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ABSTRACT

The problem of analysis of gas dynamic problems in the transi-
tion region between free molecular and continuum conditions is treated
through anintegral equation formulation of the Boltzmann equation. The
troublesome collision terms are approximated by a collision model. It
is shown in a formal manner that this model can be made to give quan-
titatively correct answers up to any order in the Chapman-Enskog ex-
pansion. A preliminary solution of the problem of an expanding sphere
of an initially pressurized gas is obtained through a recursion relation
in time derived from the integral equation. The structure of a plane
steady normal shock is determined by iteration from the zero shock
thickness solution witha simple Krook's collision model used in the in-
tegral equation. The problem of heat transfer between parallel plates
at Knudsen numbers close to unity is solved by iteration from Lester
Lees' moment method solution and the use of a modified asymmetric
collision model. Preliminary experimental data determining the heat
transfer between parallel plates in helium was obtained for the whole
range between free molecular and continuum conditions.

Detail results for the expanding sphere case are obtained for
helium expanding into air with an initial pressure ratioof 18. The shock
structure for Mach number of 1.5 and y = 1.667 is calculated up to the
second iteration. The temperature profile between two plates at a
temperature ratio of 4 and Knudsen number of 8/15 is calculated in de-
tail for the first iteration. The experimental data is not of sufficient
accuracy to allow comparison between different theories but it does in-
dicate that the Lester Lees' moment method probably underestimates
the heat flux inthe transition range. All the theoretical results obtained
are reasonable and give cause to have confidence in the theory. A
great deal of further numerical work remains to be done before all the
implications of this theoretical approach are assessed and a definitive
judgement can be made as to its validity and usefulness.
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OBJECT

The Behavior of non-uniform gases in the range
between free molecular and continuum conditions is inves-
tigated. Theoretical analysis is carried out by means of
an integral equation formulation of kinetic theory. The
three different types of problems investigated theoretically
are initial value, macroscopic discontinuity and boundary
value problems. An example of a boundary value problem,
heat transfer between parallel plates, is also investigated

experimentally.
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I. INTRODUCTION

Until recent years, most if not all aerodynamic problems with
aeronautical application could be treated on the continuum basis. The
Navier-Stokes relations could be assumed as valid, and the transport
coefficients considered as quantities determined by interpreting exper-
imental information through the application of these same Navier-Stokes
equations. There is now, however, a whole store of éerodynamic prob-

- lems with aeronautical applications where the Navier-Stokes relations
do not hold, and the continuum approach is insufficient to explain the
physical phenomena. A

In trying to treat these problems analytically it is necessary to
determine the limitations of the Navier-Stokes equations and then look
for an alternative treatment outside the range of their validity. Since
matter is composed of molecules one way the range of validity of the
Navier-Stokes relations can be determined is through a theory on a
, rﬁolecular scale. In continuum theory the linear relation between the
stress and rate of strain tensors, or thé linear relation between the heat
flux and the temperature gradient is often "justified" by saying that these
are only the first terms of the Taylor's expansions for the stress tensor
and heat flux vector respectively. The use of these first terms alone
carries the implication that the successive terms have to be small.
Continuum theory, however, gives no easy reference to determine what
is a small gradient. Even the crudest kinetic theory gives the mean free
path as the proper scale by which to judge variations, and with very little
effort gives, at least qualitatively, the right behavior for the "coefficient" of
this "first term" of the Taylor series expansion. With a great deal of more
effort quantitative results can be obtained that agree well with experimen-
tal data. It is apparent, therefore, that to treat problems where the

validity of the Navier-Stokes relations is in doubt, one should turn to



kinetic theory provided, of course, the assumptions inherent in this
theory can be satisfied. This is, in general, true in neutral gases away
from the condensation point.

In a gas of sufficient rarefaction the molecules can be assumed
to be interacting with each other only over a small part of their time
and trajectory. In this case the concept of a collision, i.e., interac-
tion between particles in a finite time can be defined. Furthermore,
because of the sufficient rarefaction of the gas the collisions of more
than two particles at a time can be neglected because of their relatively
lower probability. Under these conditions the basic equation of kinetic
theory is the Boltzmann equation, and the fundamental unknown is the
distribution function. The distribution function is a probability density
of the number of molecules in the six-dimensional space of position and
velocity coordinates. The Boltzmann equation can be considered as just
an equation of continuity for this probability density, where the right
hand side is the effect of collisions.

Kinetic theory is, of course, an old subject and the Boltzmann
equation has been investigated over many years. All the initial attempts,
however, were directed toward explaining and justifying the continuum equa-
tions. The interest was mainly in showing that the kinetic theory formalism
will explain, on a molecular scale, all the well-known phenomena of gas
dynamics. This effort was culminated by the well-known book of
Chapman and Cowling l» in which formulas were obtained for the transport
coefficients in terms of molecular parameters. Since agreement with
experimental results was surprisingly good, to many aerodynamicists it
appeared that kinetic theory had fulfilled its purpose and Wwas now a com-
pleted body of knowledge.

The Chapman-Enskog solution, expounded in this book, is basi-
cally an expansion for the distribution function in inverse powers of the
collision frequency. Appropriate separation into terms of the same order
allows successive solution (at least in principle) of the next higher order
term in terms of the lower order ones. Though the lack of a direct proof
of convergence makes the theory mathematically incomplete, the imme-

diate success in applying its results to calculating transport properties
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to first order, gained it wide acceptance. The ability to obtain the
Navier-Stokes relations with quantitatively correct transport coeffi-
cients by means of this molecular theory is, of course, no small
achievement. It is unfortunate, however, that this success actually
discouraged people for many years from investigating many facets
of kinetic theory, that one now finds are not at all tractable by the
Chapman-Enskog method.

Although the limitations of the Navier-Stokes relations are di-
rectly appareént in the Chapman-Enskc;g solution, until recent years
not much was done in studying the cases when these limitations are
exceeded. The advent in recent years of great interest in rarefied gas
flows has prompted a much greater activity in this field. Of course
the range that has been investigated the most because of its relative
simplicity has been the other extreme, free molecular flow. This re-
gion is defined as the region of gas phenomena where the collisions of
molecules between themselves in the vicinity of a solid boundary are
so infrequent compared to collisions with this boundary that they can be
entirely neglected. Though problems of this kind can be treated quite
effectively on an intuitive basis by actually keeping track of an "average"
particle, they al'so‘ fit very well into the kinetic theory formalism. In
this formalism the free molecular range consists of solutions of the
Boltzmann equation where the troublesome right hand collision terms can
be neglected. The equation then has a single family of charaéteristics
and solution is, in principle, at least straight forward. There have peen
many particular problems solved in this range by many different tech--
niques, but the only really serious difficulty encountered has been the
inability to adequately describe the interaction at a solid boundary.

In an effort to bridge the gap between the Navier-Stokes region
and the free molecular region attempts have been made at expanding
from either side. Expansions from the continuum side are, of course,
obtainable within the Chapman-Enskog formalism. These second order
effects were actually computed by Chapman and Cowling in a particular
case and found to be small for normal pressures. The equations of con-

servation that result when "second order" terms are included are



commonly known as the Burnett Equationsz. They have recently been
applied to certain problems such as dispersion of sound at wavelengths
near a mean free path3’ 4 and found to be of dubious validity in spite of
tremendous mathematical complexity. In the case of the problem of
shock structu’re results obtained from these Burnett equations5 actually
are further away from availabie experimental results for low Mach num-
ber56 than the solutions obtained from the Navier-Stokes relations.
Expansion from free molecular flow was originally carried out
in a straight.forward manner by expanding in inverse i)owers of the
- Knudsen number. That this is inappropriate has since.been shown by
Willis7 who by an integral iteration method indicated fhat the near free
molecular dependence on Knudsen number is as logarithm of the Knudsen
number over the Knudsen number. Another method devised for near
free molecular flow was carried out by Lunc and Lubonskis. This is
based on entirely physical arguments and extends the range from free
molecular assumption by taking into account not only the particles that
strike the boundary from infinity but, also, the first collisions between
particles coming away from the boundary and those approaching it. This
method requires a large amount of "bookkeeping" to keep track of all the
particle; and does not offer much hope of extension beyond the first col-
- lision model.
| The most successful method of expansion from the free molecular
was carried out by Willis7. He transformed the Boltzmann equation
into an integral equation and then iterated by starting with the free mo-
lecular solution. This method, though possessing its own problems, has
at least a (certain amount of generality as well as possibilities of exten-
sion beyond'the first term. It has shown the inadequacy of expansions in
inverse powers of Knudsen number and has also been used to calculate
orifice mass flows that compare favourably with e:\'p‘erimentsg’ 10, 11.
A recent attempt at solution of problems in the transition range
that does not fall in any of the above categories has been carried out at

39a.nd Lavin40. This

Massachusetts Institute of Technology by Haviland
attempt consists of an application of Monte Carlo methods to following

the history of an individual molecule through a "field" of target molecules



whose distribution is previously assumed. All the possible "states" of
this probe particle are interpreted as a new distribution function, and

the process can again be repeated with this as the new distribution of
target particles. This method therefore consists of using a computer as a
piece of test equipment in simulation of actual physical conditions. The
method has an advantage of being able to accurately represent the
"collision" ‘process, but suffers from the necessity of calculating an
extremely large number of events. The results thus far obtained in Refs.
39 and 40 suffer lfrorn certain unexplained oscillations and certainly cannot
yet be interpreted as an exact solution to which all others have to be
referred, but the method does offer promise as a means of checking
particular cases of more approximate solutions if its great computational
difficulties can be overcome.

All the methads thus far discussed, aside from certain simpli- -
fications, have been in a sense exact. Exact, that is, in the fact that ari‘} R
expansion is exact provided all the terms are at least, in principle, calcu-
lable. They have all in one way or another, at least indirectly, solved
for the distribution function. In recent years, however, there has been

a lot of activity in trying to solve kinetic theory problems by the
| approximate moment methods. These moment methods consist of
taking velocity moments of the Boltzmann equation and integrating
over velocity space. The resulting moments are considered as state
variables; and the equations are called the moment equations. The
first three are the usual conservation equations but with heat flux
vector and stress tensor as independent variables. The next two mo-
ment equations can be considered as the equations for the stress tensor
and heat flux vector but will, of course, also involve higher moments.
The crux of the moment method consists of cutting off this series of
equations by assuming a distribution function with certain undetermined
parameters that are functions of space and time. By taking moments
of this distribution function and taking a sufficient number of the moment
equations to solve for all the undetermined parameters, one obtains the
distribution function to the best approximation within the original assump-

tions of its form. One cannot expect to have great accuracy for the



distribution function itself, but its moments, the physically meaningful
quantities, can be accurate as they, at the very least, satisfy the conser-
vation equations.

There are many variants of these moment methods but the differ-
ences consist only of different choices for the form of the assumed
distribution function. Probably the best known moment method is Grad's
thirteen moment methodl2 which consists of constructing the trial func-
tion by multiplying a Maxwellian distribution by a series of Hermite
polynomials and leaving thirteen arbitrary parameters. It gives results
that couple the stress tensor and heat flux vector but reduce to the proper
values in the Navier-Stokes limit. Many other variants of the moment
methods have been applied to particular problems by Gross, Ziering and
Jacksonl3’ 14, 15. Krook.l() gives a relatively general account of a
whole class of moment methods and discusses both the full and half mo-
ment methods. A most recent variant of the moment methods has been
suggested and applied to several problems by Leesl7’ 18. This differs
in an important way from the others by the fact that the form of distribution
function makes the macroscopic variables converge automatically to the
proper limits at both the continuum and free molecular regions, with
only a single assumed trial function.

Moment methods do, in general, have certain problems asso-
ciated with them. The arbitrariness of the choice of the trial function
and the lack of a really good test of accuracy leave some doubt as to
the validity of the results. The great complexity in taking into account
more than the first few moments also generally limits the accuracy of
the detail properties of the solution. Also, the necessity of either
changing the trial function or switching from full-moment to
half-moment methods to find solutions for the whole range of Knudsen
numbers, in all but Lees'method, limit their usefulness in studying
the "transition" regime.

Another development in kinetic theory in recent years has been
an attempt to fiﬁd models for the collision terms that do not require
detail analysis of the collision process. The analysis of an approach
to equilibrium by approximating the collision terms by a term propor-

tional to the difference between the distribution function and its equilibrium
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value has been known for a long time. A more recent refinement of this
to take into account the fact that the equilibrium distribution function may

19

itself be varying, has been carried out by Bhatnager, Gross and Krook
and carried on by Krook16’ 20. This model, known as Krook's model,
assumes that particles scattered at any point are scattered spherically
with a locally Maxwellian distribution. For the most used case, where
the collision frequency is assumed independent of velocity, one uses the
actual local density, temperature and velocity values for the Maxwellian
distribution; while for cases where the collision frequency does depend
on velocity, oﬁe has to use what one can call the collision density, tem-
perature and velocity defined by applying the conservation conditions.

The purpose of this thesis is to find a technique for solving fluid
dynamic problems right in the transition regime, i.e., for the whole
range of Knudsen numbers, in a way that will allow for increasing the
accuracy without excessive complication. To do this the Boltzmann
equation (or one with a model for the collsion term) is first transformed
into a purely integral equation. This integral equation can then, in
principle, be solved exactly for problems where the distribution func-
tion is known exactly at some time t, for all times later thant. In
general, however, this has to be done numerically and use of the full
collision terms precludes an easy solution. Furthermore, in steady
state pfoblems’ the distribution function is not known at any time t and
thus a direct solution is impossible. This can be circumvented by it-
“erating from an assumed solution until the answer converges.

To test the power of the integral equation approach, three types
of problems were solved by using it. An initial value problem of an
initially dense helium sphere expanding into much lower density air
has been solved numerically using the simple Krook's model for col-
lisions. An infinite space problem with large gradients of a normal
shock structure has been solved by iteration (to the second iteration),
using Krook's model. If the initial distribution function is assumed
discontinuous, the first iteration has a discontinuity in the first deriva-
tive, the second iteration in the second derivative, etc. A boundary
value problem of heat transfer between parallel plates is solved by
iteration (to the first iteration) using a modified asymmetric Krook's

model. Here to ensure convergence to the proper limits the iteration
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is started from a solution obtained by Lees' moment method.

The lack of any precise standard with which to compare pre-
cludés the possibility of conclﬁsively analysing the accuracy of the
results. Also the lack of a mathematical convergence proof for the
general case does not allow us to claim that exactness can be achieved
even with many iterations. The reasonable behavior and relatively quick
convergence in some of the cases carried out indicates that the methods
can be useful for analysing fluid phenomena in the transition regime. Much
further work needs to be done, however, before any statements can be
made about the exactness and power of the method. The use of Krook's
model, justified here because only the gross behavior of solutions was
desired, adds an additional indeterminate factor that has to be considered
in any accuracy analysis. It can be stated, however, on the basis of the
results obtained in this paper that the integral equation formulation of
kinetic theory can be applied with reasonable success to problems in the
transition regime of Knudsen numbers, as well as be very useful in
aiding physical intuition in analysis of problems that are not presently
tractable quantitatively.

In addition to the theoretical \;vork mentioned above an attempt
was made at measuring experimentally the heat transfer between
par.allel plates. over a wide range of Knudsen numbers. Because of many
technical difficulties with the experimental apparatus only preliminary
results are available. These consist of the medsured heat flux between
parallel plates in helium as a function of pressure. The experiments
cover the whole range between free molecular and continuum while
retaining a reasonably small ratio of radiation to conduction heat transfer.
The accuracy of the results is, however, not sufficient to determine if
the iterated solution is any improvement over the Lees' moment method
result, thus no attempt at comparison was made. The experimental results
are compared to the Lees' moment method solution in which the accomo-
dation coefficient determined from the experiment is used. The two results
are generally in agreement fhough the small range over which either
differs from the free molecular or continuum value almost guarantees that

any solution that goes to the correct limits is also reasonably correct

in between.



II. INTEGRAL EQUATION FORMULATION OF THE
KINETIC THEORY EQUATION

One of the big difficulties in trying to solve the Boltzmann
equation is the integro-differential nature of the equation. The right
hand side is a complicated non-linear integral of the unknown appearing
on the left hand, differential side. Even when models é.re substituted
for the integral term, the model parameters have to retain, at least im-
plicitly, some of their properties as functions dependent on the unknown
distribution. Since these parameters are, in general, velocity space
integrals, one still has an integro-differential equation in practice. Of
course the established methods discussed in the first chapter can be
applied to these equations with quite satisfactory results at the two ex-
tremes, continuum and free molecular. Behavior between these two
extremes, however, cannot, even in principle, be obtained without car-
rying excessively large numbers of terms in the expansions necessary.

It is therefore suggested that another possible method of solution
in the transition region, around Knudsen number of unity, be investigated.
This method consists of transforming the kinetic theory equation into a
purely integral form and then using some form of iteration starting with
a solution that goes to the proper limits at both extremes. The integral
equation formulation itself is only a formal transformation and was first
suggested by Jaffez1 long ago. It has recently been applied by Willis7’ 1, 22
primarily as iteration from free molecular flow, and in the particular
case of linearized couette flow23 has been solved’numerically for all
Knudsen numbers using an approximate collision model. The investigation
in this thesis is concerned with the analysis of general classes of fluid
problems in the transition range, i.e., in between free molecular and
continuum conditions.

The integral equation formulation is chosen because of its
explicit indication of the boundary conditions, as well as its expected

better convergence properties characteristic of integral iterations.
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Because of the lack of a general derivation of the integral
formulation in the literature, it is given here as a transformation of the
general Boltzmann type differential equation and then interpreted physically
and specialized to particular cases. The Boltzmann type equation is
considered where the right hand side is identified only as the net density
of particles scattered into the phase space volume per unit time as a

result of collisions. The eguation can be written as:
éé?f" + U (Vrf')-l} +a"<vu-'§).,- =
P(#,%,t) —VEG) FE5Y (1)

This is now a general kinetic theory equation valid whenever
the concepts of discrete collisions are valid. ' P (-7"; (7') t) is
the number of molecules scattered into the phase space volume
J.# per unit time, and ‘))(#“)I}}*b) is the collision frequency
of particles of velocity (7' at the point 9* . The Boltzmann equation

can be obtained by substituting

PEeY)= ; fa'(Jz)y £33) f(z32) dndw (zx-2)

and
V(e7e) = [[ota)g £33 dad’® (TT-3)

where 0’@7.) is the differential collision cross section
7=Iﬁ-w'=lﬁ'—ﬁ7'1 the magnitude of the relative velocity

! designates conditions before collision
- -2y . . . . .
V, W and v, Ware the four velocities involved in a description of
a binary collision.

Any other model for the collision process can, however, be in-

corporated into the formalism by identifying ,P(’i-:i"j't)and V(’?‘;P’;"’}

through their dependence either on f(-‘;‘;?}t)or the macroscopic variables

10



incorporated into an assumed function of 5’ . Mathematically the
assumption underlying this formalism is that .P and ¥ are both finite.

It is \ﬁell known that [ % and 3 as defined in the Boltzmann equation case
are actually infinite for Maxweliian particles while ?‘Vf is finite. This
can, of course, be fixed by limiting the integration to collisions that
alter the momentum beyond a certain minimum. Since both for physical
reasons and for mathematical consistency, required to retain the def-
inition of a "collision" , P and V should always be finite, the splitting of
the collision term should be possible in any practical problem‘.

For brevity let us call the differential part of the equation:

Df = 5, 7.wf) +dGfs (T

Here it is desirable to give a word of caution about the meaning of the
symbols. By ¥,f one means in this nota'tiOn@‘,f)f,’ i.e. the gradient
off in 7 space while holding ?fixed in magnitude and direction. As
long as in the description of both ¥ and™ a fixed direction in space is
used as a reference, this definition corresponds directly to the usual
gradient 6perator Vf . If, however, as is often desirable U is defined
by essentially giving its direction relative to # and 7 space has a cur-
vature, than (V,- )a'does not necessarily correspond to the usual gradient.
The usual gradient has the physical meaning of taking the derivative in
T‘space while keepmg v constant as defmed relative to '75 while (V.,- )‘,-
is the derivative in 7 space wh11e keeping o .constant in absolute space.
It is obvious that there will be a difference between the two equal to the
change in the function due to the change in T relative to 7 . Thus (V-,- )}
can always be interpreted as {7, - (V,'?)ov,, . Thus when U is defined
relative to 7, then V,-‘; exists when there is coordinate curvature.

It is possible to take the equation

gf-p-»r @

11



and directly integrate, but integration over?-z’f which remains
finite for all non-uniform conditions gives integrals that diverge as
the volume in physical space is increased. A better approach is to
use an integrating factor and thus effectively transfer Vj: to the left
hand side.

