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Abstract

As digital designs grow more and more complex, some method of controlling this
complexity must be used in order to reduce the.number of errors and the time spent on a
design. VHDL (Very High Speed Integrated Circuit Hardware Description Language)
promises to ease the design and verification of complex digital circuits by encouraging the
use of top-down design.

This thesis demonstrates how VHDL, combined with a top-down design methodology,
enables the designer to specify and verify a digital design faster and with fewer errors. The
scoreboard, a section of hardware in the Charles Stark Draper Laboratory's Fault Tolerant
Parallel Processor, is used as an example to demonstrate the utility of VHDL. The
scoreboard is responsible for message processing within the FTPP and thus has a critical
effect on performance. It also represents the most significant risk of any component in the
FTPP. The use of VHDL has the potential for ensuring an optimal scoreboard design with
minimal errors and an improved design time.

Thesis Supervisor: Jonathan A. Allen
Title: Professor of Electrical Engineering
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1. Introduction

1.1. Problem Statement

In order to meet future requirements of extremely-reliable computers with high

throughput, the Charles Stark Draper Laboratory (CSDL) initiated the Fault-tolerant Parallel

Processor (FTPP) project. rhe FTPP achieved these requirements by combining Byzantine

resiliencel with parallelism via multiple, concurrently executing processors. Cluster 1 (C1),

the laboratory prototype, was completed in 1988. While an excellent proof of concept, the

design possessed design and implementation flaws which were difficult and tedious to find

and rectify. The next FTPP, Cluster 3 (C3)2, was conceived as a third-generation FTPP

suitable for use in field applications.

The scoreboard is a section of hardware responsible for message processing in the

FTPP. In C1, it was implemented with many PALs and RAMs and was very difficult to

debug. Furthermore, flaws were found in the fundamental algorithm. These reasons, as

well as a significant increase in the scoreboard functionality, necessitated a complete

redesign of the scoreboard for C3.

This new design presented many challenges. First, the algorithm required

extensive reworking to achieve the enhanced functionality. Second, the scoreboard's

complexity mandated the use of good design techniques. Finally, the design had extensive

testing problems which had to be solved. An effective methodology was needed to address

these challenges and come up with the best possible design. VHDL (Very High Speed

Integrated Circuit Hardware Description Language) encourages the use of such a

methodology and has other advantages that made it an effective tool in designing the

scoreboard: 1) it allows design tradeoffs to be investigated quickly and easily; 2) it

simplifies testing and validation of the scoreboard by allowing one test bench to be used

throughout the design process; and 3) it provides implementation-independence for much of

the design cycle.

1 Byzantine resilience is a degree of fault tolerance allowing toleration of arbitrary faults. See section
2.1 for a more detailed explanation.

2 C2 was a minimum Byzantine resilient system designed to demonstrate high-speed fiber optics for
inter-FCR communication.



1.2. Objective

The objective of this thesis is to design and document a fully functional behavioral

scoreboard model in VHDL, both to demonstrate the advantages of VHDL and to accelerate

the design process of the scoreboard. This thesis attempts to show that top-down design using

VHDL yields better designs with fewer iterations. It also presents some guidelines and

techniques to enhance the modeling process itself.

Since the entire design process, from concept to working hardware, cannot be

completed in the amount of time allotted a thesis, the VHDL model is also used to document

the work completed to date. The VHDL model, along with this thesis, will serve to completely

document the work which has been done on the scoreboard.

1.3. Audience

The intended audience for this thesis, besides my advisors, is any engineer

interested in modeling using VHDL, especially at the behavioral level. I have attempted to

structure my writing such that little knowledge of VHDL or fault-tolerance is required.

However, chapter 7 will have more meaning if the reader has at least a working knowledge

of VHDL.

This thesis is also aimed at anyone who is skeptical of the utility of VHDL, especially

those who are wary of any language which is a Department of Defense standard. Hopefully,

the following exercise will persuade these people of the merits of using VHDL to design

digital hardware.

1.4. Approach

This thesis is a VHDL design example. As such, it is structured to specify the

scoreboard's design, explain the motivations for using VHDL, enumerate the advantages of

VHDL, and interpret/analyze the VHDL model of the scoreboard with some suggestions for

hardware implementations.

Chapter 2 familiarizes the reader with the concepts of fault-tolerance and Byzantine

Resilience as applied to the FTPP in general and the scoreboard in particular. Chapter 3

introduces VHDL and motivates the subsequent chapter on the advantages of VHDL

modeling. Chapter 5 covers modeling issues such as state-machines, timing, and

synchronous designs. Chapter 6 provides a functional description of the scoreboard. Chapter



7 covers the behavioral model of the scoreboard. The final two chapters discuss various

implementation methods and topics for further research.





2. Background Information

Since the dawn of the computer age, computer architects have been interested in

constructing fault-tolerant computers to decrease down-time and increase reliability. One

application for fault-tolerance is in transaction-processing systems, which should be fault-

tolerant to make errors unlikely and to allow them to remain "up" while being repaired. One

example is the Tandem line of NonStop® computers. Stratus also makes a line of fault-

tolerant computers, notable for their ability to phone the factory when a part fails. These

computers all have at least one thing in common - they take the approach of estimating and

covering expected failure modes by replicating critical components and voting outputs. For

example, alternate boards of a self-checking pair are powered by separate supplies so that if

one power supply fails, only half of each pair is affected.

The Achille's heel of most fault-tolerant computers, including those mentioned

above, is malicious faults. If a component fails in such a way that it produces conflicting

outputs, these computers will probably not be able to reach an agreement. Figur,1 2-1 shows

such a situation using three independent computers connected with bi-directional

communication links. Computer A has failed maliciously and is transmitting conflicting

information to the other two computers. Computers B and C must act off what Computer A has

said3. However, due to Computer A's malicious failure, no consensus is possible, since no

clear majority exists [Lamp 82].

3 Computer A might have a sensor attached to it whose data Computers B and C need also.



yes no

Computer B he said "no" Computer C
[yes,no] [no,yes]

he said "ves"

Figure 2-1, Malicious Failure with Three Computers

The ability to tolerate malicious failures is desirable for applications which require

extremely high reliability. Some examples are flight system control, where a failure could

cause the plane to crash, and jet engine control, where a failure could cause loss of the

engine. The Byzantine Resilience [Lamp82] algorithm discussed below guarantees

consensus even in the presence of malicious failures.

2.1. Fundamentals of Byzantine Resilience

A computer which is able to tolerate any arbitrary, single random fault is said to be 1-

Byzantine resilient. Arbitrary means that there are no constraints on what fault modes are

covered; any one fault, no matter how unlikely, may occur with 100% coverage. Byzantine

resilient algorithms exist to cover any number (f) of arbitrary faults.

A fault-tolerant computer is designed with a number of interconnected fault-

containment regions (FCR), each region being incapable of propagating an internal fault to

other FCRs [Butler89]. This is achieved by physical and electrical isolation of the FCRs.

Byzantine Resilience places four formal requirements on a fault-tolerant computer to

achieve 100% coverage of a single arbitrary fault. These requirements are:

1. There must be at least 3f+1 FCRs [Lamp82].

2. Each FCR must be connected to at least 2f+1 other FCRs through -nique

communication links [Dolev82].



3. The protocol must consist of at least f+1 rounds of communication among FCRs.

This is known as the source congruency requirement [Harper87].

4. The FCRs must be synchronized to within a known and bounded skew [Harper87].

A minimal 1-Byzantine Resilient configuration is shown in Figure 2-2. It contains four

FCRs, each connected to the three other FCRs through bi-directional communication links.

Figure 2-2, Minimal 1-Byzantine Resilient System

2.2. Exchanges

There are two fundamental methods of exchanging messages in a 1-Byzantine

Resilient system to arrive at consistent data. These two exchange methods are known as

class 1 and class 2 exchanges [Harper87]. Each type of exchange will be explained using

Figure 2-2 as a reference.

A class 1 exchange is performed when all FCRs have a message which must be

consistent across the system. This exchange has one phase wherein each FCR sends its

message to the other three FCRs. Each FCR then votes the original message plus the three

copies of the message it received to arrive at a consistent message. A class 1 exchange

guarantees validity of the exchanged data.

A class 2, or source congruency, exchange is performed when one FCR has a message

which must be distributed to all other FCRs. All non-faulty FCRs must agree on this

message. This exchange has two phases. In the first phase, the source FCR sends its message

to the three other FCRs. In the second phase, each FCR sends a copy of the message it received

to the three other FCRs. Each FCR then votes the copies (the original is not included in the

I



voting) of the message to arrive at a consistent result. A class 2 exchange guarantees

validity if the source is non-faulty and agreement if the source is faulty.

2.3. The FTPP

The Fault Tolerant Parallel Processor was designed to fill the need for an ultra-high

reliability, high-performance computer. The first prototype FTPP, known as C1, is a 1-

Byzantine Resilient system consisting of four FCRs interconnected by high-speed

communication links [Harper87]. Each FCR contains one Network Element (NE) and four

Processing Elements (PE). The physical configuration is shown in Figure 2-3. The PEs are

single-board computers, while the NEs are custom hardware which perform the Byzantine

resilience exchanges.

FCR

Figure 2-3, The FTPP

Cl provides the capability to logically group PEs together into fault masking groups

(FMG) of two, three, or four processors to enhance the reliability of critical tasks. The

members of a FMG run the same code and periodically exchange messages to ensure that

they are operating on the same inputs and producing the same outputs. Each FMG is treated



as a single entity, or virtual group, for purposes of sending and receiving messages. When a

FMG is sent a message, all PEs in the group receive a copy.

All messages in C1 are exchanged between virtual groups. A virtual group can be

either a FMG or a single PE. Thus every PE in the system has two "addresses," its physical

ID, which indicates its (NE,PE) location, and its virtual ID, which other virtual groups use to

send it messages. The NE maintains a data structure called the configuration table (CT)

which translates virtual IDs to physical IDs. Passing messages in this manner allows

healthy PEs to transparently assume the tasks of faulty PEs.

When a virtual group wishes to send a message, it writes an exchange request into a

FIFO (First In-First Out memory) in the NE. Periodically, each NE assembles this

information into a Local Exchange Request Pattern (LERP) [Harper87]. Four source

congruency exchanges are performed on the LERPs to ensure that all the NEs have

consistent copies of the four LERPs. The aggregate of the four LERPs is called the System

Exchange Request Pattern (SERP) [Harper87]. The SERP is delivered to the scoreboard, a

section of hardware internal to the NE. The scoreboard processes the exchange requests in

the SERP to decide which messages to exchange.

2.4. C3 Scoreboard Concepts

The C1 scoreboard possessed design and implementation flaws which were difficult

to find and rectify. Similar flaws are intolerable in the fieldable C3, so it was decided to

completely redesign the scoreboard from scratch. The rest of this chapter introduces the

functions of the C3 scoreboard, which in many ways closely resembles that of C1. It describes

the SERP and configuration table and provides an overview of timeouts. Chapter 6 contains

the complete functional description of the scoreboard.

2.4.1. SERP

Periodically, each NE polls its own PEs to determine four pieces of information :

1. Does the PE have a message to send (is its Output Buffer Not Empty, OBNE )?

2. To whom will it be sent (destination virtual ID) ?

3. What type of message is it (i.e. class 1, class 2, other)?

4. Can the PE receive a message (is its Input Buffer Not Full, IBNF) ?



Once this information has been gathered for each PE, the combined information

inside each NE is assembled into the Local Exchange Request Pattern (LERP). The NEs then

execute a source congruency exchange to arrive at a consistent aggregate of the four LERPs,

the System Exchange Request Pattern (SERP). The SERP is then passed on to the scoreboard

for processing.

SERP entries are indexed by processor ID (PID) and network element ID (NEID). In

other words, the first PE in the system (NE 0, PE 0) has the first entry in the SERP and so on

traversing the NEs and PEs. The scoreboard, however, must read all the SERP entries

corresponding to a VID in order to vote them. Therefore, some method of mapping PIDs to

VIDs must exist. The data structure which implements this mapping is called the

configuration table (CT).

2.4.2. Configuration Table

All PEs are combined into virtual groups composed of one, three, or four members

known as simplexes, triplexes and quadruplexes (quads). The members of a virtual group

are addressed in aggregate through the VID number. Unlike C1, C3 does not support virtual

groups with two members since such a virtual group provides no fault masking capability.

Each member must reside on a different NE to satisfy the isolation between FCRs necessary

for Byzantine resilience.

Because PEs deal with virtual addresses and NEs deal with physical addresses, there

must be a way of mapping PEs to VIDs. The data structure which performs this function is the

configuration cable (CT). Each entry in the CT corresponds to one VID4 and contains the

redundancy level of the VID, a bit field denoting the NE locations of the members of that VID,

the PIDs of all the VID's members, and a value to use when performing timeouts on the VID.

2.4.3. Timeouts

Timeouts are required because PEs are functionally synchronized. They arise from

the need to be able to detect the absence of a message [Lamp82]. They allow the scoreboard to

ignore faulty PEs who disagree with the other members of the virtual group for a given period

of time. For example, if one member of a VID had its power turned off, its OBNE and IBNF

4 From this point on, the term VID denotes a virtual group.



bits would never get asserted. Without timeouts, that virtual group could not send or receive

messages because agreement between members would never be achieved.

A timeout is begun on a virtual group whenever a majority, but not a unanimity, of its

members have their OBNE or IBNF bits set. If the timeout expires before unanimity is

observed, the OBNE or IBNF bit for the virtual group will be set. The OBNE and IBNF

timeouts are handled independently. The exact protocol and rules for starting and checking

timeouts will be discussed in section 6.4.1.4.

2.5. Design Goals

The C3 scoreboard presented many design challenges. First, the algorithm used

required detailed specification to ensure that all tenets of Byzantine resilience were

followed. Second, because of the complexity of this algorithm, the hardware to implement it

had to be carefully designed and optimized. This process by its very nature would involve

many design iterations. Finally, the testing strategy of the design required complex test-

generation algorithms itself.

Because of these challenges, the top-down methodology was thought to be the wisest

method to use for designing the scoreboard. It was also felt that VHDL would allow the design

to be tested and optimized with the least amount of effort.





3. Hardware Description Languages

This chapter provides an ovrerview of the major features of hardware description

languages in general and VHDL in particular. An in-depth discussion is beyond the scope of

this thesis. However, the following discussion presents the features which are important for

understanding the scoreboard VHDL model. I recommend reading this chapter even if the

reader has worked with VHDL before since it presents my view of the language (which is

very likely different from other views).

The chapter begins with a brief history of hardware description languages (HDL)

and the impetus behind their development. It then covers desirable features of an HDL. The

rest of the chapter is devoted to the development and features of VHDL.

3.1. History

Hardware description languages were originally developed in the early 1970's to

simplify the design of computer hardware. With the advent of large scale integration,

schematics alone became less able to convey sufficient information about a design.

Furthermore, there was an increasing need to describe and document designs at a higher

level of abstraction. The new logic simulators of the time also required a means to describe a

design [Lip 77].

HDL research caught fire with the promise of simplifying the design of increasingly

complex computer circuits. It wasn't long before many HDLs existed, each exhibiting

different strengths but none of which could be used for all levels of the design process [Lip 77].

In 1973, the ACM and the IEEE formed a combined, ad-hoc committee with the goal of

attempting to standardize HDLs [Lip 771. The committee was interested in creating standard

features which all HDLs should incorporate. However, they did not wish to stifle HDL

research so they proposed only a baseline feature set [Lip 77].

3.1.1. Desirable Features

An HDL must possess certain features in order to be effective and useful. First, and

most importantly, it must support concurrency since pieces of hardware by nature operate in

parallel. Most general purpose programming languages do not support parallelism, thus



making them poor choices for hardware modeling 5 [Lip 77]. A good HDL should also support

differing levels of abstraction, even within the same model, but not force the modeler into

using any particular style. Some common levels of abstraction, from most abstract to least,

are algorithmic, dataflow, and structural. Finally, an HDL should provide a built-in model

of time to make it useful for timing checks.

3.1.2. VHDL Impetus and Development

In 1980 the U.S. Government launched the Very High Speed Integrated Circuits

(VHSIC) program with the goal of significantly increasing the performance and density of

integrated circuits. Very soon afterwards, however, the Government realized that to help

different contractors work together efficiently and ensure the reusability and

maintainability of designs, a standard method to communicate design data was needed.

Furthermore, the densities of VHSIC chips and the complexity of the resulting systems

exposed the need for a method to smooth the design process and manage the huge amounts of

design data [Wax89]. The VHDL program was born from these needs.

The VHDL program was officially begun in 1981 with an initial meeting of people

from government, academia, and industry [Wax89]. The original language contracts were

awarded to Intermetrics, IBM, and TI, with Intermetrics being the prime contractor. The

IEEE, also recognizing the need for a standard hardware description language, began a

standardization effort in 1986, the same year in which Intermetrics released the first VHDL

toolset. IEEE Standard 1076, passed in December, 1987, standardized the VHDL language

[Wax89].

At the time of standardization in December, 1987, only one crude VHDL toolset

existed. By 1991, at least half a dozen commercial VHDL toolsets and a number of free

university VHDL toolsets were available. Nearly every major CAE vendor has announced

or is shipping a VHDL product, which indicates how well VHDL has become accepted both

inside and outside government circles. VHDL promises to become nearly as pervasive as

schematic entry systems, with an even greater impact on design productivity and

automation.

5 Though many papers exist on such a subject.



3.2. VHDL Overview

VHDL is a concurrently executed language with a intrinsic sense of time. This

means that parts of a given model will appear to execute concurrently. All VHDL statements

are scheduled to execute at a given point in time and are executed sequentially 6 within a

single delta - an infinitesimally small, but non-zero, unit of time. The simulation time is

then advanced to the next set of scheduled statements which are executed in the next delta.

Each such execute-update cycle is known as a simulation cycle [RL 89]. The time aspect of

VHDL is complex and full of pitfalls. The author suggests reading Lipsett, Schaefer, and

Ussery's excellent book "VHDL : Hardware Description and Design" for a more detailed

description of timing in VHDL (especially Chapter 5).

The general model on which VHDL is based is composed of three distinct,

interrelated models : behavior, time, and structure [RL 89]. The model of behavior allows the

designer to specify the function of an object without regards to its internal structure. The

structural model allows the designer to describe an object's function using simpler,

interconnected objects. The model of time, perhaps the most important aspect of VHDL,

allows the designer to embed timing information in the model. The following sections

explain how VHDL implements these models.

3.2.1. The Design Entity

The principal hardware abstraction in VHDL is the design entity [RL 86]. A design

entity is composed of two fundamental parts : the interface and the design body. An

important feature of the language is that more than one design body can exist for a given

interface. Different bodies can focus on different levels of hardware abstraction, for

example. A VHDL model can be composed of any number of design entities connected

together.

The design entity's interface is described by an entity declaration. This declaration

contains an arbitrary number of ports and generics (though neither is syntactically

necessary) which are used to pass information into and out of the design entity. The

interface represents the only portion of the design visible outside the entity. The design body

6 Sequentially because VHDL platforms (at least as of this writing) all run on uniprocessor systems.
Simulation speed would be greatly enhanced if VHDL ran on a parallel processor, though.



is composed of an architecture declaration and an optional configuration specification. The

function of the entity is implemented inside of the architecture. The following sections

describe the design entity in more detail.

3.2.1.1. Interface Declaration

The design entity interface is contained in an entity declaration. A sample

declaration is shown in Figure 3-1. This declaration describes the interface to a 2-to-1

multiplexor.

Figure 3-1, Sample Entity Declaration

The ports of an entity are its communication channels with the outside world [RL 86].

A port declaration consists of a mode and a type. The mode specifies the direction of

information flow through the port. A mode of in 7 specifies input only, a mode of out specifies

output only, and a mode of inout specifies bidirectional flow. The other two modes, buffer and

linkage, are special. Their meanings can be found in the IEEE VHDL Language Reference

Manual (LRM) [IEEE88].

A port type specifies the data values which the port can assume [RL 86]. For example, a

standard data type is bit, which can assume the values '0' or '1'. Another common type is

integer. VHDL also supports composite types such as arrays and records. It is important to

note that VHDL is a strongly typed language.

An entity declaration may also contain generics. Generics are constants used to

increase the generality of an entity. A common use for generics is to pass timing

information into an entity. This way, components of the same family can be substituted into

a design without writing separate design units for each one. For example, if a design

requires three NAND gates each with different timing, only one design unit need be written

if generics are used to pass in the timing information.

7 For the remainder of this thesis, all VHDL keywords will be placed in bold letters.

entity multiplexor is
port ( a,b : in bit;

select line : in bit;
output : out bit

end multiplexor;



3.2.1.2. DesignBody

The function of the design entity is specified in an architecture. A sample

architecture for the multiplexor is shown in Figure 3-2. VHDL supports three basic styles of

functional description: behavioral, dataflow, and structural. Behavioral descriptions are the

most abstract. They specify the output response to the inputs in algorithmic terms. Usually,

little structure is implied. A dataflow description describes a function in terms of

concurrently executing register transfer level (RTL) statements (Figure 3-2 is a dataflow

description). It is less abstract than a behavioral description. The leaEt abstract description

style is structural. This style consists of interconnected components. Each component is

instantiated in the architecture and wired together using signals. An architectural body is

not limited to any one description style. Any mixture of the aforementioned styles may be

utilized within the same architecture body.

architecture dataflow of multiplexor is
begin

output <= a when select_line = 'O' else
b;

end dataflow;

Figure 3-2, Sample Architecture

The optional configuration specification binds a design body to an instantiated

component. It provides the capability to bind an architectural body's components to similar,

but not identical, design entities. For example, if three components are required which are

functionally identical but differ in their timing, a configuration can be used to specify the

timing data for each component.

3.2.2. The Testbench

A VHDL testbench is the highest level entity in a given simulation. It instantiates a

design and drives the inputs in some prescribed manner. It also can perform sophisticated

error checking because it has the power of a general purpose programming language at its

disposal (see section 4.6). Using a testbench to test a design eliminates simulator dependence

since no proprietary simulator command language is required.

3.2.3. Packages

Packages provide the VHDL modeler with a convenient method to group constants,

types, signals, and subprograms so as to make them visible to multiple design units. A



package is composed of two parts, the package declaration and an optional package body. The

package declaration contains the constant, type, and subprogram declarations, while the

package body assigns values to the constants and fleshes out the subprograms. VHDL does

not require every package to have a body. However, changes to the package body do not

require design units referencing the package to be recompiled, whereas changes to the

package declaration require recompilation of all design units referencing the package (see

section 5.4).

3.2.4. Data Objects

To fulfill its function as a modeling language, VHDL contains three standard data

objects: signals, variables, and constants. The fundamental data object in VHDL is the

signal. Each signal is represented conceptually as a set of time-value pairs. The signal

assumes the value in the pair at the simulation time specified. Each time a signal is

assigned a value, a new time-value pair is added to the list 8 . Signals can be scheduled to

take on a value after a given amount of time, such as in the statement

signal example 1: signal clock : bit;
clock <= not clock after 10 ns;

They can also be assigned conditionally, such as in the following example

signal example 1: signal output : bit;
output <= '1' when clock = 'O' else 'O';

Signals are also used to wire together components in a structural description.

As with most programming languages, VHDL provides the capability to declare and

use variables. However, their use is much more restricted than that of signals because of the

concurrent nature of VHDL . Variables can only be used within subprograms or processes to

prevent them from being visible to multiple, concurrently executing processes.

variable example : variable index : integer;
index := index + 1;

VHDL provides the ability to define and use constants. The constant must be

assigned a value when it is declared, except for deferred constants in a package declaration.

8 This is not always true. The addition of a new time-value pair depends on what timing model,
transport or inertial, was used and on the present time-value list. The meanings of each model can
be found in Chapter 5 [Lip89].



constant example : constant clock_period : time := 100 ns;

3.3. Description Styles Revisited

This section discusses some of the constructs within VHDL which facilitate the

different modeling styles (i.e. behavioral, dataflow, and structural).

3.3.1. Processes

The process is VHDL's fundamental behavioral modeling construct as well as the

fundamental unit of concurrency. All VHDL expressions have a corresponding process. A

process is composed of three parts : the process declaration, an optional sensitivity list, and

the process body. Note that if the sensitivity list is omitted, then at least one wait statement

must be included 9. Without either, the process will never suspend execution and thereby tie

up the simulation. A single process may not have both a sensitivity list and a wait statement.

The statements within a process execute sequentially within one unit of delta time, while all

the processes in a given simulation execute concurrently.

A process is executed when one of three conditions is met. First, all processes are

executed once up to the first wait statement (or entirely if a sensitivity list is included) when

the simulation begins. Secondly, a process is executed when a signal in its sensitivity list

changes. Finally, process execution resumes when the condition attached to a wait statement

is met.

The following example shows a 2 to 1 synchronous multiplexor modeled using two

different styles of processes, one with a sensitivity list and one with a wait statement.

package mux_package is
subtype mux_type is bit;
subtype control type is boolean;

constant clock_active : control_type;
constant select_a : control_type;

end muxpackage;

package body mux_package is
constant clock_active : controltype := true;
constant select_a : control_type := true;

end mux_package;

use work.mux_package. all;
entity two to one mux is

9 This is not syntactically required. The analyzer will only give a warning that the process has neither
a sensitivity list nor a wait statement.



generic ( output_delay : TIME := 10 ns);
port ( a,b : in mux type;

select_line : in control_type;
clock : in control type;
output : out muxtype

end two to one mux;

Architecture 1 Architecture 2
architecture two to one mux behavior of architecture two to one mux behavior of

twoto one _mux two to one mux is
begin - - begin

behavior : process (a,b,select_line,clock) behavior : process
begin begin

if clock = clock active and clock'event then wait until clock - clock active and
if select line-- select a then clock'event;

output S- a after outputdelay; if select line - select a then
else output <- a after output_delay;

output <- b after output_delay; else
end if; output <- b after output_delay;

end if; end if;
end process; end process;

end two_toone mux_behavior; end two to one_muxbehavior;

The package declaration contains two subtypes which abstract away the mux's input,

output and select line types. This allows smooth conversion from high level modeling, where

booleans and integers reign, to low level modeling where bits are prevalent. The two

architectures given represent the two basic process styles : sensitivity lists and wait

statement. Both architectures assign a new value to the output only on a rising clock edge. In

architecture 1, the first if statement is executed each time signals a, b, select, or clock are

updated but doesn't become true until a rising clock edge. The edge is detected using the

predefined attribute 'event. This attribute returns True when an event has just occurred on

the attributed signal and False otherwise. In architecture 2, the process suspends at the wait

statement until a clock rising edge. It then executes and suspends again at the wait

statement. These two examples demonstrate two different methods of achieving the same

result, a situation which occurs often in VHDL.

3.3.2. Signal Assignments

Signals may also be assigned values outside of processes 1 0. All forms of signal

assignment outside of processes are concurrent in nature. For example, the following two

assignments occur simultaneously :

10 A duality, discussed in section 3.3.4, exists between signal assignments inside and outside of
processes.



VHDL also offers the modeler selected signal assignments, which are essentially case

statements, and conditional signal assignments, which are essentially cascaded if-then-

else statements (section 3.2.1.2 contains an example).

3.3.3. Blocks

Blocks are used in VHDL to organize groups of concurrent statements within an

architectural body. The main advantage of blocks is that the block declaration can include a

guard expression. This expression can be used to control signal assignments within the

block11. Including a guard expression has the effect of creating an implicit Boolean signal

within that block called "guard" which is True when the guard expression evaluates to True

and False otherwise. Signal assignments within the block can be made conditional on the

guard signal by using the reserved word guard. Figure 3-3 illustrates this technique. The

signal test is only assigned the value '0' on the rising edge of the clock because it is a guarded

assignment. As we will see in chapter 5, blocks can be used to model state machines.

Figure 3-3, Block Example

3.3.4. Duality

VHDL has a very strong duality between concurrent and sequentially executed

statements. If an action is implemented using concurrent signal assignments, there is an

equivalent way to do the same thing using a process statement. The following example

demonstrates this duality:

11 Blocks can also have ports and generics just like entities. This is to ensure duality, a concept
discussed in the next section.

architecture block example of block_example is
signal test : bit;

begin
example : block (clock = '1' and clock'event)
begin
test <= guarded '0' after 100 ns;

end block;
end block_example;



Concurrent Sequential
process (input)
begin
if input = '1' then

output <= true when input = '1' else output <= true;
false; else

output <= false;
end if;

Send process;

VHDL also allows concurrent as well as sequential subprogram calls. Subprogram calls

appearing within a process are sequential while those outside of any process are concurrent.

An exact duality also exists between component instantiations and blocks. An

instance of a component inside an architecture can be replaced with a block statement with

the same ports and generics as the component.



4. Motivation for Modeling

With all the hoopla surrounding VHDL, many people are asking "Why should I use

it?" This chapter attempts to answer that question. It shows how VHDL can be used to shorten

the design cycle and improve the quality of designs. In a few short years, VHDL will become

ubiquitous in the digital design realm.

It is important to note that at the present time VHDL is not universally applicable to

digital designs. Most of the tools are still too immature and standard model availability is

still too limited for VHDL to be used for board-level design. However, tools are immediately

available for ASIC design.

The first section discusses how to apply top-down design with VHDL. Subsequent

sections cover the advantages VHDL has over gate-level design. These relate to design and

description, concurrent design, complexity, and verification. The final two sections discuss

when not to use VHDL and caveats for its use.

4.1. Top-Down Design

One of the great powers of VHDL is that it encourages true top-down design1 2. This

methodology specifies that a design begins at a very abstract, behavioral level and is

gradually worked down to a structural (gate) level. Each successive abstraction level is

tested against the previous higher level for equivalence. Figure 4-1 displays the top-down

method symbolically [Pain91]. Each lower level in the pyramid represents a more complex,

less abstract step in the design cycle.

12 This is not to say that low-level design decisions can be completely deferred until the end. True top-
down design typically means designing from the middle-out.



Top Down Design Pyramid

Specification and Requirements

Behavioral Modeling

Register Transfer Level

Gate Level

Layout and Back-Annotation

CHIP

Figure 4-1, Top-Down Design Methodology

A true top-down design methodology can greatly simplify ASIC design. To see this,

let's examine a typical design cycle with and without VHDL. Figure 4-2 shows the

traditional design cycle (no VHDL). In general, the first task is to functionally specify the

system - what inputs the design has and the finctions it performs on those inputs to produce

the output. A testing strategy is also developed at this point. The design is then parceled out to

the members of the design team who begin drawing schematics, writing Boolean equations,

and performing various other low-level design tasks. This is equivalent to skipping the

second level of the pyramid. Concurrently, test vectors are generated. As each partition is

completed, it is tested and revised, if necessary. When all partitions are complete, they are

assembled and tested. At this point, the design, unless it is very small, will probably not

work. Several (possibly extensive) revisions must be made before the design is complete and

ready for placement, routing, and final simulation. If major architectural changes must be

made the design will require extensive modifications. Thus, this method requires that a

system be well-specified before actual design takes place to avoid compromising

performance and/or functionality later in the design cycle.

Level 1

Level 2

Level 3

Level 4

Level 5
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Figure 4-2, Conventional Design

Figure 4-3 shows the same design process using VHDL. This process follows the top-

down methodology much more closely than does the conventional approach. The first two

steps are again system specification- testing strategy and high-level partitioning. The third

step when using VHDL is to develop behavioral models of the high-level components. These

models are verified separately, "assembled" and tested with the VHDL testbench. Revisions

at this level are inexpensive since even a complete redesign involves rewriting a relatively

small amount of code. High-level architectural trade-offs can be made at this point. Once

this initial model is complete, it can serve as the reference for subsequent, more structural

models. Using VHDL at this level has the further advantage of allowing incremental testing

of components. For example, if one team finishes their section before the others, their section

can be substituted into the model in place of the behavioral model and tested by changing



configurations. The use of VHDL causes only minor revisions with respect to the level of

abstraction at which they exist. In other words, the most radical modifications to the design,

such as architectural tradeoffs, are made at the higher levels of abstraction where they are

more tractable.

Figure 4-3, Top-Down Design with VHDL-

As Figure 4-3 further indicates, test development can occur simultaneously with

model development. A VHDL testbench (see Section 4.6) is a very flexible and powerful

means to test a component. This testbench, once completed, can be used to test models at every

level of abstraction with little modification.

VHDLýench



The light grey line from the bottom to the top in Figure 4-3 represents respecification

of the system after the gate-level models have been completed. This could happen if non-

synthesizeable behavioral models are written (such those using access types). However,

writing realistic behavioral models avoids costly redesign.

4.2. Synthesis

VHDL synthesis is perhaps the most exciting aspect of VHDL. Curront synthesis tools

are able to directly synthesize register-transfer level VHDL into a gate-level netlist.

Synthesis can be an enormous time-saver. At the time of this writing, the best synthesis tools

are equivalent to a digital designer with 14-15 years experience [Bohm91]. This makes them

suitable for nearly any design.

VHDL synthesis also provides the ability to use VHDL throughout the entire design

process, from concept to silicon. Even without synthesis capability, though, VHDL would still

be very useful. Its use would cease at the RTL level where conventional design techniques

would be more efficient. Synthesis avoids the need for this break in the top-down design

methodology.

4.3. Design and Description in One

Another feature of VHDL is that it is actually two languages in one: a design

language and a description language [Wax89]. Thus, it is useful for designing, testing, and

documentation. A well written VHDL model is, in fact, self-documenting. Unlike a

schematic diagram, which is practically useless in determining a system's overall

function, a VHDL model (with accompanying testbench) can be read by humans and

simulated by a machine, thereby forming a bridge between function and representation.

As a description language, VHDL is impressive in its ability to convey a designers

intent. The downside to this is that VHDL is very verbose (like Ada). However using VHDL

becomes second nature after a couple of months and many tools are available which help the

designer cope with the verbosity13 .

13 For example, entity-architecture-configuration templates can be used to avoid retyping.



4.4. Concurrent Design

VHDL modeling, due to the properties of the design entity; cah proceed concurrently

with testing. Furthermore, different designers can work on separate subsections

independently and expect their various components to work together. All that is required is

agreement on interfaces and function.

4.5. Complexity

VHDL provides many features for managing design complexity. First, VHDL

supports design at. all levels of abstraction, from the algorithmic level to the gate level14 .

Thus, when a design is in its infancy, its function can be specified as an algorithm which

operates on abstract data types such as records, arrays, and integers. As the design matures,

the abstract components can be replaced with models which operate on bits and bit vectors and

specify their behavior using concurrent signal assignments.

Another complexity management feature is the configuration statement. Using the

power of the configuration statement, one of several models can be selected for testing. Also,

configurations allow the same component to be wired in with different generics. An example

of this is a design which requires many NAND gates, some of which have different timing

than the others. Configurations also allow the re-wiring of a components ports. This could be

used in fault-testing, for example, to determine the affect of wiring a pin to ground.

4.6. Verification

VHDL makes the power of a complete, general purpose programming language

available to test a design. It allows the designer to use complicated dynamic test structures

and sophisticated hardware handshaking to test a design. VHDL provides these capabilities

in a simulator independent manner. While some simulator command languages have the

previously mentioned capabilities, none are portable across simulators. A VHDL testbench

is guaranteed1 5 to run on any simulator which supports VHDL since VHDL is non-

proprietary.

14 Transistor-level modeling can be done [RW 891, but it is much more difficult because VHDL has no
direct constructs to support analog behavior.

15 The TEXTIO package is an exception to this rule since it is ambiguously defined in the LRM.
Portability may not be perfect if this package is used.



Another VHDL verification advantage is that functional test vectors can be derived

directly from the testbench with little or no modification. VHDL practically elirminates the

problem with ASICs passing foundry vectors but failing to work in the system.

Because VHDL is a DoD and IEEE standard, designs produced today using VHDL

can still be simulated five years in the future, even if the original tool is no longer available.

Thus, effort expended in VHDL modeling is never wasted because the standard insulates the

modeler from company failures and tool obsolescence. Furthermore, VHDL models will

accelerate re-implementation of a design at a later time.

4.7. When not to Use VHDL

Though VHDL can be extraordinarily useful, there are situations where it should not

be used (at least currently). One such instance is in designs with mixed analog and digital

hardware. VHDL simply cannot adequately model the analog section, though some people

claim it can. VHDL could be used to model the digital section (with all the benefits thereof).

However, a full system simulation would be very difficult since a link between the analog

simulator and VHDL would have to be established (via files, pipes, etc.). Mixed analog-

digital designs complicate simulation and verification.

Another situation in which the advantages of using VHDL are diminished is in

incrementally updating a previous design which didn't use VHDL. In this case, a VHDL

model of the entire design would have to be written and verified from scratch. If the fix is

minor, VHDL probably shouldn't be used. However, if the design might be re-targeted to a

different technology at a later date, developing a VHDL model and testbench for it would not

be in vain.

4.8. Caveats

Throughout this chapter I have attempted to explain the overwhelming advantages of

using VHDL for digital design. This final section lists some warnings about using VHDL.

The strongest caveat deals with transitioning a design from the behavioral level

to the structural level. The smoothness of this process depends in part on the port

types of the entities in the original behavioral model. Types which are easily

translated to bit representations make for a smoother transition. Another danger

lies with non-buildable constructs. Writing unbuildable code in VHDL is easy,



so care must be taken to avoid constructs with no hardware analog, such as access

types (access types are pointers).

