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The main theme of this thesis is the study of the asymptotic and computa-
tional aspects of clustering analysis for samples of iid observations in an effort to
improve upon the older methods. We are concerned with hierarchical clustering
methods and we focus on the single link method. First, a detailed general frame-
work is developed to deal with hierarchical structure in either the sample or the
population case. In this general setting, we establish the equivalence of hierarchies
and ultrametric distances, define single-link distances and derive the connection
to minimal spanning trees.

The next step is to study the behavior of single-link distances between iid
observations drawn from probability distributions whose support is compact and
has a finite number of connected components. For such distributions, we prove the
consistency of single-link distances and in the case of one dimensional distributions
we obtain an asymptotically normal distribution for the average single link distance
using facts about spacings. In the case of multivariate distributions and under some
conditions, we obtain the rate of convergence for the maximum single-link distance
(which is equal to the length of the longest edge of the minimal spanning tree) and
give upper and lower bounds.

To deal with the chaining problem in real data, we combine kernel density
estimation with the computation of minimal spanning trees to study the effect of
density truncation on single-link partitions. New statistics are proposed to help
decide on the best truncation level, leading to an improved version of the single-
link method. Simulation studies show how these statistics perform with un:modal
and bimodal densities. Finally, these tools are applied to two cluster,... xam-
ples: One involves grouping several foods according to the nutrients they contain.
The other is a market segmentation study, concerning an Atlanta manufacturer of
prefabricated homes.
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ToUr' aCirb roizvvy v iC 6 7rp66Owv A6yo dKrairL ,
ro !ar 'iv / v a i iroAAcd acbrcv I?/Kdrpov,
Ktai mrD1 l• k•'tpa ci0),
dAA& rT& irore dpLO/6v kdrepov lp7rpooOcv CitrirmaL
Trof) 6irELp ai'rwv 'EKarac 770ovLivaL;

This is exactly what the previous discussion requires from us:
How is it possible for each of them
to be one and many at the same time
and how is it they do not immediately become Infinity
but instead they first acquire a finite number
before each of them becomes Infinity?

Plato, Philebus 19A.
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Chapter 1

Introduction

1.1 The clustering problem

The main problem of cluster analysis is summarized in [MKB79], page 360:

Let xl,...,x, be measurements of p variables on each of n objects
which are believed to be heterogeneous. Then the aim of cluster anal-
ysis is to group these objects into g homogeneous classes where g is
also unknown (but usually assumed to be much smaller than n).

There is no shortage of proposed methods to tackle this problem. Detailed
listings have been included in books and review papers such as, e.g., [Eve74],
[Har75], [Gor81l], [Gor87], [JD88] and [KR90]. Very often, these methods are
described by means of an algorithm. As it often happens with other non-
parametric multivariate problems (see [Hub91]), the goal that the algorithm
is trying to attain is not specified explicitly. This is partly c'ue to the lack
of a universally accepted interpretation of the term homogeneous as used in
the quote from [MKB79]. Such an intepretation would also amount to a de-
scription of the properties of clusters and is, therefore, central to clustering
analysis.

There are at least two widely used interpretations in the clustering litera-
ture (see e.g. [Boc85] and [Gor87]). One describes homogeneity as uniformity
on a compact and connected set G. Tests of this hypothesis can be based on
the work of N. Henze ([Hen83]). A different approach has been taken by D.
Strauss ([Str75]). The most important drawback is that these tests assume



that the set G is known. Without knowledge of G, we cannot account for
the effect of the shape of G on the statistics used. A similar edge effect is
recorded in the use of spatial processes in image processing (see e.g. [Rip88],
chapter 3).

The other interpretation assumes the existence of a density f (with re-
spect to Lebesgue measure) and equates homogeneity with unimodality of
f. This leads us to the use of mode-seeking methods in order to specify the
location of clusters (see e.g. [JD88], page 118). Note, however, that it is
very difficult to find the modes of a density in d-dimensional space. In the
one dimensional case, there has been some progress([Sil81], [HH85]). A sug-
gestion for an extension of the one-dimensional method of [HH85] to higher
dimensions is contained in [Har88].

A certain compromise between the two interpretations can be reached
through the suggestion of J. Hartigan ([Har85]) to take clusters to be max-
imally connected high-density sets, i.e. the connected components of the
region {x E Rd : f(x) > c} for an appropriate c. It seems, therefore, that a
search for clusters must use information about:

* where the observations lie and

* how densely they are packed together.

In fact, there have been suggestions ([Gil80]) which assume that a preliminary
estimate of the location of each cluster is available (together with an estimate
of the probability of the cluster) and proceed to find the observations that
belong to that cluster through iterations. This, however, leaves the question
of the global search for the location of the clusters open.

In the next two sections we intoduce the two main groups of clustering
methods.

1.2 Partitional methods

The ambiguity of the terms homogeneous group or cluster makes it even
more difficult to develop statistical inference for clustering. Some progress
has been made in the area of partitional methods. These attempt to find
a partition of the observations that optimizes a certain criterion. The main
idea is to decide on the number of clusters before looking at the observations



and then try to minimize the within-cluster distances of these observations.
Such methods (and related algorithms) go back to the work of Friedman and
Rubin (see [FRb67]).

The most popular among them is the k-means method where the partition
P = (C1, C2 ,..., Ck) chosen is the one that minimizes:

k n

T(P) = Z Z(xj - ±) 2 1C,(Xj)
i=1 j=1

where:
U 1 lc,(zj)xj

X i I c i l
Since the number of partitions of n observations into k clusters is:

( (-I k-i( )in
S(n,k) =k!

(the Stirling numbers of the second kind, see [Sta86], pages 33-34) an ex-
haustive search is out of the question. Instead, iterative algorithms have
been devised (see, e.g., [JD88], page 96 and [KR90], page 102).

Consistency of the k-means method is treated in [Har78], [Pol81] and, in
a more general setting, in [CM88]. The asymptotic normality of the centers
of the k-means clusters is proved in [Po182]. Another interesting question is
the estimation of k. [But86] and [But88] treat this on rhe real line. More
recently, [PFvN89] addressed the same problem in the rrliftivariate case.

1.3 Hierarchical methods

These methods use the observations to produce a sequence of n partitions
1, 2•2 , . . , •n (often refered to as a hierarchy of partitions) with the proper-

ties:

* 7 1 is the partition into n one-element clusters.

* Pi has n - i + 1 clusters of which n - i are the same as n -- i clusters
in Pi-1 and the (n - i + 1)st cluster is formed by joining the remaining
two clusters of Pi- 1 into one (i = 2, 3,..., n).



A class of such methods is based on defining a distance dc between clus-
ters. Then a general algorithm that produces the sequence (Pi, i = 1,..., n}
is the following:

* P 1 is the partition: {{zx}, {x2 },..., ,n}}.

* Given P_-1, Pi is formed by finding the two clusters C, and C2 for
which: dc(Cl, C2) = min{dc(A, B), A,B E Pi-I} and join them into
one cluster.

Popular choices for dc are:

dc(A, B) = min{d(x, y), x E A, y E B}

and
dc(A,B) = max{d(x,y), x E A, y E B}

resulting into the single link and complete link methods respectfully (see, e.g.,
[KR90], page 47).

Hierarchical methods have certain advantages that make them popular.
Some of them are:

* They describe the clustering structure of the data set without the need
to prespecify the number of clusters we must look for. Choosing the
number of clusters can be then based on inspection of the hierarchy of
partitions. Note, however, that inspecting the partitions is not a trivial
task for large data sets in high dimensions.

* The algorithm we just described needs O(n3 ) steps to form the hierar-
chy of partitions' compared to partitional methods that need iterarive
algorithms to produce a single partition. Even worse, the work done
to compute a partition into, say, three clusters cannot be used in cal-
culating a partition into four or two clusters when using a partitional
method.

* Identifying clusters is often a subjective decision. What some people
may see as one cluster, some others might consider as two or more. It is

'Using the concept of reciprocal neighbors it is possible to form the hierarchy in O(n2 )
steps (see [LMW84], pages 128-129).



often a question of how fine a partition we want to find, that determines
the answer. This feature of the clustering problem is best captured by
hierarchical methods.

The hierarchical structure involved in these methods explains why there is
so little work done on the asymptotics of hierarchical methods. The problem
of consistency of single-link has been addressed in [Har81].

1.4 Minimal spanning trees in clustering

Tree methods are often used in nonparametric multivariate statistics (see
e.g. [BFOS84] for classification and regression and [FRf79, FRf81] for the
two-sample problem). In this thesis, we will make ample use of the minimal
spanning tree (MST) on n points. This is simply any tree with vertices these
n points that attains the smallest possible total length. Complete definitions
of all the graph-theoretic terms involved will be given in Chapter 2. In
general, an MST can be computed (by a variety of algorithms) in O(n2 ) time

(see [Hu82] pages 28-29, [PS82] pages 271-279 or [NW88] pages 60-61).
The close connection of the MST to clustering was pointed out in [GR69]

and since then it is practically impossible to talk about single-link clustering
without also talking about the MST. In Chapters 2,3,4 and 5, we will build on
this connection to establish several asymptotic results about single-link. The
connection is shown in the next examples. In Figure 1.1, we draw the MST
for 160 observations drawn from the uniform distribution on the unit square
and a boxplot for the edge lengths of this tree. As expected in this case,
no edge stands out as significantly larger than the others. Compare that
with Figure 1.2, where the MST and the corresponding boxplot is shown
for a sample drawn from a mixture of two uniform distributions on disjoint
squares. This time, the edge that connects the two squares is significantly
longer than all others, indicating the existence of cluster structure. Removing
this longest edge reveals the two clusters.

It may seem at this point that the use of the MST is all we need to
solve the clustering problem described in Section 1.1. The next example
shows that this is not the case at all. In Figure 1.3 we have the MST and
boxplot for the same observations as in Figure 1.2, this time adding another
40 observations from a bivariate normal centered between the two squares.



Although the clustering structure is still clear to the human eye, the boxplot
gives a very confusing picture. The additional observations form chains of
observations through which the MST joins the two clusters without having to
use a long edge. So, there is no significantly longest edge in this MST. In fact
the longest edge is not connecting the two clusters but is rather caused by an
outlier. This problem (appearing very often in real data) is called chaining.
It seems, therefore, that some adjustments have to be made in order to be
able to detect the cluster structure and discover the clusters in cases such as
in Figure 1.3. This problem will be the object of Chapters 6 and 7.



MINIMAL SPANNING TREE
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Figure 1.1: The MST for a uniform on the unit square.
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MINIMAL SPANNING TREE

BOXPLOT OF THE TREE EDGES

Figure 1.2: The MST for a mixture of two uniforms with disjoint support.
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MINIMAL SPANNING TREE

BOXPLOT OF THE TREE EDGES

Figure 1.3: The MST for a contaminated mixture of two uniforms.

Figure 1.3: The MST for a contaminated mixture of two uniforms.
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Chapter 2

Describing Hierarchies

2.1 A-hierarchies

Let A be a family of subsets of Rd

Definition 2.1.1 A partition P of a set S C Rd is a finite family Al, A 2 ,..., A)}
of non-empty subsets of Rd such that S = A1 U A2 U ... U A, and Ain Aj = 0
for i f j, 1 < i,j <r.

Definition 2.1.2 A partition P, of S is finer than a partition P2 of S

(PA PndBB,...,B) i

VA E P2,3 r E N and BI, B2, ... , Br E Pi
such that:

A = BUB2 U...UBr.

Definition 2.1.3 An A-clustering of a set S E R d is a partition:

C = {CI,C 2,...,Cr}

where:
Ci EA

and
c~nC1 =

forl <i<j<_r.



Definition 2.1.4 An A-hierarchy of a set S C Rd is a triple (7W, {Pik=0o, h)
(or simply W" when there is no danger of confusion) where:

I. =PoUP U ... UPk where

* Pi is a partition of S, for 0 < i < k,

* Po is an A-clustering of S,

* Pk = {S} and
* Pi-, < pifor 1 <i <k.

2. h : W- R+ such that:

* VA, B E : A C B = h(A) <h(B),

* h(A) = 0 + A E G, VA E -.

Remark 2.1.1 VA E -, 3r E N and C1, C2 ,... , Cr E C such that:

A = CUC2 U... U C,.

Remark 2.1.2 Let G(7", E) be the graph with vertices the sets of W and
edges E, where:

E = {(A,B) : A,B E H-, 3i: A E P, B E P~i+, and A C B}.

Then G(H-", E) is a tree with root S and leaves the sets of C.

Remark 2.1.3 VA Z B E 7"H one and only one of the following is true:

1. AnB=0,

2. ACBor

3. B cA.



2.2 A-ultra-pseudometrics

Definition 2.2.1 An ultra-pseudo-metric (UPM) d on S C Rd is a pseudo-
metric on S which, in addition, satisfies the inequality:

d(x, y) < max{d(x, z), d(z, y)}, Vx,y, z E S.

Definition 2.2.2 An A-ultra-pseudometric (A-UPM) d on S C Rd is a
UPM for which the family of sets:

{d-'(x,.)({O}), x E S}

forms an A-clustering of S.

Lemma 2.2.1 Let d be an A-UPM on S C Rd and let:

C = {d-'(x,.)({0}), x E S}.

Then, VC 1 , C2 E C (C1 $ C2 ) and Vx, y1 E C, and x 2, y2 E C2 :

d(xl, 2) = d(yl, 2) = d(C1,C2) > 0

and
d(x ,1,y) = d(x2, Y2)= 0.

Proof: Since xl,y1 E C1 = d-1 (x,.)({0}) for some x E Ci:

d(xi,x) = d(yl,x) = 0 =

d(xl, yl) < d(xl, x) + d(x, yl) = 0 =

d(xzl, yl) = 0.

Similarly: d(x2, y2) = 0.
Then:

d(xi,x2 ) < d(xl, y1) + d(y1,x2)

< d(xl, y,) + d(y, y2 ) + d(y 2, x2 )

= d(y1, Y2)-

22



Similarly: d(y,, y2) < d(x, x2 ). So:

d(xl,x 2) = d(yl, 2 ) = inf{d(z,,z 2), zi E C 1, z2 E C2} = d(C 1, C).