Let
g#Tt) = £@BY exp(l2(3E2) (z-¢)

then

:%f = 3?5-%/’(‘-9—) - f%—% = P- ﬁf (H'i)

This can be satisfied by the two equations

i‘%—% — 2  and g_tg. = Pexp(2) (T-8

separately.

Thus, to transform the equation into a purely integral form only,
the inversion of the %t is required, i.e., the Green's function for
the operator °O/°ﬁt . For the case of no external forces i.e., a=0
this can be done in a straight forward manner. |

Consider the equations

8+ vov, 0= W) | (z-9)

%’g(":ﬁ) r P GER) = - ST H2) S(2-8) (I

12



The minus sign in the equation for the Green's function is a result of
the fact that the operator is not self-adjoint, but rather the negative
of the operator is its adjoint.

Consider now solving the equation

g—_g‘f + D:Vr¢ = W (If"/ly

in terms of G(fﬁ) inside the volume YV bounded by the surface S
and with initial conditions at time t=0.

By multiplying the first equation by gand the second by ¢ ,
integrating over V and time T from O to t;r and interchanging the

- -
meaning of 4, and 7 ,and toand T , one gets

Plet) = f 3}/\/\/(@%) G, PdV, 4,
o

+t
+ )’in; ¢(’755;-';;'to) g(i)¢)d'go ‘Zto
o 5
* jj ¢(%,8) G(%,7) 4V, (12
14

where 7 is the normal vector along the surface pointing into the
volume V
Since G (:f:',) #) = GHE) one has to only solve

the equation.

266,5) 47w, 669 < SR S04) ()

13



To do this one takes the Fourier transform in physical space

G = L j]fxcf,w)exp[ pesldls (@A

5%}.) oo fJexpLip-r-2ddvy (g

The resulting equation becomes

Ca o _ CW, )
'Sa(-}-'t,) + pw-PY = & (1) (z-16)

which gives the solution
Y(p,t-t) = expLiz.pas)] w(et) (XY

where

wiz) = ,[ 1 Z‘ig} (z-18)

Thus

G(';%‘E,t, ) g@)( . 'U‘(‘t-‘(‘,)) u-(t‘t,) (21-/7)
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Substituting this result into the equation for ¢ one gets

o |
Pz = [ fffwer, 2 S 2z-ve) dVy dt,
) afv
_tf
+ A7 j / D%, 3 t) 8 F-%,-260)) dS; 4,
o' 15

+ %_')/(P (%,% 0) Flrz-5t) d Ve (z-29)

The first term can be immediately integrated over the volume

giving the result

t
| j W(#-20-4), 3 t,) dE,
(7]

The other two terms, however, never contribute simultaneously. It

. . N . . - = > . eiq s
is shown in Appendix A that when V- and T are such that #-V¥ lies within

the volume V then - F"(i-’f.)—ﬁs never lies in the effective volume .
d 55%‘ A di, and vice versa. Thus,only one of these terms will

contribute in any particular problem. The contribution of the last term

is quite obviously

¢(—7~“——Z‘rt)7}/ 0)

While if the second term contributes it takes some manipulation to show

‘that the result is
P(F-3(tt,), > t)

where "b, is the time at which a particle traveling with velocity V' must
) Y
have left the surface to arrive at 7 at time € without any collisions.

The derivation of this result is carried out in Appendix A,

15



Substitution of these results into the expressions for -Q.(-'I;i';'t)

and f—(-?’;p’-/-t—) yields

¢
N@Ert) = j V(#-0%),5,%) d t,
tsult;)
+ NEPEROuly) + RE-seait)uts) (T2

and
. |
£(33t) = j P (-2 3 ) enp[- (U3 39)-0(rot-0)32.)] ) Y,
tsults)

+ §Gor4)54) exp (2 g-0urze )33 ] uth)

+ §(2-02 0) exp - (UZ%H-URPEZ )] w(-t,)
(z-29)

where ts is a solution of the equation

- — -
e N t—i})=7‘; (i.e., 7 on the surface)

First of all it is immediately apparent that the boundary con-
ditions of _ﬂ(iif;'t') are unimportant as only_ﬂ(’»’,‘ﬁ/t) -__Q_C-'?J’;y"}t')
appears in the equation for f(ﬂ?“-/'u’; 't) . This means that_Q.(’r;ﬁjfj

16



can be defined as

t
N(Zpt) = j V(#-Gtw) 3 L) 44, (- 23
t,“("‘s)

with the physical meaning of the number of collisions a stream of
particles traveling with velocity §# would suffer in the distance from
the boundary surface to the point# , or in the ’timé T as the case may be.
Several things become clear from these considerations. Most
of all it is apparent that the expression derived for f(? 't’) can be
physically interpreted and shown to be identical to that der1ved on purely
physical grounds. Secondly, it can be seen that boundary conditions
whether in space or time enter in such a way as to make clear the fact
that three or four collisions away is equal to infinity for all practical
purposes. This limits the sphere of influence on f(-?"l-l;/ t’) to con-
ditions within three or four mean free paths or mean free times away

which, of course, is also known to be true from physical considerations.

, . . -
The appearance of the equations of straight lines along velocities Vv or

"characteristics" of the differential operator —£ + v (fo)—‘ fur-
ther points the way to finding the more general Green' s functlons when
a. is not identically zero. _

The expression for f( ,l-'l")t)‘ can easily be seen to represent
just an accounting of the density of the particles at the position ? and
with the velocity U . This density of particles in phase space is obtained
by integrating backwards along the direction 7 and counting all the par-
ticles that are scattered into the stream with velocity-vs' and then reducing
them by the number that are scattered out before they reach position T.
Thus,as one integrates along this line of ¥¥ back away from $and, of
course, backwards in time, one integrates over .p(—?—'d"[f-‘l',)l 5",150)
which is the scattering of particles into the stream, multiplied by

‘9—7‘-}3 [:(_f}_(-,'f-,'u:—t)..__,'2(.,-:_7;{t.t,)/';;t‘))] which corrects to give the number

17



of those scattered that will reach point 7. Thus,one includes all the
particles that could possibly have the velocity v at position % and

time T . One. carries this integration out only until time equal to zero

at which time one presumably includes the initial conditions also de-
cayed by the number that have been scattered out of the stream in time¥,
or until one reaches a boundary where one includes the particles scat-
tering from the boundary in the direction—\};

The fact that the integration is carried out along straight lines.
is a direct result of the assumption of no external forces. As in this
case lines along V are the characteristics of the differential equation
along which conditions remain unchanged except for the "driving function"
effect which is precisely what is being integrated. This, however, suggests
a more general approach which will give the Green's function for the gen-
eral case including external forces. ‘

From the above results one can generalize to show that the char-
acteristics of the differential operator are the equations of motion of a
particle under the action of the external forces and having the velocityi}
at position # at time 't' Thus, the characteristic going away from this
point is :F —j (1) dT where i is the veloc1ty that a
particle would have to have at time Z to have the velocity 7 at timeT
‘and position F . This velocity in turn can be related to the integral of

the acceleration

@
wr(r) = v - [a(Fm),v)dr (T -24)
%

Thus,the characteristic can be expressed as

ot
I

- vien) + f f 2.(7%(2), %) 47’ d 7 (zr-29)
'ént

In general, this is really an integral equation for‘;‘-‘a as the accel-

erationa‘. is itself a function of the location of the characteristic.

18



Fortunately in most practical problems the external force does not vary

appreciably over a mean free path. Thus,for the range over which the
R .

characteristic ¥, is useful, i.e., several mean free paths, the acceler-

ation @ can be assumed constant. This greatly simplifies the equation to

T = F-Plt-t) + '&'—(t?i-‘n)t (z-%)

for the steady case and

: + ‘
T=F-2lt)+ [ama-s)d (z-27)
%

for a purely time varying case.

This simplificatio.n should be valid for a wide class of problems,
as the acceleration & is usually a result of such "field type" external forces
as gravity or electromagnetic fields. Except in cosmological problems
the variation of the gravitational potential within a mean free path is cer-
tainly negligible. In problems where a magnetic or electric field is
‘applied there is, however, a whole class of problems where the field can
vary appreciably over a mean free path. Any problem involving electro-
magnetic wave phenomena where the wavelength is of the same order as
the mean free path on the surface at least results in just sucha condition.
Fortunately in most cases of electromagnetic wave interaction with a gas
the field force effects on the trajectories are negligibly small and can be
altogether neglected. Furthermore, it can be shown that for periodic fields
the ¥ dependence of a usually need not be considered. When the frequency
of the field is of the same order as the collision frequency, then the ratio
of the mean free path to the wavelength is of the order of :-f i.e. very
small for normal non-relativistic con:.tions. And thus,the variation of &
along '-'f': can be neglected and only the effect of the time variation, which
i_s knowin, included. On the other hand, it is apparent that when the mean
free path and wavelength are of the same order the period of the wave is

D-/c. of the mean free time and thus under integration only the D.C. level

is irnportant.
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In D.C. problems with strong interactions the geometry is
usually such that again there is no great variation of the field in a
single mean free path. Thus, for this great variety of problems the
characteristics are directly available to within a good accuracy. Thus,
it should be possible to use these characteristics to integrate the
kinetic theory equation even for a large class of problems involving
external forces.

The very definition of a characteristic implies that

@E)?i/ i (-28)

This can, however, be easily checked by carrying out the following

coordinate transformation

TT
E+RT j 5acw A4’ (129
o 0

I

T

o+ J‘a&z?d?’ (-30/

(4

o
t = T + %, [ZZ’-Jﬂ

and evaluating ( Q/ST)%>-:’

By the definition of the differential and the use of the chain rule one gets

(Sa"f)ﬁj (%[—}—\-at (ar/ % (aéﬁvf

(-33
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Since

Y
N
YA

RS
Qv
31
|
—
-~
S|
&

Thus, the equations

i‘g__r;(a:rat) = D(7FD) (z-37)
y A

and

$t( fEEYeplnEdt)]) Pzt expl 263 )]

-2
can be transformed into
%»é? 3'5*)2 = Y (%,57) (z=-29)
T W
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and

(&5eam exP/;rzcr;,a;ﬂ)) = P&, BV expL07,33]]
A & i
“ (z -4)

Since these are now simple integrable first order equations in

one variable, integration yields the simple results

N ,
P75 T) - U, BT) = (V(732)dT (z-#)
%

and

£ (7,3 0)orp LT )- 50, B3 )exple, 3 7))

%
= j PG, 7%)exp[0E,wT)] AT (z-#3)
K2

Now it is possible to transform back to the original coordinates
Y
where ‘73‘, and VU~ are physically meaningful. By properly defining 'f'a=t,
it is possible to set %_(T;)-‘:‘-f’a and V;['T,_) = W . This results in the
. . é d . .
following equations for ﬂ(‘?{,l{, t&) and f- (‘—r;) u;}t'_) in terms of
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N(%7,%) ana £ (F,5,%)

L b . Y
REEL)= 2G5 ed -*aﬁ,t)

'é'a. *z 'f,,
+ (VG- (Rdn,3-(3dz; T) AT (z -%3)
[l
' t, - *:
SO = FG-faaEfimt,)
| + 1
exp [-(007,7,0) -0 (Par faar, )

e 4. A t, %
+ [P fparsia) expl (om0 )0 fsarm feas)] T
' . . r ~
1,

(=41

One must not be deceived into thinking that this purely formal
solution is actually the answer. In one way or another?and VJ depend
onf and thus "the solution" is really a terribly complicated and
non-linear integral equation. It is apparent, However, that provided.?
and P are not excessively corhplicated functions off a possibility of it-
eration exists for steady state problems, while direct step by step
integration appears possible for time dependent problems, as f at t-;.
only depends on f at t, and » and P between tl and 't,. . Therefore
by choosing A% = t.-% ° , small enough so that properties can be

expanded around &, one can obtain a simple recursion relation for 5.
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Before proceeding to investigate the application of this equation,
either to steady state or initial value problems,it is important to inves-
tigate the particular expressions for ?and ))that can be used. Of course,
the Boltzmann definition of ?and Vis exact, but it has the great disad-
vantage of being related to f through the detail expressions in a collision
process. To avoid these complexities it is possible to approximate the
averaged results of the collision processes by some scattering model
that gives FPand as a function of velocity and the macroscopic proper-
ties. The various possibilities in choosing these are discussed in the

next chapter.



Fzut) exp [R(EF)]

NOMENCLATURE

Acceleration per particle due to external forces

Thgdistx;ibution function in six dimensional space
of ¥ and ¥

The magnitude of relative velocity in a two body
collision

Modified distri-

bution function

Green's function for differential operator in
Boltzmann equation

The adjoint of the above Green's function

Vector normal to the boundary S and pointing into
the volume V'

Fourier transform space vector

The scattering function specifying the density of N
particles scattered into the phase space at 7 andv~,
at time €

Position vector

Vector in the transformed space designating the
characteristic

Position vector locating the surface 5’
The surface that bounds the volume ¥
Time

3 . 3 . J
The time at which a particle with velocity ¥ must
leave the surface ,§ to be at P at time €

Step function (unity for positive argument and zero
everywhere else)

The velocity vector
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The volume in which solution is‘desired

Velocity along characteristic which gives the velocity
-t - .
V at 7 at time &

Arbitrary weighting function in the generalized
Boltzmann type differential equation

25¢ + Plw )z + a‘_-@:’ ) the dif-

ferential cperator appearing in Boltzmann equation
Fourier transform of the Green's function

The delta function in time (is zero everywhere except
when argument is zero and has unit area)

Generalized three dimensional delta function

The collision frequency of particles with velocityv
at position  and time %

Differential collision cross section as a function of
solid angle fo.

Time along a characteristic

Generalized function in Boltzmann type differential
equation

Integrating factor appearing in the substitution of

9(57%t) = £G528) exp [U3TY)
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III. COLLISION MODELS

In trying to solve the Boltzmann equation by any means most
of the diffiéulty comes from the collision term which requires detailed
knowledge of two-body collisions. The necessary detail analysis of
the collision process is not only tedious but the resulting integrals
cannot, in general, be evaluated. The fact that only the averaged re-
sults of collisions enter into the equation suggest looking for approximate
scattering models that represent the averaged results of collisions to
some desired accuracy. Although one knows that the 6n1y exact repre-
sentation of binary scattering is the Boltzmann collision iﬁtegral, one
can hope to achieve a reasonable approximation by forcing the model to
satisfy some of the same overall conditions as does the collision integral.
Thus,any model, as a minimum requirement, has to satisfy the conser-
vation laws. Beyond this one can, of course, add conditions improving
the accuracy while increasing the complexity with each additional one.

The value of using models to get a quick order of magnitude es-
timate was already known years ago. The approach of a gas to equilibrium
can be treated for small disturbances from equilibrium by simply substi-

tuting for the collision term the expression

(ie".‘f)
72

where®C is the mean freetime, f. the equilibrium value of the distribution,
and } the unknown distribution function. The equilibrium distribution and
®L are treated as constants and yield the exponential approach to equilib-
rium with the mean free time as the time constant. Further trivial
extension of this model can serve to give correct parametric dependence

of the transport properties and even correct ordér of magnitude quantitative

results. When the above mentioned model is plugged into the Boltzmann
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equation and the distribution function is expanded into

)C = Fe *+ £, (E—_')

where

F << Fe

the solution for f, becomes

£ =- 2% (T-2)
DT
The evaluation of transport properties resulting from this distribution
gives answers which depend on the mean free path in the right way and
are only incorrect in the numerical coefficients.
In recent years, the above approach to representing the collision
term has been extended and formalized by Bhatnager, Gross and Krooklc)
and further studied by Krookzo’ 16. In a general way Krook discusses the

class of models that can be represented as

%a_s ~ V(z3t) (E=7t) - F(522) (IT-3)

where

t) = e --(P‘—'}_)‘2 RT. -
) (ZFRTc)’A exp E )2 ] Q:i )

2

&
St

with 2%, T¢ and W defined as collisional number density, temperature
and velocity respectively. In general, these "collisional®™ properties
do not have to correspond to the actual macroscopic variables at the point

in question. They are defined by guaranteeing ‘e conservation of the



collision invariants:

;I/u(gzt)f(ﬁt) AT =//f)($§t) FEBIWE L7

(- =)

where

Y =1, 7, v (w-s)

In the special case of ))('?:7)*) = ;(%15‘) (independent of
V), the &(‘3?,'&') is just the standard Maxwellian distribution for the
local macroscopic variables. This, of course, makes the model deter-
minable from the macroscopic prdperties alone. This particular case is
usually referred to as Krook's model and has been applied to a number of
problems in rarefied flows. It converges to the continuum limit in a
qualitatively correct way but does not give the correct quantitative results
for the transport coefficients or the right ratios between them. The
latter inaccuracy is a direct result of the assumption of constant collision
frequency -)3(5'-,1&) in velocity space. This prevents the proper weighting
of the different velocity moments, but rather weights them all in the
same way. The former inaccuracy is a result of the assumption of spher-
ical symmetry inherent in this class of models. This assumption approxi-
mates the scattering of particles at any point in a spherically symmetric
fashion, which is known to be incorrect on physical grounds. It is obvious
that in a non-uniform flow particles colliding' at any point on the average
come from distances of the order of a mean free path. Now, if conditions
are different at this average distance in different directions, then the
scattering in different directions will also .have to be different.

The possibility of correcting Krook's model by adding asymmetric
components has been mentioned by the original authors and others but
not carried out in detail. The integral equation formulation of the kinetic

theory equation is particularly useful in recognizing the implications of
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Krook's model and finding the proper means of improving its accuracy.
Therefore, a detail investigation is carried out in this chapter, and
modifications are suggested in the Krook's model that can, in principle,
make it give quantitatively correct results to any order in thé
Chapman-Enskog expansion.

Before proceeding with the derivation it is best, however, to
examine the reasons for devising a collision model and the qualities
desired of it. The reason for wanting a collision model is simplicity
in solving the Boltzmann equation in the region where few solutions now
exist i.e., between free molecular and continuum conditions. Since in
this region no straight forward expansion for the distribution function
'reéulting in a possible linearization exists, the simplicity of the collision
model is almost ‘a necessity to solve the Boltzmann equation as a bound-
ary value problem. Collisions increase in their importance to the
solution of the problem from having no effect in free molecular flow to
being the dominating phenomenon in the continuum range. It is therefore
apparent that to check the accuracy of any collision model one has to turn
to the continuum limit. Thus,the qualities that one desires in a model
are;-that it will conserve number, momentum and energy, and that it
will give quantitatively correct results when the continuum condition

'is approached.

In order to illustrate the method without excessive mathematics
the analysis is carried out here for a one-component, steady state, one-
dimensional case. A more general three-dimensional case is carried

out in vector notation in Appendix B. The general integral equation

t
fG72) = f Pirvtet) B n) exp[-(R6;38)-0eww4)5%)] 4t
utt)

+ F(=oen), 3 ) exp [-(UER ) -NE0e028))u)

+ HF¥R0) exp |- (3 32) - (-"r'tx?f,iiﬁ)ﬂ wuit) (1- 7)
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reduces for the one-dimensional steady state case to
| %
)C@‘/'i?') = I?(x-lﬂf >) exp|- (_Q.(x,&")—_(l(x-«ﬂ‘,ﬁj dT
o

+ Fe-u%, #) exp |- (U P) - l-u V)|

o=
where'T_" is the time a particle travels at velocity ¢jfrom the boundary
to get to position x and Y is the X component of velocity.

After the substitution of X'= %-%T  and definition of X,

and %5 as the boundaries of the problem, the equation reduces to

ez = f P65 exp [ (Aly~250))] dxy
X , |
+ f (xuz’a') exp E’ (-l()‘,?;') -fx, ;U.')a v, )0 (ﬂz - 8)
X3
F6#) = zj Ploi) exp [ (e P)-ntm)] oy
+ flo, ) exp [- (-, P)] v <0 (]LT_ -q)

where  _Q(x7) = 5‘,;(,‘;-,;)4%
/
*)

When Krook's model is substituted for the scattering terms, the equation

becomes x

£ = J;;e(,(/a‘-) exp-(ux?) ~647))] 9647 d’%;
+ Fx P exp [ (20D -200¥)] >0 (I -i0)
£67) = jg (47 exp[- (L2647) ~12048))] YCe}7) d% |
£ {

+§04,) exp [F (U #)-J2x,B))] g <o (IT-1)
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Since our interest is now directed toward the behavior of the model
as the continuum limit is approached, the boundary condition can be
neglected by assuming that the boundaries are infinitely far away. In

this case the equation becomes

X
5,057) = (€67 exp [-(6g%) - x)]P00) 45,
2o
For Vi > o (E_"IZ)
A R )
£67) = j E(<7) exp [~ (020x,3) ~1Ux,5))] Vix! ) eb% |
X

for v, <o (.TE"”)

By noticing that
V) do = - L (U(x,®)-20x7) (Ir-14)
v ,

one can immediately integrate this equation by parts as many times as
one desires. The following change of variables, however, simplifies
the partial integrations immensely. Let ){(x/x') ::_Q()(/f}) -__Q.C?‘;ff) ,

then the equation simply becomes

o ) _
Fos2) = ( €tx3) exp (- Kbgn) d o) (r-1¢)

where }{()(}-?') is used for 0;)0 and h’('x/-;-;-) for v;<0.

