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ABSTRACT

The heat transfer and density distribution were experimentally
determined for a rarified gas at rest between two flat plates. Both
argon and nitrogen were used as test gases. Particular attention was
focused on obtaining measurements in the transition regime where the
ratio of plate spacing to mean free path was between 1 and 20. The
accommodation coefficients of the gas-surface combinations used were
determined from heat transfer measurements made in the free molecule
regime. The gas density distribution was measured by observing the
luminescence produced by an energetic electron beam traversed between
the plates.

The experimental results for argon were compared directly with the
analytical results of Wang-Chang and Uhlenbeck, Gross and Ziering, and
Lees. The average agreement between the heat transfer measurements and
the four-moment analytical results is within 2 percent and for the
density ratio profiles within 3 percent.
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I. INTRODUCTION

The observed variation of heat transfer with pressure has the

form indicated in Figure 1.1. This plot indicates that the curve

can be divided into three regions, these being: the continuum,

transition and free molecule regimes. The continuum limit is

characterized by a Knudsen number which is small compared to one

(KN = X/D << 1), where D is a characteristic geometric length and

X the mean free path of molecules in the gas. In such a case, the

vast majority of collisions experienced by a molecule are with other

molecules and molecule-boundary collisionsare relatively rare. The

free molecule limit is characterized by a large Knudsen number

(A/D >> 1). In such a gas, intermolecular collisions are relatively

rare and, therefore, the majority of collisions experienced by a

molecule are with the boundaries.

Both these limits can be described analytically because of the

simplifying assumptions afforded by being able to say that the process

is controlled respectively by intermolecular collisions (continuum)

or molecule-boundary collisions (free molecule). The continuum heat

conduction is described by the well known Fourier relation, i.e., the

heat transfer is proportional to the temperature gradient. The free

molecule heat conduction is given by the Knudsen expression [19 which

indicates that the heat conduction is linearly proportional to pressure.

The description of the heat conduction and the density profiles

in the transition regime is complicated by the fact that the simplifying
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assumptions which allowed for the analytical descriptions of the

continuum and free molecule limits are no longer valid. Recently,

however, the revived interest in rarified gas problems has resulted

in several investigators [1- 8] addressing themselved to the problem

of analytically describing on a microscopic level the state of the

gas in the transition regime. Many of these investigators focused

their attention on the parallel plane geometry shown in Figure 1.2.

These analytical results describe the heat transfer and the distribu-

tion.of density and temperature between the plates as a function of

Knudsen number. Although the various analytical results are in

basic agreement among themselves in the continuum and free molecule

limits, in the transition regime they can differ by 25 percent for

the heat transfer and 30 percent for the density distribution.

There is a lack of reliable experimental measurements with which

to compare the results of these analyses. Dybbs and Springer[19 ]

measured the heat transfer in the transition regime for the case of a

cylindrical geometry and, therefore, their results cannot serve as a

test for the plane layer geometry under consideration. Lazareff [17]

and Mundell and West [18 ] utilized a plane layer geometry in order to

measure temperature profiles in rarified gases by means of thermo-

couples. Both investigations succeeded in experimentally varifying

the temperature discontinuity between the plate temperature and that

of the gas adjacent to it which was predicted to occur by Smoluchowski. [9 ]

In these investigations the radiation and support losses were not taken

into account. Also, the temperature jump effects between the thermo-

couples and the adjacent gas were not considered. It is, therefore,
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difficult to relate the temperature of the thermocouples to that of

the adjacent gas. In addition, no heat transfer measurements between

the plates were made and, therefore, the accommodation coefficients

for the gas-surface combinations utilized were not determined.

Bienkowski[8 ] measured the heat transfer as a function of pressure

between gold plated flat plates using helium as a test gas. Comparison

of his results with those of Lees indicates general agreement on

the transition regime. The extent of this agreement is, however,

difficult to ascertain since the author does not discuss the expected

accuracy of his measurements or the degree of agreement between his

measurements and theory.

Thus, it is evident that little experimental data regarding the

heat transfer and the density distribution for a gas in the transition

regime is available. However, the parallel plate geometry has often

been used as a test case for the various analytical models whose purpose

it is to describe the transition range heat transfer and density

distribution.

The purpose of this investigation was to perform an experiment which

could indicate the relative accuracy of the various analyses which are

applicable for the case of a parallel plate geometry. To accomplish

this, both the heat transfer and the density distribution between parallel

plates were measured in the transition regime.

Heat transfer measurements were also made in the free molecule

regime so that an average value of the accommodation coefficient could

be determined for the various gas-surface combinations utilized.
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The density distribution measurements were made by measuring

the luminescence produced by the passage of an energetic electron

beam through the test gases. This method was first utilized by

Schumacker and Gadomer [25] and has been recently used by several

investigators 24 281 to measure density distributions in rarified

gas flows.
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II. DISCUSSION OF THE ANALYSES

The analyses with which the experimental measurements are

compared are discussed in this section. Particular attention is

focused on the physical assumptions regarding geometry, molecular

model, temperature differences, and boundary conditions utilized in

the various analyses. By doing this it is possible to judge to what

extent the conditions of the experiment were consistent with these

assumptions. Also, it was desirable to measure those values of the

relevant parameters which could best indicate the accuracy of the

various analytical approaches. The analyses of Wang-Chang and

Uhlenbeck, [1 Gross and Ziering, [2,3] Lees, Lavin and

[5,6] [7]Haviland, and Frankowski are compared with experimental

measurements.

Several of the terms used in these descriptions are first

explained.

In all of the analyses the boundary conditions are characterized

by an accommodation coefficient, E. If full accommodation is

assumed (E = 1), then, upon collision with a boundary, the rebounding

molecules are considered to have a Maxwellian distribution characteris-

tic of the surface temperature. The assumption of incomplete accommo-

dation (E # 1) implies that a fraction E, of the incoming molecules

leave the wall with a Maxwellian distribution characteristic of the

wall temperature and the fraction (1 - E) experience specular reflection

at the wall.
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The basic assumption of the "linearized" analysis is that the

temperature difference between the plates is sufficiently small so

AT
that; AT<< 1. With this assumption the distribution function can

T

be expressed as:

f(v,x) = fm (To)[1 + (v ,x)]

where fm(T o) is a Maxwellian distribution characteristic of the plate

centerplane conditions and (O(v,x)) is a small disturbance quantity

which differs in form for each analysis. The problem is then described

by the linearized Boltzman equation in terms of (O(v,x)).

Wang-Chang and Uhlenbeck:[1]

The Wang-Chang and Uhlenbeck analysis allows for arbitrary values

of the accommodation coefficient, E. The disturbance, (ý(v,x)), is

expanded in terms of the eigenfunctions of the Boltzman collision

operator. The solution is carried out for a gas of Maxwell molecules.

Results are obtained for three successive approximations. No

further approximations are attempted because the calculations become

very involved and, also, the first three calculations do not numerically

differ significantly from one another for such quantities as the heat

transfer.

Both the second and third approximations indicate "molecular

boundary layer" effects which show up mathematically in the appearance

of hyperbolic sines and cosines. The deviation from a linear density

profile due to the "molecular boundary layer" effect is very small (1%)
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for the second approximation, but becomes more pronounced for the third

approximation.

The second approximation results are in a form which is easy to

use for all accommodation coefficients. Unfortunately, the third

approximation is in a very cumbersome mathematical form, and therefore,

is not used for direct comparison with experimental data.

Frankowski et al:

This analysis is carried out only for the case of full accommodation.

Similarly to Wang-Chang and Uhlenback, the solution for the disturbance,

c, is expressed as an expansion in terms of the eigenfunctions of the

Boltzman collision operator. Results are obtained for a gas of hard

sphere molecules.

The solutions were all obtained by means of a computer and are,

therefore, only in numerical form. The numerical results presented for

the temperature distribution indicate the "molecular boundary layer"

effect. The departure from a linear profile is quite small being a

maximum at values of D/X of about 10 where the departure is about

4 percent.