If d(C1, C2) = 0, then Ve > 0, 3~1 E C1, X2 E C2 : d(x, 2zz) < e. Suppose
C1 = d-1 (x,.)({0}) and C2 = d-'(y,.)({0}). Then:

d(x, y) < d(x, xi) + d(xi,X 2) + d(X2 , y)

= d(xi,x 2) < e.
So:

d(x, y) = 0 • y E d-(z,.)({0}) = C,
C C, n C2  0,

a contradiction. So d(C1, C2) > 0. 0
As it turns out, A-hierarchies and A-UPMs are equivalent in describing

hierarchical structure. The following theorem proves this in detail. The main
idea used is taken from [Joh67].

Theorem 2.2.1 Let S C Rd, let H be the set of all A-hierarchies of S and
U the set of all A-UPMs of S. Then, there is a map m : H U which is
1-1 and onto.

Proof: Let (7•, {Pi} =l, h) E H. Let C := Po. Consider the function:

d• : Rd x Rd +

defined as follows: For every pair (x, y) E Rd x Rd let:

L1,Y := {A E 7H: {x,y} C A}.

Since S E LE1,, L~, Y 00. Let A.,, = nAELX,,A. Because of Remark 2.1.3,
A,, fE 1H so we can define:

dn(x, y) := h(Ad,,).

We must check that dn E U.



* Let x E S. Then 3 C, E C so that x E C, . Since A, ,, E I7, we have
(using Remark 2.1.1): C, C A3, , . Also, by the definition of A ,,X:

A ,13 C C, .

So:
A ,, , = C, =, dh(x,x) = h(A ,,, ) = h(C , ) = 0

(by Definition 2.1.4).'

* du(x, y) = h(Ax,,) = dH (y, x).

* Let x, y, z E S. Then, z E A,z n A3 ,,. Because of Remark 2.1.3,

Ax,z C AY,, or Ay,' C A4,1 .

Let us assume that Ay,, C A,,z. Then:

h(Ay,z) < h(Ax,z) = du(y, z) 5 du(z, z).

Also: {z,y} C A,,z so:

A3 , , C Ax,z = h(A3 ,,) < h(A3 ,z)

= d (x, y) < d&(x, z) = maxI{d,(x, z), du(y, z)}

< dH(X, z) + d,(y, z).

* Let x E S. Then again, let C, E C so that x E Cx.

Vy E C, : Ax,y = C3, = dn(x, y) = h(Cx) = 0.

Vy E S \ C", : C, C A ,,Y but C3, : Ax,, = d (x, y) = h(Ax ,,) > 0.

So: dý'(x,.)({0}) = C, and

{dý'(x,.)0, x E S} = C,

an A-clustering.



So, du E U.

Conversely: Let d E U. Then:

C = {d- 1(x,.)({}), x E S}
is an A-clustering of S (Definition 2.2.2). We now define the following par-
titions of S:

* Po:= C and VC E C: h(C):= O.

* Suppose Pi is defined and is equal to {A 1 , A2 ,..., A,,}. Let:

s= minm d(At,AA).

Let
J := {j : d(At, Aj) < si}

and
Bi := UjE~JAj, 1 < 1 < ri.

Let

;i+l := {Bt1, 1 < l < ri}

and
ri+l := card('i+l).

Since at least two sets in Pi were joined into one in i+e, we have
ri+l < ri. Finally, VB E Pi+1 \ Pi, let h(B) := si.

Since ri+l < ri, we will eventually reach a Pk with card(Pk) = 1. At this
point the construction terminates and we let I- := Po U P, U ... U Pk.

We first need to show that Pi, 0 < i < k are partitions of S. If k = 0, this
is obvious. Assume k > 0. In fact, we can show, by induction, that:

Pi = {A, A 2,...,A,}

is a partition and
diam(Az) < si, 1 < 1 < ri

where diam(A) := sup {d(x, y), x, y E A}, A E E .



* For i = 0, Po = C is a partition and, because of Lemma 2.2.1,
diam(C) = 0, VC E C and so = mini<t<j<ro d(Ai, Aj) > 0.

* Suppose Pi is a partition with diam(Ai) < si, 1 < I < ri.
Let B1, 1 < 1 < ri, be defined as above. Suppose 311, 12 such that
Bi, # Bi, and B f n Bt, # 0. That would mean 3Aj , 1 < j: < ri such
that:

d(Al, Aj) 5 si, d(A 1, Ai) < si

but

d(Ai, A12 ) > si.

Let c < d(At,, A,2) - si. Then:

3xz, E Al, xj E Aj : d(xl,,xj) < si + E/2

and
3x,2 E A,2, yj E Aj : d(x,12,yj) < si + /2.

Then:

d(xt1, xX2) > d(Ait, A,2) > si + c/2.
By the induction hypothesis: d(xj, yj) < si. Then, applying the ultra-
metric inequality:

d(xZ,,x12) < max{d(xz,,xj), d(xj, x, 2)}

5 max{d(xl,,xj), d(xj, yj), d(yj, x, 2)}

< max{si + E/2, si, si + c/2}

= si + C/2,
contradicting d(xz,, ,12) > si + E/2. So,

V11, 12 : Bl = B12 or B1l nl B12 $ 0.
In addition: A, C Bt for 1 < I < ri so:

S = UtAt CUBI C S :- UtBB = S.

So: i+1 = {Bt, 1 < 1 < r} is a partition.



Now, clearly, si+1 = minl<t<j<,r.+ d(B1, Bj) > si. As we just proved:

Vjl,j 2 E J1, (1 < 1 < ri) : d(Aj,,Aj2) < si.

By the induction hypothesis: diam(At) < si. So:

diam(Bi) = diam(UEJE Aj)

= max{max diam(Aj), max d( A, )}
yEJ1  310h, h J2EJ '

• si < si+i.

This completes the induction.
Using the fact that si+1 > si, it becomes obvious that the properties of

the h function in Definition 2.1.4 also hold. So (H", {}fPi}o 0, h), as defined, is
an A-hierarchy.

It remains to be proved that when the map m is applied to the A-hierarchy
(7-1, {P7}o=0, h) we just obtained, we get the original d back, i. e.

dw := m(-H(, {Pf,}o, h) = d.

We will prove that:

VX, y S: d (x, y) = d(x, y).

By definition: du(x, y) = h(Ax,,), where A.,, is the smallest set in 7H that
contains both x and y. Let P; be the finest partition that contains Az,,.

We proceed by induction on i:

* For i = 0,
A,y E Po = C = {d-'(x,.)({0}), x E S}.

Because A.,, E C:

h(Ax,,) = 0 = dK(x, y) = 0.

Because A,,, E {d-'(x,.)({0}), x E S}:

d(x, y) = 0.
So: d(x, y) = d(x, y).



* Suppose d (x, y) = d(x, y) for all x, y E S such that:

Ax,vI Po U T U ... U p'.

We will prove the same for A.,, E "Pi+ \1 i. Let Pi = {Af , A 2,..., Ar,}.
Then, for some 1, 1 < 1 < ri : A:,, = UjEJAj. Suppose:

x E Aj, y E Aj,, jE,j, E Jr.

By the definition of A.,, as the smallest set in N7 containing both x and
y:

Aj, n Aj, = 0.

By the definition of si:

si:= min d(At, Aj)
1l<k<<r,

and that of Jr:
Jr := {j: d(At, A,) 5 s,}

we have d(Aj,,Aj,) = si. Since Ax,s E •+I \ Pi, h(A',,) = si. Let
z E A•,. Then:

A,,, C Aj, C Ax,y

= h(Ax,z) 5 h(Aj,) 5 h(AX,I).

Also A-,z C As, implies that:

Ax,z E Po U PI U... U P

and so, by the induction hypothesis dwt(x, z) = d(x, z). So:

d(x,z) = dt(x, z) = h(A.,z)

< h(A,y) = si = d(As,, Aj,)

inf d(u, w) d(, y)
uEA,,, eA, •, d(z, y)

But then d(x, y) = d(z, y). Otherwise, if, e.g.,

d(x, y) > d(z, y) > d(x, z)



then the ultrametric inequality:

d(x,y) 5 max{d(z, y), d(x, z)}

would be violated.

Similarly, for w E A,,:

AW,N C A , C

= h(Aw,, ) < h(Ajy,)

and Aw,, C Aj, implies that:

A,, E Po U P, U.

Then, by the induction hypothesis:

d(w, y) = du(w, y) = h(A,j,

< h(Ay,)

.. U PT.

< h(A1,V) = si

inf d(u, v) d(z,y)
UEAz ,vEAj. < d(z, w).

Then, again: d(z, y) = d(z, w). So:

d(x, y) = d(z,y) = d(z, w), Vz E Aj,, w E Xj,

. d(zx, y) = h(Ax,y) = si = d(Aj., Aj,)

= inf d(z, w) = d(x, y).
zEAJ,, wEAJ,

This concludes the proof of du = d and the proof of the theorem.

2.3 Single-link hierarchies

In what follows, we choose and fix a metric p on Rd that metrizes the usual
topology. Definition 2.3.3 and Theorems 2.3.1 and 2.3.2 below are based on
ideas in [LMW84], pages 143-144.



Definition 2.3.1 Let P be a partition of S C Rd. For A, B E 7, we define
a path from A to B on P to be a finite sequence:

(A = Co, C1,..., Ck E B)

of sets Ci E P, 1 < i < k.

Definition 2.3.2 The size of a path (A = Co, C, ..., Ck = B) from A to B
on P is defined to be:

max p(Ci-,, C,).
l<i<k

Definition 2.3.3 Let C be an A-clustering of S C Rd. On S x S we define
the function:

d'L : Sx S R +

as follows: For x, y E S let x E C, E C, y E C, E C. Then:

d'L(x,y) := min{s : 3 path fromC, to C, onC of sizes}

will be called the single-link distance of x and y with respect to C.

Theorem 2.3.1 For any S C Rd and any A-clustering C of S, dcL is an
A-UPM.

Proof:

1. For any C E C, the path (C, C) has size 0. So:

Vx E S: dcL(, x) = 0.

2. To any path (Cx, = Co, C,...,Ck - Cy), there corresponds a path
(Cy 1 Ck, Ck-1, ..* , - C) of the same size. So:

dSL(x,y) = dCL(y,x).



3. Let x, y, z E S. Let us fix, for the moment, a path (C,,..., C,) of size
sl and a path (C.,..., C,) of size 82. Then, the path:

(C., ... , C,, ... , CY)

has size max{s1 ,,s2 }. So dcgL(X,y) < max{s,s82 }. Taking the minimum
over all paths from C, to C, and all paths from C, to C, we get:

dcL(z,y) _ max{dcL(x,z), dL(z,y)},

the ultrametric inequality.

4. Finally:
Vy E C, : dCn(x, y) 5 p(C,C,,) = 0

so C, C dcL.'(x,.)( {0}). If, however, y E S \ C,, then all paths from
C, to C, include a first step from C, to some C E C, C $ C,. But
then:

On C0 = 0 = p(C, Cx) > p(C', ,) > 0 = ddL(x,y) > 0.

So:

dc-' 1(x,.)({0}) = C, x {d~L-'(z,.)({0}), x E S} = C,

an A-clustering of S.

0

Definition 2.3.4 The A-hierarchy (H7, {P,}i=o, h) = m-l(dcn) correspond-
ing to dcL through the map m of Theorem 2.2.1 is called the single-link
hierarchy with respect to C.

The choice of dc (among other UPM that can be based on the same
A-clustering C) might seem arbitrary. The following theorem gives a reason.

Theorem 2.3.2 Let S C Rd and C an A-clustering of S. Let D(C) be the
set of all A-UPM d such that:

* Vx,y E S: d(x,y) 5 p(x,y) and



* {d-'(x,.)((0}), X E S} = C.
Then:

Vd E D(C), V, E S : d(x, y) 5 dSCL(x,y) < p(x,y).

Proof:

* An obvious path from C, to C, is just (Ci, C,) with size p(C,, C,) <
p(x, y). Taking the minimum over all paths from C, to C, :

dcL(x, y) < p(x, y).

* Let r = card(C). Fix x, y E S. Let x E C E C and y E CE C. A path
from C, to C, of the form (C,,..., C,,..., Cp,..., C , ) cannot have size
less than the same path without the inner cycle (C,,..., C,). So it is
safe to assume that the optimal path from C, to C, has, at most, r
vertices. Let

(C, - Co, CI, Ct,..i, Ck ECy)
be such a path. Choose c > 0.

For 0 < i < k - 1, choose yi E Ci and xi+, E Ci+, so that:

p(Xi+,, y;) < p(C, Ci+i) + E.
For any d E D(C) the ultrametric inequality implies that:

d(x,y) < max{d(x, k), d(xk, y)}
< max{d(x, yk-1), d(yk-1, Xk), d(xk, y)}

< max{d(z, yo), d(yo, 2x), d(xl, yl),..., d(xk,y)}

= max d(yi-l,xi)
I<i<k

because distances within the clusters Co,..., Ck are 0 (Lemma 2.2.1).
Then, by assumption:

d(x,y) 5 max p(yi-.1 ,zi)
1<i<k

< max p(Ci-1, Ci) + rc

< max p(C-i<k ,Ci) + r
-<i<k



Letting e ' 0:

d(x, y) < max p(Ci- 1, Ci) = size(Co, CI,..., Ck).-- <i<k

Since this is true for any path from C, to C, with < r vertices, it is
also true for the optimal path. So d(x,y) 5 dCL(x, y).

This completes the proof. o

2.4 Single-link algorithms
The definition and treatment of single-link hierarchies and distances in the
previous section is somewhat different from the traditional approach found in
the literature. In that traditional treatment, a finite set S = {x1,x2,... , x,}
of observations is specified (possibly the values Xi(w), X 2 (w),..., X,(w) of
iid random variables) and distances dSL(xi, xj) are defined only on the finite
set S. Notice, however, that this can now be considered a special case of
single-link distances.

Definition 2.4.1 Let A, be the class of singletons zx}, z E Rd. Let S =
{x1,x 2 ,.. .,,n} be a finite subset of Rd. Then Cs = {{xz}, 1 < i < n} is an
.A,-clustering of S.

We define the (classical) single-link distance on S x S as:

dSL(xi, (x) = dsCL (x, xj) , 1 < i,j 5 n.

Remark 2.4.1 As the following example shows, dSL(x, y) does not depend
only on X and y but on the whole set S:
On the real line, let p be the usual metric. Then:

d' 5)(0, 5) = p(O, 5) = 5
but

d ° '2'51(o, 5) = min{p(O, 5), max{p(O, 2), p(2, 5)} } = 3.



Finding efficient algorithms to compute single-link distances (and thus
form single-link hierarchies as in Theorem 2.2.1) is going to be our next
priority. A very popular method (providing an algorithm that computes
the matrix {dSL(xi, x)} ,= in just O(n2) steps is based on the minimal
spanning tree. As in the previous section, we will present this concept in the
more general setting of dsL distances on S x S, with respect to a certain
clustering C of S.