From the definition of

Hoox) = jx V) dox” (r-1¢)
xl [)
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it is apparent that K(x, ~29) 2o when v; >0 and VY(x') finite
and also }{(x/-y-;v)—%p-o for Vj <0 and V(x") finite. The

equation for f becomes

)O
) = £(x!?) exp [Hxx) [d %)
f aj exp [. j (E: - 17)

for all U,' . This is reasonable, as when the boundaries do not enter
the problem there should be no difference in representation of _-f(x,a'r')
for different directions of the velocity.

This equation can be immediately integrated to give

2°
F6,%) = EGe3) +j‘j’f;‘ exp[-Ktx)]dy  (I-18)

and further

f[x,‘v") = EGP) + (ﬁ—g}f))}sa
+ f%}% eX/?(-){(x,x'))dkéga') | (Ir-19)

o

f (7‘/7') = &, ») + (itf )

=0

+ (%-fg + (it_ié F o Qﬂ' -20)

/f"}fzo H’ h=0
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When this is transformed back to the meaningful physical variables

f#) = EGT) + (%E_;/%)x‘:x
Hdolds/ays] o (-2

or

f("l") = EG,B) - )JLZ 2) Z—‘g‘("z v)

G od (e dEp)) e e (IL-22)
+ st 7= G F267) + .
This is obviously an expansion for 4 in terms of inverse collision
frequency and might be correct at least very near the infinite
VY condition. This expansion therefore can be easily used to
evaluate exactly the expression for 5697)‘that one desires in order to
rhake this model give the correct resulté at continuum and near it. All
that is necessary is to choose a model that has enough free parameters
to satisfy the conservation laws as well as yield correct transport coef-
ficients evaluated from f(‘xﬁ") at continuum.

To fix ideas let us start with the usual Krook's model, i.é.,

E() = Fo057) = (e amRTed PRk Coitdl T ana )
equal to the averaged collision frequency independent of . In this
case we know this model satisfies the conservation equations and all
that remains is to evaluate the transport coefficients to see this model's
behavior at continuum. The definition of continuum implied that only
terms up to order (Uj{) %x) are to be kept. Thus, the equation for -f

becomes

/) = 7 c’ »n -
£57) = ﬁ,(x,:a)(, — 271?;)7!;&) 7-23)
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Since ﬁét,p') depends on X only through the parameters 7!(7!) T(x) and
U(lx) the derivative ,d de can be immediately carried out

in terms of gradients of these macroscopic quantities.
dinfe = L dnto - 3_ d76)
x nix) dx 27Tk) dx

3 1
(cr,-ug +5put L dT 2(v7-a) du (213-24)
+ ZRTG)  Th) dx + 2R7"‘(*) dx (=) :

It can immediately be seen that for the case of no macroscopic velocity

and no pressure gradient

diofo = (Lpgend— £) dbnTys) (IZ~-25)

dx 2RT(x)

and the resulting heat flux in the X direction becomes

= ff f Fo7) vty dudy,
= [a (g - ) s 57, 44T
= ___Q"_.'m(ngPf’-Y_Zf dT (1_1[—26)

where Y = )’E n ,S‘u % 2RT and S is the collision cross

section.
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This makes the heat flux proportional to the temperature gradient as

it should be for continuum, but it further gives the right parametric

dependence of the coefficient on the properties like temperature and

collision cross section.

as the correct answer is

= -5 wm RT)%VT dT
L 128(I+d) ST 2 dx

The numerical coefficient is, however, wrong

(-2

where O 4 ™ <£,026 depending on the repulsion law. Thus, the answer

is wrong by the ratio 8/15 or roughly 45 percent.

The more general case for both temperature and velocity gradients

can be calculated by using the conservation equations to properly sepa-

rate the terms contributing to the heat flux and the viscous stress. Here

it is important to remember that the term that is being evaluated

d t"'f"/dx

is already multiplied by the inverse of the collision

frequency. Thus, it is only necessary to evaluate it to zeroth order in

inverse collision fréquency to retain accuracy to first order. The proper

conservation equations therefore are

and

36

(I -28)

(" -29)

(I -30)



and the state equation is

p=nkT (I -31)

The expression can be written as follows
U; dléﬂ o == (V; "“J i’!ﬁ.ﬁ
dx dx

+LL,.4LM0 (ﬂ_/—"32)
x

The first term gives

(- )(d&m 3 dfaT B-2)% dInT

2RT dx
+ -y dul (V ~, ( __5: ZJ_.ZZL.T

+ (V_R_,'_'r____.zu ) (%=e-u)) %‘f‘:' @r-33)

The second term can be manipulated to give a result purely propor-
. u
tional to %-;-‘ . ’
‘o dnte = wy(dinn (5-0)" 3)abuT
dx dx

2RT 2/ dx

+ &y (v-u) dy, C/ﬂ -34)

RT dx

By the equation of continuity and the energy equation this gives

w,(v-u,) du __L(V—lea el «,
10i) G 3 RT dx



Combination of the terms gives

" ot = ) (GE-F) 24T

2RT

RT

)2 Ve (0-R)* du T -35)
*+ ax |

Substitution into integrals of the collision invariants over velocity space

yields the desired results that

jffv' %’ﬁ—%f" YVE@E L= 0 (r-3¢)

where
—y:’ = 1‘) —‘}'1 vt

Furthermore, from the form of the expression for V, dl”‘f%{x
it is apparent that the heat flux will be proportional to the temperature
gradient alone, while the stress will be proportional to the velocity
gradient alone. It is not necessary to carry out the calculation in detail
for the stress as it is apparent that analogously to the heat flux it will
give the right parametric dependence but the wrong numerical coefficient.

The important result that can be gained from this analysis is an
immediate correction for the two inaccuracies in the Krook's model.
Both the incorrect numerical coefficients and their incorrect ratio can be

immediately corrected by multiplying the usual Krook's model by

G Sy ) -z) . 5 \dbT - cr (h-u)= B ([T-8) da
I P('u)(zfe-r Z)E;T’L 2 RT A x



wﬂere €, and €, are chosenin such a way as to make the transport
coefficients come out correctly in the continuum range. Since only
terms of first order in inverse collision frequency are retained the
expression Vl/.‘) d b S/dx is still just V'/-;) dl"f’/é{x

The expression for ; , however, is now multiplied by the addi;ional

asymmetric term above, which to first order in l/-;) gives

2RT 2

f(x,?) = 5,0 [1 + 25—‘(“;"%)(?"-: ?:-5)5(;1;}‘-7—

[ —t = ?.__ ) "'-‘ 2 [ -
oy (v, g,)RTéQ._&L 5_’?_} (1 - 37)

The value of €, can be easily obtained by referring back to the discrep-
ancy between Krook's model value and the correct one for the thermal

conductivity.

S = 75 /()
) = ZE (1+<)

6 -‘-‘--§7— +-g—.°( (D—T"3g>

In a similar way the value of €, can be found.to be.

This method is not limited to correcting Krook's model to first
order in 1/3) but can be easily extended to any higher order by just adding
higher order asymmetry into 2697 and retaining more terms. Since
the analysis basically follows the same pattern as the Chapman-Enskog
expansion it is not necessary to carry out the details just to illustrate
the point.

The usefulness of any higher order corrections to Krook's model
is dubious anyway because of the lack of good verification that the inclu-
sion of the higher order terms in the Chapman-Enskog series actually

does extend the range of validity.
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- It is important to notice that the correct quan;titative limits
were obtained without having to resort to using a collision frequency
dependent on velocity. This avoids the unmanagéable integrations
resulting from any realistic representation of VY‘!:?) while retaining
the proper ratios between the transport coefficients. One cannot, of
course, predict the accuracy of this model representation in the tran-
sition regime until some exact solutions are available for comparison.
One can, however, suggest that since collisions between particles
become of less and less importance as the free molecular limit is ap-
proached, anﬁr inaccuracy in the model is offset, at least partially, by
the decreasing importance of the model to the solution of the problem.
It is important to notice that though the model is obtained by expansion
in inverse powers of the collision frequ.ehcy the usefulness of the model,
even to first order, is not necessarily as 1imited as the Navier-Stokes
results. When the model is actually plugged into the integral equation
it need no 16nger be solved by partial integrations. Thus, thoﬁgh the
asymmetry in the model is proportional to the gradients this asymmetry
is integrated over, making the answer not necéssarily limited to the

range of validity of the expansion.
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NOMENCLATURE

Constant in correction of Krook's model to give
correct heat flux at continuum

Constant in correction of Krook's model to give
correct pressure tensor at continuum

The distribution function
The equilibrium distribution function

The local Maxwellian distribution function

- The first order correction for the distribution function

The Boltzmann constant

The number density of particles in physical space

‘The pressure of the gas

The gé.s constant of the gas
Collision cross section

The temperature of the gas

The macroscopic velocity vector

The macroscopic velocity at position X in the X
direction

The velocity vector in phase space, Y, v » )4 arethe
X,y and 2 components of ¥

The component of F for which one dimensional prob-
lems are analysed

The Boltzmann differential operator

Constant appearing in theoretical expression for
thermal conductivity
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The distribution of particle;g scattered at position
% and having the velocity ¥ at time € , used in the
approximate collision model

The number of collision a stream of particles
traveling with velocityV:, suffers between«‘and X

( 4"%«94 x? )

The collision frequency at Fand T for particles with
the velocity ¥

The average collision frequency at ¥ and?
The mean free time between collisions

Any collision invariant

Subscripts

" Designates "collisional" properties

The part of velocity space where V, > O

The part of velocity space where V,< O
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IV. TRANSITION REGIME PROBLEMS

We have obtained a purely integral formulation of the Boltzmann
equation and have discussed the approximate models that can be substi-
tuted for the exact collision terms in order to simplify solution in the
transition regime. Now it is necessary to discuss the types of problems
to which this formulation might be most applicable and indicate, in major
outline, the methods of attack for solving them.

The types of problems that arise in the "transition" regime can
be divided into subgroups along many lines. It certainly can be done
according to the basic geometry or according to the basic physical phe-
nomenon, such as diffusion, conduction, etc. No method of subdivision
can purport to include all possible subclasses and thus determine all
the problems to be encountered. Thus, though in no way claiming com-
pleteness, we divide the transition regime into three categories, initial
value, macroscopic discontinuity and boundary value problems. An
initial value problem in kinetic theory starts with completely determined
distribution function in some region Vat a timet . The desired solution
is the distribution function within ¥ for all times later than® . Since
in kinetic theory time is essentially scaled by the mean free time between
collisions, initial value problems consist of solutions for times less than
"and of the same order as the mean free time. In a general case, the
region Vrnay be bounded or not bounded by a solid surface S. We shall
limit ourselves to discussion of initial value problems without solid
boundaries. The more general case can be included by combining the
initial value with a boundary value type problem.

A macroscopic discontinuity type problem consists of a sharp
variation of some property over distances of the order of a mean free
path, which makes it appear as a discontinuity on the macroscopic

scale. This could include such phenomena as a shock, a shear layer,
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or an interface between two gases. Here no solid boundaries enter
the problem and the distribution function is not known at any particular
time 't . The only information available is usually in the form of
asymptotic boundary conditions on the distribution function.

The third type, a boundary value problem, consists of the steady
state solution of the distribution functionina region V bounded by a surface S
on which certain thermodynamic variables are known. The characteristic
that identifies this type of problem is the necessity of evaluating the
distribution function of particles coming from the boundaries. Here the
actual knowledge of what takes place is very limited and the available
experimental information quite meager and imperfect. In the class of
boundary value problems treated here, the usual accomodation type of
' treatment for the surface interactions is assumed valid.
The integral equation for the initial value case with no solid

boundaries and no external forces becomes

t -
F(%wt) -_-chwzf-w, ) exp [- (@) -—\7-(%"‘*%),'%*-)),7 di
(-] .
+ flrvtz0) exp [ (a@y-neoo)]  (T-1)

.t
where  _3%Y) = (Ve ut) 4t ([-2)
)

In order to make the substitution of the Krook's type model easier one
can immediately divide up P(&f' r,;t) into ))C‘ﬁ i'f;'ﬁ') wﬁ[ ’}'/7/'*)/{)(97531) ,
and call the latter term 2(%7'/;-&) . Furthermore, the lower limit need

not be zero but can be taken as any time 'C‘ . With this change and the
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new notation the equation forf becomes

+
755 = j & (-00%), B )exp (2638 00o04)5,5) ]
¢

Yrsaa)ze)db + F(POE)BY)exp [-(t53¢)- RUé-sh4)5,%))]

(Z-3)

It is immediately apparent that the distribution function at time €
depends only on the distribution function at time ¢, and the scattering
terms from the time E , to the time ¥ . Thus,the equation is similar to
the parabolic type and might be tractable, at least numerically, in small
increments of time.

Letting ©-%t =AT and defining a new variable t-% =7

the expression for 4§~ becomes

~
FETY) f 8(#-- 2TV tT) exp [— f V(P-2T, 3, 3-7)dT :] x
(-4

YV(RPT Pt -?) AT

| - 3
+ f(7-vat T t-at) exp [- fz)(-‘r‘-ﬁ@’%*‘r')d?j (7 -4)
(-4

Now if &T is made to approach a small number the integral can be
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evaluated by Taylor series expansion about the point 't, , where all

conditions are known.

EFE-2T R, tT) = (7ot 7 t-at)
(63-7) [d € (22T 2 2-2)
" ( )(Z?( " ) =4t

+ -‘T (__&Gr—ﬁtvf?) Foenn (I7-5)

T=0t

and

V(FE-PTP 1) = V(F-vat, 7 +-ot)
+-1 [ dY (v 2T’
+ (A 17 (Z:ZZ"( T/";tz)

T‘:.- A‘t

+ a2 (42 W,'fsf-r)) ..... (17-¢)
=at
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Plugging this into the expression forf yields the result

i) j( EGoat fr) + @t'vé' +. x

Tlaot

exp [ VF-Uat, 7 )T —- ( Zlﬂwt (Ai”Z’-I )-t J
(omz8) + (e4-2) _31%1) RRREEE ) dT
T4

+ £(-Pat) exp [-V(«'r‘%% B%)at

- [dV

Sme——

dT}z'aot

Lé_é?"+] -7
2.

Integration to second order in A'tyields

FEGY = F(F-vet,7,3)
+ (€201, 28) - F (20t 'w)t)) (viroet z8) at)

- [(&G—-: %)~ f(r-v‘-az;t%—t))(/ ((__dV )

aT =8t

_[1de e patvt)at)” V-
(V dz_)md-]x. 42"‘ -8
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This equation can now be solved, in principle, in a step by step
numerical process whenf,v , and & are known at sometime t[ ,-
for anytime € later than B,. The result to first order in At is the
same as that obtained by transforming the original differential equation
into a difference equation to first order in 4T . The higher order
terms differ, however, because in the integration of the equation the I)f
on the right hand side has been transposed into the left hand differential
operator. Thus, whereas in the direct change to a difference equation
terms like (df/dt)tso‘t have to appear and thus result in a three
term recussion relation for f , in the integrated form only the “"driving
function" appears in the derivatives. It is important to remark here
that (d/d?—)‘tsaf is actually equal to 4 (aS‘ﬁ +'B’=-v, )Q"to
but it can always be reduced to terms proportional to the gradients of
the macroscopic properties by use of the conservation equations and
the dependence of the collision model on the macroscopic variables.
Treatment of a macroscopic discontinuity problem can be started’
from the same basic integral equation, but with the initial value and
boundary terms omitted. Further, since effects in kinetic theory are
only felt several mean free paths away, the limits of integration can be
made to go to infinity once it is known no boundaries exist within a few
mean free paths away from the point in question. Thus,the basic equation

becomes

po
FG#) = [E(F573)exp[-(n7) ~nprr5 )]

VT ®) dT (Ix-9)

with ,pagain replaced by & to make the transition to Krook's model sim-

pler. One notices that this equation can be integrated by parts as -

d (z)-nrz) = -VEstr)dz  (V-10)
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This, however, yields results exactly as those obtained in the analysis
of the modifications of Krook!'s model in Chapter III, i.e., an expansion
in inverse powers of the collision frequency. Thus,in this case, where
the operator ('/)) %2‘) cannot be assumed small because of
the large variations in a mean free path, this expansion is of very dubi-
ous value. As a matter of fact, the very purpose in turning to kinetic
theory in studies of structures of macroscopic discontinuities is to avoid
this assumption which is inherent in the Navier-Stokes relations.

Since the integral equation is not of the type that can be solved
by standard methods, the only alternative is to solve it approximately
by some form of iteration. The lack of standard means of solution also
precludes, in'the general case, the application of the standard tests of
convergence. Thus, for the present, iteration is suggested as a possi-
bility with actual convergence in each case being made plausible by the
approach of two successive iterations to the same value.

For the method to be powerful and have practical application it
should not be too sensitive to the initial choice of the trial function pro-
vided the proper boundary conditions are satisfied. One should be able
to obtain a reasonable approximation to the structure of a discontinuity
by starting with no information about the structure but only the necessary
asymptotic values on each side of the discontinuity. If this is the case,
then the method can have great power in analysing problems about which
there is little or no detail information, provided of course, only a few
iterations are needed for convergence.

In general, the results of Euler's equation for a macroscopic
discontinuity will give discontinuous € and ¥ which can be expressed in

the following form

a«f)ﬁ-’) = E;(i}) wiTAin -re7:.'on v, (T_V‘//)

EF#) = & (B)  within regiom  V; (1v-12)
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and
1)(;‘;#) = 2)/(17‘) within T e9iom v, (3‘13)

V(ER) = v, () within region V,  (IZ-14)

The equation

= O

ot

-
¥ —

giving the shape of boundary locating the discontinuity and thus the
boundary between regions \4 and Vz is determined also from solution

of Euler's equations. Substitution of this into the equation for f’yields

?;(?,?)
Fv) = [ exp[-37]% dT
o

’D‘
t [a@) ep[AT % dT  withn V, (TT5)

SEY
%(3%)
§9 = [&lexpluz]v, dr
[~]
—° rrcmsaen
+jglexp[_y/2‘];), AT within V., (IV-16)
TR P)

o~
where 7.5 is the value at which #-B% crosses the boundary between
V, and V, . Now if ’f(‘ﬁ)ﬂ') is evaluated it is apparent that Q;C'-'.; 3
is such that depending on the direction of velocity it is either zero or

infinity. Thus, if the direction of velocity is from V, to V,_ the
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expression for f becomes

-
Fou9) = [ & exp FH Ty, 4T @-r)

fo-v ﬁ fro‘m \/I 'bo 14_

regardless of whether the formula in V, or Vz_is used. Likewise, when

-
direction of velocity ¥ is from Vz, to V) ,-f becomes

2= .
FGp) = [EexpEushadT (I -18)
[/}

fo'r- # fro»« VZ %o V,

regardless of which formula is used.

This result is quite important for it shows that though f(‘?,;l})
has now become discontinuous in velocity space, it is continuous in
physical space. Therefore, all macroscopic properties, being integrals
over velocity space, become continuous across the original discontinuity.
The discontinuity in velocity space is only a spurious result of the wide
initial trial function and will probably also disappear with successive
iterations. As a matter of fact, the great crudeness of the initial
iterate means that iteration from this trial function is an extreme test
of the method's usefulness and validity, and thus can not be taken as an

absolute test of the method.



The steady state boundary value problem can be analysed

by starting with the basic equation

: |
$53t) = [etnmpt s Dexp [ (atryueraen]s
o
Y& Ft-T) T
+ ROy Bt) exp [-(atz)- @ s3e)] (W9

. -—
where 'Tsis the time for a particle traveling at velocity ¥ to come from

Y
the surface S to the point ¥ . To obtain the steady state solution,

i.e.,t=P oo one needs only to drop the time dependence

ts
S 2) =[ -T2 tT) ex}:[-(_ﬂ_(%rf)-ﬁ@-'”;ﬁ))]
b
x Y(#-7T #) dT

+ $E08,P) exp[-(UzR-26os,0)]  (0720)

Here again it is apparent that because of the non-=linearity no
standard form of solving integral equations will work. Integration by
parts is again undesirable because of the resultant expansion in inverse
powers of collision frequency. Iteration is again a possibility, but two new
problems arise that did not appear in the macroscopic discontinuity prob-
lem. First of all the zeroth iterate, i.e., the trial function is not ‘

immediately apparent. It is already known that by starting with the free
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molecular solution iteration yields an expansion in inverse powers of
Knudsen number (wit}’} a logarithmic term included). This is unsat-
isfactory if the whole "transition regime" is to be covered. Secondly,
necessity of knowing f(-‘r'.u"t,/#) , i.e. the distribution of particles
emitted from a solid boundary brings up the whole problem of what really
happens to particles as they strike the boundary and are re-emitted. This
problem is the subject of much study at present, buf no really conclu-
sive results are yet available. .

