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ABSTRACT

SIMULATION OF GLASS MELTER PERFORMANCE

by
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ments for the degree of Master of Science in Chemical
Engineering.

The three dimensional natural convection flow and
temperature distributions in glass furnace were obtained
through the use of source-sink approximation method. In
this method, assumption was made that three dimensional
flow and temperature distributions may be represented by
the sum of the flow and temperature distributions in two
orthogonal planes. These orthogonal planes are linked by
distributed sources and sinks of energy. Thus by obtain-
ing a series of two dimensional solutions, a composite
of three dimensional approximation solution may be
obtained.
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I. SUMIARY

In this thesis, three-dimensional natural convection in

glass melts is studied by means of an approximate numerical

technique, referred to as the source-sink approximation

method. In this method, the transport in the third dimen-

sion is modeled as a two-dimensional natural convection

problem with sources and sinks of energy distributed through-

out the plane of motion.

The previous work performed in this department by

Noble (12) and Clomburg (4) was concerned with the two-

dimensional problem. However, the three-dimensional problem

is the more descriptive of the actual flow phenomena. For

three-dimensional natural convection problems, classical

solution techniques are not, in general, feasible and since

exact solutions are certainly not attainable, one must re-

sort to some approximation method. A few authors (1, 3, 19)

have suggested numerical methods for primitive three-

dimensional equations. Their application on the prototype

furnace will undoubtedly accompany operation difficulties

associated with numerical instability and intolerable compu-

tation storage requirements and machine time. The principle

difficulties arise because interesting problems are described

by large Rayleigh numbers (ca. 107~108) and thus require

detailed meshes to obtain resolution of the boundary layer



type flows that develop. Even with today's fast digital

computers, the task is prohibitively expensive, if at all

possible (2).

Quite often some knowledge can be obtained by solving

a number of more tractable equivalent two-dimensional

problems. The major aim of this thesis is to develop and

text a simple technique for selecting those two-dimensional

problems. This purpose has been achieved through the intro-

duction of a source-sink approximation method. The source-

sink functions were obtained from the known approximate

solution of the two dimensional flow and energy equation

for the orthogonal plane. For the transverse section, for

example, these functions can be wiitten in the form of

SIT = - L (1)
L

where 0 and 0L represent the temperature distribution and

the source-sink function in the longitudinal section,

respectively.

With this function, the following coupled flow and

energy equations are numerically solved via finite-

difference method.

Energy Equation

ao' auO' awe' _ a 2 o' a2 '+ + z - x2 + z2 + SI (2)at ax az ax2 az2 T
where 8' represents the temperature distribution in a

transverse section.



Flow Equation

1 aV2J + - (uV24) + 3 (WV2I) =
NPr at ax azPr

- NRA + V ) +V (V (3)RA tz (a • x a z a

The hydrodynamic and thermal boundary conditions are of

course specified.

The basic method of solution involves casting the

problem as a transient initial value problem and extending

the solution to steady-state. For this purpose, both mo-

tionless isothermal initial conditions or the results of a

previous run were used to start the calculations. Since the

basic equations are identical with the Clomburg problem (4),

his computer program, CONRAD, was used with slight change.

Therefore, his work serves as a starting point of this

investigation.

The proposed method was applied to the real green glass

furnace. Effort has been made to retain the salient feature

of the prototype as far as possible. The results obtained

have shown characteristics of three-dimensional flow

patterns, thus appearing as feasible. One of the most

prominent features is the formation of four circulation

cells under the batch cover. However in the light of the

imposed assumptions and approximations, these results should

be checked by more rigorous solutions and by experimental

data.



Finally, some mention should be made about the

computation time. A typical run with a 15x16 zone

arrangement only required 0.0022 CPU minute/iteration

on an IBM Model 370/165. For the maximum number of

zones (20x40), the CONRAD 8 program uses less than 1

minute of CPU minutes for 200 iterations on this

machine. With proper choice of time step parameters,

convergence of the computations is normally achieved

after 100-150 iterations.
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II. INTRODUCTION

A. Glass Furnace

A glass furnace is a large tank made of refractory in

which the necessary heat is provided by gas or oil flames

through the combustion ports. A detailed qualitative

description of a glass furnace and its operation can be

found elsewhere (8).

One type of furnace for which this thesis is relevant

is the large continuous tanks used in the production of

container, bottle, and plate, of which the dimensions may

be 20-100 feet long, 10-30 feet wide and 2-4 feet deep.

The furnaces may contain up to 50-200 tons of molten glass

and have throughput as large as 10-60 tons/day.

One of the most common forms of construction is the

cross-fired throat tank, as shown in Figure 1. The furnace

consists of two chambers separated by a refractory wall

through which there is a channel, the throat. In the larger

melting chamber, the raw materials are melted and reacted

and the glass produced is refined. In the working chamber,

the glass cools and is further refined prior to being fed

to the forming machines. The homogenization of glass melts

is mainly achieved in the melting chamber.

The surface of the glass melt in the melting chamber

shows three distinct regions. A definite portion of the

glass furnace is always covered with batch heap (unreacted
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raw materials). An adjoining surface zone has a layer of

foam and froth, while the remaining large portion of area

is relatively flat and clear.

The raw materials - a mixture in precise proportions

of sand, soda ash, and limestone with various additives -

are added continuously at the doghouse, thus forming

batch heap. They are melted by the heat supplied by flames

in combustion space. The melting process involves chemical

reactions, the generation of gaseous products, the formation

of silicates and the mixing of the liquid components. The

gaseous products, mainly C02 , SO2 and H20, partly escape

into the combustion space and partly remain in the molten

glass.

Disengagement of these gases from the melt constitutes

the second part of the process taking place in the furnace,

namely, refining. During refining, the rising of the dis-

entrained gas bubbles stirs the melt and improves its

homogeneity. The thorough mixing of the entire melt,

however, is solely achieved by natural convection, which

results from local temperature differences in the melting

chamber. The temperatures in the melting chamber range

from 24000 F to 29000 F in the glass melt and about 31000 F

in the combustion space.

The circulatory flows and mixing in the glass tank are

mainly engendered by the addition of energy to the top

surface of the melt and the removal of energy along the



batch cover,walls and bottom of the furnace. Computed

results and experimental study (4) indicate that the melt

is thermally stratified in the bulk of the enclosure.

Regions of large temperature gradient exist only under the

top surface and along the end walls. There temperature

gradients act in the nature of a "thermal pump" and produce

the basic fluid motion which consists of two large circula-

tion cells. The flow pattern for the longitudinal cross-

section is shown in Figure 2. The largest circulation cell,

centered near the upper left corner, extends almost completely

across the enclosure, and serves to transport most of the

energy from the source to the batch cover and left-hand

sinks (doghouse wall). Material is accelerated as it picks

up energy from the source, and then is decelerated as it is

cooled under the top sink and along the left side wall. When

the material encounters its "own" temperature level, it

leaves the boundary layer to enter the core. The smaller

cell is relatively weak and is driven by the primary cell

and right wall heat losses. The flow pattern for a transverse

cross-section is shown in Figure 3. Unfortunately, the in-

vestigated regions have been limited to a cross-section made

somewhere in the open area of a furnace, that is, not under

the batch. Therefore, the results of Trier (19) and Clomburg

(4) appear qualitative. From their results, the circulation

rates in transverse section are weaker than in longitudinal

section. Hot melt flows down the cooler side walls to the
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Figure 3. Flow Pattern in Transverse Section
of a Glass Furnace

FLAME SIDE

BATCH SIDE



11

bottom, and then up in the middle of the tank. These cells

also mix the melt and transfer energy to the cooler sections

of the furnace.

This thesis provides a quantitative description of the

transverse section flows under the batch cover. As will be

shown later, the flow patterns in this region are quite dif-

ferent from the above description.

The design and operation of glass melting furnaces have

evolved as an empirical art since glass making began. How-

ever, it has been recognized that the natural convection

within the melt homogenizes the glass and that the modifi-

cation of these currents can exert a profound influence on

product quality. The study of natural convection in a fluid

should yield results which would be useful in predicting

the performance of glass furnace particularly with regard

to the circulation currents.

B. Previous Work

The work reported here is a part of a continuing program

for the investigation of radiation and natural convection

interaction performed in this department. The previous works

by Noble (12) and Clomburg (4), representing the most signi-

ficant work in this program, were concerned with the two-

dimensional problem only. Clomburg's results are the most

relevant to this work and serves as a starting point to this

thesis.
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Clomburg obtained a highly generalized two-dimensional

mathematical model of a glass furnace by making allowance

for buoyancy, temperature-dependent viscosity and diffusive

radiation. To solve the time-dependent, coupled flow and

energy equation, the computer program, CONRAD, was written.

With the aid of this program, he obtained numerical solutions

up to Rayleigh number ~108 and performed an experimental

work with a simple model of a glass tank to verify the

numerical results. His results are largely concerned with

the longitudinal section flow patterns.

Trier (19) has presented the stream function and tem-

perature fields for a transverse section of a glass tank.

His results were obtained by the numerical solution of the

biharmonic equation and the energy equation by a relaxation

procedure developed by Peschke (15). The boundary con-

ditions were: specified temperatures along all surfaces

and a shear free top surface. (Only the half section of

the transverse plane was considered due to its symmetry.)

Trier considered both constant and temperature dependent

viscosity and thermal conductivities to obtain solutions

for Rayleigh numbers of ~106. The results are similar to

those obtained by Clomburg (4).

The three-dimensional solution of the natural convection

equations has received little attention because of the com-

plexity, but they have been investigated by a few authors.



Aziz and Hellums (1) studied the natural convection

problem in a cube of specified temperatures on the upper

and lower walls (heat from below) with insulated side walls.