Remark 2.4.2 Because of Lemma 2.2.1, computing dCL on S x S is reduced
to computing the matrix:

{dcL(C,, C,) I}nj

where Ci E C, 1 < i <n.

We will now need the following elementary terminology from graph the-
ory.

Definition 2.4.2 Given a finite graph G = (V, E) with vertices in V and
edges in E:

1. a tree T = (VT, ET) is a subgraph of G (i.e. VT C V and ET C E)
which is connected and contains no cycles,

2. a spanning tree is a tree for which VT = V,

3. a weight function on G is a function w : E 4 R + ,

4. the weight of a tree T is w(T) = ZeEET w(e), and

5. a minimal spanning tree is any tree To for which:

w(To) = min{w(T), T is a spanning tree of G}.

Remark 2.4.3 In general, there can be several minimal spanning trees as
in the following example:

G= (V,E), V= {1,2,3}, E= {{1,2}, {2,3},{3,1}}



and

Let:
E, = {{1,2}, {3, 1},
E2 = {{1,2}, {2, 3}},

Es = {{2,3}, {3, 1})}.

Then T1 = (V, E1), Tz = (V, E 2) and Ts = (V, E3) are all
trees of G.

Remark 2.4.4 If T is a spanning tree of G = (V, E), then
there exists a unique path from v to u along edges of T
any edge more than once.

Proposition 2.4.1 Let C be an A-clustering of S C Rd.
plete graph G with vertices in V = C. define:

minimal spanning

for every v, u E V,
that does not use

Consider the com-

,w: E R+: e = {Ci, C} l p(C,, Cj),

for Ci, Cj E C. Let T be a minimal spanning tree of G. Let p7z(Ci, Cj) be the
unique path from Ci to Cj along edges of T that does not use any edge more
than once. Define:

dT(C,, Cj) = size(pr(Ci, Cj).
Then:

dT(C;, Cj) = dCL(Ci, Ci).

Proof: Clearly dT(Ci, Cj) Ž> dcL(Ci, Cj) (see Definition 2.3.3). Suppose
dT(Ci, Cj) > dcL(Ci, C,) for some Ci, Ci E C. Then, there is a path from Ci
to Cj whose size is less than size(pT(Ci, Cj)). Let:

size(pT(Ci, Cj)) = p(Ck, C),1 Ck, C1i C.

Let:

ul:E ý- R+ : w(f 1, 21) = w(f 2, 3)) = w(f 3, 1)) = 1.



be the path with size < p(Ck, CI). Then p(Di-,, Di) < p(Ck, Ct), 1 < i < r.
Removing the edge (Ck, CI) from the tree T, divides T into 2 trees T, =
(Vi, E,) and T, = (Vj, E,) with V n Vf = 0 and Ei n Ej = 0, such that C, E Vi
and Cj E V, (see Figure 2.1). However, the path

(Ci =Do, D1, ... , D, = Cj)

connects C; to Cj, so 3Dk, with Dk E Ti, Dk+1 E Tj and p(Dk,Dk+I) <
p(Ck,CI). So, substituting the edge (Ck, C) with (Dk,Dk+l) gives a new
spanning tree T' with w(T') < w(T), a contradiction. So dT(Ci, Cj) =
dL (C,, C,). o

The last proposition implies that the computation of the matrix:

{dcs(C,, Cj)}, 1 < i,j < n

reduces to the computation of:

{dT(C,,Cj)}, 1 5 i,j 5 n

for some minimal spanning tree T. The next step now is to provide an efficient
algorithm for computing minimal spanning trees. Several such algorithms
exist, proposed by Florek et al., Kruskal and Prim. Details are provided in
[LMW84]. Here we will give a version of Prim's algorithm as found in [Hu82].

ALGORITHM: Let C = {C1,C2 , -.. , Ck} be an A-clustering of S. Let
rij = p(Ci, Cj), 1 < i,j < k.

Figure 2.1: Single-link distances and the MST.



Step 0: Let V:= {C}), E:= 0. Let tj := rlj, 2 < j < k.

Step 1: If V = {Ci,,C,2,..., Ci}, 1 < < k, let t,÷, = min{tj, Cj V}.
Find h, 1 < h < 1 such that ii,=, = ri,,i,l,.
Include Ci,+, in V and (C,, C,I,+) in E.

Step 2: If Il+l = k, let T = (V, E) and stop.
Otherwise, VCj , V, t, := min{tj, rji,,, }. Continue with step 1.

The fact that the resulting graph T is a minimal spanning tree is a conse-
quence of the following two lemmas proved in [Hu82] (page 28).

Lemma 2.4.1 If p(Ci, Cj,) = minj;ip(Cj, Cj) then there exists a minimal
spanning tree containing the edge (Ci, Cj,).

Lemma 2.4.2 If T = (V, E) is a tree, known to be part of a minimal span-
ning tree, and:

B3C E V, C2 E C\ V: p(C, C2)= min p(C, D)
CEV, DEC\V

then there exists a minimal spanning tree including the edge (C1, C2 ) and
having T as a subtree.

Remark 2.4.5 Both step 1 and step 2 of the algorithm described require
O(k2 ) operations, so this is an O(k 2 )-complexity algorithm. (More details on
that can be found in [Hu82], as above).

We now have the necessary tools to treat single-link hierarchies defined
on a set S, not necessarily finite. In the next chapter, we will use these tools
to explore the asymptotic behavior of single-link hierarchies, based on an iid
sample.



Chapter 3

Consistency

3.1 Distances as kernels of U-statistics

Up to now, we have treated clustering -as a data analytic problem, we have
not introduced probability measures and we have not made any distribu-
tional assumptions concerning the observed data. In this chapter, we will
be introducing a model, appropriate for the study of hierarchical clustering
methods, so that we can study consistency of the method described in the
previous chapter. To achieve this goal we will make use of the equivalence
of hierarchies and ultrametrics that we have proved (Theorem 2.2.1). Be-
cause of this result, we can rely exclusively on the study of ultrametrics for
a complete description of the behavior of the corresponding hierarchies.

Suppose that d is a distance on Rd. Let P be a Borel probability measure
on Rd and let:

X1, X2,..., X, iid - P.

We will soon need to study statistics of the form:

Z2F Fd(Xj,,X3 ).
i=1 j=1

Fortunately, such statistics are special cases of U-statistics (of order 2) with
kernel d and their asymptotic properties are well understood.

Definition 3.1.1 Let P be a Borel probability measure on Rd and let:

h :Rd x Rd H R



be a measurable, symmetric real function. Let Xt, X2 ,..., X, iid ^ P and
define:

1 n
Un := Un(XI, X2, X ... ,Xn) n h(Xi, X).(n )= jfi+2

We call U, the U-statistic (of order 2) with kernel h.

U-statistics have been studied by Hoeffding (see [Hoe48]) and Halmos (see
[Hal46]). They generalize the sample mean and in fact, Halmos has proved
that when Ep(h') < oo then U,n is the unbiased estimator of Ep(h) with
smallest variance. However, here we are more interested in the asymptotic
properties of U,. A detailed list of asymptotic results on U-statistics is
included in [Ser80], chapter 5. A law of large numbers for U, is provided by
the following:

Theorem 3.1.1 Let P, h, U, be defined as in Definition 3.1.1. Then, if
Ep(hl) < oo we have :

Un(Xi, X2, X,) EP(h)

almost surely.

Proof: The result was established by Hoeffding but an easier proof based
on the reversed martingale structure of U, is given by Berk in [Ber66]. 0

In addition, we have the following central limit theorem for U-statistics:

Theorem 3.1.2 Let P, h, U, be defined as in Definition 3.1.1 and define:

h Rd -4 R : x h(xz,y)P(dy)

and V(h1) := Varp(hi(X 1)). Then, if Ep(h') < o0:

'(V'(U, - Ep(h))) ') N(O, 4V(h1)).



Proof: The original proof was given by Hoeffding in [Hoe48]. In this form,
the theorem is proved in [Dud89j, pages 337-339. 0

Remark 3.1.1 Notice that a distance d is a symmetric function which is
equal to 0 on the diagonal. Therefore, the difference between:

in2

i=l j=1

and: 1 n n
XE ) (3.2)

is just the difference between the scaling factors:

1 1
- and
n;2  n(n - 1)

Because of this, we will have no difficulty applying the asymptotic results for
(3.2) (such as Theorem 3.1.1 and Theorem 3.1.2) to (3.1).

Remark 3.1.2 There is also no difficulty in extending Theorem 3.1.1 and
Theorem 3.1.2 to functions h : Rd '- Rk. In that case V(hl) of Theorem 3.1.2
is the k x k covariance matrix:

V(h,) := Covp(hu,(X,),..., hlk(X1)).

3.2 Clustered measures

Let us begin our study of the asymptotics of single-link distances by ex-
amining consistency. In this and the following chapters, p will denote the
euclidean distance on Rd unless otherwise noted.

Definition 3.2.1 A Borel probability measure P on Rd will be called A-
clustered if there exists an A-clustering of supp(P). If A is the class of
compact and connected sets, then P will be simply called clustered.



Remark 3.2.1 For a general class of sets A and an A-clustered measure P,
there might exist more than one A-clustering of supp(P). For an example,
consider A = { finite subsets of Rd} and take P to be any probability measure
with 1 < card(supp(P)) < oo.

The next proposition shows that such ambiguity is avoided in the case of
clustered measures:

Proposition 3.2.1 Let P be a clustered measure in Rd. If C is a clustering
of supp(P), then:

C = {C, E supp(P)}

where C , is the unique connected component of supp(P) containing z.

Proof: Let C = {A 1,A 2 ,..., A,}. Take x E Ai for some i : 1 < i < r.
Since Ai is connected:

Ai CCz.

By Definition 2.1.3: Ak n Am = Ak n Am = 0 for 1 < k < m < r. So, there
exist open sets Uk, U,,,:

Ak C Uk, AmC Um, Ukn Um =.

Then:

C- C supp(P) = Ax U A2 U... U A, C U1U U2 U... U U,.

Since C_ is connected, there is a unique j, 1 < j < r such that C, C Uj.
Since CQ n Ai $ 0, j = i. So, C. C Ui and since C, C supp(P):

C, C Ui n supp(P) = Ai.

Therefore, C, = Ai. We conclude that:

C = {C,, x E supp(P)}.

Remark 3.2.2 Proposition 3.2.1 shows, in particular, that supp(P) has a
finite number of connected components.

We can now give the following definition:

Definition 3.2.2 Let P be a clustered measure. Then, C(P) will denote the
unique clustering of supp(P).



3.3 Consistency of single-link distances

Let P be a clustered measure in Rd and let X 1, X 2,..., X, iid - P. If P"
denotes the empirical measure:

1n
P,(w) := - x,(Y)n(i=1

then Pn is a clustered measure with:

C(Pn) = S, := {{Xi}, 1 < i < n

for all w.
Therefore, given X 1,X 2,... Xn iid - P, we can define two different

single-link distances. One is ( P) that is defined on supp(P) x supp(P)
with respect to the clustering C(P) (Definition 2.3.3). The other is d( P")
defined on S, x S, with respect to the clustering C(P,) (Definition 2.3.3
but also Definition 2.4.1). Therefore, both distances are defined on S, x Sn,
although only dC( P) is observable.

What follows is the main result of this chapter. It shows that, as n goes
to co, dC(q P") converges (uniformly on the sample) to dC P).

Theorem 3.3.1 Let P be a clustered measure in Rd and let:

X1,X 2 ,..., Xn lid - P.

If Pn denotes the empirical measure, then, for n E N and 1 < i,j 5 n, we

define: An(X, Xj) = d(Pn)(Xi, Xj) - dC( P)(Xi, Xj).

Then:

* An(Xi,Xj);> 0 a.s. for 1 < i,j < n and

* limn-oo max_<i,<in An(Xi, Xj) = 0 a.s..

Proof: Let C(P) = {C1 , C2,..., C,}. If r = 1 then let 6 := oo, otherwise:

6:= min p(Cj, C).



Because of the definition of a clustering (Definition 2.1.3) and the fact that
p metrizes the usual topology: 6 > 0. Choose and fix e such that 0 < e < 6.
Since supp(P) = Ur=xCi is compact, there exists a finite number (say k(e)) of
open balls with radius e/4 covering supp(P). Let B be such a cover. Consider
now the following lemma:

Lemma 3.3.1 Let P,C,A,,e,B and k(e) be defined as above. If, for some
n, all k(e) balls in B contain at least one observation each, then:

max A,(Xi, Xj) < e.
<_i,j<n

Proof: (of Lemma 3.3.1)
First note that:

dsC( P)(Xi, Xj) dsC( P)(Xi, Xj), 1 < i,j < n.

Indeed, if Xi E Ci, Xj E Cj, then to every path from Xi to X, on C(P,),
there corresponds a path from Ci to C, on C(P) having edges smaller or
equal to the corresponding edges of the path on C(P,). So:

A,(X,, xj) > o.

On the other hand:

dSC ()(Xi, Xj) = min{s : 3 path from Ci to Cj with size s}.

Let:
(Ci Do, DI, ... , Dk E Cj)

be one of the paths that achieve the above minimum. We can now construct
a path from Xi to Xj on C(P,) with size < dC ( P)(Xi, Xi) + e, using the
assumption of the lenima.

To do that, we begin by choosing observations:

Xi 7 X X''o, l Xii, I,, .X., XI, : X

such that:



* Xi, X!j E Di, 0 <_1 < k and

* p(Xi,_,,Xi, ) _ p(DI-II,DI) + e.

We can do this as follows:
For 1 such that 1 < 1 < k, 3a'-1 E DI-1, at E DI such that p(a'l-,a,) =

p(DI- 1, Di) (because the sets D1 and Dt1_ are compact). Then 3BBL 1, Bt E B
such that a'_1 E B-_1 and at E B1. Finally, using the assumption of the
lemma:

3XB'1 e B'_1 and X;, E Bt.

Then:

p(X,_,, X,) _ p(X',_,, al- 1) + p(a_-1, at) + p(at, X,,)
< C/2 + p(Di-1, DI) + e/2
5 c + dr P(Xi,xj).