The choice of the initial trial function can be narrowed down by
looking at behavior of the integral equation at the two extremes. The
free molecular solution is immediately available from this equation in

exact form

F&,8) = Fl7-ot,2)exp [+ 73)nw)]  (I7-2)
and

s
Q(3)-2H) = f yer73)dr5 0 (Iy-27
[~

$
Since jo VJT near the surface has to be small to satisfy the free

molecular requirement the solution becomes simply

F(2P) = F(=0%,7) (x-23)

Thus, regardless of the initial choice of the trial function the solution of
the integral equation will always converge to the proper limit at the free
molecular extreme.

At the continuum extreme, where the boundaries can be neglected,
we have seen that the solution converges to the right limit by partial
integration, when the right model is used. In the iterative scheme this

implies that the model used have the macroscopic properties in it
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converge to the right variations at the continuum end. If the exact form
of the collision integral is used, it is necessary that the trial distribution
function converge to the proper value to first order in the
Chapman-Enskog expansion to obtain the proper limit at continuum; and
that the parameters in it be solutions of the Navier Stokes relations at
this limit.

It is apparent, therefore, that a possible choice of trial function is
one that converges to the correct limits at the two extremes. In such a
case the integral equation has the best chance of giving a good approxi-
mation to the behavior in between the two extremes. When a Krook's
type model is used in the equation no initial assumption has to be made
about the form of the distribution function. Only the behavior of the mac-
roscopic variables has to be known approximately over the whole
transition regime.

From the above considerations it seems apparent that the simpler
moment methods might supply the best choice of the initial trial function as
these will, at least, guarantee the conservation laws. Furthermore, if a
model is used in the iteration, only the macroscopic properties and not
the distribution function resulting from the moment method needs to be
used. This is desirable as the moment methods do not purport to
solve for the distribution function but tend to treat it more as just a con-
venient weighting function to satisfy the conservation equations in some
average way.

For the iterative scheme to be a powerful and practical tool the
zeroth iterate cannot demand too much labor to obtain. Also, the accuracy
requirement on this zeroth iterate cannot be too stringent. Lees'
moment method, therefore, seems the ideal choice for the initial trial
function (zeroth iterate). This method,though certainly not the most
accurate of the moment methods, requires the least amount of labor to
obtain solutions and always guarantees that they converge to the proper
limits in the macroscopic variables at both extremes. The undesirable
discontinuity in velocity space of the distribution function offers no prob-

lem if it is considered as a convenient weighting function alone, while the
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macroscopic properties are considered as the solution.

The problem of applying the boundary conditions is a
serious one and proper analysis of it will undoubtedly have to wait for
better and more complete data. The presently accepted accomodation
type of treatment is actually quite well suited to the integral equation
formulation. In this treatment the distribution function of particles in
the half of velocity space with velocity direction pointing away from the
boundary is Maxwellian with the energy, density and velocity parameters
related to the wall conditions and to the same parameters of the distri-
bution function in the other half of velocity space. Thus, the boundary
conditions can, at least in principle, be applied after each iteration.
Integrating of the equation with the appropriate velocity moments over
each half of velocity space at the boundary and then relating the resulting
parameters through the accomodation coefficients and the continuity
equation yields a sufficient number of relations to determine the param-
eters in the distribution of particles leaving the boundary.

The possibility of applying the integral equation formulation, in
principle, to the three types of "transition" regime problems discussed
here,though not a conclusive proof of its practicability and usefulness,
shows that the method should yield results for a wide class of problems.
.The three particular cases of,an initial exi)anSion of a pressurized sphere
of gas expanding into another gas, the structure of a steady state normal
shock and heat transfer between parallel plates, carried out in the next
three chapters, illustrate the problems encountered in the practical

applications of the methods discussed in this chapter.
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NOMENCLATURE

The distribution function

The scattering function specifying the density in
phase space of partlcles scattered at ¥ and ¢
and having velocity ¥

Position vector

Position vector locating boundary between-v,.and Vé
in the macroscopic discontinuity problem

Surface bounding volume
Time

Time required for particle traveling at velocity_\7
to go from surface ,S' to position #

Velocity of particle

.Volume in which solution is desired

Volumes in the macroscopic discontiﬁuity problem
Time increment in initial value problem

Density of particles with velocity V that have just
suffered a collision at 7andt

The values &€ in the two regions-V;and % in the
macroscopic discontinuity problem

Collision frequency for particles of velocity V
at position ¥ and time €

The values of 3/ in T/,and 1/2 in the macroscopic
discontinuity problem

Dummy variable appearing in integrations over time

Integrating factor in the integral form of the kinetic
theory equation
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V. EXPANDING SPHERE PROBLEM

An example of an initial value problem that has been of
some interest for a long time and has been relatively well analysed for
the inviscid case24’ 25,26 is the problem of a high pressure sphere of
gas being suddenly released into a surrounding medium at a much lower

pressure. The similarity solution first obtained by Taylor2 5gives the
strength and speed of outgoing shock resulting from the sudden expansion.
The numerical solutions by Brode26 determine the outgoing shock, as well
as other secondary shocks, and the density, velocity and temperature
profiles in the whole refion. No continuum type solution (especially the
inviscid one) can hope, however, to solve for the initial behavior before.
the shocks are fully formed and, thus, all continuum solutions are long
time solutions in comparison to the mean free time between collisions.
For all practical purposes at rormal temperatures and pressures"
and macroscopic size initial spheres the "long time" solution is the only
“one of importance. The initial expansion during a time of the order of
a mean free time is a negligible portion of the total time history of the
problem. The inviscid solution is also sufficient because the effects of
transport properties are limited to the actual regions of the shocks and
to the contact surface between the two media. These are macroscopic
discontinuities and can be, at least in principle, left for separate later
solution when details are wanted. The fact that the contact surface
thickness is a diffusion effect increasing as \/T- while the shock propa-
gates in the main proportionally tot further justifies initially neglecting
the contact surface thickness in solving for the shock pattern.
Now, if instead of looking at this problem in the case where the

original sphere diameter is many times the mean free path, as in the
case at normal conditions, we look at the identical problem but in the

case where the original sphere diameter is of the same order of
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magnitude as the mean free path of the outside gas. For a one meter
sphere in air this would occur at outside pressures just below a micron
on mercury. In this case an appreciable portion of the problem takes
place during a time less than and equal to the mean free time in the
outside gas. Thus, no continuum theory can hope to give reasonable re-
sults. The problem can, however, be treated directly by means of the
formalism developed in the last chapter for treating initial value problems.
One can hope to obtain from this theory complete maps of the macroscopic
properties for times of the order of a mean free time in steps small
compared to the mean free time. From this one should be able to tell
exactly how much diffusion has taken place at the contact surface and
exactly how long it has taken to form a macroscopic discontinuity that

can be identified as a shock. ‘

The particular problem carried out is one of a helium sphere
initially at a pressure ratio of 18 to the outside gas expanding into air.
This particular case, under inviscid conditions has Been treated theoret-
ically by Brode in Ref. 26 and {nvestigated experimentally by Boyer in
Ref. 27. The only difference introduced into our problem has been the
fact that the overall pressure level has been scaled to the point where
the initial sphere diameter is only equal to about one mean free path
in the air outside.

The problem can be stated in the following way. For times less
than zero the region of space for radii up to =7 consists of quiescent
helium of density f;., , temperature T}., and pressure Pho . The
region of space for radii greater than T3 consists of quiescent air of
densityy‘° , temperature 7;, and pressure Pgo - At time equal to
zero the membrane separating the two media and allowing them to main-
tain separate equilibrium levels is broken. The problem is to determine
for 120, patst), 1), pulnt), palnd), Tulgt), palrt)
as well as the velocities “‘(fi‘t‘) and Up(r,t) . Also in the region
where the gases are mixed one would like to determine the mixture prop-
erties like density fM(f)-t), temperature T;g(‘l';'\‘-') pressure
FGI\(T) f) and the overall mass velocity u-ak(‘f, 1‘) . In kinetic
theory, it is only necessary to determine f/\ (1; fl-t) and fA(o'}: t)
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and all the macroscopic properties will be known. The initial

conditions in kinetic theory therefore become

3 ,) — Y4 =
56%0) = m"(z"%,) exp [’23:.11,] < Ty

f‘(-gi’;o) = O 07,

and

3, .S
)C“(q; Z0)= Mg, (ZWRJ;) exp[ 5 RJ;,] 2%

fuln®o)= O <
-2)

The relationship between -f atg andf att-AZ derived in the last
chapter should be sufficient to determine f}‘ and 7(4- for all times
greater than zero. The steps A't , however, have to be small compared
to the shortest mean free time in the problem and the solution cannot be
carried for excessively long times because of the accumulated error.
The equation relating f(%f; %) to £ 7-0ot,Gt) derived in the

last chapter when reduced to the spherically symmetric case becomes

f(,v,c056t) = £(r, v, cos e/t-8t) 4 [E(”" gaomjt-a-t)

-f(‘r/'u; wsﬁ}i'&)ﬁﬂ %"‘,’l{t&oe"‘t‘d t)At - [(E (r; v,ces 9:“'5'6)

-£(r, ' -1 d < )y - 7‘_ ‘
Flojucoso ot~ 5 4 } = %] @ 88, t At)ai)(Y .
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. -
where 0 is the angle between the velocity vector and the < vector, and

r'= }/—;"- R ucosd at +(vat)® (-_‘Z"’)

and

cos &' = tcosp-vat &'5)
—rl

Here no assumptions have yet been made as to the form
of VY and E . In principle, these could be calculated exactly
as j(‘r; v, cos@jf'ét) is a known function. Unfortunately the
collision integrals that would have to be evaluated to carry this out
are not easily done, even on an electronic computer, because of the
necessity of carrying out at least quadruple numerical integration.
A collision model is, therefore, ideal in this case because &€ and 3
become simply algebraically related to the macroscopic variables
which have to be evaluated anyway. In the problem calculated the
simple Krook's model was chosen, but extension to a more sophis-
ticated model is straight forward.

The solution is carried out in the following way. All variables
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are non-dimensionalized by initial properties within the sphere

A

= _x.3 = _ 7,3 R
fdl\zf‘\*f“ Tu\: :r-'i' Ry
fk"”“/RAf‘*

Tax= (P + 57, )

> = ’7"7)4¢ -\Z(: 4 —\7 = e
,ZRAZG-o 12&720 ) ,ZRGRO
Z:)}at A—E:—z)“’At X=cos® D=2
o
(V-¢)

Normalizing factors are also put into the distribution functions

to make the initial conditions appear as follows

- exp[- %] 7 <5
$4(5%,%0) =

o » FoN
and

o 7<%
f(ZEx0) = _ % et
s Pao ) exp[ %] 757 (-7)
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and the macroscopic variables to be obtained from the distribution

function by the following integrations

Pr = %Z'”} 7 dxdy, (v-8)
P = 737_1”; Tt dxd7 - é)_
T = ,_%;_f": Wxedl (-10)
To = )_%___Z:";,\z‘x «d% /. &)
far = Pt Pr -~
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The expressions for € and? have to be evaluated in terms of
these non-dimensional variables. The scattering function € takes the
form of a Maxwellian in Krook's model and )/ is independent of velocity.

A further restriction fixes the parameters in & by requiring the con-
servation laws to be satisfied. Since momentum and energy are conserved
in a mixture only for all the components together, and not individually, the
macroscopic velocity and temperature in the Krook's model for either
species should be the total mixture, velocity and temperature respectively.
If the individual velocity and temperature is used in Krook's model the
model becomes more restrictive than the exact collision integral. With

this in mind the scattering terms EA and &. are determined as

& = /a./ -,/z ex/:[ (__5____)] | (2._"7)

and

™M
®
i

3 F&/tzr,_ 2xp |- Q’EA@Z] (Y-19)

4
Tak

The collision frequency ¥ in Krook's model is just the average collision
frequency independent of velocity. It is, however, composed of two
terms: one due to collisions with like particles and the other due to
collisions with the other species. In this non-dimensional notation the

collision frequencies become

|

* Rt 7

V/,"‘ },—-2 ?A'f%:—+ 3_?
%o Ra 5 .(L’—"”')

;

;L.



and

V= Yo = Sa ) Rog T
Al L0~ A

(¥ -20)

where S,“( R ﬁlﬂ,L and ,344 are the collision cross sections for
helium-helium, helium-air and air-air collisions respectively. They
are, in general, functions of the temperatures of the species but here
they are assumed constant to correspond to a hard sphere collision
model.  This may be inconsistent with the assumption of velocity inde-
pendent collision frequency assumed in the Krook's model, as velocity
independent collision frequency is a result of fifth-power repulsion law,
If this is carried to the extreme, however, one should also make the
collision frequency infinite as this also is a result of the fifth-power
repulsion. We, therefore, choose to consider the velocity independent
collision frequency in the Krook's model as just an averaged frequency
substituted for the actual one in order to simplify the model. With
such an interpretation the choice of the repulsion law is still left
‘arbitrary.

The basic equations, under the application of all these assump-

tions and non-dimensionalization, become

5 (53,%,3) = Falri7,x, F-o8)

+ [Fk(’i-,';-éi “(.7-)'5&'))"”76' (Y= Yas ('?I'?-A?Z??.)

Taa (7, E80)

- ;L '-'.;FZ.,";' ztfg ;)1(;-;-{:-4?)4? + Aigher order Terms

¥ -2)
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and
S5 ®) = (7] 7y x; EaE)

— = =)\
. (! ., " (Va- Uas Gt ),
+ [&_ @%f;,(—r, Z—A?)),/ ex )’( (v ﬁ,@:iz; 2

/

- $En Fut) [ (5 ER)4E ¢ ot (Fo22)

Thus, although a large amount of bookkeeping is involved,
solution of the problem relies entirely on evaluating #'and x' for
each ¥ and X and determining ;(—‘F,F, x,E) from ;('1"; 7,751 z-at)
and the macroscopic variables at ("r"', F-a%) . From this f'(‘;',-i;x;-\‘?)
the new macroscopic variables can be evaluated for all 7 at time 3
From this, a new ; can bé evaluated for time §+A'z ; this process
continuing, in principle, up to any time * , that one desires.

The large amount of bookkeeping and the necessary numerical
evaluation of the macroscopic variables suggest machine solution of
the problem. Since a digital computer works only in a numerical fashion,
all functions, thus far discussed, become matrices. The fact that the
relationships between conditions at time 'Fand -}:“'A? involve a shift of
position in physical space and direction in velocity space through »!
and ' respectively, necessitates interpolation as it is obvious that

1_-" and x/ will not, in general, fall on points at which conditions have
been evaluated. The integrations to obtain the macroscopic variables
become matrix multiplications of the; matrices with certain weight-
ing matrices.

The actual machine solution was carried out with the relation-

ship to first order in A% , as computers are more efficient at

67



carrying out simpler manipulations more often. At time ¢ =0 the
macroscopic variables are given for a certain mesh size in physical
space. Two new matrices representing the right hand sides of the

recursion relations are defined as follows:

Ex(% yVajr %) = (%) %)%, E)

+ [a(-:') Z/’jxlﬂ;}z -}; (;:) ‘7"').1 Y‘f) ;)] 2(5‘?} ;)A: Q ....23)
and

E.( ‘)Va’,Xk)?) = fa( V&,/xk/t)

+[E (7;, )xk)'t) fa( <) a“xk)‘t)]%('f}tjbt (?'24)

Thus, to evaluate the distribution function matrix at I"f‘A‘t it is only
necessary to determine ?’ and’ X' and then interpolate on the E‘
and E., matrices. To evaluate the macroscopic properties it is only
necessary to multiply the ;A and ; matrices by the proper weighting
matrices. To carry tk the solution to the next time one needs only to
evaluate the E[, and E_ matrices again, find the new 'and ! for each
T, V) and X , and calculate the new ﬁ and fa. matrices by

interpolation.

In the actual case calculated, the physical space mesh size was
not held fixed but was adjusted from a very fine mesh size of .05 initial
mean free paths to larger sizes as the storage wa- filled up.

The double integration was carried out by quadratures in both
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directions. The integral was first transformed into

L2+ 22 1
j J’ drdy = If dv dx (7-25)
o - o ©

which can be seen to be equivalent from geometric considerations.

The velocity integration was carried out by a Hermite-Gauss quadrature
to take advantage of the fact that the integrand always behaves as exp(-?z)
in the limits of V= ¥ 2>® . Ten points and weighting functions were
chosen, as it was found that this gave less than a one percent error

for such common integrands as polynomials or trigonometric functions.
The X integration was carried out by Legendre-Gauss quadrature as
this technique was found most useful for cases where no a priori knowl-
edge was available about the integrand. A six point evaluation was used
because of lack of enough memory storage locations on the computer.
This evaluation, however, is equivalent to an eleventh order Legendre
polynomial representation of the function which should certainly suffice
for most reasonable angular variations of the integrand.

The initial mesh size was chosen as .05 in the non-dimensionalized
units. This mesh was retained until the memory was filled up for either
matrix ﬁ or ;a . This occurred when the disturbance on —fl reached
80 mesh size units out orj: 120 mesh size units out. At such time the
program automatically readjusted the mesh size by doubling it and, thus,
freeing half the original storage available. This process was, of course,
repeated each time the storage was again filled. This doubling of the
mesh size was accompanied by the doubling of at for consistency in the
expected accuracy. The reason this was possible is a result of the fact
that though, in the beginning, the initial discontinuity requires a small
mesh size and a small increment of time to obtain reasonable accuracy,

the gradual lessening of the gradients on the molecular scale allows a

69



a larger mesh size and a larger increment in time to retain the
same accuracy.

It was also found that the accumulated numerical errors in cal-
culating the macroscopic velocities by integrations of the distribution
function were sufficient to give results that did not conserve the total
number of particles for large times. This was circumvented, however,
by calculating the macroscopic velocity through the direct integration

of the continuity equation.

b
57.

wE) = (ﬁ?ﬁ)'n)-g{; Feds) (¥-2¢)

57)

The integration was always started from the two asymptotic regions
where the velocity was known to be zero and carried on towards the
middle. This allowed calculating the velocity at any point by merely
knowing the velocity at a point one mesh size away and the density
change per unit time' in between the two points. The calculations are
carried out from the two extremes toward the center to minimize accu-
mulated errors by placing the greatest accumulation of error at a point
where the velocity is likely to be the highest. |
Analysis of the accuracy of the results obtained is quite difficult.
The large number of variables and the appearance of nonlinear integral terms
in the recursion relation make the standard technique for choosing
optimum mesh sizes inapplicable. All that we can do is quote the sources
of error in the computation and guess at their magnitude. First of
all there are interpolation errors on both 4 and X . These are prob-
ably of the order of one percent; except in the initial step the functions
don't vary more than a few percent from point to point. The next source
of error’is, of course, from the numerical integrations. This is impos-
sible to predict analytically when the integrand is itself a numerical

function. The orders of the quadratures were chosen principally because
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of the limits of storage locations on the computer. These quadratures
are, however, very accurate for well behaved functions. Thus, it is
hoped that they are also sufficient for the actual numerical functions
being integrated.

Beside these computational errors there is, of course, some
uncertainty of the effect of the Krook's model on the accuracy of the re-
sults. It is known that at the continuum limit Krook's model gives all
the correct physical behavior though quantitatively incorrect by 25 to
50 percent. The accuracy of the model itself gets worse when the dis-
tribution function is further away from local equilibrium, as is the
case for times much less than a mean free time near the initial discon-
tinuity. The effect of the model, however, is less as the initial effects
are almost entirely from the collision - less motion of the particles.

No conclusive statement can, therefore, be made as to the models effect
on the results, though we have every reason to believe that the general
trends in the physical behavior are correct.

The results for the helium sphere expanding into air at an initial
pressure ratio of 18 and initial diameter of r/p times the outside air
mean free path are shown in Figs. V-1 through V-9. If we look at the mix-
ture density profiles shown in Fig. V-1 through V-4 we can see the building
up of a bump in the density of the air and the propagation of this bump
outwards into the gas.