They succeeded in obtaining a solution of the equations of

motion and energy in three dimensions by numerical finite

difference method.

The complete Navier-Stokes equations were cast in terms

of three-dimensional vorticity and a vector potential. The

resulting equations were solved using an alternating direc-

tion method for the parabolic portion of the problem, and

Succusive Over-Relaxation for the elliptic portion. It was

also shown that the proper boundary condition on the normal

component of velocity (no slip condition) is satisfied if

the normal derivative of the normal component of the vector

potential vanishes, and if the components of the vector

potential tangential to the surface vanishes. For a fluid

with constant properties and Pr=l, they obtained a solution

for Ra=3500.

Chorin (3) has solved the primitive flow equations by

decomposing the Navier-Stokes Equation into two functions,

one for the velocity and the other for pressure. The

velocity at the new iteration is approximated by an

implicit solution of the flow equation without the pressure

term. Then the velocity and pressure are calculated by the

iterative solution of the continuity equation and an equation



for the velocity with the pressure term. He solved the three

dimensional natural convection problem of a fluid heated from

below (Bernard Convection Cell problem) for Rayleigh Numbers

of 103.

William (21) solved the problem of natural convection

of an incompressible fluid in a vertical rotating annulus

with walls at different temperature. He used an explicit

scheme for the primitive velocity and energy equations;

the pressure was obtained by the solution of Poisson's

equation using trigonometric interpolation procedures.

These methods have only been tested for low Rayleigh

numbers, -103 , and their extension to higher values, -107 ,

is questionable.

Most recently, Chen and Goodsen (2) adapted the numerical

algorithm by Aziz and Hellums to the application on an elec-

trical glass furnace. The temperature and velocity profiles

generated appeared reasonable. The computer time required

to obtain a solution was reported about 70 minutes on CDC

6500 with uniform grid llxllxll. This coarse grid system

is in contrast to the refined grid found necessary by

Clomburg to achieve realistic results.

In the numerical studies of fluid dynamics problems

there generally exists regions of maximum change in flow

profiles. It has been implicitly assumed that the use of

nonuniform grids, with greatest resolution in the expected



15

region of maximum change, produces minimum overall errors

in finite-difference solutions of a system of two non-

linear coupled higher order differential equations. However,

some reports (4, 20) have indicated that unless precautions

, are taken to select a prudent grid arrangement, a coarse

grid system can introduce quite spurious effects on the

overall results. Recently, Crowder and Dalton (5)examined

this assumption. They found that the use of grids with

discontinuously varying spacing gave poorer results than

those obtained with regular uniform grids with the same

number of points. However, it is clearly undesirable to

use more grid points than required to resolve the boundary

layer, because finer uniform meshes always make the total

computation time prohibitively large. An obvious remedy

was found by Rivas (16). It was shown that stretched

coordinates could be used to obtain a nonuniform grid

system which reduced the truncation error introduced by

irregular nonuniform grids. The optimum number of intervals

to resolve a boundary layer adequately was reported to be

at least three (11, 17).

Relevant experimental work is under way in this de-

partment by N.W.E. Curlet. He will obtain experimental

data for the three dimensional temperature and flow patterns

in a simplified glycerin model of glass furnace.



III. DEVELOPMENT OF EQUATIONS

For three-dimensional natural convection problems,

classical solution techniques are not, in general, feasible

and since exact analytical solutions are certainly not at-

tainable, one must resort to some approximation method.

Quite often some knowledge of the three-dimensional temper-

ature and flow distribution can be obtained by solving the

more tractable equivalent two-dimensional problems. The

present approach utilizes a technique matching two orthogonal

solutions of two-dimensional problems, in order to make the

composite represent a good approximation to a three-dimensional

natural convection problem.

A. Statement of Problem

Since this is one of the first attempts at a three-

dimensional problem, all the complexities of the glass

furnace were not attempted. Instead, only the convective

profiles generated in the furnace are considered. As already

mentioned, the homogenization of glass melts are mainly

achieved in the melting chamber. It is also believed that

only a small portion of the melting chamber near the inlet

surface is used for a reaction and melting. Therefore, the

present problem attempts to simulate the convective flow

profiles in a melting chamber without consideration of the

reaction and melting processes. For further simplification,



no material throughput is allowed and all physical properties

are assumed constant except viscosity and density. (However,

effects of radiant heat transfer is incorporated using an

effective thermal conductivity according to the Rosseland

diffusion approximation for an optically thick fluid (4).)

The geometry and boundary conditions of the problem are

summarized in Figure 4. Cartesian coordinates (x,y,z) have

been introduced with origin at the front left corner apex

of the rectangular bath glass furnace, which has the dimen-

sion of height H, length L and width W. The gravity acts

in the x-direction.

The batch cover is idealized as a plane of extent, B,

which is maintained at some appropriate sink temperature Ts,

representative of the bottom surface temperature of the

batch. For the simplicity of the calculation, it is assumed

that heat transfer into the melt by flame radiation is

idealized by some assumed energy flux, qF, and the end walls,

the side walls and the bottom of the furnace lose heat to

the ambient at temperature TA and that these walls and bottom

have appropriate overall heat transfer coefficients U.

B. Derivation of General Governing Equations

For a variable viscosity, incompressible flow, the

transient governing differential equations describing the

behavior of a fluid for three dimensional natural convection

are given by the usual Boussinesq Approximation as:
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Momentum Equation

Du 1 BP 1 av- gO(T-To) 1 x + -[V.pVu + -- *VP] (1)Dt P ax Po ax

Dv 1 aP 1 v
+ -[V.PVv + vv -Vu] (2)Dt Po 0y P 0 y

" 4.
DW 1 P + 1[V'PVW + zV

Dt P az PO

Equation (1-3) may be expressed in vector notation

Dv 1 + 1 + +
Dt P 0 VP + g8(T-T ) + P [(V-*V)v + Vv-V+] (4)

o o

The last term in bracket Vv-*V may be neglected. Then

Dv 1 + 1 +
Dt= VP + g(T-T) + P (VIPV)v (5)

Dt O O

Here, the glass melts are considered as a pure viscous,

incompressible flow. In order to allow the buoyancy force,

however, the usual Boussinesq Approximation (12) is applied.

That is, the density variation is neglected except they are

coupled with gravity in the buoyancy force. Thus the fluc-

tuations in density which appear with occurrence of motion

result principally from thermal (as opposed to pressure)

effects. This does not result from the Boussinesq approxi-

mation. The equation of state required is expressed

P = Po [1-8(T-T o )] (6)

where 8 is the coefficient of volumetric expansion and

the subscripts o denote a property at reference temperature
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T . The viscosity of the glass melt is highly temperature

dependent. Experimental data of the glass are usually

correlated by the following relationship

1 1
S= u0 exp E( - To

0
(7)

Continuity Equation: For incompressible flow,

V.v = 0 (8)

Energy Equation: The viscous dissipation may be

neglected and the effective average thermal conductivity

may be used with the Rosseland diffusion approximation.

p c DT k V2 To p Dt eo

Normalization of Equations

The above equations (1-5) may be normalized with the

following dimensionless variables:

(9)

x* = x/H

u* - uH

eo

* - PH2

eo

y* = y/H

V* _ vII
eo

V* = -
o

z* = z/H
-+

= wH Y, vH
aeo aeo

t* taeo T
TR

V* = HV

k
eoa - o

eo pcop
where (1l)
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The dimensionless equations are reduced to:

Momentum Equation

1 Dy* +
Pr Dt" = RA(e-o) - V*P* + V*v*V*v*

where

p c
Pr = p

k
eo

_ BII Trg
A ae v

eo o

Continuity Equation
+

V*v* = 0

and

Energy Equation

DOe
Dt* = V

(12)

(13)

(14)

If we are interested in the two-dimensional solution only,

the most effective way to solve the equations is to eliminate

the pressure term. This can be accomplished by taking the

curl of equation (11), and then taking the scalar component

of the result.

Vorticity Equation

1 Dw* ae1 R + V*v*V* = R +
Pr Dt* A ay*

where w is the vorticity defined as:

(15)



au av-w = (16)ay ax

The continuity equation can automatically be satisfied by

introducing the stream function:

u - v = (17)ay ax

Poisson's Equation relates the stream function with vorticity

V2- =- W (18)

In dimensionless form, these are given by

=, w12* (19)
eo eo

Finally, the biharmonic equation may be obtained by substi-

tuting Poisson's equation into the vorticity transport

equation.

1 D ae + V*** (V*2 * )  (20)
Pr Dt*(V* 2 **) = - Ra (y*20)

The solution of coupled equations (9) and (16) with appropriate

initial and boundary conditions will represent the temperature

field and stream function field.

The above coupled equations are solved by computer

program CONRAD. The basic method of solution is to cast

the problem as a transient initial value problem and extend

the solution to steady-state. Since only the steady state

results are of interest, choice of initial conditions is

arbitrary (4). For this purpose, both motionless isothermal
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initial conditions (*=O, T=To ) or the results of a previous

computer run are used to start the calculations (i.e.

p=f(x,y), T=g(x,y)). Completion of the problem statement

requires a set of boundary conditions for both ý and T.

Presented in Table I are the hydrodynamic and thermal boundary

conditions investigated in this thesis. The physical descrip-

tions can be expressed in terms of the following equations:

No slip condition ' = constant - 0 (21)an

a2ýShear free surface ' = constant an = 0 (22)an

Specified Temperature T = Ts (23)

aT
No heat flux - 0 (24)an

aT
Specified heat flux - k n = qF (25)

aTSpecified heat transfer - k = U(T-T (26)an (TTA) (26)
coefficient

where n is the inward normal. Dimensionless heat flux and

heat transfer coefficients are defined:

q* = k qH (27)
F keR R

and

uN (28)u keReR

to obtain the dimensionless analogs to these boundary

conditions.