No results are presented for the heat transfer.

Gross and Ziering:

The Gross and Ziering analysis allows for arbitrary values of the

accommodation coefficient.
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The small distrubance, (O(v,x)), is approximated by a half range

polynomial in velocity space in terms of initially unknown spatial

functions. These spatial functions are determined by taking half

range velocity moments of the Boltzman equation. The moments chosen
2 mvy v2

are those corresponding to m, mv, my, and Each of theseand 2 2of these

moments yields two equations, one for integrations over all positive

x velocities, the other for integrations over all negative x velocities.

The sum of any pair of half range moment equations is a full range

moment equation. The first three of these sums correspond to the

collisional invariants of mass, momentum, and energy and, therefore,

the collision term for those sums is zero. The sum for the fourth pair

of half range moment equations does not correspond to any conservation

law.

For the eight-moment method all four pairs of moment equations are

utilized and the linearized, half range, collision integrals evaluated

in terms of the unknown spatial functions for both hard sphere and

Maxwellian molecules.

For the four-moment method each pair of equations is summed to

yield four full range moment equations. This gives the full range

moment equations corresponding to the three collision invariants and

the full range moment equation pertaining to the transport of energy,
2

i.e. C m -
x 2

The results for the eight-moment analysis indicate some of the

peculiar features of rarified gas flows, such as:

(1) A pressure variation in the vicinity of the plates as a

result of the "velocity skewness" introduced by the
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boundary. The actual deviation from a constant pressure

is very small numerically but is important from a funda-

mental point of view.

(2) A "molecular boundary layer" effect within a few mean paths

of the plates which shows up by the temperature and density

profiles deviating from being purely linear near the plates.

As seen in Figure 2.2 this departure from a linear profile

can be rather significant for the eight-moment method.

The four-moment results are not sufficiently sensitive to indicate

the pressure variation and the "molecular boundary layer" effects.

The temperature and density profiles indicated by the four-moment

results are, therefore, linear.

Lees:

The physical assumptions used in the Lees approach are not as

strict as those used in the linear analysis. The non-linear Lees

Tmethod makes no assumption that-- << i, and, therefore, should apply

for large as well as small temperature differences. The non-linear

results are obtained for a value of the accommodation coefficient of

unity, but the linearized results are extended (appendix 1) to include

the case of arbitrary values of the accommodation coefficient.

Lees assumes a special form of the distribution function which

he calls the "two sided Maxwellian" which is:

f+ = n(x) Exp{ -my

+x)] 3/2 2kT(x)[2•kT-(x)] 2kT-(x)

1
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This form of the distribution function has the "two sides" character

essential for describing highly rarified gas flows and can also provide

for a smooth transition from rarified flows to the Navier-Stokes regime.
+ +

The four spatial functions n (x) and T-(x) are initially undetermined

functions of x. These four functions are determined by making use of

the four full range moments of the Boltzman equation corresponding to
2 2

v v
m, mvx, m - and mv-- . The first three moments correspond to

the collisional invariants and, therefore, the collision integral

appearing on the right side of the Boltzman equation is zero for

these moments. The fourth moment corresponds to the heat flux. The

collision integral involved in this moment, which does not correspond

to a collisional invariant, is evaluated for the case of Maxwellian

molecules. It is seen then that the four moments of the Boltzman

equation used by Lees are those used by Gross, Ziering in their four

moment, full range, results.

The final results obtained in this non-linear analysis indicate

that:

(1) The pressure between the plates is constant

(2) No molecular boundary layer effects

(3) The temperature distribution is NOT symetric about the

plate centerplane as is indicated by the linear analysis.

This lack of symmetry is what one would expect.for large

temperature differences. The non-linear results indicate

that the temperature slip at the cold wall, where the

density is highest, is smaller than at the hot wall where

the density is smallest.

L
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The linearized results indicate a constant pressure distribution

and indicate a linear profile for the density distribution just as

does the four moment method of Gross, Ziering.

Lavin and Haviland:

This analysis utilizes the basic Lees approach and the results

AT
are applicable for arbitrary values of -A (i.e. non-linear) and only

for full accommodation. Two solutions are presented, the first a

four-moment solution for hard sphere molecules, the second a six-moment

solution for Maxwellian molecules.

The most general form assumed for the trial distribution function

is: 2 2 2+ u u + u
± 2n (x) ux u + uf 2n Exp[-( + 23/2 + + + 2T2 C±(x)C-(x) C-(x) C-(x)x y x y

This form of the distribution function is different from that of Lees

only in that it allows for the division of each velocity component by

a different function.

Four Moment Solution:

The general expression for the distribution function is specialized

+ + +
to a four function distribution by letting C = C = C-. The four

x y
+ +

unknown spatial functions n-(x) and C-(x) are determined by taking the

same four, full range, moments of the Boltzman equation utilized by

Lees.

The results are very similar to those of Lees for both the heat

transfer and temperature distribution. Similarly to all the other four
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moment methods, the results do not exhibit a pressure variation between

the plates.

Six Moment Solution:

For the six-moment solution, all six spatial parameters are

used in the distribution function. The three moment equations used in

addition to those corresponding to the collisional invariants are

2 3 2
those corresponding to my , my , and my v . To facilitate thex x xy

evaluation of the collision terms associated with these moments, the

analysis is performed for Maxwellian molecules.

The results for the six-moment method are very similar to those

of the Lees four-moment analysis, the most significant difference being

that the six-moment method indicates a small variation of pressure

between the plates.

Discussion:

Some numerical results obtained from the various analyses described

are shown in Figures 2.1 and 2.2. These results are all shown for the

case of full accommodation.

It is seen that the results for the heat transfer ratio Q/Ofm'

divide into two groups:

(1) The four-moment methods both linear and non-linear, in which

are also included the Wang-Chang and Uhlenbeck results.

(2) The eight-moment methods of Gross and Ziering.
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In Figure 2.1, the four-moment, non-linear, results of Lavin

and Haviland are shown. Their six-moment results and the Lees non-

linear results are not shown since they fall very close to these for

small temperature ratios.

The disagreement between these two groups is about 15 percent in

the important range corresponding to D/A values from 1 to 10. The

four-moment and the Wang-Chang and Uhlenbeck results, on the other

hand, agree rather closely (5 percent) with one another, in this

transition regime.

Two plots for the density distribution profiles are shown in

Figure 2.2, one for D/X = 5 and the other for D/A = 1. The plot for

D/X = 5 indicates that the density profiles are not clearly separated

into two groups as with the heat transfer results. For D/X = 1, however,

the separation of the profiles into two distinct groupings is very

pronounced with the average difference between them being about 30

percent. For all values of D/X the available Frankowski results

indicate close agreement with the Gross and Ziering eight-moment results

for the density distribution profiles.

As seen in Figures 5.4 and 6.1, which compare the measured heat

transfer ratios and density profiles with the results of analysis, the

disagreement between the eight-moment results and the four-moment

results become even more pronounced for non-unity values of the

accommodation coefficient than for the full accommodation case. The

agreement between the four-moment results is, however, still evident.
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Although it might be reasonable to expect that some of these

solutions are quite accurate over the full range of conditions, some

degree of uncertainty exists as to which solutions are most valid.

The disagreement between the various analytical results in the

transition regime is sufficiently large so that an accurate experiment

designed to measure the heat transfer and the density distribution

between unequally heated flat plates should indicate the relative

accuracy of the various approaches.
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electron beam was sent between toe plates and toe luminescence from

a given portion of the beam measured by a photomultiplier tube. By

arranging it so the position of the beam could traverse the spacing

between the plates, it was possible to obtain the density ratio, N(x)/N o,

by forming the ratio of photomultiplier tube readings.

The experimental apparatus used to perform this experiment

consisted essentially of four separate systems:

(1) A vacuum system designed for use with an electron beam probe.

(2) A flat plate assembly which was used to measure the heat

transfer between parallel flat plates under vacuum conditions

and, also, was used for the density distribution measurements.