We must now complete the path from Xi to X, by inserting paths from
Xi, to Xf, of size < e for 0 < 1 < k. Notice that, thanks to our initial choice
of f, no ball B E B intersects more than one of the clusters C1 , C 2 ,..., C, .
Concentrating now on the cluster Dr under consideration, we define:

* B1 to be the subcover of 8 covering Dr,

* S1 to be the set of observations contained in Dr (these include, in par-
ticular Xi, and Xi,),

* Sx to be the set of observations from St reachable from X with paths
of size < e for X E St,

* Ex to be the set of balls from B1 containing observations from Sx and

* Ex := UBEexB (an open set).

Note that:

* Si = UxEs,Sx,

* B1 = UxEsEx (since all balls contain observations) and

* Dr C UXESIEX.



Also, for X, Y E SI, either:

or
Sx n Sy = Ex n Ey = Ex n Ey = 0.

Then:

* Dr C UXEs,Ex and

* D1 is a connected set

together imply that:

VX, Y E St : Ex = Ey = Sx = Sy.

In particular, Sx,1 = SxI and so there exists a path from X;, to Xf, of size

< e. These path segments (for 0 < 1 < k) complete a path from Xi to Xj of
size s with:

s < max{,, + dsC(P)(X, X) }

= + ds P)(Xi,Xj)

So:
.j(P")(-x<,,Xj) < + ( dj Xxx)

A nA(X,,Xj) < E, 1 i, < n

Smax A, (Xi, X) < C

proving the lemma.

Now, to complete the proof of Theorem 3.3.1 note that we can always
assume that all k(e) balls of the cover have positive probability. If some
of them have probability 0, we can discard them and still be able to cover
supp(P) with the rest. Let p := minBES P(B) > 0.



Now, using Lemma 3.3.1:

Pr(max 6s(X;, X,) > e) < Pr(3 B E B containing no observations)

< Pr(B is empty)
BEB

< [1 - P(B)I"
BEB

< k)(- p)".

So, if:
A' := [max A,(Xi,Xj) > e]

tj

then:
Pr(A') < k(c)(1 - p)n

= E Pr(A' ) 5 k(c) E (1 - p)" = k()• - < oo
n=1 n=l P

since p > 0. So, by the Borel-Cantelli lemma:

Pr(lim sup A') = 0 =j max A,(Xi, X) -- a.s.

as n -+ co.

The last theorem provides us with the means to study statistics based on
single link distances:

Definition 3.3.1 Let P be a clustered measure in Rd and let:

C(P) := {C1, C2, C2  , C,}.
Since the length of the longest edge of any minimal spanning tree on C(P)
must be equal to max1 <i,<,n dC( P)(Ci, C) (see Proposition 24.1), we can
define:

* M(P) := the length of the longest edge of any minimal spanning tree
of C(P) and

* D(P) := f f dC( P)(x, y)P(dx)P(dy).



Remark 3.3.1 M(P) is the largest single-link distance on C(P) while D(P)
is the average single-link distance on C(P).

Theorem 3.3.2 Let P be a clustered measure on Rd and let

X1,X2,... ,Xn lid , P.

If Pn is the empirical measure then, as n --+ oo:

M(P,)
D(Pn)

--- M(P) a.s. and
-- + D(P) a.s.

Proof: The result for M(P) is obtained by direct application of Theo-
rem 3.3.1:

as n -+ 00.

M(P,) - M(P) < max A(X, X) ---- 0 a.s.
"3

The case of D(P) needs some more work. Since 0 < dC( ) < p on
supp(P) (Theorem 2.3.2) and supp(P) is compact:

D(P) = dC(P)(x, y)P(dx)P(dy) < oo.

Then, the U-statistic with kernel dP):

2
U ( :=

n(n - 1)
- ZdsCLI(X ,Xi)

i<j

satisfies the strong law of large numbers (Theorem 3.1.1):

U,, - D(P) a.s. (3.3)

Then:

ID(P,) - D(P)I
• I'EdsClP"n)(X,,Xj) -

n,.j L
T2 

"3



+ I EdLc
1,3

+ IU. - D(P
< max IdC P")(Xi, Xj)-d Cd (Xi, X)l

-<i,j<n
1 1

+ 2 n(n -1)I

+ jU. - D(P)I

< max An(Xi, Xj)O
-- <ij<n

0 20 Oa.s.

E dsCj PI(Xi, Xj)
ij

1+ - Un| + jUn - D(P)
n

by Theorem 3.3.1 and (3.3).

P'(Xi iXj) - Un I



Chapter 4

Asymptotics on the real line

4.1 Spacings

The fact that the statistic D(P,) introduced in Chapter 3 exhibited simi-
larities to a U-statistic, encourages us to attempt a more detailed study of
the asymptotic behavior of D(PB). More specifically, one would hope that
D(P,) behaves similarly to:

SCds( P)(X, y)Pn(dz)Pn(dy)
which cannot be observed (since P is not known) but which is a U-statistic.

Notice that, to prove consistency for D(P,), we used the fact that:

lim max A,(Xi, Xj) = O a.s.

(Theorem 3.3.1). To prove asymptotic normality, we will need something
stronger, namely:

max A,(Xi, Xj) = o,(1/ ).

As it will turn out, this is only true when d = 1.
Clustering on the real line has been studied in the literature: [Har78]

has studied the asymptotics of k-means clustering on the real line and more
recently [But86] and [But88] have dealt with optimal clustering on the real
line. Hartigan has also proved set-consistency for the single-link method on
the line ([Har81]) and showed that set-consistency fails in higher dimensions.



Altrenative approaches based on change-point detection (see also [KS89]) are
reviewed in [Eub88]. The approach based on D(P,) in this chapter is new
but bears some resemblance to the central limit theorem for functions of the
nearest neighbor distances proved in [BB83].

What makes things easier on the real line is the simple form of compact
and connected sets on R. These are simply the closed intervals. To un-
derstand the behavior of D(P,), we must first study the spacings formed
between observations on R. We will adopt the following notation:

Definition 4.1.1 Let P be such that supp(P) = I = [a, b] (where a < b).
Let X 1,X 2 ,...,X,, be iid -• P and let Xo := a and X,+1 := b.
The spacings Yo, Y1 , Y2, ... , Y, of the X 1 , X 2,...,X,, are defined by:

Yi := X(i+l) - X(i) for 0 < i < n.

The maximum spacing Z, of the X 1 , X 2,...,X, is defined by:

Zn := max Yi.
O<i<n

Several results are known about spacings. A detailed review of such
results can be found in [Pyk65]. On the subject of uniform spacings, a
standard reference is [Dar53]. Here, however, we will only make use of the
oldest of these results which is due to Paul Levy ([Levy39]).

Lemma 4.1.1 (Paul Levy 1939) When X 1,X 2,...,X,, are iid - U[0,1]
then, for every t E R:

lim Pr(nZ, - log n < t) = e- •

Remark 4.1.1 The previous lemma implies, in particular, that for uniform
random variables:

Z, = O,(log n/n).

It will be useful to generalize this result to other clustered measures on
R. In fact, we can prove the following:



Proposition 4.1.1 Let P be a clustered measure on R having a density f
(with respect to Lebesgue measure) that satisfies:

inf{f(x),z E supp(P)} > ) > 0.

Then:
max An(Xi, Xj) = Op(log n/n).

l<i,j<n

Proof: There are two cases to consider:

Case I: card(C(P)) = 1.
Let F(x) = f.•, f(t)dt be the distribution function of P.

Since ds P ) = 0 we have

max A,(Xi, Xj) = max ds P")(Xi, Xj)
1<I, <n <i,jn<n

< max (X(,+I) - X(,))
- 0<s<n

= (1/6) max 6(X(.+l) - X(,))
O<s<n

< (1/6) maxX f(x)dx
O<_s<n X(,)

= (1/6) max [F(X(,+I)) - F(X(,))]
0<s<n

= Op(log n/n)

by Lemma 4.1.1, because F(XI),... F(X,) - U[O, 1].

Case II: card(C(P)) > 1.
Suppose C(P) = {Ii, 12,..., Ik) where k > 1. Let It = [at, b,], with

at < be, 1 < t <k

and
bt < at+,, 1 <t < k- 1.



We can reduce this case to case I, by considering the function:

k-1

h(x) = x - Z(at+, - bt)lat,oo)(x)
t=1

which maps supp(P) onto the interval:

k-1
J = [a, bk - (at+1 - bt)]

t=1

and P to a measure covered by case I.
The reduction will be based on the following:

Lemma 4.1.2 If all intervals 1,, 1 < r < k contain observations, then:

max An(Xi,Xj) < max An(h(Xi), h(Xj)).
1<i,j<n - <i,j<n

Proof: (of the lemma).
Assume that X(,) E It,. Also, let:

ph=Pn - E Z h(X,).
i=1

Note that:
df ( P" )(X (

i) X()) = max p(X(m), X(m+l)).i<m<j

If It, = It, then dseC P)(X(.), X(j)) = 0 and also:

p(X(m), X(m+x)) = p(h(X(m)), h(X(m+,))), i _ m < j.

So:

An(X(A7, X(,)) = dC( Pn)(X(,) X(,))
= max p(X(m), X(m+z))

i<m<j
= max p(h(X(m)), h(X(m+,)))

i<m<j
= dff



If Ii, $ It, then, for i < m < j:

p(h(X(m)), h(X(m+,)))
if

X(m), X(m+t) are in the same interval,

p(X(m),bt.) + p(Itm, It,+,) + p(X(m+l), atr,+)
p(h(X(m)), h(X(m+l))) + p(I,,., It,+l)

X(m), X(m+1) are in the successive intervals IIt, Itm+I.

So:

= max p(X(m),XX(,m+))i<m<j

< max p(h(X(m)), h(X(m,+))) + max p(t, It+i)

= d (h(X(j)), h(X(,)) + ds P)(X(i), X(j)).

Therefore:

An(X,, Xj) _ dC(L P )(h(Xi), h(Xj)) = A,(h(Xi), h(Xj))

proving the lemma.

Now, by applying case I:

max A,(h(X,), h(Xj)) = Op(log n/n).

Therefore, 3M > 0 such that:

lim Pr n lmax A,(h(Xi), h(Xj)) > M = 0. (4
n og n Iissa5n 1.1)

So:

Pr lon max A,(X;,(log n

p(X(m), X(m+l)) =

SL~ "(X , ,X(j))

X,) > M



+as n

--- .b

as n ---- 00 by

Pr n maxA,(Xi, Xj) > Mj no empty intervals
(log n

Pr(3 an empty interval)

Pr n max A,(h(Xi), h(Xj)) > M
(log n

k
S _(1 - P(I))"

t=1

0

(4.1).

4.2 A central limit theorem

We can now describe the asymptotic distribution of D(P,):

Theorem 4.2.1 Let P be a clustered measure on R having a density f (with
respect to Lebesgue measure) that satisfies:

inf{ f(x), x E supp(P)} > 6 > 0.

Let X 1 , X2, ... , X, iid - P and P, the empirical measure. Then:

lim C(V' (D(P,) - D(P)) = N(0, 4a 2 )

where:
= Varp(f di( P) (XI,z)P(dx)).

Proof: The U-statistic:

satisfies:

U1 2 C Cd P (XiIxi)
n(n - 1) ,>

lim £(v'(U. - D(P))) = N(0, 4a2).
n



(Theorem 3.1.2). In addition:

IV'(D(Pn) - D(P))- (U. - D(P))I
= V (ID(Pn)- UnI

V' d " 1)(Xi,7Xj) - dsc P)(XiIXj)n2 j..jSL

S n n(n - 1) "

S - max A,(Xi, Xj) + Vf IU
1<,3•fn ln

by Proposition 4.1.1 and the fact that U, -4 D(P) (Theorem 3.1.1). So,
v/'i(D(P,) - D(P)) has the same asymptotic distribution as /'(Un- D(P)).
The result follows.

O

Remark 4.2.1 To use Theorem 4.2.1, we need to know whether a 2 > 0.
There are cases where this is not true, as in the following examples:

Example 1:
Let P = U([O, 1]). Then C(P) = {[0, 1]} and therefore:

dsL P) - 0.

A fortiori, Varp(f ds )(Xi,z)P(dz)) = 0. In this case, the decompo-
sition:

cP=,)-dc( P) + (dC(Pn) C( P))ds - ds + (ds -L dSL
will not be useful. However, we know the asymptotic distribution of
M(Pn) (see Definition 3.3.1) by Lemma 4.1.1 and that would be more
appropriate to use. For other distributions with connected support,
one could use the results of [Deh84].

Example 2:
Let C(P) = {II,12}. Then:



* with probability P(I), Xi E It and:

J ds P)(Xi, x)P(dx) = P(II) - 0 + P(I 2)" p(Il , 12)

* with probability P(12), Xi E 12 and:

Sd" s()(X,, x)P(dx) = P(I,) -p(h, 12) + P(I 2) -0.

Therefore:

a2 = Var(P)J dc)(Xi,x )P(dx) = 0 P(I,) = P(12).

Remark 4.2.2 Under the assumption a2 > 0, we can construct approximate
confidence intervals for D(P). At level a, these intervals would be of the form:

(D(P,) - 2n-1/2az(a/2), D(Pn) + 2n-1/2anz(a/2))

where an is an estimate of a2. E.g. we can use: 2
a := - - dC P")(X;, Xj) - D(Pn).

Remark 4.2.3 The general problem of homogeneity in a sample can be for-
mulated in the following way:

Let F be a class of probability distributions on R. Given independent
random variables X1,X2,...,X,n we want to test the hypothesis:

Ho: 3F E ., X,,X2,...,X, lid - F

versus the alternative:

HA : 3i1 $ i2, Fi5 Fi, : Xi, ̂  Fil, Xi, ' Fi2.

We have just given a solution to this problem when F is the class of
distributions with compact and connected support.



4.3 Measuring hierarchical structure

In Chapter 2 we showed that dsL' P was the ultrametric that minimized p-d
among all ultrametrics d for which p _> d (Theorem 2.3.2). Therefore, we
can measure hierarchical structure by how closely dl C( P) approximates p. For
this purpose we will define an affine invariant functional CR(P)) which takes
values in the [0, 1] interval so that 0 corresponds to a clustered measure P
with connected support and 1 corresponds to perfect hierarchical structure.

Definition 4.3.1 Let P be a clustered measure in R and let

p(x, y) = Ij - Yl, , E R.

First we let:
R(P) := JIp(x, y)P(dx)P(dy).

Then we define CR(P), the cluster ratio of P to be:

(1 if P is a point mass,

CR(P) = ID(P)/R(P) otherwise.