TABLE I.

(a)

Boundary Conditions for Melting Chamber

Hydrodynamic Boundary Conditions

Boundary Region

(1) All the walls and
batch cover region

(2) Symmetry line and
flame region

Physical Description

No slip condition

Shear free condition

Thermal Boundary Conditions

Boundary Region

Batch cover region

Symmetry line

Flame region

All the walls

Physical Description

Specified temperature

No heat flux

Specified heat flux

Specified heat transfer
coefficient (or Nusselt
number) and ambient
temperature

(b)

(1)

(2)

(3)

(4)
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C. Source-Sink Approximation Method

One of the possible ways to solve the above three dimen-

sional differential equations, of course, would be to attack

the primitive equations. However, if accurate temperature

and flow distributions are required, then a detailed mesh

must be used to resolve the boundary layer region. This

would make the cost of the solution prohibitively large,

even with today's fast digital computers.

An obvious remedy is to make some simplifications to

reduce the complexity and to obtain more ready solutions

with reasonable accuracy. In this context, this thesis

attempts to obtain a three-dimensional solution by solving

more tractable equivalent two-dimensional problems. In

doing so, an intrinsic difficulty is encountered in the

modelling of the effect of the third dimension on the two-

dimensional equations. This difficulty may be partially

circumvented by introducing some sources-sinks functions

of energy to model the transport in the third dimension.

In the subsequent section, the method used to obtain the

source-sink functions will be described.

The transient three-dimensional energy and continuity

equations are in dimensionless form (drop the star sign)

ao auo avo awe _ a2 0 a2 o a2 e-- +  + 3 + +  (1)at ax ay az ax2 ay2 az2

and



aU +V DWa+ + +  = O (2)ax ay az

For the longitudinal section (x-y plane), two-dimensional

equations can be written with appropriate source sink

function, 4 :

ae aue ave a 2 e a2e-- + + + + (3)at ax Dy @x2 ay2

and

au av_u + v= 0 (4)
ax ay

Since we have no a priori knowledge of the source-sink

function P, this function must be estimated as a first

approximation. The side wall heat losses may be considered

as distributed point heat sinks throughout

the furnace volume. Thus, for a uniform distribution:

Q 82  2q*Qsw sw (5)HxWxL k eTr AT

With the proper boundary conditions, the temperature and

flow distribution, T and v can be obtained.

If we consider perturbations in the temperature and

velocity in the transverse section (x-z plane), 6v and 6T,

about the longitudinal section, we may write

V(x,yo,z) = v(x,y )+ 6v(x,z) (6)

e(x,Yo,z ) = 6(x,Yo)+ 6e(x,z) (7)



The equation (6) may be expressed with vector components

as:

V(x,y,z) = iU + 'V + kW

= i(u+6u) + iv + k6w (8)

Now, on substituting the components of velocity in equation

(8) for the equation (2) and using the continuity equation

(4) for longitudinal section, we obtain

36u 36wu + 6w 0 (9)
ax ay

On substituting the equations (7) and (8) into energy

equation (1), we obtain:

aa a a--(e+66) + --[(u+6u)(e+66)] + [v(e+60)] + " [6w(+ao))]t x y az

x2 (+66) + a-(+6) + a--(o+6o) (10)ax2 ay2 az2
Subtracting the steady state solution of equation (3)

from the equation (10) and manipulating with the two con-

tinuity equations (4) and (9), the equation desired to be

solved for transverse section may be reduced to

-- (e+66)+ --[6u(0+6o) + -[6w(6+66)]at ax az

a2 32-a(0+60) + --z(e+60) + SI
ax2 az2 T (11)
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where

SI = u ( 60) - + (12)T ax2 Ux

It is to be noted that 6u and 60, as defined, are not

functions of y. The first term of the source-sink function,

SIT, can be easily calculated from the longitudinal section

temperature field. However, we do not know the term

u- a(60) a priori and, indeed, we cannot explicitly solve it.

If this term is to be incorporated into the program explicitly,

it will lag behind the current iteration by one step.

Furthermore, complications may arise from the specification

of u values. According to the definition, they are the

x-components of velocities in the longitudinal sections,

which are orthogonal to a transverse section in question.

They cannot be specified without further information on

the various longitudinal section solutions. There seems

to be no way to circumvent this difficulty in treating the

source-sink approximation.

However, these velocity components should meet the

no-slip condition on both of the side walls. As one

moves from the centerline to the side wall, the velocity

components are decreased to zero. Figure 5 shows the

variation of normal velocity components (at y=o) for

laminar flow in rectangular conduits (12). The velocities

do not change greatly in the core region. For an aspect of
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ratio 3, significant change occurs near the side wall. In

the glass furnace, changes in the direction of u velocities

over the entire transverse section will introduce another

complication. Therefore, the inclusion of term u ax
may represent a refinement not warranted by approximations

inherent in the source-sink method. We then drop this term.

The equation becomes

SI = 1- 2 - (13)T ax

Before proceeding with the discussion of the construc-

tion of three-dimensional picture of the convection flow,

it is desirable to examine carefully the limitations to be

expected from the assumptions and approximations involved,

explicitly or implicitly, in the above derivation. Fore-

most of these is the acceptance of additive contribution

to the three-dimensionality from the two orthogonal two-

dimensional motions. For other problems without this

additive property, the whole concept of the stream function

will cease to be of value so that the method cannot be

applied.

One further assumption in this treatment, but not

mentioned in the course of the preceding development,

remains to be considered. This one is of a rather more

subtle nature.
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Incorporating the estimates of the effects of three-

dimensional motion into the appropriate two-dimensional

equations, it has been assumed that only the energy source-

sinks are distributed essentially throughout the orthogonal

plane, while the momentum source-sinks are not incorporated.

Basically, the convection currents in the furnace are

caused by the temperature gradient and the resulting differ-

ence in density. This is true for the transverse section

as well as the longitudinal section. In other words, the

thermal interactions between heat sources and sinks cause

the momentum transfer. Furthermore, the momentum transfer

can be expressed as a vector quantity which has three

mutually independent components. Thus, the use of the

appropriate temperature (not the perturbation temperature)

in the momentum equation will satisfactorily incorporate

the momentum source-sinks into the momentum equation.

Now turning to the problem of constructing the three-

dimensional picture of convective flow, we will derive the

source-sink functions for the longitudinal section. Since

the temperature field and the stream function field can be

obtained for any plane of transverse sections, the estimates

of the effect of transverse section field on the longitudinal

section does not pose any difficulties. From the results

obtained for the various transverse sections, we can

construct temperature and velocity fields corresponding to
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any specified longitudinal section. That is

6'(x,y,zO) = O(x,y) + 66(x,zo) (14)

v' (x,y,zo) = v(x,y) + 6v(x,zO)

= i(u+6u) + jv' + k (6w) (15)

where zo is the z coordinate corresponding to the chosen

longitudinal section. Introducing perturbation terms in

the x-y plane, 6v' and 668', we may write

e(x,y,z*) = ' (x,y,zO) + 68'(x,y) (16)

V(x,y,zO) = v' (x,y,zo) + 6v'(x,y) (17)

= i(u+6u+6u') + j(v+6v') + k 6w

Upon substituting equation (17), the continuity equation

can be written

-(u+6u+6u') + -(v+6v') + a 6w = 0 (18)ax Sy az

which reduces to

a(u+6u') +(v+6v') = 0 (19)
ax ay

according to the equation (9).

At the steady state, the equation (11) with new notation

can be written

a -- (6ue') + a-(6we') =+ aaz- + SI T  (20)ax az ax2 T



Substituting equation (16) and (17) into (1) and subtracting

eq. (20) from it, we may obtain energy equation in the form

of

(0'+66') + (u+6u')(6'+66') + (v+6v')(6'+66')

a2 a2=•x-(O'+6O') + -2 (8'+68') + SIL  (21)

where

SI = a2  - SI T  (22)L ax2 T

neglecting - 6u - (68') term.ax

Equation (22) provides the effect of the transverse

section flow on the longitudinal flow. Furthermore, with

the results obtained from eq. (21), we may further refine

the 0 terms in equation (3). In this way, the temperature

and stream function field can be refined, within the

limitation of this approximation model.

Finally, the differential equations for source-sink

approximation method is summarized in Table II. The in-

spection of energy equations shows that the common form to

be solved is:

ae a(ue) + (ve) 2e a a 2

-t + ax ay a x2 3y +SI(x,y) (23)

which is the same form exactly as the energy equation that

CONRAD program can handle.
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A brief description of the CONRAD program can be

found in Appendix A.



TABLE II. Differential Equations for Source-Sink Approximation

1. Longitudinal Section (Center Line)

Continuity: u + = 0ax ay

Energy: +(u + a(ve) 3a28 a2 e
Energy t ax ay ax2

2. Transverse Sections

a6u 86wContinuity: + - 0ax az

Energy: 0' = 0+60

ae' a(6ue') a(6wo') 3a2 ' a28'
at ax + az ax2 + 2 + SIT

Source-Sink Sa 2

Function T ax2 L

3. Longitudinal Sections

Continuity: a(u+6u') 3(v+6v') 0
ax ay

Energy: 6" = 6'+66'

ae" a[(u+6u')e"] + [(v+6v')o"Ja _ + 3[(u+6u') l + a [ (v+6v') 6"11
at ax ay

a28" +a 2 e
3X2  ay2 + SIL

Source-Sink a2 '
Function L ax2 IT T

Biharmonic Equation* 1 V2 + (uV2*)+ VV2N r at ax ay [

S-N a+ v) + L(P )RA ay ax ax ay ay

*Appropriate velocity components and coordinate system should
be used in conjunction with the above energy equation (e.g.
for transverse sections, u,v,y are replaced with 6u,6w and z
respectively.



