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ABSTRACT

The problem of analysis of gas dynamic problems in the transi-
tion region between free molecular and continuum conditions is treated
through an integral equation formulation of the Boltzmann equatibn. The
troublesome collision terms are approximated by a collision model. It
is shown in a formal manner that this model can be made to give quan-
titatively correct answers up to any order in the Chapman-Enskog ex-
pansion. A preliminary solution of the problem of an expanding sphere
of an initially pressurized gas is obtained through a recursion relation
in time derived from the integral equation. The structure of a plane
steady normal shock is determined by iteration from the zero shock
thickness solution with a simple Krook's collision model used in the in-
tegral equation. The problem of heat transfer between parallel plates
at Knudsen numbers close to unity is solved by iteration from Lester
Lees' moment method solution and the use of a modified asymmetric
collision model. Preliminary experimental data determining the heat
transfer between parallel plates in helium was obtained for the whole
range between free molecular and continuum conditions.

Detail results for the expanding sphere case are obtained for
helium expanding into air with an initial pressure ratio of 18. The shock
structure for Mach number of 1.5 and y = 1.667 is calculated up to the
second iteration. The temperature profile between two plates at a
temperature ratio of 4 and Knudsen number of 8/15 is calculated in de-
tail for the first iteration. The experimental data is not of sufficient
accuracy to allow comparison between different theories but it does in-
dicate that the Lester Lees' moment method probably underestimates
the heat flux in the transition range. All the theoretical results obtained
are reasonable and give cause to have confidence in the theory. A
great deal of further numerical work remains to be done before all the
implications of this theoretical approach are assessed and a definitive
judgement can be made as to its validity and usefulness.

Thesis Supervisor: M. Finston

Title: Associate Professor of
Aeronautics and Astronautics
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OBJECT

The behavior of non-uniform gases in the range

between free molecular and continuum conditions is inves-

tigated. Theoretical analysis is carried out by means of

an integral equation formulation of kinetic theory. The

three different types of problems investigated theoretically

are initial value, macroscopic discontinuity and boundary

value problems. An example of a boundary value problem,

heat transfer between parallel plates, is also investigated

experimentally.



I. INTRODUCTION

Until recent years, most if not all aerodynamic problems with

aeronautical application could be treated on the continuum basis. The

Navier-Stokes relations could be assumed as valid, and the transport

coefficients considered as quantities determined by interpreting exper-

imental information through the application of these same Navier-Stokes

equations. There is now, however, a whole store of aerodynamic prob-

lems with aeronautical applications where the Navier-Stokes relations

do not hold, and the continuum approach is insufficient to explain the

physical phenomena.

In trying to treat these problems analytically it is necessary to

determine the limitations of the Navier-Stokes equations and then look

for an alternative treatment outside the range of their validity. Since

matter is composed of molecules one way the range of validity of the

Navier-Stokes relations can be determined is through a theory on a

molecular scale. In continuum theory the linear relation between the

stress and rate of strain tensors, or the linear relation between the heat

flux and the temperature gradient is often "justified" by saying that these

are only the first terms of the Taylor's expansions for the stress tensor

and heat flux vector respectively. The use of these first terms alone

carries the implication that the successive terms have to be small.

Continuum theory, however, gives no easy reference to determine what

is a small gradient. Even the crudest kinetic theory gives the mean free

path as the proper scale by which to judge variations, and with very little

effort gives, at least qualitatively, the right behavior for the "coefficient" of

this "first term" of the Taylor series expansion. With a great deal of more
effort quantitative results can be obtained that agree well with experimen-

tal data. It is apparent, therefore, that to treat problem s where the
validity of the Navier-Stokes relations is in doubt, one should turn to



kinetic theory provided, of course, the assumptions inherent in this

theory can be satisfied. This is, in general, true in neutral gases away

from the condensation point.

In a gas of sufficient rarefaction the molecules can be assumed

to be interacting with each other only over a small part of their time

and trajectory. In this case the concept of a collision, i.e., interac-

tion between particles in a finite time can be defined. Furthermore,

because of the sufficient rarefaction of the gas the collisions of more

than two particles at a time can be neglected because of their relatively

lower probability. Under these conditions the basic equation of kinetic

theory is the Boltzmann equation, and the fundamental unknown is the

distribution function. The distribution function is a probability density

of the number of molecules in the six-dimensional space of position and

velocity coordinates. The Boltzmann equation can be considered as just

an equation of continuity for this probability density, where the right

hand side is the effect of collisions.

Kinetic theory is, of course, an old subject and the Boltzmann

equation has been investigated over many years. All the initial attempts,

however, were directed toward explaining and justifying the continuum equa-

tions. The interest was mainly in showing that the kinetic theory formalism

will explain, on a molecular scale, all the well-known phenomena of gas

dynamics. This effort was culminated by the well-known book of

Chapman and Cowling in which formulas were obtained for the transport

coefficients in terms of molecular parameters. Since agreement with

experimental results was surprisingly good, to many aerodynamicists it

appeared that kinetic theory had fulfilled its purpose and was now a com-

pleted body of knowledge.

The Chapman-Enskog solution, expounded in this book, is basi-

cally an expansion for the distribution function in inverse powers of the

collision frequency. Appropriate separation into terms of the same order

allows successive solution (at least in principle) of the next higher order

term in terms of the lower order ones. Though the lack of a direct proof

of convergence makes the theory mathematically incomplete, the imme-

diate success in applying its results to calculating transport properties



to first order, gained it wide acceptance. The ability to obtain the

Navier-Stokes relations with quantitatively correct transport coeffi-

cients by means of this molecular theory is, of course, no small

achievement. It is unfortunate, however, that this success actually

discouraged people for many years from investigating many facets

of kinetic theory, that one now finds are not at all tractable by the

Chapman- Enskog method.