The following proposition gives some properties of CR(P):

Proposition 4.3.1 If P is a clustered measure in R, then:

1. 0 < CR(P)< 1,

2. CR(P) = 0 card(C(P)) = 1 and P is not a point mass,

3. CR(P) = 1 4 card(supp(P)) = card(C(P)) < 2.

Proof:

1. This follows from the fact that:

0 5 d c( P) < p on supp(P)

(see Theorem 2.3.2).



2. If P is a point mass then CR(P) = 1. When P is not a point mass the
following are equivalent:

CR(P) = 0

I J dfL P'(x, y)P(dx)P(dy) = 0
+ ds( P)= 0, P2 -a.e.

€ card(C(P)) = 1.

3. For any clustered measure P:

CR(P) = 1

€ R(P) = D(P)

SJJp(x, y) - d '(x, y)]P(dx)P(dy)= 0

Sp(x, y) = d C( )(, y), P2 -a.s.

So, if C(P) = {C1, C2,..., Ck}, then, for any 1 < i < k and for any
, y E Ci:

p(x, y) = dC P)(x, y) = 0, P2-a.s.

= diam(Ci) = 0 =* card(supp(P)) = card(C(P)).

Let C, = {ci}, 1 < i < k.

* If k = 1 then CR(P) = 1 by definition.

* If k = 2, i.e. supp(P)= {c1,c 2 } then:

p(cl,cl) = dSCP)(c,c) = 0
p(c2,c2) = d )(c2,c 2) = 0
p(cj,c 2) = d( P)(C,C2)

So: p = ds P) P 2 -a.s..

* If k > 3 and assuming that cl < c2 < c3 , we have:

dsC( P (c,,c3) = max{p(c1 ,c 2),p(c2,c3 )} < p(c1 ,c3 ).

This contradicts dsC P) = p, P2 -a.s. and so CR(P) < 1.



So CR(P) = 1 4 card(supp(P)) < 2.

0
We can now consistently estimate CR(P) by CR(P,) where P, is the

empirical measure:

Theorem 4.3.1 For any clustered measure P on R :

lim CR(P,) = CR(P), (4.2)

almost surely.

Proof: The denominator of CR(P,) is a U-statistic.
The numerator is the U-statistic

SL P) (X,,Yy)Pn(dX)P (dy)

plus the term

SJ[d "SL - d ](l, y)P(dX)Pn(dy). (4.3)

But (4.3) is bounded by:

max{[d P ") - dsC P)](Xi, Xi), 1 < i,j < n}.

= max A(Xi, Xj)l<i,j<n

which converges to 0 almost surely by Theorem 3.3.1. So what we have is,
essentially, the ratio of two U-statistics and the result follows from Theo-
rem 3.1.1. 0

Furthermore, we now get an asymptotic distribution for CR(Pn) on the
real line.

Theorem 4.3.2 Under the assumptions:

* P is a clustered measure on R,

* card(C(P)) > 1 and



* P has a density f (with respect to Lebesgue measure) that satisfies:

inf{f(z), x E supp(P)} >6 > 0,

there exists a OaR > 0 such that:

lim £(V'(CR(Pn) - CR(P)))= N(0,7 2).
n CR)-

Proof: We begin by defining the 2-dimensional vectors:

* D( 2)(P) := (D(P), R(P)),

SD(2)(P, P,) := (f f dC )(X, y)P,(x)P,,(y), R(P,)) and

* D(2)(P,) := (D(Pn), R(Pn)).

Clearly:

II D 2)(P,) - D(2)(P, Pn) 112 (4.4)

- J ([dC( P) - d )](X, y)Pn(dX)Pn(dy) (4.5)

< max A,n(Xi, X) (4.6)
l<i,j<n

= op(n-'/2) (4.7)

because of Proposition 4.1.1.
Define now the 2 x 2 matrix V by letting:

v2I = Varp(fJ ds (Xzx)P(dx))
v22 = Varp(f p(X1,z)P(dx))

1 2 = V21 = Covp(f d( P)(X 1, x)P(dx), f p(Xi, x)(dx))

and:

V _ 1) >12
V21 V22

Then, by Remark 3.1.2:

lim £(v/'(D(2)(P, P) - D(2)(P)) = N(0,4V)



and, because of (4.7):

limrC( v(D2)(P,) - D(2)(P)) = N(0,4V).

Consider now the function:

f : [0, oo) x (0, oo) - R: (s, t) --- sit.

Since f is differentiable at (D(P), R(P)) :

,\/ [f(D(Pn), R(Pn)) -

= n(P) [D(P,) - D(P)] -R(P)

f(D(P), R(P))]
V/ D(P)

R(P)
2 [R(P,.,)- R(P)]

+ /n-. o ( D(2)(P,) - D(2)(P) 112)

R(P)2) - (D(2)(P) - D(2)(P))

+ -v o ( D22)(P,) - D( 2)(P) 112)

N(O,O aR)

where:

C 

R 

2dCR = (R(P)' D(P)2
R(P)2 .4V" .( P)'R(P)'

4v22D(P) 2

R(P) 4

= R(P)

4v 12D(P)
-2R(P)3

R(P)*

D(P)2)
R(P)2

4vil
R(P)2



Chapter 5

Using the edges of the MST

5.1 Statistics related to the MST

In chapter 3, we discussed the consistency of single-link distances. There-
fore we know that when cluster structure is present, the largest single-link
distance is going to converge to a positive number. Conversely, when the
support of the clustered measure is connected, the single-link distances are
going to converge uniformly to 0 (see Theorem 3.3.2). However, we will need
more information to decide whether those distances are significantly large,
when the dimension is arbitrary.

The discussion of asymptotics on the real line, in chapter 4, began with
a study of spacings. It is therefore natural to look for multivariate ana-
logues of spacings hoping to reach similar results. One such possibility
is explored by [DEMR88]. It has also been suggested that nearest neigh-
bor distances can be used to assess homogeneity of the sample ([Boc85])
and there has been considerable work on the asymptotics of these distances
([Hen83, DH89, ST88, BB83, Hen88]). However, given the already estab-
lished relation between single-link distances and minimal spanning trees
(Proposition 2.4.1), the edges of the MST seem to be a more natural choice.

In the recent literature, considerable attention has been paid to the to-
tal length of the MST formed by n iid observations ([Ste88, BvR90, AB92])
mainly because of its use in approximating optimal solutions to much harder
problems in combinatorial optimization (e.g. the traveling salesman prob-
lem). It should be clear, however, that this statistic has little to do with



clustering. In a different direction, J. Friedman and L. C. Rafsky have used
the minimal spanning tree to construct multivariate nonparametric 2-sample
tests (see [FRf79]). In our case however, the quantity that appears to be of
interest is the longest edge of the minimal spanning tree.

In this chapter we will give bounds for that edge of the MST of n iid
random variables drawn from a probability measure P with compact and
connected support. Some additional assumptions about the density of P
(with respect to Lebesgue measure) and the shape of supp(P) will be needed.

5.2 Upper bounds

Definition 5.2.1 Let B(a, r) denote the open ball {z E Rd :11 x - a jI< r}
fora E Rd, r > O0. Then let Da,b = B(a, II a-b II)fB(b, II a- b II), a, bE Rd.

Definition 5.2.2 A class 9 of subsets of Rd is going to be called ball-like
if there is a functional r :• ý R+ such that:

* r(GI) = sr(G2) - A(G1) = sdA(G 2) for G1, G2 E g and s > 0,

* 3Go E g such that r(Go) = 1.

For such an r, and for G E , r(G) will be called the radius of G.

Remark 5.2.1 The class g = {Da,b} a,bRd is ball-like with

r(Da,b) = a - b 11 .
The following is a crucial property of the MST:

Lemma 5.2.1 Let V = {x 17, 2,...,z,} C Rd and let T = (V,E) be an
MST of V. Then, Vi,j such that (zi, xi) E E, D,,n f {zX,x 2,-... , z,} = 0.

Proof: Let C = {{z}, {x 2},...,{z,,}}. Since (zi,zj) E E, we have:
dfCL(z,,z ) =11 zi - zx II, by Proposition 2.4.1. If k E Dk,,E , then the path
p = (zi, zk, zj) from zi to zj has size equal to:

max{II Z, - k 11, 11 - Xk II} <II 1i - xj I!= dc(zxi,xj)
which contradicts the definition of single-link distances (Definition 2.3.3). O

Now we can give the following upper bound:



Theorem 5.2.1 Let P satisfy the following assumptions:

1. supp(P) is compact and connected C R d,

2. P has a density f (w.r.t. Lebesgue measure) such that:

inf{f(x), x E supp(P)} = 6 > 0,

3. there is a class 9 of ball-like sets with radius r(.), a Go E g with
r(Go) = 1 and a constant c > 0 such that:

VX, y E supp(P), 3G E 9, G C D,,, n supp(P) and r(G) > c II - y II.

Let X1,X2 ,... ,X, lid - P, and let M, be the length of the longest edge
of any minimal spanning tree of {X1, X2,..., X,}. Then:

lim Pr Md< k•• og n
n- -oobcdA(Go) n

for all k > 2.

Proof:
Let:

k log n
r" 6cd~(Go) n

and let no be chosen so that:

n > no -= diam(supp(P))d > r,.

Also, for 1 < i < j 5 n, let Gij E be such that:

r(Gi,,j) > cII X, -X II
and

Gij C Dx,,x, n supp(P)

as guaranteed by the third assumption of the theorem. If Mfd > r, then
there must exist an edge (Xi, Xj) such that 11 X, - Xj lid> rn and (because
of Lemma 5.2.1),

DX,,x, {nX1,X 2 ,..., X,} = 0.

64



So for n > no:

Pr(M,' > r,)
4 1: Pr(jl Xi - X lid > r, and Dx,,x, f {X1,X 2,...,X,} = 0)

1<i<ijS

< Z Pr(Dx,,x, n{Xi,X 2,...,Xn, = 0I _ Xi, - X ld> rn)
1<i<j<n

< Pr(G,, n {X,, Xz,..., X} = 0 11 x- x- lid> r>)
1<i< <n

< E E[1 Rd-G,,)n-2 III X,- li jd> ,]
l<i<j<n

< E E[(1 - 1(Gi,,)-2 III X,- X, lid> r.]
S<i<j<n

< E E[(1 - Scd - X A(G)- 2
11  A(G))- i X - X d> r]

_< E[(1- Acd II x,- xI d A(Go)) "- 1 ldx,- x ld> rn]
l<i<j<n

< (1: -I CdrnA(Go))n-2

I<i<j<n

= z (1 klog)n ,_2

<_i<j<n

2= (n)(12)" 2 --(-)oo

since k > 2. O

5.3 Lower bounds

To develop a lower bound for the longest edge of the MST, we will be com-
paring Mn with other statistics for which asymptotic information is available.
First we need the following:

Lemma 5.3.1 Let P have compact support and density f (with respect to
Lebesgue measure) such that:

inf{f(x), x E supp(P)} = S > 0.



Let X 1,X 2,..., X, iid , P and:

B,:= min p(Xi, Osupp(P)).
l<i<n

Then:

Bn = O, - as n --+ oo.
(1n

Proof: We will need a lower bound for the d-dimensional volume of the
set of points in supp(P) that are close to Osupp(P). This is provided by the
following lemma:

Lemma 5.3.2 For any compact set K C Rd with A(K) > 0 and any t > 0,
let Kt := {x E K : p(x,OK) < t}. Then, there is a 7 > 0 such that
A(Kt) > 7t for all t with 0 < t < 7.

Proof: Let B(x, t) := {y E Rd : 11 x - Y I1< t}. Then let:

Lt := K \ Kt = { E Rd : B(x,t) C K}.

If Vt > 0, Lt = 0 then A(Kt) = A(K) and the lemma holds with 7 = A(K)1/2

Since Lt T as t 1, if the set {t > 0 : Lt : 0} is not empty, it will be an
interval. In that case, we proceed as follows:

Since Lt + B(O, t) C K we can apply the Brunn-Minkowski inequality
([Dud89], page 167) to get:

A(K) /d > A(L, + B(O, t))' /d > A(Lt,)/d + A(B(0, t))/ld.

Let wd be the volume of the unit ball in Rd and let cd := w/d. Then
A(B(0, t))/ld = cdt. So:

d-1
A(K) > A(Lt) + dcdtA(Lt) 7 (by the binomial theorem)

2 A(Lt)[1 + dcdtA(K) - 'ld] (because A(Lt) < A(K))

• A(Lt) <A(K)
1 + dcdtA(K)-/d

Now, for any 0 < e < 1:
1

-<1--1+ - 2



(since this is equivalent to 1 < 1+ -c -. 1 < 1 + (- which is true).
So:

A(L,) < A(K) 1 - ddtA(K) -11d1 - 2
provided that dcdtA(K) - 1/d < 1 * t < A(K)/• Then:dCd

A(Kt) = A(K) - A(Lt) A(K ) 2'Ž

d-1

We can now let 7 := min{ ~A,/ dd•) sup{t > 0 Lt 0}} and the
lemma follows. O

Proof: (of Lemma 5.3.1). Let M > 0. If B, > M/n then the set KMI,,
of Lemma 5.3.2 does not contain any of the observations X1, X2,..., X,. By
Lemma 5.3.2 and because supp(P) is compact, there exists a 7 > 0 such that
A(KM/,,) 2 yM/n for all n such that M/n < 7. Therefore:

Pr B > M)< (1 -P(KM/))
S(1- 6A(KM,/))n

M\"

< e-61M , Vn.

Since e- .-M -+ 0 as M -+ oo, this proves Lemma 5.3.1. O
Now recall that minimal spanning trees were defined in Chapter 2 (Def-

inition 2.4.2) on arbitrary graphs (not necessarily graphs of points in Rd).
In fact, Proposition 2.4.1 proved the equivalence of single-link distances and
MSTs on any clustering. So the following lemma involves no new concepts:

Lemma 5.3.3 Let P have compact support and zXl,2,...,zXiid ̂  P. Let
M, be the length of the longest edge of the MST on {X 1,X 2,...,X,} and
M, the length of the longest edge of the MST on:

{asupp(P)} U {{Xi}, Xi Osupp(P)}.



Then:
maxI{M,B,B} > M,*.

Proof: Let C = {{Xi}, 1 < i < n} and:

C' = {Osupp(P)} U {{X,}, Xi . asupp(P)}.

By the definition of single-link distances with respect to a clustering, we have:

d doX(X ,X)), 1 < i,j < n

< M, (= max dn(Xi, X)).

Also:

d'(Xi, Osupp(P)) 5 max {d'l(Xi, Xj), ds (X, Osupp(P))}.

