error in human assumptions.
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Chapter 3
Byzantine Resilience

Byzantine Resilience is derived from the consensus problem known as the
Byzantine Generals Problem. As said in the previous chapter, it is the only practical
approach to ultra-reliable computing. The Byzantine Generals Problem is summarized as
follows. We imagine that several divisions of the Byzantine army, each commanded by its
own general, are campea around an enemy city. The generals can only communicate with
one another by messenger. After observing the enemy, the generals must decide upon a
common action. However, some of the generals may be traitors, trying to prevent the loyal
generals from reaching an agreement [LL82]. The generals must decide on whether to
attack or retreat. The problem is to derive a protocol to ensure that all loyal generals agree
on a common battle plan, obeying the commanding general whenever he is a loyal general.

The generals in the Byzantine Generals Problem represent precessors in a
computing system. Traitors represent processors that have malicious failures. The
agreement on a common battle plan represents non-faulty processors agreeing on input
data. By applying the solution to the Byzantine Generals Problem to a computer system we
can develop a computing system that is operational even in the presence of malicious
processor failures. This approach is used by the C3 FTPP, among others, to provide ultra-
reliability. The communication process used by the Fault Tolerant Clock (FTC) FPGA and
the voting process used by the Voter FFGA designed in this thesis is derived from the
solution to the Byzantine Generals Problem.

3.1 Solution to the Byzantine Generals Problem

For a given number of traitorous generals, the solution to the Byzantine Generals
Problem lies in the number of generals through which messages must be relayed, and to
whom each general should relay the message. This solution guarantees that each loyal
general will agree on a common battle plan, obeying the commanding general whenever he
is a loyal general. Assuming deterministic unauthenticated protocols, a proven solution to
the Byzantine Generals problem in the presence of f traitors (or f simultaneous faults) must
meet the requirements shown in Table 3.1.
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1. There must be at least 3f + 1 participants [LL82].

2. Each participant must be connected to at least 2f + 1 other participants
through unique communication paths [DD82].

3. The protocol must consist of a minimum of f + 1 rounds of
communication exchange among the participants to allow for the single
sourcing of information [MJF82].

4. The participants must be synchronized to within a known finite skew
[DDg4-2].

Table 3.1 - Requirements for the Byzantine Generals Problem Solution

A system which meets the requirements shown in Table 3.1 is known to be f-fault
Byzantine resilient. For example, a One-Byzantine resilient system must comprise at least
four participants, each uniquely interconnected. It uses a two-round communication
exchange, with each round of communication occurring during the same approximate time.
A Two-Byzantine resilient system must comprise at least seven participants, each connected
to at least five other participants. It uses a three-round communication exchange, with each
round of communication occurring during the same approximate time.

3.2 The One-Byzantine Resilient System

The One-Byzantine resilient system must comprise four participants. This
requirement can be depicted by showing that three participants do not allow for Byzantine
fault tolerance.

Consider the case in which there are three participants, one commanding general
and two lieutenants, each being able to relay the message of "attack” or "retreat”. In the
first scenario, Lieutenant 2 is a traitor, as in Figure 3.1. The Commander is loyal and
sends the "attack” command to the two licutenants. Lieutenant 2 then tells Lieutenant 1 that
the Commander said to "retreat”, since he is a traitor. Lieutenant 1 now cannot figure out
what decision to make, since there is is conflicting data and a majority consensus cannot be
met. [LL82]
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Figure 3.1 - Lieutenant 2 is a Traitor

In the second scenario, the Commander is a traitor, as in Figure 3.2. Since heis a
traitor, the Commander sends the "attack”" command to Lieutenant 1 and the "retreat”
command to Lieutenant 2. Lieutenant 2 then tells Lieutenant 1 that the Commander said to
"retreat". Lieutenant 1 cannot figure out what decision to make, since the information he
has received is the same as in the first scenario. [LL82]
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Figure 3.2 - Commander is a Traitor
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With four participants, however, Byzantine resilience can be achieved even though
there is one traitor. In the first scenario, Lieutenant 3 is a traitor, as indicated in Figure 3.3.
The Commander is loyal and sends the message v to the three lieutenants, where v can
mean either "attack” or "retreat”. Lieutenants 1 and 2 then send the message v to the other
Lieutenants, while the traitorous Lieutenant 3 sends a message y to Lieutenant 1 and a
message x to Lieutenant 2. Lieutenants 1 and 2 can now do a majority vote on the orders
received and carry out the message v. [LL82]

D

@ o<

. / COMMANDER\

O
1 vote(v,v,x) @ o
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LIEUTENANT 1 % LIEUTENANT 3
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Figure 3.3 - Lieutenant 3 is a Traitor

In the second scenario, the Commander is a trzitor, as indicated in Figure 3.4. The
Commander sends the messages v, x, and y to Lieutenants 1, 2, and 3, respectively. The
loyal Lieutenants, then relay the message to the other two Lieutenants so each Lieutenant
receives one of each message. The Lieutenants now do a majority vote on the orders
received and thus all receive the same message (the majority vote of v, x, and y), which we
will call z. In either scenario, the loyal generals can determine which one is traitorous by
comparing the majority vote of the orders with the ones they received. [LL82]

20



Chapter 3 - Byzantine Resilicnce

" COMMANDER\

5%\‘ =X

LIEUTENANT 1 LIEUTENANT 3

N7

Figure 3.4 - Commander is a Traitor

So for single sourcing of data, we can create a One-Byzantine resilient system with
four participants. A One-Byzantine resilient system consists of at least four Fault

Containment Regions (FCRs). A One-Byzantine resilient system with four FCRs is shown
in Figure 3.5.

FCRA [ g p{ FCRD

FCRB < »| FCRC

Figure 3.5 - A One-Byzantine Resilient System
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Note that if there are at least three FCRs sourcing the same data in our four FCR system,
only one round of communication needs to take place since a simple majority vote of

incoming data may be used.

3.3 The Two-Byzantine Resilient System

For single sourcing of data, a Two-Byzantine resilient system must comprise at
least seven FCRs, each connected to at least five other FCRs. It uses a three-round
communication exchange, with each round of communication occurring during the same
approximate time. A Two-Byzantine resilient system consisting of seven FCRs is shown
in Figure 3.6.

FCRA | g FCRG

/ N

FCRB FCRF
FCRC \ l FCRE
FCRD

Figure 3.6 - A Two-Byzantine Resilient System
Note that if there are at least five FCRs sourcing the same data in our seven FCR

system, only one round of communication needs to take place since a simple majority vote
of incoming data may be used.
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Chapter 4
Fault Tolerant Computers

There have been several architzctures developed which satisfy the requirements for
a One-Fault Byzantine resilient system. Among those discussed in this chapter are:

» The Software Implemented Fault Tolerance Computer (SIFT)

» The AIPS Fault Tolerant Computer (AIPS FTP)

o The Multicomputer Architecture for Fault Tolerance (MAFT)

* The Fault Tolerant Parallel Processor (FTPP)

o The Network Element Based Fault Tolerant Processor (NEFTP)

As the solution in Section 3.1 suggests, a One-Fault Byzantine resilient system
must fulfill the following requirements.

1. There must be at least four participants [LL82].

2. Each participant must be connected to at least three other participants
through unique communication paths [DD82].

3. The protocol must consist of a minimum of two rounds of
communication exchange among the participants to allow for the single
sourcing of information [MJF82].

4. The participants must be synchronized to within a known finite skew
[DD84-2].

For simplicity of reference purposes, we will refer to requirement one as the precessor
number requirement. Requirement two will be referred to as the connectivity requirement.
Requirement three will be referred to as the communication requirement. Finally,
requirement four will be referred to as the synchronization requirement.
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4.1 The AIPS Fault Tolerant Computer (AIPS FTP)

The AIPS Fault Tolerant Processor (AIPS FTP) [AIPS84] was developed at the
Charles Stark Draper Laboratory, Inc. It consists of three processors and three interstages
which act as Fault Containment Regions (FCRs) connected as shown in Figure 4.1. The
interstages are simple data routers that forward the input to each of the processors. The
processors are identical processors executing the same software. They resolve the input
data by a 3-way, bit-for-bit majority voter circuit.

Synchronization is achieved through a clock signal called the Fault Tolerant Clock
(FTC). This is employed by a digital phase lock loop circuit in each processor to lock in
phase the FT'C signal. The local FTC (LFTC) is approximately an 888 kHz clock signal.
Each processor sends its respective LFTC to the interstages, which in turn relay the signals
back to the processors. The processors generate FTC by selecting the median value of the
three input signals, which should be the same for all processors as long as the
interconnection skews between the processors and interstages are the same. All of the
processors receive the same number of processor clock (SYSCLK) ticks during the FTC

cycle.
From Interstage A > To Processor A >
From Interstage B > Processor A Interstage A To Processor B >

To Processor C

From Interstage C »

-

To Processor A >

From Interstage A >
From Interstage B . Processor B Interstage B To Processor B >

From Interstage C >

To Processor C >

To Processor A >

From Interstage A >
From Interstage B > Processor C Interstage C To Processor B >

From Interstage C > To Processor C >
Figure 4.1 - AIPS Fault Tolerant Processor Architecture
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The three processors of the AIPS FTP are each participants in the Byzantine
Generals problem. The interstages act as the fourth participant, fulfilling the participant
number requirement for Byzantine resilience. The connectivity requirement is fulfilled by
the fact that each processor is connected to all of the interstages, and the interstages are all
connected to each processor. Two rounds of exchange take place during the input
consistency algorithm. In the first round, the processors forward their respective output
data to each of the interstages. In the second round, the interstages forward the data they
have received to each processor. These two rounds of communication fulfill the
communication requirement for Byzantine resilience. Synchronization is achieved through
the Fault Tolerant Clock as previously mentioned. The post-synchronization skew is held
to within 125 ns, fulfilling the synchronization requirement.

4.2 The C1 Fault Tolerant Parallel Processor (FTPP)

The Cluster One (C1) Fault Tolerant Parallel Processor (FTPP) [JJD88, REHS8S,
REH87-2] is a computer developed at the Charles Stark Draper Laboratory, Inc., which
combines the principles of Byzantine resilience with parallel processing.

The C1 FTPP is grouped into at least four Fault Containment Regions (FCRs),
each consisting of four Processing Elements (PEs) and a Network Element (NE) arranged
as in Figure 4.2. Each FCR in the FTPP is physically isolated, electrically isolated
(including separate power supplies), and clocked independently. The PEs are off-the-
shelf, commercial processor boards that are VME compatible. The C1 FTPP at the Draper
Laboratory uses 12.5 MHz versions of the Motorola 68020 VME boards as PEs.
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Figure 4.2 - The C1 Fault Tolerant Parallel Processor Architecture

The NE is the heart of the FTPP and performs the communication, voting, and
synchronization functions of the system. The NE can be divided into six functional blocks:

» The PE/NE Interface

» The NE Data Paths

« The Inter-FCR Communication Links

* The NE Fault Tolerant Clock

* The NE Scoreboard

 The NE Global Controller

26



Chapter 4 - Fault Tolerant Computers

The PE/NE Interface provides for the passing of variable size messages between the PE
and the NE. The NE Data Paths provides for the handling of one and two round
communications exchanges, and the resolution of redundant data copies (majority voting).
The Inter-FCR Communication Links provide for passing of data between the FCRs. The
NE Fault Tolerant Clock synchronizes an NE with respect to the other NEs. The NE
Scoreboard decides which processor exchange, if any, can be performed. Finally, the NE
Global Controller is the central micro-controller for the NE. The block diagram of the C1

FTPP is shown in Figure 4.3.
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Figure 4.3 - Block Diagram of the C1 FTPP Network Element
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The processors of the C1 FTPP are arranged as virtual processors, each consisting
of one, three, or four physical processors. A virtual processor consisting of one, three, or
four physical processors is called a simplex, triplex, or quadruplex virtual processor,
respectively. This provides for different levels of fault tolerance and throughput. Each of
the processors in the virtual processing group executes the same code. The members of a
virtual processor comprise a Fault Masking Group (FMG). Each of the redundant
processors in a virtual processing group reside in a separate FCRs to eliminate single point
failures. Communication takes place between the processors by means of the NE.

To maintain synchronization and consistency, the processors exchange messages
with each other. Each NE tells the other NEs whether or not its processor needs to
exchange information. If all non-faulty processors request the exchange, then the exchange
is performed. The data sent by a NE requesting an exchange of information is called an
exchange request pattern. Four of these exchanges occur during the first half of this cycle.
The series of these four exchanges is called a system exchange request pattern (SERP)
exchange.