III. EXPERIMENTAL APPARATUS

In order to obtain measurements of the heat transfer and the

density distribution between parallel plates and be able to compare

these measurements with the results of analyses, the following

experiment was performed:

First, the heat transfer between the plates was measured for the

complete range of D/X values from free molecule to continuum conditions.

From the free molecule heat conduction measurements a value of the

accommodation coefficient was obtained. This value of the accommodation

coefficient was used in evaluating values for the heat conduction and

density distribution from the analytical results.

To obtain the density distribution profile, a narrow, energetic
|~1-~~1 _---~~
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(3) An electron beam generator along with a shielded cup which

collected the beam current.

(4) An optical-photomultiplying tube system which measured

the luminescence from a desired section of the beam.

Each of these components of the experimental apparatus is discussed

individually in the following sections.

3.A. The Vacuum System

The vacuum system had to be designed such that the test chamber

and the electron gun chamber could be operated with a substantial

pressure differential during density distribution measurements. A

sketch of the principal components of the vacuum system is shown in

Figure 3.1. The reasons a pressure differential between the two

chambers had to be maintained are:

(1) The electron gun could not be operated at pressure

-4
above (5)10 Torr.

(2) The test gas pressure had to be varied from between

(3)10-3 to (40)10-3Toar during density distribution

measurements.

To accomplish this pressure differential it was necessary that

during density distribution measurements the main connection between

the test section and the pumping system be closed (valve A). Under

these conditions the only connection between the electron gun chamber

and the test chamber was through the 1 mm. hole through which the
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sufficiently low vacuum in the electron gun chamber.

The main components of the vacuum system are described below:

The test section was a stainless steel "well" 45 cm. diameter

and 19 cm. deep. On top of the well was placed a 45 cm diameter 32 cm.

high bell jar which sat on a smoothly machined surface. The bottom of

the well was provided with ten 1 in. holes for the feed throughs necessary

for the instrumentation of the experiment. On one side of the well a

6.35 cm. diameter window was provided for observation of the electron

beam with the optical system. The main means for evacuating the test

section was through a 5.1 cm. inner diameter tube which could be closed

by a valve (valve A) during density distribution measurements. The

ultimate vacuum in the test section with the valve open was about

-6
10 Torr. With the valve closed the ultimate vacuum achieved by

-5pumping through the 1 mm. hole was (5)10 Torr. Pressures in the test

section were read with a high precision McLeod gage. The test gas

entered the test section through a leak valve which allowed a fine

control of the pressure.

The electron gun chamber was a stainless steel cylinder 28 cm. long

and 10 cm. in diameter. The back of the chamber was provided with a

flange on which the electron gun base plate could be mounted. The top

of the chamber was provided with a 6.35 cm. diameter window for observing

the gun during operation. The connection to the pumping system was by a

- 21 -

electron beam entered the test chamber. The 1 mm. hole was sufficiently

small so that the pressure of the gas in the test section could be

brought up to at least 50 x 10-3 Torr. while still maintaining a
brought up to at least 50 x 10 Torr. while still maintaining a
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the electron gun chamber. Pressures in the gun chamber were read by

means of an ionization gage.

The system was evacuated by a CVC 4 inch oil dirfusion pump

(Model PMC-4B) connected to a Welch model 1402 Duo Seal mechanical

pump. Corning 704 diffusion pump oil was used in the diffusion pump.

3.B. Flat Plate Apparatus:

The flat plate system used for measuring heat conduction through

gases is shown schematically in Figure 3.2. The plate assembly

consists of an electrically-heated plate, referred to as the hot plate,

sandwiched between two water-cooledplates (cold plates). The main

advantage of this arrangement is that it is considerably simpler than

those requiring elaborate compensating heaters for minimizing heat

losses from the hot plate. The three plates were separated from each

other and held parallel for any given spacing by two sets of eight

2
Plexiglas spacers each having a cross-sectional area of 0.0252 cm

The entire plate assembly was kept horizontal during the experiments.

Two sets of plate systems were constructed, one of aluminum and

one of copper in order to test the effect of the material used on the

results. Except for the materials used the two systems were identical.

The cold plates were 25.4 cm. dia. and 1.27 cm. thick. Soldered to one

side of these plates were 0.635 cm. id and 0.476 cm. od aluminum (copper)

tubes arranged in coils as shown in Figure 3.2. The plates were cooled

- 22 -

13.3 cm. diameter section of stainless steel pipe which was cooled by

a water coil. A baffle was provided to minimize the oil migration to
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plates. The heating element was made by arranging No. 30 Chromel

high resistance wire in a zig-zag pattern betweentwo bondable Teflon

sheets. The resistance wire was attached to one of these sheets with

epoxy. The thickness of the heating element thus formed was about

u.Vj3o cm. nhe two not plates were separated by eignt u.u/P4 cm.

thick aluminum (copper) spacers (see Fig. 3.2) and then riveted together

by eight 0.159 cm. dia. rivets. The total thickness of the hot plate

was 0.555 cm. The purpose of this small thickness was to reduce heat

losses from the edges. Power to the heater was supplied from the main

electric line and was controlled with an ac transformer. The power input

to the plate was determined by measuring with a vacuum tube voltmeter

the potential drop across the wires leading directly into the heating

element and the potential drop across a standard one-ohm resistance placed

in series in the circuit.

The temperatures of the cold and hot plates were monitored with ten

chromel-alumel thermocouples placed at the bottoms of 0.1587 cm. dia.

"wells" ending about 0.04 cm. from the surface of the plates. The thermo-

couples were arranged and connected as shown in Fig. 3.3, permitting the

simultaneous measurements of the temperatures at the centers of the plates,

- 23 -

by water flowing through the coils. The coils were connected to the

water supply with Tygon tubing. Water was supplied to the tubes

directly from the main, as it was found that its temperature was

sufficiently constant during the period of any given experiment.

The hot plate assembly consisted of a heating element placed

between two 25.4 cm. dia. and 0.238 cm. thick aluminum (copper)
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the temperature difference between the hot and cold plates and the

temperature drop along each plate. The temperature drops along the

cold plates (connections 5-5 and 6-6, Fig. 3.3) were always less than

0.05*C. The temperature drops along the hot plates (connections 7-7

and 8-8) were generally below 0.1.C except near atmospheric pressures

where they sometimes reached 0.5*C. In the reduction of the data

these changes in temperature were neglected and the temperatures at

the centerline (points 1-4, Fig. 3.3) were taken to be the plate

temperatures.

T1 flat plate assembly was mounted on a plexiglas frame which

made it possible to perform the following tasks while still under

vacuum:

(1) After the heat transfer measurements were completed, it was

possible to lower the bottom cold plate from the upper hot-

cold plate assembly so that the density distribution data

could be taken. The distance between the hot plate and the

lower cold plate could be varied from 1.9 cm. to 2.9 cm.

(2) So that the position of the electron beam relative to the

plates could be continuously varied, it was possible to

move the entire plate assembly up and down in a vertical

direction a total vertical distance of 3.2 cm.

A sketch of the plate system and this frame is shown in Figure 3.4

The vertical position of the plates relative to a base position

could be determined by either an ordinary scale with a pointer or by

a micrometer. The position of the beam for the final data readings
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was determined by the micrometer.

The lower cold plate was lowered to its final position for making

density distribution curves by mechanically pulling out three stops

which held it in its upper position. The stops were pulled out by

lowering the plates so that the bottom of the stop mechanisms came in

contact with point A. Further lowering of the plates caused the stops

to be pulled out by lever action as can be seen in Figure 3.4

The place assembly was raised and lowered by means of a screw

mechanism which is also shown in Figure 3.4.