Taking X, to be an observation for which:

Bn = p(Xj, dsupp(P))

we have:

dL (Xi, Osupp(P)) " max {dgZ(Xi,Xj), B,}
< max{dgz(Xi, Xj), B,}

" max{Mn,Bn}.

So M, < max{MI , B,}.

We will now compare M,* to statistics based on nearest neighbor distances.

Definition 5.3.1

1. Let P have compact support and X 1,X 2 ,...,X, iid -, P. Then define:

Z, := max min{min{p(Xi, X), j i}, p(Xi, supp(P))}.1<i<n

dc*(Xil Xj)



2. Let P have a density f with respect to Lebesgue measure and define:

D.:= max f(Xi)l/d min{min{p(Xi, X), j i}, p(Xi, Osupp(P))}.
l<i<n

Then we have the following:

Lemma 5.3.4 Let P have compact support and Xx, X 2 ,..., X, iid ~ P.
Then M* > Z,.

Proof: If Z, = p(Xio, Xio) for 1 < io, jo _ n then:

dc* (Xio, Xio) = p(Xio, Xjo) = Z,

because the best path from Xio to Xjo is simply the edge {Xio, Xjo }. So
M,* > Z,. Similarly we can handle the case:

Zn = p(Xio, aSupp(P))

for some 1 < io < n. 0

The following is known about D,:

Proposition 5.3.1 Let P be concentrated on an open bounded subset U of
Rd whose closure is supp(P) and assume it has a continuous density f sat-
isfying:

* inf{f(x), x E supp(P)} > 0 and

* sup{If(x) - f(y)I : Ix - yI < s} = o((- log s)-1) as a -- 0.

Let wd denote the volume of the unit ball in Rd
Then, for XI, X 2,..., Xn iid - P:

lim Pr (nwdDn -log n < ) = exp(-e-(), V E R.

Proof: This is the main result of [Hen83]. O

A lower bound for M, can be derived under the same assumptions on f.



Theorem 5.3.1 Let P satisfy the following assumptions:

* P is concentrated on an open bounded subset U of Rd whose closure is
supp(P) and

* P has a continuous density f for which:
sup{If(x) - f(y) I I j - yI < s } = o((- log s)-') as s -- 0.

Let X 1,X 2,...,X, be iid ~ P, A := max{f(z), z E supp(P)} and wd the
volume of the unit ball in Rd. Then, for every k < 1:

lim Pr Md> k logn
n--oo - AŽWd n

Proof: By Lemma 5.3.3:

Mn < maxI{M, B,} = M,~d - Bd < Md.

Therefore:

AMd AM*d_> d

> AZd - AB (Lemma 5.3.4)

> Dn - dAB (Definition 5.3.1).

So:

Pr (M < k logn Pr (AwdnM, < klogn)

r Pr (nwdD( - AnwdBnd < klogn)

= Pr (nwdDd - log n < AnwdBn - (1 - k) log n)

( n w dD d - log n( "a·1 log Pr n < -1SPr((1 - k)2logn - AndBn <

for large n, since Lemma 5.3.1 guarantees that:

(1 - k) log n - AwdnB, - +oo,



as n -+ oo (and thus is, eventually, positive). From Proposition 5.3.1, we
know that:

Ln := nwdDd - logn L

where L is a random variable for which:

Pr(L < () = exp(-e-t), V! E R.

Also:
1 PAls ::=1p+ 0.(1 - k) log n - AWdnBn

Therefore:
k,L,n 0 =- lim Pr(knL < -1) = 0.n-oo

O



Chapter 6

Clustering under the Density
Model

6.1 Chaining and breakdown points

The main drawback of the single-link method is the chaining effect. A few
observations between clusters can create a chain, i.e. a path of small size
joining the clusters and thus making the single link distances small (Fig-
ure 6.1). (By Definition 2.3.2, the size of a path is the length of the longest
edge of the path).

We can describe this effect more precisely using the terminology of robust
statistics. Let Pc denote the family of clustered probability measures on Rd
that have at least two clusters. By Definition 3.3.1, M(P) denotes the length
of the longest edge of any minimal spanning tree on C(P) (the clustering of
P). Therefore, M(P) > 0 for any P E Pc. By Theorem 3.3.2, we have:

M(P") a_• M(P)

as n --+ 00.

Recall now the definition of the gross-error breakdown point of a sequence
of estimators (see also [Hub81], page 13 or [HRRS86], page 97).

Definition 6.1.1 Let P be a Borel probability measure on Rd. Suppose
that 0 E e C R k is estimated by a sequence of estimators of the form
Tn(X 1 , X 2,... ,Xn) where:

T : Rdxn Rk



I I I I Io i 2 3 4

Figure 6.1: Chaining effects

The gross-error breakdown point of T, at P is defined to be:

b(P,O,T,) := sup{e< 1 : 3 a compact set K, C O such that

lim Pr(T,(X1, X 2, .. , Xn) E K,) = 1}

where X 1 ,X 2,...,Xn iid Q, Q = (1 - )P + ER and R is an arbitrary
probability measure.

When P E Pc then M(P) > 0. Therefore, the natural parameter space
E for 0 = M(P) is E = (0, oo). We now have the following:

Theorem 6.1.1 For every P E Pc, b(P, (0, oo), M(PB)) = 0.

Proof: For every 0 < e < 1, we can find a probability measure R such
that the measure:

Qf = (1 - e)P + eR

has compact and connected support. For example, we can choose R as fol-
lows: Since P is a clustered measure, its support is compact. So, there
exists a ball Bp large enough so that supp(P) C Bp. Let R be the uni-
form distribution on Bp. Then Q, has compact and connected support. If

X, X2,..., X, iid , Q, and

ni=
- z = bX

__



is the empirical measure, then lim, M(Q,,n) = 0 a.s. by Theorem 3.3.2. Any

compact set K, in E must have a positive distance from 0 and so:

Pr(M(Q,,n E K,) --- 0

as n -- oo. So, the breakdown point is . o

Remark 6.1.1 When dealing with real data, one is more likely to come
across a contaminated version of a P E Pc than P itself. Since the statis-
tic M(P,) is so easily affected by such contamination we will have to make
adjustments. Ideally, one would like to 'strip' the contamination eR, from
the measure Q, and then estimate the functional M(P). The idea is similar
to the use of trimmed means as location estimators (instead of simply using
the non-robust sample mean). In the case of location estimators the type of
contamination we mostly want to avoid is that from long-tailed distributions.
Therefore, in the sample version we choose to remove the extreme observa-
tions and compute the mean of the rest. In our case the contamination to
be avoided is that of low density measures. (The picture of islands (clusters)
in a sea of low-density contamination has often been invoked to describe this
case). It would then seem that the appropriate action would be to remove
low-density observations.

The rest of this chapter is devoted to the implementation of this idea.
We will need to adjust the class of measures we will be dealing with and also

discuss the use of density estimation.

6.2 Density clustered measures

From the discussion in the previous section, it would appear that we need

to handle distributions that exhibit cluster structure, although they may

have connected support such as the contaminated measure Q, in the proof

of Theorem 6.1.1. To do that, we will have to adopt a broader definition of

cluster structure and appropriate functionals to assess this structure.

Definition 6.2.1 A probability measure P on (Rd, B(Rd)) will be called

[61,62]-clustered if:

* P has a density f with respect to Lebesgue measure which is continuous
on supp(P) and bounded,



* 0 < 6b < 62 < supsupp(P) f(z),

* 3k E N such that for every 61 < 6 < 62:

- P([f 6) > 0 and

- the probability measure P6 with density:

f6(X) = f(z)W - 1vE61(z) Rd
P( [f_>6])

is a clustered measure (Definition 3.2.1) with the additional prop-
erties:

* card(C(P6 )) < k,

* VC• 5 C2, C3 # C4 E C(Ps):

SC = C3  and C2=C 4
p(C, ,2) =- p(C3, C4) =-~ or

IC =C4 and C2= Cs.

Remark 6.2.1 Notice that measures like the standard multivariate normal
are not clustered (their support is not compact). However, the standard
normal is [61, 62]-clustered for any:

0 < 6b < b2 <
(2r)d/2

Since every P 6 is a clustered measure with clustering C(Ps), we can de-
fine single-link distances on supp(Ps) (Definition 2.3.3), single-link hierar-
chies (Definition 2.3.4) and minimal spanning trees (Definition 2.4.2). Un-
like Chapters 3-5 where we studied functionals defined on P such as M(P)
and D(P) (Definition 3.3.1) and estimated them by statistics of the form
M(P,) and D(P,), we will now define families of functionals of the form
T(P6), 6 E [6, 62] and estimate them by stochastic processes of the form
T6,,(X1, X2, ... , Xn) where X1, X2,,..., X, lid ~ P.

Definition 6.2.2 Let P be a [61,62]-clustered measure on Rd with density
f. Let 61 < 6 < 62.



* Let TREE(b) = (C(P 6 ), Es) be the unique minimal spanning tree on
the clustering C(P 6 ). Then, let:

M(P,6) := max{ll e II, e E Es}.

* Let rl,r 2, r3 E N. If card(C(P6)) = 1, let:

T"rl 2"9 3(P, 6) = 0.

If card(C(P6 )) > 1, let Ps = (A8 , B6) be the unique partition of supp(Ps)
which we obtain after removing the longest edge of TREE(6). Then de-
fine:

T'rlr2,r3 (P, 6) = P(As)r" M(P, 6)'"2 P(B))"3 .

Definition 6.2.3 A [61, 62]-clustered measure P is going to be called
[61,6 2]-unimodal iff card(C(P6)) = 1 for all 6 E [61,621].

6.3 Estimating Tr1,r2,r3(P, 6)
Let X1,X 2 ,...,Xn be iid - P, where P is a [61,6 2]-clustered measure. We
would like to construct estimators of both M(P, 6) and Tr1'r 2'r3(P, 6), for
6 E [61, 62]. Since these functionals involve the unknown density f of P, we
will need to use a density estimator f, of f. There is of course, a wide range
of choices as well as an enormous literature on density estimation (see e.g.
[Rao83] and [Si186]).

Combining density estimation with other clustering methods is not new.
In [Kit76, SDJ79, Kit79], there is a discussion of a mode seeking method that
appears to resemble single-link clustering. Another hybrid clustering method
using density estimation is described in [Won82] and [WL83].

In the rest of this chapter, we will make use of one particular class of
density estimators, the kernel class. Such estimators were first suggested by
[Ros56] for univariate densities and were extended to the multivariate case
by [Cac66]. We make no claim, however, that this class performs better in
conjunction with single-link than any other. For completeness, we give the
following definition.

Definition 6.3.1 Suppose K :Rd H R is Borel measurable and satisfies:



1. fad K(s)dx = 1,

2. sup{lK(x)I, x E Rd} < oo,

3. fRd IK(x)jdx < oo and

4. limlll-oyo I 1d K(y) = 0.

Let hn be a sequence of positive numbers. Then, if X1, X2,..., X, iid . f,
the function f, : Rd -+ R defined by:

1 "g(-X 1

fn(x) = -hnd E h )

will be called the density estimator with kernel K and window h,.

For our purposes, we are interested in the uniform consistency of such
estimators. The following theorem was proved by Devroye and Wagner in
1976 and a proof is included in [Rao83], pages 185-188. For a different set of
conditions, leading to the same conclusion, see [BR78].

Theorem 6.3.1 Suppose K is a density on Rd satisfying:

1. sup{K(x), x E Rd} < 00,

2. sup{ll X Id K(x)} <00 and

3. sup.{IK(x + y) - K(x)l} _< C II y II, for y E Rd, for some C > 0.

Also, assume that:

* h --+ 0 as n -- oo and

* nh /log n - c as n -- oo.

Then, for every uniformly continuous density f, such that, for some 7Y > 0 :
fRad 1II ld f(x)dz < oo, we have:

sup If,() - f(x)I -+ 0
xERd

a.s. as n -- oo.



Having now a density estimator allows us to construct estimators for
M(P, 6) and T'"'r2,r3(P, 6).

Definition 6.3.2 Let P be a Borel measure in Rd with density f. Let
XI, X2,...,X, be iid ~ P. Let f, be a density estimator of f. For 6 > 0 let:

* S,(f,6):= {Xi: fn(Xi) > 6),
* TREEs,, = (S,(fn,6), Es6,) be a minimal spanning tree on S.(fn.,6),

* M,(f,,,6) := max{l e II, e E E,,n} (set to 0 if E6,, = 0),

* P6,n = (As,,, B6,,) be the partition of S,(f,,6) obtained when we remove
the (a.s. unique) longest edge of the tree TREE6 ,, and

* Trr2.,3(f, 6) := P(A 6,,)' M,(Af, 6)r2 -P,(Bs,)'

We turn now to the question of computing the stochastic processes Mn(fn, 6)
and T,"1'r2r3(f,,6) given a sample X1,X 2 ,...,X,. Let bi := f,(Xi) for
1 < i < n and let 6(1) 5 6(2) < ... < 6(,) be the order statistics of
61,62, ... , 6,. Then:

0 for 6 > 6(,_1)
M,(fn,76)= Mn(fn,6(i)) forb6() >6> 6 (i-1), 2< i < n

M,((fn,6()) forb6 < 6(1)

and

0 for 6 > 6(.n1)
T,2"r2"r3(f,6) = T1,r2,r"3(fn,6(i)) for 6(b) 6b> 6(i-1), 2 i < n

Tn'a"="r3(fn,6(n)) for 6 < b(1).

So, we only need to compute Mn(fn,,S(i)) and T,•,1r2'r3(f,, 6(i)) for i =
1,2,... ,n. As a first step, we reduce the computation of these statistics to
the computation of Eb(,n,,, the set of edges of the MST on S,(fn, 6 (i)). First
we need the following:

Lemma 6.3.1 There is a constant Nd, depending only on d, such that for
any MST in Rd and for any vertex of that MST, the number of edges adjacent
to the vertex is bounded by Nd. Furthermore, Nd = 0( 2 .7 7 d) as d -+ oo.



Proof: The existence of such a constant is a special case of Lemma 2.4
in [Ste88]. It is based on the fact that, by an argument similar to that in
Lemma 5.2.1, no two edges of the MST can form an angle of less than 60*.
Therefore, the number of edges adjacent to any vertex must be bounded by
the maximum possible number Nd of edges adjacent to a point in Rd without
any of the edges forming an angle smaller than 60*. Clearly, Nd only depends
on d.