Although the limitations of the Navier-Stokes relations are di-

rectly apparent in the Chapman-Enskog solution, until recent years

not much was done in studying the cases when these limitations are

exceeded. The advent in recent years of great interest in rarefied gas

flows has prompted a much greater activity in this field. Of course

the range that has been investigated the most because of its relative

simplicity has been the other extreme, free molecular flow. This re-

gion is defined as the region of gas phenomena where the collisions of

molecules between themselves in the vicinity of a solid boundary are

so infrequent compared to collisions with this boundary that they can be

entirely neglected. Though problems of this kind can be treated quite

effectively on an intuitive basis by actually keeping track of an "average"

particle, they also fit very well into the kinetic theory formalism. In

this formalism the free molecular range consists of solutions of the

Boltzmann equation where the troublesome right hand collision terms can

be neglected. The equation then has a single family of characteristics

and solution is, in principle, at least straight forward. There have oeen

many particular problems solved in this range by many different tech-

niques, but the only really serious difficulty encountered has been the

inability to adequately describe the interaction at a solid boundary.

In an effort to bridge the gap between the Navier-Stokes region

and the free molecular region attempts have been made at expanding

from either side. Expansions from the continuum side are, of course,

obtainable within the Chapman-Enskog formalism. These second order

effects were actually computed by Chapman and Cowling in a particular

case and found to be small for normal pressures. The equations of con-

servation that result when " second order" terms are included are



2commonly known as the Burnett Equations . They have recently been

applied to .certain problems such as dispersion of sound at wavelengths

near a mean free path3, 4 and found to be of dubious validity in spite of

tremendous mathematical complexity. In the case of the problem of

shock structure results obtained from these Burnett equations5 actually

are further away from available experimental results for low Mach num-

bers than the solutions obtained from the Navier-Stokes relations.

Expansion from free molecular flow was originally carried out

in a straight forward manner by expanding in inverse powers of the

Knudsen number. That this is inappropriate has since, been shown by

Willis 7 who by an integral iteration method indicated that the near free

molecular dependence on Knudsen number is as logarithm of the Knudsen

number over the Knudsen number. Another method. devised for near
8

free molecular flow was carried out by Lunc and Lubonski . This is

based on entirely physical arguments and extends the range from free

molecular assumption by taking into account not only the particles that

strike the boundary from infinity but, also, the first collisions between

particles coming away from the boundary and those approaching it. This

method requires a large amount of "bookkeeping" to keep track of all the

particles and does not offer much hope of extension beyond the first col-

lision model.

The most successful method of expansion from the free molecular
7

was carried out by Willis . He transformed the Boltzmann equation

into an integral equation and then iterated by starting with the free mo-

lecular solution. This method, though posses sing its own problems, has

at least a certain amount of generality as well as possibilities of exten-

sion beyond the first term. It has shown the inadequacy of expansions in

inverse powers of Knudsen number and has also been used to calculate

orifice mass flows that compare favourably with experiments 9 ' 10, 11

A recent attempt at solution of problems in the transition range

that does not fall in any of the above categories has been carried out at

Massachusetts Institute of Technology by Haviland 3 9 and Lavin4 0 . This

attempt consists of an application of Monte Carlo methods to following

the history of an individual molecule through a "field" of target molecules



whose distribution is previously assumed. All the possible "states" of

this probe particle are interpreted as a new distribution function, and

the process can again be repeated with this as the new distribution of

target particles. This method therefore consists of using a computer as a

piece of test equipment in simulation of actual physical conditions. The

method has an advantage of being able to accurately represent the
"collision" process, but suffers from the necessity of calculating an

extremely large number of events. The results thus far obtained in Refs.

39 and 40 suffer from certain unexplained oscillations and certainly cannot

yet be interpreted as an exact solution to which all others have to be

referred, but the method does offer promise as a means of checking

particular cases of more approximate solutions if its great computational

difficulties can be overcome.

All the methods thus far discussed, aside from certain simpl-i-

fications, have been in a sense exact. Exact, that is, in the fact that any

expansion is exact provided all the terms are at least, in principle, calcu-

lable. They have all in one way or another, at least indirectly, solved

for the distribution function. In recent years, however, there has been

a lot of activity in trying to solve kinetic theory problems by the

approximate moment methods. These moment methods consist of

taking velocity moments of the Boltzmann equation and integrating

over velocity space. The resulting moments are considered as state

variables; and the equations are called the moment equations. The

first three are the usual conservation equations but with heat flux

vector and stress tensor as independent variables. The next two mo-

ment equations can be considered as the equations for the stress tensor

and heat flux vector but will, of course, also involve higher moments.

The crux of the moment method consists of cutting off this series of

equations by assuming a distribution function with certain undetermined

parameters that are functions of space and time. By taking moments

of this distribution function and taking a sufficient number of the moment

equations to solve for all the undetermined parameters, one obtains the

distribution function to the best approximation within the original assump-

tions of its form. One cannot expect to have great accuracy for the

5
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distribution function itself, but its moments, the physically meaningful

quantities, can be accurate as they, at the very least, satisfy the conser-

vation equations.

There are many variants of these moment methods but the differ-

ences consist only of different choices for the form of the assumed

distribution function. Probably the best known moment method is Grad' s

thirteen moment methodl2 which consists of constructing the trial func-

tion by multiplying a Maxwellian distribution by a series of Hermite

polynomials and leaving thirteen arbitrary parameters. It gives results

that couple the stress tensor and heat flux vector but reduce to the proper

values in the Navier-Stokes limit. Many other variants of the moment

methods have been applied to particular problems by Gross, Ziering and

Jacksonl3, 14, 15. Krook 1 6 gives a relatively general account of a

whole class of moment methods and discusses both the full and half mo-

ment methods. A most recent variant of the moment methods has been
17, 18

suggested and applied to several problems by Lees . This differs

in an important way from the others by the fact that the form of distribution

function makes the macroscopic variables converge automatically to the

proper limits at both the continuum and free molecular regions, with

only a single assumed trial function.