Though VHDL possesses tremendous power for testing, it cannot test all designs.

For example, if a design requires a large number of test vectors which can only be

produced using a random algorithm, VHDL cannot do the job. In this case, a C

language program could be used to write test vectors to a text file which the VHDL

testbench could then read in and apply1 6.

Some people may look upon VHDL as the death blow to hardware engineers. They

may point out that developing VHDL models is the task of software engineers.

They could not be more wrong. Though software engineering principles are

necessary in managing model development, coding in VHDL is much like

designing hardware.

The need for careful planning at the inception of a design has not been

eliminated. With excellent synthesis tools available, it is tempting to begin

"playing" with the tool immediately after a design has begun. This is

unproductive. A thorough understanding of aggregate hardware requirements is

necessary before synthesis should be attempted.

16 This is what I had to do with th.-. scoreboard VHDL model.



5. Behavioral Modeling Considerations

The purpose of this chapter is to present issues related to abstract behavioral modeling

in VHDL. An abstract behavioral model is one in which very little implementation specific

information is used. For example, records and integers are used instead of bits and

bit_vectors. The advantage of abstract modeling is that such things as data path width and

address spaces are deferred until the implementation phase of the design. The disadvantage

is that, before the model can be converted to a physical behavioral model, the entity

declarations must be changed. This can be difficult and time-consuming in a concurrent

design environment. Yet, for an algorithm as complicated as the scoreboard's, the

advantage of quicker and easier functional verification outweighs the need to rewrite entity

declarations.

The first section discusses the various methods for modeling state machines. State

machine modeling is important because the scoreboard model contains many state

machines, as will most VHDL models. The second section covers high-level modeling

considerations such as synchronous designs and timing. The third section discusses how to

use VHDL's compilation dependencies. The fourth section discusses the use of resolution

functions in behavioral modeling, while the final section talks about the use of subprograms.

5.1. State Machine Modeling

The state machine is one of the basic components in almost every digital design. As

such, the need will often arise to model state machines in VHDL. This section discusses four.

methods for modeling state machines. The unifying example is of the simple state machine

shown in Figure 5-1.



1 = '1'

= '1'

control = '0'

control = '0'

Figure 5-1, Example State Diagram

Figure 5-2 contains the package used by all the examples. It abstracts away the input

and output types and provides constants for their active states. With this method, it is very

easy to change from, for example, active high to active low logic. Notice that the state type

includes four states but the example state machine only requires three states. This disparity

will be used later on to demonstrate how the four methods handle trap states.



Figure 5-2, State Machine Package

The entity declaration for the state machine is contained in Figure 5-3 below. The two

generics, output_delay and statedelay, are used in adding delay to signal assignments.

The control port is used to control the state transitions, while the reset port sets the state to sO

when active. The clock controls the transitions, and out1 and out2 are the two outputs.

ENTITY state machine IS
GENERIC (

output_delay : TIME := 1 ns;
state_delay : TIME := 1 ns

PORT (
control,reset : IN control type;
clock : IN control type;
outl,out2 : OUT output type

END state machine;

Figure 5-3, State Machine Entity Declaration

Perhaps the best method for modeling state machines in VHDL is with a CASE

statement on a state signal within a process. A variable, typically called next_state, is

assigned based on the current state and the inputs. The state signal is assigned at the end of

the process. Figure 5-4 shows an example of a state machine with a CASE statement.

PACKAGE statemachine package IS
TYPE state_type IS (s0,sl,s2,s3);
SUBTYPE control_type IS BIT;
SUBTYPE output_type IS BIT;

CONSTANT clock active : control type;
CONSTANT control_active : control_type;
CONSTANT output active : output type;

END state_machine_package;

PACKAGE BODY state_machine_package IS

CONSTANT clockactive : controltype := '1';
CONSTANT controlactive : control_type :- '1';
CONSTANT outputactive : outputtype := '1';

END state machine package;



Figure 5-4, CASE Statement Example

The first action of the process is to check for reset. As written, the reset is

asynchronous. It can be made synchronous by making the first IF clause sensitive to the

clock and then checking for reset. If reset is '1', the next state is set to sO, otherwise the normal

state transition checks are performed. An IF clause within each WHEN clause controls

transition to the next state. If a state transition condition is met, the next state is assigned.

Nothing needs to be done if no transition occurs because the outputs retain the last value

assigned to them. The output values (shown within the circles in Figure 5-1) are also set

ARCHITECTURE best OF state machine IS
SIGNAL state : state_type;

BEGIN
machine : PROCESS (clock,reset)
VARIABLE next_state : state_type;
BEGIN
IF reset = control active THEN

next state := sO;
ELSIF clock = clockactive AND clock'EVENT THEN
CASE state IS

WHEN sO =>
out1 <= NOT outputactive AFTER output delay;
out2 <= NOT output active AFTER output_delay;
IF control = control active THEN

next state := sl;
out1 <= output active AFTER output delay;
out2 <= NOT outputactive AFTER output_delay;

END IF;

WHEN sl =>
IF control = control active THEN

next state := s2;
out1 <= NOT output active AFTER output_delay;
out2 <= output active AFTER output delay;

END IF;

WHEN s2 =>
IF control = control active THEN

nextstate := sl;
out1 <= output_active AFTER output_delay;
out2 <= NOT output active AFTER output delay;

ELSE
next state := sO;
out1 <= NOT output active AFTER outputdelay;
out2 <= NOT output active AFTER output_delay;

END IF;

WHEN OTHERS =>
next state := sO;

END CASE;

state <= next_state AFTER statedelay;

END IF;
END PROCESS;

END best;



within this IF clause. A WHEN clause is included for all valid states. The final WHEN

clause ensures that any invalid states (trap states) cause the next state to be sO. The final

signal assignment assigns the next_state variable to the state signal.

A variation on the CASE method is contained in Figure 5-5. It splits the state machine

into synchronous and asynchronous parts. The synchronous process assigns the next_state

signal to the state signal on a rising clock edge. The asynchronous process takes care of

output and next state assignments. The main difference between Figure 5-4 and Figure 5-5 is

that the output assignments occur asynchronously in Figure 5-5. The functionality is exactly

the same otherwise.



Figure 5-5, CASE Variation

There are many advantages to the CASE method (both variations). First, the CASE

method is very clear. It is not difficult to recognize the correspondence between the VHDL in

Figures 5-4 and 5-5 and the state diagram in Figure 5-1. A second advantage is that it is not

limited to simple state machines. It can handle any number of states (though the CASE

statement becomes unwieldy with too many states) and any number of inputs and outputs.

The later methods do not share this advantage. Also, with the CASE method it is very easy to

-q

ARCHITECTURE also_good OF statemachine IS

SIGNAL state,next_state : state type;

BEGIN

asynchronous : PROCESS (state,control)
BEGIN
CASE state IS

WHEN s0 =>
out1 <= NOT output_active AFTER output_delay;
out2 <= NOT output_active AFTER output_delay;

IF control = control active THEN
next state <= sl;

END IF;

WHEN sl =>
out1 <= output_active AFTER output delay;
out2 <= NOT output_active AFTER output delay;

IF control = control active THEN
next state <= s2;

END IF;

WHEN s2 '=>
out1 <= NOT output active AFTER output delay;
out2 <= output_active AFTER outputdelay;

IF control = control active THEN
next state <= sl;

ELSE
next state <= sO;

END IF;

WHEN OTHERS =>
next state <= sO;

END CASE;
END PROCESS;

synchronous : PROCESS (clock,reset)
BEGIN
IF reset = control active THEN

state <= sO AFTER statedelay;
ELSIF clock = control active AND clock'EVENT THEN

state <= nextstate AFTER statedelay;
END IF;
END PROCESS;

END also good;



add either synchronous or asynchronous reset capability and trap state handling. Finally,

the CASE method is directly synthesizeable by VHDL synthesis tools such as the Synopsys

Design Compiler@ [Syn90].

A second method for modeling state machines was presented by Armstrong in his

book [Arm87]. It uses nested BLOCKs and guarded signal assignments. Figure 5-6 contains

an example. The state signal is declared as a REGISTER. Registered signals retain the last

value assigned to them when all their drivers have been disconnected (through BLOCK

guards evaluating to False)17 . The outer BLOCK is guarded on the rising edge of the clock,

while all inner BLOCKs are guarded by the Boolean AND of the outer guard and their

respective states. The outputs are assigned based on the value of the state signal.

17 For more information, see Chapter 5 of VHDL: Hardware Description and Design.
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Figure 5-6, Nested Block Example

The advantages of this method are that, once again, the correspondence between the

VHDL and the state diagram is good. Adding a synchronous reset is also simple. The

disadvantages of this method are that a BLOCK must be written for each possible state and

each output must have its own selected or conditional assignment. Thus, this method

becomes unwieldy for even medium size state machines. One final disadvantage is that the

author was unable to get it to work. In sum, this method should be avoided.

ARCHITECTURE block state machine OF statemachine IS

TYPE state_array type IS ARRAY (NATURAL RANGE <>) OF state_type;

FUNCTION state_resolver (statearray : IN state_array_type)
RETURN state_type IS
VARIABLE resolvedvalue : state_type;
BEGIN
FOR i IN state_array'RANGE LOOP

resolved_value := state_array(i);
END LOOP;
RETURN resolvedvalue;

END;

SIGNAL state register : state_resolver state_type REGISTER;

BEGIN

synchronous : BLOCK (clock = clock_active AND clock'EVENT)
BEGIN

state0 : BLOCK (((state_register = sO) AND guard)
OR (reset = controlactive))

BEGIN
state_register <= guarded sl AFTER state_delay

WHEN control = control active ELSE sO;
END BLOCK state0;

statel : BLOCK ((state_register = sl) AND guard)
BEGIN

state register <= guarded s2 AFTER state delay
WHEN control = control active ELSE sl;

END BLOCK statel;

state2 : BLOCK ((state_register = s2) AND guard)
BEGIN

state register <= guarded sl AFTER state_delay
WHEN control = control_active ELSE sO AFTER state_delay;

END BLOCK state2;

out1 <= output active AFTER output_delay
WHEN state_register = sl ELSE NOT output_active;

out2 <= output active AFTER output delay
WHEN state_register = s2 ELSE NOT output_active;

END BLOCK synchronous;
END blockstate machine;



One final method for implementing state machines is through a conditional signal

assignment statement. Figure 5-7 contains an example. The state transitions and output

assignments are placed within WHEN clauses. Trap states are handled by the final WHEN

clause. Sate assignment is done inside a synchronous PROCESS.

Figure 5-7, Conditional Signal Assignment Example

The conditional signal assignment method suffers from a lack of clarity. By

duality, Figure 5-7 could be replaced with an equivalent PROCESS closely resembling that of

the CASE method in Figure 5-4. Thus, in general this method should be avoided and the

CASE method used instead.

5.2. Synchronous designs

When constructing abstract behavioral models, it is critical that fundamental

assumptions about the underlying hardware not be violated. One such assumption is

synchronicity. Just because the model is abstract doesn't mean that this basic notion of

ARCHITECTURE ugly OF state machine IS
SIGNAL state,next_state : state type;

BEGIN
nextstate <= sO WHEN ((reset = controlactive) OR

((control = NOT control active)
AND (state = s2))) ELSE

sl WHEN (((state = sO) OR (state = s2))
AND (control = control active)) ELSE

s2 WHEN ((state = sl)
AND (control = control_active)) ELSE

sO;

out1 <= output_active AFTER output delay
WHEN state = sl ELSE NOT output_active;

out2 <= output_active AFTER output delay
WHEN state = s2 ELSE NOT output_active;

synchronous : PROCESS(clock)
BEGIN
IF clock = control active AND clock'EVENT THEN

state <= next_state AFTER state_delay;
END IF;

END PROCESS;

END ugly;



digital hardware can be violated. Thus, it is good practice to make all processes sensitive to a

clock edge1 8 unless that process is modeling a section of combinational logic.

A side effect of constructing synchronous models is that reasonably accurate

performance estimates can be obtained very early in the design process. The performance

information is derived from the number of clock cycles the model requires to perform its

functions. The information is accurate only if reasonable assumptions about underlying

hardware operations are made. For example, it is unreasonable to assume that an integer

multiply will be completed within 40 ns, but it is reasonable to assume that a memory read

will require two clock cycles. This knowledge can be built into the model via a state machine

which asserts an address and then waits one clock cycle, for example. Such performance

estimates can then be used to assist in the specification of related components.

5.3. Timing

Realistic timing does not belong in an abstract model since such information cannot

be extracted from the design at this stage. However, dummy delays are useful for making

signal transitions more visible. Without them, all transitions occur one delta delay after an

assignment, thereby making waveform displays more difficult to read. Readability is thus

enhanced by adding a delay to all signal assignments. Such a delay can be an integral

division of the clock period, for example.

5.4. Compilation Dependencies

VHDL's compilation dependencies, illustrated in Figure 5-8, can be used to the

designer's advantage. Modifications made to higher level design units require

recompilation of all lower level design units which reference it. VHDL allows separate

compilation of package headers and bodies. Modifications made to the package body only

require that the body be recompiled. Modification of the package header requires that all

design units referencing that package be recompiled. Thus, it is good practice to separate the

package body and header. The one exception is that modifying types or subtypes will always

cause the package header to need recompilation since these declarations cannot be deferred

to the package body.

18 Of course, if asynchronous hardware is being modeled this should not be done.



Package Body

Figure 5-8, Compilation Dependencies [VHDL90]

The organization of packages can drastically affect recompilation. For example, if

one package is used to define all types, constants, and subprograms, then nearly every

design unit will have to reference the package. It is better to organize packages by function,

i.e. place related constants, types, and subprograms together in the same package. This way,

only a few design units will reference each package, thereby reducing recompilation if the

package headers need to be modified.

5.5. Resolution functions

Resolution functions can be very useful in abstract behavioral modeling. However,

their use is fundamentally limited by their physical interpretation of resolving the value of

signals with more than one driver. In the case of the logic resolution function included with

all VHDL simulators, this interpretation is intuitive since all digital designers know that,

for example, a high-impedance, or 'Z', and a '1' result in a '1', and a '1' and a '0' result in an

unknown condition, or '. What if, however, a record type signal requires multiple drivers?

A resolution function can be written for a record type, since any type may be resolved. This

can be done by adding a Boolean field to the record called "high_z" (or similar). The

resolution function can then be written to ignore all drivers whose high_z field equals True.

Similarly, a highz value can be added to enumerated types and resolution functions written

to ignore all such values. The only problem is deciding what value to assign when more than

one non-high_z driver exists (this is usually an error which could be flagged by an ASSERT

statement).



The multiple driver problem usually arises in abstract behavioral modeling of data

buses. An example should make things clearer. When constructing a model for a memory,

it is natural to make the data port of mode inout. If this is done, then the port type must be

resolved since both the memory and whatever is trying to write to the memory will be driving

the port. If the memory stores abstract data such as records or enumerated types, a resolution

function must be written in accordance with the guidelines mentioned in the previous

paragraph. Another, somewhat simpler solution is to add explicit input and output ports to the

memory. No resolution function is required, but the model is less clean.

But what about the address input to the memory ? Oftentimes, more than one signal

will need to assert an address. Should a port be added for every such signal? To avoid port

proliferation in this case, a resolution function should be written. This solution makes sense

since, in general, all addresses in a given model will be of the same base type (i.e. integer).

A high-impedance address can be chosen (such as -1 or integerright) and the resolution

function designed to ignore all drivers of that value. An example of such a function is given

in section 7.2.1.2.

5.6. Subprograms

Subprograms are a very useful abstraction mechanism in behavioral modeling.

They can be used to perform complex functions for which a hardware method does not yet

exist. For example, in the initial scoreboard model, voting is done via multiple procedures

and functions. Constructing the voter in this manner allowed the modeling to proceed

quicker. Furthermore, if the subprograms are placed in a package, modifying them will

require a smaller recompilation penalty than modifying architectures.



6. Scoreboard Functional Description

This chapter contains the complete functional description for the scoreboard. The

first section covers the SERP and CT formats. The second section discusses the overall

design goal, which is to optimize the common case. The third section discusses in depth the

two major SERP processing phases. The final two sections cover fault conditions and the

other functions the scoreboard must perform.

6.1. SERP Format

Each SERP entry has the

each entry 32 bits in length.

don't cares

Destination VID

form given in Figure 6-1. Each field is 8 bits wide, making

Exchange Class

user byte

Figure 6-1, SERP Entry

The first byte contains the OBNE and IBNF bits for that PE. The rest of the bits are

unused. The second byte contains the exchange class. A breakout of the bits in this field can

be found in section 6.3.3.2. The third byte contains the destination VID for the message (if

any), while the fourth byte is user defined. The exchange class, destination VID, and user

byte are considered invalid by the scoreboard unless the OBNE bit is set.

6.2. CT Format

The form for a CT entry is shown in Figure 6-2. Each field is eight bits wide and the

entire entry consumes 8 bytes.



CTEntry

VID number

redundancy
level

presence bits

timeout value

PID 0

PID 1

PID 2

PID 3

7 54

a'•= NEnumber

Figure 6-2, Configuration Table Entry

The first entry is the VID number, which can take on any value between 0 and 25519.

The second field contains the redundancy level. The redundancy level can be either zero

(for a non-active VID), one, three, or four. The third entry contains the presence bits. The

form for the presence bits is shown in Figure 6-3. A presence bit is set when the VID has a

member on the corresponding NE. The fourth entry is the value to use when calculating

timeouts on the VID (how this entry is used is explained in section 6.3.1.4). The next one to

four bytes contain the PIDs of all the VID members. The form of the PID is shown to the right

of Figure 6-2. It is a simple encoding of an (NE,PE) pair - three bits for the NE and five for

the PE. This allows a theoretical maximum of 8 NEs with 32 PEs each, more than enough for

any realistic configuration.

x x x NE4 NE 3 NE2 NE 1 NE O

Figure 6-3, Format of the Presence Bits

19 Currently, the entire CT is composed of 256 entries (one for each possible VID). This could easily be
reduced to save memory.

PE number ýýI



An example CT entry for a triplex is shown in Figure 6-4. The redundancy level

field is Binary"011", or three, and the presence bits reflect the fact that the VID has members

on NE's zero, two, and four. The fourth entry is the timeout value, while the last three entries

are the PIDs of the members.

CT Entry
Redundancy Level

Presence Bits

1 o I 1 0 1
member 0

member 1

member 2

Figure 6-4, Example Configuration Table Entry

The entire CT, composed of 256 CT entries, is stored as a single block in memory.

The entry for a given VID can be retrieved by multiplying the VID number by eight (or

shifting it three places to the left) and using offsets 0 -7 to retrieve specific fields.

6.3. Goal: Optimize The Common Case

With most digital hardware, speed is of the essence. The scoreboard is no exception.

In this case, speed can mean the difference between a viable real-time fault-tolerant parallel

processor and a nifty laboratory prototype. This is because message passing latency is

critical to real-time systems such as the FTPP. The scoreboard has a dominant affect on the

latency of inter-processor messages on the FTPP.

The scoreboard SERP processing latency is the time span between the NE's global

controller signalling the scoreboard to begin processing a new SERP and detection of the

first ready message in the current SERP (assuming a valid message exists within that

SERP). This latency limits the iteration rate of periodic tasks on the FTPP.

The scoreboard is designed to optimize SERP processing as much as possible. The two

most common actions in SERP processing are voting and checking timeouts. Voting is a



common operation since all information in the SERP must be voted before it can be used by

the scoreboard. However, the commonality of checking timeouts is not so obvious.

Consider a triplex which desires to send a message. Because the PE's composing the

triplex are only loosely synchronized, one of them will be slightly behind the other two (but

still within a bounded skew, as per the synchronization requirement of Byzantine

Resilience). The lagging PE will set its OBNE bit after the other two. It is probable that, since

a SERP cycle is shorter than the maximum skew, the scoreboard will see two asserted OBNE

bits and one unasserted one. Though the lagging PE is not faulty, a timeout will have to be set

because unanimity does not exist. If the PE responds before the timeout expires, the PE

remains non-faulty and synchronized with the remaining PEs. If the timeout expires, the

faulty PE is ignored. IBNF timeouts are handled in a similar fashion.

6.4. SERP Processing

In processing the SERP, the scoreboard passes through two phases. First each VID's

SERP entries are voted and written into an intermediate storage called the voted SERP

memory. Then the voted SERP is scanned for valid messages. This is the parallelization of

a sequential algorithm presented in the next paragraph.

A sequential algorithm for processing the SERP is shown in Figure 6-5 [Mor91]. The

algorithm assumes the existence of a look-up table which translates a VID number to its

corresponding PIDs within the SERP. This table can be generated from the CT. The

algorithm begins by reading the OBNE bits of the first VID and voting them. If the result is

unanimous (or majority plus timeout), it votes the destination VID field2 0, pulls its entries

out of the SERP, and votes their IBNF bits. If the IBNF result is unanimous (or majority plus

timeout), the exchange class and user bytes are voted and the message sent.

20 For the sake of brevity, Ill ignore the special case of broadcasts. The algorithm is essentially the
same without them.
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Figure 6-5, Sequential Scoreboard Algorithm

This algorithm, while ideal for a computer program, has problems when translated to

hardware. The first problem is voter utilization. In the algorithm as presented, a hardware

voter would be idle while timeouts were being checked. It makes sense to pipeline the voting

such that the OBNE and IBNF bits are voted first and the other SERP fields are voted while

timeouts are being checked.

The existing scoreboard algorithm reflects the pipelining idea. It uses on-board look-

up tables extensively for efficient indirection. The penalty, besides additional memory, is

longer reset and CT update times since the look-up tables must be regenerated after these

operations. The remainder of this chapter functionally describes the scoreboard. Chapter 7



discusses the execution of these functions in greater detail. A flowchart representation of the

entire algorithm can be found in Appendix 10.1.

6.4.1. Voting

Because of the special nature of the scoreboard, it cannot use a generic, four way, bit

for bit majority voter. This is unfortunate since many such designs already exist. The

scoreboard voter varies from conventional designs in the following ways:

( The voter has different rules for determining the majority result based on the

redundancy level of the input and the data being voted.

2 The voter is not masked in the normal sense.

@ Syndrome generation changes based on the redundancy level of the input and on

the location of the VID's members.

6.4.1.1. Ma~ority Rules

The scoreboard uses the following rules for determining if a majority of the inputs

agree :

Redundancy Level Type of Data Majority
simplex OBNE 1 of 1
simplex IBNF 0 of 1
simplex data bit l of 1
triplex: OBNE 2 of 3
triplex IBNF 2 of 3
triplex data bit 2 of 3
quad OBNE 3 of 4
quad IBNF 3 of 4
quad data bit 2 of 4*

3 of 4 is also a valid majority for a quad.

The first column specifies the redundancy level of the input. The second column

specifies the type of data being voted, whether OBNE, IBNF, or data. Data includes the

destination VID, exchange class, and user byte. The final column indicates the number of

inputs which must be asserted, or '1', for the majority condition to exist. Two cases are of

special note. The first is the case of voting the IBNF bit of a simplex. The 0 of 1 majority

condition specifies that a timeout should be set on a simplex whenever its IBNF bit is not set.

This prevents a faulty simplex from holding up VIDs trying to send it messages. The second



notable case is that of voting quads. For the OBNE and IBNF bits, an unambiguous majority

is required (3 of 4), while data requires only 2 of 4 to agree. This ensures that if a two-two split

occurs (two members say one thing, two another) when voting either the OBNE or IBNF bits

the "safe" option is taken. It is better to not send a message or risk overwriting a PE's input

buffers until a clear manifestation of faulty conduct is seen. Since there is no clear "safe"

option for data, either 2 of 4 or 3 of 4 may be used.

6.4.1.2. Masking

The scoreboard's voter is not maskable in the normal sense of "masking out" some

input bits to prevent them from contributing to the voted result. Instead, inputs are masked

automatically based on the redundancy level. Conceptually, the voting logic contains four

pipeline registers, numbered 0 to 3, which feed the voter (reference Figure 6-6). When voting

a simplex, the value to vote will always reside in register 0. When voting a triplex, the values

will always reside in registers 0 to 2. Values for a quad will occupy all four registers. Inputs

are voted based on the redundancy level and the data type as described in section 6.4.1.1.

Because of this arrangement, no inputs need to be masked out. Figure 6-6 shows the

conceptual representation of the scoreboard voter.



Figure 6-6, Conceptual View of the Voter

An implication of this is that, for example, a triplex always has three values to vote,

even if one of those values originates from a faulty PE. In general, the data from a known

faulty PE would be masked out to prevent it from contributing to the voted result. However, if

reintegration of the faulty PE is desired, it must be allowed to participate in the voting so that

it can be checked for continued faulty conduct. If it was masked out, there would be no way to
check if the fault was transient or permanent. The disadvantage of this method is that, for
permanently faulty PEs, the full timeout period must be paid each time a message is sent or is

received by the VID until a CT update can be performed (see section 6.6 for a further

explanation of CT updates).

6.4.1.3. Syndromes

The scoreboard voter must produce three different syndromes - OBNE, IBNF, and
data syndromes. The syndromes are in CT-absolute format (see Figure 6-7), which means
that each bit corresponds to a PID in the VID's CT entry, with the least significant bit
corresponding to the first member in the VID's CT entry. A bit is set in the OBNE and IBNF



syndromes when a member of the VID times out. Bits corresponding to non-existing

members are guaranteed to be '0'. For example, if the OBNE bits for the triplex presented in

section 6.1 are :

member 1 : set

member 2 : not set

member 3 : set,

then the voted result is OBNE set and the OBNE syndrome will be as shown in Figure 6-8.

The syndrome bit for member 2, which is the second least significant bit, is set. The

syndrome bits for members 1 and 3 are unset. The other syndrome bit, which corresponds to

the non-existent fourth member, is a 'O'.

member 4 member 31 member 21 member 1

Figure 6-7, Syndrome Format

10101 1101

Figure 6-8, Example OBNE syndrome

The third syndrome produced by the scoreboard, the data syndrome, is generated

differently then the other two syndromes. It is generated by OR'ing the syndromes from the

destination VID, exchange class, and user byte. A set bit in this syndrome indicates non-

agreement in one or more bits in one or more of those fields. As with the other two syndromes,

bits corresponding to non-existent PEs are '0'.

6.4.1.4.1.4. Timeout Procedure

A timeout is set on a VID when a majority, but not a unanimity, of its members set

their OBNE/IBNF bits. It is important to realize that majority conditions on these two SERP

fields are the only conditions under which timeouts are set. The destination VID, exchange

class, and user byte fields have no affect on timeouts.

The timeout algorithm is as follows (for the remainder of the paragraph, IBNF can be

substituted for OBNE with no change in meaning). When a majority condition is seen on the

OBNE bits, the scoreboard checks to see if a timeout has already been set on the VID. If no

timeout is in progress, the current value of an internal free-running timer is read and



placed in a timeout storage area. If a timeout has been set, the stored value is subtracted from

the current value of the timer. If the difference is less than or equal to the value stored in the

VID's timeout field in the CT then the timeout has not yet expired, ih which case the

scoreboard clears the OBNE bit in the voted SERP memory (because the message cannot be

sent yet). If the result is greater than the VID's timeout field, then the timeout has expired and

the scoreboard does nothing to the voted OBNE bit. At this point, the VID can send the message

if the other conditions are met (see the following sections for the explicit rules on valid

messages).

The one exception occurs when the timeout field in the CT is zero. If this is the case,

the VID will never time out. This case is useful for debugging purposes and in a situation

where a VID should never time out.

Notice that IBNF timeouts are set on a VID regardless of whether another VID is

waiting to send a message to that VID. This prevents the input buffers of an FMG from being

overwritten. No messages will be sent to an FMG until a unanimity or a majority+timeout of

its members assert their IBNF bits.

6.4.2. Finding Messages

Once the scoreboard has finished voting the SERP and checking timeouts, it searches

the voted SERP for valid messages. The following sections cover message related functions.

6.4.2.1. Valid Exchange Classes

The exchange class byte of the SERP contains three sub-fields: the class, packet type,

and mode. Figure 6-9 below shows their locations.

4 3 2 1 0
packet type exchange clasE

Figure 6-9, Exchange Class Byte Fields

The class defines the protocol to be used when exchanging the packet. Currently, the

following values are valid (for an in-depth explanation of exchange classes see [Sak91):

0-class 0 (no data)

1-class 1 (one round exchange)

mode



2-class 2 (source congruency) from member on network element A

3-class 2 (source congruency) from member on network element B

4-class 2 (source congruency) from member on network element C

5-class 2 (source congruency) from member on network element D

6-class 2 (source congruency) from member on network element E

The packet type defines what the data in the packet represents. Data packets are the

normal mode of communication between virtual groups. Data packets are treated as a

contiguous stream of 64 bytes. There is no structure enforced by the NE on data packets. The

other packet types, however, have specific formats that must be adhered to. The following are

the current valid packet types:

0-data

1-configuration table update

2-isync

3-voted reset

The mode determines how the packet is to be distributed. Currently, the only modes

supported are normal (bit 7 is cleared) and broadcast (bit 7 is set). In the normal mode, the

packet is sent to the virtual group specified in the destination VID field. In broadcast mode,

all active virtual groups will receive a copy of the packet (including the sender) and the

destination VID field is ignored.

6.4.2.2. Invalid Messages

The following is a list of all the conditions under which an otherwise valid message

can be declared invalid. In all cases, the message is "sent", but the destination is changed to

the null destination (a PID of Ox1F). This PID value tells the NE to flush the packet after it

has been received and not deliver it to any PE. The four cases boil down to two different

conditions: invalid destination VID and/or invalid exchange class. A fourth, two-bit

syndrome is generated by the scoreboard to represent the result of these two conditions.



* If the Higher Life Form (HLF) bit2 1 is set, simplexes are not allowed to send CT

update, broadcast, or voted reset packets.

* If the HLF bit is set, all CT update and voted reset packets must be exchanged

using a class 1 exchange.

* If the exchange class is class 1 the source VID must be a FMG.

* The destination VID field must correspond to a valid VID22.

6.4.2.3. Searching for Valid Messages

When the voting and timeout process is complete, the scoreboard scans the voted

SERP for valid messages. The Boolean equation for a valid message is :

validmessage = sourceVID(OBNE) AND destination_VID(IBNF)

AND message_infovalid;

OBNE = unanimous OR (majority AND timeout-expired)

IBNF = unanimous OR (majority AND timeout-expired)

A valid message exists when the sender either has a unanimous OBNE or a majority plus

timeout-expired, the destination has either a unanimous IBNF or a majority plus timeout-

expired, and all message information is valid. Once the condition is met but before the

message is sent, the scoreboard clears the destination's IBNF bit since the act of sending a

message to the VID may render it invalid. Thus, a given VID can send a maximum of one

message and receive a maximum of one message per SERP cycle.

When a valid message is found, the scoreboard provides the NE with the following

information:

21 The HLF bit exists to prevent, in a fielded FTPP, a simplex from doing things it is not normally
allowed to do. In the laboratory, though, allowing simplexes to do such things is useful for
debugging.

22 This condition must be flagged internally to prevent scoreboards residing on different NEs from
reaching different results. For example, if the IBNF bit of the voted SERP memory location
corresponding to the non-existent VID was '1' in one scoreboard but '0' in another (this could happen
since that particular memory location is never written to by the scoreboard), they would reach
different conclusions, thereby introducing a fault which would probably bring the system down.



1. OBNE,IBNF,and data syndromes

2. invalid data syndrome (explained in section 6.4.2.2)

3. Presence bits (used by the NE as a vote mask)

4. NE mask

5. the exchange class

6. the PID on the local NE where the message can be found

7. the PID on the local NE where the message is to be sent

8. A timestamp

Items 6 and 7 are determined from the source and destination VID's respective CT entries

and by the local NE number. Using the triplex example from sections 6.1 and 6.3.1.3, if the

triplex has a valid message to send to itself, then the scoreboards in the system would provide

the following source and destination PIDs to their respective NEs :

Scoreboard's NE number Source and Destination PIDs
0 NEO,PE4
1 Ox3F
2 NE2,PEO
3 Ox7F
4 NE4,PE6

When an NE does not have a VID member located on it, the scoreboard passes it a null PID of

Ox1F (all l's) so that the NE will participate in the exchange but will not deliver the message

to any processor.

6.4.2.4. Message Sending Protocol

After a valid message condition exists and the scoreboard has gathered all the

information necessary to send the message, it writes the data into a special area of memory

and signals the NE to send the message. The scoreboard then continues to search for valid

messages. If another message is found before the NE is finished sending the previous

message, the scoreboard waits until the NE is finished. It then enqueues the new message

and once again looks for more valid messages. When the entire voted SERP has been

scanned, the scoreboard signals the NE that it is finished processing the SERP.



6.4.2.5. Broadcasts

Broadcasts are a special form of message which cause the scoreboard to process the

voted SERP differently. As soon as a valid broadcast message is encountered (exchange

class = broadcast AND voted OBNE bit set), the scoreboard ceases to search for any more

messages until the broadcast is sent. It first cycles through the entire voted SERP to check if

all the IBNF bits are set. If they are (which is unlikely), then the messiage is sent

immediately. Otherwise, the scoreboard votes SERPs until all IBNF bits are set, after which

the broadcast is sent. Once a broadcast is noted, no other packets are exchanged until the

broadcast is exchanged.

The broadcast is very useful for bringing the entire system into synchronization

because no other messages can be exchanged until the broadcast is sent. As a result, the

sender is assured that all PEs in the system receive the broadcast at the same time.

6.4.2.6. Priority

The scoreboard has two different methods for determining message priority - VID-

ordered and round-robin. A VID based system assigns priority to the lowest VID number.

This is done by always beginning the scan for valid messages at the start of the voted SERP

memory. The round-robin system attempts to distribute priority so that no VID is favored

over any other. On each SERP cycle, the scoreboard begins looking for valid messages one

voted SERP entry later than in the previous cycle. This system ensures, for instance, that a

babbling simplex cannot effectively shut out a VID by constantly sending messages to it.

6.5. Faulty Conditions

The scoreboard does not perform any fault diagnosis itself. It simply notes an

anomaly and sets the appropriate syndrome bits. In the case of an invalid destination VID or

an invalid exchange class, the scoreboard sets the corresponding invalid data syndrome bit.

The following conditions indicate a fault has occurred:

* A VID times-out from either OBNE or IBNF, or both.

* The OBNE bit for a VID is unanimous, but one member doesn't agree on the

destination, exchange class, or user byte (or any combination thereof).

* The destination VID does not correspond to a valid VID in the system.



* The exchange class field has an invalid value.

6.6. Other Operations

The scoreboard also performs the following initialization operations:

Synchronize Timer - the synchronize timer operation is used to bring the timers

inside each scoreboard into synchronization. This ensures that all timestamps

are congruent. This operation also causes the scoreboard to delete all pending

timeouts.

CT Update - A CT update causes three actions to occur. First, it forces the scoreboard to

regenerate all internal tables (explained in section 7.1) which are used to index

SERP entries during SERP processing. Second, it deletes all timeouts, since a

VID with a pending timeout may no longer exist after the update. Finally, a CT

update causes the voted SERP processing section of the scoreboard to reset its

internal priority pointer to the first voted SERP entry (if VID-ordered priority is

implemented).

Reset - A scoreboard reset is performed when the NE is first powered-up and

whenever the NE itself is reset. This operation performs a CT update and

initializes the timer to zero.





7. Scoreboard Behavioral Model

This chapter describes in detail the operation of the behavioral level model of the

scoreboard. The first section discusses the overall design of the model by explaining

important sections of the code, beginning with the packages and ending with the entities. The

functional description of the model is presented by describing each major operation.

7.1. Overall Design

The scoreboard behavioral model represents the third step, behavioral models of the

high-level partitions, in the design process presented in section 5A1. Chapter 6 contains the

first step, system specification. The second step, high-level partitioning, is presented in the

following paragraph.

Figure 7-1 below shows the high-level partitioning of the scoreboard. The partitioning

is based on the algorithm discussed in section 6.4. The Voting and Timeout Hardware uses

the Lookup Table to cycle through the SERP, reading a VID's SERP entry each cycle, feeding

them to the voter and checking timeouts. The voted result is written into the Voted SERP

memory. When voting is complete, the Sender, using the VIDS-in-system table, cycles

through the Voted SERP memory looking for valid messages. When a valid message is

found, the message information is written into the Message info RAM and the NE is told to

send the message. The structure of the tables and how they are generated will be presented in

later sections.



Figure 7-1, High-level Partitions of the Scoreboard

Once the partitioning had been accomplished, the VHDL models for each partition

were written. The remainder of this chapter covers these models.

7.2. Explanation of Important Sections of Code

The following sections discuss the major sections of the behavioral VHDL model. The

packages are covered first since they abstract away much of the detail and are critical for

understanding the model. The function and interface of each entity is then described.

7.2.1. Packages

The behavioral model relies heavily on packages to allow multiple entities to share

types, constants, and subprograms. The packages are organized by purpose and are usually

associated with only a few entities.

7.2.1.1. Scoreboard package

The scoreboard_package is the global package and thus contains items common to

the entire design. These items include the SERP, CT, and message item data types,

configuration information, and two conversion functions.