Comparison with the inviscid results for the same initial pressure
ratio immediately indicates, however, that any identification of this
disturbance as a shock is impossible. This becomes reasonable when one
realizes that the large "shock" thickness to radius of curvature ratio
precludes the possibility of identification of upstream and downstream
equilibrium conditions which are necessary for a shock. The fact that the
distrubance doesn't even appear to be tending towards the inviscid results
as well as the lack of any secondary density disturbances is a direct
result of the fact that the volume effects and the results of just simple
collisionless "kinematic diffusion” tend to drive the whole profile to a uniform

condition in a time much shorter than the time for collisions to create a

71



"shock". This is evident from a simple comparison of the results to
those of the collisionless motion calculated from results given by
Kornowski41 in Figs. V-1 to V-3, Figure V-4 is just a superposition
of the present results for three times to make apparent the outward
propagation. Figures V-5 through V-7 show the densities of the
individual components and thus indicate the large effects of diffusion in
the problem. Figure V-8 indicates the change in the mixture velocity
profile and Fig. V-9 shows the mixture temperature profiles for the
three representative times.

The overall results though not justifiable as correct because
numerical inaccuracies and incomplete understanding of the effects of
the approximate collision model, are certainly reasonable in nature and
clearly indicate the piling up effect of collisions. An important physical
result of the calculations is the determination that for initial diameters
of the order of a mean free path and moderate pressure ratios the
pressure overshoots are much smaller and become negligible much
sooner than the inviscid calculation indicate. The relative similarity
of the present calculations to the collisionless results also indicate
that probably the single most important effect is the simple kinematic
diffusion of the two species and the collisions only alter the profiles

slightly from this.
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NOMENCLATURE

The distribution function

Number density of particles in physical sjace
The pressure of the gas

The gas constant

Position vector

Magnitude of position vector (radius from origin)

Yr2=- 240 X2t + (vot)? modified radius

Initial radius of pressurized sphere

Collision cross section for air-air collisions
Collision cross section for air-helium collisions
Collision cross section for helium-helium collisions
The temperature of the gas

Time

Radial macroscopic velocity of gas

Velocity vector of particle

Velocity magnitude of particle

The cosine of the angle between position and velocity
vectors

Modified cosine of & X '= _X"'_;._z.e_, z

Time increment in step by step solution

Density of particles that have velocity ¥ and have
just suffered a collision at ¥ and ¢
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ahA

(l/j/k

Angle between position and velocity vector
Modified angle defined by equation

P cosB - vat
,’.-l

cos® =
-
Collision frequency of particles with velocity vV

at ¥ and T

The mass density of the gas

Subscripts

Designates air
Designates mixture of air and helium
Designates helium

Designates initial conditions

Are subscripts used to designate discrete points used

in numerical computations

Superscript

Designates normalized, non-dimensional quantity

(Normalizations are listed in text on pages 63
through 64).
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VIi. NORMAL SHOCK STRUCTURE

One macroscopic discentinuity that has been of interest to
aerodynamicists for years is the normal shock. A solution of the
one dimensional Euler equations gives a possibility of a discontinuous
jump in the density, temperature, pressure and velocity.

The second law of thermodynamics further limits the direction
of the property jumps to correspond to an entropy rise. This solution
is, of course, the simplest representation of a shock, but for most
purposes is sufficient if only the overall flow field is desired. The
actual shock cannot be an exact discontinuity but must rather have
some thickness through which the properties change from the upstream
to the downstream values.

The logical next step would, of course, be to solve for the
shock structure by going to the Navier-Stokes equation. This has been
' done28 but the solution should really be rejected on theoretical grounds
because it gives gradients which are large per mean free path in con-
tra&iction to the theory which relies on an expansion based on small
gradients per mean free path. Qualitatively, one can believe the order
of magnitude of thickness obtained. It is, however, still an unresolved
question why the theory, though theoretically unjustified, gives answers
that have at least for low Mach numbers been relatively well verified
by the {ew experimental results availablezg'. 6.

Regardless of this, however, analysis of shock structure should,
in principle, be carried out by means of kinetic theory. Various approx-
imate means have been used in recent years to solve for the shock structure
directly by kinetic theory. Probably the best known of these is the
Mott-Smith method” . There have been others done by different moment

31, 32

methods Comparison to determine which is the best method is

very difficult because of the great scarcity of accurate experimental
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results. All the methods, however, give shock thicknesses of the
order of several mean free paths.

Since the integral equation formulation is particularly well
suited for problems involving a scale of a mean free path, it would
be a useful result to obtain the normal shock structure by means of
integral iteration. It is obvious that to test the power of the method
it is desirable to start with the crudest possible zeroth iterate
(trial function). The Rankine-Hugoniot shock relations give the
necessary boundary conditions, but every estimate of the shock thick-
ness itself requires a lot of labor. The zeroth iterate was, therefore,
chosen as a discontinuous set of macroscopic parameters satisfying
the Rankine-Hugoniot conditions across the discontinuity. This corre-
sponds to the zero shock thickness assumption and will thus test the
convergence of the iteration most severely., It is apparent that if
within several iterations the solution converged and gave a reasonable
shock structure the method would be quite powerful. The basic integral
equation when reduced to the steady one dimensional case without

boundaries becomes

x
$69) = 2o - Manosislor) 45

]

j—o-r v, >0 CZ—T—')

Iyl

o
f;(x,w) = 28(7(;‘:}’) exp [—- Mﬁ%&ﬁ]ﬂ(xjﬁ) dx’
fo‘r v, < (») (Y_T -2.)

and

Apyp) = (9(x) dx’
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The distribution function is represented differently in each half of
velocity space because of the obvious physical fact that the distribution
of particles at position X with velocity components positive in the X
direction will be determined by all the particles scattered in the
physical space for all x'< X while the distribution function for particles
with Y <0 will be determined by conditions in the region of physical
space for x! >X .

The initial trial function can be represented in the kinetic theory

notation as

£2 %) = £,
- ,) -
er')"i P [.(v ‘;.Rt:",/ - ] x40 (zr-3)
£o42) = f;_
. ~ - 2. ., T -
= parmy P [Yealeles] x>0 (T-4)

where ‘"1_/—”' s Ta /'T', and U--;/u, satisfy the normal
shock relations. The first iteration can be immediately obtained since
the integrations over physical space can be carried out exactly.

The lower limit on the integration in the expression for .A_(XI'U")

is taken as zero

A7) = M (2% x <0

-9

A6 = 3 (%) x x>0
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and )), and ))7_ are defined as the usual collision frequency

W(B) = ([ ([orce) 3-8 52) dn >3 (x-¢)

evaluated for X<@ and X > @ respectively. Substitution of the
above into the integral equation yields for the distribution function.

For X‘> (7]

E, + (£-8)exp(%X) vyo
) 4 / Vi
f('(x,?r = ‘ (E'-‘l)
3 v<o

For X< O

£ v, >0
7%7) = (z-2)
& +(&-8)exp(F)  vi<o

where ?I and f:,_ are known exactly for this first iteration since
the zeroth iterate distributions are Maxwellian on either side of the

discontinuity. The detail balance at equilibrium guarantees that f,
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and f,_ , therefore, correspond to the distributions themselves

and .

b= i o b))

(2 ? -
£, =E7%‘L"-17“- exp [—- (V=) i } (ZL_ )0)

2R~

To obtain the fqut 1terate on macroscopic variables it is only
necessary to integrate j— multlplled by the various velocity moments.
The general expression for 'V(V') based on the original Maxwellian dis-
tributions is extremely complicated and contains error functions even
in the hard sphere case. It is, therefore, desired for simplicity to
take V(ﬁ): -27 independent of T) . This is essentially the same
assumption as was made in the Krook!'s model except that in this case

- the form of & 'is exactly correct. It can also be considered as an
assumption of the inverse fifth power repulsion law which gives collision
frequency independent of velocity.

Before proceeding to try to evaluate the macroscopic variables it
is advisable here to indicate the behavior of the solution at the original

discontinuity. If we evaluate

0 & vizo .
5w = Gz -u)
&, v, <0

we notice that it converges to the same limit from either direction.
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The first derivative, however, does not.

For X< 0

(B%{iuzgo_x 1(1:_!/(5;_-5;) for ¥, <0

(r-12)

(‘é-fn L= O | for V; >0
X /x=0 ,

While for X> 0

ax(‘)))(=a+ = 0 for V,( 0
-9
(%O)X‘—:a* -_— _‘_/f}. (?‘L— ?,) for V' >0

Thus the first iteration eliminated the discontinuity but placed a
discontinuity in the first derivative.

To evaluate macroscopic variables it is, in general, necessary
(even with V=7 ) to evaluate functions that have not been tabulated.

These have the form

Rone) =g fospFord™g v (@1
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Even though certain expansions are possible for evaluating these
functions in certain ranges of )f and U it was found that it was
quickest to obtain them to within a few percent by numerical
integration. The method used and the results obtained are shown in
Appendix C. It is important here only to remark that these functions
/'7 (k) w) obey a recursion relation which makes it necessary to
compute the function for only three successive values of 7 as all the
other L’,,(k,u) 1'5 can be ottained from these.

The first iterates of the macroscopic variables can be expressed
“entirely in terms of a sum of the above functions, while successive
iterations, in general, can be expressed as integrals of these functions
over X where /:',. (K,w) is a function of X through nlx) and u.éx)
obtained in the previous iteration.

When the parameters in the problem are all non-dimensionalized

as follows

nE) = nlJ T(x)= Lix)= _ulx
Tl ) el ) =k

) ='96<) X = >) ——_' ‘/‘ -
yé)‘iff"?%#“”y—rﬁ er-1)

—\-/7_= Va V,= | = “-i M=
T2RT, ‘75— a7, ) Y‘fﬂ'!:.

the first iterate for the density in the hard sphere case becomes

X> 0
RE) = Ty - (73 (FREM) - T% (FIRTER,)

. (12[—1:)
AR)= 1 +(ﬁl/;(% ;#”‘)”:g;a)-{,v’))
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The velocity at any point can be evaluated from the continuity

equation Rk = 'LT,
T(®) = 7’%”‘/—;{(2} (Zf—n)

The temperature in turn can be evaluated in terms of r; (h” u)

r; (l{) u) and RCX')

&) ~ BE [1- 2 (R(rfEM) 4 l;'(if,ﬁ*)):f
+ 25y [E(TRIEN) + L3RR fE4)]
SRS
-5 o [4 - 2(R05,Em) + [ (=, ) |
+ 287 [ EN) + 1 (B - TEM) |
-2 (5 EM) (-1

'na')‘l- !

Other properties in the shock such as the heat flux and the
stress can be obtained in terms of G (k)“> , ,7(“)“) and f.,'_(k,u)
by direct integration over velocity space and the use of the recursion
relation derived in Appendix C and appearing as Eq. (C-3). These
same properties can, however, also be evaluated in terms of the
properties already calculated through the application of the momentum

and energy equations, which give the following results in this one
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dimensional case.

(z_x___zx = ) = )+ M (1= 5y ) - RATE - 20)

g = ML)y 2T

(Z-2)

Comparison of the results for these transport quantities obtained by the
two different methods can serve as a test of the accuracy of the results.
The difference in the results between two successive iterations is, of
course, another way of testing the accuracy of the method.

In attempting to evaluate the second and higher order iterations
it becomes immediately apparent that if this is done directly functions
like /:" (K,w) are going to appear because of the ,'ﬂ', term in the
integral. If the work could be continued analytically this would be no
problem as the logarithmic singularity that this function possesses
at = 0 is integrable. Since, however, successive iterations have to
be done numerically it is advisable to try to avoid dealing with singular
functions. This can be easily done by integrating the equation by

parts once.

ﬂ_(x;?) = ECX, T;')
>
-—f%g [x,'rﬁ)expEJngx%]a{)g' v, 20
~->0
£.0%) = &0, i -

—fg-sl(xﬁﬁ-) exp [— KC")A‘%’. l]c/x' v, <o
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It is apparent from the above equation that the undesirable

l/u, giving the f:" [H,u) functign has been eliminated., The
general solution for any macroscopic property can, therefore, be
represented in terms of the previous value given by integrating

f(i ﬁ) plus a correction term composed of integrals over X ! of
the r;‘(h, u.) functions for positive 74 multiplied by the property
gradients resulting from the previous iteration. The property gradients
come from the dependence of z&,ﬁ) on the macroscopic properties.

For the case of the simple Krook's model in the one dimensional case

869,) = 2(x) exP[ -u)-fVus ] @'—-2-3)

7rRT(x) VRT)

the gradient becomes

$Ebo7) = 267) icwmé') +ecedes 1.;';;‘) -Z) 5T

che] (2=

The resulting expression for the density becomes

w@) = R a-’)(i) :}f{f;(i{i’,i' ) 7%’ )x

%z 1 ~T o 4z
[ ( & ) dx’ =r¢-l ar’ ]
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and
~ -z
FG®) = §o62) g 7-27)
x

A similary complicated result for the temperature can be obtained
but, in principle, no new complications are added and the results
can still be expressed in terms of integrals of the previously calcu-
lated properties and their gradients and the tabulated P,, (k) M.)
functions.

As an example of the iterate solution the density profile for the
case of Y =1.667and M, = 1.5 is plotted in Fig. VI~1, The discontin-
uous derivative at X = 0 in the first iterate is, of course, a spurious
result of the initial choice of trial function and does not have a physical
interpretation. This first iterate, however, is a crude representation’
of the shock, and the second iteration gives only a slight improvement.
The difficulty lies near the point where the function was originally
discontinuous. This can be interpreted to mean that a more realistic
choice of initial trial function should be made as the discontinuous one
. places too stringént a demand on the integral iteration process.

The results thus far obtained are thus insufficient to determine
the feasibility of integral iteration in calculating shock structure
though the tendency in each iteration is in the right direction. Thus
new efforts should be made by iterating from less unrealistic initial
assumptions and thus improving the chances of convergence of the
method within only a few iterations. Only in this way will the method be

given a fair trial.
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NOMENCLATURE

The distribution function

The Mach number

The number density of particles in physical space
The pressure of the gas

The x X component of thé pressure tensor

The heat flux in X direction

The gas constant

The temperature of the gas

The macroscopic velocity of the gas

The velocity vector of a particle

The ¥ , y , 2 components of 7

Coordinate in direction normal to the shock
Special function tabulated in Appendix C

The specific heat ratio

The scattering function specifying the density of
particles with velocity ¥ that have suffered a
collision at %

Integral over the collision frequency defined on

-
The collision frequency of particles with velocity V
at position x

The average collision frequency at X

The differential collision cross section
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Subscripts

Designates the half of velocity space where V| Vo
Designates the half of velocity space where V,<0

Designates asymptotic conditions on the far
upstream side of the shock

Designates asymptotic conditions on the far down-
stream side of the shock

Superscripts

Designates normalization with respect to upstream
conditions (Defined on pages 91 through 92 )

Designates the 1'th iteration solution
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VII. HEAT TRANSFER BETWEEN PARALLEL PLATES

A relatively simple example of a boundary value problem in the
transition regime is the problem of heat transfer between parallel plates
at pressures low enough to make the mean free path of the same order as
the plate separation. The problem has all the basic features of the general
boundary value problem in the transition regime, but the geometry is very
simple, and the description of the problem is limited to a single variable,-
the temperature profile. There is also the additional advantage in this
problem in the fact that the continuum and free molecular solutions are
both well known and simple. We have therefore chosen this problem as an
illustration of the application of the integral iteration method to solution
of transition boundary value problems.

The problem can be stated as follows; two plates infinite in extant
are separated by a distance b and are maintained at temperatures Tn,
and T\"; respectively. The solution desired consists of the temperature
| profile of the gasvin the gap between the two plates, and the overall heat
flux, as a function of the pressure of the gas. The solutions for pressures
high enough to make the gap be many times the mean free path are
of course well known. The boundary conditions are such as to force the
gas temperature to the wall temperatures .at the walls, and the profile is
either a straight line or varies as lj”with " depending on the assumed
temperature dependence of the thermal conductivity. The heat flux is
directly proportional to the temperature difference and inversely propor-
tional to the plate separation while being independent of the pressure.

The low pressure or free molecular solution is also well known. The
temperature is a constant with a jump existing between the wall temper-
ature and the fluid temperature at the wall. The heat flux is still
proportional to the temperature difference between the two walls, but is

independent of the plate separation, while being proportional to the pressure.
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It is apparent, therefore, that the change in the mode of heat transfer
takes place someplace between the two extremes. It is our goal to try
to determine the temperature profile and heat flux for the whole range
of pressures between the continuum and the free-molecular condition.
Since it is apparent that the heat flux-cannot really be a function of the
absolute value of the pressure, but rather some non-dimensional quantity,
it must depend on the pressure through the Knudsen number, which in this
case is the ratio of the mean free path to the plate separation.

When the variables are non~-dimensionalized and the temperature
difference introduced as a parameter, the problem takes the following

form

T= T/,Tm | Y- A

- ATw _ Tw, =T
Tw, Tw,

Twy=1-B
Jm=+y
Gw="%
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The continuum solution is obtained from the energy equatibr_l, which

reduces to

%k(‘f’g = 0 ”"'2-)

where k is the thermal conductivity, and the boundary conditions are,
T.('Jz‘) =] and ?(*',"_') = /-/8 . The heat flux is

q,o'::. kﬁ)TM/b ‘Ff/d? and is constant. Solution can be easily
obtained for simple relations between k and T.

The free molecular solution is likewise easily obtainable by
considering all the particles with positive y velocities to.have come from
the bottom plate, and all those with negative y velocities to have come
from the top plate. The condition of no net mass transfer and the
accommodation coefficients at the walls completely determine the solution,

which is simply

PP SR

’(’ "‘”2 "'d, d,_

Where o) and oty are the acco modation coefficients
and Ll G — (ur-4)

where —7—;:= ) + o) (1 -a )()-
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We, however, want to find the solution for all Knudson numbers
in between. As discussed in Section IV, the application of the
integral equation formulation to a boundary value problem requires
iteration. Since the choice of the initial trial function will either greatly
enhance or hinder the iteration process, it is very important to choose
a good one. As was already mentioned, the integral iteration process
will in general quickly converge to the right limit in and near the free
molecular end. It is, therefore, most important that the initial function
chosen approach the continuum limit in a correct way as there conver-
gence is poorest. At the same time a choice of a particulary complicated
function will require a large amount of labor in the iteration and will
defeat its own purpose. The best compromise choice for the zeroth
iterate, therefore, seems to be a solution obtained by Lester Lees'
moment method. Though it is certainly true that this solution does not
approach the free molecular limit in the proper fashion and that the detail
profile cannot be correct, the gross behaviour is correct at both limits
and the trend in between is represented by a relatively simple smooth
function. We, therefore, propose to solve the heat transfer between
parallel plates problem by Lees' moment method and then iterate from
this in the integral equation. The solution by Lees' moment method is
carried out in Appendix D so as not to complicate the train of thought
here by too many details.

The results for any of the several cases carried out in the appendix
always give a temperature profile that is identical with the continuum
profile in shape (for the same k(T) dependence) but has a temperature jump
at each wall. The heat flux is always equal to the heat flux at continuum
times some function of Knudsen number that reduces to }f{ at the free
molecular limit. Keeping this in mind, we can analyze the integral
iteration procedure without fixing our attention on any particular k(T)
dependence or equivalently any particular collision cross section depend-
ence.

The integral equation for the steady state one dimensional
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case with boundaries becomes

£ly,7) = j Ely;2) exp [- _m_)zu;‘_z] V(y,8) dy’

+ fi(yv) exp [-Aa] 24
| (vz-5)

£(y#) = f‘ tys#) exp [ 2z JV(g 2) f’&?:'

+ £ (45,7 exf[--ﬁ}_%?bmﬂ] V,40

where

—/L(y,tf) j My, #) dy’

Iteration follows the same lines as that carried out for the normal
shock case but with a different zeroth iterate and the additional complica~-
tion of f_’,(p #) and f_.(,._)r) entering into the problem.

We again have achoice of using an exact evaluation of vC5) (f)
and 8(71 y-) based on the zeroth iterate or using a model based on
the macroscopic properties alone from the zeroth iterate. Here,.the choice
is quite obvious. Since our zeroth iterate is a moment method solution,
it is apparent that a model for § and 32 is actually a better as well as a
more convenient choice. The moment method solution does not really
purport to solve for the distribution function, but rather uses certain
free parameters in an assumed distribution function to satisfy the con-
servation laws as well as some higher moment equations. The macroscopic
variables can then be treated as the solution while the distribution function
can be considered as only a weighing function used in the solution. Espe-

cially in the case of Lees' method which assumes a distribution
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function discontinuous in velocity space the use of the distribution function
as a solution is undesirable.

We, therefore, choose for the model € and 2/ a modified version
of the Krook's model. The collision frequency 3/ is still the velocity in-
dependent average collision frequency. We choose an E(y, b") , however,
that has anasymmetry proportional to the temperature gradient as derived in
Chapter III. In this case of no net macroscopic velocity and for no pressure

gradient (Lees' moment method solution) this becomes
fV -}'V
Ely7) = (z o n,;)”* [ “TRTG)

1 dinT
v, -rVI:-rVI ) ]
[’ S (SR 2 dy (vir-¢)
When this type of model is substituted into the integral equation

and one tries to evaluate the macroscopic variables again an untabulated

kind of function appears of importance.