Once it is determined through a SERP that an exchange is to take place, there are
two types of exchanges that can take place. The first type is a Class 1 exchange which is
sourced by the members of a triplex or quadruplex virtual processor. During this type of
exchange, each FMG member delivers its message to its respective NE, which then relays
the message to the other three NEs. Each NE transmits one message and receives three
messages. Note that all NEs transmit messages whether the virtual processor is running in
triplex or quadruplex mode. When in triplex mode, the NE not hosting a member of the
FMG delivers an empty message to the other NEs. The information received by each NE is
then majority voted. Disagreements in the vote are relayed to the processing elements so
that Fault Detection Isolation and Reconfiguration (FDIR) software can determine if an
element is faulty and reconfigure the system as necessary. The Class 1 message exchange
is diagrammed in Figure 4.4.
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Figure 4.4 - C1 FTPP Class 1 Message Exchange

For a simplex virtual processor, a Class 2 message exchange is used. A Class 2
exchange is a two-round exchange. This is identical in concept to the two-round exchange
diagrammed in Figures 3.3 and 3.4. In the first round, a member of the FMG single-
sources a message to its hosting NE, which then relays this message to the other three
NEs. In the second round, each NE reflects the message they received to the other three
NEs. Thus, each NE has four copies of the message and can be majority voted. The Class
2 message exchange is diagrammed in Figures 4.5 and 4.6.
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Figure 4.5 - C1 FTPP Class 2 Message Exchange (Round 1)
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Figure 4.6 - C1 FTPP Class 2 Message Exchange (Round 2)

Since there are four NEs in the C1 FTPP, there are the equivalent of four
participants in the Byzantine Generals Problem. This fulfills the participant number
requirement for Byzantine resilience. Each NE is connected to the other three NEs via a
metallic link. Thus, it meets the connectivity requirement. A Class 2 exchange of data is
used during the simplex mode of operation. It is equivalent to two rounds of
communication. The first round, involves each of the PEs completing a segment of code
and sending its respective output data to the NE. This is similar to the way the commander
issues commands to each of the lieutenants in the Byzantine Generals Problem. The
second round involves the NEs reflecting the data to each of the other NEs and taking a
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majority vote of all the data. This is similar to the lieutenants' relaying of messages to the
other lieutenants. The triplex and quadruplex aiso can perform Class 2 exchange modes
which meet the communication requirements for Byzantine resilience. The NEs are
synchronized by the Fault Tolerant Clock mechanism. When data is received outside of a
limited time frame then an error is noted and the local NE's clock is adjusted accordingly.
This method of keeping the NEs within a known skew fulfills the synchronization
requirement. In triplex or quadruplex modes, data is simply majority voted after one round
of exchange. This allows one fault to be detected and corrected during each round of
exchange. Therefore, the C1 FTPP, meets all the requirements for being One-Fault
Byzantine resilient.

4.3 The Multicomputer Architecture for Fault Tolerance
(MAFT)

The Multicomputer Architecture for Fault Tolerance (MAFT) [AMF88] attempts to
reduce the overhead of fault tolerance for increased throughput. It consists of four
Operations Controllers (OCs) and four Applications Processors (APs), as shown in Figure
4.7. The OC is the device that handles the fault tolerance. It communicates back and forth
to the AP and to the other OCs. It also performs the data voting, error detection,
synchronization, reconfiguration, and task scheduling for the system.
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Operations Operations Operations Operations
Controller Controller Controlier Controller

Appiications| Application Applications Applications
Processor Processor Processor \ Processor

Figure 4.7 - The Multicomputer Architecture for Fault Tolerance
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Seeing that there are four processors, the MAFT meets the participant number
requirement for Byzantine resilience. All of the participants are connected to each other
through unique broadcast busses. This meets the connectivity requirement. The two
rounds of communication of the communication requirement take place as follows. In the
first round, all of the the APs send their respective output data to the OC; this is equivalent
to the commander giving his orders. The second round involves the relaying of this data to
the other OCs, representing the intercommunication between the lieutenants. Finally, the
MAFT has a synchronization scheme which synchronizes the participants to within a
known skew (the synchronization requirement). This is done through the exchange of
synchronization messages, which is also sent via the broadcast busses. Thus, the MAFT
fulfills the requirements for One-Fault Byzantine resilience.

4.4 The Network Element Based Fault Tolerant Processor
(NEFTP)

The Network Element Based Fault Tolerant Processor (NEFTP) [TAA88] is
basically a scaled down version of the C1 FTPP (see Section 4.2) also developed at the
Charles Stark Draper Laboratory, Inc. It consists of four Fault Containment Regions
(FCRs), each containing a Processing Element (PE) and a Network Element (NE), as
shown in Figure 4.8. As in the C1 FTPP, the PE is an off-the-shelf, VME compatible
processor board. 20 MHz versions of the Motorola 68030 VME boards are used as PEs.
The NE for the NEFTP is a reduced version of the NE for the C1 FTPP. Since there is
only one PE per NE, the designs of the NE Global Controller and NE Scoreboard are
extremely simplified. The C1 FTPP's NE occupies three VME boards as opposed to one
VME board for NEFTP's NE. Fiber optic links are used instead of metallic links as the
Inter-FCR Communication Links. This provides for much better electrical isolation
between the FCRs and is less noisy. The NEFTP uses Class 1, Class 2, and SERP
message exchanges similar to the C1 FTPP.
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Figure 4.8 - The NEFTP Architecture

Each of the four FCRs in the NEFTP is equivalent to a participant in the Byzantine
Generals Problem. This fulfills the participant number requirement for Byzantine
resilience. Each NE is connected to the other three NEs via unique fiber optic links,
meeting the connectivity requirement. A Class 2 exchange of data during the simplex mode
of operation meets the communication requirement for Byzantine resilience since it is
equivalent to two rounds of communication. The NEs are synchronized by the Fault
Tolerant Clock mechanism, as in the C1 FTPP, fulfilling the synchronization requirement.
In triplex or quadruplex modes, data is majority voted after one round of exchange, thus
allowing one fault per exchange. The NEFTP meets all the requirements for being One-
Byzantine resilient.
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4.5 The Software Implemented Fault Tolerance Computer
(SIFT)

The Software Implemented Fault Tolerance Computer (SIFT) [JG84, JHW7S,
RWB86] is a fault tolerant computer developed by SRI International for NASA to be used
in a commercial air transport FBW. The SIFT consists of four to six processors with the
processors being fully interconnected. The mechanism for synchronization and fault
tolerance of the system is done through software, which leads to serious performance
problems.

Having four to six fully interconnected processors, the SIFT fulfills the participant
number and connectivity requirements for One-Byzantine resilience. Two rounds of
communication take place as follows. First, each processor executes an identical software
task (equivalent to the commander's orders). Secondly, each processor relays its output to
the other processors for consensus. This meets the communication requirement. To
synchronize the system, each processor broadcasts the value of its local clock to the other
processors and adjusts its own clock to the other processors, meeting the synchronization
requirement. The SIFT, therefore, is a One-Fault Byzantine resilient computer.
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Chapter §
The C3 Fault Tolerant Parallel Processor

The Cluster Three (C3) version of the Fault Tolerant Parallel Processor (FTPP) is
under development at the Charles Stark Draper Laboratory. The C3 FTPP will be similar
to the C1 FTPP discussed in Section 4.2, with several enhancements. It will contain up to
eight processor elements (PEs) in each network element (NE) instead of the four PEs as in
the C1 FTPP. It will also contain up to five NEs instead of four, for a total of forty PEs as
opposed to sixteen in the C1 FTPP, which will greatly improve the throughput. The
physical size of the NE will be reduced from three full size VME boards to one full size
board. The reduced size improves on both the power dissipation and reliability of the C1
FTPP. The architecture for the C3 FTPP is diagrammed in Figure 5.1.
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Figure 5.1 - The C3 FTPP Architecture
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The five network elements are absolutely referenced as NE A, NE B, NE C, NE D,
and NE E, as shown in Figure 5.1, or as 000, 001, 010, 011, and 100, respectively, when
represented in binary. Relative addressing is also used when referencing a NE's relative
position. Channel 0 (CH 0) references the local NE itself. CH 1 references the NE
immediately to the right of the local NE as shown in Figure 5.1. Successive channels are
assigned to each NE in counter-clockwise order, so CH 4 references the NE immediately to
the left of the local NE. For example, when NE D represents CH 3 with respect to NE B.

5.1 C3 FTPP Hardware

The NE of the C3 FTPP consists of six major sections, the PE/NE Interface, the
Scoreboard, the Global Controller, the Fault Tolerant Clock, the Data Paths/Voter, and the
Inter-FCR Communication Links. The block diagram of the NE is shown in Figure 5.2.
Fiber optic links are be used for the Inter-FCR Communication Links instead of metallic
VME links to provide noise reduction and electrical isolation between NEs. The FTC
FPGA designed in this thesis represents the NE Fault Tolerant Clock (FTC) and generates
signals that control the Inter-FCR Communication Links. The Voter FPGA represents
most of the NE Data Paths/Voter. The gray sections of Figure 5.2 represent sections that
the FTC and Voter FPGAs control. Using FPGAs as opposed to standard TTL integrated
circuits results in a reduction in noise due to fewer signal lines, lower power consumption,
and a smaller physical NE size. Since there are twice as many PEs in each FCR and an
additional NE in the C3 FTPP, the PE/NE Interface, NE Scoreboard, and NE Global
Controller sections are also revised.
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Figure 5.2 - Block Diagram of the C3 FTPP Network Element

The Inter-FCR Communication Links consists of one transmitting AMD TAXI
chip, which transmits data from the voted data bus, and four receiving AMD TAXI chips,
one for each incoming channel. The FTC FPGA synchronizes the local NE with respect to
the other NEs by synchronizing itself to the message frames of the other NEs, recording
errors when NEs are offsync. It also generates signals that control the Inter-FCR
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Communication Links, recording transmission errors. The Voter FPGA majority votes
maskable data from five IDT7202 FIFOs, one for each channel.

The FTC FPGA has an FTC section that handles the synchronization and recording
of synchronization errors. This FTC section can be further divided into state machines,
latches, and counters. The FTC FPGA has an Asynchronous Control section which
controls the loading of the CH1, CH2, CH3, and CH4 FIFOs, which normally occur
asynchronously with respect to the local NE's clock. Debug modes are supported, which
allow data from an NE to be reflected to itself, so that an NE may be tested individually. A
Synchronous Control section in the FTC FPGA controls the shifting out of data from the
five FIFOs and shifts data into the CHO FIFO. Transmission errors are recorded by the
Link Error Accumulator in the FTC FPGA. The hardware details of the FTC FPGA are
discussed in Chapter 7.

The Voter FPGA has a Voter section which majority votes five eight-bit wide
maskable channels of data. It generates any errors that result. The Mask Register section
of the Voter FPGA generates the various masks that are used by the Voter. The Syndrome
Accumulator records errors that occur from the Voter section. The hardware details of the
Voter FPGA are discussed in Chapter 8.

The C3 FTPP hardware will support any microprocessor that is VME compatible.
Currently, C3 FTPP software will support the 68030 microprocessor from Motorola.
However, the 68040 microprocessor from Motorola, the R3000 RISC processor, and the
80386 and 80960 microprocessors from Intel, may be supported at a later date. The
processors of the C3 FTPP are arranged as virtual processors, each consisting of one,
three, or four physical processors to provide different levels of fault tolerance and
throughput. A virtual processor consisting of one, three, or four physical processors is
called a simplex, triplex, or quadruplex virtual processor, respectively. The duplex virtual
processor is not supported due to the fact that errors can only be detected and not corrected.
Note that there is no quintuplex virtual processor even though five network elements do
exist. Each of the processors in the virtual processing group executes the same code. The
members of a virtual processor are called a virtual group. Each of the redundant processors
in a virtual processing group reside in a separate Fault Containment Regions (FCRs) to
eliminate single point failures. Communication takes place between the processors in a
virtual group by means of the NE. PEs in a virtual group can communicate with other PEs
in other virtual groups by means of the NE. Each PE receives identical messages, which
are delivered synchronously. By this means, a virtual group can synchronize itself by
sending itself a message and awaiting its return. The NEs also synchronize themselves
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upon power up by means of the global controller. The details of the synchronization are
discussed in the Fault Tolerant Clock section (Section 7.3).

The C3 FTPP supports dynamic reconfiguration, which allows real-time
reconfiguration of the physical processors in a virtual group. This reconfiguration is aided
by the NE Scoreboard, which contains a configuration table (CT) keeping track of the
current configuration of the C3 FTPP. One virtual group, called the reconfiguration
authority, is responsible for the updating the configuration table. This group must be a
triplex or quadruplex group, assuring one-fault Byzantine resilience.

The C3 FTPP is One-Fault Byzantine resilient. Having five NEs fulfills the
participant number requirement. Each NE is inter-connected via fiber optic links, meeting
the connectivity requirement. A Class 2 exchange, discussed in the next section, meets the
two round communication requirement. The NEs are synchronized by the Fault Tolerant
Clock mechanism, fulfilling the synchronization requirement.

5.2 C3 FTPP Exchange Protocol

To maintain synchronization and consistency, the processors exchange messages.
Each NE tells the other NEs whether or not its processor needs to exchange information. If
all non-faulty processors request the exchange, then the exchange is performed. This cycle
is diagrammed in Figure 5.3.