The package begins with the following declarations which serve to abstract away the

configuration of the FTPP :

CONSTANT num ne : INTEGER :- 5;
CONSTANT peper ne : INTEGER :- 8;
CONSTANT max vid : INTEGER := 255;
CONSTANT max redun level : INTEGER := 4;

Because of these definitions, the overall configuration of the FTPP can be changed very

easily. An additional set of constants is used to define the locations in the dual-port RAM of

the S1ERP, CT, and message queue.

CONSTANT dpram size : INTEGER :- 300;
CONSTANT mem_base : address_type : -1;
CONSTANT serp_base : address type :- 0;
CONSTANT ct_base : address_type := dpram size + 1;
CONSTANT msg_base : address_type := 2*dpramsize + 1;

The "meat" of the package is the type declarations. The initial declarations abstract

away the types of the sub-fields of the SERP to aid visibility in the simulator.

Flow_control_type is used to represent the OBNE and IBNF bits. Vidtype holds the

destination VID number. Broadcasttype, packet_type, and ex_class_type represent the three

fields within the exchange class SERP entry. Class_type represents the exchange class field

of the SERP. Note the resemblance between its three fields and Figure 6-9.

SUBTYPE flow_controltype IS BOOLEAN;
SUBTYPE vid_type IS INTEGER RANGE 0 TO max_vid;
SUBTYPE broadcast_type IS BOOLEAN;
SUBTYPE packettype IS INTEGER RANGE 0 TO 3;
SUBTYPE ex_classtype IS INTEGER RANGE 0 TO 7;

TYPE class_type IS RECORD
broadcast : BOOLEAN;
packet : packet type;
ex_class : ex_classtype;

END RECORD;

The second set of types is used to define CT entry fields. The redundancy level of a VID is

represented by an enumerated type. A zero redundancy level indicates an inactive VID.

Presence_type contains the presence bits field of a CT entry, while timeout_type contains the

timeout field. Members_type holds the addresses of a VID's SERP entries.

TYPE redun_level_type IS (zero, simplex, triplex, quad);
TYPE presence_type IS ARRAY(0 TO (num ne - 1)) OF BOOLEAN;
SUBTYPE timeout type IS INTEGER RANGE 0 TO 255;
TYPE members type IS ARRAY(0 TO (max_redun_level - 1)) OF pe_loctype;

The last three types are used to represent an entry in the SERP, CT, or message queue.

They are all records to facilitate encapsulation and clarity. Notice the direct correspondence



between serptype and Figure 6-1 and between cttype and Figure 6-2. Msg_type contains all

the information necessary to send a message.

TYPE serp_type IS RECORD
obne,ibnf : flow_control_type;
dest_vid : vid_type;
class : class_type;

END RECORD;

TYPE ct_type IS RECORD
vid number : vid_type;
redunlevel : redun_level_type;
presence : presence_type;
members : members_type;
timeout : timeout_type;

END RECORD;

TYPE msg_type IS RECORD
source_vid,dest_vid : vid_type;
class :classtype;
timestamp : TIME;
obne_syndrome, ibnf syndrome, vote syndrome : presence_type;
size : NATURAL;

END RECORD;

The final constant declarations are used to assign default values to the previously

defined composite types. This is syntactically necessary if a port of mode in needs to remain

open

CONSTANT def_class : classtype := (FALSE, 0,0);
CONSTANT def_presence: presence_type := (FALSE,FALSE,FALSE, FALSE, FALSE);
CONSTANT def_members : memberstype :f (0,0,0,0);
CONSTANT def serp : serp_type := (FALSE, FALSE, 0,defclass);
CONSTANT def_ct : ct_type := (0, zero, def_presence, def_members,0);
CONSTANT def msg : msg_type := (0,0,def_class,O ns,def_presence,

def presence, def_presence, 0);

7.2.1.2. Address Package

The addresspackage contains the items necessary to implement a resolved address

type for use in memory addressing. The scoreboard model contains many small memories,

some of which need to be addressed by more than one entity. This creates a need for a

common resolved type for use in addressing. A logic type could not be used since this would

make the behavioral model less clear. It was desired to use a subtype of integer for

addressing yet retain the ability to have multiple drivers. Address.package is the result.

The key to resolving an integer type is to define a high impedance value and write a

resolution function which ignores all drivers with this value, just like a logic resolution

function ignores drivers with high-impedance values. If an address has more than one

driver with non-high-impedance values, then the resolution function should return a high-



impedance address. Address_type is defined as ranging from -1 to integer'right and the

high_z_address is defined as -1. An array of addresses is also declared for use as input to the

resolution function.

SUBTYPE address_type IS INTEGER RANGE -1 TO INTEGER'RIGHT;

CONSTANT high_z_address : address_type := -1;

TYPE address_array IS ARRAY (NATURAL RANGE <>) OF address_type;

The resolution function takes an array of addresses as input and returns the one

non-high_zaddress value. If more than one driver is not equal to -1, an error condition is

asserted. Finally, the resolved address type is declared.

FUNCTION resolveaddress (addresses: IN address_array)
RETURN address type IS

VARIABLE result : address_type;
VARIABLE temp_i : INTEGER;
VARIABLE found one,more_than_one : BOOLEAN := FALSE;

BEGIN
result :- high z_address;

-- If no inputs then default to high_z_address
IF (addresses'LENGTH = 0) THEN

RETURN result;
ELSIF (addresses'LENGTH = 1) THEN

RETURN addresses(addresses'LOW);
-- Calculate value based on inputs
ELSE

-- Iterate through all inputs
FOR i IN addresses'RANGE LOOP

IF ( addresses(i) = high_z_address ) THEN
NEXT;

ELSIF NOT found one THEN
result := addresses(i);
found one := TRUE;

ELSE
more than one := TRUE;

END IF;
END LOOP;
IF more than one THEN

result := high_z_address;
ASSERT FALSE
REPORT "Address line has more than one driver"
SEVERITY ERROR;
END IF;

-- Return the resultant value
RETURN result;

END IF;
END;

SUBTYPE resolved_address IS resolve_address address_type;



7.2.1.3. Voter Package

The voter package contains subprograms for converting the types used in the SERP to

and from bits and bit..vectors and subprograms for performing rudimentary voting. It is

important to note that this initial model does not perform majority voting; instead, it merely

chooses the last parameter passed to it. This is not a major flaw since the current test vector

generator does not generate faults. Instead, all SERP entries within a VID are the same. A

structural voter currently being designed performs bitwise majority voting.

This package also defines types for use in the internal timer. The constant

timer_resolution specifies the number of bits of resolution in the internal timer. Subtype

timer_range is used to constrain the possible values of the timer. Init_timervalue is the

value the timer assumes imr. diately after rollover, while max_timer_value is the rollover

value. Timertype represents a single entry in the internal timeout memory. Each entry has

a flag to signal whether a timeout has been set and a variable to hold the value of the timeout.

The declarations are given below.

CONSTANT timer resolution : INTEGER := 16;
SUBTYPE timerrange IS INTEGER RANGE 0 TO (2**timerresolution - 1);
CONSTANT inittimervalue : timerrange;
CONSTANT max_timer_value : timer_range;

TYPE timer type IS RECORD
timeout set : BOOLEAN;
value : timer_range;

END RECORD;

TYPE timeoutmemory_type IS ARRAY(INTEGER RANGE <>) OF timer_type;

7.2.1.4. Other Packages

The behavioral model contains five more packages. The testbench package contains

functions to read and write test vector files generated by a C program (see section 7.5.1 for

further details). The file format is simple and can be gleaned from the C source code in

Appendix 10.8.

The main control package contains two important enumerated type declarations.

The first one, shown below, is used by the testbench to control the scoreboard. The unknown

operation is included as an error check. A concurrent assertion statement warns the user if

an unknown state is ever reached. The other operations will be explained in section 7.3.

TYPE operation_type IS (unknown, idle, reset_state, update_ct,
clear_timeouts,process_new serp,continue);



The second declaration is used by the scoreboard to inform the testbench what operation it is

performing and when it has completed a given operation.

TYPE return_operation_type IS (unknown,idle,busy, reset_complete,
ct_update_complete,clear_complete,

message tosend, processing_complete);

The voted SERP package encapsulates types used by the entities which deal with the

voted SERP memory. Each voted SERP entry is a record with the fields shown. The

vid_is_simplex flag is used to flag illegal simplex messages since the redundancy level is

not included in a voted SERP entry. Illegal message checking is performed by a subprogram

also located in the voted serp package.

TYPE voted_serp type IS RECORD
obne, ibnf : flow_control_type;
vid is simplex : BOOLEAN;
source-vid,dest_vid : vid_type;
class : class_type;
obne_syndrome,ibnf_syndrome, sb_vote syndrome : presence_type;

END RECORD;

The PID to VID package contains types used by the two internal translation tables.

The first table allows the scoreboard to read SERP entries in VID order (they are in PID order

inside the dual port RAM) and the second table allows the sender to cycle through the voted

SERP memory efficiently (see section 7.2.2.1 for a more in depth explanation). Each PID to

VID table entry is essentially the same as a CT entry. In an actual scoreboard, the members

in the CT would be (NE,PE) encodings while each member in the PID-to-VID translation

table would be the address of the PID's SERP entries.

TYPE pid to vid_entry_type IS RECORD
vid : vid_type;
redun_level : redun_level type;
presence : presencetype;
members : members_type; -- these are really addresses
timeout : timeout_type;

END RECORD;

The vids-in-system translation table does not require a composite type. Instead, each entry is

merely an address into the voted SERP memory.

The final package in the model is the dual port ram package. It contains three array

declarations, one each to hold the CT, the SERP, and the message queue.



7.2.2. Entities

This section provides an overview of the entities in the behavioral model. It gives the

reader an insight into the structure of the scoreboard and how the entities are organized. Note

that all the entities in the design are synchronous, meaning that all processes are sensitive to

the clock and have the following basic form2 3 :

example - PROCESS (clock)
BEGIN

IF clock = fl AND clock'EVENT THEN

body of process

END IF;
END PROCESS;

The advantages of a fully synchronous design were discussed in section 5.2. Additionally,

all state machines within the design have the following basic form (this form is a

simplification of the CASE variation of Figure 5-5):

state machine : PROCESS (clock,activating_signal)
TYPE statetype IS (sO,sl,s2);

BEGIN
IF clock = fl AND clock'EVENT THEN

CASE state_signal IS
WHEN sO =>

IF activating_signal = active THEN
state_signal <= sl;

ELSE

default assignments

END IF;

WHEN sl =>

etc.
END CASE;

END IF;
END PROCESS;

The state machine remains in the initial state until the activating signal is brought to an

active value. Otherwise, default assignments, which usually assign high-impedance values

to shared signals, occur.

23 This chapter uses the Vantage 46 state logic system for all control-like signals. All that really needs to
be known is that 'f' and 'O' are equivalent to '1' and '0', respectively.



Memory accesses within the model are assumed to take two clock cycles from the

time the address is asserted to data valid. This results from the synchronous nature of the

basic memory model, which is given below:

ENTITY example memory IS
GENERIC

read_delay: TIME := 10 ns

PORT

memory_output : OUT memory_entry_type;
memory_input: IN memory_entry_type;
readwrite: IN t wlogic;
address: IN resolvedaddress;
clock: IN twlogic

END example_memory;

ARCHITECTURE example_memory OF example memory IS
TYPE memory_type IS ARRAY(natural RANGE <>) OF memory_entry_type;

BEGIN
memory_behavior : PROCESS (clock)

VARIABLE memory : memory_type(membase TO mem_top);
BEGIN

IF clock = fl AND clock'EVENT THEN
IF read write = fO THEN

memory(address) := memory_input;
ELSE

memory_output <= memory(address) AFTER read_delay;
END IF;

END IF;
END PROCESS.

END example_memory;

All memories are built on the basic process model discussed previously. They

generally have one port as an input into the memory and one port for the output (some

memories are dual-ported). This has to be done to avoid writing resolution functions for

inout ports 24. The memory itself is simply an array whose index is the memory address.

The generic readdelay is used to introduce an assignment delay. The purpose of this was

discussed in section 5.3.

The entity declaration for the entire scoreboard is contained below. Operationin is

used by the NE to control the scoreboard, while operationout is used by the scoreboard to tell

the NE what it's doing. The higher life form (HLF) signal indicates whether a fault-

24 While many types can be resolved (like logic types), resolving a composite type doesn't make much
sense. Since abstract behavioral models incorporate many such types, memories must have explicit
in and out ports.



masking group is present in the system. Messagetosend tells the NE that a message is

waiting to be sent. Sb_address and read_write are used to extract CT and SERP entries and

write message entries. The data for these entries appears on the signals ct_data, serpdata,

and msgdata, respectively. The system-wide clock, generated by the testbench, appears on

the clock signal and is distributed to all entities with clock signals.

ENTITY scoreboard IS
PORT

operation_in: IN operation_type;
operation_out: OUT return_operationtype;
hlf: IN BOOLEAN;
message_to_send: OUT BOOLEAN;
sb address: OUT resolved address
read_write: OUT t_wlogic;
ct_data: IN ct type;
serp_data: IN serp type;
msg data: OUT msg_type;
clock: IN t_wlogic;

END scoreboard;

7.2.2.1. Dual Port RAM

The dual port RAM entity holds the CT and SERP. Message information is written

into it by the sender. The dual port RAM and the scoreboard represent the top level

architecture, which the testbench instantiates and tests.

Below is the enitity declaration for the dual port RAM. AddressO, RWO (read/write),

Actin, Aserpin, and Amsgout control the NE side of the RAM. Addressl, RW1, Bct_out,

Bserpout, and Bmsg.in control the scoreboard side of the RAM. The modes of the data ports

represent the needs of the system. In other words, the unused ports, such as an Amsg_in, have

been removed.

ENTITY dpram IS
GENERIC

read_delay: TIME := 10 ns

PORT

address0: IN address type;
RWO: IN t-wlogic
Act_in: IN ct type;
Aserp in: IN serp_type;
Amsg_out: OUT msg_type;
addressl: IN address type;
RW1: IN twlogic;
Bct_out: OUT cttype;
Bserp out: OUT serp_type;
Bmsg_in: IN msg_type := defmsg;
clock: IN t_wlogic;



END dpram;

7.2.2.2. Voted SERP

The voted SERP memory is organized as 256 25 locations of one entry apiece. Any

given VID's entry can be found by using its VID number as an address. Since even the

largest system will only contain a maximum of 40 VIDs, the voted SERP memory will be

sparsely populated. Memory is traded for speed in this case, since storing voted SERP entries

in a packed format would require a table-lookup or a content-addressable memory.

The voted SERP memory entity declaration is shown below. It is a dual ported

memory, except that portl has no input port. Port0_in is used by the voting and timeout

hardware to write voted SERP entries, while portl_out is used by the sender to read voted

SERP entries. Port0_out is presently unused.

ENTITY voted_serp_memory IS
GENERIC

read_delay: TIME :- 10 ns

PORT

portl_rw: IN twlogic := fl;
port0_rw: IN twlogic;
clock: IN t . logic;
portlout: OUT voted_serp_type;
portl_address: IN resolved_address;
port0_address: IN address_type;
port0_out: OUT voted_serp_type;
portO0in: IN voted_serp_type

END voted_serpmemory;

7.2.2.3. Pid-to-vid Table

The scoreboard uses two internal tables to assist it in processing the SERP. The pid-

to-vid table allows the scoreboard to read the SERP in VID order. This is important since that

is how SERP entries must be voted. Each table entry contains the source VID, redundancy

level, presence bits, and timeout value. The members array contains the dual port RAM

addresses of each of the VID members SERP entries. The pid-to-vid table and the vids-in-

system table (discussed in the next section) are regenerated when the scoreboard is reset and

whenever a CT update is performed.

25 This number is dependent on the maximum VID number.



The pid-to-vid entity declaration is given below. It precisely follows the standard

memory model.

ENTITY pid to vid IS
GENERIC

read_delay: TIME := 10 ns

PORT

ptov out: OUT pid to vid entry_type;
ptov in: IN pid to vid entry_type;
read write: IN t wlogic := fl;
address: IN resolved address
clock: IN t_wlogic;

END pidtovid;

7.2.2.4. Vids-in-system Table

The vids-in-system table allows the sender to cycle through the voted SERP memory

efficiently by making a continuous traversal through the SERP. The vids-in-system table

contains the addresses in the voted SERP memory of all the active VIDs in the system.

The entity declaration for the vids-in-system table is given below. It also precisely

follows the standard memory model.

ENTITY vids_in_system IS
GENERIC

read_delay: TIME := 10 ns

PORT

data_out: OUT addresstype;
data in: IN address_type;
read_write: IN t wlogic;
address: IN resolved address;
clock: IN t_wlogic

END vidsin system;

7.2.2.5. Voting and Timeout Subsection

The voting and timeout subsystem performs the voting and timeout functions of

SERP processing and writes the voted SERP entries into the voted SERP memory. It is

organized as three processes. One process reads a VID's SERP entries, triggers the voter, and

writes the voted result into the voted SERP memory. A second process performs the voting

and timeout checking, and a third implements the scoreboard's internal timer. The first two



processes are state machines of the form discussed in section 7.2.2. The voting is done via a

subprogram call. Section 7.2.1.3 discussed how the behavioral model performs voting.

The entity declaration for the voting and timeout hardware is shown below.

Start_voting signals the voting and timeout hardware to begin voting the SERP. It asserts

done_voting when SERP voting is complete. Num_vids is an integer which represents the

number of vids in the system. The voting and timeout hardware uses this value to tell when

all VIDS have been voted. Start_clear tells the voting and timeout hardware to start clearing

timeouts. When timeouts are cleared, it signals clear_done. Ptov_address, ptov_rw (rw

stands for read/write), and ptov_data are used to read entries from the pid-to-vid table.

Dpram_address, dpram_rw, and serp_data are used to read SERP entries from the dual-port

RAM. Votedserp_address, voted_serp_rw, and voted_serp_data are used to write entries

into the voted SERP memory. The clock is the system clock from the top-level entity.

ENTITY vote timeout IS
PORT

start_voting: IN BOOLEAN;
done voting: OUT BOOLEAN;
num vids: IN INTEGER;
start clear: IN BOOLEAN;
cleardone: OUT BOOLEAN;
ptovaddress: OUT resolved address := high _zaddress;
ptov_rw: OUT t wlogic;
ptov_data: IN pidto vid entry_type;
dpram_ address: OUT resolved_address := high_zaddress;
dpram_rw: OUT t_wlogic;
serp_data: IN serp_type;
voted_serp_address: OUT address_type;
voted serp_rw: OUT t wlogic;
voted_serp_data: OUT voted_serp_type;
clock: IN t_wlogic

END votetimeout;

7.22.6. Sender

The sender entity cycles through the voted SERP memory using the vids-in-system

table to check for valid messages. If the OBNE bit in a voted SERP entry is set, the potential

message is checked for validity. If the message is valid, the sender reads the voted SERP

entry corresponding to the destination VID. If the destination VID's IBNF bit is set, the

message is enqueued. The sender has a priority pointer which is incremented after each

SERP cycle so that it begins looking for valid messages one vids-in-system table entry later.

In the initial model, the timestamp field of a message is generated from a signal internal to

the sender instead of from the timer used for timeouts.



The entity declaration for the sender is shown below. Start.processing tells the

sender to begin looking for valid messages. When the sender is completely finished

processing the current SERP, it signals done. Messagetosend is asserted by the sender

after it has found a valid message and written the message record into the dual-port RAM.

The NE asserts continue after it has sent the message. The hlf signal affects valid messages

as discussed in section 6.4.2.2. The ct_update signal tells the sender to reset its priority

pointer to the beginning of the vids-in-system table. Num_vids is used by the sender to tell

when all voted SERP entries have been checked for messages. Pass_through feeds a tri-state

buffer which lets either the sender or the output from the vids-in-system table serve as the

address into the voted SERP memory. The output from the vids-in-system table is used when

OBNE bits are being checked, while the sender asserts the destination VID address after a set

OBNE bit is encountered. Visaddress, vis_rw, and vis_data are used to read entries from

the vids-in-system table. Voted_serp_address, vs_rw, and votedserpdata are used to read

voted SERP entries. Dpram_address, dpram_rw, and msg_data are used to write message

records into the dual port RAM.

ENTITY sender IS
PORT

start_processing: IN BOOLEAN;
done: OUT BOOLEAN;
messageto send: OUT BOOLEAN;
continue: IN BOOLEAN;
hlf: IN BOOLEAN;
ct update: IN BOOLEAN;
num vids: IN INTEGER;
pass through: OUT BOOLEAN;
vis address: OUT resolved address;
vis_rw: OUT t wlogic;
vis data: IN address_type;
voted_serp_address: OUT address_type;
vs_rw: OUT t_wlogic;
voted_serp_data: IN voted serp_type;
dpramaddress: OUT resolved_address;
dpram_rw: OUT t wlogic;
msg_data: OUT msg_type;
clock: IN twlogic

END sender;

7.2.2.7. Main Controller

The main controller receives commands from the NE and asserts internal control

signals to perform the correct actions in the proper order. The main controller is also

responsible for informing the NE when requested actions have been completed. The valid

commands were listed in section 7.2.1.4. The main controller also regenerates the pid-to-vid



and vids-in-system lookup tables during reset and CT update operations. The controller is

composed of three process statements, one for processing commands, one to handle SERP

processing, and one to generate the translation tables.

The grisly entity declaration for the main controller is shown below. Operation_in is

used by the testbench to control the operation of the scoreboard, while operation_out is used by

the scoreboard to inform the NE of what it is doing (see section 7.2.1.4 for the type

declarations). Messagetosend is asserted by the sender when it has found a message. The

main_controller asserts continue_processing after it receives a continue operation from the

NE. Start_voting is used to start the voting and timeout hardware, which asserts done_voting

when voting has been completed. Start_sender is then asserted to start the sender looking for

messages. The sender asserts sender_done when it has completed message searching

operations. The main controller asserts start_clear when it receives a cleartimeouts

message. The voting and timeout hardware asserts clear_done when the clear has been

completed. Ct..update is asserted by the main controller in response to a updatect message.

This signal tells the sender to reset its internal priority pointer. The num_vids signal tells

the rest of the scoreboard how many active VIDs are in the CT. The remaining signals are

used only when the vids-in-system and pid-to-vid tables need regeneration.

Dpram_address, dpram_rw, and ct_datain are used to read CT entries from the dual port

RAM. Ptov_address, ptov_rw, and ptov..data are used to write pid-to-vid entries into the pid-

to-vid table while vis_address,vis_rw, and vis_data are used to write vids-in-system entries

into the vids-in-system table.

ENTITY main controller IS
PORT

operation_in: IN operation_type;
operation_out: OUT return_operation type;
message to_send: IN BOOLEAN;
continue_processing: OUT BOOLEAN;
startvoting: OUT BOOLEAN;
done_voting: IN BOOLEAN;
start sender: OUT BOOLEAN;
sender done: IN BOOLEAN;
start clear: OUT BOOLEAN;
clear done: IN BOOLEAN;
ct_update: OUT BOOLEAN;
num vids: OUT INTEGER;
dpram_address: OUT resolved_address := high_z_address;
dpram rw: OUT t wlogic
ct data in: IN ct_type;
ptov_address: OUT resolved_address := high _zaddress;
ptov_rw: OUT twlogic;
ptov_data: OUT pid to vid entry_type;
vis address: OUT resolved address;
vis data: OUT address_type;
vis rw: OUT twlogic;



clock: IN t_wlogic;

END maincontroller;

7.2.2.8. Address..buffer

The address buffer entity is essentially a tri-state buffer for tri-stating addresses. It

is used by the sender to tri-state the output from the vids-in-system table so that it can assert

the address into the voted SERP memory. It assigns the output to the input when passthrough

is True and assigns high_z_address to the output when pass_through is False.

ENTITY address buffer IS
PORT

passthrough: IN BOOLEAN;
clock: IN t_wlogic;
output: OUT resolved_address;
input: IN resolved_address

END addressbuffer;

ARCHITECTURE addressbuffer behavior OF address buffer IS
BEGIN

output <= input WHEN pass through ELSE
high_z_address;

END addressbufferbehavior;

7.3. Functional Description

Following is the functional description of the behavioral model. The effects of each

major operation are explained in sequence, beginning with reset and ending with

process_new_SERP. The order roughly corresponds to the events surrounding power-up to

processing of the first SERP.

7.3.1. Reset

Before the scoreboard can perform any other action it must be reset. The reset causes

two separate actions to occur : update_CT and clear_timeouts. When both actions are

completed, the main controller signals reset_complete. Until then, it signals busy.

7.3.2. Clear Timeouts

The clear_timeouts operation deletes all pending timeouts. A process within the

voting and timeout architecture cycles through the timeout memories, setting the timeout_set

field of each timeout entry to FALSE. Note that this function is not implemented in the initial

behavioral model.



7.3.3. UpdateCT

The update_CT operation causes two separate initializations to occur. First, a process

within the main controller cycles through the CT looking for valid VIDs. When a VID with a

non-zero redundancy level is found, its CT entry is converted into a pid-to-vid table entry

and the VID number is added to the vids-in-system table. In the behavioral model, this

conversion means the CT entry is copied into the pid-to-vid table. In the structural models,

the (NE,PE) pairs within the CT entry will be converted to addresses into the SERP memory.

The second intitialization simply performs a cleartimeouts operation.

7.3.4. ProcessnewSERP

When the main controller receives a process_new_serp operation, it activates a

process which handles all the necessary actions for SERP processing. The first action of this

process is to activate the voting and timeout hardware which then votes the SERP. When the

entire SERP has been voted and the result stored in the voted SERP memory, the sender is

signalled to begin scanning for valid messages. When a message is found, the sender

signals the SERP-processing process, which handles the message sending protocol. The

message queue is not implemented in the initial model. Instead, the scoreboard idles until

the NE sends a continue operation. When the sender has scanned the entire voted SERP, it

signals the controlling process which in turn informs the NE that processing is complete.

The following paragraphs provide more detail.

When the voting and timeout hardware is signaled to do so, it reads SERP entries,

votes them, checks timeouts if necessary, and writes the result into the voted SERP memory.

First, the addresses in a pid-to-vid translation table entry are used to read out the

corresponding SERP entries. When all the SERP entries have been read, they are passed to a

process which handles the voting and timeout checking. The voting is done by a subprogram

which converts the SERP entries to bits, votes them, and converts them back to their original

types. After timeouts are checked, the voted SERP entry is assembled and written to the voted

SERP memory using the source VID as the address.

Once voting is completed, the sender is activated. The sender asserts an address into

the vids-in-system table, each entry of which is an address into the voted SERP memory.

When the resulting voted SERP entry appears on the data lines, the sender latches it and

checks the OBNE bit. If the OBNE bit is not set, the next address in the vids-in-system table is

asserted. If the OBNE bit is set, the potential message is checked for validity according to the



rules presented in section 6.4.2.2. The behavioral model does not flag invalid messages.

The sender then asserts the destination VID as an address into the voted SERP memory. If

the destination VID's IBNF bit is not set, the next address in the.vids-in-system table entry is

asserted. If it is set, the sender assembles a message record and informs the SERP

processing controller that a message needs to be sent. The sender repeats this cycle until all

the voted SERP entries have been processed.

7.4. Performance

The model estimates the following performance figures using a 25 MHz (40 ns)

clock:

Operation Time (jis)
reset 31.6

CT update 31.6
process_new_SERP to first message 14.5

process SERP and send all messages* 19.7
'Half of the VIDs source a message

7.5. Verification and Testing

The informal verification of the model involved two basic steps. The first was to

write a test vector2 6 generator in C based on the functional description of the scoreboard. The

second was to write a VHDL testbench to read in these vectors from an external file, apply

them to the behavioral model, and check the resulting outputs for validity. The following two

sections discuss the algorithm used by the C program to generate test vectors and the testbench

which reads and applies them.

7.5.1. C Program

Test vector generation begins by generating a CT. This is done by randomly

generating a redundancy level (either 1,3 or 4) and attempting to fill it by cycling through the

NE's and assigning a free PE from each until the VID is filled. If not enough free PEs are

available to fill a VID, a new redundancy level is generated and the process repeats.

Successful population of a VID allows the program to enter it in the CT2 7.

26 Scoreboard test vectors consist of a CT and a number of SERPs'generated from that CT.

27 The presence bits are fabricated and a VID number and timeout value are randomly generated first.



After all PEs have been assigned to a VID, the program begins to randomly generate

messages. A source VID is chosen from a pool of free source VIDs and a destination VID is

randomly generated (the destination VID number must correspond to a valid VID). Once the

source and destination are selected the SERP entries are produced. The IBNF bits of the

destination VID's members and the OBNE bits of the source VID's members are asserted.

The exchange class and destination VID fields are also written. In the current version of the

program (version 2.2), the exchange class is fixed and no user byte is written. The program

produces messages until all VIDs have been used as sources.

The program writes each CT and SERP to an external file. All output is printable

ASCII and entirely numeric. This ensures that the VHDL testbench has no problems reading

and interpreting the file using the TEXTIO package.

7.5.2. Testbench

The scoreboard testbench simply instantiates the top level entity, which in the initial

model encompasses both the scoreboard and the dual-port RAM, and feeds the model CTs and

SERPs. The testbench first reads a CT from the test vector file, writes it into the dual-port

RAM, and then tells the scoreboard to reset. After the reset is complete, the testbench reads the

first SERP from the file, writes it into the dual-port RAM, and tells the scoreboard to process

it. Each message the scoreboard sends is acknowledged by the testbench but currently only

manual checks on message correctness are performed. When the scoreboard signals that

SERP processing is complete, the testbench reads the next SERP from the file, writes it into

the dual-port RAM, and tells the scoreboard to process it. This cycle is repeated as often as

desired. The testbench is also responsible for generating the system-wide clock.

7.6. Limitations

The purpose of this section is to make explicit all the deficiencies of the VHDL model

of the scoreboard. Many of these deficiencies were designed to limit complexity or resulted

from changes in the algorithm. There was insufficient time to solve them.

c The C program needs rewriting to implement faults. This is the most serious

limitation, for without the ability to generate faults or turn on OBNE bits over

multiple SERP cycles, for example, much of the scoreboard is untested (i.e. the

voter and the timeout mechanism).



c The main controller is really gross and kludgy since it was written

incrementally. Most of its code is unnecessary, a fact discovered only after it was

written.

c Timeout expiration is calculated incorrectly.

The message sending protocol presented in the algorithm is not implemented.

Instead, the scoreboard waits after each message for clearance to continue.

* IBNF bits are not cleared after sending a message. Thus, a VID could receive

more than one message in a cycle.

* Invalid destination VIDs are not flagged.

c The model does not support a load timer operation.

* Full message validity checking is not implemented.

* The structural voter has not been tested.

co The testbench needs to perform complete message checking.



8. Discussions on Implementation

This chapter discusses a number of scoreboard implementation possibilities, shown

in tree form in Figure 8-1. The conclusion of this chapter is that, in order to ensure a working

implementation which meets throughput goals, an ASIC must be built, preferably using

VHDL synthesis. If for some reason (such as cost) an ASIC cannot be constructed, the next

best implementation would be to use a CPU. The sections following explain the advantages

and disadvantages of each possibility in detail.

Figure 8-1, Implementation Tree.

8.1. General Purpose Microprocessor

The simplest and most cost-efficient method for implementing the scoreboard is with

a general purpose microprocessor. Since speed is the main goal, the preferred processor

would be a RISC model, such as a SPARC or Motorola 88000. Figure 8-2 below shows the basic

block diagram of such a design. It would consist of the processor, some dedicated memory,

an external timer for timeouts2 8, glue logic,and a dual-port RAM for communication

between it and the rest of the NE. The dual-port RAM would hold the SERP, CT, and the

28 Though certain RISC processors (like the AMD 29000) have built-in timers, they could not be used
because the timers in each scoreboard instance must be kept synchronized.



messages the scoreboard finds, while the private memory would hold any lookup tables used

to speed SERP processing.

Figure 8-2, RISC scoreboard

The chief advantage to a RISC design is ease of design. Designing such a scoreboard

would be simple since the only tricky part would be the glue logic, whose function it would be

to interface to the NE's controller. The rest of the design is a simple matter of wiring pins

together. The software design would be more complex, but still not too difficult since the

scoreboard algorithm is easily expressed in C 29. Example code for such a design can be

found in Appendix 10.3. Because of its simplicity, a RISC scoreboard design is also easily

changed.

The advantages of this design are compelling, so much so that it would be difficult to

justify any other implementation save for two crippling disadvantages - performance and

area. A feel for the performance can be obtained by examining some example scoreboard C

code. The code which gets executed most often is the voting code, shown in Figure 8-3. Using

fully optimized assembly language, 62 instructions are required to vote the OBNE bits of a

triplex. Assuming an all triplex configuration (13 VIDS), 806 instructions would be executed

to reach the conclusion that the SERP contains no messages. Using a 25 MHz processor (40

29 For a deliverable system, hand optimized assembly language would yield the best performance.



ns/instruction), this minimum case will require 32.2 As to complete. When the overhead of

performing timeouts and voting the rest of the SERP information is added, the scoreboard

will be too slow to support real-time tasks with iteration rates of 100 Hertz.

Figure 8-3, C Voting Code

The second disadvantage of a RISC scoreboard is area. RISC chips alone are very

large (approximately 200 pins is typical). The addition of support chips would cause the

design to consume a large percentage of available board area.Thus, even though a RISC

scoreboard is attractive from a design standpoint, i; is unable to meet the design goals of C3.

8.2. FPGA

A second alternative for implementing the scoreboard is with Field Programmable

Gate Arrays (FPGA). FPGAs have the advantages of relatively high-density, low cost, and

reprogrammability. Most of them also have good design systems. Furthermore, an FPGA

/* vote is a generic vote function which will vote up to 4

*/
/* items passed to it.
/**t**t***********tt***** t**t*******************************•*

int vote (a,b,c,d,redun level, is flow control,unan)
int a,b,c,d, is_flowcontrol,redunlevel,*unan;

int result;

switch (redun level)

case 4:
*unan - ((a -- b) && (b == c) && (c -- d)) ? TRUE : FALSE;
if (is flow control)

result - (a&b&c) I (a&c&d) I (b&c&d) I (a&b&d);
else

result - (a&b) I (b&c) I (c&d) I (abc) I (a&d) I (b&d);
break;

case 3:
*unan = ((a == b) && (b -= c)) ? TRUE : FALSE;
result = (a & b) I (b & c) I (a & c);
break;

case 1:
*unan = TRUE;
result - a;
break;

others:
break;

return(result);

/* end vote */

---



implementation would probably be able to meet performance goals. An FPGA

implementation has three major disadvantages, though.

First, the design task would be long and complex. A student at CSDL recently

completed two FPGA designs for his MS Thesis [Sak91], one of which was a voter. The voter

alone consumed an entire FPGA and could barely run at 12.5 MHz (a 25 MHz scoreboard is

the goal). The scoreboard must contain a voter along with an abundance of additional

hardware. Partitioning the design into multiple FPGAs would be a nightmare.

A second disadvantage is that the existing VHDL scoreboard models would be useless

for designing the FPGAs. Although some companies have promised VHDL support for their

FPGA design systems, such a capability is not currently available. With all the effort put

forth into VHDL modeling (and the concomitant advantages), it would be undesirable to

throw it all away.

The final disadvantage is verification. With VHDL, verification would proceed

concurrently with transformation of the design to the gate level. Each step would be verified

to ensure that the new model is correct and that design goals are being met. With an FPGA

implementation, however, verification of the design would be much more difficult because it

would be spread over multiple FPGAs. Verifying each FPGA would also be difficult because

it would only perform a subsection of the full algorithm 30.

8.3. Comlination

Another implementation strategy is to combine the CPU and FPGA. An FPGA could

perform the speed critical task of voting while the CPU could take care of everything else

including feeding the voter. This method would yield a fast enough design. However, it is

probable that the overhead of reading SERP entries, writing them to the voter, and reading the

result would incur the same overhead as software voting, since loads and stores are usually

multiple cycle instructions. A solution would be to add address generation hardware to the

voter so that it could read SERP entries on its own. If this is done, then why use a CPU at all?

30 It could be possible to generate test-vectors for the FPGA with a VHDL model, but the VHDL model
would have to reflect the organization and gate-structure of the FPGAs. This would entail two
complete "-isigns of the scoreboard, one in VHDL and one in FPGAs, thus making this solution
prohibitive.



Why not throw on the additional hardware to perform the rest of the scoreboard function? In

short, a full FPGA implementation would be preferable to this option.

8.4. ASIC

The final implementation strategy is to use an ASIC. An ASIC has the advantages of

speed, size, and verifiability but the disadvantage of high cost and high risk relative to the

other implementation strategies. Two different paths exist for creating an ASIC - VHDL

synthesis and gate level design. As previous sections have shown, using VHDL with

synthesis is the preferred path.

There is little question that the fastest implementation is an ASIC. A single chip

would also consume the least area of all the choices. Verifiability would also be the smoothest

since the VHDL testbench could be used for all the functional test vectors. Additionally, good

synthesis systems automatically insert additional hardware to aid final testing (i.e. scan-

path). The problem with the ASIC approach is cost and risk. However, an ASIC is the best

option for optimizing scoreboard performance.

As a sidenote, no matter which implementation method is chosen an emulator can be

used to allow development of the rest of the NE while the scoreboard is being designed. This

emulator would consist of a C (or similar) program running on a single-board computer.