Ta ) = fexp| (V4 3F)] w2dvr (A7)

Even though these functions are only special cases of the r," (K) UL)
functions they are evaluated and tabulated separately in Appendix E. They
are evaluated to a much greater accuracy than the I—;‘ (k/ M.) functions
because they can be evaluated by expansion for small }f and by method of
steepest descents for large . Again there is a recursion relation between
different orders 7 and some integral relations as well. The method of '
evaluation and the tabulated results are presented in Appendix E.

With these results available we can now proceed to evaluate the
first iterate for our problem of heat transfer between parallel plates.
Lees' moment method is based on the assumption of the inverse
fifth power repulsion between particles, thus, for consistancy one should
use the thermal conductivity proportional to T the temperature, and a
collision frequency W proportional to density alone. With these assumptions

our zeroth iterate becomes (from Appendix D)
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= — s Tt R (52)(+0-8%)
¥= Y= P R

A Grifalst + «(22)21(1- B2) ~7)
X[l )/' < (1+ 252 K (1+0-B)%)] J o

T = )/¢2—21P;5

where K,-_-_ _k-m TW| — 16 .2\.»'
po 2R, 8 b

Now for a first try we can take the case of perfect accomodation which

reduces these equations to

v = _%}xa:wi-ﬁ-(z-ﬂ)[ﬂ%mm]z]

T = Yp*2vpy (AT~10)

where

pi= 1[I +¥K(-{1-5 )-B{i+t-8H]")]
@@-1)
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In principle it should be possible to substitute this 9‘ dependence for T
and the corresponding '5 dependence of M into the expressions for E.(j;?)
and V(l]'.?) and evaluate directly the first iterate in terms of the I,,()‘?
functions. The '/{/, appearing in the integral equation necessitates evaluat-
ing the solution in terms of integrals over the I.'(k)‘ functions which have
a logarithmic singularity. (Appendix E shows that L(}{) behaves as
(“o +b, }{Ln.})’) for small ){ and the differential relation I= drﬂ%’f
shows that I.)()) has a logarithmic singularity at M= 0.)
The fact that this singularity is integrable does not cause any problems in
an analytic solution if such;were possible. If, however, the iteration is
going to be carried out numerically the singularity will cause problems in
the integrations. It is, therefore, advisable to avoid this singularity by
integrating the integral equation by parts once and thus, eliminating the

'/v7 term. This as in the normal shock case also has the advantage in
the fact that it gives the L'th iterate of any macroscopic property directly
as the a-l)'ﬁs iterate plus some terms that are evaluated in terms of the
gradients of the macroscopic properties evaluated by the a‘i) iterate.

The integral equation for f in terms of the normalized coordinates

becomes

H5,%) = b_fﬁ(ﬁ}ﬁ)éxp[-#ﬁ%;—é-—(ﬂz »(g') 471,5:
PR [AR] vivo

; £ | |
507 = b § 210 [ ARAB5) 2

+ F(+L,7) exp [—A&Mi’] v, <0

/vl
where  _AL5) = b {259 d5" (712
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When this is integrated by parts once it becomes

F2(57) = €(5,%) + ($r04,2) - £t ) exp [ 442
~b fb dE exp|-ALs)lAls) | <7’
for vy >0 (o= 13)

£(59) = E(5,2) +(Srip) - E65,P))exp [41%_5]

+
+bfb%‘_§§’ axp[-l‘-ii?‘—;'ﬂ-‘ﬁ')
5

for Vi<o (Y- 14)

When any velocity moment is calculated to determine the macroscopic pro-
perties the integration of the first term contributes the previous iterate
automatically because of the choice of 8(5')'}) The correction to this

term is supplied by a boundary term from each side and an integral of the

property gradients times the W;Of)(i.e. I'o,,()f_)/rn (o) ) functions.

109



Thus, the first iterate on the density becomes

Jf(—zg )

G.A_(-'-) (7).
TZRTE)

- 4 mfié’ {re (Al As )
37 LML) )k L5
+Usp g 87 {7 (L08))
- 3 7Ll AL L)) Ly (Y715

The first iterate on the temperature can be obtained also by a similar pro-

cedure and can be expressed as follows.
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The heat flux can be evaluated directly from the original integral
equation because the ¥) term in the numerator of the weighing function
cancels out the ¥}, in the denominator of the equation. The expression

for the heat flux, therefore, becomes

P

c) po2 [ﬁrj,,: (773(-?1‘;2;)4- %'_L_Y___(ﬂ_))

- (D) + s )
b { fvcs‘)(‘? -_;F";Q)J)—ﬂr = ))‘J’f;

e
' B

-gpw(n(gﬁ% + I (L)) 5 ]
-org{ [ g [Tegak)

-3 75 (ells)) - ST 5
“FTBES)- 5T (e} (A7

The_A.(g) appearing in the above expressions can be evaluated
analytically for this first iterate. __/Lg') is defined as

Nlg!) = bﬂ)(g'yij-” C_/_/—IB)
-1
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and 'V(’-”) can be taken as Yo 7!‘(’5") where ?{lj’is a constant and
710(‘9") is the zeroth iterate solution for the density. The fact that the
Lester Lees' moment method solution gives a constant pressure allows us
to evaluate this immediately in terms of the temperature. This gives the

equation

.5' n
Als) =[R2 254 ()

This in turn can be easily integrated for the case of Maxwellian particles as

Tt5Y) = Tw Y9285

and
T = - TG )
T4
Mg)= 'Rf“ev,,,w,s! 4
T(5)

L5 = b e [Te1)T05))  (r-20)

With the above relations, it is now possible to evaluate the first
iterate by numerical integrations. Successive iterations can be continued
by use of the same basic integral relation, but the fact that the pressure
will not in general be a constant will cause some modification in the evalua-
tion of the asymmetric term in the collision model, and of course the .A(B')

will not in general be available analytically.
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As an example of the effect of the first iteration on Lees' moment
method solution the temperature profile was calculated for the case of
Knudsen number equal to 8/15. The results are plotted in Fig, VII-1. It
can be immediately seen that the first iteration introduces a boundary " layer
type" effect near the boundaries and reduces the actual temperature jump
at the walls. Both these effects are in the right direction as on physical
grounds it is easy to see that near the walls the effect of the walls is going
to produce a kind of boundary layer resulting from the -exP [—j d%{;)]
scattering of the particles that came originally from the wall. Likewise,
it is known that Lees' moment method overestimates the slip at a
wall in the linearized Couette flow problem23 and thus, it is reason-
able to assume that it also overestimates the temperature jump in the heat
transfer problem. The results in Fig, VII-1 therefore, show that the iteration
process is at least tending towards results that are physically more realistic
than the original trial function. A real test of the convergence of the method
in this case, however, will require further iteration as well as calculations
in other Knudsen number ranges. The preliminary results indicated here,
certainly allows us to have high hopes for the quick convergence of the re-

sults and their physical validity.
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NOMENCLATURE:

The plate separation

Constant in correction to Krook's model to give
proper continuum limit

The distribution function
Function defined and evaluated in Appendix E

Parameter (which is 15/8 times the Knudson num-

ber) appearing in Lester Lees' moment method solution.

Thermal conductivity

The pr'éssure of the gas

The heat flux between the plates
The gas constant

The temperature of the gas

Temperature normalized by the hot wall temperature

( T/Tw, )

Velocity vector of a particle
Y
Theﬂ , X and Z components of V' respectively

Coordinate normal to the plates and having its origin
halfwa.y between them

Normalized coordinate ( ﬂ/b )
The accomodation coefficient
Normalized temperature difference

The scattering function designating the density of
particles with velocity ¥ that have just suffered a
collision at y
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..A_(7,'i3') Integral of collision frequency overy (defined

on page )
2 The mean free path
v(y,".)‘) The collision frequency of particles with vglocity

V at position Y

TT,‘, ()f) A function defined as &a (”)/J;, (0) and tab-
ulated in Appendix E

¢ Constant appearing in Lester Lees' moment method
solution (defines the normalized temperature at Y= 0)

s‘) = ?7/7y0 Heat flux divided by the value at continuum conditions

Subscripts

w, Designates conditions based on the hot wall temperature

L £Y Designates conditions based on the cold wall temperature

o v Designates the continuum asymptote

-+ Designates the half of velocity space where the y com-

ponent ¥ is positive

- Designateg the half of velocity space where the ” com-
‘ ponent of ¥ is negative

Superscripts

(») Designates the zeroth iterate, i.e., Lester Lees'
moment method solution

1 Designates the first iteration solution
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Figure VII-1.

NON-DIMENSIONAL DISTANCE, ¥y

Temperature profile between parallel plates

AT/T = 3/4 and N, /b = 8/15
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VIII. HEAT TRANSFER EXPERIMENT

Because of the great scarcity of available experimental information
in the transition range of Knudsen numbers even very simple experiments
that only determine gross effects in this range are of some value. One
experiment that, at least in principle, can be performed with very simple
apparatus in the measurement of heat flux between two large parallel plates,
separated by a gap containing a gas, as a function of the pressure of the
gas. Though this will not answer such important questions as what is the
temperature jump at the walls or how does the temperature profile change
with the pressure,it will give an indication of the variation of the heat flux
as a function o_f' Knudsen number and thus serve, at least, as a partial
reference for comparison of different theoretical methods.

The experixﬂent as such is, of course, not new as it has been done
as long ago as 1898 by Von Smolu.chowski36 and more recently with a
slightly modified geometry by Wiedman and Trumpler37 in connection
with determination of accomodation coefficients. The results up to the
present, however, are by no means conclusive, and certainly more
work remains to be done.

Of course, very similar measurements can be obtained with the
differ'ent geometry of a wire inside a cylinder. This geometry allows
great simplicity in the apparatus as the central wire acts as the heater
and the measuring instrument as well as one of the surfaces between which
the heat flux is taking place. Unfortunately, there are several disadvantages
to this experiment. First of all there are really two Knudsen numbers in
this problem based on the radii of the inner and outer cylinder. This
complicates the interpretation of the results as the mode of the heat flux
may actually be both free molecular near the central wire and continuum
near the outer cylinder at a single level of the pressure. - Secondly, besides

the radiation transfer and fringe effects which will appear in any heat
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transfer problem, this geometry includes the possibility of convective
effects which unlike the other two is pressure dependent and thus more
difficult to isolate. The parallel plate geometry introduces neither of
these difficulties. Convection can be entirely eliminated in the central
portion between the plates by having the hotter plate on top and thus in-
ducing a very stable density gradient. The fact that there is only one
physical dimension of importance,provided the aspect ratio (plate
dimension divided by the plate separation) is high, means that only one
Knudsen number is necessary to describe the physical situation. This,
in turn, aids in the interpretation of results by guaranteeing that for any
one Knudsen number the mode of heat flux is the same everywhere be-
‘tween the two plates.

The experimental apparatus consists of two polished and gold
plated copper plates each 3/4 inches thick and 10 inches in diameter
separated by a gap of .034 inches. The separation is maintained by 3
quartz tubes of 2mm I.D. and 4mm O.D. and about 1/2 long. These
are mounted on micrometer screws so as to allow adjustment of plate
separation between zero and 1/4 inch. Into the top side of the top
copper plate a teflon insulated nichrome wire is wound so as to act
as a heating coil, On top of this is a 5/8 inch thick teflon plate with
an identical heating coil on the other side and a stainless steel plate
on top of that. The teflon plate and second heating coil are included
in order to have a means of nulling the thermal gradient across the
teflon and thus guaranteeing that all the power going into the lower heat-
ing coil is transmitted as heat flux across the gap between the plates.
The bottom plate is mounted on 4 copper coils potted together. These
coils carry cold methanol and are capable of maintaining the bottom
plate at any temperature down to —90°F with the existing pump and
heat exchanger. A sketch of the two plates in assembled position is
shown in Fig, VIII-1,

The plates as described above are mounted on a stainless steel
plate with electrical feed throughs. A bell jar with an inlet for feeding
in helium at the top is placed on top of the stainless steel plate. The

vacuum equipment consists of a two inch diffusion pump and a backing
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pump, as well as some vacuum tanks, to increase the volume and thus
decrease the percentage leakage of air into the system. The instrumen-
tation consists of two thermocouples mounted in each copper plate, one
on each side of the teflon plate and one on the top stainless steel plate.
The pressure measurements are taken with a McLeod gage, with a tube
coming through the bottom plate, for pressures below a millimeter, and
with a Haas manometer for pressures above a millimeter. The heat flux
is read directly on a wattmeter attached to the line going into the coil on
top of the copper plate. A schematic diagram of the apparatus and asso-
ciated equipment is shown in Fig. VIII-2,

After many months of correcting trivial details and making the
vacuum equipment tight, some preliminary data was obtained with helium.
It was found that taking the bottom plate to temperatures lower than about
~30°F resulted in leaks around the seals in the stainless steel base and
thus operations were restricted to temperatures above this level. A series
of 14 data points were taken at operating conditions of about 100°F temper-
ature difference and pressures from .02 microns to 100 millimeters. The
raw data is shown in Table VIII-1 and the heat flux normalized to a 100°F
temperature difference is plotted in Fig. VIII-3 as a function of pressure.
The reason only 14 points were obtained and the fact that the temperature
difference was not always exactly maintained at the same level is a result
of the very long time constant associated with taking of each data point.

It was found that the heat flux for pressures below about a micron
is constant and independent of the pressure. This value must, therefore,
correspond to the sum of the radiation heat flux and the end losses through
the quartz tubes. To get the conduction heat flux it is only necessary to
subtract this from the total heat flux at any pressure. The fact that the
temperature difference was not always the same means that a different
amount should be subtracted at each point to normalize properly. Since
no information is available as to the relative ratio of radiation and quartz
tube conduction in this asymptotic heat flux, it was normalized linearly

with the temperature difference to facillitate calculation. This is reasonable
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as the radiation heat flux can be written as proportional to
2 T -
(5458 (3 e) (T

and in this experiment the variation in the quantity
T+ T ) (Tow, + T
W W w, T '

was well below the experimental accuracy of the pressure measurments.

" When this asymptotic heat flux is subtracted the remaining con-
duction heat flux varies linearly with pressure for pressures below 100
microns. This means that in this range the heat flux is definitely free
molecular, Since the formula for free molecular heat flux is well known
as a function of accomodation coefficient, we can determine an average
accomodation coefficient for the two walls by merely plugging our exper-
imentally determined slope of d‘?/d}; into the theoretical
f'brmula and determining the average accomodation coefficient, The re-
sulting value of accomodation coefficient e = . 455 is at the high end of experi-
mental scatter of other investigators38. Though this does not give any
information as to its correctness, it probably does mean that the equipment
used in this experiment was relatively dirty. It also means that for this
particular apparatus the accomodation coefficient is probably correct.

Once the accomodation coefficient is available it is possible to
compare the experimental results to some theoretical results for the same
accomodation coefficient., A plot of heat flux normalized by the continuum
value versus Knudsen number is shown in Fig. VIII-4. The theoretical re-
sults are those obtained by Lees' moment method with four moment
equations. The results shown are for the constant property case aé for this

value of AT%—,‘,‘ = ,19 there is no appreciable difference between this
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and the Maxwellian molecule case. The expefimental results are also
shown on this graph. The Knudsen number for the theoretical results is
calculated by making sure that in the free molecular limit the experi-
mental points agree with theory. This is necessary as the inaccuracies
in the measurement of plate separation, and the lack of clarity as to what
properties the Knudsen numbter should be based on are such as to make
comparison between theory and experiment unfeasible unless some ref-
erence point is fixed.

As could be expected, the experiments generally follow the basic
pattern of this simple theory. The accuracy of the experiments is certainly
not sufficient to compare different theoretical results purely on the basis
‘of available data. The experiment does, however, give some information
as to the accomodation coefficient and also the general behavior between
free molecular and continuum conditions. It verifies, quite conclusively,
the predictions of almost any theory that deviation from the asymptotes of
free molecular and continuum occurs over a relatively narrow range of
only two orders of magnitude of Knudsen number. The level where this
transition occurs is, of course, strongly dependent on the accomodation
coefficient. This, in turn, means that probably the single most important
piece of information necessary for proper prediction of results in the
transition regime is the knowledge of the accomodation coefficient, which
is certainly imperfect at present. Of course, more basic data that would
allow prediction of accomodation coefficients theoretically is even more
desirable and hopefully will some day be available.

The data, so far obtained, is certainly neither extensive enough
nor accurate enough to draw any far reaching conclusions. It does
indicate, however, that the apparatus can be used for measurements of
heat flux over a range wide enough to include both limiting conditions on

Knudsen number without excessively high radiation and end effects.
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P
Millimeters

2 x 10‘5

.02075
.04500
.1000
.2050
.3870
.6150
1.024
1.940
3.780
7.470
14.85
50.10

100.0

H<@'U

Wa

H

w1

H

SS

>
H

Watts

2.5

7.0

13.0
22.5
50.0
83.5
145.0
177,0
265.0
390.0
464.0
500.0
565.0

520.0

Heat

TABLE I

Transfer Data

-23.0
-24.9
-23.9
-23.6
-22.7
~24 .4
-22.6
-23.9
-23.3
-21.0
-19.5
-21.9
-23.7

-23.0

66.0
63.8
74.0
62.0
77.5
61.1
79.8
65.9
69.8

76.5

72,0

72.2
77.2

70.0

Ss
°F

65 .0
63.2
74.0
62.5
77.0
60.8
80.0
65.5
69.7
76.5
72.0
72.1
77.5

70.5

aT
°F

89.0
88.7
97.9
85.6
100.2
85.5
102.4
89.8
93.1
97.5
91.5
94.1
100.9

93.0

Pressure in gap in millimeters of mercury

Total heat flux in watts

Lower plate temperature in °F

Upper plate temperature in°F

Top stainless steel cover temperature in °F

Temperature difference in °F
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IX. CONCLUSIONS

The stated objective of this thesis is the analysis and description
of physical phenomena in the transition between free molecular and
continuum conditions. The approach used has been to transform the
Boltzmann equation into a purely integral form and substitute simplified
models for the collision term. This description has the advantage of
showing the effects of boundaries explicitly and is amenable to numerical
iteration procedures.

The method has been applied to three different types of problems.
Only relatively preliminary results have been obtained in all three as the
excessive complication in the numerical computations coupled with a
limited availability of computer time prevented extensive study of any
individual problem. Furthermore, it was felt more desirable to carry
the method far enough in several problems to allow numerical computation,
but to avoid getting involved in the many technical refinements of numerical
techniques that are necessary in an accurate numerical solution. These
preliminary results, however, are certainly sufficient to indicate that the
integral equation formulation of kinetic theory can be of some use in the
transition regime, both quantitatively and as an aid to intuition.

The results shown at the end of Section V for the expanding sphere
problem cannot be considered final as the accuracy of the numerical tech-
niques has not been sufficiently well analysed. Though numerical refinements
could undoubtedly improve the accuracy and make all the macroscopic
quantities well behaved, the available results are sufficient to show a
reasonable behavior of the density disturbance propagation. This is
immediately apparent from a glance at the density profiles shown in ‘
Figs. V-1 through V-4. These figures also show that for the moderate
pressure ratio chosen and an initial diameter of the order of the outside

mean free path the solution lies much closer to the collisionless case
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than to the inviscid results. Though there is an apparent tendency for
the solution to get closer to the inviscid results, the effects of just
simple collisionless "kinematic diffusion" overpower this effect and drive
the gas toward uniform properties in a time much shorter than the time
required to approach the inviscid profile. Figures V-5through V-7
indicate the fact that diffusion of the two species far from being a small
effect is the dominant one for the conditions chosen. The much higher
mean speed of the helium particles directly accounts for the much quicker
diffusion of helium into the air than vice versa. This further suggests
that extreme care should be used in interpreting results as collisionless
motion of two components with different "diffusion" rates represented by
their different mean speeds can have results that at first glance appear
similar to collision dominated effects. This in interpreting the results
shown in Figs. V-1 through V-3 one realizes that only part of the density
overshoot is a result of collisions while a portion of it is only the effect
of the different mean speeds of the two species. The results of the
present calculation are, however, sufficient to indicate the effects of
collisions and thus show usefulness of the method for solving problems
between the collisionless and collision-dominated regimes.

The results for the normal shock structure shown in Fig. 6-1 are
not complete because they were carried out by hand computation. The
fact that the ’7,‘ Ck, u) ’s needed in the calculations are calculated
with doubtful accuracy would make any more extensive calculations of
dubious value. The results available are certainly sufficient, however, to
show some power of the method in tending toward reasonable answers in
two iterations from the very unrealistic zero shock thickness assumption.
Further iteration poses no new problems and with electronic computers
should be easily obtainable provided an accurate technique for calculating
the [~ (K,M-) )¢ is devised. Though a better alternative seems to be to
iterate from a more reasonable initial trial function and thus relax the
convergence requirements of the method.