T0 T SERP T SERP +
T EXCHANGE

Figure 5.3 - Basic C3 FTPP Network Element Cycle

The data sent by a NE requesting an exchange of information is called an exchange

‘request pattern. Five of these exchanges occur during the first half of this cycle. The

series of these five exchanges is called a system exchange request pattern (SERP)
exchange. The timing of the SERP Exchange is diagrammed in Figure 5.4.
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Figure 5.4 - C3 FTPP SERP Exchange Timing
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The first phase of a SERP Exchange involves each NE transmitting its SERP data
to all the other NEs and to itself (CHOFIFO). This is diagrammed in Figure 5.5, which
shows the data contained in each NEs FIFOs.
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Figure 5.5 - C3 FTPP SERP Phase One
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Phase A of a SERP Exchange involves each NE reflecting the NE A FIFO's data to all the
other NEs and to itself. This is diagrammed in Figure 5.6.
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Figure 5.6 - C3 FTPP SERP Phase A
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Phase B of a SERP Exchange involves each NE reflecting the NE B FIFO's data to all the
other NEs and to itself. This is diagrammed in Figure 5.7.
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Figure 5.7 - C3 FTPP SERP Phase B
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Phase C of a SERP Exchange involves each NE reflecting the NE C FIFQ's data to all the
other NEs and to itself. This is diagrammed in Figure 5.8.

Figure 5.8 - C3 FTPP SERP Phase C
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Phase D of a SERP Exchange involves each NE reflecting the NE D FIFO's data to all the
other NEs and to itself. This is diagrammed in Figure 5.9.
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Figure 5.9 - C3 FTPP SERP Phase D
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Phase E of a SERP Exchange involves each NE reflecting the NE E FIFO's data to all the
other NEs and to itself. This is diagrammed in Figure 5.10.
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Figure 5.10 - C3 FTPP SERP Phase E

Once it is determined through a SERP that an exchange is to take place, there are
two types of exchanges that can take place. The first type is a Class 1 exchange which is
sourced by the members of a triplex, or quadruplex virtual processor. During this type of
exchange, each member of the virual processor delivers its message to its respective NE,
which then relays the message to the other four NEs. Each NE not hosting a member of
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the virtual processor delivers an empty message to the other NEs. Note that all NEs
transmit messages, so each NE transmits one message and receives four messages.
Messages are transmitted and received by the Inter-FCR Communication Links. The
information received by each NE is then majority voted using the Voter FPGA.
Disagreements in the vote are relayed to the processing elements so that Fault Detection
Isolation and Reconfiguration (FDIR) software can determine if an element is faulty and
reconfigure the system as necessary. The Class 1 message exchange is diagramed in
Figure 5.11. The PEs labeled with a T1 represent members of a triplex virtual processor.
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Figure 5.11 - C3 FTPP Class 1 Message Exchange
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The Class 1 message exchange timing is diagrammed in Figure 5.12.

All NEs:
3 =Synching Clocking Data Out Transmit Bus Synching e

Transmit > € And Into CHOFIFO
-

Receive Receiving Receiving Data Into FIFOs Receiving ..

Sync Data From Ail Other NEs Sync Data
Y.
Vote Vote Data From The FIFOs _)I
Through The Pipelined Registers

Delay x: Propagation delay between NEs + maximum skew between NEs.
Delay y: The time NE waits from start of data transmission to start of vote (Max NE skew + FIFQO write to read time.)

Figure 5.12 - C3 FTPP Class 1 Exchange Timing

For a simpiex virtual processor, a Class 2 message exchange is used. A Class 2
exchange is a two-round exchange. In the first round, a member of the FMG single-
sources a message to its hosting NE, which then relays this message to the other four NEs.
In the second round, each NE reflects the message they received to the other four NEs.
Thus, each NE has five copies of the message which is then majority voted. The Class 2
message exchange from NE A is diagramed in Figures 5.13 and 5.14. The PE labeled S1
represents a simplex virtual processor.
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Figure 5.13 - C3 FTPP Class 2 Message Exchange (Round 1)

51



Chapter 5 - The C3 Fault Tolcrant Parallel Processor

Network Element
A
O—Y & 1 0
i x
@ m m
(=]
y % g t.cg
Z e
X X
X
Network Element X X Network Element

PAIN/INN

Figure 5.14 - C3 FTPP Class 2 Message Exchange (Round 2)

The Class 2 message exchange from NE A timing is diagrammed in Figure 5.15.
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Figure 5.15 - C3 FTPP Class 2 Exchange From NE A Timing
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5.3 The Data Path Chip Set

The C3 FTPP Data Path Chip Set, which includes the FTC FPGA and the Voter
FPGA, performs all the functions of the Fault Tolerant Clock section, generates signals that
control the Inter-FCR Communication Links, and performs most of the functions of the
Data Path section of the NE. The only part of the Data Path section not included in the Data
Path Chip Set are five IDT7202 2K by 8 FIFOs, since its inclusion would overload the pin
and gate capacity of the FPGA. The Inter-FCR Communications Links consists . f four
receiving fiber optic data links (FODLs) and one transmitting FODL that drives a one to
four splitter, which sends data to each of the other four NEs. Each of the FODLs are
driven by an AMD TAXI chip which converts eight bits of parallel data into fiber optic
serial data, or vice versa. The block diagram of the Data Path Chip Set is shown in Figure
5.16.
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Figure 5.16 - Block Diagram of C3 FTPP Data Path Chip Set
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The Data Path Chip Set allows the physical size of the C3 FTPP to be more
compact, to be more reliable, and to have a lower power dissipation as opposed to a design
done with PALs and TTL chips. If the equivalent of the Data Path Chip Set were to be
designed using PALs and TTL chips, the design could be implemented using thirteen 24-
pin PALs, seventeen 20-pin PALs, five 74AS374 octal latches, two 74L.S74 latches, and
four 74LS163 counters. For a size comparison, see Figures 5.17 and 5.18.

Figure 5.17 - Equivalent of Data Path Chip Set Using PALs and TTL logic

Figure 5.18 - Data Path Chip Set Using Altera FPGAs
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The PAL and TTL implementation of the Data Path Chip Set would have a total
power dissipation of approximately thirty-three watts, as opposed to approximately three
watts using Altera FPGAs.

The failure rate for the FPGA implementation would also be reduced. To get an
estimate, we can calculate the estimated reliability by using formulas given in the 1986
Military Handbook for Reliability Prediction of Electronic Equipment. The formulas used
in this handbook use the chip gate counts, pin counts, and power dissipations to calculate
an estimate of reliability. The PAL and TTL implementation of the Data Path Chip Set was
calculated to have a reliability of 37.5 failures per one-million hours. The Altera FPGA
implementation had a calculated reliability of 23.4 failures per one-million hours for our
two chips. [MIL86] Thus, we can estimate a failure reduction of over 60% by using Altera
FPGAs for the Data Path Chip Set design.

The MAX EPM5128 technology is based on EPROM memory technology, which
has proven to be highly reliable. Intel has done a reliability study on their EPROM
memories. The results seem to shown that memory size does not have a large effect on
failure rate. For various EPROM memory sizes ranging from 4K x 8 to 128K x 8
memories, Intel has reported failure rates on the order of 0.01 per 1,000 hours. [INT86]
Another approach to estimating the failure rate for the FPGAs is to estimate the failure rate
of the non-EPROM parts and add the failure rate of the EPROM memory as reported by
Intel. Using the same Military Handbook formulas as before, the reliability of our two
Altera FPGAs not including the EPROM memory {vastly decreasing the gate count in our
formula) is 6.1 failures per one-million hours. [MIL86] Adding Intel's failure rate of 10
failures per one-million hours, which itself includes pin output and other inherent failures,
yields a combined failure rate of 16 failures per one-million hours, which is less than half
the failure rate of our PAL and TTL implementation. Note that either approach generates
only a component failure rate. It does not take into account interconnect failures. The PAL
and TTL implementation of the Data Path Chip Set would have several times more
interconnects than the FPGA implementation. Thus, the FPGA implementation of the Data
Path Chip Set has a reliability enhancement of nearly three times tha. of the PAL and TTL
implementation.

The AT & T Reliability manual estimates the lifetime reliability to be 25 failures per
device for the octal latches, 10 per device for the D flip-flops, 25 per device of the
counters, and 40 per device for the CMOS PALs. [DJK90] This yields a total of 1445
lifetime failures for our PAL and TTL implementation. The AT & T Reliability manual
estimates the lifetime reliability of CMOS EPROM memories to be 100 failures per device
and 50 failures per device for our equivalent CMOS equivalent device. [DJK9C] This
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yields a total of 300 lifetime failures for two Altera FPGAs, which is a reduction of nearly
five times the failures.

Although we get different results for the reliability figures using different methods,
CMOS EPROM technology has proven to be very reliable and can expect a large increase in
reliability. It is the author's opinion that the FPGA implementation would yield a reliability
increase of at least three times that of the PAL and TTL implementation.

The FTC FPGA can be divided into the Asynchronous Contro!, Debug Wrap
Register, Fault Tolerant Clock, Latch Decode, Link Error Accumulator, and Synchronous
Control sections. The Asynchronous Control section controls the loading of the receiving
FIFOs, which occurs asynchronously with respect to the local NE's clock. The Debug
Wrap Register wraps a byte of data from the voted data bus onto a register for future
access. The Fault Tolerant Clock (FTC) synchronizes the local NE with respect to the
other NEs by synchronizing itself with respect to the other NEs' message frames. It also
generates its own message frame. The Latch Decode section is a decoder that generates
signals for use throughout the FTC FPGA. The Link Error Accumulator keeps track of
errors that occur when a NE's clock is offsync with the other NEs' clocks. The
Synchronous Control shifts data out of the FIFOs and shifts data into the CHO FIFO,
which occurs synchronously to the local NE's clock.

The Voter FPGA can be divided into the Latch Decode, Mask Register, Syndrome
Accumulator, and Voter sections. The Latch Decode section is a decoder that generates
signals for use throughout the Voter FPGA. The Mask Register generates masks that are
used by the Voter section. The Syndrome Accumulator records errors that occur during the
voting process. The Voter is a five-way maskable, byte-wide, bit-for-bit majority voter.
Voting errors are also generated by the Voter.
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Chapter 6
C3 FTPP Data Path Chip Set Hardware

When deciding on the technology to use for construction of the C3 FTPP NE Fault
Tolerant Clock and NE Data Paths sections, many technologies could have been chosen,
such as resistor-transistor logic (RTL), diode-transistor logic (DTL), transistor-transistor
logi. (TTL), emitter-coupled logic (ECL), integrated injection logic (12L), negative metal
oxide silicon (NMOS), and complementary metal oxide silicon (CMOS). RTL and DTL
technologies are obsolete. TTL and ECL are used mainly in small-scale integration (SSI)
and medium-scale integration (MSI). The C1 FTPP was designed using standard TTL
technology, and as a result, the NE occupied three full size VME boards. To reduce size
and power dissipation in the C3 FTPP, the circuitry area must be reduced. This narrows
our technology choices to I2L, NMOS, and CMOS. Since much of the NE will still use
standard TTL or TTL-compatible technology, CMOS technology was chosen for the Data
Path Chip Set since interfacing between CMOS and TTL is much simpler than interfacing
between I2L and TTL or between NMOS and TTL.

This chapter discusses some of the technologies used for designing and fabricating
CMOS VLSI integrated circuits.

6.1 Types of Design

There are several technologies available for developing a CMOS VLSI design. In
general, VLSI design technologies can be placed into two categories, full custom or semi
custom. Full custom, also known as handcrafted mask layout, refers to layout of the
functional subsystems at the mask level [KE85). This means that everything in the ASIC is
laid out, down to the placement of transistors and their connections. This is done for speed
and density purposes, but tends to have a very long design time and is very expensive.
Semi custom design includes two major technologies, Standard Cell and Gate Array.
Standard Cell technology involves designing the ASIC with predefined logic/circuit cells
such as nand gates, nor gates, latches, etc. This reduces the design time greatly, has good
speed and density characteristics, but is also very expensive. Gate Array technology
involves designing the ASIC with prefabricated transistor gate arrays, so that only
connections between gates are laid out on the chip. The design time is also fast, and
manufacture is the least expensive of the three technologies. However, ASICs designed in
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this manner are not as dense and fast as those designed by the aforementioned
technologies.

6.2 Data Path Chip Set Technology

Initial plans were to have the Data Path Chip Set fabricated using CMOS gate array
technology, due to design time and cost factors. However, after more thorough research,
CMOS field programmable gate array (FPGA) technology was chosen. An FPGA is
basically a programmable gate array. High density PLDs (programmable ANDs and ORs)
and PLAs (programmable ANDs, fixed ORs) also fall into the FPGA category.
Conventionally, when a PLD or PLA has capacities of over 2000 gates, it can be classified
as an FPGA.