Moment methods do, in general, have certain problems asso-

ciated with them. The arbitrariness of the choice of the trial function

and the lack of a really good test of accuracy leave some doubt as to

the validity of the results. The great complexity in taking into account

more than the first few moments also generally limits the accuracy of

the detail properties of the solution. Also, the necessity of either

changing the trial function or switching from full-moment to

half-moment methods to find solutions for the whole range of Knudsen

numbers, in all but Lees'method, limit their usefulness in studying

the "transition" regime.

Another development in kinetic theory in recent years has been

an attempt to find models for the collision terms that do not require

detail analysis of the collision process. The analysis of an approach

to equilibrium by approximating the collision terms by a term propor-

tional to the difference between the distribution function and its equilibrium

6



value has been known for a long time. A more recent refinement of this

to take into account the fact that the equilibrium distribution function may
19

itself be varying, has been carried out by Bhatnager, Gross and Krook

and carried on by Krook1 6 20. This model, known as Krook' s model,

assumes that particles scattered at any point are scattered spherically

with a locally Maxwellian distribution. For the most used case, where

the collision frequency is assumed independent of velocity, one uses the

actual local density, temperature and velocity values for the Maxwellian

distribution; while for cases where the collision frequency does depend

on velocity,. one has to use what one can call the collision density, tem-

perature and velocity defined by applying the conservation conditions.

Th.e purpose of this thesis is to find a technique for solving fluid

dynamic problems right in the transition regime, i.e., for the whole

range of Knudsen numbers, in a way that will allow for increasing the

accuracy without excessive complication. To do this the Boltzmann

equation (or one with a model for the collsion term) is first transformed

into a purely integral equation. This integral equation can then, in

principle, be solved exactly for problems where the distribution func-

tion is known exactly at some time t, for all times later than t. In

general, however, this has to be done numerically and use of the full

collision terms precludes an easy solution. Furthermore, in steady

state problems the distribution function is not known at any time t and

thus a direct solution is impossible. This can be circumvented by it-

erating from an assumed solution until the answer converges.

To test the power of the integral equation approach, three types

of problems were solved by using it. An initial value problem of an

initially dense helium sphere expanding into much lower density air

has been solved numerically using the simple Krook's model for col-

lisions. An infinite space problem with large gradients of a normal

shock structure has been solved by iteration (to the second iteration),
using Krook' s model. If the initial distribution function is assumed

discontinuous, the first iteration has a discontinuity in the first deriva-

tive, the second iteration in the second derivative, etc. A boundary

value problem of heat transfer between parallel plates is solved by
iteration (to the first iteration) using a nmodified asymmetric Krook' s

mnodel. Here to ensure convergence to the proper limits the iteration

7
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is started from a solution obtained by Lees' moment method.

The lack of any precise standard with which to compare pre-

cludes the possibility of conclusively analysing the accuracy of the

results. Also the lack of a mathematical convergence proof for the

general case does not allow us to claim that exactness can be achieved

even with many iterations. The reasonable behavior and relatively quick

convergence in some of the cases carried out indicates that the methods

can be useful for analysing fluid phenomena in the transition regime. Much

further work needs to be done, however, before any statements can be

made about the exactness and power of the method. The use of Krook' s

model, justified here because only the gross behavior of solutions was

desired, adds an additional indeterminate factor that has to be considered

in any accuracy analysis. It can be stated, however, on the basis of the

results obtained in this paper that the integral equation formulation of

kinetic theory can be applied with reasonable success to problems in the

transition regime of Knudsen numbers,. as well as be very useful in

aiding physical intuition in analysis of problems that are not presently

tractable quantitatively.

In addition to the theoretical work mentioned above an attempt

was made at measuring experimentally the heat transfer between

parallel plates over a wide range of Knudsen numbers. Because of many

technical difficulties with the experimental apparatus only preliminary

results are available. These consist of the me;isured heat flux between

parallel plates in helium as a function of pressure. The experiments

cover the whole range between free molecular and continuum while

retaining a reasonably small ratio of radiation to conduction heat transfer.

The accuracy of the results is, however, not sufficient to determine if

the iterated solution is any improvement over the Lees' moment method

result, thus no attempt at comparison was made. The experimental results

are compared to the Lees' moment method solution in which the accomo-

dation coefficient determined from the experiment is used. The two results

are generally in agreement though the small range over which either

differs from the free molecular or continuum value almost guarantees that

any solution that goes to the correct limits is also reasonably correct

in between.

.:4
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II. INTEGRAL EQUATION FORMULATION OF THE
KINETIC THEORY EQUATION

One of the big difficulties in trying to solve the Boltzmann

equation is the integro-differential nature of the equation. The right

hand side is a complicated non-linear integral of the unknown appearing

on the left hand, differential side. Even when models are substituted

for the integral term, the model parameters have to retain, at least im-

plicitly, some of their properties as functions dependent on the unknown

distribution. Since these parameters are, in general, velocity space

integrals, one still has an integro-differential equation in practice. Of

course the established methods discussed in the first chapter can be

applied to these equations with quite satisfactory results at the two ex-

tremes, continuum and free molecular. Behavior between these two

extremes, however, cannot, even in principle, be obtained without .car-

rying excessively large numbers of terms in the expansions necessary.