Furthermore, Nd is bounded by the maximum number of 30* caps than
can be packed on the surface of the unit sphere Sd-I. This, in turn, is
bounded by the ratio of the surface area A"~' of Sd-1 to the surface area A30
of a 30* cap. Let f(z) = v/1x. Then:

A30 f(x)d-2 A180 1 + [f'(x)]2dz'Ad 1V3d-Vd-l"

180 f 1

SA 1i°  f(x)d- 3 dx"- 1 11/2

and similarly:

A = 2A J f(x)d-3dx.

Since f (x) < f(0) for x E [0, 1]:

Also < 2A~180f(0)d- 3 (1 - 0) = 2A.180

Note that the function f is decreasing in [v3/2, 1]. So, for 0 < c < 1- V/2:

> A 18o (1 - f- 4) [f(1 - E)]d-3

= Ad-2A180 f()d-3d> d-1 /-2 - 2.

>2

So:

2 _ 23/2
Nd < 1 - -C: 3 ,- = -- (,-1/2)d = O((C-1/2)d)

(1 c J~ ~2) 2 _,E _ 2



as d -4 oo. So, letting c = 0.13, we get Nd = O(2.77d). O
An MST (S,,E,) on S, = {X 1,X 2,..., X.} can be represented in a

variety of ways. We choose the following form: Define an array t of dimension
nNd. Fill the block t((i - 1)Nd + 1) to t(iNd) by the integers j such that
(i,j) E E, in ascending order. Any remaining values are filled with zeros. By
Lemma 6.3.1, an array of dimension nNd will be sufficient. As is generally
done in the combinatorial optimization literature (see e.g. [PS82], page 161),
we assume that all integers to be treated by the algorithm can be transcribed
in unit time. Under this assumption, we have:

Lemma 6.3.2 Given an MST TREE, = (S,, E,) on Sn = {X1,X2,...,X,}
with the above described representation and any edge e E E,, we can obtain
the two trees TREEn(e) = (VnA(e), EA(e)) and TREEn(e) = (V~B(e), E (e))
resulting from removing the edge e in O(n) time and using 0(2.77dn) space
as n, d --+ oo.

Proof: If e = (Xi,Xj), we search within the blocks t((i - 1)Nd + 1) to
t(iNd) and t((j - 1)Nd + 1) to t(jNd) to locate vertices adjacent to i and
j. Then we search within the blocks corresponding to these vertices and
continue in this fashion until we have exhausted all the vertices in S,. Every
entry in every block corresponds to an edge of the MST. Conversely, every
edge appears in exactly two blocks (the ones corresponding to its endpoints).
There are exactly n - 1 edges in the MST and, therefore, there are exactly
2(n - 1) non-zero entries in the array t. So, it will only take O(n) time to
complete the search and transcription (regardless of how large d is).

The space needed to store the array t is O(nNd). (We know that only
2(n - 1) entries will be non-zero but we don't know where these entries are
going to be.) By Lemma 6.3.1, this makes the space needed 0(2.77dn). 0

Remark 6.3.1 It is now obvious from Definition 6.3.2 that, once we have the
MST on S,(f,, 6 (i)), we will need O(i) time to find M,(f,, 6(,)) and (because
of Lemma 6.3.2) O(i) time to find the sets A6(,), and BS(,),n and, therefore,
compute T,1r2'.r3(fn, 5(:))-

We now need an algorithm that computes the MST on the set S,(f,, 6•(),
for 1 < i < n. We will present an algorithm that introduces a new vertex w to
an MST TREE, = (Vn, En) of n vertices. Then, the n MSTs on S,(f,, 6(i))
can be computed by successive use of this algorithm. The existence of a



density f assures us that every MST that we will come across will have a
unique longest edge. (When working in floating-point arithmetic, this will
happen with probability very close to 1). We also agree that an MST with
only one vertex has longest edge equal to 0.

ALGORITHM

Input:

1. The tree TREE, = (Vn, E.).

2. The vertex w 4 Va.

Output:

The tree TREEn+ = (V, U {w}, En+1).

1. LET p, := p(w, u,) := minuEv, p(w, u).
LET e, be the longest edge of (V., En).

2. * IF pw |11 en II THEN:

- add (w, u,) to En and w to V.

- STOP

* ELSE compute the trees:

TREEA(en) = (VA(en),EA(en))
TREE (en) = (V,(en), EB(en))

resulting from the removal of en.
LET pA := p(w, uA) := minUEvA p(w, u).

LET pB := p(w, u ) := minuEvy p(w, u).
IF pA > pB SWAP:

TREEA (en) a TREEB( en )

A < <B
Pw " Pw

IF p^ <11 e 11•5 pB THEN



- include Ef and e,, in the new MST,

- to complete the MST, run the algorithm on TREEA(e,) and
W.

- STOP

IF pA < pS <|| e, | THEN

- include (w, uA) and (w, uB) in the new MST,
- to complete the MST, run the algorithm on:

(a) TREEA(en) and w,

(b) TREEB(en) and w.

- STOP

Remark 6.3.2 The algorithm terminates, since each recursive call on it
reduces the numbe- of the remaining edges by at least one.

Remark 6.3.3 Since the computation of minuEv, p(w, u) alone will take
O(n) time, the algorithm needs at least that much time. In the worst case,
however, it will need O(n 2) as in the univariate example shown in Figure 6.2.

W U4  U3  U 2  U 1

Figure 6.2: An example of worst case performance.

Clearly, to add the new vertex w to the MST on {u1, u2, u3, u4 }, we will
need to recursively call the algorithm on {u4, u3, u2 }, then on {u4 , u3 } and
finally on {u4 }. Each recursion will compute trees TREEA and TREEB and
this takes O(n) time (Lemma 6.3.2). Therefore, we will need a total of O(n 2)
time.

This means that in the worst case, we will need 0(n 3 ) time to build the
MSTs on the sets Sn(f,, ,(i)) for 1 < i < n. In practice, however, we expect



to do better than that. In our use of the algorithm, the new vertex w must
satisfy:

fn(w) < min{fn(ul), fn(u2), fn(us), fn(u4)}.

Therefore, cases such as the one in Figure 6.2 have a small probability. In fact,
when dealing with unimodal distributions such as the'multivariate normal,
new observations will be added to the MST beginning with the mode and
moving towards the tails. So, most of the time we will have p, >11 e. II and
recursive calls will be avoided.

6.4 Simulation results

In this section we will attempt to assess the behavior of the stochastic process
Tnr,1r2 '3 (fn, 6) as an estimator of Tr1,r'2,3(P, 6) by a series of simulations. The
density estimator f, will have the (d-dimensional) standard normal density

1
as kernel and will have window hn = O(n- d+ ). This window size is known
to minimize the mean integrated square error of a kernel density estimator

(see also [Sil86]). Our main goal is to compare the ability of the above
mentioned stochastic process (and statistics based on them) to distinguish
between unimodal and multimodal densities. The statistics used will be:

1. SUMn := Pn(As6a,n) + Pn(Bs+-,a)

2. MIN, := min{Pn(A6 .a,n), P,(B.6n.,n)}

where:

* 6 := min{6i : T,'r2,r3 (fn,6,i) = Trl'r23},

* 6b := f,(Xi), for 1 <i < n and

* T",,"" := max<i<,n {T~n12"r (fn,6i)}.

We begin by simulating unimodal distributions. As long as such distri-
butions satisfy Pr(f = b) = 0 for every 6, we expect that the maximum
of Tr'r2'r3(fn, bi) will be achieved close to 6(1) = minl<i<n bi. Therefore we
expect that:

* SUM, ; 1, since P,(f _> 6(1)) = 1 and



* MIN, - 0, since all the mass is concentrated in either A6a.,r, or

Our choices of rl, r2, r3 are:

1. rl = r2 = r3 = 1, i.e. P,(A 6,,) -M(f,, 6)- P,(B,,,),

2. rl = r3 = 1, r2 = d, i.e. Pn(A6,n) - M(f,, 6)d . Pn(B6,,) and

3. r, = r3 = 0, r2 = 1, i.e. M(fn, 6).

We also choose the following distributions: For dimensions d = 2, 3, 4, we
use:

1. The standard normal (N),

2. the standard normal truncated by 5% in radius (N5) and

3. the standard normal truncated by 10% in radius (N10).

For each distribution in each dimension and for each choice of rl, r2, r3

we use 100 samples of sample size n = 100. For each sample i, 1 < i < 100,
we compute the statistics SUMi and MIN; and report the intervals:

* (SUM(s), SUM(96)) and

* (MIN(s), MIN(96)).

The results are summarized in Table 6.1.
In Figures 6.3,6.4,6.5 at the end of the chapter, you can examine the

results of these simulations in the form of boxplots for the empirical distri-
bution of the statistics SUM, and MINi in each of the cases mentioned in
Table 6.1. The boxplots are drawn using the default parameters of the S-
function boxplot ([BCW88], page 402). So, the boxes extend to the upper
and lower quartile (with the median highlighted by a horizontal line within
the box), while the whiskers are drawn from each quartile to the farthest
observation that lies within 1.5 interquartile distances from that quartile on
the side away from the median. Observations still farther out are shown
individually.

Before moving to multimodal distributions, it would be interesting to
examine the behavior of the uniform distribution on the unit cube. Since



d P (1,1,1) (1, d, 1) (0,1,0)
SUM, MINn SUM, MIN, SUM,, MIN,

2 N (0.54,1.00) (0.02,0.19) (0.79,1.00) (0.01,0.10) (0.93,1.00) (0.01,0.01)
N5 (0.55,1.00) (0.02,0.23) (0.53,1.00) (0.01,0.20) (0.06,1.00) (0.01,0.01)

N10 (0.58,1.00) (0.02,0.20) (0.65,1.00) (0.02,0.20) (0.45,1.00) (0.01,0.01)
3 N (0.52,1.00) (0.01,0.16) (0.83,1.00) (0.01,0.04) (0.67,1.00) (0.01,0.01)

N5 (0.46,1.00) (0.02,0.15) (0.74,1.00) (0.01,0.06) (0.05,1.00) (0.01,0.01)
N10 (0.40,1.00) (0.02,0.17) (0.63,1.00) (0.01,0.09) (0.07,1.00) (0.01,0.01)

4 N (0.43,1.00) (0.02,0.09) (0.87,1.00) (0.01,0.03) (0.75,1.00) (0.01,0.01)
N5 (0.42,0.99) (0.02,0.13) (0.79,1.00) (0.01,0.05) (0.03,1.00) (0.01,0.01)

N10 (0.51,1.00) (0.02,0.10) (0.65,1.00) (0.01,0.05) (0.02,1.00) (0.01,0.01)

Table 6.1: Intervals for SUM, and MIN,: Unimodal distributions.

the uniform is a unimodal distribution but can also be approximated very
well by multimodal distributions, it appears to lie near the boundary between
unimodal and multimodal distributions. Table 6.2 summarizes the simulation
results for dimensions 2, 3 and 4. The result can also be viewed in the form

d(1,1,1) (,d, 1) (0, 1,0)
SUMn MIN, SUM, SUMn MIN,

2 (0.43,1.00) (0.03,0.30) (0.46,1.00) (0.02,0.30) (0.03,0.99) (0.01,0.01)
3 (0.42,1.00) (0.01,0.20) (0.45,1.00) (0.01,0.20) (0.02,1.00) (0.01,0.01)
4 (0.36,1.00) (0.01,0.14) (0.46,1.00) (0.01,0.12) (0.02,1.00) (0.01,0.01)

Table 6.2: Intervals for SUM, and MIN,: Uniform distributions.

of boxplots in Figure 6.6.
We now proceed to simulate bimodal distributions. As test distributions

we will use mixtures of two d-dimensional normals. The simulated samples
will be drawn from the distribution with density:

1 1
fd,O + -fd,m2 2 (6.1)

where:

* fd,o is the standard d-dimensional normal density and

* fd,m is the d-dimensional normal density with mean (0,0,...,0, m) and
covariance matrix the identity matrix Id.



Remark 6.4.1 The distribution with density given by (6.1) is bimodal iff
m > 2.

Therefore, we will use d = 2, 3, 4 and m = 3, 4, 5.
As with the unimodal distributions of Table 6.1, we use 100 samples of

sample size n = 100 for each choice of m and each choice of rl, r2, r3. In each
case we report the intervals:

* (SUM(S), SUM(96)) and

* (MIN(5), MIN(96)).

The results are summarized in Table 6.3.

d m (1,1,1) (1,d,1) (0,1,0)
SUM, MINn SUM, MINn, UM, MIN,

2 3 (0.35,0.92) (0.05,0.37) (0.26,0.99) (0.02,0.33) (0.02,1.00) (0.01,0.01)
4 (0.53,0.98) (0.22,0.47) (0.39,0.86) (0.16,0.42) (0.03,0.21) (0.01,0.01)
5 (0.71,1.00) (0.33,0.50) (0.54,0.95) (0.24,0.47) (0.03,0.18) (0.01,0.01)

3 3 (0.34,0.99) (0.02,0.38) (0.19,1.00) (0.01,0.34) (0.02,1.00) (0.01,0.01)
4 (0.40,0.96) (0.16,0.46) (0.19,0.90) (0.05,0.40) (0.02,0.22) (0.01,0.01)
5 (0.66,1.00) (0.30,0.50) (0.40,0.95) (0.15,0.47) (0.02,0.16) (0.01,0.01)

4 3 (0.36,0.99) (0.02,0.30) (0.14,1.00) (0.01,0.25) (0.02,1.00) (0.01,0.01)
4 (0.36,0.97) (0.05,0.41) (0.16,1.00) (0.01,0.38) (0.02,0.17) (0.01,0.01)
5 (0.57,0.99) (0.26,0.49) (0.19,0.96) (0.07,0.48) (0.02,0.12) (0.01,0.01)

Table 6.3: Intervals for SUM, and MINn: Bimodal distributions.

Again, the same results can be examined in the following pages in the
form of boxplots for the empirical distributions of the statistics SUM, and
MINi in each of the cases mentioned in Table 6.3.

We can now summarize the conclusions of these simulations in the fol-
lowing:

* The SUM, statistic is only helpful in distinguishing between the uni-
modal and the bimodal distributions of the simulations when used with
the process To,"',(f, 6,). Then, the boxplots suggest that SUM, is close
to 1 most of the time in the unimodal cases (except for the uniform
case) and close to 0 most of the time in the multimodal cases. Notice



also that, as the dimension increases, it becomes more difficult to de-
tect bimodality unless m is large. (Compare e.g. d = 2, m = 3 with
d = 3 or 4, m = 3.)
There are, however, certain problems with its use that make it unreli-
able:

1. It completely fails to recognize the unimodality of distributions
close to the uniform. In all fairness, this appears to be a problem
with the uniform distribution itself, rather than with SUM,, but
the effect on SUM, is more evident.