3.C. The Electron Beam System:

The electron beam system consisted of an electron gun capable of

producing a narrow, high eneegy, electron beam and a collection cup which

measured the electron beam current. A set of deflection plates were

provided for aligning the beam parallel to the plates. A sketch of

this system is shown in Figure 3.5. Both of these components along

with their supporting equipment are described below:

The electron gun was the type commonly used in television tubes

and is sketched along with some typical operating voltages in Figure

3.6. For purposes of this experiment the commercial oxide coated

cathode which came with the gun was removed and a tungsten filament

.005 in. in diameter was used as the electron source. The tungsten

filament was used in order to avoid the problems that have been

observed when using commercial cathodes. [24 ] These problems include

poor performance after exposure to atmospheric pressure and sensitivity

i
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to vacuum pump oil. The tungsten filament was powered by a variac

controlled filament transformer which was insulated for 12 KV. The

voltages for the accelerating and focusing plates were supplied by a

regulated Sorenson high voltage supply (model 5030-4) and a Potter

high voltage power supply.

The electron gun assembly was mounted on a base plate which was

provided with the necessary high voltage feed throughs.

The electron beam was collected in a cup which is shown in Figure

3.5. The cup consisted of a cubical stainless steel inner chamber about

2.5 cm. on a side which was maintained at 67 volts. The inner chamber

was insulated by a 0.3 cm. layer of teflon. Finally, there was an

outer stainless steel shielding cup which was maintained at ground

potential. A 1.2 mm. diameter hole was provided so that the electron

beam could enter the inner chamber The cu was desi ned in this wa

so that only the electrons in the beam were actually collected and

measured. It was found that if the collection cup was not shileded that

the current measured was a function of pressure for constant electron

gun conditions. This was probably because an exposed cup can also

collect many of the secondary electrons present in the gas.

The electron beam current was measured with a DC Vacuum Tube

Voltmeter.

In order to adjust the beam position so that the beam entered the

hole in the collection cup, a set of electrostatic deflection plates

was provided. The deflection plates were mounted in the test chamber

i
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right after the hole connecting the electron gum chamber to the

test chamber. The plate voltages were supplied by two Lambda model

C-261M regulated voltage supplies.

3.D. The Optical System

The optical system is shown schematically in Figure 3.7. It

consisted of the lens system of a Praktine FX camera which focused an

image of the luminescent beam on an adjustable slit placed in the focal

plane of the camera (i.e. the plane usually occupied by the film).

Directly behind the slit there was a model 6655A RCA photomultiplying

tube. The output of the photomultiplying tube was measured on a

Kiethly model 610B electrometer.

The length of the slit was such that the luminescence from a 1 cm.

length of beam was measured. The slit width (1.0 mm) was sufficiently

large to measure the total luminescence from this beam length and not

just a portion of the centrol core.

The housing for the photomultiplying tube was cooled by an ice

water bath which reduced the noise level to a negligible level for the

operating conditions used.

The Praktina FX camera is the type where one can observe on an

etched glass (see Fig.3.7) what is being focused on the camera focal

plane by having mirror "C" in the down position. For purposes of this

experiment the etched glass was replaced by a piece of plexiglass on

which there was inscribed a horizontal line. This line and the adjust-

able slit were placed so that, if the beam was focused on the line with

i

i

i
t

1

1
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the mirror in the "down" position, it would be focused on the slit

with the mirror in the "up" position. This made it possible to be

able to accurately align the beam image with the slit. That this

arrangement worked correctly was indicated by the fact that the photo-

multiplying tube output was a maximum under these conditions.

The entire optical-photomultiplying tube system was placed on a

platform which could be moved very accurately in the vertical direction

by a screw mechanism. This was done so that the beam image could be

lined up with the slit.
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TO DIFFUSION
PUMP ALL DIMS. IN CM

Fig. 3.1 Schematic of the Vacuum System
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SCREW MECHANISM FOR ADJUSTING
THE PLATE POSITION

Fig. 3.4 Plate Assembly Positioning System
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IV EXPERIMENTAL PROCEDURE

4.A. Heat Transfer:

The heat transfer between the plates was determined by measuring

the electrical power input into the hot plate heating element. At

any given pressure, measurements were taken only after steady state

conditions had been reached. The time required to achieve steady

state conditions varied from about five hours for the higher pressure

readings to approximately fifteen hours for the free molecule

readings.

The total power input (Qt) was assumed to be the sum of the heat

conducted by the gas (Q), the heat transfer due to convection (c ),

the heat loss due to radiation (Qr), and the heat conduction through

the supports (Qs). The sum of the latter two losses (0r- Q ) was

determined at various hot and cold plate temperatures by measuring the

-6
power input to the hot plate in vacuum ( (5)10-6 Torr . The heat

conduction through the gas was calculated from the expression:

Q = 1/2 (Qt- Qv)  (4.1)

where Q = Q, + Qs. Implicit in Equation (4.1) are the assumptions

a) that Qv is independent of pressure, b) that convection effects are

negligible and c) that the same amount of heat is transferred to the

top and bottom cold plates.

The validity of the assumption that the convection heat transfer

is negligible was ensured by making the plate spacing rather small

(0.1348 cm.). The validity of assumption (c) was borns out by tempera-

ture measurements between the hot plate and the upper and lower cold
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plates.

Figures 5.1 and 5.2 show experimentalplots of the thermal

conductivity ( Q) versus the pressure (p). In order to determine

these quantities it was necessary to measure:

(a) The power input to the hot plate by measuring the potential

drop across the heating element and the potential drop across

a standard one-ohm resistance placed in series with the

heating element.

(b) The plate temperatures by means of the thermocouples

described in Section 3.B.

(c) The pressure level by means of the McLeod gage.

4.B. Density Distribution:

The luminescence produced by the passage of a narrow, high energy

electron beam through a rarified gas has been used by a number of

investigators [24-29 ] to measure the density distribution in rarified

gas flows. Several of these references, particularly that of

Muntz, give rather detailed description of the physics underlying

the use of electron beam excited luminescence to measure gas density,

and rotational and vibrational temperatures. Here, only a brief

description is given on the use of an electron beam for measuring

rarified gas densities. It is necessary to have a basic understanding

of the principle of operation of an electron beam probe, in order to

appreciate the physical limits of its operation and, also, the

possible experimental error associated with its use.
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When high energy electrons pass through a rarified gas, they

undergo collisions with the gas molecules The coll e

either elastic or inelastic depending on the total kinetic energy of

the interacting pair after the collision. An elastic collision leaves

the internal energy of thermolecule unchanged. Such collisions contri-

bute primarily to the spreading of the beam. During an inelastic

collision, the high energy electron imparts some of its kinetic energy

to the internal energy of the molecule and the molecule ends up in an

electronically excited state. The excited state can be either an

excited ionization state or an excited state of the neutral molecule.

During the transition from the excited state back to the ground state,

the molecule (or ion) may emit visible radiation. It is this radiation

which is responsible for the luminescence observed to be coincident

with the electron beam. The particular excitation-emission process,

along with the intensity and spectral characteristics of the resultant

luminescence, depends on the nature of the test gas for a given-

electron beam energy. For nitrogen the radiation is due primarily to

the first negative emission system of the ionized nitrogen molecule
(N2+) which occurs at 3914 A. The first and second positive systems of

neutral molecule (N2) are also observed, although to a much smaller

[27]degree. For Argon, Robben and Talbot, observed that the radiation

came principally from AI and AII between 3,000 and 4,000 A.

The intensity of the luminescence from a given volume element along

the beam is, under certain conditions of beam energy and gas density,

which are described below, proportional to the local number density, i.e.



- 39 -

IL = K IbN

where

IL = intensity of luminescence

K = proportionality constant which is a function of beam energy

and the test gas

Ib = electron beam current

N = local molecular number density

If the beam current is maintained constant, then a knowledge of

IL can be used as a measure of N. This relation is valid as long as

the luminescence is linearly proportional to the number density. The

primary reason for the departure from linearity is probably due to

the fact that at higher pressures, not all the excited molecules (or

ions) return to their ground state by a direct emission process. At

higher pressures, a significant portion of the excited molecules (or

ions) collide with another molecule before returning spontaneously to

their ground electronic state. During such a collision, the excited

molecule can give up its excess energy by a non-radiative process. This

process is called collision squelching.