CMOS FPGA technology is used for the design for several reasons. The major
reason was that the design cost and design time would be greatly reduced. Designing a
gate array is generally much more time consuming than designing an FPGA. A major
portion of time designing a gate array is spent routing signals and simulating the device.
There is also a several month lead time where the gate array is sent to a manufacturing
company to be fabricated. In the event of errors, this lead time is replicated until a fully
working system is developed. On FPGA systems, virtually all routing can by done
automatically and simulation tends to be simpler and less critical. Simulation is less critical
since incorrect designs can easily be corrected and reprogrammed. The tools used to
design a gate array are much more expensive than FPGA tools. Design tools for gate
arrays are on the order of $100,000 as opposed to $10,000 for FPGA tools, which
normally include a personal computer, design / layout / simulation program, and chip
programmer. Engineering costs more than double for the gate array design. For our
purposes, the FPGAs will be produced in low quantities and thus are the mosi cost
effective. Altera's MAX part FPGAs were selected as the FPGA choice, since they were
the closest to fulfilling the design requirements of all the FPGA systems reviewed. A cost-
effectiveness chart is shown in Figure 6.1.
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Figure 6.1 - PLD Cost Effectiveness [ALT90]

Note that the FPGAs are represented as the PLD line since Altera's FPGAs are basically
large PLDs.

The problems with an FPGA system are that it tends to be slower and less compact
than gate array systems. The Data Path Chip Set design was predicted to be on the order of
3500 gates with a 12.5 MHz system clock. Two FPGAs that can handle that clock rate
should be able to implement the design.

6.3 Altera EPMS5128 Device Characteristics

Many FPGA systems were evaluated and after much thought, the system made by
Altera was chosen. The Altera system was chosen for several reasons. The Altera
EPM5128 device has a high density, pin count, and speed. Each device can have the
equivalent of approximately 2000 to 2500 gates, has 68 pin packages (eight of them used
for power and ground), and claims a 40 MHz clock speed. Also, the Altera system had
already been used at the Draper Laboratory with success.

The Altera device is based on the Logic Array Block (LAB). The EPM5128
consists of eight LABs. Each LAB consists of a number of macrocells, expander terms,
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and an input/output control block. The EPM5128 contains sixteen macrocells per LAB for
a total of 128 macrocells. The EPM5128 has eight dedicated input pins, and 52 1/O pins.
its block diagram is shown in Figure 6.2.
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Figure 6.2 - EPM5128 Block Diagram [ALT90]
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The macrocell is the basic logic element of the device. It consists of three product terms
wired into a XOR gate and then into a d-flip flop register, as shown in Figure 6.3.
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Terms Feedback

Figure 6.3 - Altera Macrocell Block Diagram [ALT90]

There are also expander terms which allow for other product terms to be included. The
EPMS5128 contains 32 expander terms per LAB for a total of 256 expander terms. The
macrocell has a propagation delay of 25 ns and the expander term has a propagation delay
of 12 ns. Therefore, when up to three product terms are needed, we can expect a
propagation delay of 25 ns. When more than three product terms are needed, we can
expect a propagation delay of 37 ns. Each input/output control block aliows inputs to be
wired into macrocells without losing the logic capability of that macrocell. However,
macrocells that use the I/O pins as inputs instead of the dedicated input or feedback have a
propagation delay of 40 ns. Since the majority of this design is clocked at 12.5 MHz
(except for a few portions of the Fault Tolerant Clock, which are clocked at 25 MHz), we
have a clock period of 80 ns. This is ample time for most of the functions necessary. The
EPM5128 allows both synchronous and asynchronous clocking. Synchronous clocking is
done by using the dedicated system clock (pin 1). Asynchronous clocking has a
propagation delay of 14 ns, while synchronous clocking has a propagation delay of 2 ns.
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The Voter FPGA uses asynchronous clocking at 12.5 MHz. The FTC FPGA uses
asynchronous clocking for two clocks (12.5 MHz and an 25 MHz). The eight LABs in the
EPMS5128 are each interconnected by the Programmable Interconnect Array (PIA). Using
the PIA, each macrocell in any LAB can use the output of any macrocell in any LAB, with
a delay of 14 ns. [ALT90]

Altera recommends that power supply decoupling capacitors of at least 0.2
microfarads should be connected between each V¢ pin and GND, directly at the device.

Also, printed circuit boards with imbedded Vcc and GND planes should be used to
minimize system noise. [ALT90]

Since the EPM5128 is a CMOS device, power is a function of frequency and
internal node switching. In order to obtain the most accurate power information, current
consumption should be measured after the design is completed and placed in the system.
Altera providcs a typical power consumption chart as shown in Figure 6.4.
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Figure 6.4 - Typical EPM5128 Power Consumption [ALT90]
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The FTC chip has a maximum frequency of 25 MHz, and thus has a typical current
consumption of 310 mA for a power consumption of 1.55 watts. The Voter chip has a
maximum frequency of 12.5 MHz, and thus has a typical current consumption of 280 mA
for a power consumption of 1.4 watts. This results in a significant power reduction over
previous designs.

The EPM5128 also provides a significant component size reduction over previous
designs. The EPM5128 can integrate the equivalent of 20 PAL devices or a typical mix of
75 MSY/SSI TTL chips into a single device [ALT90]. To get an idea of how much space is
saved, we will take a look at the NEFTP. In Figure 6.5 we can see what parts of the
NEFTP's NE could be replaced by the FTC and Voter chips.
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B Components that would be replaced by
§W the Data Path Chip Set

Figure 6.5 - NEFTP NE Chip Equivalent

We must also take into account the fact that the C3 FTPP is much more complex than the
NEFTP. The C3 FTPP has forty PEs as opposed to four in the NEFTP, and five NEs as
opposed to four in the NEFTP. There are also many hardware improvements and
enhancements. If the C3 FTPP equivalent for the Voter chip and FTC chips were shown in
a chart such as Figure 6.5, the gray shaded area would be perhaps three times as large.
Thus, the EPMS5128 provides a significant space reduction.
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The MAX EPMS5128 technology is based on EPROM memory technology, which
has proven to be highly reliable. As suggested in the previous chapter, the EPM5128s
yield reduction in failures over a PAL and TTL implementation of at least three times.
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Chapter 7
The Fault Tolerant Clock Chip

The Fault Tolerant Clock (FTC) Chip can be divided into six sections, the
Asynchronous Control, Debug Wrap Register, Fault Tolerant Clock, Latch Decode, Link
Error Accumulator, and Synchronous Control. The block diagram of the FTC Chip is
shown in Figure 7.1. The Asynchronous Control section controls the loading of the
receiving FIFOs, which occurs asynchronously with respect to the local NE's clock. The
Debug Wrap Register wraps a byte of data from the voted data bus onto a register for future
access. The Fault Tolerant Clock (FTC) synchronizes the local NE with respect to the
other NEs by synchronizing itself with respect to the other NEs' message frames and
generates its own message frame. The Latch Decode section is a decoder that generates
signals for use throughout the FTC Chip. The Link Error Accumulator keeps track of
errors that occur when a NE's clock is offsync with the other NEs' clocks. The
Synchronous Control shifts data out of the FIFOs and shifts data into the CHO FIFO,
which occur synchronously to the local NE's clock.

The sections of the FT'C Chip are clocked at 12.5 MHz and 25 MHz. For brevity,
we will call the 12.5 MHz signal 12MHZ on the schematic diagrams. The actual pinouts
for the FTC Chip are found in Appendix E.
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Figure 7.1 - Block Diagram of FTC Chip
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7.1 Asynchronous Control

The Asynchronous Controller generates signals that are asynchronous with respect
to the NE's local clock. The AMD TAXI chip signals that incoming data is valid by
strobing its respective DSTRB signal high. If an error in transmission occurs, the
respective CSTRB and VLTN signals are strobed high. The Asynchronous Controller uses
these signals to control the loading of the CH1, CH2, CH3, and CH4 FIFOs by gencrating
the CHISHIN/, CH2SHIN/, CH3SHIN/, and CH4SHIN/ signals, respectively. These
IDT7202 FIFOs are initiated on a high to low transition. Data is clocked in on a low to
high transition with a setup time of 15 ns and a hold time of 0 ns. A byte of data is shifted
in whenever any valid type of communication exchange is taking place. NEFUNCI1 and
NEFUNCO determine what type of exchange is taking place as shown in Table 7.1.
NEFUNCI1 and NEFUNCO are initiated on the rising edge of MYFTC, from the Fault
Tolerant Clock section. Data is shifted in when the NE is in Data XMIT, Data Reflect, or
SERP mode. Data should not be shifted in when the NE is in Idle mode since non-valid
messages are sent for synchronization purposes.

NEFUNCI  NEFUNQD TypeofExchange
0 0 Idle
0 1 Data XMIT
1 0 Data Reflect
1 1 SERP

Table 7.1 - Asynchronous Control Exchange Modes

A byte of data is shifted in during a valid communication mode when one of three
cases happen. In the first case, data is shifted into a FIFO when the appropriate data strobe
from a receiving TAXI chip goes high (nDSTRB), indicating that data is ready to be read
from an incoming FIFO. In the second case, data is shifted in when an error occurs
(nCSTRB and nVLTN go high). This measure is taken so that all the message bytes are
shifted even during transmission errors. In the third case, there is a debug mode for each
channel, which is enabled by the CHIDBMD, CH2DBMD, CH3DBMD, and CEE4ADBMD
signals from the NE Global Controller. When these modes are :-.zbled, data should be
shifted in straight from the output of the Voter chip. This allows aata to be wrapped back
to the NE. When in debug mode, the SHIN/ signals become the CHOSHIN/ signal from
the Synchronous Control section in a asynchronous form (CHOSH/). The logic equations
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for the shifting in of data are as follows, where n stands for CH1, CH2, CH3, or CH4,
representing the Channel 1, 2, 3, or 4 FIFOs, respectively.

nSHIN/ = nDSTRB ¢ (NEFUNCO0 + NEFUNC1) « nDBMD/
+nCSTRB * nVLTN ¢ (NEFUNCO + NEFUNC1) - nDBMD/
+ CHOSH/ - nDBMD

7.2 Debug Wrap Register

The VDAT bus, which stands for the voted data bus, transfers various types of
information throughout the NE. The Debug Wrap Register is an eight-bit-wide register that
holds data from the VDAT bus so that it may be read by the NE at a later time. Note that
the Debug Wrap Register has no relevance to the debug mode that is used in the
Asynchronous Control described in the previous section. A byte of data is latched on the
Debug Wrap Register by the DEBUGLT signal from the Latch Decode section. A byte of
data is put onto the VDAT data bus by the DEBUGOE signal, also from the Latch Decode
section. The Debug Wrap Register consists of combinational logic followed by
synchronous latches as shown for one bit in Figure 7.2, where <n> represents the bits 0

through 7.
D Q VDAT<n>
DEBUGLT |
VDAT<n> > ¢

12MHZ T
RESET/

Figure 7.2 - Debug Wrap Register Circuitry
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7.3 Fault Tolerant Clock

The Fault Tolerant Clock (FTC) is the mechanism that synchronizes the NEs and
records synchronization errors. It is the bulk of the FT'C Chip. The synchronization takes
place through message exchanges as follows. The Global Controller tells the FTC the
length, in bytes, of the next message frame, called a packet. The FTC generates the signals
MYBOUND, and MYFTC. MYBOUND is the frame boundary in which communication
takes place. Synchronization is be achieved by synchronizing MYBOUND with respect to
the BOUND signals from the other NEs. MYBOUND is also MYFTC delayed by one
clock cycle. A timing diagram of the FTC synchronization mechanism is shown in the
Simulation chapter in Section 9.2.3 and in Appendix C. MYFTC is used by the NE for
transmission of data via the fiberoptic transmitter.

The FTC can be further divided into the Bane State Machine, the Bound Generator,
the Mask Latch, the Mid Data Transfer, My State Machine, the Packet Latch and Counter,
the Presence Accumulator, the Propagation Delay Latch and Counter, and the
Synchronization Feedback sections. The Bane State Machine calculates whether or not the
NE's message frame is behind or ahead of the other NE's message frames. The Bound
Generator generates BOUND signals from the other NE's data clocks, which indicate their
respective message frames. The Mask Latch holds the NE masks, which determine which
NEs are in operation. The Mid Data Transfer, as the name suggests, indicates the middle
of the data transfer. My State Machine generates MYBOUND and MYFTC, loads the
packet count, and loads the propagation delay count. The Packet Latch and Counter holds
the packet length and counts down. The Presence Accumulator accumulates presence
errors of the clocks. The Propagation Delay Latch and Counter holds inter-NE propagation
delay and indicates the start of Bane State Machine. The Synchronization Feedback returns
the Bane State Machine signals to the My State Machine in a different format. The block
diagram for the FTC is shown in Figure 7.3.
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Figure 7.3 - FTC Block Diagram
7.3.1 Bane State Machine

The Bane (Behind/Ahead/Normal/Error) State Machine calculates whether or not the
NE's message frame is behind or ahead of the other NE's message frames. This is part of
the NE synchronization mechanism. It is triggered on the middle of PDLD/ (from the
Bane State Machine) and MDT/ (from the Mid Data Transfer). It generates ERRWIN
(indicating the error window), SAW (the self-ahead window), and SBW (the self-behind
window). ERRWIN indicates whether or not a channel is off-sync with respect to the
other channels. ERRWIN is low for three and a half clock cycles (280 ns). By comparing
ERRWIN to the BOUND signals from the Bound Generator, we can determine which NEs
are off-sync. SAW indicates that a channel's FTC is at least one and a half clock cycles
(120 ns) ahead of the other channel's FTCs. SBW indicates that a channel's FTC is at least
one and a half clock cycles (120 ns) behind the other channel's FTCs. If a channel's FTC
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is neither ahead or behind, then it should be synchronized to the other channels' FTCs to
within one and a half clock cycles (120 ns). The synchronization adjustment is done by the
My State Machine, which uses the Bane State Machine signals from the Synchronization
Feedback. The state diagram for the Bane State Machine is shown in Figure 7.4. The
Bane State Machine is clocked at 25 MHz. A timing diagram of the Bane State Machine is
shown in Section 9.2.3.
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Figure 7.4 - State Diagram for Bane State Machine
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The state equations for the Bane State Machine are shown in Table 7.2. The first term in
the Q2 function is used to remove a trap state. The state for the Bane State Machine were
chosen so that the state equations were limited to three product terms. For the actual layout
of the Bane State Machine in the Altera chip, this eliminates the need for expanders, and
allows the Bane State Machine to run at 25 MHz.