The NE could be set up to temporarily write SERPs and CTs into memory on board the

emulator. The emulator would then process them and write messages back to the NE. To the

NE, the emulator would simply appear as a slow scoreboard.
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9. Conclusions and Recommendations

This thesis has discussed the advantages of using VHDL to design digital hardware.

It also discussed modeling issues and applied them to the specification and modeling of the

FTPP scoreboard. Finally, implementation options were discussed.

The main conclusion of this thesis is that VHDL, combined with the top-down design

methodology, is a viable and useful digital hardware design method. The use of VHDL

shortens the design cycle by facilitating the specification and verification of designs early

in their life. Furthermore, abstract behavioral modeling, though requiring the rewriting of

entity declarations, has been shown to be useful when little is known about implementation.

The discussion on implementation concluded that an ASIC scoreboard would yield the best

cost/performance, followed by a RISC-based scoreboard.

A great deal of work must be accomplished before a working scoreboard can be

constructed. The author took the first step by structuralizing the voting and timeout

hardware. As of this writing, though, it had not been tested. The same process of

structuralization must be performed for all the entities in the behavioral VHDL model. After

this has been accomplished, a VHDL synthesis tool could be used to produce a gate-level

netlist. The test vector generator also requires an extensive rewrite to accommodate fault

generation.

One implementation issue that was not discussed and should be further researched is

that of using content-addressable memory for the voted SERP. It has the capability to reduce

the memory demands of the scoreboard, both by reducing the size of the voted SERP memory

and by eliminating the need for the vids-in-system table.
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10. Appendices

10.1. Glossary of Terms

CHDL- Computer Hardware Description Language.

CSDL. Charles Stark Draper Laboratory

FUR - Fault Containment Region : A circuit incapable of propagating internal
hardware faults past its borders. This is achieved (usually) through physical and
electrical isolation.

FTPP - Fault Tolerant Parallel Processor : A prototype fault-tolerant computer
constructed to achieve high performance and high reliability for critical
computing applications. See Figure 1 for a diagram.

HLF - Higher Life Form bit. This bit, used internally by the scoreboard when
processing messages, indicates that at least one triplex or quad exists in the
system.

LERP - Local Exchange Request Pattern : A data structure generated by each NE which
contains message data for each PE in that NE. Spec ifically, the LERP contains
whether the PE has a message to send and to whom and if the PE is able to receive
a packet.

LRM - Language Reference Manual. This refers to the standard IEEE document on the
VHDL language.

NE - Network Element : The part of the FTPP responsible for sending and receiving
packets on behalf of the PE's.

NEFTP - Network Element Fault Tolerant Processor. A minimum Byzantine Resilient
computer system used to demonstrate the utility of high-speed, fiber-optic data
links.

Packet - The 64 byte block of data exchanged by the NE. Each inter-PE message is
packetized by the NE before it is sent.

PE - Processing Element : The part of the FTPP which performs the computations.
Usually a single-board computer.

SERP- System Exchange Request Pattern : A data structure composed of the
concatenation of the LERP from each FCR.

VHDL - VHSIC Hardware Description Language

VHSIC - Very High Speed Integrated Circuit



10.2. Scoreboard Algorithm

This appendix contains the scoreboard algorithm flowchart. Shadowed boxes refer to

different pages.
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10.3. Sample Scoreboard Code

This appendix contains a C program which implements (most) of the scoreboard

algorithm. It is intended as an example of code for a RISC scoreboard.

/* Scoreboard simulation program
by
Dennis Morton
5 May 1991

embedded scoreboard implementation

/*************************************************************

/* This header contains globals used by the simulation */
/ ************** ** *******************************

#define TRUE 1
#define FALSE 0

#define NUM VIDS 256
#define MAX VIDS IN SYSTEM
#define PE PER NE 8
#define NUM NE 5
#define MAX REDUN LEVEL 4

#define OBNE MASK 0x80000000
#define IBNF MASK 0x40000000
#define DATA MASK Ox00ffffff
#define DEST VID MASK Ox00ff0000
#define CLASS MASK Ox0000ff00
#define BROADCAST MASK 0x00008000
#define USER BYTE MASK Ox000000ff

#define UNANSYNDROME 0

typedef struct ct_entry_type
{

int vid;
int redun_level;
int presence(NUM NE];
int timeout value;
int pids(MAX REDUN LEVEL];

typedef struct message_type

int obne_syndrome, ibnfsyndrome, data_syndrome;
int sourcevid,destvid;
int timestamp;

struct ct_entry_type ct[NUM_VIDS],ct_entry;
struct ct_entrytype translation_table[MAX_VIDSINSYSTEM],translation entry;
struct message_type message;

int serp[PEPERNE * NUM_NE];
int timeouts[NUM_VIDS];
int numvidsin system;

/**** ***************************************************/
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/* vote is a generic vote function which will vote up to 4 */
/* items passed to it. */
/** ***********************************

int vote (a,b,c,d,redun level,is flow control,unan)
int a,b,c,d,is flow control,redun level,*unan;

int result;

switch (redun level)

case 4:
*unan = ((a == b) && (b == c) && (c == d)) ? TRUE : FALSE;
if (is flow control)

result = (a&b&c) I (a&c&d) I (b&c&d) I (a&b&d);
else

result = (a&b) I (b&c) I (c&d) I (a&c) I (a&d) I (b&d);
break;

case 3:
*unan = ((a == b) && (b == c)) ? TRUE : FALSE;
result = (a & b) I (b & c) I (a & c);
break;

case 1:
*unan = TRUE;
result = a;
break;

others:
break;

return (result);

/* end vote */

/t*f*******•**************************************** **************/

/* check to checks to see if the timeout value (to value) has been */
/* reached. If it has, then it returns a true value for to reached. -/
/ ***************************W** W***t*t*** * *** ****/

int check to (vid,to value)
int vid,tovalue;

int to reached = FALSE;
int timervalue,timeoutvalue;

timer value = read timer();
timeout value = timeouts[vid];
if (timeout value == 0)

timeouts[vid] = timer ralue; /* TO set? then set a timeout */
else if ((timervalue - timeout value) > to value)

to reached = TRUE;
timeouts[vid] = 0;

}
return (toreached);

/* end checkto */

/ ****** ***** *********************************************/

/* fc vote performs the flow control vot.: function (i.e. OBNE */
/* and IBNF). */
/**** * **********************************

int fc_vote (vid,a,b,c,d,redunlevel,tovalue,syndrome)
int vid,a,b,c,d, redun_level,to_value,*syndrome;
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int i,unan,result;

result = vote (a,b,c,d,redunlevel,TRUE,&unan);

if (unan)
*syndrome = UNANSYNDROME;

else

/* generate syndrome here */

if (!(unan) && (result != 0)) /* check for timeouts */
if (!(check to (vid,to value)))
/* timeout has not expired */
result = FALSE;

return (result);

/* end fc vote */

/**************************************************************

/* vote other is the function which votes the destination */
/* VID and exchange class fields of the SERP. */
/******* ************************ *******************************

int vote data (a,b,c,d,redun level,syndrome)
int a,b,c,d, redun_level, *syndrome;

int result,unan;

result = vote (a,b,c,d,redun level,&unan);
if (unan)

*syndrome = UNAN SYNDROME;
else

/* generate syndrome here */

return (result);

/* end voteother */

/************************ vote_serp *****************************/
/* vote_serp votes the SERP using the translation table to read */
/* entries out in VID order. It sends all messages it finds. */
/********************************* */* *1

void vote_serp ()

int obne_unan,ibnf unan;
int obne_syndrome, ibnf_syndrome, data_syndrome;
int obne,ibnf,data,ex_class,destvid,user byte;
int a,b,c,d,i;
static int broadcast_pending = FALSE;

if (!(broadcast_pending))
for (i = 0; ((i <= num_vidsin_system) && (!broadcast_pending)); i++)

translation_entry = translation_tableli];
a = serp[translation_entry.pids[0]] & OBNE_MASK;
b = serp[translationentry.pids[l]] & OBNE_MASK;
c = serp[translation_entry.pids[2]] & OBNE_MASK;
d = serp[translation_entry.pids[3]] & OBNE_MASK;
obne = fc_vote(translationentry.vid,a,b,c,d,
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translation entry.redun_level,
translationentry.timeout_value,&obnesyndrome);

if (obne)

{
a = serp(translation_entry.pids[0]] & DATA_MASK;
b = serp[translation_entry.pids[l]] & DATA_MASK;
c = serp[translation entry.pids[2]] & DATA_MASK;
d = serp[translation entry.pids(31] & DATA_MASK;

/* vote the exchange class, destination VID, and user byte */

data = vote data (translation entry.vid,a,b,c,d,
translation_entry.redun_level,&data_syndrome);

/* if message is a broadcast, processing is complete */
if (data & BROADCAST MASK)

broadcast_pending = TRUE;
else

dest vid = data & DEST VID MASK;

/* check ibnf bit of destination vid */
ct_entry = ct[dest_vid];
a = serp(ct_entry.pids(0]] & IBNF_MASK;
b = serp[ct_entry.pids[l]] & IBNF_MASK;
c = serp[ct_entry.pids[2]] & IBNF_MASK;
d = serp[ctentry.pids(3]] & IBNF_MASK;
ibnf = fc_vote(ct_entry.vid,a,b,c,d,ct entry.redun_level,

ctentry.timeoutvalue, &ibnf_syndrome);
if (ibnf)
{

/* send a message */
message.obnesyndrome = obne_syndrome;
message.ibnf _syndrome = ibnf syndrome;
message.data_syndrome = data_syndrome;
message.sourcevid = translation_entry.vid;
message.dest vid = ct entry.vid;
message.timestamp = Oxff;

else

/* do broadcast stuff */
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10.4. Recommended Style Guide

I recommend adhering to the following style guide when modifying the scoreboard

VHDL code in order to keep it uniform.

1. separate out the keywords by putting them in all capital letters.

2. use liberal indentation

3. follow this naming guide for constructs:

* entities : descriptive name

* architectures : entityname_(behavioral,rtl,structural)

* configuration : c(architecture_name)

* packages : (descriptive name)_package

* types : (descriptivename)_type;

4. Model state machines using the method I describe in section 5.1.
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10.5. Pitfalls to Avoid

The following is a list of pitfalls to avoid when using the Vantage Spreadsheet VHDL

tool.

* once you change the grid, keep it consistent (I use a 5 point grid). Otherwise,

signals will not connect to ports of entities created with a smaller grid if the port

falls between grid points in the instantiating architecture.

* do not make port names visible to avoid unsightly clutter.

* when creating an entity, always draw the box larger then necessary since

resizing it later is a pain.

* If a change is made to an component which is instantiated in an architecture, that

component must be re-instantiated for the update to be reflected in the

architecture. However, do not simply delete the old component, since any

dangling signals will have to be redrawn. Instead, add a second component

directly on top of the old component. Then, select them both and do an inform to

find out the new components name (It'll be something like COMP 000025). The

choose "unselect by name" and then delete. Do a screen update to see the new

component. Be sure to rename it if the old component had a special name.
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10.6. VHDL Behavioral Description

This appendix contains the complete VHDL source code for the behavioral model of

the scoreboard. The files are in the same order as presented in section 7.2.

10.6.1. Scoreboard Packag

-- Scoreboard package declaration

-- This package contains data types and constants used throughout the
-- scoreboard entity. It is visible throughout the entire design

LIBRARY score;
USE score.addresspackage.ALL;
USE std.std_logic.ALL;
USE std.std ttl.ALL;

-- Note that deferred constants cannot be used very often in this
-- section because their values are needed later on in the package
-- declaration

PACKAGE scoreboard_package IS

-- define the clock_period

CONSTANT clock period : TIME;
CONSTANT control_delay : TIME;

-- declare configuration type data (global in scope)

CONSTANT num ne : INTEGER := 5;
CONSTANT pe_per ne : INTEGER := 16;
CONSTANT max vid : INTEGER := 255;
CONSTANT max redun level : INTEGER := 4;

SUBTYPE pe_loc_type IS INTEGER RANGE 0 TO (pe_perne * numne - 1);

-- starting locations in the dual port ram
CONSTANT dpramsize : INTEGER;
CONSTANT mem_base : address_type;
CONSTANT serp base : address type;
CONSTANT ct base : address type;
CONSTANT msgbase : address_type;

-- declare SERP related items
SUBTYPE flow control type IS BOOLEAN;
SUBTYPE vidtype IS INTEGER RANGE 0 TO max vid;
SUBTYPE broadcast_type IS BOOLEAN;
SUBTYPE packet_type IS INTEGER RANGE 0 TO 3;
SUBTYPE exclass_type IS INTEGER RANGE 0 TO 7;

TYPE class_type IS RECOR,
broadcast : BOOLEAN;
packet : packet_type;
ex_class : exclass_type;

END RECORD;
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-- NOTICE that in this simulation no user byte is included. I'm still
-- debating whether to include it. The hooks will be there no matter
-- what, though.

TYPE serp type IS RECORD
obne,ibnf : flow control type;
dest vid : vid type;
class : class_type;

END RECORD;

-- declare configuration table related items

TYPE redunleveltype IS (zero,simplex,triplex,quad);
TYPE presence type IS ARRAY(O TO (numne - 1)) OF BOOLEAN;
TYPE memberstype IS ARRAY(O TO (max_redun_level - 1)) OF peloc_type;
SUBTYPE timeout_type IS INTEGER RANGE 0 TO 255;

TYPE cttype IS RECORD
vid_number : vid type;
redun level : redun level type;
presence : presence type;
members : memberstype;
timeout : timeout_type;

END RECORD;

-- the msg_data type is used to pass message data outside the scoreboard

TYPE msg_type IS RECORD
source vid,dest vid : vidtype;
class : class_type;
timestamp : TIME;
obne_syndrome,ibnf_syndrome,vote_syndrome : presence type;
size : NATURAL;

END RECORD;

-- define default constants for all the types in case an IN port of
-- these types wants to remain OPEN (won't work otherwise)

CONSTANT defclass : class type;
CONSTANT defpresence : presence_type;
CONSTANT defmembers : members_type;
CONSTANT def_serp : serp type;
CONSTANT def_ct : cttype;
CONSTANT def_msg : msg_type;

-- These next two functions are used to convert redunleveltype to and
-- from an INTEGER

FUNCTION redun_to_int (redun : IN redun_leveltype)
RETURN INTEGER;

FUNCTION int to redun (int : IN INTEGER)
RETURN redun level type;

END scoreboardpackage;

-- scoreboard_package body
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PACKAGE BODY scoreboard_package IS

CONSTANT clock_period : TIME := 40 ns;
CONSTANT control_delay : TIME := clock_period/4;

-- starting locations in the dual port ram

CONSTANT dpram_size : INTEGER := 300;
CONSTANT mem base : address_type := -1;
CONSTANT serp_base : address_type := 0;
CONSTANT ctbase : address_type := dpram_size + 1;
CONSTANT msg_base : address_type := 2*dpramsize + 1;

-- Give values to the default constants

CONSTANT def class : class_type := (FALSE,0,0);
CONSTANT defpresence : presence_type := (FALSE,FALSE,FALSE, FALSE, FALSE);
CONSTANT def members : members_type := (0,0,0,0);
CONSTANT def_serp : serp_type := (FALSE,FALSE, 0,defclass);
CONSTANT def_ct : ct_type := (0,zero, def_presence, def_members,0);
CONSTANT def_msg : msg_type := (0,0,defclass,0 ns,def_presence,

defpresence,def_presence,0);

-- **********************************************************************

-- Elaborate-the two conversion functions

FUNCTION redunto_int (redun : IN redun_level_type)
RETURN INTEGER IS
BEGIN
CASE redun IS

WHEN zero =>
RETURN 0;

WHEN simplex =>
RETURN 1;

WHEN triplex =>
RETURN 3;

WHEN quad =>
RETURN 4;

END CASE;
END;

FUNCTION int to redun (int : IN INTEGER)
RETURN redun_level_type IS
BEGIN

CASE int IS
WHEN 0 =>

RETURN zero;

WHEN 1 =>
RETURN simplex;

WHEN 3 =>
RETURN triplex;
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WHEN 4 =>
RETURN quad;

WHEN OTHERS =>
ASSERT FALSE REPORT "Integer Does Not Convert to redun";
RETURN zero;

END CASE;
END;

END scoreboard_package;
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10.6.2. Address Package

-- Address Package Declaration

-- This package contains data types and a resolution function for
-- memory addresses. This package is included in all memory entities
-- and those which access them.

LIBRARY score;
USE std.std_logic.ALL;
USE std.std ttl.ALL;

PACKAGE address package IS

SUBTYPE address_type IS INTEGER RANGE -1 TO INTEGER'RIGHT;

-- Define a resolved address type. Somewhat kludgy, but it'll work.

CONSTANT high z_address : address_type;

TYPE address array IS ARRAY (NATURAL RANGE <>) OF address_type;

FUNCTION resolve address (addresses: IN address_array)
RETURN address type;

SUBTYPE resolved_address IS resolve_address address_type;

--- **********X*******i**************************************************

END address_package;

PACKAGE BODY address_package IS

-- *******+**************************************************************

-- Address_type is resolved by checking for address_type'RIGHT. This
-- value is analogous to the 'Z' state of tri-state logic. In other
-- words, a value of dpram_size*3 does not have an effect

CONSTANT highz_address : address_type := -1;

FUNCTION resolve_address (addresses: IN address_array)
RETURN address_type IS

VARIABLE result : address_type;
VARIABLE temp_i : INTEGER;
VARIABLE foundone,morethan_one : BOOLEAN := FALSE;

BEGIN
result := highz address;

-- If no inputs then default to address'RIGHT
IF (addresses'LENGTH = 0) THEN

RETURN result;
ELSIF (addresses'LENGTH = 1) THEN
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RETURN addresses(addresses'LOW);
-- Calculate value based on inputs
ELSE

-- Iterate through all inputs
FOR i IN addresses'LOW TO addresses'HIGH LOOP

IF ( addresses(i) = high_z_address ) THEN
NEXT;

ELSIF NOT found one THEN
result := addresses(i);
found one := TRUE;

ELSE
more than one := TRUE;

END IF;
END LOOP;

IF more than one THEN
result := high_z address;

-- ASSERT FALSE
-- REPORT "Address line has'more than one driver"
-- SEVERITY ERROR;

END IF;

-- Return the resultant value
RETURN result;

END IF;
END;

END addresspackage;
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10.6.3. Voter Package
-- **************************************

-- Voter Package

-- This package contains subprograms to convert high level data types
-- to bit vectors so that they can be easily voted

LIBRARY score;
USE score.scoreboard_package.ALL;
USE score.voted_serp_package.ALL;
USE std.std_logic.ALL;
USE std.std cmos.ALL;

PACKAGE voter_package IS

-- Declare a type to hold an array of serp entries. This models the
-- registers at the input to the voter.

TYPE serp_array IS ARRAY(NATURAL RANGE <>) OF serp_type;

--- --**********t**************i**-*-*********************************
-- Declare timeout memory related stuff

CONSTANT timer resolution : INTEGER := 16;
SUBTYPE timer_range IS INTEGER RANGE 0 TO (2**timer_resolution - 1);
TYPE timertype IS RECORD

timeout set : BOOLEAN;
value : timer range;

END RECORD;

TYPE timeoutmemory_type IS ARRAY(INTEGER RANGE <>) OF timer_type;
CONSTANT inittimervalue : timer range;
CONSTANT maxtimervalue : timer range;

----******--**********-*******************************
-- Declare the states for the voter controller

TYPE vote_state_type IS (vO,vl,v2,v3,v4,v5,v6,v7,v8,v9,vl0);

--*-****************-***********-**t************************************
-- Procedure vote vid : this procedure takes in the SERP values for a
-- given vid and performs all the voting necessary to produce a
-- voted_serp entry.
-- NOTE : these procedures must be changed for a max redun level of
-- less than 4!!

PROCEDURE vote_vid ( SIGNAL voted_serp_entry : INOUT voted_serp_type;
SIGNAL vote_values : IN serp_array;
SIGNAL current vid : IN vid type;
SIGNAL presence : IN presence_type;
obneunan,ibnf unan : INOUT BOOLEAN);

-- Procedure vote bits : this procedure simply votes a bit vector and
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-- returns both the result and a UNANIMOUS flag

PROCEDURE vote bits ( a,b,c,d : IN bit vector;
SIGNAL presence : IN presence_type;
syndrome : OUT presence_type;
unan : OUT BOOLEAN;
result : INOUT bitvector);

-- Procedure votebit : this procedure votes one bit (used for OBNE
-- and IBNF ) and returns a UNANIMOUS flag

PROCEDURE vote bit ( a,b,c,d : IN bit;
SIGNAL presence : IN presence_type;
syndrome : OUT presence_type;
unan : OUT BOOLEAN;
result : INOUT bit);

-- Below are the overloaded converttobits procedures

FUNCTION convert to bits ( a : IN flow_control_type)
RETURN bit;

FUNCTION convert to bits ( a : IN INTEGER)
RETURN bit_vector;

PROCEDURE converttobits ( a,b,c,d : IN flowcontrol type;
ba,bb,bc,bd : OUT bit);

PROCEDURE convert to bits ( a,b,c,d : IN INTEGER;
ba,bb,bc,bd : OUT bitvector);

PROCEDURE convert_to_bits ( a,b,c,d : IN class_type;
ba,bb,bc,bd : OUT bit_vector);

-- Below are the overloaded convert_back procedures which convert bits
-- back to abstract types

FUNCTION convert back ( a : IN BIT)
RETURN BOOLEAN;

PROCEDURE convertback ( flowcontrolbit : IN bit;
SIGNAL flow_control : OUT flow_control_type);

PROCEDURE convert back ( bits : IN bit vector;
SIGNAL int : OUT INTEGER);

PROCEDURE convert back ( bits : IN bit vector;
SIGNAL class : OUT class type);

TYPE power_of_2_array IS ARRAY (NATURAL RANGE <>) OF NATURAL;
CONSTANT power_of_2 : power_of_2_array(0 TO 7) := (1,2,4,8,16,32,64,128);

END voter_package;
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-- Voter Package Body

-- This is the body for the voter package

PACKAGE BODY voter_package IS

CONSTANT init timer value : timer range := 0;
CONSTANT maxtimervalue : timerrange := 2**timer_resolution - 1;

-_*_*********************************************************************

-- PROCEDURE BODY vote vid

PROCEDURE vote_vid ( SIGNAL votedserp_entry : INOUT voted_serp_type;
SIGNAL vote_values : IN serp_array;
SIGNAL currentvid : IN vid_type;
SIGNAL presence : IN presence_type;
obneunan,ibnfunan : INOUT BOOLEAN)

IS

-- the b_ variables represent the SERP fields transformed into bits

VARIABLE a,b,c,d : serp_type;
VARIABLE ba,bb,bc,bd : bit; -- bit values of obne and ibnf
VARIABLE voted obne,voted ibnf : bit;

VARIABLE bva,bvb,bvc,bvd : bit vector(7 DOWNTO 0);
VARIABLE voted_dvid,voted class : bitvector(7 DOWNTO 0);

VARIABLE dvid_syndrome, class_syndrome, obne_syndrome, ibnf_syndrome
: presencetype;

VARIABLE dvidunan,classunan : BOOLEAN := FALSE;

VARIABLE index : INTEGER := 0;

BEGIN
index := vote values'LOW;
a := vote values (index) ;
b := vote values(index + 1);
c := vote values(index + 2);
d := vote values(index + 3);

-- Vote obne

convert to bits (a.obne,b.obne,c.obne, d.obne,ba,bc,bb, bd);
votebit (ba, bb,bc,bd,presence, obne_syndrome,obneunan,

voted obne);
convert_back(voted_obne,voted_serp_entry.obne);

-- ft***** **** *************************************************************

-- Vote ibnf

convert to bits (a.ibnf,b.ibnf, c.ibnf, d.ibnf,ba,bc,bb,bd);
vote_bit (ba, bb, bc, bd, presence, ibnf _syndrome,ibnf_unan,

voted ibnf);
convert_back (voted_ibnf,votedserp_entry.ibnf);

-- Vote destination VID
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convert to bits (a.dest vid,b.destvid,c.dest_vid,d.dest vid,
bva,bvb,bvc,bvd);

vote bits (bva,bvb,bvc,bvd, presence,dvid_syndrome,dvid_unan,
voted_dvid);

convert_back(voted_dvid,voted_serp entry.destvid);

__******w***************w*********************************************

-- Vote class

convert to bits (a.class,b.class,c.class,d.class,
bva,bvb,bvc,bvd);

votebits (bva, bvb,bvc,bvd, presence, class_syndrome, class_unan,
voted_class);

convert_back(voted_class,voted_serpentry.class);

voted serp entry.source vid <= current vid;

END;

-- PROCEDURE BODY vote bits

PROCEDURE vote bits ( a,b,c,d : IN bit vector;
SIGNAL presence : IN PRESENCE_type;
syndrome : OUT presence_type;
unan : OUT BOOLEAN;
result : INOUT bit vector)

IS

VARIABLE ta,tb,tc,td : bit vector(a'RANGE);

BEGIN
ta := a;
tb := b;
tc := c;
td := d;

-- for now, the voter simply returns the last value which isn't masked out
-- this is ok because faults aren't being handled yet

IF presence(0) THEN
result := a;

END IF;

IF presence(1) THEN
result := b;

END IF;

IF presence(2) THEN
result := c;

END IF;

IF presence(3) THEN
result := d;

END IF;

-- result := (ta AND tb AND tc) OR (ta AND tc AND td) OR
-- (tb AND tc AND td) OR (ta AND tb AND td) OR
-- (ta AND tb) OR (tb AND tc) OR (tc AND td) OR

(ta AND tc) OR (ta AND td) OR (tb AND td) OR
-- ta OR tb OR tc OR td;
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unan := TRUE;

END;

-- PROCEDURE BODY votebit

PROCEDURE vote bit ( a,b,c,d : IN bit;
SIGNAL presence : IN presence type;
syndrome : OUT presence_type;
unan : OUT BOOLEAN;
result : INOUT bit)

IS

VARIABLE ta,tb,tc,td : bit;
BEGIN
ta := a;
tb := b;
tc := c;
td := d;

IF presence(0) THEN
result := a;

END IF;

IF presence(1) THEN
result := b;

END IF;

IF presence(2) THEN
result := c;

END IF;.

IF presence(3) THEN
result := d;

END IF;

unan := TRUE;
END;

-- Below are the PROCEDURE BODIES for the overloaded convert to bits
-- procedures

-- convert flow_control_type to bits

FUNCTION converttobits ( a : IN flow control type)
RETURN bit IS
BEGIN

IF a THEN
RETURN '1';

ELSE
RETURN '0';

END IF;
END;

PROCEDURE convert tobits ( a,b,c,d : IN flowcontrol type;
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ba,bb,bc,bd : OUT bit)
IS
BEGIN

-- ASSERT (ba'LENGTH = bb'LENGTH = bc'LENGTH = bd'LENGTH)
-- REPORT "Yo!! Bit vectors passed to convert to bits not the same length"
-- SEVERITY ERROR;

IF a THEN
ba := '1';

ELSE
ba := '0';

END IF;

IF b THEN
bb := '1';

ELSE
bb := '0';

END IF;

IF c THEN
bc := 'I';

ELSE
bc := '0';

END IF;

IF d THEN
bd := '1';

ELSE
bd := '0';

END IF;
END;

-- **********************************************************************

-- convert subtypes of INTEGER to bits (limited to 8 bit resolution)

FUNCTION convert to bits ( a : IN INTEGER)
RETURN bit vector IS
VARIABLE place,ta : INTEGER;
VARIABLE temp : bit vector(7 DOWNTO 0);

BEGIN
place := temp'RIGHT;
ta := a;

FOR i IN temp'RANGE LOOP
IF (ta MOD 2) = 0 THEN

temp(place) := '0';
ELSE

temp(place) := '1';
END IF;

ta := ta/2;
place := place + 1;
END LOOP;

RETURN (temp);
END;

PROCEDURE convertto bits ( a,b,c,d : IN INTEGER;
ba,bb,bc,bd : OUT bitvector)
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VARIABLE place : INTEGER := 0;
VARIABLE ta,tb,tc,td : INTEGER;

BEGIN
-- ASSERT (ba'LENGTH = bb'LENGTH = bc'LENGTH = bd'LENGTH)
-- REPORT "Yo!! Bitvectors passed to convert to bits not the same length"
-- SEVERITY ERROR;

ta := a;
tb := b;
tc := c;
td := d;

-- The choice of ba is arbitrary since all the bit vectors must be the same size

place := ba'RIGHT;
FOR i IN ba'RANGE LOOP

IF (ta MOD 2) = 0 THEN
ba(place) := '0';

ELSE
ba(place) := '1';

END IF;

IF (tb MOD 2) = 0 THEN
bb(place) := '0';

ELSE
bb(place) := '1';

END IF;

IF (tc MOD 2) = 0 TEEN
bc(place) := '0';

ELSE
bc(place) := '1';

END IF;

IF (td MOD 2) = 0 THEN
bd(place) := '0';

ELSE
bd(place) := '1';

END IF;

ta := ta/2;
tb := tb/2;
tc := tc/2;
td := td/2;
place := place + 1;

END LOOP;

END;

-- convert class type to bits

PROCEDURE converttobits ( a,b,c,d : IN class_type;
ba,bb,bc,bd : OUT bit vector)

IS

BEGIN
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-- ASSERT (ba'LENGTH = bb'LENGTH = bc'LENGTH = bd'LENGTH)
-- REPORT "Yo!! Bit vectors passed to convert to bits not the same length"
-- SEVERITY ERROR;

IF a.broadcast TEEN
ba(7) := '1';

ELSE
ba(7) := '0';

END IF;

IF b.broadcast THEN
bb(7) := '1';

ELSE
bb(7) := '0';

END IF;

IF c.broadcast THEN
bc(7) := '1';

ELSE
bc(7) := '0';

END IF;

IF d.broadcast THEN
bd(7) := '1';

ELSE
bd(7) := '0';

END IF;

convertto bits(a.ex class,b.exclass,c.ex class,d.ex class,
ba(2 DOWNTO 0),bb(2 DOWNTO 0),bc(2 DOWNTO 0),
bd(2 DOWNTO 0));

convertto bits(a.packet,b.packet,c.packet,d.packet,
ba(4 DOWNTO 3),bb(4 DOWNTO 3),bc(4 DOWNTO 3),
bd(4 DOWNTO 3));

-- don't care about the fifth and sixth bits, so don't bother assigning them

END;

-- Below are the PROCEDURE BODIES for the overloaded convertback
-- procedures

-**********************************************************************

-- convert bit to flow control type

FUNCTION convert back ( a : IN BIT)
RETURN BOOLEAN IS
BEGIN
IF a = '1' THEN

RETURN(TRUE);
ELSE
RETURN(FALSE);

END IF;
END;

PROCEDURE convert back ( flowcontrol bit : IN bit;
SIGNAL flow_control : OUT flow_control_type)

IS
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BEGIN
IF flow control bit = '1' THEN

flowcontrol <= TRUE;
ELSE

flow control <= FALSE;

END IF;
END;

-- convert bitvector to integer

PROCEDURE convert back ( bits : IN bit vector;
SIGNAL int : OUT INTEGER)

IS
VARIABLE temp : INTEGER := 0;
VARIABLE place : INTEGER := 0;

BEGIN
FOR i IN bits'REVERSE RANGE LOOP

IF bits(i) = '1' THEN
temp := temp + powerof_2(place);

END IF;
place := place + 1;

END LOOP;
int <= temp;

END;

-- convert a bit vector to a class
-- k*t********************WWWWWWW****+*+t********************* ****

PROCEDURE convert back ( bits : IN bit_vector;
SIGNAL class : OUT class_type)

IS
BEGIN
IF bits(7) = '1' THEN

class.broadcast <= TRUE;
ELSE

class.broadcast <= FALSE;
END IF;

convert back(bits(2 DOWNTO 0),class.ex class);
convert_back(bits(4 DOWNTO 3),class.packet);

END;

END voter_package;
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10.6.4. Testbench Package
-- ********* * **************************************************************

-- This package contains subprograms and constants used by the
-- testbench. Its primary purpose is to abstract away the file reading
-- and writing from the testbench architecture

LIBRARY score;
USE score.scoreboard_package.ALL;
USE std.textio.ALL;
USE std.stdlogic.ALL;
USE std.std cmos.ALL;

PACKAGE tbpackage IS

-- These constants must be the same value as those in "config.h"

CONSTANT bytes_per_CT_entry : INTEGER;
CONSTANT bytes_per_SERP_entry : INTEGER;
CONSTANT num ne : INTEGER;
CONSTANT pe_perne : INTEGER;

TYPE int_array IS ARRAY (NATURAL RANGE <>) OF INTEGER;

-- read serp_entry reads one SERP entry from an external file
-- the name of the file is contained in the following declaration,
-- which should be modified as needed.

FILE test_data : TEXT IS IN "/usr/usr/ftpp/dennis/score/sbr2.2/test.i";

PROCEDURE get_status (input_file : IN TEXT;
regeneratect : OUT BOOLEAN;
num vids : OUT INTEGER;
numserp_entries : OUT INTEGER;
num_messages : OUT INTEGER );

PROCEDURE get_num serp_entries (input_file : IN TEXT;
num entries : OUT INTEGER);

PROCEDURE read_serp_entry (input file : IN TEXT;
serp entry : OUT serp_type);

PROCEDURE getnumvids (input_file : IN TEXT;
numvids : OUT INTEGER);

PROCEDURE regeneratect (input file : IN TEXT;
regenerate : OUT BOOLEAN);

PROCEDURE read_ct entry (inputfile : IN TEXT;
ct_entry : OUT ct_type);

PROCEDURE get_msg length (input file : IN TEXT;
msg_length : OUT INTEGER);

PROCEDURE read_msg_entry (input_file : IN TEXT;
msg_entry : OUT msg_type);

END tb_package;
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-- Testbench Package Body

PACKAGE BODY tb_package IS

-- These constants must be the same value as those in "config.h"

CONSTANT bytes_perCT_entry : INTEGER := 8;
CONSTANT bytes_per_ SERP_entry : INTEGER := 4;
CONSTANT num ne : INTEGER := 5;
CONSTANT pe_per_ne : INTEGER := 8;

-- *********************************************************************

-- PROCEDURE get_status

-- This PROCEDURE reads the status line of- the input file to determine
-- whether to perform a ct_update, and if so how many VID entries to
-- read. It also returns the number of SERP and message entries there
-- are before the next status line

PROCEDURE get_status (input_file : IN TEXT;
regenerate_ct : OUT BOOLEAN;
num vids : OUT INTEGER;
num_serpentries : OUT INTEGER;
nummessages : OUT INTEGER

IS

VARIABLE 1 : line;
VARIABLE good : BOOLEAN;
VARIABLE temp : INTEGER;

BEGIN
readline(input_file,1);
read(l,temp,good);
IF temp = 0 THEN

regenerate_ct := FALSE;
ELSE

regenerate_ct := TRUE;
END IF;
ASSERT good
REPORT "Could not read number of SERP
SEVERITY FAILURE;

read (, num_vids,good);
ASSERT good
REPORT "Could not read number of SERP
SEVERITY FAILURE;

read(l,num_serp_entries,good);
ASSERT good
REPORT "Could not read number of SERP
SEVERITY FAILURE;

entries -- HALTING"

entries -- HALTING"

entries -- HALTING"

read(l,num_messages,good);
ASSERT good
REPORT "Could not read number of SERP entries
SEVERITY FAILURE;

END;

-- HALTING"
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-- Get_num_serp_entries

-- This PROCEDURE determines how many serp entries should be read from
-- the input file

PROCEDURE get_num_serp_entries (input_file : IN TEXT;
numentries : OUT INTEGER)

IS
VARIABLE 1 : LINE;
VARIABLE good : BOOLEAN;

BEGIN
readline(inputfile, 1);
read(l,num_entries,good);
ASSERT good
REPORT "Could not read number of SERP entries -- HALTING"
SEVERITY FAILURE;

END get_num_serp_entries;

-- Read_serp_entry

-- This PROCEDURE reads the next serp entry from the input file.

PROCEDURE read_serp_entry (input_file : IN TEXT;
serp_entry : OUT serp_type)

IS
VARIABLE 1 : LINE;
VARIABLE values : int array(l TO 6);
VARIABLE good : BOOLEAN;
VARIABLE temp : serp_type;

BEGIN
readline(inputfile,l);

-- extract out the various fields from the line just read
FOR i IN values'RANGE LOOP

read(l,values(i),good);
ASSERT (good)
REPORT "Problem with serp input file"
SEVERITY failure;

END LOOP;

-- assign values to the record fields
IF (values(1) = 0) THEN

temp.obne := FALSE;
ELSE

temp.obne := TRUE;
END IF;

IF (values(2) = 0) THEN
temp.ibnf := FALSE;

ELSE
temp.ibnf := TRUE;

END IF;

temp.destvid := values(3);

IF (values(4) = 0) THEN
temp.class.broadcast := FALSE;

ELSE
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temp.class.broadcast := TRUE;
ASSERT FALSE REPORT "Broadcast message has been read";

END IF;

temp.class.packet := values(5);
temp.class.ex_class := values(6);

serp_entry :- temp;
END read_serp_entry;

-- Regenerate_ct

-- This PROCEDURE determines if a new ct must be read in prior to reading
-- another serp.