The problem of collision squelching is most pronounced for the

longer lived excited states and, therefore, several investigators(
24 927' 28 ]

have used some form of spectral resolution in order to limit the observed

radiation to that due to know show lived states. Both Petrie [28] and

Muntz [24] show calibration curves which indicate a linear relationship of

intensity versus pressure for the first negative band of N2 for pressures
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up to several hundred microns. The results of Robbin and Talbot [2 7 ]

indicated that the upper limits of pressure at which the linear

relationship between luminescence and pressure holds were 250 microns

and 350 microns for argon and nitrogen respectively when using a

Corning 7-57 blue filter before the photomultiplier.

Since all the measurements for the present invesitgation were taken

at pressures from 3 to 35 microns, it was considered unnecessary to

spectrally resolve the beam luminescence.

The limitations placed on the beam voltage are due mainly to the

fact that the collision cross sections for electron-molecule interactions

are a strong function of the electron energy. The electron collision

cross sections increase with decreasing electron energy. If very high

voltages are used, the collision ross section may decrease to the

point where few inelastic collisions occur and, therefore, the

intensity of the luminescence becomes unacceptably low. If very low

voltages are used, the electron collision cross section may become so

large that the beam experiences excessive spreading or attenuation due

to the elastic scattering of the electrons. Previous investigations

have worked with beam voltages from 10KV to 50KV. In general, the higher

voltages are required for the higher pressures in order to keep beam

spreading and attenuation to a minimum. For the present invesitgation,

a beam voltage of 10KV was used since all data was taken at relatively

low pressures between 3 and 40 microns. Under these conditions of

voltage and pressure the spreading and attenuation of the beam were

found to be negligible. This was determined by noting that no

measurable change in the measured beam current was detected while the
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beam traversed the space between the plates under plate temperature

and pressure conditions such that the density change between the plate

centerplane and the cold plate was about 8 percent. (i.e. about the

maximum density change used during the experiment.)

The present experiment was performed by sending a narrow, constant

current beam of high energy electrons between the plates and parallel

to them. The luminescence from a given length of beam was then

focused by an optical system onto the face of a photomultiplier. The

output of the photomultiplier was assumed to be proportional to the

number density of molecules at that position of the beam. The plates

were moved vertically relative to the beam so that photomultiplier

readings were obtained for a range of beam positions relative to the

plates. All photomultiplier readings were normalized relative to the

centerplane reading and the density profile was assumed to be:

N_ I(x) (4.2)
N I

o o

where Io was the centerplane reading and I(x) the reading at any

position x. The density ratio, N(x)/No, is the quantity evaluated from

the linearized analytical results and, therefore, the experimental

results could be compared directly with the analytical results.

Before the density distribution curves were measured, a heat

transfer measurement was taken in the free molecule regime with a plate

spacing of 0.1348 cm. This measurement was compared with the heat

transfer vs pressure curves taken previously to ensure that the

accommodation coefficient had not changed. For both test gases, it was
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found that the accommodation coefficient remained a constant. A

knowledge of the accommodation coefficient was necessary so that the

experimental results could be compared to the analytical results.

I
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V. EXPERIMENTAL RESULTS - HEAT TRANSFER

Experiments were performed using argon, nitrogen and air as

test gases. The argon and nitrogen were available commercially in

cylinders (Airco) and no attempt was made to further purify them.

Air was supplied directly to the system from the atmosphere. The

aluminum plate system was used with argon and nitrogen and the copper

plate system with air.

D
Plots of D Q vs. D/X are shown in Figures 5.1 and 5.2. These

plots show clearly the free molecular and transition regimes.

Continuum Thermal Conductivity

An important test of the accuracy of the heat transfer measurements

was their ability to yield correct values of the continuum thermal

conductivity. The continuum thermal conductivities of argon and

nitrogen were evaluated using a plot similar to that employed by

[ 11] AAT
Thomas and Golike. In this method measured values of areDQ
plotted against the corresponding reciprocal pressure, 1/p. The

continuum thermal conductivity is obtained by extrapolating the plot

to 1/p = 0. These reciprocal plots for argon and nitrogen are shown

in Figures 5.3 and 5.4. The value for the thermal conductivity for

air was obtained by directly measuring the heat transfer at atmospheric

conditions.

The continuum thermal conductivities are listed in Table 1. In

this table reference values quoted from the literature are also given.
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A comparison between the measured and the reference values snows good

agreement, the largest difference between them being 3.5 percent for

air when the distance between the plates was 0.32 cm. When the distance

between the plates was reduced to 0.1348 cm. the difference between the

measured and reference values decreased to about 1.5 percent indicating

possible convection effects at the larger plate separation. All heat

transfer data for argon and nitrogen was taken at the smaller plate

C~~iO

Thermal Accommodation Coefficients:

In order to compare the experimental results for both heat

transfer and density distribution with those of analysis it is necessary

to measure values of the accommodation coefficient for the various test

gas-surface combinations used. For argon and nitrogen the accommodation

coefficient was determined from the heat transfer measurements made in

the pressure ranges corresponding to both the free molecule and

temperature jump regimes.

Free Molecule Accommodation Coefficient:

At low pressures, where the mean free path (X) molecules in the

gas is large compared to the separation between the plates (D), the

gaseous heat conduction per unit area (A) and unit temperature

difference (AT = TH - TC) is given by Knudsen's formula: [2 3 ]

Q/AAT = A ( 273)(5.1)
o 2-a P TC



1

-1 -1 -1
and for nitrogen is 16.63 watts cm dg micron . In writing equation

(5.1) it was assumed that the accommodation coefficients for the hot and

cold plates are equal (a-=C=aH) and that they are uniform across the

plate surfaces. The thermal accommodation coefficients (aLp) evaluated

from equation (5.1) for the experimentally determined values of Q, A,

Tc, Tm and p are listed in Table II for argon and nitrogen. The data

indicates that the scatter in the measured values of a was ±2 percent

from the mean value for both gases.

Temperature Jump Accommodation Coefficient:

When the gas is only slightly rarified the heat conduction per unit

area and unit temperature difference may be written as:[ 22]

S= (5.2)AAT D + gC gH

Where the temperature jump distance is:

2-a 1/2 kg =- (2rRT) (5.3)
a (Y+l)C p

In equation (5.3), R is the gas constant, y the ratio of specific heats

and Cv the specific heat at constant volume. By taking T as the average

temperature between the hot and cold plates and by assuming g = gC = gH

equations (5.2) and (5.3) may be rearranged to yield:

1/2AAT 1 1 + 2-a (87RT) 2  1
I [ ] I (5.4)D Q a D(y+l)Cv p

-45 -

where p is the pressure in microns and A is the free molecule

conductivity at O0C. Its value for argon is 9.29 watts cm-1 dg-1 micron-1
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Thus, a thermal conductivity coefficient, aTJ' can be calculated

by equating the slope of the reciprocal plot described previously

(see Fig. 5.3 and 5.4) to the bracketed expression in equation (5.4).

The resultant aTJ values are shown in Table II. The difference

between aTJ and gLP is 3.9 percent for argon and 7.8 percent for

nitrogen. This agreement is good compared to the large discrepancies

often found between accommodation coefficients determined by the free

molecule and temperature jump methods 15  A possible reason for

this relatively good agreement might be that the parallel flat plate

geometry minimizes the convection problems which often occur with a

cylindrical geometry at higher pressures.

Comparison of Experimental Results with Analysis:

In Figures 5.5 and 5.6 the experimental values of vs D/X
FM

for argon and nitrogen are plotted along with the analytical results

available for a # 1. The values of accommodation coefficients used in

evaluating the analytical results are those calculated from the free

molecule heat transfer. The value of Qfn is also calculated using

this value of accommodation coefficient. The analytical -- curve
Qfm

for nitrogen is that calculated from the "modified" Lees results

(Appendix II).

The results for argon indicate that the full range, four-moment

results of Lees and Gross-Ziering give good agreement with experiment.