The dependence of solutions ‘on integrals over the distance normal-

ized by the local mean free path further justifies making general statements
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as to the asymmetry of the shock structure as well as suggesting a different
definition of shock thickness. Because of the actual asymmetric shape of
the shock structure the usual definition based on the maximum slope has

a dubious meaning. A more meaningful definition would seem to be

S 4%

carried out between limits where the properties are a certain fixed

based on the integral

percentage away from the asymptotes.

The results obtained for the heat transfer between parallel plates
by a single iteration are sufficient to justify confidence in the method though
‘certainly additional results are needed before any conclusive statements
can be made. The deviation from Lees' method occurs principally
near the walls where that method is known to be least accurate. The
resulting reduction in the actual temperature jump at the wall is physically
justifiable because of the boundary iayer type influence of the particles
coming from the walls, but the inability of ever actually measuring the
temperature of the gas at a wall casts doubt as to whether the temperature
jump obtained by extrapolation of the temperature gradient to the wall is
not the more easily verifiable quantity., Whatever the case, however, we
can certainly say that the integral equation solution appears capable of
adequately describing the physical situation. .

The I,l(){) functions calculated to a relatively good accuracy in
Appendix E will certainly arise in other problems and are thus certainly
of general usefulness. The fact that the accuracy can be improved to any
order desired by just numerical computations from the quoted results,
makes this a feasible method for more extensive tabulations. The avail-
ability of analytic expressions for the behavior of the functions throughout
the range allows making certain statements that have physical significance.
The ex?[—')@)y,_] behavior for large A indicates that the influence of the
wall or any distrubance on a macroscopic property is felt within a distance
where 3(.4:—)1/3 is roughly 4 or 5. The fact that J{ can be related to
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an integral of

do
ALx

where A{;t) is the local mean free path gives us a sort of "sphere of

influence® criterion for kinetic theory phenomena. Furthermore, the

ratio between :rz and Lo which is proportional to (_ﬁl‘-)y’ indicates again

that energy disturbances have a larger "sphere of influence" than density

disturbances.

The experimental results obtained certainly cannot be used as a
conclusive proof of validity of any single theory, but in this field con-
clusive results are not yet available for any problem. The fact that the

“accomodation coefficient measured with the apparatus lies at the high end
of the experimental scatter of other investigators is not too surprising,
as no special care was taken to chemically clean or treat the surfaces.
The resultant possibility of adsorbed material on the surfaces would
certainly make the accomodation coefficient tend to be higher than for clean
surfaces. As a matter of fact, the value of .455 obtained from the experi-
ment is close to the value of .500 predicted by the Ba.ule34 theory of
accomodation of helium with adsorbed helium at the wall. Though this
theory is not, in genéral, too accurate it does indicate the fact that walls
with adsorbed layers of the same material as is being accomodated tend
to increase the accomodation coefficient by as much as an order of mag-
nitude over the "clean" wall result.

The fact that all the experimental points in the transition regime
tend to lie above the Lees' moment method solution, suggests that
this solution may underestimate the heat flux in this region. The fact that
the difference is only of the order of 10 percent, which is also the order
of accuracy of the measurements, precludes making a definitive judgement
on this or on the relative merits of any other theory.

The theoretical results obtained, at least tentatively, indicate
that the integral equation formulation of kinetic theory can have great power
in the analysis and solution of problems in the transition range of Knudsen
nufnbers. The experimental results obtained are certainly of some value

in defining the behavior of heat transfer between free molecular and
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continuum conditions and also give the helium accomodation coefficient ob-
tained by a method different from that usually used. A large amount of

additional work, however, remains in both the theoretical and experimen-
tal parts before the implications of the work started are fully determined.

Aside from the general improvement in the numerical techniques
that should be done to better utilize the integral equation formulation, and
the more detail calculation of the /7, ( A, w) functions to obtain their
analytic properties, the imperfect conservation of mass, momentum and
energy that occurs in all the problems should be investigated. In the
initial value problem the accuracy can be increased relatively simply by
not only solving the problem through the step by step recursion relation,
but upon this initial solution iterating inlthe actual integral equation until
the successive iterations are the same. In the steady state problems the
fact that the model uses the previous iterate values of the macroscopic
variables and thus does not conserve the collision invariants exactly,
could cause problems in the convergence of the results and should be in-
vestigated more fully. The fact, however, that in the limit when the
successive iterations are the same the conservation laws are satisfied
exactly, indicates that probably when the initial trial function is not too
incorrect the inaccuré.cies in the conservation laws should be no more
serious than the other numerical computation problems.

The experimental apparatus designed and built for this thesis should
certainly be used for additional measurements on helium as well as other
gases., Some modifications in the apparatus should also allow increasing
the-accuracy of the results as well as possibly taking some temperature
profile data. The apparatus as such can also be used for more extensive
measurements of accomodation coefficients by a technique different from
the usual "hot wire in a cylinder" method. The relatively low level of
radiation heat flux and the ability to adjust the gap size should allow
more accurate measurements than with the standard method. The fact
that a whole series of points can be taken in the free molecular region
further allpws computing the accomodation coefficient by taking the slope
of the heat flux with respect to pressure and thus avoiding the inherenily

inaccurate procedure in subtracting the radiation heat flux from the total.
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APPENDIX A

BOUNDARY CONDITIONS IN INTEGRAL EQUATION

The boundary conditions in the integral equation consist of

two terms
L. )
77§ om,nt) Slrtowt)dsdr,

X4 %"""’30_) %122 38) AV
2

The solution desired is for the volume V bounded by the surface ,S' .
With a little geometry it is easy to show that both terms do not contribute
simultaneously. Putting the coordinate system at an arbitrary point O

within 'V we get the following geometry
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Now we notice that both boundary terms contain delta functions which
contribute only when the argument is zero. Thus, the second term can
contribute only if %:?—Vt' lies within the volume ¥ . When this is
true, however, ﬁ:%—ﬁ(ﬁ'-tp)can only lie on a line between F and 0T
for positive values of & less than t . Thus, it cannot be on the boundary
and the argument of the delta function for any ?‘3, on the boundary and
time ¥, between zero and T cannot be zero. The converse can easily
be seen to be true, for when the argument of the delta function is zero
for a positive value of T, , than?-’i’talways lies outside the volume V .
The case of #-3T lying on the surface creates problems because both
delta functions have their arguments zero at the edges of volumes of
integration. In this case either term can be taken, as physically there
is no difference between them. Mathematically this can be accomplished
by considering ¥ to go from P70 +, thus excluding the €=0case from
the first term. This was actually assumed in the original derivation
anyway as the Green's function contained a term u,(-t,) which is non-zero
only for €, 0.

It is immediately obvious that the second term contribution , when

it exists, will be simply
=3 -
¢(‘7"-D"t’ u-'jO)

This is purely a result of integrating the delta function over V .

To first term contribution can be evaluated by considering a coor-
dinate system of which two coordinates lie within the surface ,§ and the
third coordinate is 7% to . This means that this term will only

contribute for the case when t‘o"—'ts where %sis determined by the equation.
—

Toy = F-T(t-15) (4-1)

2 . . . . 2 . N -
where 754 is the intersection of the line from ¥ in the negative V* direc-

tion with the surface S . The result becomes

@ (#-v(#-1,), 7, t5)
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APPENDIX B

COLLISION MODEL

We discuss here a class of collision models that can be

represented as
V(%) (E(20)-F538)

whered is the average collision frequency and E(“f;f;ji') is determined
in such a way as to satisfy the conservation equations, as well as give
quantitatively correct transport coefficients in the continuum limit. The

€ chosen is, therefore, a local Maxwellian multiplied by a series

E=fo (1+ FpG3+ L hBi0r- ) (B-)

where all the ¢’sare such as to give zero contribution to the density,

momentum and energy integrals.

e = 0 -2

where

¥“¥E) = 1,7 vt (8-3)
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Furthermore, ¢l alone guarantees proper transport properties to
first order in the Chapman-Enskog expansion in the limit while ¢;
plus ¢,_ give proper limits to second order, etc.

The method of determining the functions ¢,. consists of sub-
stituting this form into the general integral equation and then integrating
by parts, identifying the various terms in the resulting expansion in
inverse collision frequency with the respective terms in the
Chapman-Enskog expansion, and choosing the ¢)s to give the same answer
to that order in '/1) . The general integral equation can be used with the
boundary terms omitted as the expansion from continuurn is only valid
at locations a sufficient distance away from the boundaries to make
their effect negligible, i.e., several mean free paths.

The equation, therefore, becomes

: 2
F 3t) = )” E(F)3%,) X(F)t)
: (4

exp {:- (J2(9;'5';t) -] ;}"‘to))] 4%, (B-4)

where

¢ '
S2(3,58) = [(3-o@e), ) dz’ (B-5)
0

and

"_7';'[ ’?”‘ ;'('t" o) CB‘s)

i
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The contribution from t,'—‘-t is left out because the Chapman-Enskog
expansion also assumes that time variations are small for times of the
order of a mean free time between collisions. This means only solu-
tions for large times compared to the mean free time are desired. This

makes the initial value give zero contribution because of the exponential
—
exp [. (JL@,‘;t) ~U3t70))] > ©

Before trying to evaluate the integral it is advisable to define the
term

K 5) = S2U%B) -7 %4) (87

This term can, in turn, be related to the collision frequency through
the definitions. of _Q(?,.‘i,f‘}

17
@) = (V(P-DeE), )4 (6-8)
o
and
NLEF ) = j V(F-P(t5)-00-%), %) dt (B-9)
0
This gives the expression for }f('t')’fpiﬁ")

t
H(E0;7) = [ P5-vt-),8) &f] (8-0)
a
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From this it is immediately apparent that

d K[ty 8) = -DF-PEL) 1) dt,

and the limits 'l;,--o and'i'a:t become }{(Ll;'to/‘f}')—‘-‘-pﬂ and
K(-l—/‘t‘,;;’) = 0 respectively. This makes the equation for f(:/';'t:';'f')

take the following form

)9
£@5t) = ((F-o06)55) >
o

exp [t %3] o J{it4;7) (B

This equation can be immediately evaluated by successive

integrations by parts.

22t) = SE(F& 3
)C(/ %) A&y /t)+(%)7/rao

d df ) 4o B-12)
+(d’/" 31‘74«_-.-0 * (é-}?k:o (
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—
This can now be transformed back to the physical variables 7,

7 .

N1

FEwt) = £
[45-' )72 Vtol%ﬂ)]
+ [ (4 (g o) 8) s, ))/ ,0,3] B-1)

and with the substitution d‘o.b/(‘l}fo}‘-’)) = =DF-Htt)h)

FE7t) = 27 0t)

- 3‘»‘@—5@ (ﬁ%(%w*'b)’%f°))¢;=

(*f) (Z— VFstet)zt)dd 7z Vw'%) -19

The meaning of (é(ﬁ;{f—t)’%u) here is actually
dts ot

dEG30 + PREGEY
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as it is the total derivative with respect to ’t‘a .

It is now possible to determine the ¢xfunctions from this equation
up to any order . . This is done in a step by step process. First of all
the £ up to the first order in inverse collision frequency is substituted

into the equation and only terms up to this order are retained. This gives

o) = (7’/"‘*)[_1 + GETE

>¥7t)

~s%4( DLefotnit) + DB Afy 3D | 6-1%)

the

2Lnfolit) + VB bnfil552)

corresponds to the $ operator in the Chapman-Enskog expansionl.

Thus, with the help of the conservation equations (to zeroth order in 1/)))

SF+ R =0 )

wn( A R)R) = =T p (3-1)

.éI-f-uv‘Z«T- -_&_{Pv't‘o + V?‘}

3kn (b‘ [} 8)
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where
)0 is the density
T is the macroscopic velocity
P is the pressure
T is the temperature
77\ is the heat flux
J¢ is the Boltzmann constant
m is the molecular mass

and the state equation
F = kT

this term can be reduced to

D, = { (mﬁ:ﬁf- g;)@-;-z: BT

2RT

75 [ (R0 - £ 7L )

S z:J } | (8-19)

where L is the unit tensor and the double dot product designates A.,)’ B;‘,
summed over all € and )' in the summation notation,

These terms are identical to those appearing on the right hand
side of the Chapman-Enskog equation for f, , the first order solution.
Thus, they satisfy all the same requirements, i.e., their velocity
mements over mass, momentum and energy are zero and the ih'r
contributes only to the heat flux while ﬁ',; contributes only to the

pressure tensor. The evaluation of these quantities using our expression
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for }(#, '\'r‘l't') with ¢, (“-’;t?;t') assumed zero give the resulting
transport coefficients with a correct parametric dependence but the
wrong numerical factor. From this it is obvious that ﬁ(?}ﬁ\;f)
should be chosen in such a way that the correct numerical coefficients
are obtained for the thermal conductivity and viscosity independently.

This condition is satisfied when @(ﬁﬁ;f) takes the form

~

RT Z

Q77t) = -{ ¢ (zn_Lz"-a’f. E)(V_u).v;’_ LT

+ Lam [ [@-rx)(v.a) - _é_(;_;:)"f] . uj} (B -20)

where €) and €, are determined by insisting that the transport coefficients
are correct when evaluated by using the distribution function evaluated
to first order in 3/,) .

This determines the coefficients C, and €y as

c, = Z + LA & B-2!
g 8 B8 ( )
and

— A 5 < 8-22

where o varies from zero to .026 and & varies from zero to .016

depending on the collision model.
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The complete scattering function in the collision model takes

the form

@)= TBL ey [LEEENT
T -G (G -£)-

- (5563

> 7.3 —
K_ - -t - LF-1e) I].‘ %%} (B-23)

where the constants & and § and the variable -‘2_)-[‘?, 4') are determined
for the collision repulsion law used. For Maxwellian (inverse fifth
power repulsion) molecules e and € are both zero and Y t) is
proportional to the density alone, while for hard sphere molecules o
and £ take on their maximum values of .026 and .016 respectively while
the collision frequency ;é:/t) is proportional to the density times the
square root of the temperature.

The next order function can be obtained by straight forward exten-
sion of the method. Terms of order '/7)" are retained in the relation
between f(%%‘t’) and E('r"") F",t') . The conservation equations can
now be used up to first order in Y4J which can be considered the solution
for f' containing terms up to ¢| . Of course, a whole series of terms
will arise just like in the Chapman-Enskog expansion but ¢Lcan, in

principle, be evaluated by insisting that the coefficients in front of the
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terms in the heat flux vector and pressure tensor are correct. The
extension is not, however, carried out because there is doubt as to
the theoretical validity of the Chapman-Enskog expansion beyond the
first term, as well as complete lack of experimental means of deter-

mining any of the coefficients in the higher order terms.



APPENDIX C

EVALUATION OF I‘n (k, u) FUNCTIONS IN SOLVING
KINETIC THEORY PROBLEMS

In solving kinetic theory problems by integral iteration a par-
ticular form of an integral repeatedly appears. It is, therefore,
advisable to define and tabulate this function as well as discover some

of its properties. The general function is defined as
| W m -
[’7()’7")"‘{75‘ expE—(V‘J .l’-ff-]u- dv  (c-1)
0

where
O L < o= and =—oe Lu <Loe
For the special case }faa this function can be evaluated in terms of
error functions, also in the special case of & =¢ it can be expanded
for small f and integrated by the method of steepest descents for large M .
This is done in Appendix E in connection with the heat transfer problem.
Before proceeding to determine the functions r.:(}f) u.) , however,
we can save ourselves a lot of work by determining analytically certain

properties and relations that these functions satisfy. By integrating by
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parts in velocity space and juggling terms around we can get the

relation
2 Al
Rlge) = - P[5 |
oo
+ ;73_7;_”’: jex}pE (\r-u)‘-—é.] rrtdv
o

+ & Jorp [ ]
(4

e fop e g) s (e2)
[+

which gives us the third order recursion relation for different orders?.

¥l

0’;“) = «a /7, (K) w)

-l ) -3)
This means that once the ,:: functions are known for three orders 2\,
all others can be determined from an algebraic expression.

If we try to integrate the r;‘ function over M we quickly realize

thrt cortain inregral relations cxist between /—; lg for different 'h's .



Integration over }f just puts another ¢~ into the numerator raising

the value of 9 by one. The iollowing integral relations are, therefore,

true
N
Glgw) = (5, ()’ )
A

and
X
Rl = B@w) = [ pmgdn!  -5)
0

Also the inverse differential relation is satisfied

The actual evaluation of the functions can be carried out by
expansions in powers of / for small /{ and by method of steepest
decent for large ) . The expansion, however, still requires evaluating
error function type integrals and is very messy. Also, the region of
convergence is very much dependent on the value of # . The method of
steepest descents requires solving a cubic equation and is again only
valid for certain regions of & for anything but extremely large Mf . To
get a first order estimate of the behavior of the functions it was, therefore,
decided to evaluate them by numerical integrations.

The numerical integrations were done on a small slow computer
and were thus carried out by only a sixth order Legendre-Gauss quad-

rature. The results were analysed for accuracy by comparing the

153



functions obtained with the exact values for the case of k=~0 . Inall
cases the error was less than a percent. An additional check was

carried out for the case W =0 by comparing the functions with those
obtained by the more exact method of Appendix E. Here again the
error was under one percent.

The numerical integration scheme consisted of replacing the

infinite integration by the integral

_' u+r32 .
Iy (i w) =#jo exp [— &-w —{Fju-"du-

U+3.2

=L F(v)dv (c-¢)

This allowed evaluation by the Legendre-Gauss quadrature
Rl = w222 3w [r(ugiagon)
J=i

+ F(u22(-3))] -7

where )(I' and n/" are the ordinates and weighting factors for the
sixth order Legendre-Gauss quadrature33.

The results for f;[}g“) , /‘,'[}f, h-) and /-;_ (})’J IA-)
are shown in tables 1 through 10. The normalized forms f;(}flu)”:(eu),
r;(k)u)//;'lo)u) and I}’_(K,u.)//}_(oju) are plotted in figures €=/
through €-3 , so as to allow determination of the effect of & on the
behavior of the functions. The fact that the decay to zero is much quicker
for negative &'s than for positive ones is quite evident, and is certainly

consistent with the physical fact that effects are felt farther downstream

than upstream.
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APPENDIX D

SOLUTION OF THE HEAT TRANSFER BETWEEN PARALLEL PLATES
PROBLEM BY LESTER LEES' MOMENT METHOD

The geometry of the problem consists of

Tw, # J
| ¢
%
|
;
2
!
Tw

where 7‘:/’ and 7;/_‘ are the wall temperatures and b is the plate
separation.
Lester Lees' moment method suggests using an assumed distri-

bution function of the form

7, (2) -
f(%-"" = _ @ - ’)

_Maly)  exp (e YE v, <O
PRyl ) e
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From this distribution function it is possible to evaluate

the relationship between the physical properties which are integrals

over all velocity space and the assumed parameters ‘"0/7’1, T,-) 7T

71(9) = n&?hbf"’ de‘nsg’*y

= fj} f[y,‘u*-) du, du, dv;
2o

= 0q) +-7?z(532 (P"Z)

2

T(y) - TemP-e-ra'zLu—re

"/?{m(;)R ﬁ%&@?f@/‘ydﬁ 4‘6“{5

~2e

— )T {y) (p-3)
M(y) + 7ly)

i

F(y) = }77‘855&47‘8

= fRT:m—»\RT

= 2R (705) 7)) ¥ naly) T ly)) (r-4)

—

-\7; = macroscopic velocity in 7 direction =1,’3r_r'sz (‘)1,‘)5;:-—- ?1217;_)/’“))
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The physical equations for this geometry and restraints are
V, =0 »

P,, = constant
o | (D-5)
Z% =0 where? is the heat flux

.4.933 = -2 P— ?_ ?” is the transport

d.v L of the heat flux
The first two equations become
17T =297 ®-¢)
wT = 2f 0

These can be used to eliminate « and 7,

= 2R ) (o-8)
= R (1) (-

The second two equations become the following when the form of f@;‘D")

assumed is used

) ‘-)A
T e m T =YE % (p-e)
& Rom d [0, T +n 7-"),-_'-._2. . -I
3 47(”” :e 3%-;2-?.— (D )
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Substitution of expressions for 7?' and A,yields

VR =R % (p-1%)

P 7-/17” - - = - D-
Sl ]="Fk =% O

where his the conductivity k — )%/“f- R . Equation (D-13)
can be reduced by juggling and using Eq. (D-12) to this form

%ﬁz = - ?/h (D"/4)

Substitution for‘ﬂ, and 7, in the expression for T also

shows that

‘7'(7) — —;/7/‘7_1 (D"/F)

The two pertinent equations can now be solved. The difference
from the continuum equations appears only in the boundary conditions

as now these are imposed on _TI- and ,l not just on T". Before solving

,,.4
~l
(e



these equations it is desirable to non-dimensionalize

'5": 7/5 9,: -% en':ﬁ%

= Tw—Tw — gb

(D-1¢)

where Aw‘is the mean free path for Maxwell particles at wall 1. In

this notation the equations become

e -6 = %
/ z P %-_.r 2Ry,
QM
k;v,@‘%,_)) 7oy ) \PbZ12RT,

= VBHK (p-17)

d 6 — - - -
45 o= k%»ﬁ‘%) <w'7—‘5£ﬁ)

= —_E_ug 91//8 CP“/K)



For Maxwellian particles l( = k,\‘ B, 5 but keeping

the problem more general even if not rigorously consistent let us first

N
assume that h = kw, (9‘, 9-,_) where M can be made to

represent the real variation over a certain range of temperatures. For

this assumption the general solution looks as follows

@' 97_]‘»1-/“/: ¢"H-—Cn+l) *ﬁg (_p../q)

6 -6 =¥EK - (p-20)

Thus

+/

Z_e/ (91 —Y’}K)J" = ¢m-l"’ b+) PBG (p_z,)

[6,_ (6,_ +V¢R7J’W = @™ —br+)¥ BT (p-22)

These can be solved for 9) and ﬁLquite easily, but the
application of boundary conditions to determine the undetermined
constants cannot, in general, be carried out for both arbitrary 71 and
arbitrary accomodation coefficient. These constants are ¢ and ')“
and it is easily seen that a solution for arbitrary 9 may involve solving
higher order equations.