PROCEDURE regenerate_ct (input_file : IN TEXT;
regenerate : OUT BOOLEAN)

IS
VARIABLE 1 : LINE;
VARIABLE temp : INTEGER;

BEGIN
readline(input file,1);
read(l,temp);
IF temp - 1 THEN

regenerate :- TRUE;
ELSE

regenerate := FALSE;
END IF;

END;

-- Get num vids

-- This PROCEDURE reads the first entry in the input file to determine
-- how many vids to read in

PROCEDURE get_num_vids (input_file : IN TEXT;
num vids : OUT INTEGER)

IS

VARIABLE 1 : LINE;
VARIABLE good : BOOLEAN;

BEGIN
readline(input_file, );

read(l,num vids,good);
ASSERT (good)
REPORT "Problem with CT input file (bad number of vids)"
SEVERITY failure;

END;

-- ****** * *************************************************************

-- Readct_entry

-- This PROCEDURE reads the next ct entry from the input file

PROCEDURE readct_entry (input_file : IN TEXT;
ct_entry : OUT ct_type)

IS

VARIABLE 1 : LINE;
VARIABLE values : int_array ( 1 TO (max_redunlevel + 4));
VARIABLE good : BOOLEAN;
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VARIABLE temp : ct_type;
VARIABLE redun : INTEGER;
VARIABLE temp_to : timeout_type;

BEGIN
-- the first part reads in the file entry for a vid
readline(input_file, );

read(l,temp.vid number,good);
ASSERT (good)
REPORT "Problem with CT input
SEVERITY failure;

read(l,redun,good);
ASSERT (good)
REPORT "Problem with CT input
SEVERITY failure;

file (bad VID number)"

file (bad redun)"

FOR i IN 1 TO (redun + 4) LOOP
read(l,values(i),good);
ASSERT (good)
REPORT "Problem with CT input file (bad mask or pe location)"
SEVERITY failure;

END LOOP;

read(l,temp_to,good);
ASSERT (good)
REPORT "Problem with CT input file (bad timeout value"
SEVERITY failure;

temp.timeout :- temp_to;

-- the second part does the decoding and assigning
CASE redun IS
WHEN 1 =>

temp.redun_level := simplex;
WHEN 3 =>

temp.redun_level := triplex;
WHEN 4 ->

temp.redunlevel := quad;
WHEN OTHERS =>

ASSERT FALSE
REPORT "Bad redundancy level
SEVERITY FAILURE;
temp.redun level := simplex;

END CASE;

- assigning default"

- Change when C simulation has been updated !!!

FOR i IN 1 TO (num ne - 1) LOOP
IF values(i) = 1 THEN

temp.presence(i-1) := TRUE;
ELSE

temp.presence(i-1) := FALSE;
END IF;

END LOOP;
FOR i IN 1 TO redun LOOP

temp.members(i-1) := values(i + max redunlevel);
END LOOP;

ctentry := temp;

END read ct entry;
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-- Get msg_length

-- This PROCEDURE gets the number of entries in the msg file

PROCZDURE get_msg_length (input_file : IN TEXT;
msg_length : OUT INTEGER)

IS
BEGIN
END;

-- Read_msg_entry

-- This PROCEDURE reads an entry in the msg input file

PROCEDURE read_msg_entry (input file : IN TEXT;
msg_entry : OUT msg_type)

IS
BEGIN
END read_msg_entry;

END tb_package;
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10.6.5. Main Control Package

-- Main Control Package

-- This package contains types and constants used by the main
-- controller. Its main puprose is to abstract away the state
-- definitions for use with multiple architectures.

LIBRARY score;
USE score.scoreboard_package.ALL;
USE std.std cmos.ALL;
USE std.std_logic.ALL;

PACKAGE main_control_package IS

--- **+********+**+**** ******t*,t*tW** *** *** *******************

-- This type is used by the NE to tell the scoreboerd what to do

TYPE operation_type IS (unknown,idle, reset_state, update_ct,
clear_timeouts,processnew_serp, continue);

----**+*******************************************

-- This type is used by the scoreboard to inform the NE of what its doing

TYPE return_operation_type IS (unknown,idle, busy, reset_complete,
ct_update complete,clear_complete,
message_to_send,processingcomplete);

-- **** ********* ********************************************************

-- The following two TYPES contain states for state machine PROCESSes
-- within the main controller.

TYPE ptov_state_type IS (sO,sl,s2,s3,s4);

TYPE serp_processor_state_type IS (unknown,idle,vote_serp, find_messages,
send_message,processing_complete);

END main controlpackage;
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10.6.6. Voted SERPl Package

-- Voted Serp Package

-- This package contains types, subprograms, and constants used by the
-- sender and voter-timeout entities.

LIBRARY score;
USE score.scoreboard_package.ALL;
USE std.std_logic.ALL;
USE std.std cmos.ALL;

PACKAGE voted_serp_package IS

TYPE voted_serp_type IS RECORD
obne,ibnf : flow_control_type;

vid_is_simplex : BOOLEAN;
source_vid,dest_vid : vidtype;

class : classtype;
obnesyndrosyndrome,ibnf_syndrome,sbvote_ syndrome : presence type;

END RECORD;

TYPE voted_serp_memory_ type IS ARRAY (INTEGER RANGE <>) OF
voted_serp_type;

PROCEDURE message_is_ legal ( VARIABLE vs_entry : INOUT voted_serp_type;
SIGNAL hlf : IN BOOLEAN;
VARIABLE valid : OUT BOOLEAN);

END voted_serp_package;

PACKAGE BODY voted_serp_package IS

PROCEDURE message_is_legal ( VARIABLE vs_entry : INOUT voted_serp_type;
SIGNAL hlf : IN BOOLEAN;
VARIABLE valid : OUT BOOLEAN)

IS
BEGIN

IF vs_entry.vid_is_simplex AND vs_entry.class.broadcast THEN
valid := FALSE;

ELSE
valid := TRUE;

END IF;

END;

END votedserp_package;
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10.6.7. PID to VID Package

-- Pid to vid package

-- This package contains a few declarations useful to the pid to
-- vid translation table.

LIBRARY score;
USE score.address_package.ALL;
USE score. scoreboard_package.ALL;
USE std.std cmos.ALL;
USE std.std_logic.ALL;

PACKAGE pid_to_vid_package IS

CONSTANT table_size : INTEGER :- num_ne * pe_per_ne + 2*max_vid;

-- For now, this type is exactly equivalent to ct_type. However, in the
-- future, the members part will be different since it will store an
-- address rather than an encoded location.

TYPE pidtovid_entry_type IS RECORD
vid : vid_type;
redun_level : redun_level_type;
presence : presencetype;
members : members_type; -- these are really addresses
timeout : timeout_type;

END RECORD;

TYPE pid_to_vidtable type IS ARRAY(INTEGER RANGE <>) OF
pidtovid_entry_type;

-- TYPE vids in_system is used to keep track of all the vids in the system.
-- The sender uses it to cycle through the voted serp memory looking for messages

TYPE vids_in_system_memory_type IS ARRAY (INTEGER RANGE <>) OF address_type;

END pid_to_vid_package;
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10.6.8. Dual Port RAM Package

-- Dual Port Ram Package

-- This package contains types and constants for the dual port ram

LIBRARY score;
USE score.scoreboard_package.ALL;
USE std.std_logic.ALL;

PACKAGE dpram_package IS

CONSTANT write : t_wlogic;

TYPE serp_memory_type IS ARRAY (INTEGER RANGE <>) Or serp_type;
TYPE msg_memory_type IS ARRAY (INTEGER RANGE <>) OF msg_type;
TYPE ct_memory_type IS ARRAY (INTEGER RANGE <>) OF ct_type;

END dpram_package;

PACKAGE BODY dpram package IS

CONSTANT write : t_wlogic := fO;

END dpram_package;
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10.6.9. Scoboard

LIBRARY score;

USE std.std logic.ALL;
USE score.scoreboardpackage.ALL;
USE score.maincontrol package.ALL;
USE score.pid_to_vid_package.ALL;
USE score.voted_serp_package.ALL;
USE score.address_package.ALL;
ENTITY scoreboard IS

PORT

message to send: OUT BOOLEAN;
operation_out: OUT return_operation_type;
operation_in: IN operation_type;
hlf: IN BOOLEAN;
ct data: IN cttype;
msg_data: OUT msg_type;
read_write: OUT t_wlogic;
clock: IN t_wlogic;
serp_data: IN serptype;
sbaddress: OUT resolvedaddress

END scoreboard;

LIBRARY SCORE;

USE std.std_logic.ALL;
ARCHITECTURE scoreboard OF scoreboard IS

COMPONENT votetimeout
PORT

clock: IN twlogic;
serpdata: IN serptype;
voted_serp_data: OUT -voted_serptype;
ptovaddress: OUT resolved_address := high_zaddress;
ptov rw: OUT t_wlogic;
dpram_rw: OUT t_wlogic;
dpram_address: OUT resolved_address := high z address;
ptov_data: IN pidtovid_entry_type;
start_voting: IN BOOLEAN;
done_voting: OUT BOOLEAN;
num vids: IN INTEGER;
voted_serp_rw: OUT t_wlogic;
clear done: OUT BOOLEAN;
start clear: IN BOOLEAN;
voted_serp_address: OUT address_type

END COMPONENT;
COMPONENT pid to vid

GENERIC

read_delay: TIME := 10 ns

PORT
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address: IN resolved_address;
ptov_out: OUT pid_to_vid_entry_type;
clock: IN t_wlogic;
read_write: IN twlogic :- fl;
ptov in: IN pid_to_vid_entry_type

END COMPONENT;
COMPONENT vids_in_system

GENERIC

PORT

read_delay: TIME :- 10 ns

clock: IN t_wlogic;
address: IN resolved address;
read_write: IN twlogic;
data_in: IN addresstype;
data_out: OUT address_type

END COMPONENT;
COMPONENT address buffer

PORT

input: IN resolved_address;
output: OUT resolved address;
clock: IN t_wlogic;
pass_through: IN BOOLEAN

END COMPONENT;
COMPONENT sender

PORT

clock: IN t_wlogic;
voted_serp_address: OUT address_type;
vs_rw: OUT t_wlogic;
broadcast_pending: OUT BOOLEAN;
dpram address: OUT resolved_address;
dpram_rw: OUT t_wlogic;
msg_data: OUT msg_type;
voted_serp_data: IN voted_serp_type;
hlf: IN BOOLEAN;
message tosend: OUT BOOLEAN;
startprocessing: IN BOOLEAN;
done: OUT BOOLEAN;
num vids: IN INTEGER;
continue: IN BOOLEAN;
ct_update: IN BOOLEAN;
visdata: IN address_type;
visrw: OUT t_wlogic;
visaddress: OUT resolved_address;
pass_through: OUT BOOLEAN

END COMPONENT;
COMPONENT votedserp_memory

GENERIC

readdelay: TIME := 10 ns

PORT
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port0_in: IN voted_serp_type;
port0_out: OUT voted_serp_type;
port0_address: IN address type;
portl_address: IN resolved_address;
portl_out: OUT voted_serp type;
clock: IN t_wlogic;
port0_rw: IN twlogic;
portl_rw: IN twlogic := fl

END COMPONENT;
COMPONENT maincontroller

PORT

dpram_rw: OUT t_wlogic;
ptov_rw: OUT t_wlogic;
dpram_address: OUT resolved_address := high_z_address;
clock: IN t_wlogic;
ct_data_in: IN cttype;
operation_in: IN operation_type;
operation_out: OUT return_operation type;
ptov_address: OUT resolved_address := high_z_address;
ptov_data: OUT pidto vid entry_type;
start_voting: OUT BOOLEAN;
numvids: OUT INTEGER;
start clear: OUT BOOLEAN;
clear done: IN BOOLEAN;
done_voting: IN BOOLEAN;
start sender: OUT BOOLEAN;
senderdone: IN BOOLEAN;
messagetosend: IN BOOLEAN;
continue_processing: OUT BOOLEAN;
ct_update: OUT BOOLEAN;
vis address: OUT resolved address;
vis_rw: OUT t_wlogic;
vis_data: OUT address_type

END COMPONENT;

FOR translation_table:pid to vid
USE CONFIGURATION SCORE.cpidtovidarch;

FOR vis:vids in system
USE CONFIGURATION SCORE.cvids in_system_behavior;

FOR buff:address buffer
USE CONFIGURATION SCORE.caddress buffer behavior;

FOR sender_subsystem:sender
USE CONFIGURATION SCORE.csender behavior;

FOR voted_serp:voted_serp_ memory
USE OPEN;

FOR controller:main controller
USE CONFIGURATION SCORE.cmain control behavior;

SIGNAL SGNL000079: address_type;
SIGNAL SGNL000078: t_wlogic;
SIGNAL SGNL000077: resolved address;
SIGNAL SGNL000075: BOOLEAN;
SIGNAL SGNL000072: BOOLEAN;
SIGNAL SGNL000071: BOOLEAN;
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SIGNAL SGNL000070: BOOLEAN;
SIGNAL SGNL000044: BOOLEAN;
SIGNAL SGNL000043: BOOLEAN;
SIGNAL SGNL000042: BOOLEAN;
SIGNAL SGNL000040: INTEGER;
SIGNAL SGNL000026: BOOLEAN;
SIGNAL SGNL000018: pidto_vid_entry_type;
SIGNAL SGNL000012: resolved_address := high_z_address;
SIGNAL ptovrw: t_wlogic;
SIGNAL SGNL000083: t_wlogic := fl;
SIGNAL SGNL000050: t_wlogic;
SIGNAL SGNL000099: voted_serp_type;
SIGNAL SGNL000084: resolvedaddress;
SIGNAL SGNL000051: address_type;
SIGNAL SGNL000048: voted_serp_type;
SIGNAL SGNL000096: BOOLEAN;
SIGNAL SGNL000098: address_type;
SIGNAL SGNL000032: pid_to_vid_entry_type;
SIGNAL feedbackO: BOOLEAN;

BEGIN
message to send <= feedbackO;

voting_subsystem: vote timeout
PORT MAP (

voted serp_address => SGNL000051,
start clear => SGNL000042,
clear done => SGNL000043,
voted serprw => SGNL000050,
num vids => SGNL000040,
donevoting => SGNL000044,
start voting => SGNL000026,
ptov data => SGNL000032,
dpramaddress => sb_address,
dpram rw => read_write,
ptov rw => ptovrw,
ptov_address => SGNL000012,
voted serp_data => SGNL000048,
serp_data => serp_data,
clock => clock );

translation table: pid to vid
PORT MAP (

ptov in => SGNL000018,
read write => ptovrw,
clock => clock,
ptovout => SGNL000032,
address => SGNL000012 );

vis: vids insystem
PORT MAP (

data out => SGNL000098,
data in => SGNL000079,
read write => SGNL000078,
address => SGNL000077,
clock => clock );

buff: addressbuffer
PORT MAP (

passthrough => SGNL000096,
clock => clock,
output => SGNL000084,
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input -> SGNL000098 );

sender subsystem: sender
PORT MAP(

pass_through => SGNLOO0096,
vis address -> SGNL000077,
vis rw => SGNL000078,
visdata => SGNL000098,
ctupdate => SGNL000075,
continue > SGNL000072,
num vids -> SGNL000040,
done -> SGNL000071,
start processing => SGNL000070,
message tosend => feedbackO,
hlf => hlf,
votedserp_data => SGNL000099,
msg_data => msg_data,
dpram_rw => read_write,
dpram_address => sb_address,
broadcast pending => OPEN,
vs rw -> SGNL000083,
votedserp address -> SGNL000084,
clock -> clock );

voted_serp: voted_serp_memory
PORT MAP (

portl_rw => SGNL000083,
portO_rw -> SGNL000050,
clock => clock,
portl_out => SGNL000099,
portl_address => SGNL000084,
port0_address => SGNL000051,
portO0out => OPEN,
portO_in => SGNL000048 );

controller: main controller
PORT MAP (

vis data => SGNL000079,
vis rw => SGNL000078,
vis address => SGNL000077,
ctupdate => SGNL000075,
continue_processing => SGNL000072,
message tosend => feedbackO,
sender done => SGNL000071,
start sender => SGNL000070,
done_voting => SGNL000044,
clear done => SGNL000043,
start clear => SGNL000042,
numvids => SGNL000040,
start_voting => SGNL000026,
ptovdata => SGNL000018,
ptov_address => SGNL000012,
operationout => operation out,
operation in => operation_in,
ctdatain => ct data,
clock => clock,
dpram_address => sb address,
ptovrw => ptovrw,
dpram_rw => readwrite );

END scoreboard;

CONFIGURATION cscoreboardbehav OF scoreboard IS
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FOR scoreboard

FOR controller : main controller
USE CONFIGURATION score.cmain controlbehavior;

END FOR;

FOR translation_table : pidtovid
USE CONFIGURATION score.cpid_to_vid_arch;

END FOR;

FOR vis : vids in system
USE CONFIGURATION score.cvids_in_system behavior;
END FOR;

FOR votingsubsystem : vote_timeout
USE CONFIGURATION score.cvotetimeoutbehav;
END FOR;

FOR voted_serp : voted_serp_memory
USE CONFIGURATION score.cimproved_voted_serp memory;
END FOR;

FOR sender_subsystem : sender
USE CONFIGURATION score.csenderbehavior;
END FOR;

FOR buff : address buffer
USE CONFIGURATION score.caddress bufferbehavior;
END FOR;

END FOR;

END cscoreboardbehav;
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10.6.10. Dual Port Ram

LIBRARY score;

USE std.std_logic.ALL;
USE score.scoreboardpackage.ALL;
USE score.dpram_package.ALL;
USE score.active_package.ALL;
USE score.address_package.ALL;
ENTITY dpram IS

GENERIC

read_delay: TIME := 10 ns

PORT

clock: IN twlogic;
Bctout: OUT cttype;
Bserp_out: OUT serp_type;
addressl: IN address_type;
address0: IN address_type;
Bmsg_in: IN msg_type := def_msg;
Amsg_out: OUT msg_type;
Actin: IN cttype;
Aserpin: IN serp_type;
RW1: IN t_wlogic;
RWO: IN t_wlogic

END dpram;

ARCHITECTURE dprambehav OF dpram IS

BEGIN

AO : PROCESS(clock,address0,addressl,rw0,rwl)

VARIABLE serp_memory : serp_memory_type (mem_base TO 3*dpram_size);
VARIABLE msg_memory : msgmemory type (membase TO 3*dpram size);
VARIABLE ctmemory : ct_memory_type (mem_base TO 3*dpramsize);

VARIABLE ran_process_once : BOOLEAN := FALSE;
VARIABLE vid : vidtype := 0;

BEGIN

-- This loop simply writes all the VID numbers into the
-- vid_number field of each CT entry. In the future, this will be
-- done by resetting the scoreboard. I do it here to save on simulator
-- time since this will be done by the time the simulator comes
-- up.

IF NOT ran_processonce THEN
FOR i IN 0 TO (max vid - 1) LOOP

ctmemory(ctbase + i).vid_number := vid;
vid :- vid + 1;

END LOOP;
ct_memory(ctbase + max_vid).vid number := max vid;
ran process_once := TRUE;



END IF;

IF clock - fl AND clock'EVENT TEEN

-- take care of data port 1
IF rwO - write THEN

serpmemory(address0) := Aserpin;
ctmemory(address0) := Act_in;

ELSE
Amsg_out <- msg_memory(address0) AFTER read_delay;

END IF;

-- take care of data port 2
IF rwl - write THEN

msg_memory(addressl) := Bmsg in;
ELSE

Bserp_out <= serp_memory(addressl) AFTER read_delay;
Bct out <- ct_memory(addressl) AFTER read_delay;

END IF;
END IF;

END PROCESS;

END dpram_behav;

CONFIGURATION cdprambehav OF dpram IS
FOR dpram_behav
END FOR;

END cdpram behav;
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10.6.11. Voted SERP Memory

LIBRARY score;

USE std.std_ logic.ALL;
USE score.scoreboardpackage.ALL;
USE score.voted_serp_package.ALL;
USE std.std cmos.ALL;
USE score.address package.ALL;
ENTITY voted_serp_memory IS

GENERIC

read delay: TIME := 10 ns

PORT

portl_rw: IN t_wlogic := fl;
port0Orw: IN t_wlogic;
clock: IN twlogic;
portl out: OUT voted_serp_type;
portl_address: IN resolved_address;
port0_address: IN address_type;
port0_out: OUT voted_serp_type;
portO_in: IN voted_serp_type

END voted_serp_memory;

-- Improved Voted Serp Memory Behavioral Architecture

-- This file contains an improved behavioral architecture of the voted
-- serp memory. It splits the memory operation into two parts, an
-- asynchronous part and a synchronous part.

ARCHITECTURE improved_voted_serp_memory OF voted_serp_ memory IS

SIGNAL asynch_port0_out,asynch_portl_out : votedserptype;

BEGIN

asynch : PROCESS (clock,portO_address,portl_address,portO_rw,portlrw)

VARIABLE voted_serp_mem :
voted_serp_memory_type (membase TO dpram size);

BEGIN
IF port0_rw = fO THEN

voted serp mem(port0_address) := port0_in;
ELSE

asynch_portO0out <= voted serp_mem(port0_address);
END IF;
asynchport1 out <= voted_serp mem(portl_address);

END PROCESS;

synch : PROCESS(clock)
BEGIN
IF clock = fl AND clock'EVENT THEN

port1 out <- asynchportl_out AFTER read_delay;
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portO out <- asynch_portO_out AFTER read_delay;
END IF;

END PROCESS;

END improved voted_serp_memory;

CONFIGURATION cimproved_voted_serp_memory OF voted_serp_ memory IS
FOR improved_voted_serp_memory
END FOR;

END cimproved_voted_serp_memory;
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10.6.12. PID to VID Table

LIBRARY score;

USE std.std logic.ALL;
USE score.scoreboard_package.ALL;
USE score.pid_to_vid package.ALL;
USE std.std cmos.ALL;
USE score.address package.ALL;
ENTITY pid_to_vid IS

GENERIC

readdelay: TIME := 10 ns

PORT

ptov in: IN pid_to_vid_entrytype;
read write: IN t wlogic := fl;
clock: IN t_wlogic;
ptovout: OUT pid_to_vid_entry_type;
address: IN resolved address

END pid_to_vid;

---------------------------------------------------""
-- Pid to vid arch

-- This is the behavioral architecture for the pid-to-vid translation
-- table. Its basically just a simple memory.

ARCHITECTURE pidto_vid_arch OF pid to vid IS
BEGIN

simple : PROCESS(clock,address,read_write)

-- NOTE that the table is MUCH larger than it has to be so that the
-- same resolution function can be used for ALL addresses. If the table
-- were smaller, a different high zaddress and resolution function
-- would need to be defined for each address range.
-- This way, when addresses are dropped to bits, no contortions will
-- result from inconsistencies

VARIABLE pidto_vid_table :
pidto vid_table_type(mem base TO dpram_size);

BEGIN
IF clock I fl AND clock'EVENT THEN

IF read write - f0 THEN
pidtovid_table(address) := ptov in;

ELSE
ptov_out <- pidto vidtable(address) AFTER read_delay;

END IF;
END IF;

END PROCESS;

END pid_tovid_arch;
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CONFIGURATION cpid_to_vid_arch OF pidtovid IS
FOR pid_to_vid_arch
END FOR;

END cpid to vidarch;
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10.6.13. VIDs in System Table

LIBRARY score;

USE std.std_logic.ALL;
USE score.scoreboard_package.ALL;
USE std.std_cmos.ALL;
USE score.pid_to_vid_package.ALL;
USE score.address_package.ALL;
ENTITY vids_in system IS

GENERIC

readdelay: TIME := 10 ns

PORT

dataout: OUT address type;
datain: IN address type;
read_write: IN t_wlogic;
address: IN resolved address;
clock: IN t_wlogic

END vidsin_system;

-- This file contains the ARCHITECTURE for vids in_system, a lookup
-- table which the sender uses to cycle through the voted serp memory
-- looking for valid messages.

ARCHITECTURE vidsin_system_behavior OF vidsin_system IS

BEGIN

memory : PROCESS (clock,address,readwrite,datain)

VARIABLE vis_memory :
vids in_system_memory_type (mem_base TO dpram_size);

BEGIN
IF clock = fl AND clock'EVENT THEN

IF readwrite = f0 THEN
vis_memory(address) := data_in;

ELSE
data_out <= vis_memory(address) AFTER read_delay;

END IF;

END IF;
END PROCESS;

END;

CONFIGURATION cvids in system_behavior OF vids in system IS
FOR vids_in_system_behavior
END FOR;

END cvids in_system_behavior;
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10.6.14. Voting and Timeout Hardware

LIBRARY score;

LIBRARY voters;

USE std.std_logic.ALL;
USE score.scoreboard_package.ALL;
USE std.std cmos.ALL;
USE score.pid_to_vid_package.ALL;
USE score.voterpackage.ALL;
USE score.voted_serp_package.ALL;
USE score.addresspackage.ALL;
ENTITY votetimeout IS

PORT

votedserp_address: OUT address type;
startclear: IN BOOLEAN;
clear done: OUT BOOLEAN;
votedserp_rw: OUT t_wlogic;
num vids: IN INTEGER;
donevoting: OUT BOOLEAN;
start_voting: IN BOOLEAN;
ptov_data: IN pidto_vid_entry type;
dpram_address: OUT resolved_address := high_z_address;
dpram_rw: OUT t_wlogic;
ptov_rw: OUT t wlogic;
ptov_address: OUT resolvedaddress := high_zaddress;
voted_serp_data: OUT voted serp_type;
serp_data: IN serp type;
clock: IN twlogic

END vote timeout;

-- Voter and Timeout Behavioral Architecture

-- This architecture conatins the (very) behavioral description of the
-- voting and timeout hardware. This first architecture is composed
-- entirely of process statements which communicate via signals.

ARCBITECTURE votetimeoutbehav OF votetimeout IS

TYPE temp_statetype IS (idle,vote, check_timeouts);
SIGNAL temp_state : temp_state_type := idle;

SIGNAL vote_state : vote state_type;

-- timer value holds the value of the timer.

SIGNAL timer_value : timer_range;

-- Declare the signals that will be used to communicate between
-- processes
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SIGNAL voted_serp entry : voted serp_type;
SIGNAL vote values : serp_array(0 TO (max_redun_level - 1));
SIGNAL current_vid : vidtype;
SIGNAL presence : presence_type;
SIGNAL timeout value : timeout_type;
SIGNAL readobne_timeout,read ibnf timeout : t_wlogic;
SIGNAL obnetimeout_address,ibnf_timeout_address : address_type;
SIGNAL vid_is_simplex : BOOLEAN :- FALSE;

-- vote now tells the voter process to vote the vote_values

SIGNAL vote_vid_now,done_voting_vid : BOOLEAN :- FALSE;

-- Declare the signals which exit the voter

SIGNAL voted_obne, voted_ibnf : flow control type;
SIGNAL voted_destvid : vid_type;
SIGNAL voted_class : class_type;

BEGIN

-- controller PROCESS : implements the voter sub-controller. It reads in SERP
-- entries using the pid tovid_table, votes them, checks timeouts, collects
-- the three syndromes, and then collects all the voted data into a voted_serp
-- record and writes it into the voted_serp memory.

controller : PROCESS(clock,start_voting)

VARIABLE temp_dpram_address : address_type;
VARIABLE vids voted : INTEGER := 0;

VARIABLE current_ptov_entry : pidto_vid_entry_type;

-- num members is redun level converted to a number, used as a loop control index

VARIABLE num members : INTEGER;

-- current_member is the index into the members array of the current_ptov entry

VARIABLE currentmember : INTEGER;

BEGIN
IF clock = fl AND clock'EVENT THEN

CASE vote state IS

-- State vO is the idle state

WHEN vO =>
done_voting <- FALSE;
ptovrw <- zO;
dpramrw <- z0;
dpramaddress <= high_z_address;
voted_serp_rw <= z0;
vidsvoted := 0;
vote state <- vO;
IF start_voting TREN

ptov_address <- vidsvotec;
ptov_rw <- fl;
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dpramrw <- fl;
vote state <- v1;

END IF;

-- States vl to v4 read in the ptov entry and then each SERP entry in
-- the VID
-- Be careful of the array bounds since current_member goes from 1 TO 4
-- while members_type goes from 0 TO 3.

-- wait for the ptov data to appear

WHEN vl ->
vote state <- v2;

WHEN v2 ->
current_ptov_entry := ptovdata;
current_vid <= current_ptov_entry.vid;

num_members := reduntoint(current_ptov_entry.redun_level);
timeout_value <= current_ptov_entry.timeout;
presence <= currentptov_entry.presence;
vidissimplex <= (current_ptov entry.redun_level = simplex);
current member := 0;
vote state <= v3;

-- These next two states read each SERP entry in the VID into the
-- serp array

WREN v3 =>

-- Check to see if redun level serp entries have been read

IF NOT (current_member = num members) TREN

-- If not, then go on to read the serp entry from the dpram

temp dpram address := serp_base +
currentptov_entry.members(current_member);

dpram_address <= temp_dpram_address;
vote state <= v4;

ELSE

If so, then go on to the voting state

vote state <= v6;
END IF;

- wait for the serp data to appear

WREN v4 ->
vote state <= v5;

v5 simply assigns the serp_data which appears on the data line to vote_values

WHEN v5 =>
vote_values (current member) <= serp_data;
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current member :- currentmember + 1;

vote state <- v3;

-- End section to read in the serp entries

- v6 tells the voter to vote and increments the vidsvoted variable

WHEN v6 ->
vote_vid_now <- TRUE AFTER clock_period/2;
votestate <- v7;

- v7 simply idles while the timeouts are being checked

WHEN v7 ->
IF done_votingvid THEN

votestate <= v8;
ELSE

vote state <- v7;
END IFr;

-- voting is done, so write the voted serp data into the voted serp memory

WHEN v8 ->

vote_vid_now <- FALSE AFTER clockperiod/2;
votedserpdata <- votedserpentry;
voted_serp_address <= current_ptov_entry.vid;
voted_serp_rw <= fO AFTER clock_period/2;
vids voted :- vids voted + 1;
vote state <- v9;

WHEN v9 =>
voted_serp_rw <= fl AFTER clock_period/2;
vote state <= vl0;

v10 checks to see if all vids have been voted. If so, then it signals that
-- voting is done and idles the voter subcontroller

WHEN v10 =>
voted_serp_rw <= fl;
IF vids voted = num vids THEN

done_voting <= TRUE;
vote state <= vO;

ELSE

assert next ptov table address and start over

ptov address <= vids voted;
vote state <- vl;

END IF;
END CASE;

END IF;

END PROCESS;
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-- voter PROCESS : this proces implements the voter. It uses overloaded
-- operators to convert the incoming data to t_wlogic_vectors, votes it
-- (bit for bit majority), and then converts it back to its original
-- high-level form.

voter : PROCESS(clock,vote_vid now)

-- For simplicities sake, the timeout memories are contained in this PROCESS
-- This allows faster verification while not sacrificing the readability
-- of the timreout rules

VARIABLE obne_timeout memory : timeout_memory_type(0O TO max_vid);
VARIABLE ibnf_timeoutmemory : timeout_memory_type(O TO max_vid);

VARIABLE toaddress : address_type;
VARIABLE to set : BOOLEAN;
VARIABLE diff : timeout_type;

VARIABLE obne unan,ibnf unan : BOOLEAN;

BEGIN
IF clock - fl AND clock'EVENT THEN

CASE tempstate IS

WHEN idle =>
IF vote vid now THEN
temp_state <= vote;

END IF;
donevotingvid <= FALSE;

WHEN vote =>
vote_vid(voted_serp_entry,vote_values,currentvid,presence,
obne unan,ibnf unan);
votedserp entry.vid is simplex <= vid is simplex;
temp_state <= check_timeouts;

WREN check timeouts =>

-- Check obne timeout

toaddress := voted_serp_entry.source_vid;
toset := obnetimeout memory(to_address).timeoutset;

-- Unanimous? If so, then clear any timeout set on the VID

IF obne unan THEN
obne_timeout_memory(to_address).timeoutset := FALSE;

-- Majority? If so, then set a timeout if one hasn't been set or check for
-- timeout expiration if one has been set

ELSIF votedserp_entry.obne THEN
IF obne_timeout memory(to_address).timeout set TEEN

-- Check for timeout expiration

diff := abs(timer_value-obne_timeout memory(to_address) .value);

-- no faults for now

IF (diff > timeout_value) THEN
NULL;
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ELSE
voted_serp entry.obne <= FALSE;

END IF;

-- set a timeout

ELSE
obne_timeoutmemory(to address).value := timer_value;
obne_timeout memory(to_address).timeout_set := TRUE;
voted_serp_entry.obne <= FALSE;

END IF;
END IF;

-- End obne timeout check

-- Check ibnf timeout

to_address := votedserpentry.sourcevid;
to_set := ibnf_timeout_memory(to address).timeout_set;

-- Unanimous? If so, then clear any timeout set on the VID

IF ibnf unan TEEN
ibnftimeoutmemory(to address) .timeout_set := FALSE;

-- Majority? If so, then set a timeout if one hasn't been set or check for
-- timeout expiration if one has been set

ELSIF voted_serp_entry.ibnf THEN
IF ibnf_timeout_memory(to_address).timeout_set THEN

-- Check for timeout expiration

diff := abs(timervalue-ibnftimeoutmemory(to_address).value);

-- no faults for now

IF (diff > timeoutvalue) THEN
NULL;

ELSE
votedserp_entry.ibnf <= FALSE;

END IF;

-- set a timeout

ELSE
ibnf timeout memory(to_address).value := timer value;
ibnf timeout memory(to address).timeout set := TRUE;
voted_serp_entry.ibnf <= FALSE;

END IF;
END IF;

-- End ibnf timeout check

done_voting_vid <= TRUE AFTER clockperiod/2;
temp_state <= idle;

END CASE;
END IF;

END PROCESS;
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-- obne timeout_checker PROCESS : implements the obne timeout checker

-- obne timeout checker : PROCESS(clock,read obne timeout,
-- ibnf timeoutaddress)

VARIABLE obne_timeout_memory : timeout_memorytype(O TO max_vid);

-- BEGIN
-- END PROCESS;

-- ibnf timeout checker PROCESS : implements the ibnf timeout checker

-- ibnf timeout checker : PROCESS(clock,read ibnf timeout,
-- ibnf timeoutaddress)

VARIABLE ibnf_timeout_memory : timeout_memory_type(O TO max_vid);

-- BEGIN
-- END PROCESS;

-- timeout_clearer PROCESS : this process clears both the ibnf and obne
-- timeout memories

timeoutclearer : PROCESS(clock, start clear)
BEGIN
IF clock - fl AND clock'EVENT THEN

IF start clear THEN
clear done <- TRUE;

ELSE
clear done <= FALSE;

END IF;
END IF;

END PROCESS;

-- timer PROCESS : this process implements the timeout timer. It counts from
-- 1 to maxtimer_value and then wraps around

timer : PROCESS(clock)

VARIABLE temptimer_value : timer range := 0;

BEGIN

IF clock - fl AND clock'EVENT THEN
IF NOT (temp_timer value = max_timer_value) THEN

temptimer_value := temp_timervalue + 1;
ELSE

temptimer value := init timer value;
END IF;
timer_value <- temp timer_value;

END IF;

END PROCESS;

END vote_timeout behav;
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-- Provide a default configuration

CONFIGURATION cvote timeout behav OF votetimeout IS
FOR vote timeout behav
END FOR;

END cvotetimeout_behav;
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10.6.15. Amiber

LIBRARY score;

USE std.std logic.ALL;
USE std.stdcmos.ALL;
USE score.scoreboard_package.ALL;
USE score.votedserp_package.ALL;
USE score.address_package.ALL;
ENTITY sender IS

PORT

pass through: OUT BOOLEAN;
vis_address: OUT resolved_address;
vis_rw: OUT t_wlogic;
vis data: IN address_type;
ct_update: IN BOOLEAN;
continue: IN BOOLEAN;
num vids: IN INTEGER;
done: OUT BOOLEAN;
start_processing: IN BOOLEAN;
message_to_send: OUT BOOLEAN;
hlf: IN BOOLEAN;
voted_serp_data: IN voted_serp_type;
msg_data: OUT msg_type;
dpram_rw: OUT t_wlogic;
dpram_address: OUT resolved_address;
broadcast_pending: OUT BOOLEAN;
vs_rw: OUT twlogic;
voted_serp_address: OUT address_type
clock: IN t_wlogic

END sender;

-- This file contains the behavioral architecture for the sender
-- entity. It's job is to cycle through the voted serp looking
-- for messages to send. When it finds a valid message, it gathers
-- all the information which the NE requires and then informs the
-- NE that a message needs to be sent. After it is sent, the sender
-- continues processing until either another message is found or all
-- voted serp entries have been processed.

-- NOTE: Broadcasts are not implemented yet.
-- FIXES REQUIRED : clearing of the IBNF bit after a message is sent
-- valid message checking (NULL dest_vid delivery)
-- invalid destination VID checking

ARCBITECTURE senderbehavior OF sender IS

TYPE sender_state_type IS (send0,sendl,send2,send3,send4,send5,
send6,send7,send8);

SIGNAL sender_state : sender_state type;
SIGNAL timestamper_signal : TIME := 0 ns;

BEGIN
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sender_statemachine : PROCESS(clock,start_processing,continue)

-- Where to start tells the sender where to begin looking for valid messages
-- (its a pointer into the vids_in_system translation table) This ensures
-- fairness because the same VID cannot keep sending a message to the exclusion
-- of others.