The only higher approximations available for a # 1 are the 8-moment

methods of Gross and Ziering. These results fall considerably below
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(10 - 20 percent) the experimental results. For reasons which are

not clear, the eight-moment half range results of Gross and Ziering are

not sensitive to changes in the accommodation coefficient. For example,

for the eight-moment, hard sphere case, changing the accommodation

coefficient from 1 to 0.8 results in a change for the heat transfer

ratio from 0.395 to 0.41, or by about 3.8 percent for a D/X value of 5.

For the Lees four-moment results a similar change in the accommodation

coefficient results in the heat transfer ratio changing from 0.435

to 0.525, or about 20 percent, again at D/X = 5. A similar insensitivity

to changes in the accommodation coefficient is also evident for the

density profiles obtained from the eight-moment results. It is mainly

this insensitivity to changes in the accommodation coefficient which is

responsible for the disagreement between the four-moment and eight-moment

results becoming more pronounced for lower values of the accommodation

coefficient.

Unfortunately, none of the non-linear theories considered [4'5'6 ]

were carried out for values of accommodation coefficient other than unity.

For this reason, these results can not be compared directly with the

experimental results. It can be noted, however, that for a = 1 the non-

linear results fall close to the four-moment linear results. Hence a

generalization of the non-linear methods to allow for arbitrary values

of the accommodation coefficient may be worthwhile.

Plot 5.6 indicates that the modified Lees results give very good

agreement (± 2 percent) with experiment for nitrogen. This agreement is

an indication that the assumptions used in modifying the Lees results

to apply to diatomic molecules are not too much in error.
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TABLE I. Thermal Conductivities of Argon, Nitrogen and

Air at One Atmosphere

Gas Plate Gap(d)
(cm)

0.1445

0.143

0.1348

0.320

Air

Temper

299.4

cal/sec,cm,
ature OK Thermal Conductivity OK x 107
T T Measured Reference
c avg Value*

294.8 297.1

301.96 293.41 297.68

288.06 280.11 284.08

290.89 280.06 285.47

414

602

575

608

*) These values were obtained by interpolating the data, given for the

temperatures Tav (TH+ Tc)/ 2 , by

a) Tsederberg, Ref. 14, page 84

b) Euken, as quoted by Tsederberg, Ref. 14, page 91

c) Vargaftik, as quoted by Tsederberg, Ref. 14, page 126

d) Taylor and Johnston, Ref. 21

585b

621
c

584d

587d
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TABLE II. Thermal Accommodation Coefficient for Argon On

Aluminum as Determined by the Low Pressure and

Temperature Jump Methods.

Pressure

mm Hg x 103  aLP

2.6 0.830

4.5 0.831

6.8 0.810

10.0 0.832

(a LPavg = 0.826

From the reciprocal plot

(Fig. 5.3) and Eq. 5.4 aTJ = 0.795

Thermal accommodation coefficient for nitrogen on

Aluminum as determined by the low pressure and temperature

jump methods

Pressure

mm g x 103  aLP

5 0.775

10 0.749

14.95 0.752

(aLP) avg = 0.759

From the reciprocal plot

(Fig. 5.4 and Eq. 5.4 aTJ = 0.705
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Experimental Errors - Heat Transfer:

The errors associated with the heat transfer measurements are

estimated to be ±3.0 percent. The sources of error can be divided

up into roughly three types, these being:

(1) Edge and convection effects

(2) Non-uniform temperature distributions across the plates

(3) Instrumental errors.

These three types of errors are described below.

Edge and Convection Effects:

A calculation of the Grashof number (Gr - 0.2) at atmospheric

pressure indicates that the effects of convection are negligible for

the small plate spacing and temperature differences used. Since one

expects convection effects to be most likely at atmospheric pressure,

such effects can be considered to be negligible as a source of error

for these experiments.

The errors due to edge effects have been kept low by making the

ratio of plate spacing to plate diameter large (2,000). Under

continuum conditions, edge effects can be expected to be present to

about one plate spacing in from the outer edge. The ratio of the plate

area effected by edge effects to total plate area is then about 1/50.

A reasonable estimate of the error due to edge effects is about 1

percent since, even in the area effected by edge effects, heat is

being transferred between the two plates.
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Effects Due to Non-uniform Temperature Distributions:

It was very important to maintain each plate at a uniform

temperature. Difference thermocouples were provided to determine

temperature differences between the center and outer edge of the plates.

For all pressures this difference was negligible for the cold plates.

For low pressures it was negligible for the hot plate. At higher

pressures, (near continuum) when a rather large amount of power was

supplied to the hot plate, temperature differences between the center

and outer edge of the plate of about 1/40 F were observed. This

indicates uncertainty in the determination of hot plate temperature of

about 1/8*F. With AT being at least 15°F, the error from the source

is about 3/4 percent of higher pressures.

Instrumental Errors:

Instrumental errors can arise from several causes, the most

important being inaccurate pressure, temperature, and power input

values. These sources of error are described below:

Pressure Readings:

The pressure was determined by readings from a McLeod gage. The

accuracy of readings from a McLeod gage changes with pressure. For the

low pressure levels corresponding to the free molecule measurements

( p 10 microns), the estimated uncertainty in the pressure readings

was ±3 percent. For pressure levels corresponding to the transition

regime ( p = 70 microns), the estimated uncertainty in the pressure

readings was estimated to be +1.5.percent. These estimates of error
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were made by noting that the manufacturer's (Todd Scientific) speci-

fications for the Wge indicate an accuracy of ± 0.0001 mm Hg for the

scale used. Such an accuracy would indicate errors of from 1 to 0.2

percent for the pressure ranges under consideration. The larger error

estimates actually used take into account the difficulty of actually

reading a McLeod gage to the ultimate accuracy of the instrument.

Temperature Readings:

The difference in the plate temperatures was determined in two

ways: (1) by measuring the plate temperatures directly, and (2) by

directly measuring the temperature difference with a difference thermo-

couple. The agreement between these readings is to within 1/10=F out

of 150F indicating errors on the order of 1/2 percent due to incorrect

temperature readings.

Power Input

The instrument (AC-VTVM) measuring the power input to the hot

plate was accurate to within 1/3 percent full scale indicating a

probable error in the measured power input of about 0.47 percent. The

actual accuracy of the VTVM (Hewlett-Packard Model 400D) is about 1

percent full scale, however, this instrument was calibrated several

times during the experiment against a voltage supply which has an

accuracy of 1/10 percent. The voltage readings of the VTVM were then

adjusted to take into account the error indicated by the calibration.

It should be noted that the conduction heat transfer is given as
Q

Qt v t( - ) [Eqn.4.1]. The power input error shows up both
i , yP9(_9
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in the total power input (Qt) and the power loss in vacuum term (Qv).

At higher pressures the ratio, Q /Qt, is small and, therefore, a

small error in Qv contributes very little to the total error in Q.

For example, for pressures corresponding to D/X values in the lower

transition regime (1 < D/X <25), the average value of the ratio,

Qv/Qt , was about 0.04 indicating a probable error in Q due to the

uncertainty in Qv of about 0.02 percent. In the free molecule regime,

however, the average value of the ratio, Qv/Qt. was about 0.3. The

uncertainty in Q , therefore, results in a probable error in Q of

about 0.15 percent in the free molecule limit. The uncertainty in

the measured power input can, therefore, result in a total error

of about 0.65 percent in the free molecule limit and about 0.50

percent in the transition regime.

To arrive at an overall probable error for the measurements

from the above discussion, the sources of error should be divided

into two groups, these being:

(1) Those which contribute to errors in Q/QFM

(2) Those which contribute to errors in D/X

The probable error in the experimental values of Q/QFM is due

to errors in both Q and QFM. The errors involved in the determination

of Q are those due to uncertainty in the power input and the edge effects.