IV. NUMERICAL CASE STUDY

This chapter provides a description of each of the per-

tinent numerical runs made in the course of this investigation.

To demonstrate the capability of the source-sink approximation

method, a test case was first run with a Rayleigh number, 107 ,

corresponding to the industrial glass furnace. This test case

was chosen so that they compared with the Clomburg results for

a Rayleigh number of 106, all other parameters being constant.

Since there exist no appropriate experimental data, a scaling

law was developed to compare the two results.

Next, an extensive application of this method was

attempted to a problem with non-dimensional parameters of

interest to industrial glass furnace operation. The proto-

type actually modelled is related to a green glass furnace

to retain the salient aspects of an industrial glass furnace.

A. Test Case

Numerical results demonstrating the capability of the

source-sink approximation method are presented. Clomburg (4)

carried out several numerical runs for the transverse section

to investigate the effect of thermal boundary conditions on

the flow patterns with Rayleigh Number -106. The effects

of bottom and side wall heat transfer coefficients and

internal heat generation or removal were investigated. His

numerical runs were repeated with an increased Rayleigh

number, 107 . The geometry and boundary conditions are shown
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in Figure 6. The dimensionless parameters common to

both cases are listed in Table III. The transverse section

is made somewhere in the open area of a furnace, that is,

not under the batch cover. Energy supplied through the top

surface at a specified rate provides energy for the heat

losses through the sides and bottom (heat transfer coeffi-

cient, Nu, and ambient temperature, eA , specified), and also

for the enthalpy gains (i.e. source-sink functions) of

material being heated as it passes through the plane of the

figure in the third dimension. For these runs, the no slip

hydrodynamic boundary condition is used.

TABLE III. Summary

System Parameters

Value

Run Number I

Wall Nusselt #,
NNuw  .0275

Bottom Nusselt
#, NN .1340

Top Heat Flux,
q* .1305

of Common Parameters for Test Runs

NA

2.0

I N x102 N.

RC NPRX10-2 Nvis

0 4.85 13.5

II III

.0275 .0546

.1340

IV

ambient

.189

V VI VII

.0275 .0275 .0275 .0546

.1340 0.0 0.0 0.0

.2618 .2841 .0223 .0723 .0723 .0443

Internal gen-
eration rate
(average) *

0.0 -.1309 -.1309 0.0 -.05* -.05

*A linear distribution with depth was assumed, i.e. 0 is
+0.02 at the surface and -0.12 at

0.0

0.0

the bottom.
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Because of the symmetry of the problem it is necessary to

carry out the calculation for one-half of transverse sec-

tion only.

A grid with uniform spacing is not satisfactory in

problems with boundary layers (15). In order to have the

number of points large enough to resolve the boundary layer

(at least three points in it) (11, 16). A non-uniform grid

was obtained from the stretched coordinate system. For the

present problem, the selected stretched coordinate systems

are

x = sin2(j E) for x direction (1)

and z = n2 for z direction (2)

Equation (1) is symmetrical about ý=0.5. It is a con-

venient stretched coordinate, when a boundary layer is

expected at both x=O and x=l (i.e. one at the top surface

and the other at the bottom of the furnace). The grid system

thus obtained is the nonuniform 15x16 grids, which is in

contrast to the 10x20 uniform grid (10xl0 grid for half plane)

employed in Clomburg's case. More often than not, oscillat-

ing stream lines and isotherms were obtained when the coarse,

irregular net was employed (14). Some authors (20) suspect

that the computed flow pattern became much simpler when the

solution was repeated with a uniform grid. Throughout the

course of computation, the 15x16 grid system was employed

for transverse section in order to suppress these types of



spurious effects.

During the execution of each run on the IBM 370 model

165, the calculations were terminated and the temperature

and stream function field was punched out on deck cards

after 200 iterations. Complete intermediate printout was

obtained every 100 iterations with transient values at the

maximum stream function point being calculated every iter-

ation. Normally, rapid convergence was obtained after 150

iterations. To ensure a steady state attainment, computa-

tion was terminated when the following requirements were

satisfied:

(1) temperature residual should be less than 10-2

or 10- 3 throughout the field. The temperature residual

is defined as

RT(I,J) = -V·V .. + v2e .. + S.. (3)

In this way, the resulting energy balance always shows less

than 0.5% closure of the heat input to the furnace.

(2) Transient temperature and stream function values

should converge within an arbitrarily small range at or

near the point of maximum stream function.

In some cases (usually with large bottom heat transfer

coefficient), the requirements for percentage closure of

energy balance was not satisfied after 200 iterations. In

those cases, the punched output was put in as initial

condition and the temperature field was advanced with the



flow field being frozen. Then the results obtained were again

read in to solve the coupled energy and flow equation until

the above requirements were satisfied.

The results are summarized in Table IV with Clomburg's

case.

TABLE IV. Comparison of Test Case Results

Clomburg's Case T]
Rayleigh Number 106

his Study
107

Grid System 10x10 uniform grid 15x16 Grid

Run Number Maximum
6

I (636)* 1.061

II (641) 1.099

III (642) 1.105

IV (637) 1.008

V (639) 1.024

VI (640) 1.029

VII (645) 1.015

*The numbers in parenthesis
Clomburg's thesis.

correspond to the run number in

The effect of the parameter changes appeared qualitatively

similar to those reported by Clomburg. The results may be

summarized:

Minimum
6

.944

.924

.919

.992

.984

.979

.983

Total
Circu-
lation

.249

.160

.301

1.72

.769

.534

1.924

Maximum
8

1.098

1.158

1.162

1.007

1.023

1.029

1.014

Minimum
6

.980

.975

.969

.993

.986

.980

.987

Total
Circu-
lation

.303

.173

.335

2.81

1.269

.815

3.078
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(1) Effect of bottom heat loss: Relatively large

bottom heat transfer coefficients (Runs I, II, III) have

the effect of generating nearly horizontal isotherms, which

tend to decrease the circulation rate. In these cases, the

increased Rayleigh number raises the temperature throughout

the field, though it does not show any significant change in

the circulation rate compared to Clomburg's case. When the

bottom is insulated, the circulation rate is increased, but

the temperature distribution shows little change at all.

(Runs IV, V, VI, VII). A scaling law derived on the basis

of order of magnitude analysis can be used to estimate the

circulation rates from the known results at different Ray-

leigh number (Appendix B).

(2) Internal heat absorption: Its existence tends to

stabilize the flow (comparing Runs II and V with Run IV).

The effect of linearly distributed sinks (RUN VI compared

to V) shows that the circulation rate is decreased due to

the higher removal of heat near the bottom. In the case of

high internal absorption and high bottom losses (Run II, III)

the circulation rate appears to be proportional to the side

heat flux.

By and large, the contour plots of streamlines and

temperature fields appeared similar in shape in both cases.

It is instructive to compare the circulation rate to the

estimated value from the known results at different Rayleigh

numbers. Order of magnitude analysis (Appendix B) shows the
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scaling law can be applied for the case of the bottom insu-

lation (7):

Ra / 4 = Ra / 4 (4)
Pr

For the case under consideration, it may be written as

*2 = [Ra 1/4i*1 Ralj

or *2 = 1.778 x *1 (5)

The estimated circulation rates are listed in Table V. Even

though the effect of top heat fluxes are ignored in the

course of derivation, a good agreement was obtained between

the calculated and the estimated values.

TABLE V. Comparison of Calculated and Estimated Circula-
tion Rate

Run Number *max, Calculated 9max' Estimated *cal/est .

Ra=106  Ra=10 7

IV 1.72 2.81 3.06 .92

V .769 1.269 1.37 .93

VI .534 .815 .95 .86

VII 1.924 3.078 3.42 .90

B. Simulation of Green Glass Furnace

In this section, an extensive application of the method

is presented. To retain the salient aspects of an industrial
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glass furnace, the modelled prototype is closely related

to a green glass furnace. Ideally, a complete, three-

dimensional model of a glass furnace should be geometrically

and dynamically similar to the prototype. However, complete

duplication of the prototype is an unattainable task. Thus

we are forced to seek a compromise between practicability

and exactness. According to suggested simplification (4),

the following assumptions were made:

(1) The circulation of glass melts in furnaces are

considered as those of a purely viscous fluid in a rectangu-

lar enclosure. Therefore the effect of bubbles and chemical

reaction will be neglected. Furthermore, no fluid through-

put is permitted for simplicity.

(2) The radiative heat transfer is described with an

"effective" thermal conductivity according to the Rosseland

diffusion equation (_9).

(3) The temperature dependence of properties are only

applied to the density and the viscosity.

(4) The flame-side and the melt-side energy transfer

are decoupled. The batch-cover, as a plane of extent L,

is maintained at specified sink temperature Ts, representing

the bottom surface temperature of the batch. The flame side

radiation is idealized by a specified energy flux, q

However, these simplifications may be refined to allow the

spatially distributed temperature and energy flux.

(5) The end walls and bottom of the furnace are assumed
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to lose heat to a sink at temperature TA. Therefore the

overall heat transfer coefficient U will be used.

1. Evaluations of Parameters

With the above simplifications, the relevant physical

properties and dimensions for the green glass furnace are

listed in Table VI. For nondimensionalizing the equations

and evaluating the physical properties, the reference tem-

perature was selected at an intermediate temperature be-

tween the maximum and minimum values prevailing in the

furnace. At the batch cover, the temperature assumes

somewhat higher value than the melting temperature of raw

materials. The relevant physical properties are calculated

based on the available experimental data.* The viscosity is

highly temperature dependent. The experimental data shown

in Figure 7 may be expressed in compact form.

oeE(1/T-1/T o ) (6)

The variation of density with temperature was assumed to be

linear.