Q5 := Q5/-Q3+Q0 + Q5+Q0/ + Q5°Q0+(Propagation Delay # 0)

Q4 := Q5°Q4 + Q4-Q0 + Q2+(Propagation Delay = 0)

Q3 := Q1+Q0 + Q4/-Q3+Q2/ + Q2+(Propagation Delay # 0)

Q2 := Q5-Q4/Q3/-Q2/-Q1/+Q0/ + Q3+Q1 + Q2+(Propagation Delay # 0)
Q1 := Q5/-Q4/-Q3/+Q0 + Q5-Q4+Q1/*Q0/*PDLD + Q5+Q3+Q2/*Q1/sMDT
Q0 := Q4-Q1 +Q5°Q0 + Q5/-Q0/

ERRWIN = Q5

SBW=0Q4

SAW =Q3

Table 7.2 - Bane State Machine State Equations

7.3.2 Bound Generator

The Bound Generator generates BOUND signals from the other NE's data clocks to
generate CHIBOUND, CH2BOUND, CH3BOUND, and CH4BOUND. The BOUND
signals are generated by taking the frame boundaries of the respective DSTRB, CSTRE,
and VLTN signals. The BOUND signals are generated by combinational logic which feeds
set-reset (SR) latches, then sampled at 25 MHz by a D flip-flop as shown in Figure 7.5.
Since the DSTRB, CSTRB, and VLTN signals are asynchronous, it is possible that the
BOUND signals may enter a metastable state. However, these BOUND signals are fed
into the Presence Accumulator (see Section 7.3.7), which also contains D flip-flops. Thus,
the possibility of metastability is reduced.
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Figure 7.5 - Bound Generation Schematics

The Bound Generator then takes these four incoming channel BOUND signals and outputs
the second BOUND signal received as the median bound (MEDBOUND). This is
accomplished by a modified version of the edge-triggered clock voter used in the FPMP.
[TBS81] The MEDBOUND generation logic is shown in Figure 7.6.

CH1B

CH2B >

CH1MASK

i

CH2MASK

=

1

CH4B

MEDBOUND/

CH1B/

CH4MASK

UL{

CH28/

CH1MASK !

)

25MHZ ————j

—MEDBOUND

I']v

il

CH3B/

CH2MASK |

2

CHa4B/

CH3MASK

MEDBOUND

?—

CH4MASK |

U\#‘

J

Figure 7.6 - MEDBOUND Generation
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7.3.3 Mask Latch

The FTC Mask Register provides masks for the Fault Tolerant Clock, indicating
which NEs are operational. These masks are used to mask out BOUND signals from
faulty NEs. The masks are active high, representing non-faulty NEs, and are latched from
the low five bits of the VDAT bus by NEMSKLAT from the FTC Latch Decode section.
The VDAT bits are latched as shown in Table 7.3. Note that the masks are latched in
absolute format.

YDATBT NEMASKIATCH

5-7 Unused
4 NEEMASK
3 NEDMASK
2 NECMASK
1 NEBMASK
0 NEAMASK

Table 7.3 - VDAT NE Mask Assignments

The NE Masks are converted from absolute form (NEA-EMASK) to relative form
(CHO0-4MASK) by the mechanism shown in Figure 7.7. It is basically a five-bit-wide,
five-to-one multiplexer selected by the NEID signals from the FTC Latch Decode section.

NE<n>MASK—— NE<n>MASK—1

CH<n>MASK
NE<n>MASK—] 0
1
NEIDO
0
NE<n>MASK 1 NEID2
NE<n>MASK 0 NEID1

Figure 7.7 - Absolute to Relative Conversion
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The masks are then latched by NEMSKLAT, as shown in Figure 7.8.

D__ REiET/

P
D Q NE<n>MASK
NEMSKLAT | 5
VDAT<n> ——
12MHZ

Figure 7.8 - Mask Latch Circuitry

7.3.4 Mid Data Transfer

The Mid Data Transfer section indicates the middle of the data transfer frame. The
MDT/ signal is strobed low when the packet count reaches half its value. The MDT/ signal
is sent to the Bane State Machine to offset the error windows if necessary and to the
Propagation Delay Latch and Counter to initiate a new propagation delay count. MDT/ is
generated by XOR gates as shown in Figure 7.9.
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Figure 7.9 - Mid Data Transfer Logic

7.3.5 My State Machine

My State Machine generates the MYBOUND and MYFTC signals using the state
machine shown in Figure 7.10. As said previously, MYBOUND is the frame boundary in
which communication takes place. MYFTC is used to generate MYDATCLK, which
transmits data to the other NEs. There are normally four clock cycles (320 ns) in between
MYBOUND signals. However, the My State Machine adjusts the MYBOUND and
MYFTC signal when the NE is ahead or behind the other NEs. This is the mechanism that
does the actual adjusting of a local NE's clock with respect to the other clocks. When the
local NE is ahead (as determined from signals from the FTC Synchronization Feedback
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section, My State Machine puts five clock cycles in between MYBOUND signals. When
the local NE is behind, My State Machine puts three clock cycles in between MYBOUND
signals. MYBOUND is MYFTC delayed by one clock cycle. Since a NE's clock can be
adjusted by one clock cycle per message frame, it can be estimated that synchronization
should be guaranteed after n/2 message frames, where n is the packet count. There is a
small chance that clocks may start up in a metastable state where clocks are chasing each
other, but this chance is small (on the order of 10-6 and only during startup with four NEs)
and should reach synchronization as time passes. My State Machine also generates
PKTLD/, which loads the packet count, and PDLD/, which loads the propagation delay. A
timing diagram of the My State Machine is shown in Section 9.2.3.

COUNT = 1

Startup State

(Behind)

S [gmd  Boay MYFIC MYBOUND PKIID HIAD
A 12 1100 1 0 0
B 4 0100 0 1 0 0
C 2 0010 0 0 0 0
D 1 0001 0 0 0 0
E 0 0000 0 0 0 1
F 3 0011 0 0 0 0
G 8 1000 1 0 1 0
H 7 0111 0 1 0 0

Figure 7.10 - State Diagram for My State Machine
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The state equations for My State Machine are shown in Table 7.4.

Q3 :=Q2/-Q1+Q0 + Q3+Q2/ + Q3+Q2+(COUNT % 1)
Q2 := Q3 +Q2+Q1+Q0

Q1 :=Q3/+Q2-Q1/-S1/ + Q3/+Q2/+Q1/Q0/

QO := Q1+Q0/-S0 + Q3/+Q2/Q1/-Q0/

MYFTC=Q3

MYBOUND =Q2

PKTLD :=Q2/-Q1-Q0

PDLD := Q3/+Q2+Q1/:S1 + Q1+Q0/*S0/ + Q1/-Q0

Table 7.4 - My State Machine State Equations

7.3.6 Packet Latch and Counter
The Packet Latch and Counter holds the packet length and counts down. It halts the

FTC if the packet length reaches zero. The packet count is latched from the VDAT bus
when FTCPL is enabled from the latch decode by the mechanism shown in Figure 7.11.

} RESET/

D Q——LCOUNT<n>

FTCPL 5
VDAT<n>

12MHZ

Figure 7.11 - Packet Latch Schematics
The latched count is then sent to a pair of four-bit down counters that are basically modified

74161 counters, as shown in Figure 7.12. The count is reset to the latched count when
PKTLD/ is strobed.
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Figure 7.12 - Four-Bit Down Counter

81



Chapter 7 - The Fault Tolerant Clock Chip

7.3.7 Presence Accumulator

The Presence Accumulator accumulates presence, or synchronization, errors of the
clocks. A presence error is asserted high when a NE's FTC is off sync with the other NEs
by more than two and a half clock cycles (200 ns). The error information is written to the
VDAT bus when FTCEROE is selected from the latch decode in the format shown in Table
7.5.

YDATBIT PRESENCEERROR

5-7 Set Low
4 CH 4 Error
3 CH 3 Error
2 CH 2 Error
1 CH 1 Error
0 Set Low

Table 7.5 - Presence Accumulator Qutput Bits

Note that CH 0 errors are not recorded by the Presence Accumulator. This is because an
NE cannot mask itself out in terms of synchronization. The Bound Generator generates
MEDBOUND from the four incoming BOUND signals, so masking the local NE would
serve no purpose for synchronization. Presence errors occur when a channel's BOUND
signal rises outside of the error window. This is accomplished by the mechanism shown in
Figure 7.13.

CH<n>BOUND—1D Qf— OLDCH<n>B

25MHZ —— >

FTCEROE/

OLDCH<n>B D C CH<n>ERR
CH<n>BOUND

ERRWIN >
I R
25MHZ

RESET/ Y
Figure 7.13 - Presence Accumulator Schematics
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7.3.8 Propagation Delay Latch and Counter

There are propagation delays between NEs that result due to the delay of
information transfer between NEs. The Propagation Delay Latch and Counter holds inter-
NE propagation delay and indicates the start of Bane State Machine. The low six bits of the
VDAT bus (VDATS-0) are latched on as the propagation delay when FTCDL is enabled
from the latch decode. The propagation delay is clocked at 25 MHz, so each propagation
delay count represents a delay of 40 ns. The propagation delay is latched from the VDAT
bus when FTCDL is enabled from the latch decode by the mechanism shown in Figure

7.14.
} RESET/

D Q LDELAY<n>

FTCDL
VDAT<n> >

12MHZ

Figure 7.14 - Propagation Delay Latch Schematics
The latched delay is then sent through a pair of four-bit down counters that are identical to

the modified 74161 counters shown in Figure 7.12. The count is reset to the latched count
when PDLD/ or MDTY/ are strobed.

83



Chapter 7 - The Fault Tolerant Clock Chip

7.3.9 Synchronization Feedback

Synchronization Feedback takes the self-ahead window (SAW) and self-behind
window (SBW) signals and determines whether the system's clock is ahead, behind, or
normal with respect to the median bound (MEDBOUND). The signals are sent to the My
State Machine as shown in Table 7.6. The function of the Synchronization Feedback is to
latch the correct synchronization status of the local NE for use by several states of the My
State Machine. Simply using the self-ahead and self-behind windows (SAW and SBW)
would yield incorrect results.

Table 7.6 - Synchronization Feedback Signals

The Synchronization Feedback signals are generated by the logic shown in Figure 7.15. It
basically latches SAW and SBW on the rising edge of MEDBOUND.

D Q}—e—S0
SAW _}' >
MEDBOUND — j- I
OLDMEDB/ — D Q St
SBW ———-_)_ 17 ¢
25MHZ 0

Figure 7.15 - Synchronization Feedback Schematics
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The VDAT bus carries data to and from many places in the gate array. Many
control signals are needed to latch data from the VDAT bus into registers and to enable data
from registers onto the VDAT bus. To conserve the gate array I/O, a group of four signals
are decoded to provide all of the data latches and enables for the registers connected to the
VDAT bus. LDO, LD1, LD2, and LD3 are the four Latch Decode signal inputs. They are
decoded as shown in Table 7.7 for the FTC chip.

I I IDI L0  RESULTINGOUTPUT

0

- -0 O O O O O ©

0

Pt ek et e e = OO O

0

O O it et OO = O

0

— O O o O e O e

Idle (no output)

Reset the system (RESETY/)

NEID Latch (NEIDLAT)

FTC Packet Latch (FTCPL)

FTC Delay Latch (FTCDL)

FTC Error Output Enable (FTCEROE)
Link Error Output Enable (LINKFJE)
NE Mask Reg. Latch (NEMSKLAT)
Debug Wrap Reg. Latch (DEBUGLT)
Debug Wrap Reg. Enable (DEBUGOE)

Table 7.7 - FTC Latch Decode Signals

RESET/ resets the FTC chip. NEIDLAT latches the VDAT2-0 signals to become
the Network Element Identification (NEID) signals NEID2-0, respectively. The NEID
signals indicate the absolute value of the NE as shown in Table 7.8.