VARIABLE where to start : address_type :- 0;
VARIABLE tempvis address : address type := 0;
VARIABLE valid_message : BOOLEAN ;- TRUE;
VARIABLE source entry,dest_entry : voted_serp_type;
VARIABLE message : msg_type;

BEGIN
It clock - fl AND clock'EVENT THEN
CASE senderstate IS

WHEN send0 ->
IF start_processing THEN

temp_vis_address :- where_to_start;
visaddress <- temp_vis_address;
vis rw <- fl;
vs rw <- fl;
pass through <- TRUE;
senderstate <- sendl;
done <- FALSE AFTER clock period/2;

ASSERT FALSE REPORT "Beginning scan for valid messages";
ELSE

done <- FALSE;
passthrough <- FALSE;
dpram_rw <- z0;
vis rw <- zO;
vsrw <- zO;
voted_serp_address <- high_zaddress;
vis_address <- high z_address;
dpram_address <- high_z_address;

END IF;

sendl is a wait state for the vids in system memory

WHEN sendl =>
IF temp_vis_address = num_vids THEN

temp_vis_address := 0;
ELSE

temp vis_address := temp_vis_address + 1;
END IF;
sender state <= send2;

-- send2 waits for the voted_serp_memory

WHEN send2 ->
senderstate <- send3;

-- send3 checks the OBNE of the voted serp entry. If its set, it asserts the
-- address of the destination vid to check its IBNF.

WHEN send3 ->
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source entry :- voted_serp_data;
IF source entry.obne THEN

-- This VID wants to send a message (very badly, I may add), so check the IBNF
-- of the destination VID. Also check for illegal messages.

IF source_entry.vidissimplex THEN
message_is_legal(source entry,hlf,valid_message);

ELSE
valid_message :- TRUE;

END IF;

IF valid message THEN
pass_through <- FALSE;
voted serpaddress <= source_entry.destvid;
vs rw <- fl;
sender state <- send4;

ELSE
sender state <- send8;

END IF;
ELSE

sender state <- send8;
END IF;

-- Wait for the data to appear on the data lines

WHEN send4 =>
sender state <- send5;

WHEN send5 ->
dest_entry := voted_serp_data;
IF (dest_entry.ibnf) THEN

-- A valid message exists, so assemble a message data structure and signal the
-- main controller. Also begin a write to the voted serp memory to set
-- the ibnf_processed field to TRUE. This prevents two messages from being
-- sent to the same VID in the same SERP round. (not implemented yet)

sender state <= send6;
ELSE

sender state <= send8;
END IF;

WHEN send6 =>
message.source vid := sourceentry.source vid;
message.dest vid := source_entry.dest_vid;
message.class := source_entry.class;
message.vote_syndrome := source_entry.sb_vote_syndrome;
message.obne_syndrome := source-entry.obne_syndrome;
message.ibnf_syndrome := source entry.ibnf_syndrome;
message.timestamp := time_stamper_signal;

-- NOTE : sources and dests fields of msg_type are not implemented yet

msg_data <- message;
dpram_rw <= fO;
dpram_address <= msg_base;
message_to_send <= TRUE;
senderstate <- send7;

WHEN send7 =>
dpram_rw <- fl;
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message to_send <- FALSE;
IF continue THEN

sender state <- send8;
ELSE

sender state <- send7;
END IF;

-- Check to see if entire voted serp has been processed. If not, then start
-- the cycle again.

WHEN send8 ->

-- Have we processed the entire voted serp?

IF temp_vis_address = wheretostart TEEN

-- IF yes, then signal DONE and go to the idle state

IF where to start - num vids TEEN
where to start := 0;

ELSE
where to start :- where tostart + 1;

END Ir;
done <- TRUE AFTER clock_period/2;
sender state <- send0;

-- If no, then make sure temp_visaddress hasn't been incremented one too far,
-- assign the new vis_address and repeat the cycle.

ELSE
visaddress <- temp_vis_address;
voted_serpaddress <= high_zaddress;
vis rw <= fl;

pass_through <= TRUE;
sender state <= sendl;

END IF;
END CASE;

END Ir;
END PROCESS;

time_stamper_signal <- (time stamper_signal + clock_period) WHEN
(clock - fl AND clock'EVENT) ELSE time stamper_signal;

END senderbehavior;

CONFIGURATION csender behavior OF sender IS
FOR sender behavior
END FOR;

END csenderbehavior;
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10.6.16. Main Controller

LIBRARY score;

USE std.std_logic.ALL;
USE score.scoreboard_package.ALL;
USE score.maincontrol_package.ALL;
USE std.std cmos.ALL;
USE score.active_package.ALL;
USE score.pid to vid_package.ALL;
USE score.address_package.ALL;
ENTITY maincontroller IS

PORT

vis_data: OUT address type;
vis_rw: OUT t_wlogic;
vis_address: OUT resolvedaddress;
ct_update: OUT BOOLEAN;
continueprocessing: OUT BOOLEAN;
messageto_send: IN BOOLEAN;
sender done: IN BOOLEAN;
start sender: OUT BOOLEAN;
done_voting: IN BOOLEAN;
cleardone: IN BOOLEAN;
start clear: OUT BOOLEAN;
num vids: OUT INTEGER;
start voting: OUT BOOLEAN;
ptov_data: OUT pid_tovidentrytype;
ptovaddress: OUT resolved_address := highz_address;
operation_oiit: OUT returnoperationtype;
operation_in: IN operation_type;
ct_data_in: IN cttype;
clock: IN t_wlogic;
dpram_address: OUT resolvedaddress := high_z_address;
ptov_rw: OUT twlogic;
dpram_rw: OUT t_wlogic

END main controller;

-- Main Controller Behavioral Architecture

ARCHITECTURE main control behavior OF main controller IS

SIGNAL ptov_state : ptovstate_type := sO;
SIGNAL serpprocessorstate : serp_processor_state type := unknown;
SIGNAL start_ct_update,ct_update_done : BOOLEAN := FALSE;
SIGNAL startprocessing,done_processing : BOOLEAN := FALSE;

BEGIN

ASSERT NOT(operation in = unknown)
REPORT "port OPERATION in maincontroller in unknown state"
SEVERITY ERROR;

-- The ct_update port is used to inform the sender to reset its
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-- whereto start variable. If it didn't, it might end up pointing
-- to a vid which no longer exists

ct_update <- startctupdate;

-- This process simply serves as a dispatcher. The variable
-- temp_operation is used to dispatch in order to prevent two
-- operations to be pending simultaneously. This could occur if
-- dispatching was done off of the operation port itself.

main_state_machine , PROCESS(clock,operation_in)

VARIABLE temp_operation : operation_type :- unknown;

-- op_out is used to read the value of the operation_out signal. A
-- BUFFER port should be used, but they aren't supported yet

VARIABLE op_out : return_operation_type := idle;

BEGIN
IF clock - fl AND clock'EVENT THEN
CASE temp_operation IS

-- provide a kick start out of unknown
WHEN unknown ->
temp operation :- operation_in;
operation_out <- unknown;
op out :- unknown;

WHEN idle =>
tempoperation :- operation_in;
operation_out <- idle;
opout :- idle;

-- For now, a reset is defined as updating the CT and clearing all
-- timeouts. This is to avoid multiple drivers. In the future, a reset
-- must also copy all the vid numbers into the first byte of each
-- CT entry

WHEN reset state =>
IF NOT ct_update_done THEN

-- The second IF is necessary to avoid continually performaing a ct_update
-- start_ct_update must be made FALSE at some point before ct_update_done

- becomes TRUE

IF NOT (op_out = busy) TREN
start_ct_ update <= TRUE;

ELSE
start_ct_update <- FALSE;

END IF;

operation_out <- busy;
op_out :- busy;

ELSIF NOT cleardone THEN

-- temporary, remove when timeouts implemented

start clear <= TRUE;
ELSE

temp_operation :- operationin;
operationout <- reset complete;
op_out :- reset_complete;
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start clear <- FALSE;
END IF;

WHEN update_ct ->
IF NOT ctupdate done TEEN

IF NOT (op_out - busy) THEN
startct_update <- TRUE;

ELSE
start_ct_ update <- FALSE;

END IF;

operation_out <- busy;
op_out :- busy;

ELSE
temp_operation :- operation_in;
operation out <- ctupdate_complete;
op_out :- ct update_complete;

END IF;

WHEN clear timeouts ->
IF NOT clear done THEN

startclear <- TRUE;
operation out <- busy;
op_out :- busy;

ELSE
temp_operation :- operation_in;
operation_out <- clear_complete;
op out :- clear complete;
start clear <- FALSE;

END IF;

WHEN processnew_serp =>
IF NOT done_processing THEN

-- The second IF statement prevents the start_processing signal from
-- remaining TRUE for too long

IF op_out - busy THEN
startprocessing <= FALSE AFTER clock_period/2;

ELSE
start_processing <- TRUE AFTER clock_period/2;

END IF;
operation_out <- busy;
opout :- busy;

ELSE
temp_operation :- operation_in;
op_out :- processing_complete;
operationout <- op_out;

END IF;

WHEN continue ->
temp operation := operationin;
operationout <= busy;
op_out :- busy;

END CASE;
END IF;

END PROCESS;

-- This state machine implements the pid tovid translation table
-- generator



ptov_state_machine : PROCESS (clock, start_ct update)

VARIABLE pid_to videntry : pid_to_videntry type;
VARIABLE ct_address : address type :- ct_base;
VARIABLE vids in system : INTEGER :- 0;

BEGIN
IF clock - fl AND clock'EVENT THEN

CASE ptov_state IS

-- sO is the idle state

WREN sO ->
IF start_ct update THEN

ptovstate <- sl;
ct_update_done <- FALSE;

ELSE
ptov state <- sO;

dpram_address <- high_z_address;
ptov_address <- high_z_address;
vis address <- high_z_address;
vis rw <- z0;
ptov rw <- z0;
dpram rw <- z0;

END IF;

-- sl asserts the ptov address and the ct_address into the dpram

WREN sl ->
ptov_address <- vids in system;

dpram_address <- ctaddress;
ptov_rw <- fl;
dpram rw <- fl;
ct address :- ct address + 1;
ptov_state <- s2;

-- s2 is a wait state

WHEE s2 ->
ptov_state <- s3;

-- s3 reads the ct entry at the address asserted by sl. If the redun level is
-- zero it skips to the next ct entry. Otherwise it constructs a pidtovid
-- table entry and writes it into the table. It also checks to see if its
-- reached the end of the ct. If so, it asserts ct_update_done, tri-states
-- the dpram address line, and goes to the idle state(s0)

WHEN s3 ->
IF NOT(ctdata in.redun level - zero) THEN

-- Found a new vid, so increment the counter

vis address <- vids in system;
vis data <- ct_data_in.vid number;
vidsinsystem :- vids in system + 1;

pid_tovid_entry.vid :- ct_data_in.vid_number;
pid_to_vid_entry.redun_level:- ctdatain.redun_level;
pid_to_videntry.presence :- ctdata_in.presence;
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pid_to_videntry.members :- ct_data_in.members;
pid_to_vid entry.timeout :- ct_data_in.timeout;

ptov_data <- pidtovidentry;

-- Wait for a falling edge to assert the write signal

ptov_rw <- fO AFTER clock_period/2;
vis_rw <- fO AFTER clock_period/2;
ptov_state <- s4;

ELSE

- else go to next ct entry

ptov state <- sl;
END IF;

IF ct data in.vid number - max vid THEN
ASSERT FALSE REPORT "Done with translation table";
ptovstate <- sO;
ct_update done <- TRUE;

-- this is a slight optimization to only assign a value to this port (numvids)
-- once instead of over and over again

numvids <- vids_in_system;

END IF;

-- state s4 simply gives enough time for the write signal to be taken

WREN s4 ->
ptov_rw <- fl AFTER clockperiod/2;
vis_rw <- fl AFTER clock_period/2;
ptovstate <- sl;

-- Appease the syntax deity by including this clause

WREN OTHERS ->

ASSERT FALSE REPORT "Unimplemented state in ct update controller";
ptov state <= sO;

END CASE;
END IF;

END PROCESS;

-- This process takes care of all the control signals involved in
-- processing the SERP

serp_processor : PROCESS (clock, start_processing,done voting,
senderdone,message_to send)

BEGIN
IF clock - fl AND clock'EVENT THEN

CASE serp_processor_state IS

WHEN unknown ->
serp_processor_state <= idle;

WHEN idle ->
done_processing <- FALSE;
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IF start_processing TREN
start voting <- TRUE;
serp_processor state <- voteserp;

ELSE
start_voting <- FALSE;
start sender <- FALSE;

END IF;

WHEN vote_serp ->
start_voting <- FALSE;
IF done_voting THEN

start sender <- TRUE;
serpprocessor state <- find_messages;
ASSERT FALSE REPORT "SERP Voting Done";

END IF;

WR351 find_messages ->
start sender <- FALSE;
continue_processing <- FALSE;
IF message_to_send THEN

serpprocessor_state <- send_message;
ELSIF sender done THEN

serpprocessor state <- processing_complete;
END IF;

WHEN send_message ->

IF operation in - continue THEN
ASSERT FALSE REPORT "Sent a message";

continue_processing <- TRUE;
serpprocessor state <- find messages;

ELSE
serp_processor_state <- send message;

END IF;

WHEN processing_complete =>
doneprocessing <= TRUE AFTER clock_period/2;
serp_processorstate <= idle;

ASSERT FALSE REPORT "Processing is complete";

END CASE;
END IF;

END PROCESS;

END main_controlbehavior;

CONFIGURATION cmain control behavior OF main controller IS
FOR main control behavior
END FOR;

END cmain controlbehavior;
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10.6.17. Address Buffer

LIBRARY score;

USE std.stdlogic.ALL;
USE score.scoreboard package.ALL;
USE score.address_package.ALL;
ENTITY address buffer IS

PORT

pass_through: IN BOOLEAN;
clock: IN t_wlogic;
output: OUT resolved_address;
input: IN resolved address

END address buffer;

-- This component simply acts as a buffer to turn an address line on
-- and off (tri_state);

ARCBITECTURE address buffer behavior OF address buffer IS

BEGIN

output <- input .WEN pass_through ELSE
high_z_address;

END addressbuffer behavior;

CONFIGURATION caddress buffer behavior OF address buffer IS
FOR address buffer behavior
END FOR;

END caddress buffer behavior;
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10.6.18. SCaoeboord Subsystem

LIBRARY score;

USE std.std_logic.ALL;
USE score.scoreboard_package.ALL;
USE score.address_package.ALL;
USE score.main_control_package.ALL;
ENTITY sb_subsystem IS

PORT

message_to_send: OUT BOOLEAN;
hlf: IN BOOLEAN;
operationout: OUT return_operation_type;
operation in: IN operation_type;
msg_data_out: OUT msg_type;
read_write: IN t_wlogic;
done: OUT twlogic;
ct_datain: IN ct_type;
serp_data in: IN serptype;
address: IN address_type;
clock: IN twlogic

END sbsubsystem;

LIBRARY SCORE;

USE std.stdlogic.ALL;
ARCBITECTURE sb_subsystem OF sbsubsystem IS

COMPONENT scoreboard
PORT

sb address: OUT resolvedaddress;
serp_data: IN serp_type;
clock: IN t_wlogic;
readwrite: OUT twlogic;
msg data: OUT msg_type;
ctdata: IN ct_type;
hlf: IN BOOLEAN;
operation_in: IN operation type;
operation_out: OUT return_operation_type;
message_to_send: OUT BOOLEAN

END COMPONENT;
COMPONENT dpram

GENERIC

read_delay: TIME := 10 ns

PORT

RWO: IN twlogic;
RW1: IN t wlogic;
Aserp_in: IN serp_type;
Act in: IN ct_type;
Amsg_out: OUT msg_type;
Bmsgin: IN msg_type :- defmsg;



address0: IN address type;
addressl: IN address type;
Bserp_out: OUT serp type;
Bct_out: OUT ct_type;
clock: IN t_wlogic

END COMPONENT;

FOR behav sb:scoreboard
USE CONFIGURATION SCORE.cscoreboardbehav;

FOR dp_ram:dpram
USE CONFIGURATION SCORE.cdpram_behav;

SIGNAL sb ct: ct_type;
SIGNAL sbserp: serp_type;
SIGNAL sb address: address type;
SIGNAL sb_rw: t_wlogic;

BEGIN

behav st' scoreboard
PORT MAP (

message_to send => message_to_send,
operation_out -> operation_out,
operation_in -> operationin,
hlf => hlf,
ct data -> sb ct,
msg_data -> msg_data out,
read write => sbrw,
clock -> clock,
serp data -> sbserp,
sb address => sb address );

dp_ram: dpram
PORT MAP (

clock -> clock,
Bct out -> sb ct,
Bserp out -> sbserp,
address1 => sb address,
address0 -> address,
Bmsg_in > OPEN,
Amsg_out => OPEN,
Actin -> ctdatain,
Aserp_in => serp data_in,
RW1 -> sb rw,
RWO -> read write );

END sbsubsystem;

-- Behavioral Scoreboard Subsystem Configuration

-- This is the configuration for the top-level scoreboard subsystem

CONFIGURATION csb_behav_subsystem OF sbsubsystem IS

FOR sbsubsystem

FOR dp_ram:dpram
USE CONFIGURATION score.cdpram_behav;

END FOR;



FOR behav sb:scoreboard
USE CONFIGURATION score.cscoreboard behav;

END FOR;

END FOR;

END csbbehav_subsystem;

CONFIGURATION csb behav tb OF sb testbench IS
FOR sbbehav tb
FOR sbs : sbsubsystem
USE CONFIGURATION score.csbbehav subsystem;

END FOR;
END FOR;

END csb_behavtb;
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10.6.19. Testbench

LIBRARY score;

USE std.std_logic.ALL;
USE score.scoreboard_package.ALL;
USE score.tb_package.ALL;
USE score.dpram_package.ALL;
USE std.stdcmos.ALL;
USE score.active_package.ALL;
USE score.maincontrol package.ALL;
USE score.address package.ALL;
ENTITY sb testbench IS

END sb_testbench;

-- Scoreboard Behavioral Testbench

-- This architecture constains code to test the highly behavioral
-- version of the scoreboard model
-- I have liberally used ASSERT statements throughout the design as
-- "signposts" to when critical actions have occurred. They allow easy
-- zooming to different areas inside of results display

ARCHITECTURE sbbehav tb OF sbtestbench IS

COMPONENT sb subsystem
PORT

message to send: OUT BOOLEAN;
hlf: IN BOOLEAN;
operation_out: OUT return_operation_type;
operation_in: IN operation_type;
msg_data_out: OUT msg_type;
read write: IN twlogic;
done: OUT t_wlogic;
ct_data_in: IN ct_type;
serp_data_in: IN serptype;
address: IN address type;
clock: IN t_wlogic

END COMPONENT;

SIGNAL read_write : t_wlogic :- fl;
SIGNAL operation_in : operation_type := unknown;
SIGNAL operation_out : return operation_type := unknown;
SIGNAL hlf : BOOLEAN :- TRUE;
SIGNAL message to send : BOOLEAN;
SIGNAL clock : t_wlogic :- clk_active;
SIGNAL done : t_wlogic := fO;

SIGNAL serp_data_in : serp_type;
SIGNAL ct_datain : cttype;
SIGNAL msg_data_out : msg_type;
SIGNAL address : address type;

BEGIN
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sbs : sb_subsystem
PORT MAP (
message_to_send -> message_to_send,
hlf -> h1f,
operation in -> operation in,
operation out -> operation_out,
msg data out -> msg data_out,
read write -> read write,
ct data in -> ct data in,
serp data in -> serpdata_in,
address -> address,
done -> done,
clock -> clock );

driver : PROCESS

-- declare temporary variables to hold signal values before assignment
-- 't' in front means temporary

VARIABLE tsd : serp_memory_type (0 TO dpram_size);
VARIABLE tmsg : msg_memory_type (0 TO dpram_size);
VARIABLE tct : ct_memory_type (0 TO dpram_size);
VARIABLE taddress : address_type;

VARIABLE do_ct_update : BOOLEAN :- FALSE;
VARIABLE num vids : INTEGER :- 0;
VARIABLE num_serp entries : INTEGER := 0;
VARIABLE num messages, cnum_messages : INTEGER :- 0;

BEGIN

-- read in the ct
-- num vids is the number of vids to read into the simulation

- process 4 SERPs

FOR i IN 1 TO 4 LOOP
getstatus(testdata,do_ctupdate,num_vidsnumserpentries,

cnum_messages);
IF doct update THEN

FOR i IN 0 TO (num vids - 1) LOOP
readct_entry(test_data,tct(i));

END LOOP;

- write the ct into memory and perform a reset

FOR i IN 0 TO (num vids - 1) LOOP
WAIT UNTIL clock - fO AND clock'EVENT;
address <- ct base + tct(i).vid number;
ct data in <- tct(i);
read write <- f0;

END LOOP;

must WAIT so that the last ct entry is writen into the dpram

WAIT UNTIL clock - fO AND clock'EVENT;
read write <- fl;
operation in <- reset_state;
ASSERT FALSE REPORT "Beginning Initial Reset";
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WAIT FOR clock_period;
operation_in <- idle;

WAIT UNTIL operation_out = reset complete
AND clock - fl AND clock'EVENT;

ASSERT FALSE REPORT "Initial Reset Complete";
END IF;

-- read in the first SERP

FOR i IN 0 TO (num_serp_entries - 1) LOOP
read_serp_entry(test_data,tsd(i));

END LOOP;

-- write the first SERP into memory and begin processing it

FOR serp_loc IN 0 TO (num_serp_entries - 1) LOOP
WAIT UNTIL clock - fO AND clock'EVENT;
address <- serp_base + serp_loc;
serp_data_in <= tsd(serp_loc);
read write <- f0;

END LOOP;
WAIT UNTIL clock = fO AND clock'EVENT;

read write <- fl;
operation_in <= process_new_serp;
ASSERT FALSE REPORT "Processing First SERP";
WAIT FOR clock_period;
operation_in <- idle;

WHILE NOT (operation_out - processing complete) LOOP
IF message_to_send THEN

nummessages :- nummessages + 1;
operation_in <= continue AFTER clockperiod/2;
WAIT UNTIL clock - fl AND clock'EVENT;

ELSE
operationin <- idle AFTER clock_period/2;
WAIT UNTIL clock = fl AND clock'EVENT;

END IF;
IF operation out = processing_complete TEEN

EXIT;
END IF;

END LOOP;
END LOOP;

WAIT;
END PROCESS;

clock driver : PROCESS
BEGIN
clock <- NOT clock;
WAIT FOR clock_period/2;

END PROCESS;

END sbbehavtb;
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10.7. Structural VHDL for theVoting and Timeout Hardware

This appendix contains the VHDL source code for the uncompleted structural

architecture of the voting and timeout hardware.

10.7.1. Voting and Timeout Hardware

LIBRARY score;

LIBRARY voters;

USE std.std_logic.ALL;
USE score.scoreboard_package.ALL;
USE std.std cmos.ALL;
USE score.pid_to_vidpackage.ALL;
USE score.voter_package.ALL;
USE score.votedserp_package.ALL;
USE score.address_package.ALL;
ENTITY vote timeout IS

PORT

voted_serp_address: OUT address_type;
start clear: IN BOOLEAN;
clear done: OUT BOOLEAN;
voted_serp_rw: OUT twlogic;
num vids: IN INTEGER;
donevoting: OUT BOOLEAN;
start_voting: IN BOOLEAN;
ptov data: IN pidto vid entry_type;
dpram_address: OUT resolved_address := high_z_address;
dpramrw: OUT t_wlogic;
ptov_rw: OUT t_wlogic;
ptov_address: OUT resolved_address := high_z_address;
voted_serp_data: OUT voted_serp_type;
serp_data: IN serp_type;
clock: IN twlogic

END votetimeout;

-- Voter and Timeout Structural Architecture

-- This ARCHITECTURE contains the structural implementation of the
-- voting and timeout subsection. Actually, its also partly dataflow.

ARCHITECTURE vote timeout struct OF votetimeout IS

CONSTANT control_delay : TIME :- clock_period/4;
CONSTANT obne_bit_pos : INTEGER := 7;
CONSTANT ibnf_bit_pos : INTEGER : 6;

-- In this next TYPE, "rse" stands for "read SERP entry" and "v" stands
-- for "vote".

TYPE struct_vote_state type IS (rse0,rsel,rse2,rse3,rse4,rse5,v0,
vl,v2,v3,v4,v5,v6,v7,v8,v9,vl0);
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SIGNAL vote state : struct vote state_type;

-- The following signals are repositories for intermediate data

SIGNAL voted data : BIT VECTOR(7 DOWNTO 0);
SIGNAL unan : BIT_VECTOR(7 DOWNTO 0);
SIGNAL a_syndrome : BIT_VECTOR(7 DOWNTO 0);
SIGNAL bsyndrome : BIT_VECTOR(7 DOWNTO 0);
SIGNAL c syndrome : BIT_VECTOR(7 DOWNTO 0);
SIGNAL d syndrome : BIT VECTOR(7 DOWNTO 0);
SIGNAL overall_vote_syndrome : presencetype;

SIGNAL voted_serp_entry : voted_serp_type;
SIGNAL voted_obne,voted_ibnf : flow_control_type;
SIGNAL voted destvid : vid type;
SIGNAL voted_class : class_type;

SIGNAL start to check,check done : BOOLEAN;
SIGNAL obne_syndrome, ibnf_syndrome : presence type;
SIGNAL clear obne,clear ibnf : BOOLEAN :- FALSE;
SIGNAL current_timer_value : timer_range;

-- These signals are "registers" for holding information

SIGNAL source_vid : vid_type;
SIGNAL presence : presence_type;
SIGNAL redun_level : redun_leveltype;
SIGNAL timeout_value : timeout_type;
SIGNAL vid_is_simplex : BOOLEAN;
SIGNAL isflowcontrol : BIT;

-- The following signals are -used mainly by the controller. In this
-- ARCHITECTURE the controller is not a separate component. It seems
-- easier to debug, but it's slower to compile (where's my SPARC2, eh?).

TYPE by array IS ARRAY (NATURAL RANGE <>) OF BITVECTOR(7 DOWNTO 0);

SIGNAL vote_values : serp_array (0 TO (max_redun_level - 1));
SIGNAL bit_vote_values : bvarray (0 TO (max_redun_level - 1));

-- These signals will become ports when I get around to it

SIGNAL loadtimer : twlogic := fl;
SIGNAL new_timer_value : timer_range;

-- Here are the components used in the architecture

COMPONENT votingsubsystem

GENERIC

voter_delay: TIME :- 1 ns;
unan_delay: TIME :- 1 ns;
syndrome_delay: TIME :- 1 ns

PORT
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is flow control: IN BIT;
presence : IN presence_type;

redunlevel: IN redunlevel_type;
unan: OUT BIT VECTOR(7 DOWNTO 0);
vote result: OUT BIT VECTOR(7 DOWNTO 0);
d: IN BIT VECTOR(7 DOWNTO 0);
c: IN BIT VECTOR(7 DOWNTO 0);
b: IN BIT VECTOR(7 DOWETO 0);
a: IN BIT VECTOR(7 DOWNTO 0);
d_syndrome: OUT BIT_VECTOR(7 DOWNTO 0);
c syndrome: OUT BIT_VECTOR(7 DOWNTO 0);
b_syndrome: OUT BIT_VECTOR(7 DOWNTO 0);
a_syndrome: OUT BIT_VECTOR(7 DOWNTO 0)

END COMPONENT;

COMPONENT timeout_subsystem

GENERIC

doCMTO: BOOLEAN := FALSE

PORT

vid is simplex: IN BOOLEAN;
clear timeouts: IN BOOLEAN;
check done: OUT BOOLEAN;
ct_tovalue: IN timeouttype;
timervalue: OUT timer_range;
load timer: IN t_wlogic;
new timervalue: IN timer_range;
ibnf unan: IN BOOLEAN;
ibnf: IN flow_control_type;
ibnfsyndrome_out: OUT presence_type;
clear ibnf: OUT BOOLEAN;
start to check: IN BOOLEAN;
obnesyndrome_out: OUT presence_type;
obne unan: IN BOOLEAN;
clear obne: OUT BOOLEAN;
obne: IN flow control_type;
source_vid: IN vidtype;
clock: IN twlogic

END COMPONENT;

BEGIN

----,t*+l**t****ttt*t*t*t* ***************t*tt*ttt

-- controller PROCESS : implements the voter sub-controller. It reads in
-- SERP entries using the pidtovid_table, sends them to the voter,
-- collects the syndromes, and writes the voted results to the voted
-- SERP memory.

controller : PROCESS(clock, start voting)

VARIABLE temp_dpram_address : addresstype;
VARIABLE vids voted : INTEGER :- 0;

VARIABLE current_ptov_entry : pid_to_vid_entry_type;

-- num members is redun_level converted to a number, used as a loop control index
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VARIABLE num members : INTEGER;

-- current_member is the index into the members array of the current_ptov_entry

VARIABLE current member : INTEGER;

BEGIN
IF clock - fl AND clock'EVENT THEN
CASE vote state IS

-- State rseO is the idle state

WHEN rse0 ->
donevoting <- FALSE;
ptovrw <- z0;
dpram rw <- z0;
dpram_address <= high z_address;
voted_serp_rw <= z0;
vids voted :- 0;
vote state <- rse0;
IF start_voting THEN

ptov_address <- vids_voted;
ptovrw <- fl;
dpramrw <- fl;
vote state <- rsel;

END IF;

-- States rsel to rse4 read in the ptov entry and then each SERP entry in
-- the VID
-- Be careful of the array bounds since current member goes from 1 TO 4
-- while members_type goes from 0 TO 3.

-- wait for the ptov data to appear

WHEN rsel ->
vote state <- rse2;

WHEN rse2 ->
currentptov entry := ptov data;
source_vid <- current_ptov _entry.vid;

nummembers :- redun-toint(currentptov-entry.redun level);
timeout_value <- currentptov_entry.timeout;
presence <- current_ptov_entry.presence;
vid_is_simplex <- (current_ptov_entry.redun_level - simplex);
current member := 0;
vote state <= rse3;

-- These next two states read each SERP entry in the VID into the
-- serp array

WHEN rse3 ->

-- Check to see if redunlevel serp entries have been read

IF NOT (current_member - num members) THEN
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-- If not, then go on to read the serp entry from the dpram

temp_dpram_address :- serp_base +
current_ptoventry.members(current member);

dpramaddress <- temp dpram_address;
vote state <- rse4;

ELSE

-- If so, then go on to the voting state

vote state <- v0;
END IT;

-- wait for the serp data to appear

WREN rse4 ->
votestate <- rse5;

-- rse5 simply assigns the serp_data which appears on the data line to
-- votevalues

WHEN rse5 ->
vote_values(current member) <- serp data;
current member :- current member + 1;

votestate <- rse3;

-- End section to read in the serp entries

-- -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

-- vO sends the OBNE and IBNF bits to the voter. Notice that the OBNE and
-- IBNF are the MSB and (MSB-1) bits of the byte sent to the voter.
-- NOTE : In the voter, ALL four entries are always converted and sent
-- to the voter. The redun_level signal tells the voter which inputs
-- to ignore.

WHEN v0 ->
FOR i IN 1 TO max redun level LOOP
bit_vote_values(i - 1)(obne_bit_pos) <=
convertto bits(votevalues(i - 1).obne);
bit_vote_values(i - 1) (ibnf bit_pos) <-
convert to bits(vote values(i - I).ibnf);
END LOOP;
votestate <- vl;

-- vl assigns the voted obne and ibnf "registers" there values, starts
-- the timeout process, and sends the destination VID to the voter

WHEN vl ->

convert_back(voted_data(obne bit pos),voted_obne);
convert_back(voted_data(ibnf_bit_pos),voted_ibnf);

-- start timeout process

start_to_check <- TRUE AFTER control delay;
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FOR i IN 1 TO max redun level LOOP
bit vote values(i-1) <-

convert to bits(votevalues(i - 1).destvid);
END LOOP;
vote state <- v2;

-- v2 converts the voted destination VID back and decides whether to continue
-- voting based on the results of the timeout calculation.
-- NOTE : I'm assuming timeout calculations take only one clock cycle.
-- This is unrealistic, but for now it will do. Change the states around so
-- that whenever the timeouts are done, the voter decides whether to go on
-- voting or not.

WHEN v2 ->
convert back(voted data,voted dest vid);

-- IF (majority + timeout) THEN continue voting ELSE stop
IF voted obne AND NOT(clear obne) THEN

vote state <- v3; -- last state of the voter
ELSE

vote state <- v7;
END IF;

- For now, don't vote the rest of the stuff

WZEN v3 ->
vote state <- v7;

-- v7 assigns the intermediate values to the voted_serp_data port

WREN v7 <>
voted_serp_data.obne <= voted_obne;
votedserp_data.ibnf <- voted_ibnf;
voted_serp_data.vidis simplex <= vidissimplex;
voted_serp_data.sourcevid <= source_vid;
votedserp_data.dest_vid <= voted_dest_vid;
votedserp data.class <= votedclass;
voted_serp_data.obne_syndrome <= obne_syndrome;
voted_serp_data.ibnf_syndrome <= ibnf_syndrome;
votedserp_data.sb_vote_syndrome <= overall_votesyndrome;

voted_serp_address <= current ptov_entry.vid;
voted_serprw <= fO AFTER control_delay;
vids voted := vids voted + 1;
vote state <- v8;

- v9 checks to see if all vids have been voted. If so, then it signals that
-- voting is done and idles the voter subcontroller

WREN v8 ->
voted_serp_rw <= fl AFTER control_delay;
IF vids voted - numvids TIEN

done_voting <= TRUE;
vote state <= rse0;

ELSE

-- assert next ptov table address and start over
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ptov_address <- vids voted;
vote state <- rsel;

END IF;

-- Appease that damn syntax diety, again. He's a demanding bastage.