P = PO[1-8(T-T o )] (7)

The experimental data, as shown in Figure 8, is well fitted

with 8a2.75xl0- 5oR- 1 .

Next, the effective thermal conductivity is calculated

following the procedure by Hottel and Sarofim (9).
*From the private communication of N.W.E. Curlet with

R. L. Curran.
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TABLE VI. Dimensions and Properties of Green Glass Furnace

Dimensions:

H Height of furnace

L Length of furnace

W Width of furnace

B Length of Batch coverage

Properties:

T o ,T R  Reference temperature for
properties

TA  Ambient temperature

T Effective batch temperature

o0 Viscosity

E Viscosity variation coefficient

Po  Density

a Volumetric expansion coefficient

c Heat capacity
P

k Thermal conductivity

ke  Effective thermal conductivity

Heat Transfer Coefficients at:

Bottom UB

Bridgewall UBW

Doghouse wall UDW

Side walls USW

3 3/4 ft

22 1/2 ft

11 1/4 ft

11 1/4 ft

25000 F (2960oR)

1000 F

2785OR

3.841x104 lbft hr

3.997x104 OR

145.2 lb/ft3

2.75x10-5 /OR

0.39 Btu/lboR

0.7 Btu/hr ftOR

9.0 Btu/hr ftOR

0.138 Btu/hr ft20F

4.0 Btu/hr ft20F

1.11 Btu/hr ft20F

0.4566 Btu/hr ft20F
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The radiative heat transfer coefficients are obtained using

the Rosseland mean absorption coefficients from the equation

k 16 2 T3 i df* (8)rad 3 Ko A

where

1 E
= (i) dX (9)

The function f* is given in terms of AT/C 2 as shown in Figure

9. If the relationship between the absorption coefficient (K)

and the wavelength (A) is expressed as a number of discrete

step functions, the effective radiative conductivity may be

calculated

16n2oTkrad 6n2 T3  (f*-f* )/K (10)rad 3 1i i-1 /Ki

Experimental absorption coefficients data at 1623°K (with

n = 6.35 mm) are also plotted against the wavelength in

Figure 10. From these data, the summation terms amount to

0.475. Thus,

krad = 16 (1.52)2(1623) 3(1.356) (0.475) (11)rad 3
= 0.0339 cal/cm sec *C

= 8.2 Btu/hr ftOF

Finally, the effective thermal conductivity is calculated by

summing the true thermal conductivity and the radiative

conductivity. Therefore
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k = k + k (12)e rad

= 8.9 - 9 Btu/hr ft OF

The nomenclature of the preceding equation is that of Hottel

and Sarofim (9).

Heat loss to the ambient can be expressed in general

form

Ti -T o
Q = = hCR (To-TA ) (13)

where Ti , To and TA are the inner wall, the outer wall and

ambient temperatures, respectively, and t and k denote wall

thickness and its thermal conductivity, respectively. The

empirical relation exists for the radiation and conduction

heat transfer coefficient, hCR :

3
T +T

h = 0.22 (T -T )/3 + 4C( A (14)CR o A2

where a is the Stefan-Boltzmann constant, 1.714x10-9 Btu/ft2OR4hr.

The overall heat transfer coefficients are readily obtained by

combining above two equations.

u - (15)Ti-Ti A

The boundary heat transfer coefficient listed in Table VI are

determined from wall construction and wall temperature mea-

surements following the procedure described above. It is

assumed that 10 per cent of the heat supplied is lost through

the side walls.
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From the furnace data and the physical properties of the

glass in Table VI, the dimensionless parameters and boundary

conditions which are required for the numerical algorithm

were calculated. These are shown in Table VII. The heat

source from the flame side is a uniform flux to the top

surface and is considered as the sum of the heat losses to

the batch and the heat losses to the various walls and bottom.

(Q=1.695x106 Btu/hr).

2. Numerical Run for Longitudinal Section

It is implicitly assumed that the transverse section

convective flows are a pertubation of those in the longi-

tudinal section. Therefore it is logical to obtain the

longitudinal section flow patterns prior to the application

of the source-sink method to the problem. In doing so, the

evaluation of 4 term is required. As already mentioned,

this term was specified as the uniformly distributed point

heat sinks through the longitudinal section.

2q*
Thus, 'P -Asw = 0.09427 (16)

T

where ten percent of the heat supplied from the flame side

is assumed to be lost through both the side walls. Examina-

tion of this assumption reveals that the longitudinal section

results obtained in this way may represent the centerline

section at most.



TABLE VII. Dimensionless Parameters for the Green

Parameters

Rayleigh Number, Ra

Definition

gaH3 TR
VReR

Value

4.26x107

Prandtl Number, Pr

Nusselt Number, Nu

at Bottom

Bridgewall

IRCp/keR 1.66x103

UH/keR

NuB

NuBW

Doghouse wall NuDW
Side walls NuSW

Viscosity Number, NV

Ambient Temperature, eA

Heat flux to top, q*
F

Batch Temperature, 0

Aspect Ratio, A

Longitudinal Section AL
Transverse Section

Batch Coverage, C

Reference Temperature

AT

E/TR

TA/TR

qH/keRT
R

T /TRs R

L/H
W/H

B/L

0.0575

1.666

0.4625

0.19025

13.5

0.189

1.8854

0.9409

3

0.5

29600 RTR=T

_ __ Glass Furnace
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The boundary conditions are specified with C=0.5 and AL= 6 .0.

y=0 Ox<l = 0 = NuDW (86-A) (17)ax ay Dy DW A

y=6 0<x<l *= - * =- 0 = Nu (6- ) (18)-x yy ay BW A

0<y<3 x=0 3= 2 = = 0 8 = e (19)ax2 Dy s

3<y<6 x=O a* -"-= = qF (20)Wy 3x2 ax 9F

O<y<6 x=l _3 - = 0 - Nu 0 ) (21)- -x ay ax B A

Above, stream functions are arbitrarily chosen as zero at all

points on the boundary. The second derivative of stream

function in equation (20) was set to zero to represent shear

free surface condition on flame side zone.

We expect rapid temperature variations at the two end

walls and near the terminus of the batch cover along the top

surface. This suggests some refined grid system in y should

be used for these boundary layer zones. Since it is difficult

to produce such grid systems by a stretched coordinate system,

the irregular grid system in the x-direction was refined in

the regions near the side walls and near the transition zones

between the flame-side and the batch cover. The values

Ax, Ay, and Az used in this study are listed with the zone

number in Table VIII. (The coordinate systems, Ay and Az,

were obtained by the stretched coordinate system.)



Size Versus Zone Number

Number of
Zones, *

(34)

(33)

(32)

(31)

(30)

(29)

(28)

(27)

(26)

(25)

(24)

(23)

(22)

(21)

(20)

(19)

(18)

Ay(I)

(N = 15)

.0192

.0377

.0547

.0696

.0819

.0910

.0966

.0986

.0966

.0910

.0819

.0696

.0547

.0377

.0192

*Numbers in brackets represent the zone number in x-direction.

Ax(I)

(M = 34)

1

2

3

4

5

6

7

8

7

10

11

12

13

14

15

16

17

0.002

0.004

0.006

0.008

0.01

0.02

0.03

0.04

0.04

0.05

0.05

0.05

0.05

0.05

0.04

0.03

0.02

Az(I)

(K = 16)

.0078

.0156

.0234

.0313

.0391

.0469

.0547

.0625

.0703

.0781

.0859

.0938

.1016

.1094

.1172

.0624

TABLE VIII. Zone



Results and Discussion

Computed isotherm and streamline maps are shown in

Figure 11.

Except near the end walls and along the top surface,

temperatures vary only slightly within the melt. The most

extreme temperature gradients exist under the flame side

where energy is absorbed by the convection currents, and

under the batch where it is released to the cold input

material. Significant temperature gradients also exist near

the dog house wall (left hand side wall) and the bridge wall.

The effects of side wall heat loss are twofold: first, the

intrusion of the extreme temperature gradient under the batch

cover is much depressed comparing to the results obtained

without side wall heat loss 4 (cf. discussion of Clomburg

(4) and (13)) and secondly, the horizontal temperature profiles

show slight curvature as they approach the bottom. Without the

side wall heat losses, this temperature profile is nearly

stratified down to the bottom surface except the corner zone.

The stream function field indicates the flow pattern.

Crowding of the streamlines denotes region of high velocity.

The largest horizontal velocities occur in the terminus of

the batch cover. As indicated from the isotherms, this

region corresponds to thermal couple between the flame

side and the batch sink on the top surface, which provides

the principle driving force for the flow. This driving

force is further enhanced by the heat loss through the
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Figure 11. Computed Isotherms and Streamlines for
Longitudinal Section--Centerline (Run 119)
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dog house wall, thus creating the large circulation cell.

Therefore, the function of this cell is to convect energy

from the flame side to the batch, the sink and to the large

portion of the molten glass. This larger cell also plays

a role in driving the smaller auxiliary cell. Principally

driven by bridge wall loss, this smaller cell flows downward

along the bridge wall. An energy balance on the longitudinal

section gives some indication of the validity of the numerical

solution. The heat losses on the various boundaries are

shown in Table IX. As would be expected, the major heat

losses occurred on the batch zone and along the bridge wall.

In conjunction with the side walls heat losses, it should be

noted that its inclusion as uniformly distributed point heat

sinks serves to displace the maximum stream function point

to the region farther from the dog house wall than without

1. (In previous cases, the maximum stream function points

are always shown near the left hand upper corner (17)).