It is therefore sulggested that another possible method of solution

in the transition region, around Knudsen number of unity, be investigated.

This inethod consists of transforming the kinetic theory equation into a

purely integral form and then using some form of iteration starting with

a solution that goes to the proper limits at both extremes. The integral

equation formulation itself is only a formal transformation and was first

suggested by Jaffe 2 1 long ago. It has recently been applied by Willis? 11 22

primarily as iteration from free molecular flow, and in the particular
23

case of linearized couette flow has been solved numerically for all

Knudsen numbers using an approximate collision model. The investigation

in this thesis is concerned with the analysis of general classes of fluid

problems in the transition range, i.e., in between free molecular and

continuum conditions.

The integral equation formulation is chosen because of its

explicit indication of the boundary conditions, as well as its expected

better convergence properties characteristic of integral iterations.

9



Because of the lack of a general derivation of the integral

formulation in the literature, it is given here as a transformation of the

general Boltzmann type differential equation and then interpreted physically

and specialized to particular cases. The Boltzmann type equation is

considered where the right hand side is identified only as the net density

of particles scattered into the phase space volume per unit time as a

result of collisions. The equation can be written as:

This is now a general kinetic theory equation valid whenever

the concepts of discrete collisions are valid.' p (t is

the number of molecules scattered into the phase space volume 4

div per unit time, and ( , ) is the collision frequency

of particles of velocity (r at the point 1 . The Boltzmann equation

can be obtained by substituting

and

where Wo"L) is the differential collision cross section

'-=Iwsl '#-·0'l the magnitude of the relative velocity
I designates conditions before collision

V'j W and U' •lare the four velocities involved in a description of

a binary collision.

Any other model for the collision process can, however, be in-

corporated into the formalism by identifying .(9•tr) and )2i•ad )
through their dependence either on (v *)or the macroscopic variables

10



incorporated into an assumed function of 9 . Mathematically the

assumption underlying this formalism is that . and 2) are both finite.

It is well known that P and 1) as defined in the Boltzmann equation case

are actually infinite for Maxwellian particles while .- )f is finite. This

can, of course, be fixed by limiting the integration to collisions that

alter the momentum beyond a certain minimum. Since both for physical

reasons and for mathematical consistency, required to retain the def-

inition of a " collision" , P and ) should always be finite, the splitting of

the collision term should be possible in any practical problem.

For brevity let us call the differential part of the equation:

CD t(t-t)

Here it is desirable to give a word of caution about the meaning of the

symbols. By vrf one means in this notation(rf)• i.e., the gradient

of in -r space while holding r- fixed in magnitude and direction. As

long as in the description of both 7V and0 a fixed direction in space is

used as a reference, this definition corresponds directly to the usual

gradient operator Vf . If, however, as is often desirable r is defined

by essentially giving its direction relative to * and - space has a cur-

vature, than(7 r )does not necessarily correspond to the usual gradient.

The usual gradient has the physical meaning of taking the derivative in

11 space while keeping tr constant as defined relative to , while (a7, )

is the derivative in 7 space while keeping ur constant in absolute space.

It is obvious that there will be a difference between the two equal to the

change in the function due to the change in 17 relative to .Thus

can always be interpreted as IV, - (;". . Thus when rA is defined

relative to ", then r.V exists when there is coordinate curvature.

It is possible to take the equation

I n'PP ns
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and directly integrate, but integration overP-2)f which remains

finite for all non-uniform conditions gives integrals that diverge as

the volume in physical space is increased. A better approach is to

use an integrating factor and thus effectively transfer Vf to the left

hand side.

Let

then

This can be satisfied by the two equations

separately.

Thus, to transform the equation into a purely integral form only,

the inversion of the qft is required, i.e., the Green's function for

the operator ( . For the case of no external forces i.e., C..= u
this can be done in a straight forward manner.

Consider the equations

and

4!
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The minus sign in the equation for the Green' s function is a result of

the fact that the operator is not self-adjoint, but rather the negative

of the operator is its adjoint.

Consider now solving the equation

in terms of fO) inside the volume Vbounded by the surface

and with initial conditions at time t= O.
By multiplying the first equation by & and the second by ,

integrating over V and time t from 0 to L and interchanging the

meaning of "ro and r,and to andt , one gets

+

0 J x10) P- (j .o d

VG

where -. is the normal vector along the surface pointing into the

volume V.

Since , ) = (-i one has to only solve

the equation.

- -13
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To do this one takes the Fourier transform in physical space

S(21)0jfffI f)V?

C'). - (2••f) e xp

The resulting equation becomes

-a (t-to)
+ _% -a = S1,0 to

which gives the solution

Ž'(p t-t) - Exp -L -4&7 * (9t6a-)

where

(0r-/8)

Thus

S~~ ~~ ( -to&)) (-)

(zr- f)

(Ir-ai

(Ix-I1)

(r-/7J

_-f

Or -/I)G~it~t to)t toc(t- o)

P 0 (*.fog d Via

r > 0>0~~o



Substituting this result into the equation for 0 one gets

.pv

"V

The first term can be immediately integrated over the volume

giving the result % r

The other two terms, however, never contribute simultaneously. It

is shbwn in Appendix A that when V and t are such that "-" lies within

the volume V then -1 -P 5  never lies in the effective volume

dg , -o and vice versa. Thus,only one of these terms will

contribute in any particular problem. The contribution of the last term

is quite obviously

-: - Z, 0 O

While if the second term contributes it takes some manipulation to show

thiat the result is

where t• is the time at which a particle traveling with velocity Vr must

have left the surface to arrive at erat time t without any collisions.

The derivation of this result is carried out in Appendix A.