WREW OTBERS ->
ASSERT FALSE REPORT "PUKE"; -- SEVERITY ANNOYANCE;

END CASE;
END IF;

END PROCESS;

voter : votingsubsystem
PORT MAP

redunlevel -> redunlevel,
presence -> presence,

d -> bit vote values(3),
c -> bit vote values(2),
b -> bit vote values(1),
a -> bit vote values(0),

asyndrome -> asyndrome,
b syndrome -> b syndrome,
c_syndrome -> c_syndrome,
dsyndrome -> dsyndrome,

vote result -> voted data,
is flowcontrol => isflowcontrol,

unan -> unan

timeout : timeoutsubsystem
PORT MAP

ct to value -> timeout value,
vidis_simplex -> vidissimplex,
cleartimeouts => start clear,

load timer -> load timer,
new timer value => newtimervalue,
ibnf_unan -> convert_back(unan(ibnf_bit_pos)),
ibnf -> voted ibnf,
ibnfsyndrome_out => ibnfsyndrome,
clearibnf -> clearibnf,
start to check -> start to check,

checkdone -> check done,
obne_syndrome_out -> obne_syndrome,
obneunan -> convert_back(unan(obne_bit_pos)),
clear_obne -> clear_obne,
obne -> voted_obne,
source_ vid => source vid,

timer_value -> current timer value,
clock -> clock

END vote_timeoutstruct;

-- Voter and Timeout Structural Configuration

-- This file contains the CONFIGURATION for the structural votetimeout
-- implementation.
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CONFIGURATION cvote timeout struct OF vote timeout IS

FOR vote timeout struct

FOR timeout : timeout subsystem
USE CONFIGURATION work.ctimeout subsystem
GENERIC MAP ( do CMTO -> FALSE);
END FOR;

FOR voter : votingsubsystem

USE CONFIGURATION voters.cvoting_subsystem
GENERIC MAP ( voter delay => clock_period/4,

syndrome_delay => clock period/4,
unan_delay => clockperiod/4);

END FOR;

END FOR;

END cvotetimeout struct;
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10.7.2. Timeout Subsystem

LIBRARY score;

USE std.std_logic.ALL;
USE score.scoreboard package.ALL;
USE std.stdcmos.ALL;
USE score.voter_package.ALL;
USE score.address_package.ALL;
ENTITY timeout_subsystem IS

GENERIC

do CMTO: BOOLEAN :- FALSE

PORT

vidissimplex: IN BOOLEAN;
clear timeouts: IN BOOLEAN;
check done: OUT BOOLEAN;
ct to value: IN timeout_type;
timervalue: OUT timer_range;
load_timer: IN t_wlogic;
newtimer_value: IN timer_range;
ibnf unan: IN BOOLEAN;
ibnf: IN flow_control_type;
ibnf_syndrome_out: OUT presence_type;
clearibnf: OUT BOOLEAN;
start to check: IN BOOLEAN;
obne_syndrome_out: OUT presence type;
obne unan: IN BOOLEAN;
clear obne: OUT BOOLEAN;
obne: IN flowcontroltype;
source_vid: IN vid type;
clock: IN twlogic

END timeoutsubsystem;

LIBRARY SCORE;

USE std.std_logic.ALL;
ARCHITECTURE timeoutsubsystem OF timeout_subsystem IS

COMPONENT timer
PORT

clock: IN twlogic;
input value: IN timer_range;
timer_value: OUT timer range;
load_timer: IN twlogic

END COMPONENT;
COMPONENT timeoutchecker

GENERIC

do CMTO: BOOLEAN :- FALSE;
simplex_isspecial: BOOLEAN := FALSE

PORT
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clock: IN t_wlogic;
flow controlbit: IN flow control_type;
clear flow control: OUT BOOLEAN;
unan: IN BOOLEAN;
syndrome out: OUT presence_type;
start to check: IN BOOLEAN;
tomemoryrw: OUT twlogic;
timeout value: IN timertype;
timer_value: IN timer range;
check done: OUT BOOLEAN;
cttovalue: IN timeouttype;
vid_is_simplex: IN BOOLEAN :- FALSE;
to address: OUT resolved address;
clear timeouts: IN BOOLEAN;
timeout_out: OUT timertype

END COMPONENT;
COMPONENT timeoutmemory

GENERIC

read delay: TIME :- clock_period/4

PORT

clock: IN twlogic;
address: IN resolved address;
input: IN timer_type;
output: OUT timer_type;
read_write: IN t_wlogic

END COMPONENT;

FOR scoreboard timer:timer
USE CONFIGURATION SCORE.ctimer behavior;

FOR obne to checker:timeout_ checker
USE CONFIGURATION SCORE.ctimeout checkerbehavior
GENERIC MAP (

doCMTO -> FALSE,
simplex is special -> FALSE );

FOR ibnf to checker:timeout checker
USE CONFIGURATION SCORE.ctimeoutchecker behavior
GENERIC MAP (

do CMTO -> FALSE,
simplex isspecial -> FALSE );

FOR obneto_memory:timeout_memory
USE CONFIGURATION SCORE.ctimeout_memory_behavior
GENERIC MAP (

readdelay -> clock period/4 );

FOR ibnf_to_memory:timeout_memory
USE CONFIGURATION SCORE.ctimeout-memory_behavior
GENERIC MAP (

read_delay -> clock_period/4 );
SIGNAL SGNL000021: t_wlogic;
SIGNAL SGNL000051: timer type;
SIGNAL SGNL000057: timer_type;
SIGNAL SGNL000017: t_wlogic;
SIGNAL SGNLOO000049: timer_type;
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SIGNAL SGNL000056: timer type;
SIGNAL feedbackO: timer_range;

BEGIN
timer value <- feedback0;

scoreboard timer: timer
PORT MAP (

load timer -> load timer,
timer value -> feedbackO,
input value -> new_timer_value,
clock -> clock );

obne to checker: timeout checker
PORT MAP (

timeout out -> SGNL000056,
clear timeouts -> clear_timeouts,
to address -> OPEN,
vid_is_simplex -> vidis_simplex,
ct to value -> ct tovalue,
check done -> OPEN,
timer value -> feedbackO,
timeoutvalue -> SGNL000049,
to_memory_rw -> SGNL000017,
start to check -> startto check,
syndrome out -> obnesyndromeout,
unan -> obne_unan,
clear flow control -> clear obne,
flow control bit -> obne,
clock -> clock );

ibnf to checker: timeout checker
PORT MAP (

timeout out -> SGNL000057,
clear timeouts -> clear timeouts,
to address -> OPEN,
vidissimplex -> vidissimplex,
ct to value -> cttovalue,
check_done -> check_done,
timer value -> feedbackO,
timeout value -> SGNL000051,
to_memory rw -> SGNL000021,
start to check -> start tocheck,
syndrome_out -> ibnf_syndrome_out,
unan -> ibnf unan,
clear flow control -> clear ibnf,
flow control bit -> ibnf,
clock -> clock );

obneto memory: timeout_memory
PORT MAP (

readwrite -> SGNL000017,
output -> SGNL000049,
input -> SGNL000056,
address -> sourcevid,
clock -> clock );

ibnfto memory: timeout_memory
PORT MAP (

read write -> SGNL000021,
output -> SGNL000051,
input -> SGNL000057,
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address -> source_ vid,
clock -> clock );

9ND timeout_subsystem;

-- Timeout Subsystem Structural Configuration

-- This file contains the CONFIGURATION for the structural
-- timeout_subsystem implementation.

CONFIGURATION ctimeout subsystem OF timeout_subsystem IS

FOR timeout subsystem

FOR scoreboard timer:timer
USE CONFIGURATION score.ctimerbehavior;

END FOR;

FOR obne to checker:timeout checker
USE CONFIGURATION score.ctimeoutchecker behavior

GENERIC MAP (
doCMTO -> FALSE,
simplexisspecial -> FALSE );

END FOR;

-- A simplex is treated differently for IBNF than for OBNE, so make the
-- GENERIC the proper value

FOR ibnf to checker:timeout checker
USE CONFIGURATION score.ctimeout checker behavior

GENERIC MAP (
do CMTO -> FALSE,
simplex isspecial -> TRUE );

END FOR;

FOR obne_to_memory:timeout_memory
USE CONFIGURATION score.ctimeout_memory behavior

GENERIC MAP (
read delay => clock_period/4 );

EBND FOR;

FOR ibnf_to_memory:timeout_memory
USE CONFIGURATION score.ctimeout_memory_behavior

GENERIC MAP (
read delay -> clock_period/4 );

END FOR;

END FOR;

END ctimeoutsubsystem;
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10.7.3. Timeout Checker

LIBRARY score;

USE std.std_logic.ALL;
USE score.scoreboard_package.ALL;
USE std.std cmos.ALL;
USE score.address_package.ALL;
USE score.voter_package.ALL;
ENTITY timeout checker IS

GENERIC

do CMTO: BOOLEAN :- FALSE;
simplex is_special: BOOLEAN :- FALSE

PORT

timeout out: OUT timer type;
clear timeouts: IN BOOLEAN;
to_address: OUT resolvedaddress;
vidissimplex: IN BOOLEAN :- FALSE;
ct_to_value: IN timeout_type;
check done: OUT BOOLEAN;
timer value: IN timer_range;
timeout_value: IN timer_type;
to_memory_rw: OUT t_wlogic;
start to check: IN BOOLEAN;
syndrome out: OUT presence_type;
unan: IN BOOLEAN;
clear flow control: OUT BOOLEAN;
flow_control_bit: IN flow_control_type;
clock: IN twlogic

END timeout checker;

_--•tt*t***********•*t*tt******* ****** *****t***************** **

-- Timeout Checker Behavioral Architecture

-- This ARCHITECTURE contains the behavioral implementation of the
-- timeout checker. The generic do_CMTO flags wehter to perform a
-- Common Mode Timeout. This feature is currently not implemented,
-- but the hook is there.

ARCHITECTURE timeout checker behavior OF timeoutchecker IS

TYPE checker_state_type IS (cO,cl,c2,c3,c4);
SIGNAL checker_state : checker_statetype :- ;0;

SIGNAL difference : timer range;

BEGIN

controller : PROCESS (clock,startto check)

BEGIN
IF clock - fl AND clock'EVENT THEN

CASE checker state IS
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WHEN cO ->
IF start to check THEN

checker state <- cl;
ELSE

checker state <- cO;
END IF;

WHEN cl ->
IF (flow control bit AND NOT(unan)) OR vidis_simplex TREN

difference <= abs(timer value - timeout value.value);
checkerstate <- c2;

ELSE

-- Place Common Mode Timeout code here

checkerstate <- c4;
END IF;

WHEN c2 =>
IF difference > ct to value TREN

-- The timeout period has expired

clear_flow_control <= FALSE AFTER control delay;
checkerstate <- c3;

ELSE
clearflowcontrol <- TRUE AFTER control delay;
checkerstate <- c4;

END IF;

WHEN c3 ->
checker state <- c4;

WHEN c4 ->
check done <- TRUE AFTER controldelay;
checker state <- cO;

END CASE;
END IF;

END PROCESS;

END timeout checker behavior;

CONFIGURATION ctimeout checker behavior OF timeout checker IS
FOR timeout checker behavior
END FOR;

END ctimeout checkerbehavior;
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10.7.4. TimeoutMemory

LIBRARY score;

USE score.voter_package.ALL;
USE std.std_logic.ALL;
USE std.std cmos.ALL;
USE score.addresspackage.ALL;
USE score.scoreboardpackage.ALL;
ENTITY timeout memory IS

GENERIC

read_delay: TIME :- clock_period/4

PORT

read_write: IN t_wlogic;
output: OUT timer_type;
input: IN timer_type;
address: IN resolvedaddress;
clock: IN t_wlogic

END timeout_memory;

-- Timeout Memory Behavioral ARCRITECTURE

-- This file contains the behavioral ARCHITECTURE for the timeout
-- memory.

ARCBITECTURE timeout_memory_behavior OF timeout_memory IS

BEGIN

behavior : PROCESS (clock,read write,address)
VARIABLE memory : timeout memory_type(mem_base TO max_vid);

BEGIN
IF clock - fl AND clock'EVENT THEN

IF read write - fO TREN
memory(address) :- input;

ELSE
output <- memory(address) AFTER read_delay;

END IF;
END IF;

END PROCESS;
END;

CONFIGURATION ctimeout_memory_behavior OF timeout_memory IS
FOR timeout_memory_behavior
END FOR;

END ctimeoutmemory behavior;
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10.7.5. Timer

LIBRARY score;

USE std.std_logic.ALL;
USE score.scoreboard_package.ALL;
USE std.std cmos.ALL;
USE score.voter package.ALL;
ENTITY timer IS

PORT

load_timer: IN t_wlogic;
timer_value: OUT timer range;
inputvalue: IN timer_range;
clock: IN t_wlogic

END timer;

-- Timer Behavioral Architecture

-- This ARCHITECTURE contains the behavioral implementation of the
-- scoreboard's internal timer. Ideally, a selected signal assignment
-- statement should be used. However, because the current version
-- does not support BUFFER ports, a PROCESS must be used instead.

ARCHITECTURE timer behavior OF timer IS

BEGIN

yo : PROCESS(clock)

-- this variable is required because the OUT port timer_value
-- cannot be read

VARIABLE temp timer_value : timer_range :- 0;

BEGIN

IF clock - fl AND clock'EVENT THEN
IF NOT (temp_timer_value - max_timer_value) TEEN

temp timer_value :- temp_timer_value + 1;
ELSE

temptimer_value :- init_timer_value;
END IF;

IF load timer - fl THEN
temp_timer_value :- input_value;

END IF;

timervalue <- temptimervalue;
END IF;

END PROCESS;



END timer behavior;

CONFIGURATION ctimer behavior OF timer IS
FOR timer behavior
END FOR;

END ctimer behavior;
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10.7.6. VotingSubsystem

LIBRARY voters;

LIBRARY score;

USE std.std_logic.ALL;
USE score.scoreboard package.ALL;
USE score.voterpackage.ALL;
ENTITY voting subsystem IS

GENERIC

voter delay: TIME :- 1 ns;
unan delay: TIME :- 1 ns;
syndrome delay: TIME :- 1 ns

PORT

presence: IN presencetype;
d_syndrome: OUT BIT VECTOR(7 DOWNTO 0);
c syndrome: OUT BIT VECTOR(7 DOWNTO 0);
b_syndrome: OUT BIT VECTOR(7 DOWNTO 0);
a_syndrome: OUT BITVECTOR(7 DOWNTO 0);
is flow control: IN BIT;
redun_level: IN redun_leveltype;
unan: OUT BIT VECTOR(7 DOWNTO 0);
vote result: OUT BITVECTOR(7 DOWNTO 0);
d: IN BIT VECTOR(7 DOWNTO 0);
c: IN BIT VECTOR(7 DOWNTO 0);
b: IN BIT VECTOR(7 DOWNTO 0);
a: IN BIT VECTOR(7 DOWNTO 0)

END voting_subsystem;

LIBRARY VOTERS;

USE std.std logic.ALL;
ARCRITECTURE voting_subsystem OF voting_subsystem IS

COMPONENT eight_bit_voter
GENERIC

voter delay: TIME :- 1 ns

PORT

is flow control: IN BIT;
result: OUT BIT VECTOR(7 DOWNTO 0);
a: IN BIT VECTOR(7 DOWETO 0);
b: IN BIT VECTOR(7 DOWNTO 0);
c: IN BIT VECTOR(7 DOWNTO 0);
d: IN BIT VECTOR(7 DOWNTO 0);
redun_level: IN redunlevel type

END COMPONENT;
COMPONENT eightbit_syndrome

GENERIC



syndrome_delay: TIME :- 1 ns

PORT

a: IN BIT VECTOR(7 DOWITO 0);
b: IN BIT VECTOR(7 DOWNTO 0);
c: IN BIT VECTOR(7 DOWNTO 0);
d: IN BIT VECTOR(7 DOWNTO 0);
asyndrome: OUT BIT_VECTOR(7 DOWNTO 0);
bsyndrome: OUT BIT_VECTOR(7 DOWNTO 0);
csyndrome: OUT BIT_VECTOR(7 DOWNTO 0);
dsyndrome: OUT BIT_VECTOR(7 DOWNTO 0);
voteresult: IN BITVECTOR(7 DOWNTO 0);
presence: IN presence_type

END COMPONENT;
COMPONENT eight_bit_unan

GENERIC

unan_delay: TIME :- 1 ns

PORT

a: IN BIT VECTOR(7 DOWNTO 0);
b: IN BIT VECTOR(7 DOWNTO 0);
c: IN BIT VECTOR(7 DOWNTO 0);
d: IN BIT VECTOR(7 DOWNTO 0);
voteresult: IN BITVECTOR(7 DOWNTO 0);
unan: OUT BIT VECTOR(7 DOWNTO 0);
redun_level: IN redun_ievel type

END COMPONENT;

FOR voter:eight_bit_voter
USE CORTIGURATION VOTERS.cfull voter behavior
GENERIC MAP (

voter_delay -> 1 ns );

FOR syndrome_generator:eight_bit_syndrome
USE CONFIGURATION VOTERS.cfull_syndrome_behavior
GENERIC MAP (

syndromedelay -> 1 ns );

FCR unan_generator:eight_bit_unan
USE CONFIGURATION VOTERS.ceightbit_unan_behavior
GENERIC MAP (

unan_delay -> 1 ns );
SIGNAL feedbackO: BIT VECTOR(7 DOWNTO 0);

BEGIN
vote result <- feedback0;

voter: eightbitvoter
PORT MAP (

redunlevel -> redunlevel,
d -> d,
C -> C,

b -> b,

a => a,
result -> feedbackO,
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is flow control -> is flow control );

syndrome generator: eight_bit _syndrome
PORT MAP (

presence => presence,
vote result -> feedbackO,
dsyndrome -> d_syndrome,
csyndrome -> c_syndrome,
bsyndrome -> b_syndrome,
asyndrome -> a syndrome,

d -> d,
c -> C,
b -> b,
a -> a );

unan_generator: eight_bit_unan
PORT MAP (

redun level -> redun level,
unan m> unan,
vote result -> feedbackO,

d => d,
C C> C,
b -> b,
a -> a );

END voting_subsystem;

CONFIGURATION cvoting_subsystem Or voting_subsystem IS

FOR voting_subsystem

FOR voter:eight_bit_voter
USE CONFIGURATION work.cfull voter behavior

GENERIC MAP (
voter delay -> 1 ns );

END FOR;

FOR syndrome_generator:eight_bit_syndrome
USE CONFIGURATION work.cfull_syndrome_behavior

GENERIC MAP (
syndrome_delay => 1 ns );

END FOR;

FOR unan generator:eight bit unan
USE CONFIGURATION work.ceight_bit unan behavior

GENERIC MAP (
unandelay -> 1 ns );

END FOR;

END FOR;

END cvoting subsystem;
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10.7.7. One Bit Voter

LIBRARY voters;

LIBRARY score;

USE std.std_logic.ALL;
USE std.std cmos.ALL;
USE score.scoreboard_package.ALL;
ENTITY one bit voter IS

GENERIC

voter_delay: TIME :- 1 ns

PORT

is flow control: IN BIT;
redun_level: IN redunleveltype;
result: OUT 'BIT;
d: IN BIT;
c: IN BIT;
b: IN BIT;
a: IN BIT

END one bit voter;

-- One Bit Voter Behavioral description
-- This file contains the behavioral description of a one bit voter.
-- It uses a selected signal assignment statement to vote based on
-- the redundancy level.

ARCHITECTURE one bit voter behavior OF one bit voter IS

BEGIN

voter process : PROCESS(a,b,c,d,redunlevel,isflow_control)

VARIABLE flow quad_result,data_quad_result : BIT := '0';
VARIABLE quadresult,triplex result,simplex_ result : BIT :- '0';

BEGIN

ASSERT NOT (redun level - zero)
REPORT "redun level in voter is zero!"
SEVERITY ERROR;

simplex_result :- a;

-- For triplex voting, the 'd' input can be ignored since it will not have
-- valid data on it

triplex_result :- (a AND b) OR (a AND c) OR (b AND c);

flow quad_result :-
(a AND b AND c) OR (a AND b AND d) OR
(a AND c AND d) OR (b AND c AND d);

194



data_quadresult :-
(a AND b) OR (a AND c) OR (a AND d) OR
(b AND c) OR (b AND d) OR (c AND d);

IF is flow control - '1' THEN
quad result :- flow_quad result;

ELSE
quad_result :- data_quad_result;

END IF;

CASE redun level IS
WIEN zero -> result <-
WREW simplex -> result
WHEN triplex -> result
WHEN quad -> result <-

END CASE;

'O' AFTER voter_delay;
<- simplex_result AFTER voter_delay;
<- triplex result AFTER voter_delay;
quad result AFTER voter_delay;

END PROCESS;

END one bit voterbehavior;

CONFIGURATION cone bit voter behavior OF onebit voter IS
FOR one bit voter behavior
END FOR;

END conebit voter behavior;
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10.7.8. One Bit Unanimity Generator

LIBRARY score;

LIBRARY voters;

USE std.std_logic.ALL;
USE std.std cmos.ALL;
USE score.scoreboard_package.ALL;
USE score.voterpackage.ALL;
ENTITY one bit unan IS

GENERIC

unan delay: TIME := 1 ns

PORT

redun level: IN
vote result: IN
unan: OUT BIT;
d: IN BIT;
c: IN BIT;
b: IN BIT;
a: IN BIT

redunlevel_type;
BIT;

END onebit unan;

-- One bit unanimity checker
-- This file contains the behavioral description of a single bit
-- unanimity checker.

ARCHITECTURE one bit unan behavior OF one bit unan IS

BEGIN

unan_checker: PROCESS (a,b,c,d,voteresult,redunlevel)

VARIABLE quad_result,triplex_result,simplex_result : BOOLEAN := FALSE;

BEGIN

simplex_result := TRUE;

triplex_result := (a = vote_result) AND
(b = vote result) AND
(c = vote result);

quad_result := (a = vote_result) AND
(b = vote result) AND
(c = voteresult) AND
(d = vote result);

CASE redun level IS
WHEN zero => unan <= 'O' AFTER unan_delay;
WHEN simplex =>
unan <= convert to bits (simplex_result) AFTER unan_delay;

WHEN triplex =>
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unan <= convert_to_bits(triplex_result) AFTER unan_delay;
WHEN quad =>
unan <= convertto_bits(quadresult) AFTER unan_delay;

END CASE;

END PROCESS;

END one bit unan behavior;

CONFIGURATION cone bit unan behavior OF one bit unan IS
FOR one bit unan behavior
END FOR;

END cone bit unan behavior;



10.7.9. One Bit Syndrome Accumulator

LIBRARY score;

LIBRARY voters;

USE std.std_logic.ALL;
USE score.scoreboard_package.ALL;
USE std.stdcmos.ALL;
USE score.voter_package.ALL;
ENTITY one bitsyndrome IS

GENERIC

syndromedelay: TIME := 1 ns

PORT

presence: IN presencetype;
vote result: IN BIT;
dsyndrome: OUT BIT;
csyndrome: OUT BIT;
bsyndrome: OUT BIT;
asyndrome: OUT BIT;
d: IN BIT;
c: IN BIT;
b: IN BIT;
a: IN BIT

END one bit syndrome;

-- One Bit Voter Behavioral description
-- This file contains the behavioral description of a one bit voter.
-- It uses a selected signal assignment statement to vote based on
-- the redundancy level.

ARCHITECTURE one bit syndrome behavior OF one bit_syndrome IS

BEGIN

END onebit syndrome_behavior;

CONFIGURATION cone_bit_syndrome_behavior OF one_bit_syndrome IS
FOR one_bitsyndrome_behavior
END FOR;

END cone_bit_syndrome_behavior;
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10.7.10. Eight Bit Voter

LIBRARY score;

LIBRARY voters;

USE std.std_logic.ALL;
USE score.scoreboard_package.ALL;
USE score.voter_package.ALL;
USE std.std cmos.ALL;
ENTITY eightbit_voter IS

GENERIC

voter delay: TIME := 1 ns

PORT

redun level: IN redunlevel type;
d: IN BIT VECTOR(7 DOWNTO 0);
c: IN BIT VECTOR(7 DOWNTO 0);
b: IN BIT VECTOR(7 DOWNTO 0);
a: IN BIT VECTOR(7 DOWNTO 0);
result: OUT BIT VECTOR(7 DOWNTO 0);
is flow control: IN BIT

END eight bit voter;

-- Eight bit voter
-- This file contains the structural description for an eight bit
-- voter. A generate statement creates and maps the 8 one bit voters.

ARCHITECTURE eightbit_voter behavior OF eightbit voter IS

COMPONENT onebit voter
PORT

is flow control: IN BIT;
redunlevel: IN redunleveltype;
result: OUT BIT;
d: IN BIT;
c: IN BIT;
b: IN BIT;
a: IN BIT

END COMPONENT;

BEGIN

votergen : FOR i IN result'RANGE GENERATE

slice : one bit voter PORT MAP

is flow control => is flow control,
redun level => redun level,
result => result(i),
d => d(i),
c => c(i),

199



b => b(i),
a => a(i)

END GENERATE voter_gen;

END eight bit voter behavior;

CONFIGURATION cfull_voter_behavior OF eight_bitvoter IS
FOR eight_bit voter_behavior
FOR voter_gen
FOR slice : one bit voter

USE CONFIGURATION voters.cone bit voter behavior
GENERIC MAP (voter_delay => voter_delay);

END FOR;
END FOR;

END FOR;
END cfullvoter behavior;
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10.7.11. Eight Bit Unanimity Generator

LIBRARY score;

LIBRARY voters;

USE std.std_logic.ALL;
USE score. scoreboard_package.ALL;
ENTITY eight bit unan IS

GENERIC

unan_delay: TIME := 1 ns

PORT

redun level: IN redun-level type;
unan: OUT BIT VECTOR(7 DOWNTO 0);
vote result: IN BIT VECTOR(7 DOWNTO 0);
d: IN BIT VECTOR(7 DOWNTO 0);
c: IN BIT VECTOR(7 DOWNTO 0);
b: IN BIT VECTOR(7 DOWNTO 0);
a: IN BIT VECTOR(7 DOWNTO 0)

END eight bit unan;

-- Eight unan checker
-- This file contains the structural description for an eight bit
-- unanimity checker.

ARCHITECTURE eight_bit_unan_behavior OF eight_bit_unan IS

COMPONENT one bit unan
PORT

redun level: IN
vote result: IN
unan: OUT BIT;
d: IN BIT;
c: IN BIT;
b: IN BIT;
a: IN BIT

redunlevel_type;
BIT;

END COMPONENT;

BEGIN

unan_gen : FOR i IN unan'RANGE GENERATE

slice : one bit unan PORT MAP

vote result => vote result(i),
redun level => redun level,
unan => unan(i),
d => d(i),
c => c(i),
b => b(i),
a => a(i)
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END GENERATE unan_gen;

END eight_bit_unan_behavior;

CONFIGURATION ceight bit unanbehavior OF eight bit unan IS
FOR eight_bit_unan_behavior

FOR unan_gen
FOR slice : one bit unan

USE CONFIGURATION voters.cone bit unan behavior
GENERIC MAP (unan delay => unan delay);

END FOR;
END FOR;

END FOR;
END ceight_bit_unan behavior;
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10.7.12. Eight Bit Syndrome Accumulator

LIBRARY score;

LIBRARY voters;

USE std.std_logic.ALL;
USE score.scoreboard_package.ALL;
USE std.std cmos.ALL;
USE score.voterpackage.ALL;
ENTITY eight_bit_syndrome IS

GENERIC

syndrome_delay: TIME := 1 ns

PORT

presence: IN presence_type;
voteresult: IN BITVECTOR(7 DOWNTO 0);
dsyndrome: OUT BIT VECTOR(7 DOWNTO 0);
csyndrome: OUT BIT VECTOR(7 DOWNTO 0);
bsyndrome: OUT BIT_VECTOR(7 DOWNTO 0);
asyndrome: OUT BITVECTOR(7 DOWNTO 0);
d: IN BIT VECTOR(7 DOWNTO 0);
c: IN BIT VECTOR(7 DOWNTO 0);
b: IN BIT VECTOR(7 DOWNTO 0);
a: IN BIT VECTOR(7 DOWNTO 0)

END eight_bit_syndrome;

-- Eight bit syndrome
-- This file contains the structural description for an eight bit
-- syndrome. A generate statement creates and maps the 8 one bit syndromes.

ARCHITECTURE eight_bi.t_syndrome behavior OF eightbitsyndrome IS

COMPONENT one bitsyndrome
PORT

presence: IN presence_type;
voteresult: IN BIT;
dsyndrome: OUT BIT;
csyndrome: OUT BIT;
bsyndrome: OUT BIT;
asyndrome: OUT BIT;
d: IN BIT;
c: IN BIT;
b: IN BIT;
a: IN BIT

END COMPONENT;

BEGIN

syndrome gen : FOR i IN vote_result'RANGE GENERATE

slice : one_bit_syndrome PORT MAP
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presence => presence,
vote result => vote result(i),
dsyndrome => dsyndrome(i),
csyndrome => csyndrome(i),
bsyndrome => bsyndrome(i),
asyndrome => asyndrome(i),

d => d(i),
c => c(i),
b => b(i),
a => a(i)

END GENERATE syndrome_gen;

END eight_bitsyndrome_behavior;

CONFIGURATION cfull_syndrome behavior OF eight bit syndrome IS
FOR eight_bit_syndrome_behavior

FOR syndrome_gen
FOR slice : one_bitsyndrome

USE CONFIGURATION voters.conebit_syndrome_behavior
GENERIC MAP (syndromedelay => syndrome_delay);

END FOR;
END FOR;

END FOR;
END cfullsyndrome behavior;
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10.8. C Test Vector Generator

This appendix contains the complete C source code for the scoreboard test vector

generator.

10.8.1. File config.h

This file contains global configuration information such as the location within the

SERP of the OBNE and IBNF bits.

/********** ********************************************************/

/* Define configuration information */
/* changing these defines will change such things as where the obne */
/* bit is located and how many bytes per serp_entry */
/**************************r*****************************************/

/* bytes per entry in the voted_serp array */
/- changing this also requires that the writeresult procedure be */
/* changed as well (it's in the vote.c source file */
#define VS 7
/* these definitions all affect the voted serp array. Be careful!! */
#define VS to loc 0
#define VS obne loc 1
#define VS ibnf loc 1
#define VS class loc 1
#define VS dvid loc 2
#define VS_obne_syn_loc 3
#define VS_ibnf_syn_loc 4
#define VS timer loc 5
#define VS init timer loc 6
#define VSprocessed_bit_loc 1

/* define masks for the voted serp array */
#define VS obne mask 0x80
#define VS ibnf mask 0x40
#define VS class mask Oxlf
#define VS_obne synmask OxOf

#define VSibnfsyn_mask OxOf
#define VS_processed_bit_mask 0x20

/* These #defines correspond to the locations of all the bytes in */
/* the SERP and CT */
/* NOTE that the first entry is numbered 0 */

/* CT related locations */
#define Bytes_per CT entry 8
#define Redun loc 1
#define Presence loc 1
#define Base_pe_loc 2 /* location of the first PE in a CT entry */
#define To loc 6

/* SERP related locations */
#define Bytes_per SERP entry 4
#define Dvid loc 1
#define Obne loc 0
#define Ibnf loc 0
#define Class loc 0
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/* System configuration definitions */
#define Max redun level 4
#define Num ne 5
#define Pe_per_ne 8
#define Num vids 256
#define Max vid 254

/* These masks correspond to the location within a byte. They don't */
/* need to be changed unless the bit locations are changed. */

#define obne mask 0x80
#define ibnf mask Ox40
#define class mask Oxlf
#define redun level mask 0x7
#define presence_shift 3
#define ne mask 0x07;
#define pe shift 3

/* End configuration information */
/ ***************************** ******************************
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10.8.2. File sbdefs.h

This file contains global definitions and variables.

/* Scoreboard simulation program
by
Dennis Morton
3 Jan 1991

revision 2.2 (everything parameterized, file output added)
*/

#include "config.h"

/I*******************************************************************/

/* This header contains globals used by the simulation */
/ ****************************/

#define True 1
#define False 0
#define Prob fault 1

typedef int Boolean;
typedef int Byte;
typedef int Bit;
typedef Byte Serptype[Pe_per_ne * Num_ne * Bytesper_SERP_entry];

struct message_struct

Byte source_vid;
Byte dest_vid;
Byte sources[Max redun level];
Byte dests(Maxredunlevel];
Byte obne_to;
Byte ibnf_to;
Byte timer_value;
Byte itv; /* initial timer value */
Byte ex_class;
Byte timestamp;
Byte vote_mask;
Byte size;

/************************/** * * ****

/* this structure is used to generate serps. serps to do tells */
/* how many times to include that entry as a potential message */
/* in the serp. serps_done tells how many serps have been sent */
/* with that entry. When these two become equal, source vid is */
/* added to the free_sources array. On the next serp, new */
/* parameters will be generated for source vid. */
/*******************************************************/

struct serp_sourcestruct

Byte source_vid;
Byte dest vid;
/* srd = source redundancy level, drd = destination redun level */
Byte srd;
Byte drd;
Byte obne_to;
Byte ibnfto;
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Byte to_value;
int serps_done;

} gserpsource[Num_vids];

/* correct message array */
struct message_struct gcmessage[Pe_per_ne * Num_ne];

/* messages found by simulation */
struct message struct gmessage[Pe_per_ne * Num_ne];

Serp_type serp;
Byte gvotedserp[Numvids * VS];

/******************************

/* define lookup tables used by the various modules */
/**** *************** ****** * * * * *

int tolNum vids];
Byte ct[Num_vids * Bytes_per_CT_entry];
Byte gvids_used[Num_vids];
Byte ptov_table[Pe_per_ne * Num_ne * Bytes_per_SERP_entry];
Boolean gfree_sources[Num_vidsl;
Boolean gfree_dests[Num_vids];
/ ** *******************************

/* to clock is an integer which emulates a clock */
int to clock;

/* num vids contains the number of defined vids currently in the ct */
int gnum_vids;

/* this variable controls the verbosity of the output */
/* 1 = keep it simple */
/* 2 = intermediate but useful for bugs */
/* 3 = inundate me with info */
int debug_level;

/* This flag decides whether to generate faults or not */
Boolean generatefaults;

/* This variable determines how many total rounds to perform */
int num rounds;

/* this array is used to generate the presence bits */
Byte gpmasks[Maxredun_level];
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10.8.3. File etc

This file contains functions to generate and check the CT.

#include "sbdefs.h"

/************************ file ct.c *****************************
* This file contains the source code which generates and checks *
* the configuration table. It also clears all the important *
* variables and arrays. *
* ******************* **** ***** **********************************/

/* These numbers affect how likely each redun level will be */
/* generated */
#define Probsimplex 5
#define Prob_triplex 11

/ ********************** get table ****** *********************
* get_table generates the PID to VID translation table used to *
* feed the voter one VID at a time *
***************************** ** * ******************************/

void get_table()

int i, j,serpplace;
Byte redunlevel;
/* calculate the pid to vid translation table which will allow */
/* the voter to be fed one vid at a time */

serp_place = 0;
for(i = 0; i <= (gnum_vids - 1); i++)

redunlevel = ct[gvidsused[i] *
Bytes_per_CTentry + Redun_loc] & redunlevel_mask;

ptov table[serp place] = redun_level;
serp_place += 1;
for(j = 0; j <= (redunlevel-l); j++)

ptov_table(serpplace] = unpack(ct[gvids_used[i] *
Bytes_per_CT_entry +
Base_pe_loc + j]);

serpplace += 1;

/ ************************* check ct ***************************
* ensures that a single pe is not a member of more than 1 VID *

void check ct()

int i, j,vid_loc,redun_level,ne,pe,number_pes;
int rl,r2,r3,r4,r5; /* redundancy level counters */
int upe[Pe_perne * Num_ne]; /* pe's used in a VID */

rl = 0;
r2 = 0;
r3 = 0;
r4 = 0;
r5 = 0;
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for(i = 0; i <= (Peperne * Num_ne - 1); i++)
upe[i] = 0;

for(i = 0; i < gnum_vids; i++)

vid_loc = gvids_used[i] * Bytesper CT entry;
redun level = ct[vid loc + Redunloc] & redun_level_mask;
switch (redun_level)

case 1: printf("\nvid %i is a simplex\n",ct[vid_loc]);
rl += 1;
break;

case 2: printf("\nWARNING!! vid %i is a duplex\n",ct[vid_loc]);
r2 += 1;
break;

case 3: printf("\nvid %i is a triplex\n",ct[vid_loc]);
r3 += 1;
break;

case 4: printf("\nvid %i is a quad\n",ct [vidloc]);
r4 += 1;
break;

case 5: printf("\nvid %i is a quint\n",ct[vid_loc]);
r5 += 1;
break;

for (j = 0; j <= (redun_level-l); j++)

ne = ct[vidloc + Base_pe_loc + j] & ne_mask;
pe = ct[vid_loc + Base_pe_loc + j] >> pe_shift;
printf("member %i: ne = %i, pe = %i\n",j,ne,pe);
if (upe[(ne * Pe_perne) + pe])
printf("WARNING!! ne = %i pe = %i u-sed more than once in ct\n"

,ne,pe);
else upe[(ne * Peper_ne) + pe] = 1;

numberpes = (r5 * 5) + (r4 * 4) + (r3 * 3) + (r2 * 2) + rl;
if (number_pes > (Pe_per_ne * Num_ne))

printf("WARNING!! Used too many pe's\n\n");

printf("\nThe redundant groups broke down like so:\n");
printf(" simplex = %i\n",rl);
printf(" duplex = %i\n",r2);
printf(" triplex = %i\n",r3);
printf(" quad = %i\n",r4);
printf(" quint = %i\n\n",r5);

/ ****************************** getct ******************************
* generates a new ct when called *

void calculatect()

int i,j,place,startingplace,num_entries_found,ct_entry[5];
int ne,pe,desired_redun,redun_level,presence;
int remaining_pes,used_pes[Pe_per_ne * Num_ne];
Byte vid;
Boolean vid_filled, ableto_fill_vid, got_a_vid,oncearound;

for (i - 0; i <= (Pe_per_ne * Num ne - 1); i++)
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used pes[i] = 0;
remaining_pes = Peper_ne * Num_ne;
place = 0;
while (!(remaining_pes == 0))

desired redun = random() & Oxf;
if (desired redun <= Probsimplex)
desired redun = 1;

else if (desiredredun <= Prob triplex)
desired redun = 3;

else
desired redun = 4;

if (desired redun > Max redun _level)
desired redun = Max redun level;

vid filled = False;
able to fill vid = True;
once around = False;
num entries found = 0;
startingplace = place;
while (! (vidfilled) && able to fill vid)

if (used_pes[place] == 0)

ct_entry[num entries_found] = place;
num entries found += 1;
/* skip to next NE */
place = ((place / Peperne) + 1) * Pe_per_ne;

else place += 1;

if (place > (Peper_ne * Num_ne))

place = 0;
once around = True;

if (once_around && (place >= startingplace))
able to fill vid = False;
if (num entriesfound == desired redun)
vid filled = True;

if (vid filled)

/* Find a vid number for the new virtual group */
got_a_vid = False;
while (!(got_a_vid))

vid = random() & Oxff;
if (!(vid found(vid)) && (vid <= Max vid))

got avid = True;

presence = 0;
ct[vid * Bytes_per_CT_entry + Redun_loc] = desiredredun;
for (i = 0; i <= (desired redun - 1); i++)

/* this fashions the proper number of presence bits */
presence I= gpmasks[i];
ne = ctentry[i] / Pe_perne;
pe = ct entry[i] % Pe per_ne;
ct[vid * Bytes_per_CT_entry + i + Base_pe_loc] = pack(ne,pe);
used_pes[ct_entry[i]] = 1;

ct[vid * Bytes per_CT_entry + Presence_loc] 1=
(presence << presenceshift);
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/* set a timeout value for the vid */
ct(vid * Bytes_per_CTentry + To_loc] = random() & Oxff;
gvids_used[gnum_vids] = vid;
gnum_vids += 1;
remaining_pes -= desired_redur;

/ *********************** init_arrays ********************************
* this routine clears the vids_used array,the ct, and the gnum_vids *
* variable. *

void init_arrays()

int i,vid;

gpmasks[0] = 1;
for (i = 1; i <= (Max redun level - 1); i++)

gpmasks[i] = gpmasks[i - 1] * 2;

for (i = 0; i <= (Pe_per_ne * Numne * Bytes_perSERP entry - 1); i++)
ptovtable[i] = -1;

for (vid = 0; vid <= (Num vids - 1); vid++)
ct[vid * Bytesper CTentry] = vid;

for (i = 0; i <= (Num vids - 1); i++)

gvids_used[i] = -1;
gfree sources[i] = True;
gfreedests[i] = True;

gnumvids = 0;

/*************************************kWW* *WWWW *WWWW/

/* Clear_voted_serp */
/* This function clears the processed bits in the voted serp */
/* array. */

void clear_voted_serp ()

int i;

for (i = 0; i <= gnumvids; i++)
gvotedserp[gvids_used[i] * VS + VS_processed bit loc]

^= VS_processee bit_mask;
I
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10.8.4. File nf_serp.c

This file contains functions to generate a SERP which does not contain any faults.