Since the side wall heat losses are affected by the convective

flow, it suggests that some portion of the longitudinal flow

changes its direction to transverse flow.

3. Numerical Run for the Transverse Sections

Because of the symmetry of the problem, it is neces-

sary to carry out the calculation for the half plane only.

Therefore, aspect ratio is specified as AT/2=1.5. The

boundary conditions are:
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TABLE IX. Dimensionless Energy Balance for
Longitudinal Section

Heat Loss to Batch

Heat Loss to Doghouse Wall

Heat Loss to Bridge Wall

Heat Loss to Bottom

Heat Loss to Side Walls

(as heat sinks)

= - 3.4264

= - 0.3207

= - 1.1188

= - 0.2224

=- 0.5656

TOTAL ENERGY OUTPUT

TOTAL HEAT INPUT (From Flame Side)

= - 5.6539

5.6562

% CLOSURE ON TOTAL BALANCE = 0.04%



z =0 0<x<l

z = 1.5 0<x<l

0<z<1.5

a* - aý - 0
ax az

ax _ a2p 0
ax az2

Da - Nu ( 6' - 6 ) (22)

=a 0_
az (23)

x=0

(1) Batch cover

(2) Flame side

0<z<l.5 x= 1

a a - = 0ax az

a2*x a* 0
ax2 az

ax az

0' = eS

- - = q

(24)

(25)

- - NuB ( 6 ' - A)ax B A (26)

It should be noted that the solutions show symmetry about the

centerline z=1.5. To obtain a complete transverse section

solution, we can take advantage of this symmetry property,

such that

*(x,z) = -*(x, AT - z) O<z<1.5 (27)

e'(x,z) = e'(x, AT - z)

is preserved by the equations.

Source-sink functions are assumed constant along the

z-direction and may be obtained by using a central dif-

ference formula which is second-order correct.



SI(i,k) _ -2_ i-j* ifj*
L Ax - Ax. + AxiS ix1  -1 i-2

8 - 8
+ i+l,j* i,j*) - (28)Ax + Ax.i-i 1

for 3<I<M

where the superscript stars in the indices refer to the

specified longitudinal section. If the zone in question

is adjacent to a boundary, that is i=2, M+l, the correct

formulation may be obtained by letting Ax o=AxMPl=0. Along

the boundary, all source-sink functions are set to zero.

For several positions in longitudinal sections,

source-sink function values are calculated from equation

(28), which are listed in Table X. It shows that most of

the heat source regions exist under the batch cover and

that the largest sources are located near the terminus

of the batch cover. Clearly, the largest energy transfer

to a third dimension also occurs between the top surface

source/sink pair, even though this relatively large source

is confined within a narrow depth (x=0.04). It is inter-

esting to note that the other heat source regions appeared

to correspond to the small circulation cell and the

appending small cell (at the lower left corner) of the

longitudinal section flow. Furthermore, total strength of

source-sink functions for any transverse section is nearly

constant under the flame side, but increases along the

y direction under the batch cover.



Source-Sink Functions for Transverse Section

Run Number

y =

Region

x.
1

0.2509 1.2129 420.54 -7.8776 -14.3776

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Total
Strength*

0.5851

0.5155

0.3289

0.3032

0.6187

1.7438

0.3592

-1.1176

-1.1868

0.1879

0.3543

-0.1541

-1.5704

-2.3759

0

0.07053

3.5846

3.0624

1.0076

0.4300

0.8358

0.6734

-0.4219

-0.5513

-0.3529

-0.1761

-0.0823

-0.0993

-0.0741

-0.0396

0

0.3220

36.011

-3.9676

-3.6935

-1.0293

-0.0763

-0.0362

-0.2143

-0.2177

-0.1721

-0.1578

-0.1537

-0.1234

-0.0730

-0.0284

0

-12.3046

-9.5817

-4.8722

-1.9207

-0.5285

-0.0793

-0.0075

0.0642

0.0617

-0.1452

-0.3748

-0.4156

-0.2829

-0.1202

0

-10.7081

- 7.7614

- 5.2606

- 1.7710

- 0.9519

- 0.1096

+ 0.1671

0.2999

0.5622

1.0570

1.4264

- 0.4215

- 5.0604

- 5.8778

0

8.6774 -1.8483 - 1.8512

of source-sink function (*= .1

No. 11

0.054

Batch

No. 31

1.111

Batch

No. 6

2.940

Batch

No. 3

4.590

Flame

No. 15

5.904

Flame

TABLE X.

SI(I,K)*Ax(I)



Results and Discussion

Table XI summarizes the computed output data for the

five different transverse sections, for which source-sink

functions are defined in Table X. Computed isotherms and

streamline plots are shown in Figure 12, 13, 14, 15 and 16.

In these runs, 15x16 grid system is defined by stretched

coordinate systems was used. For the acceptability of

results, fairly stringent criteria set forth for the test

case were used.

Table XI and five figures show that, by and large, the

flow patterns in transverse section can be identified with

two distinct zones: zone with two circulations and with

one circulation zone. And the two zones are almost exactly

corresponding to the batch cover zone and flame size zone,

respectively. Several authors (4, 18) have already studied

the flow patterns under the flame side zone. The qualitative

descriptions are apparently in agreement with those authors

and can be read in their papers. The flow patterns under the

batch cover will be explained in the subsequent section.

As would be expected, the circulation rate in the

transverse section is quite small compared with that for the

longitudinal section. Under the flame side zone, circulation

rates are almost constant for various sections and the mag-

nitude is approximately 1/40 of that of longitudinal section

(4*=1.15 vs 42.13). It is quite evident then, that the

heat supplied by the flame side is mainly transported into
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0 MAX =0.943 OMIN= 0.816 AG =0.007
K .9409

.943

.936

.898

.884

.870

ISOTH ERMS

,MAX = 6.09 MIN =-0.015 AT = 0.61

STREAMLINES

Figure 12. Computed Isotherms and Streamlines
for Transverse Section --
y = 0.054 (BATCH)(Run 11)
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eMA = 0.95 8 = 0.83 8

.9409
.958

.946

.898

.874

ISOTHERMS

MAX = 4.-57 YMIN, = 0.0 Ay =0.457

STREAMLI NES

Figure 13. Computed Isotherms and Streamlines for
Transverse Section -- y = 1.111 (BATCH)
(Run 31)
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EMAX= 1.040 EMIN =0.840 AG = 0.02
.9409 1.040

.960

.940

.920

.900

.880

.840

ISOTHERMS

'MAX = 1.56 jMIN = 0.0 A' = 0.156
i"I

STREAM LINES
Figure 14. Computed Isotherms and Streamlines

for Transverse Section --
y = 2.940 (BATCH) (Run 6)
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eMIN AO =0.031
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.957

.926

.895

.864

I.833

ISOTHERMS

FMAX = 1.13 8 'FMIN = 0.0 A• , =0.114

STREAM LINES
Figure 15. Computed Isotherms and Streamlines

for Transverse Section --
y = 4.590 (FLAME) (Run 3)
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Figure 16. Computed Isotherms and Streamlines

for Transverse Section --
y = 5.904 (FLAME) (Run 15)
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the batch cover zone through the longitudinal convection flow.

In other words, longitudinal flows under the flame side are

little perturbed due to the transverse section flow. The

streamline map (Figure 15) shows this feature. Here the maxi-

mum point of stream function is pushed down the side wall.

In Figure 16, which corresponds to weaker longitudinal cell

near the bridge wall, the maximum stream function point is

displaced upward.

When the longitudinal convective flow enters into the

batch cover zone and proceeds toward the doghouse wall, the

circulation rate in transverse section increases progressively

and finally reaches its maximum value (4=6.1) near the dog

house wall (Figure 12). The ratio of the transverse to the

maximum longitudinal flow ranges from 1/6 to 1/10. Here the

flow patterns are quite different from those of the flame

side. Two circulation cells are formed, the upper cell being

stronger than the lower one, (Figure 12 and 13) , and they

are in same rotation sense. Thus a stagnant region is

introduced in the mid-height to minimize the shear stress

between them. It is interesting to note that this shear

layer between each cell coincides with regions of relatively

large vertical temperature gradient, or conduction

(Figure 12 and 13).

This kind of shear layer zone was confirmed from

photographs and visual observations by Elder (6). Even

though he investigated convection flow in vertical slot,
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the flow regime under the batch cover has many resemblences

to his problem. Thus two inner circulation cells correspond

to his secondary flow. The most intriguing feature of his

study was the formation of tertiary flow. As the shear layer

becomes thicker, he observed that a new flow was formed which

formed a circulation with closed streamlines between the

secondary flow cells. The corresponding cell is also shown

in Figure 12, where minimum stream function value is negative,

though quite small (due to the large interval between stream-

lines used in stream function plot, this cell does not show

itself in this figure). While the primary and secondary flows

have the same sense of circulation (counterclockwise in the

figure) the tertiary flow is in the opposite sense (clockwise

in the figure).

Also indicated in Table XI are the maximum and minimum

temperatures and the computed heat balances for the entire

transverse sections. Here again, the distinction between

the batch cover region and the flame side region is observed

from their different heat sources. Particularly, under the

batch cover region, internal sources (positive source-sink

functions) are the only heat sources and all boundaries are

losing heat to the ambient and batch. Even though the melt

is thermally stratified almost everywhere, hotter areas of

fluid exist within the melt displaced from the top batch

surface, as shown in Figure 12, 13 and 14. This seemingly

unstable distribution of temperature (in view of two dimensional



problem) plays an important role on the formation of two cir-

culation cells, as will be explained in subsequent section.

The vertical temperature profiles at the symmetry line in

Figure 17 show this feature clearly.