15



Substitution of these results into the expressions for

and I(V*) yields

J2 (~ti A

-f(t~)

Ott -r.), t,) CI &u

(3r-2.)S-D-

and

f (*U5.t)

,+) ex? E (-Q)(i, v '; 17:I(Q 9 U tV-

wi s-t qhfe-reo epL-$(( s aouooeqin & t)

where IS is a solution of the equation

L s i) (i.e., 'r" on the surface)

First of all it is immediately apparent that the boundary con-

ditions of 65~·'~,t are unimportant as only. -.(4z -) C•/•')
appears in the equation for . This means that..2-a(

i

i

c ~ ~J- ~C~b td U (to)r

(V Ir , 1.04 tnr~~t n~-ufl l dt,



can be defined as

with the physical meaning of the number of collisions a stream of

articles travelin with velocit v would suffer in the distance from

the boundary surface to the point , or in the time t as the case may be.

Several things become clear from these considerations. Most

of all it is apparent that the expression derived for -- '• can be

physically interpreted and shown to be identical to that derived on purely

physical grounds. Secondly, it can be seen that boundary conditions

whether in space or time enter in such a way as to make clear the fact

that three or four collisions away is equal to infinity for all practical

purposes. This limits the sphere of influence on ( ) to con-

ditions within three or four mean free paths or mean free times away
which, of course, is also known to be true from physical considerations.

The appearance of the equations of straight lines along velocities t/ or
"characteristics" of the differential operator + " + ) fur-

ther points the way to finding the more general Green's functions when

a. is not identically zero.

I he expression for ;rLr-'. FiJ can easily be seen to represent

just an accounting of the density of the particles at the position 7 and

with the velocity V . This density of particles in phase space is obtained

by integrating backwards along the direction 7A and counting all the par-

ticles that are scattered into the stream with velocityIr and then reducing

G them by the number that are scattered out before they reach position .

Thus, as one integrates along this line of i back away from r and, of
course, backwards in time, one integrates over,
which is the scattering of particles into the stream, multiplied by

ep.Lp L- (A , ~}t-l-'•-e' ~-l-) which corrects to give the number
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at which time one presumably includes the initial conditions also de-

cayed by the number that have been scattered out of the stream in time',

or until one reaches a boundary where one includes the particles scat-

tering from the boundary in the direction V.

The fact that the integration is carried out along straight lines

is a direct result of the assumption of no external forces. As in this

case lines along V are the characteristics of the differential equation

along which conditions remain unchanged except for the "driving function"

effect which is precisely what is being integrated. This, however, suggests

a more general approach which will give the Green' s function for the gen-

eral case including external forces.

From the above results one can generalize to show that the char-

acteristics of the differential operator are the equations of motion of a

particle under the action of the external forces and having the velocityp

at position 1' at time t. Thus, the characteristic going away from this

point is ( -- ') d'1 where ~ais the velocity that a

particle would have to have at time Tto have the velocity r at time t

and position r This velocity in turn can be related to the integral of

the acceleration

Thus, the characteristic can be expressed as

In general, this is really an integral equation for as the accel-

eration OL is itself a function of the location of the characteristic.

18

of those scattered that will reach point 7 . Thusone includes all the

particles that could possibly have the velocity v'at position-rand

it me W One carries this inte ration out onl until time e ual to zero



Fortunately in most practical problems the external force does not vary

appreciably over a mean free path. Thus,for the range over which the

characteristic ' is useful, i.e., several mean free paths, the acceler-

ation .can be assumed constant. This greatly simplifies the equation to

for the steady case and

for a purely time varying case.

This simplification should be valid for a wide class of problems,

as the acceleration dis usually a result of such "field type" external forces

as gravity or electromagnetic fields. Except in cosmological problems

the variation of the gravitational potential within a mean free path is cer-

tainly negligible. In problems where a magnetic or electric field is

applied there is, however, a whole class of problems where the field can

vary appreciably over a mean free path. Any problem involving electro-

magnetic wave phenomena where the wavelength is of the same order as

the mean free path on.the surface at least results in just such 'a condition.

Fortunately in most cases of electromagnetic wave interaction with a gas

the field force effects on the trajectories are negligibly small and can be

altogether neglected. Furthermore, it can be shown that for periodic fields

the 7 dependence of a. usually need not be considered. When the frequency

of the field is of the same order as the collision frequency, then the ratio

of the mean free path to the wavelength is of the order of . i.e., very
C,

small for normal non-relativistic con:L.tions. And thus, the variation of -

along --r can be neglected and only the effect of the time variation, which
is known, include~d. On the other hand, it is apparent that when the mean

free path and wavelength are of the same order the period of the wave is
ý/c. of the mean free tiime and thus under integration only the D.C. level

is imnportant.



In D.C. problems with strong interactions the geometry is

usually such that again there is no great variation of the field in a

single mean free path. Thus, for this great variety of problems the

characteristics are directly available to within a good accuracy. Thus,

it should be possible to use these characteristics to integrate the

kinetic theory equation even for a large class of problems involving

external forces.

The very definition of a characteristic implies that

This can, however, be easily checked by carrying out the following

coordinate transformation

v = C., + (. • (zr.-<,

.= +( -

and evaluating

By the definition of the differential and the use of the chain rule one gets

(~)C.) + cr
;or... J'r at ( ):; W

I

C) L " .