#include "sbdefs.h"

/****************** set bytes *******************************
* this function sets the dest vid field of svid to dvid, the *
* ibnf bits of svid, and the obne bits of dvid. It then *
* builds a reference message for error checking. *
***************** ********************************************

void nf set_bytes (svid,dvid,num messages)
Byte svid,dvid;
int *num messages;

Byte exclass = 1;
Byte source_presence,dest_presence;
int i,redunlevel,pe;

/* set to,dest buffer,obne,exchange class, and dest vid for source */
redun_level = ct[svid * Bytes_perCT_entry + Redun_loc)

& redun level mask;
for (i = 0; i <= (redun level - 1); i++)

pe = unpack(ct[svid * Bytes_per CT entry + Base_pe_loc + i]);
serp[(pe * Bytes_per SERP entry) + Obneloc] 1= obnemask;
serp[(pe * Bytes_per SERP entry) + Class_loc] 1= ex_class;
serp[(pe * Bytes_per SERP entry) + Dvid_loc] = dvid;

/* set ibnf for destination */
redun_level = ct[dvid * Bytes_per_CTentry + Redun_loc]

& redun level mask;
for (i = 0; i <= (redun level - 1); i++)

pe = unpack(ct[dvid * Bytes_per_CTentry + Base_pe_loc + i]);
serp[(pe * Bytes_per_SERPentry) + Ibnf_loc] 1= ibnf_mask;

source_presence = ct[svid * BytesperCT entry + Presence loc]
>> presence_shift;

dest_presence = ct[dvid * Bytes_per CT entry + Presenceloc]
>> presenceshift;

set_message(num_messages,svid,dvid,ex_class,source presence,
dest_presence);

/****************** generate_nfserp *******************2******
* generates a new no-fault serp by randomly sending messages *
* between VID's. It also builds the correct-message structure *

void generatenfserp(num_messages )
int *num_messages;
{

Boolean got_source = False,got dest= False,alldone = False;
int i,vids_left,pot_svid,potdvid;
int usedsources[Numvids],useddest[Numvids];

*num messages = 0;
vids left = gnumvids;
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/* initialize serp to 0 */
for (i = 0; i <= (Peper_ne * Num_ne * Bytes_perSERP_entry - 1); i++)

serp(i] = 0;

/* initialize "used". array's to zero */
for (i = 0; i <= (Nuinmvids - 1); i ++)

used sources[i] = 0;
used dest[i] = 0;

while (!(alldone))

while (!(gotsource))

/* generate a random VID from 0 to 255 */
/* pot_svid = potential source vid */
pot_svid = random() & Oxff;

if (vid_found(pot_svid))
if (!(used_sources[pot_svid]))

/* source VID found, invalidate this VID as a potential source */
used_sources[pot_svid] = 1;
got_source = True;

while (!(got dest))

/* pot_dvid = potential destination vid */
pot_dvid = random() & Oxff;
if (vid_found(pot_dvid))
if (!(used_dest[potdvid]))

/* invalidate this VID as a potential dest */
used_dest[pot_dvid] = 1;
got_dest = True;
n fsetbytes (pot_svid, pot_dvid, num_messages);
*num_messages += 1;
vids left -= 2;

if (vids left < 2)
all done = True;

got_source = False;
got_dest = False;
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10.8.5. File serp.c

This file contains functions to generate a SERP which contains faults embedded in

it. This version does not work correctly.

#include "sbdefs.h"
int numfaults;

/********************************************************************/***********

/************************* file serp.c *******************************
* This file containd the source code which generates the serp. It *
* updates the serp source array, and then it creates a SERP from *
* that array. *
** *****************************************************************

/**************** **************************************************

/****************************** pack *******************************
* pack converts an (ne,pe) pair into its corresponding byte *
* representation in the ct. *
****************************************

Byte pack(ne,pe)
int ne,pe;

return((pe << pe_shift) I ne);

/*** *************** unpack **** ******** *********** ****

* this function "unpacks" the physical pe number encoded in *
* the ct. *
* ***********************/**** *** * *

Byte unpack(ctentry)
Byte ctentry;

int pe,ne,serp_loc;

ne = ct_entry & nemask; /* ne number is last three bits */
pe = ct_entry >> pe_shift; /* shift out ne number for pe number */

serp_loc = (ne * Pe perne) + pe;
return(serp_loc);

/********************** vid found ***************************
* this function searches the vidsused array for the vid it *
* it is passed. *
* *********** ************************ ***************** ***/

Boolean vid found(vid)
Byte vid;

int i;
Boolean found = False;

for (i = 0; i <= (gnumvids - 1); i++)
if (vid == gvidsused[i])

found = True;
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return (found);

/ ****************** set message ****************************
* sets the correct message information in the cmessage *
* array. This is the information which the scoreboard must *
* provide after it has processed the serp. *

void set_message(num_messages,svid,dvid, ex_class,obne_syndrome,
ibnf_syndrome)

int *nummessages;
Byte svid, dvid, ex_class,obne_syndrome, ibnf_syndrome;

int i,redun_level;
struct message struct *s;

s = &(gcmessage[*num_messages]);

s->source vid = svid;
s->dest vid = dvid;
s->ex class = ex class;
s->obne to = obne_syndrome;
s->ibnf_to = ibnf_syndrome;

for (i = 0; i <= (Maxredunlevel - 1); i++)

{
s->sources[i] = 0;
s->dests[i] = 0;

}
/* set sources array to pe's in source vid */
redun_level = ct[svid * BytesperCTentry + Redun_loc]

& redun level mask;
for (i = 0; i <= (redun level - 1); i++)

s->sources[i] = ct[svid * Bytes_per CT entry + Base_peloc + i];

/* set dests array to pe's in destination vid */
redun_level = ct[dvid * Bytes_perCTentry + Redun_loc]

& redun level mask;
for (i = 0; i <= (redun level - 1); i++)

s->dests[i] = ct[dvid * Bytes_per_CT_entry + Base_pe_loc + i];

/**************+*** set bytes **********************************
* this function sets the dest vid field of svid to dvid, the *
* ibnf bits of svid, and the obne bits of dvid. It then builds *
* a reference message for error checking. *
********* **********************************************/

void set_bytes(svid,dvid,obne,ibnf,ex_class)
Byte svid,dvid;
Bit obne[Max redun level],ibnf[Maxredunlevel];
Byte ex_class;

int i,redun_level,pe;

/* set to,dest buffer,obne, exchange class, and dest vid for source */
redun_level = ct[svid * Bytes_per_CT_entry + Redunloc]

& redun level mask;
for (i = 0; i <= (redun_level - 1); i++)
{

pe = unpack(ct[svid * Bytes per CT entry + Base_pe_loc + ii);
serp[(pe * Bytesper_SERP entry) + Obne_loc] 1= obne[i];
serp[(pe * Bytes_per_SERP entry) + Class_loc] 1= ex_class;
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serp[(pe * Bytes_per_SERP_entry) + Dvid_loc] = dvid;

/* set ibnf for destination */
redunlevel = ct[dvid * Bytes_per CT entry + Redunloc]

& redun level mask;
for (i = 0; i <= (redun level - 1); i++)

pe = unpack(ct[dvid * Bytes_perCTentry + Base_peloc + i]);
serp[(pe * Bytes_per_SERP_entry) + Ibnf_loc] I= ibnf[i];

/*•******************** generate_serp *********************
* this function actually produces the serp based on the *
* info contained in the serp_source array *
************** ***************** ******* **** ***/

void generateserp(num_messages)
int *num_messages;

struct serp_source_struct *s;
int i,j,redun_level;
Boolean obne unan,ibnf_unan,message_to_send;
Byte obne[Maxredunlevel],ibnf[Maxredunlevel];
Byte ex class = 3;

/* masks array is used to mask out all but one bit of the obne */
/* and ibnf timeouts */

*num_messages = 0;
for (i = 0; i <= (gnum_vids - 1); i++)

s = &gserpsource[i];
obne unan = True;
ibnf unan = True;
messagetosend = False;

redun level = s->srd;
for (j = 0; j <= (redun_level - 1); j++)

if (((s->obneto) & gpmasks[j]) > 0)
obne[j] = obnemask;

else

obne[j] = 0;
obne unan = False;

redun level = s->drd;
for (j = 0; j <= (redun_level - 1); j++)

if (((s->ibnfto) & gpmasks[j]) > 0)
ibnf[j] = ibnf_mask;

else

ibnf[j] = 0;
ibnf unan = False;

message to send = obne unan && ibnf unan;

set bytes(s->source_vid,s->destvid,obne,ibnf,exclass);
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/* increment serpsdone variable */
s->serps_done += 1;

if (message tosend)

set_message(num_messages,s->source_vid,s->dest vid,exclass,
s->obne to,s->ibnf to);

*num_messages += 1;
gfreesources[s->source_vid] = True;
gfree_dests[s->dest_vid] = True;

/********************* get fault ***************************
* getfault decides which member of a vid is too be faulty *
* and generates the proper timeout syndrome. *
*************************************************************/

void get flow_control(vid,redun_level,fault,syndrome)
Byte vid,redun_level;
Boolean *fault;
Byte *syndrome;

int i,rnumber, faulty_pe,position,non_faulty_syndrome;
Boolean inject fault = False;

/* create the default syndrome */
*syndrome = 0;
for (i = 0; i <= (redunlevel - 1); i++)

*syndrome 1= gpmasks[i];

/* determines whether to inject a fault or not */
rnumber = random() & Oxf;
if (rnumber <= Prob fault)

inject_fault = True;

/* make sure only one fault per message */
if (inject_fault && !(*fault))

if (debug level >= 3)
printf("NOTICE! Fault injected in vid = %i\n",vid);

*fault = True;
num faults += 1;
switch(redun_level)
{
case 1: faulty_pe = 1;

break;

case 3:
faulty_pe = random() & 0x03;
if ((faulty_pe == 3) 11 (faulty_pe == 0)) fauity_pe = 4;
break;

case 4:
faulty_pe = random(.) & 0x03;
if (faulty-pe == 0) faultype = 1;
else if (faultype == 1) faulty pe = 2;
else if (faultype == 2) faulty-pe = 4;
else if (faultype == 3) faultype = 8;
break;

/* set the faulty pe's presence bit to zero */
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*syndrome ^= faulty_pe;

/***************** set serp_source_entry *******************
* this function creates an entry in the serp_source array *
* for the sourcevid it is passed. *
********** ******** ******************************************/

void set_serpsource entry (source_vid, dest_vid, location)
Byte source_vid,dest_vid;
int location;

struct serpsource struct *s;
Boolean *fault = False;

s = &gserp_source[location];
s->source vid = source vid;
s->dest vid = dest vid;
s->srd = ct[source_vid * Bytes_per CT entry + Redun_loc]

& redun level mask;
s->drd = ct[dest_vid * Bytes_per CT entry + Redun_loc]

& redunlevelmask;

get_flow_control(source_vid,s->srd,&fault,&(s->obneto));
get_flow_control(dest_vid,s->drd,&fault,&(s->ibnfto));

s->serps_done = 0;

/****************** generate_serp_source *******************
* generates a new serp by randomly sending messages between *
* VID's. It builds the correct message-structure too. *

void generateserpsource()

Boolean got source,got dest,all done;
int i,source_vid, destvid, pot dvid,place;

got_source = False;
got_dest= False;
alldone = False;
place = 0;
numfaults = 0;

/* initialize serp to 0 */
for (i = 0; i <= (Pe_per_ne * Num_ne * Bytes_per_SERP_entry); i++)

serp[i] = 0;

while (! (alldone))

while (! (gotsource))

if (gfree_sources[gvids_used[place]])

sourcevid = gvids_used[place];
gfreesources[sourcevid] = False;
got_source = True;

else place += 1;
if (place == gnum_vids)

got_source = True;
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all done = True;

while (!(got_dest) && ! (all_done))

pot_dvid = random() & Oxff;
if (vidfound(pot_dvid))
if (gfree_dests [pot_dvid] )

dest_vid = potdvid;
gfreedests[dest_vid] = False;
got_dest = True;

if (!(alldone))
set_serp_source_entry(sourcevid,dest_vid,place);

got source = False;
gotdest = False;

/****************************** get_serp **************************
* generates a new serp when called *

void get_serp (num_messages)
int *nummessages;

static Boolean generate_ct = True;

if (generatect) /* generate a new ct? */

initarrays();
calculate ct();
gettable();
generate_ct = False;
if (debug_level >= 1)
checkct();

if (generatefaults)

generate_serp_source();
if (debuglevel >= 1)

printf("\nNOTICE! number of faults = %i\n",num_faults);
generate serp(nummessages);

else

generate nf serp(num_messages);
)



10.8.6. File vote.c

This file contains functions to vote the SERP to arrive at correct messages. It is very

similar to the code in Appendix 10.2.

#include "sbdefs.h"
#include <math.h>

/*********************** file vote.c ****************************
* This file contains the source code for voting the SERP, keeping *
* track of timeouts, and writing the results into voted_serp. *
************* *********** ***************************************

/**********************************

/* vote is a generic vote function which will vote up to 5 */
/* items passed to it. It returns three flags and the result. */
/* The simplex flag signals that the presence bits indicate a */
/* simplex configuration. */
/********************* ********/

Byte vote (vote_values,redunlevel,unan)
Byte vote values[Max redun level];
int redun level;
Bit *unan;

Byte a,b,c,d;
Byte result,intresl,int res2; /* int=intermediate */
Boolean AB,BC,CD;

a = vote values[0];
b = vote values[1l];
c = vote values[2];
d = vote values[3];

AB = (a == b) ? True : False; /* used for flags */
BC = (b == c) ? True : False;
CD = (c == d) ? True : False;

switch (redun_level)

case 4:
*unan = (AB && BC && CD) ? True : False;
result = (a&b&c) I (a&c&d) I (b&c&d) (a&b&d);
break;

case 3:
*unan = (AB && BC) ? True : False;
result = (a & b) I (b & c) (a & c);
break;

case 2:
printf("ERROR! Voted a duplex\n");
break;

case 1:
*unan = True;
result = a;
break;

return(result);

/* end vote */

/**********************************************************************
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/* read timer reads and returns the current timer value. */
/***** * **** ********

int read timer()

return (to clock);

/************* ****************************************************

/* check to checks to see if the timeout value (to value) has been */
/* reached. If it has, then it returns a true value for to reached. */
/*********************************************************************

Boolean check_to (vid,to_value,timer_value, inittimervalue)
Byte vid, to value,*timer_value,*init timer value;

Boolean to reached = False;

*timer value = read timer();
if (to[vid] == 0)

to[vid] = *timer value; /* TO set? then set a timeout */
else if ((*timervalue - to(vid]) > tovalue)

printf("NOTICE! timeout for vid %i reached\n",vid);
to reached = True;
*init timer value = to[vid];
to[vid] = 0;

return (toreached);

/* end check to */

/ *********** ************* *******************************************/

/* fc vote performs the flow control vote function (i.e. OBNE */
/* and IBNF). If a timeout is reached, it clears that pe's syndrome */
/* bit and sets the result to true (ibnf or obne). */
/****** **** ******* ******** *************************/

void fcvote (vid,vote_values,redunlevel,tovalue,result,fault,
syndrome,timer value,init timer value)

Byte vid,vote values(Max redun level];
int redun_level;
Byte to_value, *result;
Boolean *fault;
Byte *syndrome,*timervalue,*init timervalue;

Boolean unan;
int i;
Byte oldresult;

*result = vote (vote values,redun_•evel,&unan);

/* set default syndrome */
*syndrome = 0;
for (i = 0; i <= (redun level - 1); i++)

*syndrome 1= gpmasks[i];

if (!(unan) && (*result != 0)) /* check for timeouts */

oldresult = *result;
*result = 0;
*fault = check_to (vid,to_value,timer value,inittimer value);
if (*fault)



/* reset obne (or ibnf) bit and zero proper presence bit */
*result = oldresult;

/* clear the offending pe's syndrome bit */
for (i = 0; i <= (redun_level - 1); i++)
if (vote values[i] != *result)

*syndrome ^= gpmasks[i];

else /* check for illegal transitions */

/* to be determined */

/* end fc vote */

/**************************************************************/
/* vote other is the function which votes the destination */
/* VID and exchange class fields of the SERP. */
/**************************************************************/

void vote other (vote values,redunlevel,result,obne, fault)
Byte vote values[Maxredunlevel];
int redun level;
Byte *result;
Boolean *fault;
{

Bit unan,maj;

*result = vote (votevalues,redun_level,&unan);

if (!unan && obne) *fault = True;

/* end voteother */

/* writeresult writes the overall, voted SERP entry for */
/* each VID into the voted_serp table. */
/**************************************************************/

void writeresult (vid,tovalue,timervalue,init_timervalue,obne,ibnf,
ex class,destvid, obne_syndrome, ibnf syndrome)

Byte vid,to_value,timervalue,inittimervalue,obne,ibnf;
Byte ex_class,dest_vid,obne_syndrome, ibnf_syndrome;

gvoted serp[vid * VS + VS to loc] = tovalue;
if (obne)

gvotedserp[vid * VS + VS_obne_loc] 1= VS_obne_mask;
if (ibnf)

gvoted_serp[vid * VS + VS ibnf loc] I= VS ibnf mask;
gvoted_serp[vid * VS + VS_class_loc] I= ex_class;
gvotedserp[vid * VS + VSdvidloc] = destvid;
gvotedserp[vid * VS + VS_obne_syn_loc] I= obne syndrome;
gvoted_serp[vid * VS + VS_ibnf_syn_loc] I= ibnf_syndrome;
gvotedserp[vid * VS + VS timer loc] = timer value;
gvotedserp[vid * VS + VSinit_timer_loc] = init_timer_value;

/************************ vote serp *****************************
* vote_serp receives the serp entries from feed_voter and votes *
* them when told to. It writes the overall result for each VID *
* into the voted serp array. *
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************************************************************/**

void vote_serp (vid, serp_values,redun_level,to_value,fault)
Byte vid, serp_values(Max_redun_level * Bytes_per_SERPentry];
int redun level;
Byte to_value;
Boolean *fault;

Byte i,vote_values[Max_redun level],obnesyndrome,ibnf_syndrome;
Byte timer_value,init_timer_value,obne,ibnf;
Byte ex_class,dest_vid;

/*********************** get and vote OBNE bits */
for (i - 0; i <- (Maxre;unlevel - 1); i++)

vote_values[i] - serp_values[i * Bytes_per_SERP_entry + Obne_loc]
& obne_mask;

/* NOTE!! timer value will take on the timer value at the time */
/* the ibnf is voted, NOT the obne */
fcvote (vid,vote_values,redun_level,to_value,&obne, fault,

&obne_syndrome,&timer_value,&init_timer_value);
if ((*fault) && debug level >- 3)

printf("FAULT in OBNE vote\n");
*fault - False;
/******************************************* **********************

/****************+****** get and vote IBNF bits */
for (i - 0; i <- (Maxredunlevel - 1); i++)

vote_values[i] - serp_values[i * Bytesper_SERP_entry + Ibnf_loc]
& ibnf mask;

fcvote (vid,vote values,redunlevel,tovalue,&ibnf,fault,
&ibnf_syndrome,&timervalue,&init_timer_value);

if ((*fault) && debug_level >- 3)
printf("FAULT in IBNF vote\n");

*fault = False;
/************** *******************************************

•/********************** get and vote exchange class */
for (i = 0; i <= (Max redunlevel - 1); i++)

vote_values[i] - serp_values[i * Bytes_per_SERP_entry + Class_loc]
& class mask;

vote other (votevalues,redunlevel,&exclass,obne,fault);
if ((*fault) && debug level >= 3)

printf("FAULT in exchange class vote\n");
*fault = False;

/**********************************************************/

/*********************** get and vote destination VID */
for (i = 0; i <= (Max redunlevel - 1); i++)

votevalues[i] = serp_values(i * Bytes_per_SERP_entry + Dvid_loc];
voteother (vote_values,redunlevel,&dest_vid,obne, fault);
if ((*fault) && debug_level >= 3)

printf("FAULT in dest VID vote = %i\n",dest vid);
*fault = False;
/ **************************w*******/

writeresult (vid,tovalue,timervalue,inittimer_value,obne,ibnf,
ex_class,dest_vid,obne_syndrome,ibnf_syndrome);

/ ********************* feed voter ********************************
* feeds the serp voting function one serp value at a time using *
* a vid-order translation table *



******************************************************************/

void feedvoter()

Boolean fault;
int i, j,numentries,serp_place,vid_place, current vid,fault_mask;
Byte redun_level,serp_values(Max_redun level * Bytesper_SERP_entry];
Byte to_value;

/* feed the voter one vid at a time */

num_entries - gnum_vids + (Pe_perne * Num_ne);
serpplace - 0;
vid_place - 0;
fault - False;
while (serp_place <- num_entries)

current_vid - gvids_used(vidplace];
redun_level - ptov_table[serp_place];
vid_place +- 1;
serpplace += 1;

/* iterate over the redundancy level */
for(i = 0; i <- (redun level - 1); i++)

/* accumumulate each PE's entry */
for(j = 0; J <= (Bytes_per_SERP_entry - 1); j++)

serp_values(Bytes_per_SERP_entry * i + j] =
serp[ptov_table[serp_placel * Bytes_per_SERP_entry + j];

/* move to next pe */
serpplace += 1;

to_value = ct(current_vid * Bytes_per CT_entry + To_loc];
vote_serp (current_vid,serp_values,redun_level,tovalue,&fault);



10.8.7. File send.c

This file contains functions to cycle through the voted SERP memory and "send" all

messages contained therein.

#include "sbdefs.h"

/ ****************** file send.c *******************************
* this file cycles through the voted serp, sending all valid *
* messages *
** ******* *** **************************** *********************/

/***************** create_message *****************************
* this function creates the message packet when called by send *
********************** ******************* ***********/

void createmessage(source_vid,dest_vid,ex_class,message_number,
obne_syndrome,ibnf_syndrome,timer_value,
init timer value)

Byte source vid,dest vid,ex class;
int message_number;
Byte obne_syndrome,ibnfsyndrome,timervalue,inittimervalue;

struct message struct *s;
Byte redun level;
int i,j;

s = &gmessage(message_number];

s->source vid = source vid;
redun_level - ct[source_vid * Bytes_per_CTentry + Redun_loc]

& redunlevel mask;
for(i = 0; i <- (redun level - 1); i++)

s->sources[i] = ct[source_vid * Bytes_per_CT entry + Base_pe_loc+i];

s->destvid = dest vid;
redun_level = ct[dest_vid * Bytes_per_CT_entry + Redunloc]

& redun level mask;
for(i = 0; i <= (redun level - 1); i++)

s->dests[i] = ct[dest_vid * Bytes_per_CT_entry + Basepe_loc + i];

s->exclass = ex class;
s->obne_to = obne_syndrome;
s->ibnf_to = ibnf_syndrome;
s->timer_value = timervalue;
s->itv = inittimervalue;

/*************************** send ********************************
* send cycles through the vote_serp array, sending all valid *
* messages. ,
************* **************** ****** **************** **** * ***

void send(num_messages)
int *num_messages;

Boolean all valid sent = False;
Byte source_vid,destvid,exclass;
Bit obne, ibnf,processed;
Byte obnesyndrome,ibnf_syndrome,timervalue,inittimervalue;
int processed vids = 0;
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int current_vid_place - O;

*num_messages - 0;

/* this is the vid where send begins to look for messages */
source_vid - gvids_used[current_vid_place];

while(!(allvalid_sent))

processed - gvoted_serp[source_vid * VS + VS_processed_bit_loc]
& VS_processed_bit_mask;

if (!(processed))

processed_vids +- 1;
gvotedserp[source_vid * VS + VS_processed_bitloc]
I- VS_processed_bit_mask;
obne - gvoted_serp[source_vid * VS + VS_obneloc] & VSobne_mask;
if (obne)
(
dest_vid - gvoted serp[source_vid * VS + VS_dvid_loc];
ibnf - gvoted_serp[dest_vid * VS + VSibnf_loc] 6 VS_ibnfmask;
if (ibnf)

if (debug_level >= 3)

printf("Sending message %i\n", *num_messages);
printf(" Source vid - %i\n",source_vid);
printf(" Dest vid = %i\n\n",destvid);

ex_class = gvoted_serprsource_vid * VS + VS_class_loc]
& VS class mask;

obne_syndrome - gvoted_serp[source_vid * VS + VS_obne_syn_loc]
6 VS_obne_syn_mask;

/* ibnf syndrome comes from dest vid */
ibnf_syndrome = gvoted serp[destvid * VS + VS_ibnf_syn_loc]

& VS_ibnf_syn_mask;
timer_value - gvotedserp[sourcevid * VS + VS_timer_loc];
init_timer_value = gvoted_serp[source_vid * VS +

VS init timer loc];
create message(source_vid,dest_vid,ex_class,*nummessages,

obnesyndrome,ibnfsyndrome,timer-value,
init timer value);

*num_messages += 1;

if (processed_vids == gnum_vids)
all valid sent = True;

if (current_vid place > (gnum_vids - 1))
current_vid_place = 0;

else current_vidplace += 1;
source_vid = gvids_used[current_vid_place];
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10.8.8. File check.c

This file contains functions to check the messages found by send.c against those

written by nfserp.c or serp.c.

#include "sbdefs.h"

#define MAX(a,b) ((a >- b) ? (a) : (b))

/********************** get vid position *************************
* this function returns the index in the vids used array for the *
* vid passed to it. *
*************************** ****** ******w********************* ***/

int get_ vid_position (vid)
Byte vid;

int i - 0;

while (i < gnumvids)
if (gvids_used[i] -- vid)

return(i);
else ++i;

/*********************** check others ************* **************

* this function checks for correctness all the messages not found *
* in the cmessage array *
********************* ********************************* ******* *****

void checkothers(nummessages,marked_messages)
int nummessages,marked messages(50];

struct message_struct *m;
struct serp_source_struct *ss,*sd; /* ss = source pointer */
int i; /* sv = dest pointer */
Boolean error;

for (i = 0; i <= (num_messages - 1); i++)

gfree_sources[gmessage[i].source_vid] = True;
gfree_dests[gmessage[i].dest_vid] = True;
if (!(marked_messages[i]))

error = False;
m = &gmessage[i];
ss = &gserp_source[get_vid_position(m->sourcevid)];
sd = &gserpsource[get_vid_position(m->dest_vid)];

/* the first IF statement decides which to value to use */
/* in checking for premature messages. */

if (m->obne_to != ss->obneto)
/* use source to value */
if ((m->timervalue - m->itv) < ss->tovalue)

printf("ERROR! message %i sent prematurely\n",i);
error = True;

else if (m->ibnf to != ss->ibnfto)
/* use dest to value */



if ((m->timervalue - m->itv) < sd->tovalue)

printf("ERROR! message %i sent prematurely\n",i);
error - True;

if (m->obne to != ss->obne to)

printf("ERROR! message %i has an incorrect OBNE syndrome\n",i);
error - True;

if (m->ibnfto !- ss->ibnfto)

printf("ERROR! message %i has an incorrect IBNF syndrome\n",i);
error - True;

if (error)

printf(" sv - %i\n",m->source_vid);
printf(" dv - %i\n",m->destvid);

/ *******************************

* this function compares the unanimous message list with the one *
* generated by the scoreboard. It reports all inconsistencies. *
* It then calls check_others to check any remaining messages for *
* correctness. *

** **** ************** ****** ********************************

check_messages (cnum_messages, num_messages)
int cnummessages,num_messages;

struct message struct *s,*cs;
int i,diff,place;
Bit marked_messages[50];
Boolean found,message_not_found;
Byte source_vid, csource_vid, cdestvid;

for (i = 0; i <= 50; i++)
marked_messages i] = 0;

if (cnum_messages != num_messages)

if (cnum_messages > num_messages)
printf("ERROR! Not enough messages found!\n\n");

else
printf("ERROR! Too many messages found!\n\n");

if (debuglevel >= 2)

printf("Simulation found %i messages\n",num messages);
printf("There are %i necessary messages\n\n",cnum_messages);

/* check that all unanimous messages have been sent */
for (i = 0; i <= (cnum messages - 1); i++)

found = False;
message_not found = False;
place = 0;
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cs - £gcmessage(i];
csource vid - cs->source vid;
cdest vid - cs->destvid;
while (!(found))

s - &gmessage[place];
if ((s->source vid -- csource vid) && (s->dest_vid -- cdestvid))

found - True;
marked_messages[place) - 1;
if ((s->obne to) !- (cs->obne_to))

printf("ERROR! obne syndrome incorrect for message ti\n",i);
if ((s->ibnf to) !- (cs->ibnf_to))

printf("ERROR! ibnf syndrome incorrect for message %i\n",i);

else place +- I;

/* check to see that array bounds haven't been reached */
if (place > num messages)

found - True; /* exit from loop */
message_not found - True; /* signal an error '/

if (message_not found)

printf("WARNING! Message number %i not found\n",i);
printf(" source vid - %i\n",csource_vid);
printf(" dest vid - %i\n\n",cs->dest_vid);

check_others(nummessages,marked_messages);
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10.8.9. File io.c

This file contains input-ouput functions to write SERPs and CTs to an external file

for reading into the VHDL model.

#include "sbdefs.h"
#include <stdio.h>

/**** ***** **************************************

/* write status */
/* This function writes the status line to the output file. */
/* It is called after each serp-message cycle. */
/*** ******* ***W*W*****t*******************************/

void write status(output file, regenerate_ct,num_vids,num_serp_entries,
num messages)

FILE *outputfile;
Boolean regenerate_ct;
int numvids,numserp_entries,nummessages;

fprintf(output_file,"%i %i %i %i",regenerate_ct,num_vids,numserp entries,
num_messages);

fprintf(output_file," Status line\n");

/************** ***************** ***

/* write_serp */
/* This function simply writes the SERP to a file. */
/********** *************************************/*********

void write_serp(output_file,num serp_entries)
FILE *output_file;
int num_serp_entries;

int place,i;
int obne,ibnf, dvid,broadcast,packet_type,ex_class;

for (i = 0; i < num_serpentries; i++)

/* write out the complete SERP entry for each PE */
place = i * Bytes_per_SERP_entry; /* a place holder */
obne = (serp[place + Obne loc] & obnemask) ? True : False;
ibnf = (serp[place + Ibnf loc] & ibnf mask) ? True : False;
dvid = serp[place + Dvid loc];
broadcast - False; /* no broadcasts for now (30 Jan 91) */
packet_type - 0;
exclass = 0;

/* write the values to the file */
fprintf(output_file,"%i %i %i %i %i %i\n",obne,ibnf,dvid,broadcast,

packet_type,ex_class);

/ ***********************************************************/

/* write ct */
/* This function writes the ct to the output file in the */
/* pre-determined format. (see documentation) */
/*********** *******************/
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void writect(output file)
FILE *outputfile;

int i,j,loc;
int vid number, redun,presence,timeout;

for (i - 0; i < Num vids; i++)

/* calculate all the entries for a file line */
vid number - ct[i * Bytes_per CT_entry);
redun - ct[i * Bytes_per_CT_entry + Redun loc] & redun_level mask;
timeout - ct[i * Bytes_per_CT_entry + To_loc];

/* only print a VID's entry if .the redun is non-zero */
if (redun)

fprintf (output_file, "i ",vid number);
fprintf(output_file,"%i ",redun);

presence - ct[i * Bytes_per_CTen'try + Presence_loc]
>> presence shift;
for (j - 0; J < Max_redun level; j++)
if (presence & gpmasks[j])

fprintf(output_file,"1 ");
else

fprintf(output_file,"O ");

for (j - 0; j < redun; j++)

loc - unpack(ct[i * Bytes_per_CT_entry + Basepe_loc + j]);
fprintf (output_file,"%i ",loc);

fprintf(outputfile,"%i ",timeout);
fprintf(output_file,"\n");

/***************************************

/* write_messages */
/**************** ************************

void write messages(output_file,cnum messages)
FILE *output_file;
int cnum_messages;
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10.8.10. File main.c

This file contains the main() function which takes care of the command line
switches.

#include "sbdefs.h"
#include <sys/time.h>
#include <stdio.h>

void increment timer()

to clock +- random() & 0x07;

/******************~ * **** parse commands *** *********************
* This function parses the command line for default overrides of *
* num rounds, generate_faults, and debug_level. *
*******************************t**************** *******/

void parse_commands (argc,argv, seed,operation, file_name)
int argc;
char *argv[];
int *seed;
char *operation,file name[10];

char *str;

while (--argc > 0)

str - argv[argcl;
if (!(str[0] . .== -))

else

switch(str[l])

case 'd':
if (sscanf(str, "%*c%*c%d", &debug_level) != 1)

printf("Bad debug level argument\n");
exit (1);

break;
case 'n':

if (sscanf(str,"%*c%*c%d",&numrounds) != 1)

printf("Bad number of rounds argument\n");
exit (1);

break;
case 'f':
generate_faults = True;
break;
case 's':
if (sscanf(str, "%*c%*c%d",seed) != 1)

printf("Bad seed argument\n");
exit (1);

break;
case 'o':
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/* tell the program to send the ct and serp to a file */
*operation - 'o';
/*if (sscanf(argv(--argc],"%s",file_name) !I 1)

printf("Bad output file name\n");
exit (1);

)*/

break;

#define default file "test.i"
#define seed file name "seed.last"

main (argc,argv)
int argc;
char *argv[];

int i,seed - 0;
int num_messages,cnum_messages;
int num_serp_entries, serp_round, numbers;
char operation, *file_name,*ptime_string,time_stringf26];
struct timeval time;
struct timezone tzp;
FILE *outfile,*seed file;

/* get the default seed for the random number generator */
numbers - gettimeofday(&time,&tzp);
/*ptime_string - time_string;
ptime_string = asctime(time);*/
seed - time.tv sec & Oxff;

/* set defaults and interpret the command line arguments */
debuglevel = 1;
num rounds = 50;
generatefaults = False;
operation = 's';
filename = defaultfile;

parsecommands(argc,argv,&seed,&operation,file_name);

/* seed the random number generator */
for (i = 0; i <= seed; i++)

numbers = random() & Oxff;

/* write the seed to a file */
if ((seed_file = fopen(seed_file_name,"a")) == NULL)

printf("Error opening seed file -- continuing\n\n");
else

fprintf(seedfile,"seed = %i\n",seed);
fclose(seedfile);

switch(operation)

case 'o':
/* 'o' for output to a file */
printf("%s\n",file_name);
if ((out_file = fopen (file_name,"w")) == NULL)

printf("Error in opening file -%s-\n",file_name);
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exit(1);

incrementtimer();
num serp entries = Peper_ne * Num ne;
get serp(&cnum_messages);
write status(outfile,True,gnum_vids,num_serpentries,cnum messages);
write ct(out file);
write_serp(out_file,num_serpentries);
write_messages(out_file,cnum_messages);
for (i - 0; i < numrounds; i++)

get_serp(&cnum messages);
writestatus(out file,False,gnum vids,num_serp_entries,cnum_messages);
write_serp(out file,num serp entries);
write messages(out_file,cnum_messages);

fclose(out_file);
break;

case 's':
/* 's' for simulate */
serp round - 0;
for (i - 0;i < numrounds; i++)

increment timer();
getserp(&cnummessages);
serpround += 1;
if (debug_level >- 1)

printf("**********************************************************\n");

printf("Round = %i\n",serp_round);
printf (****************************************************\n) ;

feed voter();
send (&nummessages);
check_messages(cnummessages,num_ messages);
clear_votedserp();
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10.8.11. makeffie

CFLAGS = -g

sb: io.o vote.o serp.o nf_serp.o ct.o send.o check.o main.o
cc $(CFLAGS) -o sb ±o.o vote.o serp.o nf_serp.o ct.o send.o check.o main.o

io.o: io.c sbdefs.h config.h
cc -c $(CFLAGS) io.c

vote.o: vote.c sbdefs.h config.h
cc -c $(CFLAGS) vote.c

serp.o : serp.c sbdefs.h config.h
cc -c $(CFLAGS) serp.c

nf_serp.o : nf_serp.c sbdefs.h config.h
cc -c $(CFLAGS) nf_serp.c

ct.o : ct.c sbdefs.h config.h
cc -c $(CFLAGS) ct.c

send.o : send.c sbdefs.h config.h
cc -c $(CFLAGS) send.c

check.o : check.c sbdefs.h config.h
cc -c $(CFLAGS) check.c

main.o: main.c sbdefs.h config.h
cc -c $(CFLAGS) main.c

clean:
rm *.*.~*
rm *.-*
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