The increase in transverse circulation rate toward the

dog house wall is clearly related to the distribution of

source-sink functions within the transverse section. It is

to be noted that in Table X, the position where maximum

source exists becomes progressively deeper as one approaches

the dog house wall, even though the total strength of source-

sink functions as well as the magnitudes of their maxima

decreases considerably along this direction. This fact

suggests that the magnitude of the circulation rate has nothing

to do with the magnitude of maximum source and the total strength

of source-sink functions, but with the distance between the max-

imum source and the primary heat sink (i.e. batch cover).

Physically, an increase in this distance makes effective Ray-

leigh number larger, which in turn results to increase circu-

lation rate. Furthermore, the position of source below the

sink (contrary to the flame side cases) is in favor of the

motion of fluid elements acting with buoyancy force.

4. Formation of Two Necessary Circulation Cells under

the Batch Cover

It is instructive to present a physical explanation of

the formation of two circulation cells.
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Consider a fluid particle in the boundary layer on the

batch cover and suppose that it is losing heat by conduction.

This loss of heat must be reflected by movement of the particle

to a colder part of the fluid. If there is stable vertical

temperature gradient (i.e. aO/ax<O), this will generally mean

movement toward the bottom. But, with the horizontal gradient

as well as an adverse vertical temperature gradient (see Figure

17), horizontal movement (w<o) will carry the particle to a

colder zone, i.e. side wall, and so it should move toward the

side wall.

When the fluid particle turns around the left upper corner,

two possibilities occur. A particle adjacent to the side wall

will continue to lose heat by conduction, thus moving along

the sidewall to the bottom. The situation is quite different

when the particle is closer to the hotter part of the fluid.

There is nothing to balance the inward diffusion of heat except

the horizontal convection toward the core region, which is the

only possible warmer region that particular particle can find.

This leads to the formation of upper circulation cell.

A fluid particle located away from both the side wall

and the bottom surface but in the lower half section exper-

iences a very slight gain of heat due to vertical conduction

of heat. At first, it is likely to move upward. However,

the horizontal temperature gradient along the side wall im-

mediately prevents this purely upward movement and induces a

horizontal convection flow toward the side wall. When this
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particle becomes in proximity to the side wall, heat loss to

this wall forces it downwards. Thus lower circulation cell

is formed.

The presence of hotter part of fluid within the narrow

top layer causes to make the upper circulation cell stronger

than the lower one. The interaction of two circulation cells

of same rotation sense needs some smooth transition change so

as to minimize the otherwise shear friction between them.

Therefore, in the mid-height fluids forms weak shear layer or

nearly stagnation point.

The horizontal velocity profiles are plotted against the

distance from the top surface in Figure 18. These profiles

are representative of the velocities at or near the maximum

stream function points (z=1.465). Under the flame side,

boundary layers are formed only near the bottom and down

the side wall. However, under the batch cover, flow reversals

occur in the upper half and lower half sections and the flow

is much stronger in the upper half than the lower half. In

the mid-height, the horizontal velocity components are very

small, as would be expected from above explanation.

5. Revised Results for Longitudinal Section

Only the centerline longitudinal section was investi-

gated to obtain various transverse section flows. In order

to construct a three-dimensional picture of the flow patterns,

it is necessary to study how the flow patterns in transverse

sections can influence on the various longitudinal section
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flows. This requires solutions of equation (21) in Chapter III,

where source-sink functions are defined.

SI 2 - SIT (29)L 3x2 T

In order to calculate the second derivative term, the glass

furnace is split of five basic regions, which are character-

ized by the thermal behavior of the enclosure: boundary layer

zone near the bridge wall, the stratified core zone under the

flame side, the transition zone between the batch cover and

the flame side, the stratified zone under the batch cover and

finally, the boundary layer zone near the dog house wall. The

representative flow patterns in transverse sections which

correspond to the above five basic zones have been investi-

gated in the previous section 3. From the pertinent tempera-

ture fields, five source-sink functions, SIL , were calculated

and assigned to represent each of the basic zones (i.e.

T = 36-28, 27-22, 21-15, 14-7 and 6-1). Two longitudinal

sections are chosen to perform numerical calculations. The

sections chosen are located at z=1.5 (centerline) and z=0.3751

(near the side wall).

The computed isotherms and streamlines are shown in

Figure 19 and 20. Compared to the original longitudinal

flow pattern (Figure 11), they show no significant change

in both temperature and stream function field. While the

maximum temperatures are slightly lowered, the maximum value

of stream functions show a small increase. The results
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may be expected from examination of source sink functions

employed, because all the boundary conditions are strictly

identical for three cases. For the original longitudinal

section, uniform source sink (0=0.09427) was assumed. For

the latter two cases, source-sink functions were assigned

different values in each grid zone, but they did not deviate

very much from the original 4 values. That is, the term

-_e2 '/ax2 is largely compensated by the term a2O/Dx 2 , result-

ing in the value of SIL which is almost equal to 0 values.

Comparison of two different longitudinal streamline plots

(Figure 19 and 20) showsthat maximum values of stream functions

are slightly increased as one approaches from centerline to

the side wall (4= 42.6 to 42.95). This cannot be fully ex-

plained. It may be caused by the crude zoning assignments.

Finally a picture of flow and temperature profiles

emerges from the careful combination of the transverse and

longitudinal results. In view of the above longitudinal

section results, there seems no further calculations are

necessary. The complete solutions may be further refined

when one insists on thorough calculations for every grid

point.



V. CONCLUDING REMARKS

An approximation method has been devised which describes

the three dimensional flow patterns in glass furnace as a

composite of two orthogonal two-dimensional solutions. In

order to suppress the extraneous motions due to non-uniform

spacing in grid, stretched coordinate system was used.

With reference to the derivation of source-sink function,

the intrinsic limitation and approximation demands that the

results should have to be checked by more rigorous solution

or by experimental data.

The extension of this method to the case of variable

thermal conductivity does not pose any difficulties. For

the more realistic simulation of glass furnace however, ma-

terial throughput should be incorporated in the proposed

method. In this case, stream function values should be

assigned along the boundary surfaces.

With the grid system 15x34x16 employed in this study,

the required computer time for the complete results may be

estimated about 25 min CPU time in IBM 370/Model 165. The

computing cost is not at all expensive, compared to the other

programs (for example, see reference (2)). Furthermore, it

can provide detailed descriptions on the transverse section

flow patterns.
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APPENDIX A. Description of CONRAD Program

The dimensionless equations describing the transport of

energy and momentum by source-sink approximation method are

summarized in Table II. Inspection of these equations shows

that the common fornsto be solved are:

The Energy Equation:

ao a(ue) a(ve) 82e (2136 3(u+ + a(v - 2+ 32e + S(x,y) (1)at ax ay ax2 ay2

The Biharmonic Equation:

1 aV29+ a + a (VV2+ -- (uv 2 9) + -(vV 2 )
NPr at ax ayPr

aT a aV2, 3 8V2\= - + a(v )+ ( (V (2)
Ra ay ax ax ay ay

where

u - and v =ay ax

which satisfies the continuity equation. The CONRAD 8

Program is designed to solve these equations. Basically,

the finite difference scheme used to solve these equations is

that described for CONRAD 7 in L. A. Clomburg's thesis (4).

The principal differences between CONRAD 7 and CONRAD 8 need

some mention on the material contained in this appendix.
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First, the terms necessary for the source-sink model of the

three-dimensional tank have been incorporated. To specify

the source-sink function as input fields, logical variable

LOGIC takes the value of 3. Also the type of source-sink

function should be specified by the new logical value LOGSS.

For typical problems to be solved under this method, LOGSS

assumes the value of 2 with UOLD = 0.0. With the sufficiently

reliable data on the x component of the velocities, designation

of u velocities can perform to calculate the term u6-- (forax
this purpose, LOGSS=3). As mentioned already, this term is

explicitly incorporated in the program. Thus it is to be

noted that the calculated results of this term always assume

the value one step behind the current time step. Next, the

computation efficiency is improved by the compaction of the

algorithm. This has been achieved through the calculation of

all the distance coefficients once in VGRID and the elimination

of the use of the function operators DXSQ, DYSQ, and the solution

routines, DIAG5 and THOMAS present in CONRAD 7. All these

operations have been incorporated directly into STREAM and

THICK. The result of this change shows a twofold decrease

in the computer time needed per iteration.

The alternative method for computing the iteration param-

eter applied to the energy equation is another feature of

the CONRAD 8. This parameter is not only computed indepen-

dently from the OPTIM, but also provides optimum value at

each node point to insure more rapid convergence of energy
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equation. For the coupled equations, CCONST=w should be

designated.

Lastly, a simple plotting routine has been incorporated

into the program to obtain a line printer plot of the tem-

perature and stream function fields thereby enabling one to

visualize the results more readily. Also the input of the

initial conditions and boundary conditions have been

generalized and simplified by changing the ICON routine.

Due to the above revisions in CONRAD 8, the logic flow is

somewhat different from CONRAD 7, and is outlined in Figure 2L

The MAIN program controls the operation of the entire algorithm.

Various input data are read in and various derived constants

are computed by the Main Program. Then the VGRID is called,

in which the variable grid size is read in, and the distance

coefficients for the derivative operators are calculated.

The subroutine ICON is followed and the boundary and initial

conditions and source-sink functions are read in or generated.

The initial transfer factors, viscosity, thermal conductivity

and velocity are then computed by calling SPEED. SUBROUTINE

OPTIM is then called to compute the iteration parameters BETAF,

BETAV and ALPHA. All the data which have been read in and

other derived parameters are then printed out by the subroutine

TITLE.