N NED2 NHEDI NHDO

OO ®W >

-0 O O

0 0
0 1
1 0
1 1
0 0

Table 7.8 - NE Identification Signals
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FTCPL latches the packet count from VDAT 7-0 (see Section 7.3.6). FTCDL latches the
delay count from VDATS5-0 (see Section 7.3.8). FTCEROE puts the FTC errors that have
occurred onto the VDAT bus (see Section 7.3.7) on the clock cycle after the Laich Decode
signals are enabled and resets the presence errors. LINKEOE puts the link errors that have
occurred onto the VDAT bus on the clock cycle after the Latch Decode signals are enabled
(see Section 7.5). NEMSKLAT latches the VDAT4-0 signals as the FTC masks (see
Section 7.3.4). DEBUGLT latches data on the VDAT bus onto the Debug Wrap Register
and DEBUGOE puts this data back onto the VDAT bus on the clock cycle after the Latch
Decode signals are enabled (see Section 7.2). The Latch Decode is a basic decoder built
out of combinational logic and registers. The RESET/ signal is registered. All the other
Latch Decode signals are purely combinational.

7.5 Link Error Accumulator

The Link Error Accumulator records any transmission errors that result from
message exchanges. A rising edge of the VLTN signals from an AMD TAXI chip indicates
that a transmission error was detected. This VLTN signal is followed by either a DSTRB
signal or CSTRB signal. Transmission errors are recorded by latching the VLTN signals
from the four incoming AMD TAXI chips. A high signal indicates an error has occurred.
This information is requested from the Global Controller when needed. The information is
written to the VDAT bus as shown in Table 7.9.

YDATBIT LINKERROR
5-7 Set Low

4 CH 4 Error

3 CH 3 Error

2 CH 2 Error

1 CH 1 Error
0 Set Low

Table 7.9 - Link Error Accumulator Output Bits

The link error signals, CHOVLTN, CH1VLTN, CH2VLTN, CH3VLTN, and
CH4VLTN, are sent through a pair of latches and output as CHILERR, CH2LERR,
CH3LERR, and CH4LERR, respectively. They are output to the VDAT bus by the
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LINKEOE signal. Link errors are stored on the Link Error Accumulator until the
LINKEOE signal or RESET/ is strobed. This Link Error Accumulator mechanism is
shown in Figure 7.16.

+5V—D Q D Q}——CH<n>LERR
CH<n>VLTN —{ > >
c Cc
?
RESET/— 12MHZ
LINKEOE/ —

Figure 7.16 - Link Error Accumulator Schematics

7.6 Synchronous Control

The Synchronous Control section of the FTC chip controls those signals that occur
synchronously with respect to the local NE's clock. This includes signals which shift data
out of each of the FIFO's (CHOSHOUT/, CHISHOUT/, CH2SHCUT/, CH3SHOUT/,
and CH4SHOUT)/). It also generates CHOSHIN/, which shifts data into CHOFIFO.
NEFUNCI and NEFUNCQO tell the controller what kind of exchange is taking place as
shown in Table 7.10. These determine when data should be shifted into the CHO FIFO.
The SCMODE?2, SCMODE]I, and SCMODEDQO signals cause data to be shifted into the
Voter. NEFUNC1, NEFUNCO, SCMODE2, SCMODE]1, and SCMODEQO are initiated on
the rising edge of MYFTC, and are used by the Synchronous Control only when
MYBOUND is high.

NEFUNCI  NEFUNQ) ExchangeMode

0 0 Idle

0 1 Data XMIT
1 0 Data Reflect
1 1 SERP

Table 7.10 - Exchange Modes Indicated by NEFUNC
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NEID2, NEID1, and NEID{ determine the NE's absolute location. SCMODE?2,
SCMODE], and SCMODEOQ determine which FIFO is to be shifted as shown in Table
7.11.

NE SOMODE2 SOMODEL SoMODX)

A 0 0 0

B 0 0 1

C 0 1 0

D 0 1 1

E 1 0 0
none 1 0 1
none 1 1 0

all 1 1 1

Table 7.11 - Reflecting FIFO Absolute Decoding

The SCMODE signals are converted to a five bit format (SRCA - SRCE) and then sent
through an absolute to relative converter to become the CHO-CH4 signals. The IDT7202
FIFO outputs data on the high to low transition of a SHOUT/ signal, with an access time of
25 ns. However, on a low to high transition of a SHOUT/ signal, data is held valid for a
maximum of S ns. Also data shifted out of the FIFOs must meet the setup and hold
requirements of the pipe registers in the Voter chip (Chapter 8). To accomplish ali of these
requirements, we will make the SHOUT signal high for one-fourth of a clock cycle (20 ns)
and low for three-fourths of a clock cycle (60 ns). This creates a data valid frame 40 ns
wide. The 25% duty cycle of the SHOUT signal is created by using a D-flip flop, which
uses a combination of the 12.5 MHz and 25 MHz signals, as shown in Figure 7.17.

CH<n>S D QF——C<n>SHOUT/

12MHZ >

25MHZ
Figure 7.17 - SHOUT/ Generation
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The equations for the Synchronous Control section are shown in Table 7.12. CHOSHIN/
is clocked at 25 MHz. Since voted data from the Voter chip is output one clock cycle (80
ns) after the data is shifted into the Voter chip, CHOSHINY/ is also delayed by two clock
cycles.

SALL = SCMODE?2 « SCMODE1 « SCMODEO
SNONE = (SCMODE2 - SCMODE1/ « SCMODEQ)
+ (SCMODE?2 - SCMODE1 « SCMODEQ())
CHnS = (CHn + SALL)  SNONE/
CHOSHIN  := (NEFUNQO + NEFUNC1) - MYBOUND
delayed by one clock cycles

Table 7.12 - Synchronous Control Equations

7.7 VDAT Bus Driver

The VDAT Bus reads data from and transmits data to various sections of the NE.
To assure that the correct data is driving the VDAT bus, the mechanism in Figure 7.18 is
used. Data from the Debug Wrap Register, the Link Error Accumulator, or the Presence
Accumulator is selected using multiplexers, depending on the Latch Decode signals.

DBVDAT<n>
1
LEVDAT<n> 1\ g—— VDAT<n>
0
FEVDAT<n> _'>|/
LD
LD1 3
DEBUGEN——] "\
LINKEOE ——
FTCEROE /

Figure 7.18 - VDAT Bus Driver Circuitry
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Chapter 8
The Voter Chip

The Voter Chip can be divided into five functional blocks, the Latch Decode, the
Mask Register, the Syndrome Accumulator, and the Voter sections. The block diagram for
the Voter Chip is shown in Figure 8.1 The Latch Decode section is a decoder that
generates signals for use throughout the Voter Chip. The Mask Register generates masks
that are used by the Voter section. The Syndrome Accumulator records errors that occur
during the voting process. The Voter is a five-way maskable, byte-wide, bit-for-bit
majority voter. Voting errors are also generated by the Voter.

The Voter Chip is clocked at 12.5 MHz. For purposes of brevity 12.5 MHz is
represented as 12MHZ on the schematic diagrams. The actual pinouts for the Voter Chip
are found in Appendix F.

8.2 Latch Decode - Voter

The Latch Decode section in the Voter chip is identical to the one in the FTC Chip
(see Section 7.3), except that different signals are decoded as shown in Table 8.1.

B U2 DI L&) RESULTING OUTPUT

0 0 0 0 Idle (No output)
Resets the system (RESET/)
NEID Latch (NEIDLAT)
NE Mask Reg. Latch (NEMSKLAT)
PE Mask Reg. Latch (PEMSKLAT)
Syndrome Output Enable (SYNDEOE)
Voter Output Enable (VOTEOUT)

—_— -0 O O
OO0 O - O O
—_0 O o= O
O = O = O -

Table 8.1 - Voter Latch Decode Signals
RESET/ resets the Voter chip. NEIDLAT latches the VDAT?2-0 signals to become

the Network Element Identification (NEID) signals NEID2-0, respectively. The NEID
signals indicate the absolute value of the NE as shown in Table 8.2.
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Figure 8.1 - Block Diagram of Voter Chip
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NE NEIX NEDI NEDO
A 0 0 0
B 0 0 1
C 0 1 0
D 0 1 1
E 1 0 0

Table 8.2 - NE Identification Signals

NEMSKLAT latches the VDAT4-0 signals as the Network Element masks and
PEMSKLAT latches the VDAT4-0 signals as the Processor Element masks (see Section
8.2). SYNDEOE puts the Syndrome Accumulator errors onto the VDAT bus on the clock
cycle after the Latch Decode signals are enabled and resets the syndrome errors (see Section
8.3). VOTEOUT enables voted data to be put on the VDAT bus on the clock cycle after the
Latch Decode signals are enabled (see Section 8.4). The Latch Decode is a basic decoder
built out of combinational logic and registers. RESET/ is registered. All of the other
signals are purely combinational signals.

8.3 Mask Register

The Mask Register section provides masks for the voter. It has three types of
masks, the Reflect Masks, the Vote Masks, and the From Masks. Each group of masks
consists of five bits (one for each Fault Containment Region) and are active high. The
masks are selected by the MASKSELvinputs as shown in Table 8.3.

MASKSEL ~ MASKSEO) — MASKGENERATED

0 0 Reflect Masks (Source Masks/)
0 1 Vote Masks (NE Masks * PE Masks)
1 - From Masks (NE Masks ¢ Source Masks)

Table 8.3 - Mask Register MASKSEL Outputs

Masks that are selected by MASKSEL1-0 are latched on to a register to become the
CHO0-4MASK signals used by the voter when LDMASK is enabled. The overall block
diagram for the Mask Register section is shown in Figure 8.2.

93



Chapter 8 - The Voter Chip

VDAT Bus

s

(=] ot (=] ot
mx.sx—:m_A 2:1 MUX / 2:1MU SCUNLOCK

Absolute t@
NEID =i Relative
Decoder

Y

LDMASK g Register Lp CH0-4MASK

Figure 8.2 - Block Diagram of Mask Register

The Reflect Masks are used during the first round of Class Two exchanges and

mask out the NEs that are not reflecting data. They are simply the inverted values of the
Source Masks. The Vote Masks are used during Class One exchanges and mask out NEs
and PEs that have been determined to be faulty. They are the NE Masks ANDed with the
PE Masks. The From Masks are used during SERP operations and during the second
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round of Class Two exchanges. They reflect the data from each non-faulty NE. They are
the NE Masks ANDed with the Source Masks, except in triplex operation where they are
simply the NE Masks.

The three types of masks are generated from three latched sets of masks, the NE
Masks, the PE Masks, and the Source Masks. The the NE Masks are latched in absolute
format from the low five bits of the VDAT bus by NEMSKLAT. The high VDAT?7 bit is
used to latch the SCUNLOCK signal which is used during triplex mode of operation. This
selects the proper type of From Mask. The VDAT bits are latched as shown in Table 8.4.

YDATBIT NEMASKIATCH
7 SCUNLOCK
5-6 Unused
4 NEEMASK
3 NEDMASK
2 NECMASK
1 NEBMASK
0 NEAMASK

Table 8.4 - VDAT NE Mask Assignments

NE Masks are normally latched during Configuration Table updates. The
mechanism used for latching the NE Masks into the NE Mask Register is a series of
combinational logic and synchronous latches. This mechanism is diagrammed in Figure
8.3. SCUNLOCK is latched in the same manner.

} REiET/

P
D Q NE<n>MASK
NEMSKLAT S
VDAT<n>
12MHZ

Figure 8.3 - NE Mask Register Circuitry
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The PE Masks are used in Class One exchanges as Vote Masks to mask out a faulty
processor of a given Fault Masking Group (FMG), and need to be updated before each
Class One data exchange if the previous exchange was not with the same FMG, or the
processor failure information has changed. The PE Masks are latched in absolute format
from the low five bits of the VDAT bus by PEMSKLAT. The VDAT bits are latched as
shown in Table 8.5.

YDATBIT PEMASKLATCH
5-7 Unused
4 PEEMASK
3 PEDMASK
2 PECMASK
1 PEBMASK
0 PEAMASK

Table 8.5 - VDAT PE Mask Assignments

The mechanism used for latching the PE masks into the PE Mask Register is a
series of combinational logic and synchronous latches. This mechanism is diagrammed in

Figure 8.4.
——: RESET/
P
D Q PE<n>MASK
PEMSKLAT 5
VDAT<n>
12MHZ

Figure 8.4 - PE Mask Register Circuitry
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Three control signals, SRCSELO, SRCSEL1, and SRCSEL?2 are taken straight
from the Global Controller to indicate what type of Source Mask should be used. When
Class Two exchange is occurring, an NE reflects data to the other NEs, using the Reflect
Masks, which are generated from the Source Masks. When a SERP is occurring, non-
faulty elements vote on SERP data, using the From Masks, which are generated by the
Source Masks and NE Masks. The Source Mask generation is shown in Table 8.6.