(. t2
i, Le

-1

- V

(7( -~i~)

*" (Jý 7t) IV

( .34)

Thus, the equations

and

can be transformed into

(ki2c0F"" tld
)~L

F
Since

(a2Js3)

(zr-31)

-37)

38)

( -, )

-.3 (*

-a+-i'-.A

'Y;"



and

(zr -4O

Since these are now simple integrable first order equations in

one variable, integration yields the simple results

-~zc~,Sz)-ncEs~t;,-- ~i'y~z~c

and

:f (7i Uj-lec

%e-pL)j dv

Now it is possible to transform back to the original coordinates

where T, and V' are physically meaningful. By properly defining ~=
it is possible to set L)=G and iZ) ~ . This results in the

following equations for _J2,(• e,) and . (:) ) in terms of

22
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and

.* .tL

AMa.A

1 ~·+

;it

'xp -drj fC- t, .

One must not be deceived into thinking that this purely formal

solution is actually the answer. In one way or another Yand ) depend

on- and thus "the solution" is really a terribly complicated and

non-linear integral equation. It is apparent, however, that provided

and 3 are not excessively complicated functions of a possibility of it-

eration exists for steady state problems, while direct step by step

integration appears possible for time dependent problems, as at t.

only depends on f at t, and ) and P between " and t . Therefore

by choosing At t -~t, , small enough so that properties can be

expanded around tlone can obtain a simple recursion relation for .

23
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Before proceeding to investigate the application of this equation,

either to steady state or initial value problems,it is important to inves-

tigate the particular expressions for Pand ))that can be used. Of course,

the Boltzmann definition of r and ))is exact, but it has the great disad-

vantage of being related to 5 through the detail expressions in a collision

process. To avoid these complexities it is possible to approximate the

averaged results of the collision processes by some scattering model

that gives Pandj) as a function of velocity and the macroscopic proper-

ties. The various possibilities in choosing these are discussed in the

next chapter.



NOMENCLATURE

-l

-Vt t

1 .0

S

Acceleration per particle due to external forces

The distribution function in six dimensional space
of T and

The magnitude of relative velocity in a two body
collision

J i)t c* p E. Modified distri-
bution function

Green' s function for differential operator in
Boltzmann equation

The adjoint of the above Green' s function

Vector normal to the boundary $ and pointing into
the volume V

Fourier transform space vector

The scattering function specifying the density of
particles scattered into the phase space at e andr',
at time

Position vector

Vector in the transformed space designating the
characteristic

Position vector locating the surface

The surface that bounds the volumeYV

Time

The time at which a particle with velocity V must
leave the surface , to be at at time "t

Step function (unity for positive argument and zero
everywhere else)

The velocity vector

25



V
w

B/Dt

& (p --4)

onra)

The volume in which solution is desired

Velocity along characteristic which gives the velocity
V at -r at time -

Arbitrary weighting function in the generalized
Boltzmann type differential equation

3t + 4- Zt the dif-
ferential operator appearing in Boltzmann equation

Fourier transform of the Green' s function

The delta function in time (is zero everywhere except
when argument is zero and has unit area)

Generalized three dimensional delta function

The collision frequency of particles, with velocity V
at position -P and time .

Differential collision cross section as a function of
solid angle 4..

Time along a characteristic

Generalized function in Boltzmann type differential
equation

Integrating factor appearing in the substitution of
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III. COLLISION MODELS

In trying to solve the Boltzmann equation by any means most

of the difficulty comes from the collision term which requires detailed

knowledge of two-body collisions. The necessary detail analysis of

Sthe collision process is not only tedious but the resulting integrals

cannot, in general, be evaluated. The fact that only the averaged re-

sults of collisions enter into the equation suggest looking for approximate

scattering models that represent the averaged results of collisions to

some desired accuracy. Although one knows that the only exact repre-

sentation of binary scattering is the Boltzmann collision integral, one

can hope to achieve a reasonable approximation by forcing the model to

satisfy some of the same overall conditions as does the collision integral.

Thus,any model, as a minimum requirement, has to satisfy the conser-

vation laws. Beyond this one can, of course, add conditions improving

the accuracy while increasing the complexity with each additional one.

The value of using models to get a quick order of magnitude es-

timate was already known years ago. The approach of a gas to equilibrium

can be treated for small disturbances from equilibrium by simply substi-

tuting for the collision term the expression

where Vis the mean freetime, f the equilibrium value of the distribution,

and f the unknown distribution function. The equilibrium distribution and

Vare treated as constants and yield the exponential approach to equilib-

rium with the mean free time as the time constant. Further trivial

extension of this model can serve to give correct parametric dependence

of the transport properties and even correct order of magnitude quantitative

results. When the above mentioned model is plugged into the Boltzmann

27
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equation and the distribution function is expanded into

where

f,< <<f·
the solution for becomes

The evaluation of transport properties resulting from this distribution

gives answers which depend on the mean free path in the right way and

are only incorrect in the numerical coefficients.

In recent years, the above approach to representing the collision

term has been extended and formalized by Bhatnager, Gross and Krook
So20 16

and further studied by Krook In a general way Krook discusses the

class of models that can be represented as

where

e xpU i-~ ~ZJV U R TJ Q-v)
(2 R7Tr

with 'nc, r and UIc defined as collisional number density, temperature

and velocity respectively. In general, these "collisional" properties

do not have to correspond to the actual macroscopic variables ;it the point

in question. They are defined by guaranteeing 1',.e conservation of the

IZ8



collision invariants:

where

In the special case of (independent of

), the is just the standard Maxwellian distribution for the

local macroscopic variables. This, of course, makes the model deter-

minable from the macroscopic properties alone. This particular case is

usually referred to as Krook' s model and has been applied to a number of

problems in rarefied flows. It converges to the continuum limit in a

qualitatively correct way but does not give the correct quantitative results

for the transport coefficients or the right ratios between them. The

latter inaccuracy is a direct result of the assumption of constant collision

frequency i1 t) in velocity space. This prevents the proper weighting

of the different velocity moments, but rather weights them all in the

same way. The former inaccuracy is a result of the assumption of spher-

ical symmetry inherent in this class of models. This assumption approxi-

mates the scattering of particles at any point in a spherically symmetric

fashion, which is known to be incorrect on physical grounds. It is obvious

that in a non-uniform flow particles colliding at any point on the average

come from distances of the order of a mean free path. Now, if conditions

are different at this average distance in different directions, then the

scattering in different directions will also have to be different.