The principal computation loop is then entered. After

checking various control parameters for transient output,

time and iteration number, the time-step and iteration numbers
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are advanced and the updated transfer factors are computed by

calling SPEED. The energy equation is then advanced by calling

THICK and STREAM is then called to advance the biharmonic

equation. This results in new values of temperature and stream

function, and the entire process is repeated. The program is

terminated either when the maximum number of iterations has

been exceeded, or when the job time has been exceeded. Then

the final output is printed and plotted and punched on cards

for use in subsequent runs.

A complete listing of the CONRAD 8 program will be found

in the thesis to be published by N.W.E. Curlet.
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APPENDIX B. Scaling Problem of Natural Convection in

Transverse Section of Glass Tank

Consider the following geometry and boundary conditions

XIn •M late d

'I

/ .1ua~e

nsula ted
The equations describing the motion may be written:

Energy:

I I

3(uT) a (vT) a2T a2T
ax ay ax2 ey2

Momentum:

a(uu) + (uv)
+ - g BATax ay

a(uv) + a(vv)
ax ay

1 + +a (Vau
Po ax ax ax

1 a+ a (Vav
p 0y +x ax

a au+ - (va )ay ay

a av+ -(v-)Dy ay

Continuity:

au av
ax ay

= 0 (4)

The stream functions may be defined to satisfy the continuity

equation.

(1)

(2)

(3)

i·ýp ----

[I
X Y
x



u and v = -- (5)ay ax

The momentum equation may be combined to eliminate the pres-
sure terms with the introduction of vorticity w

a(u) + a (V) aT a2+v a 2w + (6)ax ay Dy xT y2

where

w = VxV = -V2* . (7)

Now we want to choose scaling parameters for normalizing these

equations for the following reasons:

(1) to scale the dependent variables to computationally

feasible ranges,

(2) to determine the dimensionless groups and the re-

lationship between these groups which describe the problem,

(3) to gain physical insight of the effect of these

groups on the system operation.

Obviously our choice of scaling parameters has to be based on

the region which is most important because there are different

modes of energy and momentum transfer in different regions.

In this case, we note that there are both hydrodynamic and

thermal boundary layers along the vertical walls. With large

Prandtl numbers, the inertia forces are indeed small compared

to the viscous forces. While the heat transfer into the fluid

can only be by conduction, heat transfer from the hot wall to

the cold wall is mainly by convection. It suggests that we
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should equate the conductive and convective transfer to be

consistent with the preponderance of viscous forces in fluid.

Suppose the thickness of the boundary layers on the

vertical walls is of order 6. From the boundary layer nature

of the flow at the vertical walls, 6 is much smaller than the

vertical dimension L. A balance between convection and con-

duction (in eq. 1) requires that

usT aT
L 62 (8)

A balance between buoyancy and viscous forces in (2) also

produces

vu
sgsAT = 62 where AT = T (9)

Combining (8) and (9) we have

R -1/4
6 a L where Ra = (10)L gaLva

Then the order of magnitude 4 of the stream function can be

deduced from the equationS) with equation (10)

Ra1/ 4  (11/4
= s = Pr = a (11)

Now, let us examine the core where the horizontal and vertical

space scales are the same, L. A balance between the convective

and conductive terms in (1), we get

u a
L L2 (12)

i.e. u L (s L (13)
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Thus

is - a and s ~ ~T (14)

This implies the equations to be solved should be

DT* 2T*
Dt= (15)

1 Dw* T*+
Pr Dt* Ray* (16)

which is the equation system that CONRAD 8 program can solve.

This is in contrast to the results obtained from equating

viscous forces with inertia forces:

DT* 1 V2T,
Dt Pr (17)

* GrT* + V2 where Gr = gL 3 AT
Dt BY* V2 (18)

This system of equations was employed by Chen and Goodsen (2)

to solve three dimensional model of an electrical furnace.

The inspection of equation (17) shows that it is clearly in

error at the boundary layer region where the conductive fluxes

are the only form of energy transport (though in an electrical

furnace, convective fluxes are not quite so important).
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NOMENCLATURE

Symbol

A

B

C

c
Cp

6u, 6v, 6w

E

g,g

H

K

k, ke,krad

L

UHNNu keo

N RagH 3 TR
Ra

a V
eo o

N vis=E/TR

n

P

Q,q

SI

T

t

U

Aspect ratio

Extent of batch coverage

Fractional batch coverage

Specific heat

Perturbation velocity components

Constant in variable viscosity law

Gravitational constant or vector

Height of furnace

Total a .sorption coefficient

True, effective and radiative thermal conductivity

Length of furnace

Dimensionless heat transfer coefficient (Nusselt

number)

Rayleigh number

Viscosity number

Index of refraction

Pressure

Total heat flux and local heat flux density

Source-sink function denoting internal heat

generation rate

Temperature

Time

Overall heat transfer coefficient



U,V,W True cartesian velocity component

u,v,w Three dimensional cartesian velocity component

v Velocity vector

W Width of enclosure

x,y,z Cartesian position coordinates

Greek

a Effective thermal diffusivity

8 Volumetric coefficient of thermal expansion

6,8 Dimensionless temperature

A Wavelength

Viscosity

v Kinematic viscosity

p Density

a Stefan-Boltzmann Constant

Internal energy generation rate (representing

side wall loss)

Stream function

W Vorticity

Superscripts

* Denotes dimensionless quantity

Denotes transverse section temperature or

velocity fields

Denotes longitudinal section temperature or

velocity fields



Subscripts

A

B,BW,DW,SW

F

L

R

T

0

Denotes ambient condition

Denotes bottom, bridge wall, dog house wall,

and side wall, respectively

Refers to flame side

Refers to longitudinal section

Denotes reference quantity

Denotes transverse section

Denotes physical property evaluated at

temperature T
o

Special Numerical Nomenclature

M,N,K Number of grid zones in the x,y,z direction

u,v,w Dimensionless velocities

x,y,z Dimensionless coordinates

Ax, Ay, Az Zone height, length and width

i,j,k(I,J,K) Subscript referring to the numerical coordinate

of a quantity

En Ordinate in stretched coordinate system



LITERATURE CITATIONS

1. Aziz, K., and Hellums, J. D., "Numerical Solution of

the Three-dimensional Equations of Motion for Laminar

Natural Convection", Phys. Fluids, 10(2) 314-324 (1967).

2. Chen, T.-S., and Goodsen, R. E., "Computation of Three-

dimensional Temperature and Convective Flow Profiles

for an Electric Glass Furnace", Glass Tech., 13(6)

161-167 (1972).

3. Chorin, A. J., "Numerical Solution of the Navier-Stokes

Equations", Math. Comp., 22, 745-762 (1968).

4. Clomburg, L. A., "Mathematical and Experimental Model-

ing of the Circulation Patterns in Glass Melts", Ph.D.

Thesis, Chem. Eng. Dept., M.I.T. (1971).

5. Crowder, H. J., and Dalton, C., "Errors in the Use of

Nonuniform Mesh Systems", J. Comput. Phys. 7, 32-45 (1971).

6. Elder, J. W., "Laminar Free Convection in a Vertical

Slot", J. Fluid Mech., 23 (11), 77 (1965).

7. Gill, A. E., "The Boundary-Layer Regime for Convection

in a Rectangular Cavity", J. Fluid Mech., 26 (3),

515-536 (1966).

S8. Gunther, R., "Glass-Melting Tank Furnaces", Soc. of

Glass Tech., England (1958).

9. Hottel, H. C., and Sarofim, A. F., "Radiative Transfer",

pp 331-337, McGraw-Hill, New York (1967).



96

10. Knudsen, J. G., and Katz, D. L., "Fluid Dynamics and

Heat Transfer", pp 101, McGraw-Hill, New York (1958).

11. Moore, D. R., and Weiss, N. O., "Two-dimensional Rayleigh-

BDnard Convection", J. Fluid Mech., 58 (2), 289-312 (1973).

12. Noble, J. J., "The Effect of Radiative Transfer on Natural

Convection in Enclosures - A Numerical Investigation",

Ph. D. Thesis, Chem. Eng. Dept., M.I.T. (1968).

13. Noble, J. J., Clomburg, L. A., Sarofim, A. F., and Hottel,

H. C., "Mathematical and Experimental Modeling of Circu-

lation Patterns in Glass Melts", Trans. ASME, J. Heat

Transfer 94 c(2), 149-154 (1972).

14. vonPeschke, J., "Computation of Convection Currents in

Glass Melts" (Berechnung von Konvektionsstromungen in

Glassmelzwannen), Glastechn. Ber., 38(7), 276-281, (1965).

15. DeRivas, E. K., "On the Use of Nonuniform Grids in

Finite-Difference Equations", 10, 202-210 (1972).

16. Schneck, P., and Veronis, G., "Computation of Some Recent

Experimental and Numerical Results in Benard Convection",

Phys. Fluids., 10(5), 927-930 (1967).

17. Spiegel, E. A., and Veronis, G., "On the Bousinesq

Approximation for a Compressible Fluid", J. Astrophys.,

131(12), 442 (1960).

18. Trier, W., "Relationship between Temperature Field and

Flow Field by Free Convection in Glass Melts", (Zu-

sammanhang zwischen Temperaturfeld und strimungsfeld

bei Freier Konvektion in Glasschmelzen), Glastechn.Ber.,

38(7), 282 (1965).



97

19. Williams, G. P., "Numerical Integration of the Three-

dimensional Navier-Stokes Equations for Incompressible

Flow", Fluid Mech. 37(4) 727-750 (1969).

20. Wright, S., and Rawson, H., "Calculation of Natural

Convection in a Rectangular Cell Containing Glass with

Specified Temperatures on the Boundaries", Glass Tech.

14(2) , 42-48 (1973).