SRCSH2 SRCSELl SRCSEL0  ExdengeTyv SCEA>MASK
0 0 0 From A or SERP Reflect A 11110
0 0 1 From B or SERP Reflect B 11101
0 1 0 From C or SERP Reflect C 11011
0 1 1 From D or SERP Reflect D 10111
1 0 0 From E or SERP Reflect E 01111

Table 8.6 - Exchange Types and Mask Generation

The masks generated by the SRCSEL signals are implemented using combinational logic

and latches.
Finally, the masks are converted from absolute to relative format using the absolute

to relative converter shown in Figure 8.5.

VDAT<n> VDAT<n>—41
CH<n>MASK

VDAT<n> 0

1

NEIDO

0
VDAT<n> 1 NEID2
VDAT<n> 0 NEID1

e

Figure 8.5 - Absolute to Relative Converter
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8.4 Syndrome Accumulator

The Syndrome Accumulator records errors that are detected by the voter. Errors are
recorded as a high signal only when LATCHSYN is enabled. This information is
requested from the Global Controller when needed by the SYNDEOE signal. The error
bits are written to ilic VDAT bus in relative form as shown in Table 8.7. These signals are
taken directly from the voter.

YDATBIT SYNDROMEERROR

5-7 Set Low
4 CH4 Error
3 CH3 Error
2 CH2 Error
1 CH1 Error
0 CHO Error

Table 8.7 - Syndrome Accumulator Error Format

An error is set high when a voted data byte differs from the respective NE's data
byte. The Syndrome Accumulator errors are placed on the VDAT bus by the mechanism
shown in Figure 8.6. The errors are output on the VDAT bus when the SYNDEOE signal
is sent to the VDAT Bus Driver.

NERR — )— D Q VDAT<0>
LATCHSYN —
SYNDEOE — >0 12MHZ—| >
c
RESET/ ' 1

Figure 8.6 - Latching Syndrome Errors on the VDAT Bus
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8.5 Voter

The Voter is basically a five channel, byte wide, maskable, bit-for-bit majority
voter. The Voter uses the mask signals from the Mask Register, CHOMASK, CHIMASK,
CH2MASK, CH3MASK, and CH4MASK, to mask out NEs or PEs that are determined to
be faulty or are not a part of the sending Fault Masking Group (FMG). It generates
CHOERR, CH1ERR, CH2ERR, CH3ERR, and CH4ERR which indicate an error in that
relative NE's data. The data being voted is temporarily held in pipeline registers. The
overall block diagram for the Voter circuit is shown in Figure 8.7, where the gray area
represents that the voter error logic is registered.

VDAT<7:0>
,5, CHO0-4ERR > *
5
VOTER
A A A A
- 3
VOTER [= 1
ERROR 1
LOGIC
CHOPIPE CH1PIPE CH2PIPE CH3PIPE CHA4PIPE
DEG, REG. REG. REG. REG.
I‘) 1—> L—) ['> r>
S12MHZ CHODAT7-0 CH1DAT7-0 CH2DAT7-0 CH3DAT7-0 CH4DAT?7-0

Figure 8.7 - Voter Block Diagram
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The pipeline registers are simply latches clocked by the 12.5 MHz clock signal as
shown in Figure 8.8.

nDAT<n>————D Q}———————nPRD<n>

12MHZ —————{ >

RESE7/
Figure 8.8 - Voter Pipeline Register

Implementing the five channel, byte wide, maskable, bit-for-bit majority voter, is
not a trivial task. The output involves combinations of eighty variables, which are five data
bytes and five mask bytes, yielding 280 (=1.2E24) possible combinations. Pure
combinational logic, when fully reduced can yield thirty-five product terms per bit, for a
total of 280 product terms. However, this process is simplified since we are not
considering quintuplex voting. For non-quintuplex voting, we simply set the output to
high if one of the two following cases is true:

1) two or more valid data bits are high, or

2) simplex voting is used and the valid data bit is high.

A valid data bit means that the bit is not masked out by the Mask Register signals. The
truth table for non-quintuplex voting is shown in Table 8.8, where M<0:4> represent the
mask bits, D<0:4> represent the data bits, and - means that the input is irrelevant to the
output. Voted output is done using expander terms for speed purposes.
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Table 8.8 - Truth Table for Non-Quintuplex Voting
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Errors are generated when the output of a given chaunel differs from the voted
output on VDAT<7:0>. These errors can be detected by using XOR gates as shown in
Figure 8.9. In the actual schematics, the error detection logic uses combinational terms
using macrocells with three product terms for speed purposes and since the voter logic
needs most of the expander terms.

CH<n>PRDO ——
VDAT) ———
CH<n>PRD1 ——
VDATI ————
CH<n>PRD2 ——\
VDAT2 ———
CH<n>PRD3 ——
VDAT3 ———
CH<n>PRD4 ——)
VDAT4 ————
CH<n>PRD5 ——)
VDATS ————
CH<n>PRD6
VDAT6 ————
CH<n>PRD7 ——

VDAT7 ———
Figure 8.9 - Voter Error Detection Logic

YYY

CH<n>ERR

W??WW
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8.5 VDAT Bus Driver

The VDAT bus is used for the transmission of data throughout the local NE. In
order to accomplish this, the VDAT bus must be bidirectional and must be able to be driven
by the correct data. This is accomplished by the mechanism in Figure 8.10.

VOVDAT<n> ——
Q |'> VDAT<n>
SDVDAT<n> —
VOTEOUT 8
12MHZ
SYNDEOE — \
VOTEOUT — 8 —  J

Figure 8.10 - VDAT Bus Driver Logic
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Chapter 9
Simulation and Testing

Simulation for the FTC FPGA and Voter FPGA were done using Altera's Maxplus
system. This system allows use of a waveform editor whereby any portion of the design
can be simulated by generating input waveforms and observing the outputs. The FTC and
Voter FPGAs could not actually be tested with the rest of the C3 FTPP since this is the first
completed portion of the C3 FTPP. However, by using timing parameters from other
portions of the C3 FTPP, a timing analysis can be done to test functionality.

Simulation was done in a bottom-up fashion, where small portions of the design
were simulated first, then larger blocks, and finally entire chips. This was done to assure
functionality of the individual blocks before larger tests. Signals from the NE Global
Controller arrive have maximum propagation delay of 12 ns with respect to the rising edge
of the 12.5 MHz clock. Data read from the FIFOs arrives 25 ns after a strobe falling edge
and is held for a least 5 ns after the rising edge of the strobe. When writing to the FIFOs,
there is a setup time of 15 ns and a hold time of 0 ns relative to a strobe rising edge. Using
these external timing parameters and the simulation results of inter-chip signals, the

functionality of the Data Path Chip Set may be determined.
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Calculating the timing for the EPM5128 chips is a straightforward task since the

EPM5128 has fixed propagation delays depending on the internal layout of each chip. To

calculate propagation delays of a signal, we can use a timing model given in the Altera

databook. This timing model is shown in Figure 9.1.

Output

: Expander Delay
> t
- EXP
— Logic Array tCLR
Input Input ; Control Delay t Register
In tro
.—= Logic Array Delay :SU »l t B
> H
" LD t aTcH
Sy ties
PIA Clock Delay E—
——p{ Delay
t o
PIA
Feedback Delay
i o TEEE——
o
VO Delay
tp

Figure 9.1 - EPM5128 Timing Model

By knowing the timing parameters for each chip, we can calculate the propagation delays

for any output given the timing of the inputs. The timing parameters for the EPM5128-1

(the fast version of the EPM5128) are shown in Table 9.1.
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Symbd _ Pearresy Mn Mx

t PDI Input to non-registered output 25

t pD2 1/O Input to non-reg. output 40

tsy Setup time 15

ty Hold time 0

t coi Clock to output delay 14

t Asu Asynchronous setup time 5

t AH Asynchronous hold time 6

tcy Clock high time 8

tcL Clock low time 8

t Aco1  Async. clock to output delay 25

t ONT Minimum clock period 20

Internal Timing Parameters

Symbdl Paameer Mn M

tIN Input pad and buffer delay 5

tio I/O Input pad and buffer delay 6

texp Expander array delay 12

t LAD Logic array delay 12

tiAC Logic control array delay 10

t op Output buffer and Pad delay 5

t 7x Output buffer enable delay 10

t xz Output buffer disable delay 10

tsy Register setup time 6

tiatcy Flow-through latch delay 3
RD Register delay 1

tcomp Combinatorial delay 3

tu Register hold time 6

tic Clock delay 14

tics System clock delay 2

trD Feedback delay 1

t PRE Register preset time 5
CLR Register clear time 5
PIA Progr. Interconn. Array delay 14

Table 9.1 - EPM5128 Propagation Delays

The timing parameters and model are used by the Maxplus simulator so it is not necessary

to know these values. However, it is helpful when determining how the chip circuitry

needs to be laid out in order to meet speed requirements.
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9.2 The Fault Tolerant Clock Chip

For purposes of simplicity, the simulation of the Fault Tolerant Clock chip will be
broken up into seven sections, one for each part of the chip itself. Finaily the simulation of
the entire chip will be discussed. For ail parts of the chip, data coming from the VDAT bus

must satisfv a setup time of 5 ns and a hold time of 6 ns.

9.2.1 Asynchronous Control

The Asynchronous Control generates signals that shift data into the FIFOs. A data
strobe for the correct channel should be generated when one of three cases happen: when
the channel's data strobe goes high, when the channel's control strobe and violation strobe
both go high, and when a channel's debug mode is enabled. The results of simulating the
Asynchronous Control block for the first case can be seen in Figure 9.2. The SHIN/ signal
has a maximum propagation delay of 40 ns from the rising edge of the DSTRB signal.

12MHZ

NEFUNCO-1 X m

CH1-4DSTRB

i 40 >

CH1-4SHIN/

Figure 9.2 - Asynchronous Control Simulation for Normal Operation

The simulation results for the second case are identical to those of the first case, except that

the control strobe and the violation both go high instead of the data strobe. In either of
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these two modes, the SHIN/ signals meet the setup and hold times for the FIFO with
respect to valid data from the TAXI chip. Simulating the Asynchronous Control block in
debug mode yields a signal that is identical to the results of CHOSHIN/ from the
Synchronous Control. The results can be seen in Figure 9.3. This is done since data

needs to be shifted into the FIFOs synchronously when in debug mode.

12MHZ

DEBUGMD

NEFUNCO-1 X m

CH1-4SHIN/

Figure 9.2 - Asynchronous Control Simulation in Debug Mode

In debug mode, the SHIN/ signals meet the setup and hold times for the FIFO with respect
to valid data from the Voter Chip.

9.2.2 Debug Wrap Register

The Debug Wrap Register should latch a byte of data (call it X) from the VDAT bus
when the DEBUGLT signal is strobed (generated by the Latch Decode input of 1100).
Data is output onto the VDAT bus when the DEBUGOE signal is strobed (generated by the
Latch Decode input of 1101). The simulation results for the Debug Wrap Register are

shown in Figure 9.4.
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12MHZ r— |
A GRS 1/// 1,

(input) :

wao X0 X /7777777177777

e 54 —bra— 67—

vorter LIIITHTITIITIITITIG x X/

(output) 3 4

Figure 9.4 - Debug Wrap Register Simulation

9.2.3 Fault Tolerant Clock

The simulation of the Fault Tolerant Clock includes many smaller simulations. The
Bane State Machine determines whether the local NE's FTC is synchronized with the rest
of the NEs' FTCs. Ii does this by generating three signals, ERRWIN, SAW, and SBW.
By comparing these signals with the NE's BOUND signals, we can determine whether the
local FTC is ahead, behind, or in error. ERRWIN, which stands for Error Window, is a
signal that drops low for three and a half clock cycles (280 ns), representing when a
channel's BOUND signal is not in error. SA is a window that indicates when a local FTC
is ahead of the other FTCs. SBW is a window that indicates when a local FTC is behind
the other FTCs. By symmetry, the error window encloses one clock cycle where SAW is
high, one clock cycle where SBW is high, and one and a half clock cycles where neither
SAW or SBW are high. These signals are sent to the Synchronization Feedback section
and then to the My State Machine so that the local FTC will be adjusted with respect to the
other FTCs. Note that the Bane State Marhine is clocked at 25 MHz and these error
windows are adjusted by the propagation delay. The simulation results of the Bane State

Machine are shown in Figures 9.5 and 9.6.
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Figure 9.5 - Bane State Machine Simulation for No Propagation Delay
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Figure 9.6 - Bane State Machine Simulation for a Propagation Delay of Four

The Bound Generator generates BOUND signals for channels 1 to 4. A BOUND
signal is a signal that is high during the period that data is being strobed in, and low
otherwise. Due to the nature of the fiberoptic receivers and transmitters, when data is not
being strobed in, control strobes are always being sent (CSTRB). This signal can be used
to mark the end of a channel's BOUND signal. However, control strobes are also sent
when violations occur (VLTN). This should not mark the end of a BOUND signal since
and error could occur in the middle of a transmission. The Bound Generator also generates
the MEDBOUND signal, which stands for the Median Bound. MEDBOUND is simply the

second BOUND signal. The results of the simulation of the Bound Generator are shown in
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Figure 9.7. MEDBOUND is shown for the case that all the CH1-4B signals are the same.