The possibility of correcting Krook' s model by adding asymmetric

components has been mentioned by the original authors and others but

not carried out in detail. The integral equation formulation of the kinetic

theory equation is particularly useful in recognizing the implications of

29



Krook' s model and finding the proper means of improving its accuracy.

Therefore, a detail investigation is carried out in this chapter, and

modifications are suggested in the Krook' s model that can, in principle,

make it give quantitatively correct results to any order in the

Chapman-Enskog expansion.

Before proceeding with the derivation it is best, however, to

examine the reasons for devising a collision model and the qualities

desired of it. The reason for wanting a collision model is simplicity

in solving the Boltzmann equation in the region where few solutions now

exist i.e., between free molecular and continuum conditions. Since in

this region no straight forward expansion for the distribution function

resulting in a possible linearization exists, the simplicity of the collision

model is almost a necessity to solve the Boltzmann equation as a bound-

ary value problem. Collisions increase in their importance to the

solution of the problem from having no effect in free molecular flow to

being the dominating phenomenon in the continuum range. It is therefore

apparent that to check the accuracy of any collision model one has to turn

to the continuum limit. Thus,the qualities that one desires in a model

are; that it will conserve number, momentum and energy, and that it

will give quantitatively correct results when the continuum condition

is approached.

In order to illustrate the method without excessive mathematics

the analysis is carried out here for a one-component, steady state, one-

dimensional case. A more general three-dimensional case is carried

out in vector notation in Appendix B. The general integral equation

ti = 44 p(:P) ) )--3 4 edP

30

ij.....



reduces for the one-dimensional steady state case to

a
f 5 f;-)(2,c)- A p Z V - "x, --a- V<,1)

where T is the time a particle travels at velocity V from the boundary

to get to position 7 and V is the X component of velocity.

After the substitution of X' - - L•." and definition of

and 3:as the boundaries of the problem, the equation reduces

i r ·xCllj-y~ X

&(rrE>e)

+rY.,.•x - _,- •,3 ,;>o v -

+ f (x,,,') e ,p ('-(' UP<,)- <0 ( C-V)

wre(re n, )

When Krook' s model is substituted for the scattering terms, the equation

becomes
f••)- J&c<,;)expE cr <5@i') 1jzV)0j Xcr

t jC' (? &) eqp E- (JN2j1 iA)) L7>O (0 M-.0o)

f = (-x,'" xE- ( G o• -f, ) -. P(<•c'z
'f , i7 x, -(.L&,,C-C) , <0 (IF"- )
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Since our interest is now directed toward the behavior of the model

as the continuum limit is approached, the boundary condition can be

neglected by assuming that the boundaries are infinitely far away. In

this case the equation becomes

By noticing that

one can immediately integrate this equation by parts as many times as

one desires. The following change of variables, however, simplifies

the partial integrations immensely. Let (X )  j'( --J(') ,

then the equation simply becomes

where ,-) is usedforV,>) andK(X' X.') for,<O.

F o- z he"inio- f
one esies.Thefolowin chngeof aribles hoeve, smplfi/



it is apparent that •#"-P) ,P when

and also (x-f -p, - for -7 < 0

equation for f becomes

TV >0 and 6(X') finite
and 9("I) finite. The

f()Z 5 E~ xp =a-xIg
0 u -/;F)

for all L'i . This is reasonable, as when the boundaries do not enter

the problem there should be no difference in representation of r~i

for different directions of the velocity.

This equation can be immediately integrated to give

f&jE) = 8 (P5ý)
JEd)

.JO

and further

f(7, 0) =c.,)• + ()
+ f -e x+(x, +

5 exPc-AicZ? = ~ r

#/~a i

33

I

(DT-14V

+...... L/ -i-eo)-I- fdZE )

Cax~r=o



When this is transformed back to the meaningful physical variables

or

This is obviously an expansion for f in terms of inverse collision

frequency and might be correct at least very near the infinite

2) condition. This expansion therefore can be easily used to

evaluate exactly the expression for E )that one desires in order to

make -this. model give the correct results at continuum and near it. All

that is necessary is to choose a model that has enough free parameters

to satisfy the conservation laws as well as yield correct transport coef-

ficients evaluated from fry•) at continuum.
To fix ideas let us start with the usual Krook' s model, i.e.,

- 2-f.e4P "• .j and 7)(x)
equal to the averaged collision frequency independent of ýI". In this

case we know this model satisfies the conservation equations and all

that remains is to evaluate the transport coefficients to see this model' s

behavior at continuum. The definition of continuum implied that only

terms up to order (% , ) are to be kept. Thus, the equation for f
becomes
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Since Fx, ,) depends on x only through the parameters 71(X), (x) and

uCx) the derivative d'n fd4c x can be immediately carried out

in terms of gradients of these macroscopic quantities.

da5kp= L. I iz ~x)
4' c

_.. ..2 T60 dx-

+•- r) 1+'k. I,
2 R Tx) 'Mi)

dx + 2 ,2 4t (x)
2RTIe) ~x

It can immediately be seen that for the case of no macroscopic velocity

and no pressure gradient

_ iv, Tex)

and the resulting heat flux in the X direction becomes

a v,- 4d v, dod v

2 /

-- --
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where I = F? n
section.