As a first attempt one can assume that the accomodation

coefficient is unity. This allows putting the boundary conditions in directly:

G, (""1:) =1
and " (D—23)

&, (*Ji) =YI-B
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Thus

[1-#p4]""" = g+ gips

b-29)
[1-B+1 5 8K] " = ™'~ 2ty

The three cases that can be considered analytically are 71= 0, 'Iz, 1.

These correspond to the assumptions of constant property case, hard
sphere case, and Maxwellian particle case respectively. The ;m= 0

solution is very easy

|I-¥BK = @ + L§B

l-B+1rBYpK = @~ LB

— / '
r= |+ K (1+17-8) b-2s)

0= 1~ % - 1gn(-173)

- |— B e
d= 1= Z [+ BOAEEL] e
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Transforming this back to the physical quantities

3 = .%_(Tw, 'Twﬁ/ﬁ + _le_é %\_m (;.,.-f%: )] @ -27)

L5 Aw, -, )
le -T — A 1 -+ (l %u/,
(T‘/,‘Tw.,) = [ * | 4+ .Iéi?_zyl(,_,L 7'%)] (D—ZB)

The next case we can consider is the case 7Nn=] and accomodation

coefficient of unity. This is the case that is consistant with the equa-

tions used in Lester Lees' moment method and represents Maxwellian

particles. The equations for the boundary conditions are

[i-voK] = P+ ¥pB
[i-8+ 175 ¥ox] = ¢ ¥p

2 ,13 - B*— 2 V8K (1+(;—,a)“‘)-» Bl¥sr)'=2yB

&/Bk)z’zéyﬁx)(&-ﬁ}é&:ﬂ‘ﬁ +2-B=0

| = 1+ R+(0B%) + /= (1+K@+¢-3)%) \*
¥B K 5 *yg a+\ w5
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i——%;)i;fa-z[/r

7[/ - @A L + ;JZBF(/-»)“; ] ] (b-29)

This appears as a very complicated mess and also has an
ambiguity in sign. It can be shown, however, that for ﬂ <<) this
reduces to a form similar to that forn=¢0 and also the ambiguity is

dissolved as only the minus sign can have physical significance

- ng;)‘% [’ (- % [(f:gz 0k )J

— 1 - %
y = |+ K(z-%p) (DPBO)

This can be seen to approach the solution for =0 as /3@ O where
the fact that using the average conductivity brings in the term ] — ;/7_
and using the average Knudson number brings in the term K(z- A’)
instead of K(l-f-’/r:);)

¢7‘ can also be found to be

0= 1= [I+ ¥x(-15) ~ 2(+692)] (o3
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If one realizes that P is always less than one and thus the parameter

[ KB }
I+ K (1+0-p%)
is also less than unity one can carry the expansion further.

Defining

— KB
&= ]+ (14 (-A%) (p-32)

the expression takes the form

/— 9
V= I+K(1+(!P)") [’ +‘L(H;i)z +H-A)E

+EO-B)E )] (-

3
For '-;/40-)3/;) E‘ & <1 this can be put in closed form to that

order of accuracy

W= L |- B4
2 T+ualrop%) "

: 1
[+ ("/’4)[7:%7—;7%)31] (>-39)
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The important results needed for future use are, however, contained

in the expression that

T =79 -2¥8y Ty, o-75)

The solution for 71=4 can be seen to be even more complicated
as the resulting equation for the boundary conditions is a cubic, with

all that this implies in complication. This solution is, therefore, not
carried out in detail, though if need be this can be done in a straight-
forward-manner.

A more interesting phenomenon to investigate is the influence
of thermal accomodation at the walls. This is expressible in the follow-

ing way

TEE -R(¢-4) — o
7:1; —7?-.(-%)

(b-3¢)
RBE) -TE) = «

Tw, —T,(%)
In the non-dimensionalized coordinates used so far, these become:

e L) - eX(E) _
| — &%)

. (>-37)
____(il____}__:“ - 91(L —-—4
-3 — 6't)

Calling ﬁ(—%), 5—2(.!;.) ) 5” and -9_-” respectively and
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9' [J{) and 9;({‘)’ 6, and 97'7_ respectively one obtains the
relations.

&) -6 (I-«)=
(p-38)
O — G1 (1-a) = (-p)

Using the relation 6, - & 2')";/\' at wall (1) and (2) one gets

6, ~(1-%) (8, - ¥BK) %=
(>-33)
&y —~(I-4) (ﬂu +¥BX)'=(-B)

The solutions of these equations are

8, = 7/1+(5_’;{2i)"(1-«) — (-« _‘%K
(H-49)

~

©,, = 7[/"/3‘/‘@2-'92(/-0() -+ (I—d) Y_‘:%_

and the previous equations become

- ¢n+l+ ‘}’ﬁ(ﬁ_fl)

n+/

[@1 (9/1 —V’,BK)j
6
[611(921%3"/91()]71” = ¢7‘*,_. %-»_-/ B
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It can be seen that the solution is going to be difficult even for the
N=¢ case unless some assumption can be made to eliminate the

square root term. The general equations for YV and p look as follows:

[1+2 (28~ 28 ]

T e ®-42)
D -B +2 {itg_b')z(l—d)-l- (E,gﬂ)(z~x)ﬁ+ (‘-!g-ﬁz(l—«)-] h+!
= ¢7v+l _ 7.'_2"L’-L}/,3 (Dh‘}?)

for 772p the equation for ¥ becomes

= 1= k()

YrCe +rr @] (paa)

This cannot be solved directly unless one assumes that

(L2 (-0 () << 1

In this case

_ |
v = |+ 223 (1+178) -45)

Thus

Cf_’ﬁ,m(; 'O '{{f—f) [v<+«?-o<)¢f(}+1‘"7 7 ’Q ) ) H) (D 4,;/
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Since the contribution of the term becomes important only for A

large, let us investigate the magnitude of this term for B‘—‘?)o

Th .
Thus, for reasonable values of ﬁ’-’ ‘—6—7-.5’-” ~ J.;_- for which the

7 =¢ case can be expected to be valid

|- < 4,828
2(2~a)* <

Thus, even for &« << 1

|- 4% << 38.6

For the same but }{?-1 (right on the transition range)
g g

-x LL )54

One can thus conclude that for ,B 4—4: (which is necessary to

allow assumption of 1= ) the approximation holds for all values of
o and thus

— /
F= ) (b -47)
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The situation for 7=/ 1is not quite as simple, but under a similar

assumption of

2
“/’ER') (1-)
( ) T << 1
The equation for L4 becomes:

¥ = (122 T ()] » 22 1)

- B - vr &2 (1+1775) (D-48)

The solution of this equation is

- %
V= g L],

N LA (22N %)
[1 y’ 2‘—5( 1+ 1___,_,‘}(—-(#(, @%ﬂ @‘4‘9)

Which for /8 << becomes

(!/ — | - B4
]+ =5{(-up) ‘ (D~5@)



Thus, again, converging to the answer for nm=0 ., provided one realizes
that the /- B4A_  term only normalizes ¥ by multiplying by IA"W,
and the 2~ %ﬁ term only redefines the Knudson number in terms of
averaged conditions based on k~T .

Carrying the expansion further just as in the nm= 0 case one

gets the following

V== ;%-K(lr(l-ﬁ"‘) ﬂl-‘)zi [é—(ﬂd) (@A)<?)

b S B) e L y(-%) +£§<¢)(/-);f 7 J
(p-51)

where

st =

C Z;rr(ﬁa ’*‘)J

and

=4

— -} % —A
F) = )4 2

This again reduces to a closed form solution

/~ﬁ/

= = x l ety
¥ = () 3[ TR )B;%‘%@‘mﬂ] 0y
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or .L--B‘
f L(-pPz << 1

This can be seen to converge to the proper answers for ﬁ <L1
and also for A =1 .

The case for 71'-'—1‘.[_ will, of course, be more complicated
because the equation to be solved will be a cubic. It can be shown,

however, that a solution can be found for the case of

(KL) = <1

just as in the n=» , and 7=/ cases.

A plot of heat flux versus Knudson number for both the constant
property and Maxwellian case is shown in Fig. D-1. It can be seen
that all answers converge to the same point (because of the normaliza-
tion) in the continuum while their slopes always become the same in
the free molecular limit. It can further be seen that only between a
Knudson number of .05 and 10 is there any measurable deviation from

the asymptotic solutions.
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APPENDIX E

EVALUATION OF THE In (k) FUNCTIONS

In the application of the integral-iteration scheme to the
solution of transition regime heat transfer problems a certain
type of integral continually reappears. It is, therefore, advisable
to analyse the functions defined by this type of integral and if they
are not representable by known functions tabulate them. The integral

is of the form

L0 = fep[(arg)]rdr €

The goal is to determine as many analytic properties of the set of
funqtions I,‘()f) and then find a method of evaluating them for‘ all
}f andn .

Integration by parts in velocity space yields the immediate result

-3A v
e e T _Jr ’t)c{
Tz pexl’[‘" ‘FJ" v E-2)
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which give the recursion relation

L, 07’) = ’-’-‘:—é’—' Iy (%) + —)éf- L3 (%) CE-3)

thus, requiring the determination of only three T»’s in order to
deterrine all the others through algebraic relations.

Integrations over A yield the useful results

T(4) = ﬁ.‘, (x)dx
/N

and

K
L. (k) =T, (0) - [ T, (1) dx

I—,‘ [0) can be easily determined as these definite integrals are

well known for positive 2.

T(o) = f:)f,v [-rrrd

- C"‘il)’/ 2 For » odd
E-4

=1-3-5--:fn= 7 for- M euUeRn
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Differentiation with respect to 4 yields the differential relation

ARy, — T, (%) (£-5)

Since only three I, (h’) ’s are needed to determine all others
through algebraic relations we choose to determine L, (k) s I}(k)
and 1‘2 ()f) . The function I_-_' (}f) is not directly determined even
though it comes in directly in the integral iteration scheme because it
has a logarithmic singularity at =0 . The first object, therefore, is

to evaluate

IL(K)—T,”cx ~rt-k | de
Sk

For small values of [.{ this can be done by expanding the integrand in
powers of . It cannot, however, be done blindly as /Vp— is not
- necessarily small even for small 4 when L~ approaches zero. It is

possible to first split up the integrations

1

22Ut

-rf:xp["f’j(l--f_: S -5 (- ) dv
j

By proper changing of variables these can be reduced to integrals that

can be evaluated term by term in terms of polynomials and error functions
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and E{ functions. (E{functions are defined as

ci0 = o bet] 4 £

Further expansion of these functions in powers of )f, where possible,

yields the results that,To (}f) can, in general, be expressed as
et o o
L) = > (as. +b, k) K
™m=0

The coefficients can, in turn, be determined from the expansion
mentioned. They are actually themselves determined in terms of

infinite series which we can define as follows

(! _ 3! 5/ _7] gl _ N ..
0(0—(31‘/!' 51x2! +7/)<3,' 314! f}l{xﬂ 1318/

=(0ol 2! , 4 _ &' , gl _ 10! )
/ 31«]! 5/-2!_'_7‘1.3[ 914! +Il!x$'! Dixé!

t ( §ix2!? +7./x!! ixg! +}ux€.’ 13,(:6!+/5!x7.'

etc.

The general term is

ol = é-r)%f )% (2440}
7 s ﬂ+l+2(£+l)]!x(l+l+%)!

fbf-r' N even

E-2)
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and

'ry Y]
z Z‘ 1) (24)!
- [ 20t+)] ] (1+1+25L) |

From this we can determine new constants

-l
o = sr(Fe0)- 25t

- Z )’
Or-1-28)(n-1-20)! (1+24)! L !

fo’-—' o e v e (E "'/I)

n=l

“n l,((;f,); 57 (2 e f)

Z(’n-l—-l}’ * Z(n -1- 2-(7(4‘ 1-24)! (1+2)! 2!

fm—- "  odd @—Iz)

where

] —_—
ek -foﬁ'[,j_ 0.5772157



and where all sums are assumed zero when the upper limit is lower
in value than the lower limit. In addition, we need to calculate the

additional constants €., which are

e, = g‘: ([ -e'r'f(l))

Il

¢ =5 Ec(1)

and

€y = Eﬁ\-l‘)(’t-f) ceeexp(=1) = Ba-z — B
nl [r-1)n-3) .. -. 1] n - )n-3) 1]

(E-13)

‘ form: even and > 2.

and

= = )y 2] = - L
e'h Ch-l)’)\,' [e)(’p( ')‘f" 5 l-]_. -I),")\!B,‘ (E._/4)

for 71 odd and > 3
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With these constants it is now possible to evaluate A, which is
(=4
q,‘ = C.,\ -+ ~e,_‘

(E-15)

°o ,
The value of b7\ is much more easily obtained from the expansion and is

_(._ili. for y odd
()!

(E-16)

and 1'7-,‘0 =0 form even

ﬂ o et .
When the calculated values of Q: and b.,' are substituted into the

expression for Ip(H) it becomes

T,(K)= 8862269 — (1341766 Urbr) K

— .8BLR2ETIH” + (2445896 —. | 666647 L) (>

+.04923503 0% —(q.031390x1073~ 4166667000 )
- 6.569535x/0" /r‘-;-( B.792174x10°— 3306878)(/0'5:&»\){)}1’7

By . o
+3372035x10 K8 (1509185107~ 1. 148222%10"bn s )

E-)
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If we examine the next term we see that it is about /x /0
Thus, even for /f = 2.5 the above expansion neglects only terms of order
10'4 and below. This makes the above expansion up to the ninth term
accurate to .0l percent up to = 2.5.
It is now necessary to find a means of evaluating IO(K) for
large }f. This can be done most easily by obtaining the asympotic series
by the method of steepest descents. The generalized method given in

Ref. 35 consists of making the substitution
£) = flbs) - w™

where 'to is the point at which a‘%t =0 and where the

desired integral is

f‘”‘l’ [z F&)) dt
¢

The substitution results in the integral

exp ['Zfﬁ'oz] Iexp[—awj Zd:.‘f;dw
¢

where d't/a/ur can be evaluated in terms of a power series
= 5
t — Ao W
dw ~— *
n=o

The answer is expressible in terms of the coefficients @, as follows

exp [2fto]]oTa f.ﬁ(fy)-{
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and the coefficients @, are in turn expressible in terms the derivatives

of f(‘t‘) at t=1, . When this method is applied to evaluating
I}(K) we choose Z=/] , f{‘t‘):—-(ﬁ:’?"—f-ﬁ) .

. / v
The solution of f ('f'o) =0 becomes

Zhof=0  or 4= (9" (E-15)

_ 4
YW/ — 4,0l285/(2)3
4, =+-o1285(2)

ag/ — —, 002333(2-_)2‘
Z ¥

and the value of 1;(11‘) becomes

Lol = exf["3é1)yﬂ)/-;f[/ -.02.77773(_)%’/3

+ .00 95450(}3’-%% - .00937797(%91. j E-rm )
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It is important to realize that this is an asympotic series
and that one should always retain only the terms up to the one where
the series begins to diverge. Fortunately, in our case for values of
n > 2.5 the last term is always the smallest. Furthermore, we can
increase the a.ccuracy of the answer by averaging over the series with
and without the last term. This makes the expected maximum error of

the order of 1/2 the last term which, in our case, becomes
2
0021873 [2_
I’g

or roughly .1 percent. This appears not as accurate at this point as
the series expansion from }f = 0 but we compared the term in that
expansion to the initial value of the function whereas here we are
comparing it to the actual value of the function atlf = 2.5. At this

point the value of the junction is only about 4 percent of the initial
value at M = 0. Thus, based on the same scale the error becomes

of the order of .0l percent. We have shown that in order to have

the complete set of In(k)’s available it is only necessary to
evaluate JTp(k), I, (K) and T (k) and obtain the rest through
the recursion relation to the same accuracy. We have, however, also
the integral relations which can be used to evaluate J.;(k) and J;(k)
from Ip (K) . For the expansion from K =0 it is only necessary
to integrate the expression and evaluate the zero order term to obtain
:Z', ()f) . A second integration will, in turn, yield I (k) . In
general, the following recursion relation is satisfied by the coefficients

in the expansion of b5, (K) for positive M .
n
Q, = l-3-5 .... -l./_;,‘ | “N even
2
n =\ |
40 = n= ’/a | M odd
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The reason the .T-,.,’S for negative values of 71 cannot be obtained by
this process is the fact that though series can be integrated term by
term they cannot, in general, be differentiated term by term. These
functions can, however, be obtained by use of the three term recursion
relation on the functions themselves,

The :Z;,'S for positive n’s and large X can also be obtained by .
direct integration but the recursion relations are different for even
and odd orders of 7 . Furthermore, it becomes quickly apparent that
the accuracy is decreased as 72 increases. We, therefore, evaluate

here only the I}(k) and I?.(k) by this method. If we define the variable

=

The expression for Io(K) can be written as

X% o o o
L) =pFe I+ dpr v ds ] (E -20)
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The expressions for I, and I, in this notation become

II(X)--—)/’Z;E—@_-:’) exﬂ-)(’?[/ + %‘({ f-g;;«/-%i j

where
/ )
4! = 1+ 24,
z
di = — 172d°+4d’
4
dl = 3 (1+2d°-442+8dS
? v z )
and
Lo =1E () exp)[1+ % +f‘_1
where

d/_L = Jr d//
dy = dy
dy = dy-d
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The functions I;(K) N (k) y Lo (k) wcere calculated by

the above derived formulas as follows: for KA from zero to 2.5 they were
calculated by the expansion up to 9th order in W while for values of

K> 2.5 they were calculated from the asymptotic expansions, up to the
fourth term. The results are tabulated in a form normalized by the value
forA = 0. These normalized functions called 75 (}r) are shown in
Table E-1 and are also plotted in Fig. E-1 to facillitate comparison.

It is interesting to notice here that the higher order functions decay
more gradually at large vaiues of A than do the lower order ones.
Whereas the 77;(1{) function is down to one percent at ¥ = 3.95 the 7/, (K)
function does not come down to one percent until ) = 5.23 and T]; (k)
not until /£ = 6.23. This behavior is, of course, expected as the higher
moments represented by the higher values of m should have their influence
extend further because of the heavier weighting on the higher velocities.
Physically, this will mean that the influence of the temperature at a point

is felt further away than the influence of the density.
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Table E-1

wn(K) Function

T m ™)

. 1

. 71575 .85268 .88812
.57123 . 73953 .80632
. 47099 .64764 .72823
.39579 .57111 .65960
.33709 .50634 .59891
. 28988 .45093 .54498
. 25120 .40311 . 49685
.21918 .36147 .45378
.19215 .32514 . 41506
.16998 .29313 .38023
. 14976 . 26495 . 34878
.13229 .23988 .32033
.11842 .21764 . 29454
.10574 .19820 .27113
. 09469 .18004 . 24984
. 08541 . 16459 . 23044
.07672 . 14974 .21275
. 06915 .13675 . 19659
. 06250 . 12545 .18180
.05632 .11480 .16824
.03488 .07534 .11538
.01937 . 05050 .08039
. 01434 . 03446 . 05677
.00973 . 02386 . 04053
. 00454 .01187 .02124
.00222 . 00554 .01039
.00112 .00326 . 00636
. 00060 .00178 . 00360
. 00032 . 00100 .00199
.00018 . 00037 .00122
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