2. Furthermore, it seems to do reliably well with unimodal distribu-
tions only when these have tails (e.g. the normal). In such a case,
SUM, > 0.67 at least 95% of the time (Table 6.1). (In fact, as seen
in Figures 6.3,6.4,6.5, SUM, = 1 at least 75% of the time.) When
the distribution has compact support (e.g. N5, N10), SUM(s) can
be as low as 0.02. The fact that a unimodal density can easily
be mistaken for a multimodal has been pointed out by Donoho
([Don88]), at least in the univariate case, and it becomes here the
main concern in using SUM, and To,°'o°(f,, 6).

3. Finally, the last remark leads us to another observation. Although
this case has not come up in the simulations, the importance that
SUM, and T,o', 0(f,6)8) attributes to the tails of the distribution
also indicates a sensitivity to outliers. Even significant cluster
structure can be ignored when an outlier is present. Instead of

T,O,o '(f, 6) taking its maximum value at a partition corresponding
to the true clusters, it would favor a partition of the sample into
the outlier and the rest of the sample. Then, of course, SUM, I 1
which would indicate unimodality.

* When dealing with the MIN, statistic, we expect MIN, - 0 for a
unimodal distribution and MIN, to be bounded away from 0 for a
multimodal distribution. In this sense, the process T,",'(f, ,6) ap-
pears to discriminate better than T,'d'(f,, 6) between the unimodal
and bimodal cases considered in the simulations, especially in higher
dimensions.



* Overall, the simulations seem to suggest the use of the Tb"l'(fn, 6) pro-
cess (although T,,d9,(fI, 6) is a viable alternative) and the computation
of the MIN, statistic to measure the degree of multimodality.

How this information is going to be used may vary in each particular
case. A classical approach would be to set up a test where the null
hypothesis Ho would be that of unimodality, a hypothesis rejected when
MIN, is large. Judging from Table 6.1 and letting a = 0.1, a value of
0.2 or higher for MIN, would indicate non-unimodality. This, however,
would result in poor power against the bimodal alternatives of Table 6.3
(especially when m = 3).

Notice that finding the maximum of T,~'((fn, 6) also provides a clus-
tering of at least part of the sample and produces a new clustering
method. Although based on single-link clustering, this method should
be less sensitive to chaining. Therefore, a more realistic decision process
might have two stages:

1. Decide whether there is some evidence of multimodality (based
on the value of MIN,), enough to justify the computation of the
corresponding partition.

2. After the partition is computed, decide whether it is an appropri-
ate one, based on data-dependent considerations.

Since the final decision on whether cluster structure is indeed present is
defered to the second stage, we might be willing to allow for a large size
in the first stage (e.g. as large as 0.5) in order to allow for the inspection
of the partition. This size would then correspond to a value of MIN,
much lower than 0.2. A value of 0.05 will allow us to proceed to the
second stage in 95% of the time in all the bimodal cases of Table 6.3
except for the cases m = 3, d = 3 or 4. Notice, however, that the case
m = 3 is close enough to being unimodal that high power against it is
difficult to achieve in high dimensions with a sample size of 100.

We will see this decision process in practice in the next chapter where
we are going to deal with real data sets.
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Chapter 7

Finding Groups in Data

7.1 Improving on single-link clustering

It is now time to try the techniques developed mainly in the last chapter on
some real data. Our point of view in this chapter is slightly different. We are
not just interested in detecting multimodality but in actually finding groups
in data. For this purpose, we will make use of the process T,"'l'(fn,6) and
the partitions of the sample it is associated with.

Our hope is that we can divise a procedure that retains the good prop-
erties of single-link clustering but at the same time, avoids the chaining
problems. Our procedure will include three steps:

Step 1: Plot the process T"l' 1'(fn, 6) and find its maximum T ''.n

Step 2: Find the optimal truncation level:

6.ax := min{fn(X)) : T~'"'(f,f(X,)) = Tm;',~}.'

Find the partition of:

{xj : fn(Xj) > 6rnaX

that corresponds to T,~"'l'(fn, bmax).

Step 3: Decide what to do with the observations in:

{xj : fn(Xj) < bn•ax}.



ltemark 7.1.1 Notice that the procedure provides us with a partition into
two groups. If further clustering is desired, the procedure can be repeated
on each of the groups. Alternatively, once the low-density observations in:

{Xj : fn(Xj) < 6,ax} (7.1)

have been removed (hopefully including the troublesome observations lying
between clusters and causing chaining), we can rely on single-link to reveal
the cluster structure of the data.

Remark 7.1.2 What to do with the observations in (7.1) will depend on
what we want to do with the data. If a partition of the whole sample is
desired, then we may attempt to attach each of these observations to one of
the groups formed by the rest of the data. Alternatively, we may treat them
as special cases forming their own group.

Thera are cases, however, where a complete partitioning of the sample
is not important. Instead, we want to identify dense clusters only. Such an
example will be given in Section 7.3.

7.2 Food Data

We will begin with a simple example involving only 27 observations in 5
dimensions. In such a case, it is not impossible to recognize the clustering
structure (if such exists) and therefore we are able to check on our results.

The data in Table 7.1 are a list of the nutrients contained in 27 different
kinds of meat, fish and fowl. The nutrients listed are: food energy (caloric
intake), protein, fat, calcium and iron. Except for fat which is given in grams,
the rest are given in percentage of the recommended daily allowance. In this
case this appears to be the most informative way of scaling the variables.

The data are included on page 87 of [Har75], where they are used to
demonstrate the k-means clustering method. For that purpose, k is taken
equal to 3. Before applying the method of Chapter 6, we can try to identify
groups by simply looking at the data. Graphical techniques such as Chernoff
faces can be of assistance (see Figure 7.1)

From a preliminary examination of the data, it seems that we are dealing
with the following groups:



Food
Beef, braised
Hamburger
Beef, roast
Beef, steak
Beef, canned
Chicken, broiled
Chicken, canned
Beef, heart
Lamb leg, roast
Lamb shoulder, roast
Ham, smoked
Pork, roast
Pork, simmered
Beef tongue
Veal cutlet
Bluefish, baked
Clams, raw
Clams, canned
Crabmeat, canned
Haddock, fried
Mackerel, boiled
Mackerel, canned
Perch, fried
Salmon, canned
Sardines, canned
Tuna, canned
Shrimp, canned

Table 7.1: Nutrients in Meat, Fish and Fowl

No

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Energy
11
8
13
12
6
4
5
5
8
9
11
11
11
6
6
4
2
1
3
4
6
5
6
4
6
5
3

Protein
29
30
21
27
31
29
36
37
29
26
29
27
27
26
33
31
16
10
20
23
27
23
23
24
31
36
33

Calcium
1
1
1
1
2
1
2
2
1
1
1
1
1
1
1
3
10
9
5
2
1

20
2

20
46
1
12

Fat
28
17
39
32
10
3
7
5
20
25
28
29
30
14
9
4
1
1
2
5
13
9

11
5
9
7
1

Iron
26
27
20
26
37
14
15
59
26
25
25
25
25
25
27
6

60
54
8
5

10
18
13
7

25
12
26

L



* A high protein, high energy, high fat group (e.g. beef, ham and pork),

* a high protein, low energy, low fat group (e.g. chicken and fish) and

* special cases like clams (high in iron) or sardines (high in calcium).

Let us now use the methods developed in Chapter 6 to obtain a more
precise clustering of the data. The first step would be to compute the pro-
cess Trl'r2r3(f,, 6) for some choice of rl, r2, r3 . In view of the results of the
simulations in Chapter 6, we start by letting:

r 1 = r 2 = r,= 1.

We plot this in Figure 7.2. Notice that each point in the plot corresponds
to a partition of a number of observations. Next to each such point, we mark
the number of the last food item of Table 7.1 included in the partition.
As we can see, the maximum is obtained when 25 of the 27 foods are used.
The other 2 foods which correspond to the points in the data set where the
density estimator f, attains its 2 lowest values are:

1. sardines, canned (No 25) and

2. shrimp, canned (No 27).

We now use the single-link method on the rest. The results are shown in the
dendrogram of Figure 7.3. The first 3 divisive steps of the single-link method
discover only small groups (1 - 3 foods) and separate them from the rest of
the data. The fourth step, however, separates the remaining 20 foods into
two groups of 8 and 12 foods. None of the subsequent steps discovers any
other significantly large group. Therefore, we have discovered 2 major food
groups:

Group I: Beef braised, Hamburger, Beef roast, Beef steak, Beef canned,
Lamb leg roast, Lamb shoulder roast, Ham cooked, Pork roast, Pork
simmered, Beef tongue, Veal cutlet.

Group II: Chicken broiled, Chicken canned, Bluefish baked, Crabmeat canned,
Haddock fried, Mackerel boiled, Perch fried, Tuna canned.



In addition, we discovered 5 foods that do not seem to belong to either of
the above mentioned groups and which the dendrogram links in the following
way:

1. (a) Beef heart.

(b) Clams raw, Clams canned 1.

2. Mackerel canned, Salmon canned.

To these we could add the two foods (canned sardines and canned shrimp)
that were originally separated from the rest of the data.

It seems that:

* Group I includes the foods that are high in protein and high in energy
and fat but low in other nutrients.

* Group II includes the foods that are high in protein but low in energy,
fat and other nutrients.

As for the other 7 foods, they all seem to differ from the ones in the two
groups by containing unusually high doses of iron or calcium. They do not
really form a group because there are considerable differences among them
but they may very well play a special role in, e.g. any balanced diet.

The results seem to confirm our initial guess based on Table 7.1 and
Figure 7.1.

7.3 Market Segmentation Data

Some of the most interesting applications of cluster analysis come from mar-
keting research (see [Chu91] and [PS83]). One particular problem is the use
of a questionnaire to obtain information about the existence of segments in
a particular market. So, for example, a manufacturer may be interested in
identifying homogeneous groups (segments) among clients in order to target
them with products particularly suited for those groups. Since the process
of developing such custom-made products is always costly, the manufacturer
must be convinced that such segments do exist. The questions asked in such

1These may very well be considered two forms of the same food.
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a research will almost certainly include demographic characteristics (age, in-
come, number of children etc) but other questions may also be included. For
an informative introduction to the subject, see [Win78].

In our example, we will use data collected on behalf of Fabhus, an Atlanta
manufacturer of prefabricated homes who saw their business decline in the
late 80's, after a booming start in the late 70's. The researchers mailed
questionnaires to old customers in an effort to reveal the customer profile as
well as collect information about preferences, previous housing choices and
degree of satisfaction. 293 questionnaires were returned. We will concentrate
on the demographic questions, namely:

Question 1: Number of children living at home:

0: 0,

1: 1,

2: 2,

3: 3,

4: 4,

5: 5 or more,

9: blank.

Question 2: Age of household head:

0: blank,

1: under 20,

2: 20-24,

3: 25-34,

4: 35-44,

5: 45-54,

6: 55-64,

7: 65 or more.

Question 3: Occupation of head of household:
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0: blank,

1: professional or official,

2: technical or manager,

3: proprietor,

4: farmer,

5: craftsman,

6: clerical or sales,

7: labor or machines operator,

8: foreman,

9: service worker,

10: retired,

11: other,

12: if more than one checked.

Question 4: Family income bracket:

0: blank,

1: Under $6,000,

2: $6,000-$11,999,

3: $12,000-$17,999,

4: $18,000-$23,999,

5: $24,000-$29,999,

6: $30,000-$35,999,

7: $36,000-$41,999,

8: $42,000 or over.

Question 5: Spouse's employment status:

0: blank,

1: spouse employed full time,

2: spouse employed part time,
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3: spoude not employed,

4: not married.

Notice that the variables are not continuous and, therefore, there is no
true density f estimated by fn. In this case, f, simply measures how isolated
an observation is. This is, however, exactly what we need to know in order to
avoid chaining effects. Since the scale of the variables is different, we began
by scaling them (dividing by their sample standard deviation). Then, to
obtain a first look at the data we plotted the first two principal components
(Figure 7.4). Because two or more persons may have given identical answers
to the 5 questions, each observation is represented by a circle with radius
proportional to the number of observations with the same coordinates. There
seems to be indication of the existence of two clusters, a small one on the left
and a much larger one on the right. However, because of the large number
of observations that lie in between, it would be impossible to recover this
structure by the single-link method.

Instead, we proceed in the way outlined in Section 7.1. We choose again
to compute the process T,2' 1'(f,, 6) which is plotted in Figure 7.5. The
maximum is attained when 133 observations are included. The partition that
this maximum corresponds to can be seen in the dendrogram of Figure 7.6.

What is most interesting perhaps is the interpretation of these two groups.

Group I: The smaller group on the left includes 32 individuals, all of them
over 55. 29 of the 32 are retired. Their spouses are not employed. None
of them has children currently living in their house and their income
belongs to the three lower income brackets ($ 17,999 or less).

Group II: The larger group on the right includes 101 individuals belonging
to various professions. Their ages range between 22 and 44 and their
income belongs to the middle brackets ($ 12,000 to 29,999).

When we now project these 133 observations onto the plane defined by
the first two principal components of the whole data set, we can clearly see
the two groups (Figure 7.7). It is important to note that we have succeeded
in visualizing cluster structure in 5 dimensions where a more traditional
visualization method (principal components) failed. This is partly because
the removal of low density observations besides removing the observations
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that cause chaining, also removes outliers to which principal components are
sensitive (see [Hub85]).

Of course, we only obtained a partition of 45% of the data. However,
this is completely satisfactory in this case. It is unlikely that finding a group
for each individual that returned the questionnaire is going to be possible or
even useful. What Fabhus would have liked to know is the strongest groups of
customers in their market. For such groups, they can develop new marketing
strategies in the future. Besides, a well-known rule in marketing states that
80% of the business comes from 20% of the customers. It is this 20% that
deserves the attention of Fabhus.
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Figure 7.1: Chernoff faces for the food nutrient data
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Figure 7.4: The first two principal components for the Fabhus data.
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Figure 7.5: The process T,•"' ( jn, 5) for the Fabhus data.
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Figure 7.6: Single-link dendrogram for the 133 observations of the Fabhus
data.
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Figure 7.7: The truncated Fabhus data projected on the same plane as before.
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