QFM was calculated from the Knudsen expression using experimentally

determined values of a, AT and p. The error in a is assumed to be equal

to the experimental scatted actually observed about the mean value,

i.e. ± 2 percent. The error in Q is thenestimated to be about 1.2 percent.
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and that in QFM about 2.5 percent. These values were arrived at by

assuming the errors were independent and using the root mean square

method to calculate the standard error, as described by Cook and

Rabinowicz, [29 ] The probable error in the ratio, Q/Qfm was calculated

in the same way to be on the order of ± 3 percent.

The probable error in the values of D/X was due to uncertainties

in the pressure readings which were estimated to be ± 3 percent for

the lower pressure measurements and ± 1.5 percent for the higher

pressure measurements.

The errors associated with the value of the accommodation coefficient

could lead to an uncertainty in the position of the four-moment analytical

results of about ± 2 percent for D/X values ranging from 1 to 15.

The errors associated with the experimental values of Q/Qfm andfm

D/X are indicated in Figures 5.6 and 5.7 by vertical and horizontal

error bars.
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VI. EXPERIMENTAL RESWLTS - DENSITY DISTRIBUTION

Density distribution measurements were made using both argon and

nitrogen as test gases. Both gases were used with the aluminum plates.

The argon density distribution curves are shown in Figure 6.1 and

6.2 and the nitrogen curves in Figure 6.3. The curve labeled

"continuum" corresponds to the plot one would obtain for continuum

conditions (D/X >> 1). The analytical results were evaluated using

the values of accommodation coefficient as calculated from the free

molecule heat conduction data of the previous section. After the

system had been exposed to atmosphere, these values of the accommodation

coefficient were checked by taking a free molecule heat transfer

measurement as explained in Section V. It was found that the value

of the accommodation coefficient did not change for either test gas

during the course of the experiments.

All the data is shown for beam positions going from the midpoint

between the plates toward the cold plate (i.e. increasing density).

As mentioned at the end of this section, the closest approach possible

to the plate was 1.59 cm. During the experiments several measurements

were made with the beam approaching the hot plate. These measurements

indicated that the density distribution was symmetrical about the plate

center plane. This being the case, only half range density distribution

measurements are shown.

Argon:

The results for argon indicate that the linear four-moment methods

of both Lees and Gross and Ziering along with the second approximation
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of Wang-Chang and Uhlenbeck agree rather closely with the data. This

agreement is indicated for D/X values from 1.319 (nearly free molecule)

to 15.2 (approaching temperature slip.) The average agreement between

the measurements (average value) and the four-moment results is ±3

percent. The only measurement which is in substantial disagreement with

the four-moment results is that closest to the cold plate taken at

32 microns (D/X = 15.2). This point falls about 5.5 percent below the

average of the four-moment results. Possible reasons for this

discrepancy are suggested in the discussion on sources of error at

the end of this section.

The data falls about 6-20 percent below the results of the Gross

and Ziering eight-moment methods. As discussed at some length for the

heat transfer results, the eight-moment methods are not as sensitive

to changes in the accommodation coefficient as the four-moment results

would indicate. Rather significant disagreement (30 percent) between

the results of the eight-moment and the four-moment methods exists,

however, even for the case of an accommodation coefficient of unity for

values of D/X near one.

In Figure 6.2 all the experimental argon density distribution curves

are plotted together showing only the average values with brackets

indicating the scatter.

[7]
Again, the analysis of Frankowski et al, and the non-linear

results [4 5,6, 7 ] were carried out only for an accommodation coefficient

of unity and, therefore, they cannot be directly compared with the

data. For the unity accommodation case, however, the non-linear
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results tend toward the four-moment linearized results while the

Frankowski results tend toward the eight-moment results.

Nitrogen:

The results for nitrogen are shown in Figure 6.3. These profiles

are very similar to those for argon, inasmuch as they indicate an

increasing "density slip" with decreasing pressure and are, to within

the limits of the scatter, linear.

Unfortunately, there were no analytical results available with

which to compare the nitrogen density distribution measurements.
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I

Experimental Errors - Density Distribution:

The most probable causes of error and scatter in the density

distribution measurements are:

(1) Poor optical alignment

(2) Incorrect pressure and temperature readings

(3) Unsteady electron beam current

(4) Non-linear relation between luminescence and density

These sources of error are discussed below:

Poor Optical Alignment:

The optital system was designed so that the portion of the beam

luminescence measured was not a function of the position of the plates.

To check if this was the case, readings were taken for various plate

positions when the plates were at equal temperatures (i.e. constant

density). The results indicated that the luminescence measured was

independent of plate position until the beam approached closer than

1.59 mm away from either plate. The optical-photomultiplier system

was, therefore, not a significant source of error so long as the beam

did not approach closer than 1.59 mm from a plate.

Pressure and Temperature Readings:

As mentioned previously, the error in pressure readings for lower

pressures was estimated to be ±3 percent, and for higher pressure,

±1.5 percent. This error could lead to similar errors in the D/X

was, tnererore, not a signiticant source ot error so iong as tne beam

did not approach closer than 1.59 mm from a plate.

Pressure and'Temperature Readings:

As- mentioned previously, the error in pressure readings for lower

pressures was estimated to be ±3 pereent, and for higher pressure,

±1.5 percent. This error could lead to similar errors in the D/X
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values used in evaluating the density profiles from the analytical

results.

The errors involved due to incorrect temperature readings were

of negligible importance, since the temperature differences used for

the density distribution measurements were about 1.50*F and it was

possible to obtain this temperature difference to within 1/00 F.

Unsteady Beam Current and Reading Errors:

The scatter observed in the measured values of N(x)/No (i.e.

I(x)/Io) is due to both fluctuations observed in the absolute

luminescence level which are caused by an unsteadiness in the beam

current and to the uncertainty inherent in reading this level on the

Keithly meter. The scatter observed in the value of (N(x)/No - 1)

represents ±0.0025 units (see Figures 6.1 and 6.3) about an average

value. The magnitude of this scatter is independent of the pressure

level. The mean deviation of the measurements about an average value

is about ±0.0014 units. This is assumed to be the probable error in

any of the (N(x)/No - 1) values due to scatter in the data.

Since this error due to scatter is independent of the pressure

level, it results in a larger percentage error for the lowest pressure

measurements where (N(x)/N - 1) is smallest than for the higher
o

pressure measurements where (N(x)/No - 1) is largest. For example,

±0.0014 units represents an error of ±4.7 precent for the lowest

pressure argon reading nearest the wall and ±1.1 percent for the

corresponding highest pressure reading.
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Non-Linear Relation Between Luminescence and Density:

There is the possibility that an error due to a non-linear

relation between beam luminescence and density might be present for

the highest pressure (32 micron) argon measurements. This possibility

is indicated by one of the measurements being somewhat lower ( 5.5

percent) than would be expected if the four-moment results were valid.

This is what one might expect if the relation between luminescence

and density deviated slightly from being linear. Robbin and Talbot, [4 ]

however, observed no such effect with argon for pressures less than

250 microns while using a blue filter before the photomultiplier.

The source of this discrepancy is, therefore, not clear, but it is

probably experimental. All the analyses which indicate any deviation

from a linear density profile have it deviating in the opposite direction

from that measured.

The above discussion indicates that the error in the density

distribution measurements is expected to be mostly due to the scatter

in the data.

The magnitude of the error in the value of ( - 1) due to
0

scatter is estimated to vary from ±1.1 percent. to ±4.7 percent for

the argon measurements nearest the wall.
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VII. DISCUSSION

The argon experimental results for both the heat transfer and the

density distributions agree with the four-moment results of both Gross

and Ziering, and Lees (linearized) and with the second approximation

of Wang-Chang and Uhlenbeck for the complete range of inverse Knudsen

numbers from free molecule to near continuum conditions. Also, the

variation of these quantities with the accommodation coefficient is

shown to be correctly described by these analyses, at least for values

of E near 0.8. Closest agreement between experiment and analysis is

with those of Lees and Gross and Ziering where the average disagreement

between the heat transfer measurements and the analytical results is

about 2 percent and for the density distribution profiles about 3

percent. As indicated by the error bars on the experimental points,

this casic agreement would be evident even if the maximum expected

errors were present.