Otherwise, MEDBOUND follows the second CH1-4B signal by 40 ns.

25MHZ I
CH1-4DSTRB [—— |
—»- 25 e — 25 r—

CH1-4B

40 e d0>
CH1-4BOUND

- 40 > ‘e 402
MEDBOUND

Figure 9.7 - Bound Generator Simulation

The Mask Latch should simply latch masks from the VDAT4-0 signals when

NEMSKLAT is strobed. These masks are used by the Bound Generator just described.

Figure 9.8 shows the simulation of the FTC Mask Latch.
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Figure 9.8 - FTC Mask Latch Simulation

The Mid Data Transfer should strobe MDT/ when the packet count is equal to half

of the latched packet connt. The Mid Data Transfer simulation is shown in Figure 9.9.

110



Chapter 9 - Simulation and Testing

This signal is used by the Propagation Delay Counter to reload the propagation delay and

by the Bane State Machine.
LCOUNTO-7 L]
COUNTO0-7 n/2
MDT/ M

Figure 9.9 - Mid Data Transfer Simulation

The My State Machine generates the MYBOUND, MYFTC, PKTLD/, and PDLD/
signals and should skip State C when the system is behind, and should go through and
extra state (State D) when the system is ahead. The My State Machine is the synchronism
mechanism that adjusts the local NE's clock with respect to the other clocks. The results

are shown in Figure 9.10, 9.11, and 9.12.

2 1 0 n n-1; n2,; n3, n4
Packet Count ! ! ! ! i : ! ‘
MYBOUND ! |

wee ]
PKTLD ]
PDLD 1

Figure 9.10 - FTC My State Machine Simulation (Ahead)
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Figure 9.11 - FTC My State Machine Simulation (Normal)
PacketCount 4 3 3 4 2 4 1 4 0 f Ny o0y n2, 03, n4,
ce [Ty oy
MYBOUND l ]
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Figure 9.12 - FTC My State Machine Simulation (Behind)

The Packet Latch and Counter latches VDAT7-0 onto a counter when FTCPL is
strobed (generated by the Latch Decode input of 0011). It should reset the counter to this
value when PKTLD/, which comes from the My State Machine is strobed. The results of

the Packet Latch and Counter simulation are shown in Figure 9.13.
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Figure 9.13 - FTC Packet Latch and Counter Simulation

The Presence Accumulator does two things. First, it takes a sample of each
BOUND signal from the Bound Generator at 25 MHz. Secondly, it compares this sampled
signal to the BOUND signal to find the rising edge of each BOUND signal. This rising
edge is compared to ERRWIN and errors are recorded if the BOUND signal rises outside
of the error window. The results of the simulation of the Presence Accumulator are shown

in Figure 9.14.
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Figure 9.14 - Presence Accumulator Simulation
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The Propagation Delay Latch and Counter should latch VDATS-0 onto a counter
when FTCDL is strobed (generated by the Latch Decode input of 0100). It should reset the
counter to this value when PDLD/ from My State Machine or MDT/ from the Mid Data
Transfer section is strobed. It then counts down on each rising edge of the 25 MHz clock
and halts when it reaches zero. The results of the Propagation Delay Latch and Counter

simulation are shown in Figure 9.15.

25MHZ l_— |
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Figure 9.15 - FTC Propagation Delay Latch and Counter Simulation

9.2.4 Latch Decode - FTC

The Latch Decode signal generates internal signals depending on the LD3-0 inputs.
These signals must satisfy a setup time of 5 ns and a hold time of 6 ns with respect to the
12.5 MHz clock.  All the signals are combinational except for RESET/, which is
registered. The NE identification signals are also latched by the Latch Decode section. The
results of the simulation of the FTC Latch Decode are shown in Figure 9.16.
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Figure 9.16 - FTC Latch Decode Simulation

9.2.5 Link Error Accumulator

The Link Error Accumulator records errors that occur when data is received through
the fiberoptic receivers. When an error occurs, the VLTN signal from the respective
fiberoptic receiver is strobed. These are recorded by the Link Error Accumulator until
either RESET/ or LINKEOE is strobed (generated by the Latch Decode inputs of 0001 or
0110, respectively). LINKEOE puts the link error results onto the VDAT bus. The results

of simulating the Link Error Accumulator are shown in Figure 9.17.
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Figure 9.17 - Link Error Accumulator Simulation

9.2.6 Synchronous Control

The Synchronous Controller generates signals that synchronously shift out data
from FIFOs (CH1-4SHOUT) and the signal that shifts in data into the local NE's FIFO
(CHOSHIN/). These signals are generated depending on the SRCSELO-2 signals and the
function of the NE (NEFUNCO-1). The results of the simulation of the Synchronous

Control is shown in Figure 9.18.

12MHz - [ L
Nerunco-1 7777777 XZIZIZTZTTITITI
S a— /111 LI

CHOSHIN/ i fe 40 >

pue—

C0-4SHOUT/

Figure 9.18 - Synchronous Control Simulation
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Data from a FIFO can be read 25 ns after the falling edge of SHOUT and is held valid until
S ns after the rising edge of SHOUT.

9.2.7 VDAT Bus Driver

The VDAT Bus Driver selects data from certain sections of the FTC chip. It selects
data from the Debug Wrap Register, the Link Error Accumulator, or the Presence
Accumulator, depending on the Latch Decode signals. The simulation of the VDAT Bus

Driver is shown in Figure 9.19.

12MHZ l'—

LD3-0 XN
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Data guaranteed
to be valid here

Figure 9.19 - FTC VDAT Bus Driver Simulation
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9.2.8 Overall FTC Simulation

The simulation of the entire FTC chip is difficult to depict. This is because there are
so many variables that depicting every different case would be infeasible. The FTC Chip
was simulated using several different modes, with errors injected at certain points. The
FTC synchronization mechanism worked as expected. To get an idea of how the FTC
Chip works, see Appendix C, which shows a simulation of what signals would look like
for Network Element A in a normal mode of operation with a propagation delay of six and
a packet length of twelve. During actual use of the C3 FTPP, the packet length will
probably be sixty-four for normal message exchanges. Since there are normally four
cycles in between message exchanges which are used for synchronization, 94% of the
bandwidth of the fiberoptic receivers and transmitters may be used when using that packet
length.

Although simulation can only be done one chip at a time, we can approximate how
the chip will function in the presence of other NEs by estimating input waveforms. After
thorough simulation, it is expected that the FTC Chip will synchronize itself with respect to
the other NEs by means of message exchanges. Additional simulation beyond the
capabilities of the Altera simulator is needed to conclusively prove that synchronization will

be achieved under all circumstances.
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9.3 The Voter Chip

The Voter Chip handles the majority voting of data and the reflecting of input data
for proper modes of exchange. The Voter Chip simulation will be broken up into five
sections, one for each part of the Voter Chip. Finally, the simulation of the entire chip will
be discussed. For all parts of the chip, data coming from the VDAT bus or from the FIFOs

must satisfy a setup time of 5 ns and a hold time of 6 ns.

9.3.1 Latch Decode - Voter

The Latch Decode signal generates internal signals depending on the LD3-0 inputs.
These signals must satisfy a setup time of 5 ns and a hold time of 6 ns. All of the signals
are combinational, except for RESET/, which is registered. The results of the simulation of
the Voter Latch Decode are shown in Figure 9.20. *

<+— g0—>
12MHZ l

LDo-3 -”IIIIIIIIIIIIIIIIIIIII

_.>. 25%4..._

RESET/

LI G 1/////// /111111111
NEwo2  Z7777777D)

NEMSKLAT, |
PEMSKLAT,  iq 37
SYNDEOE,
VOTEOUT

Figure 9.20 - Voter Latch Decode Simulation
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9.3.2 The Mask Register

The Mask Register selects masks depending on operation of the NE. The Mask
Register includes three mask latches, the NE mask latch, the PE mask latch, and the Source
Mask Latch. The NE masks and the PE masks are latched from the VDAT bus by the
NEMSKILAT and PEMSKLAT signals from the Latch Decode section. The Source masks
are latched from the SRCSELQ-2 signals. These masks or combinations of these masks are
selected depending on the MASKSELQ-1 signals. The selected masks become active only
when LDMASK is enabled. The results of the simulation of the Mask Register is shown in
Figure 9.21.
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cHo-rSk 77777 77777TTTTTEI

Figure 9.21 - Mask Register Simulation
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9.3.3 Syndrome Accumulator

The Syndrome Accumulator records errors that occur from the Voter. The error
results are reset when either SYNDEOE or RESET/ (generated by the Latch Decode inputs
of 1001 or 0001, respectively) are strobed. SYNDEOE enables the error results to be

output onto the VDAT bus. The simulation of the Syndrome Accumulator is shown in

Figure 9.22.
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Figure 9.22 - Syndrome Accumulator Simulation
9.3.4 Voter
The Voter section majority votes each bit of data from five channels. It also

generates errors when a channel has data that disagrees with the voted data. The results of

the simulation of the Voter are shown in Figure 9.23.
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Figure 9.23 - Voter Simulation

The output of the voter meets the setup time and hold time of the FIFOs with respect to the

CHOSHINY/ signal.

9.3.5 VDAT Bus Driver

The VDAT Bus Driver selects data from certain sections of the Voter chip. It
selects data from the Voter or the Syndrome Accumulator, depending on the Latch Decode

signals. The simulation of the VDAT Bus Driver is shown in Figure 9.24.
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Figure 9.24 - FTC VDAT Bus Driver Simulation
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9.3.6 Overall Voter Simulation

The Voter Chip takes signals from the Global Controller to assure that data is
properly voted. As with the FTC Chip, enumerating the simulation cases would be
infeasible, so only a few operational modes wiil be shown. There are three basic modes
that the Voter chip functions in, one for each type of mask. Three sample vote operations
are shown in Appendix D. After thorough testing of the Voter Chip, it has been determined

that it properly majority votes data from five maskable channels.

9.4 FTC to Voter Interface

The FTC Chip and Voter Chip are related in that they need to be synchronized so
data read from FIFOs (controlled by the FTC Chip) is valid for the Voter Chip, and data
written to the FIFOs from the Voter Chip is strobed into the FIFOs properly by means of
the FTC chip. The FTC Chip generates synchronous SHOUT/ signals that shift data out of
the FIFOs. The data shifted out of the FIFOs must meet the 5 ns setup time of the Voter
Chip. The Voter Chip outputs data that is clocked into the chip one cycle later with a delay.
The FTC Chip generates a signal (CHOSHIN/) that synchronously shifts in data into
CHOFIFO at the appropriate time, meeting the 15 ns setup time of the FIFO. When in
debug mode the FTC shifts data into all the FIFOs from the Voter Chip. The interface

between the FTC and Voter Chips are shown in Figure 9.25.
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Figure 9.25 - FTC to Voter Interface Timing
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Chapter 10
Conclusions and Recommendations

The primary conclusion of this thesis is that the Data Path Chip Set, comprising the
FTC Chip and the Voter Chip, provides a compact and reliable mechanism for error
detection/correction, synchronization, and communication functions needed for proper
operation of the C3 FTPP. The use of FPGAs in this design proved to be cost-efficient,
compact, and yet able to handle the clock speed of the design. Since the C3 FTPP is not to
be manufactured in large quantities, it is sensible to use FPGAs for cost and flexibility
reasons.

The C3 FTPP is expected to yield high performance and reliability. As the need for
more powerful computers arises, several changes may be made to the C3 FTPP for
enhanced performance and reliability. The Voter chip and the FTC chip may be combined
into one chip when technology allows for that kind of density and pin count in an FPGA.
One bottleneck in the C3 FTPP design is the inter-NE communication speed. This inter-
communication speed of 12.5 million bytes per second is presently limited by the maximum
clock speed of the AMD TAXI chips and IDT7202 FIFOs. To improve performance, these
devices should be updated to those of a faster technology. This would lead to an increased
clock speed throughout the NE, including both the Voter chip and FTC chips, thus
requiring high speed FPGAs. Throughput may be increased by including more PEs,
which would increase the complexity of the NE Global Controller and NE Scoreboard.
Reliability may be increased by including more NEs and allowing more redundancy. For
instance, there could be seven fully-interconnected NEs, which would Two-fault Byzantine
Resilient. This would also call for three rounds of communication and increase the
complexity of the design. Overall, the C3 FTPP is a highly flexible design, and the Data
Path Chip Set may be easily modified to accommodate changes the C3 FTPP may go

through in the years to come.

125



126



Appendix A - FTC Chip Schematics
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APPENDIX C - FTC Chip Simulation
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APPENDIX D - Voter Chip Simulation
Using Reflect Masks
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APPENDIX E
FTC Chip Pinouts
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Voter FPGA Pinouts

APPENDIX F
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