O This agreement between experiment and the four-moment results is

notable, inasmuch as theses analyses give final results for the

heat transfer and density distribution in very simple analytical forms.

The four-moment results of Gross and Ziering and Lees do not

indicate the presence of a Knudsen layer near the boundaries which

results in the density profile deviating from being linear. Within

the accuracy of this experiment, no such deviation from a linear

density profile was measured. It should be noted, however, that a

small deviation from a linear density profile could not be determined
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by this experiment. The general agreement between the four-moment

results and the experiment indicates, however, that an analysis

which does not indicate a Knudsen layer can still be quite accurate

in its description of such macroscopic quantities as the heat

transfer and the density distribution. Conversely, an analysis

which does indicate a Knudsen layer, does not necessarily accurately

describe the heat transfer and density distribution as indicated by

the lack of agreement between the experimental measurements and the

eight-moment results.
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NOMENCLATURE

Q = actual heat conduction

QFMI = free molecule value of the heat conduction

N(x) = density level of position, x

No = plate centerplane density level

To = plate centerplane temperature

f(x,v) = velocity distribution function of a position, x

fM(To) = Maxwellian velocity distribution function of the plate
centerplane conditions

S = "microscopic" accommodation coefficient

= thermal accommodation coefficient

X = mean free path of molecules

D = Plate spacing

y = ratio of specific heats

C = specific feat of constant volume

R = gas constant

p = pressure

KN = Knudsen number = X/D

Ib  = electron beam current

I(x) = intensity of beam luminescence at a position, x

Io = intensity of the beam luminescence at the plate centerplane

v = velocity of an individual molecule

vx = x component of the velocity

k = thermal conductivity
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APPENDIX I

LINEARIZATION OF THE LEES FOUR-MOMENT METHOD

The results obtained by Lees in Reference 4 are applicable for

large as well as small temperatire differences between the plates.

In this Appendix, a very brief outline is given on how these results

are linearized by assuming a small temperature difference between

the plates. Also, the boundary conditions are altered to allow for

arbitrary values of the temperature accommodation coefficient.

The moment equatiorsobtained by Lees on Page 14 of Reference 4

are:

continuity:

momentum:

energy:

heat flux:

n-11/2- 2 1/2
n1T1 - n2T2 =0 (1)

nlT1 + n2T2 - C1 (2)

n 13/2 n2T 3/2nT - 2 T2  C3  (3)

2 2 L
d/dx(n T1 + nT2 )+ 4/15 C3 nl+ n 0

(4)

If the assumption is made that the temperature difference between

the plates is small, so that:

- = 1 - CT

nI = + N1

n 2 = 1 + N2

where: E << 1

T1= 1 + t

T2 = + t2

then:
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N1' N2 , tl , t2 << 1

The moment equations become:

NI + 1/2 t1 = N2 + 1/2 t2
(1')

(2')N2 - N = 1/2 C3

t1 - t 2 = C3

N1 + t = const.

N2 + t2 = const.

d/dx (tl+ t 2 )+ 4/15 L/XI C2 (2) = 0

(3')

(4')

Integrating 4' one obtains:

tl + t2 = - 8/15 L/X I C3x + C4

Now, by taking into account the temperature accommodation at the plate

defined by:

Tr 1 T - 2
T - T
w i 1 - T 2

(5)

the following boundary conditions on tl and t2 are obtained:

at x = 0:

t2 = - 1/a C ,2 0 3 t 1= - C3 /a (1 - a )

N2 = 1/2 C3N1 = 0

where:
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at x = 1:

t1 = 1/aL (C3 - CLE)

t2 = 1/a L (C3 - cLE ) - C3

From equation 4' and the boundary conditions:

C4 = C3 - 2 C3/"o

and: Cand: C3 = /o+ 1/a L - 1 + 4/15 - L/X

With C3 evaluated in terms of E, N1, N2, tl and t2 can be evaluated and,

therefore, the heat transfer and the density distribution between the

plates can be determined.

Heat Transfer:

The ratio of the actual heat transfer to the continuum heat

transfer is given by:

3/2 2k3

q•_ nlT nr 3

9q0 k T. E 1/L
c 1

Substituting in the calculated value of C3 and noting that for a

monatomic gas that:

kc = 15/4 P1 k/m
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1
I 3A2P 1

iv kT
7 I 11/2

K
K

kTT

3/2 A2 (2 mk)/2

this expression becomes:

SL. = 1
q0 1 + (1/a+ 1/a L- 1) 15/4 1 l/L

Density Distribution:

The density distribution is defined by:

0 0 00
x

fl(x,v)dv +

where fl and f2 are the assumed distributionsfound in reference 4

Carrying out the indicated integrations and linearizing:

N + N2
<n(x)> = 1/2 (nl+ n2) r 1 + 2

which, after a considerable amount of algebra, results in the expression:

n(x) + x' AT
n 1 + 15/4 kN(2/a- 1) To o

(7)

where x' is the distance from the plate centerplane (note: x in the

Lees analysis is the distance from the cold plate), AT is one half the

temperature difference, and To is the plate centerplane temperature0

(6)

O0

I j
-o .O

f 2 (x,v)dv
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assumed to be midway between the two plate temperatures. Also, in

this expression the accommodation coefficient of the two plates were

assumed equal.

Equations 6 and 7 are the equations used in evaluating the Lees

linearized results.
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APPENDIX II

EXTENSION OF THE LEES LINEARIZED RESULTS TO DESCRIBE THE

HEAT TRANSFER RATIO FOR DIATOMIC GASES

The expression for the heat transfer ratio for monatomic gases

as given by the Lees linearized results is:

S I = 1 (1)
Q m 1 + 15/4 X/D (2/a - 1)

where Q. is the continuum heat conduction. As suggested by Lees,

one might assume that the general expression for the heat transfer

ratio to be of the form:

__ 1 (2)
Q. general 1 + C X/D(2/a - 1)

where C is a constant which depends on the type of molecule. A means

of determining the value for C for diatomic molecules is presented in

this section.

The expression for the free molecule heat conduction over the

continuum heat conduction can be obtained from equation (1) by letting

X/D become large. For this case 1 becomes small relative to the term

involving X/D and, therefore:

QFM i = 1 (3)
* Q M = 15/4 X/D(2/a - 1)Q m
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For a monatomic gas, the free molecule heat conduction is

proportional to 2RAT. For a diatomic gas there are, in addition to

the three translational degrees of freedom, two rotation degrees of

freedom which contribute to the energy transfer. The diatomic free

molecule heat transfer is, therefore, proportional to 3RAT (i.e. 2RAT

from the translational modes and RAT from the rotational modes). The

diatomic free molecule heat conduction is, therefore, related to the

monatomic heat conduction by:

QFMI = 3/2 QFM (4)
d m

It should be noted that this expression is valid only if the

accommodation coefficients for the translational and internal modes

of energy transfer are equal.

For a monatomic gas in the continuum limit, the heat conduction

is proportional to KAT, where K is the thermal conductivity. The

value of K for a monatomic gas is given by Kennard [22 ] as:

Km = 5/2 pC = 15/2 UR (5)

If Euler splitting of the internal modes of energy transfer is assumed,

the diatomic value of the thermal conducticity is: [22 ]

Kid = 5/2 U(Cv)T + P(Cv) i = 17/2 UR (6)

In the continuum limit, therefore, the diatomic gas heat conduction

is related to the monatomic heat conduction by:

0,od m (7)

~
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The following ratio can, therefore, be formed:

FM 45 FM (8)
-w1d  38 Qo m

Therefore:

FM I1
QF d 3.166 A/D (2/a - 1)

The value of C for a diatomic gas is, therefore, seen to be 3.166.

The general expression for the heat transfer ratio is then:

1 + 3.166 /D(2/- 1) (10)QW d 1 + 3.166 X/D(2/a -1)

I
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