1

and $ is the collision cross

~2-Z4)

2RT(w)
(M -26)

dAT

d x
(IJT-&)

i

V/2 2M. 2v/ V2 (FI~t -1-Ir-

S(28T%4i 0
t5 7 )weFI
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This makes the heat flux proportional to the temperature gradient as

it should be for continuum, but it further gives the right parametric

dependence of the coefficient on the properties like temperature and

collision cross section. The numerical coefficient is, however, wrong
34

as the correct answer is

T(as ST (x

where 0 ( OC <.026 depending on the repulsion law. Thus, the answer

is wrong by the ratio 8/15 or roughly 45 percent.

The more general case for both temperature and velocity gradients

can be calculated by using the conservation equations to properly sepa-

rate the terms contributing to the heat flux and the viscous stress. Here

it is important to remember that the term that is being evaluated

S*/dx is already multiplied by the inverse of the collision

frequency. Thus, it is only necessary to evaluate it to zeroth order in

inverse collision frequency to retain accuracy to first order. The proper

conservation equations therefore are

dx

and

~A. ciT A U3
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and the state eqUation is

p =--"kT

The expression can be written as follows

(Lr--3 /)

(~-"ud dlb$d x

+ uLL 1.fo41 X_ a-T-3?Z)
The first term gives

(V,-u•U ( d&
+ ( 2-dfT~RT r7

a
ZR I+V - U, d 1.,R-r r)7-

&Lr-3r:3)

The second term can be manipulated to give a result purely propor-
tional to

1z1 -~~ dL, \ {(ai dX

+ aI d -, -34)
A7 de

By the equation of continuity and the energy equation this gives

U/ ( )C d-"" *0"3 RT dX

Ir, d I-AOIX-

d;K

dX d

-f- )v-y (VI -U -U



Combination of the terms gives

RT

Substitution into integrals of the collision invariants over velocity space

yields the desired results that

;ft Idx _ (. -6)

where

"•,. = 1,2,

Furthermore, from the form of the expression for V d• V,

it is apparent that the heat flux will be proportional to the temperature

gradient alone, while the stress will be proportional to the velocity

gradient alone. It is not necessary to carry out the calculation in detail

for the stress as it is apparent that analogously to the heat flux it will

give the right parametric dependence but the wrong numerical coefficient.

The important result that can be gained from this analysis is an

immediate correction for the two inaccuracies in the Krook' s model.

Both the incorrect numerical coefficients and their incorrect ratio can be

immediately corrected by multiplying the usual Krook' s model by

C 1, /_ 5 (V,4 2 dl,-
V P z4-r 4X L .X



where C, and CL are chosen in such a way as to make the transport

coefficients come out correctly in the continuum range. Since only

terms of first order in inverse collision frequency are retained the

expression V/, d is still just V ~gfo'•/
The expression for 5 , however, is now multiplied by the additional

asymmetric term above, which to first order in 1/-P gives

fc•~--f~b,,• V.I+)  l •• c--) ZQ •

R-r ,(nr-37)

The value of C, can be easily obtained by referring back to the discrep-

ancy between Krook' s model value and the correct one for the thermal

conductivity.

(- +0 (

In a similar way the value of CLcan be found.to be.

This method is not limited to correcting Krook' s model to first

order in 1/9 but can be easily extended to any higher order by just adding

higher order asymmetry into E(c/~, and retaining more terms. Since

the analysis basically follows the same pattern as the Chapman-Enskog

expansion it is not necessary to carry out the details just to illustrate

the point.

The usefulness of any higher order corrections to Krook' s model

is dubious anyway because of the lack of good verification that the inclu-

sion of the higher order terms in the Chapman- Enskog series actually

does extend the range of validity.
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It is important to notice that the correct quantitative limits

were obtained without having to resort to using a collision frequency

dependent on velocity. This avoids the unmanageable integrations

resulting from any realistic representation of 3X'f while retaining

the proper ratios between the transport coefficients. One cannot, of

course, predict the accuracy of this model representation in the tran-

sition regime until some exact solutions are available for comparison.

One can, however, suggest that since collisions between particles

become of less and less importance as the free molecular limit is ap-

proached, any inaccuracy in the model is offset, at least partially, by

the decreasing importance of the model to the solution of the problem.

It is important to notice that though the model is obtained by expansion

in inverse powers of the collision frequency the usefulness of the model,

even to first order, is not necessarily as limited as the Navier-Stokes

results.. When the -model is actually plugged into the integral equation

it need n6 longer be solved by partial integrations. Thus,though the

asymmetry in the model is proportional to the gradients this asymmetry

is integrated over, making the answer not necessarily limited to the

range of validity of the expansion.



NOMENCLATURE

C, Constant in correction of Krook' s model to give
correct heat flux at continuum

C2  Constant in correction of Krook' s model to give
correct pressure tensor at continuum

The distribution function

,f The equilibrium distribution function

fo The local Maxwellian distribution function

The first order correction for the distribution function

AThe Boltzmann constant

The number density of particles in physical space

p The pressure of the gas

RThe gas constant of the gas

$ Collision cross section

"[ The temperature of the gas

The macroscopic velocity vector

The macroscopic velocity at position X in the X
direction

The velocity vector in phase space, 1, V1 ,V arethe
X , y and 2. components of V

The component of 'r for which one dimensional prob-
lems are analysed

The Boltzmann differential operator

Constant appearing in theoretical expression for
thermal conductivity
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F

E3g t)

Zf

P. '

C
I*

Designates "collisional" properties

The part of velocity space where V, > 0

The part of velocity space where V, < 0

The distribution of particles scattered at position
*and having the velocity " at time t , used in the
approximate collision model

The number of collision a stream of particles
traveling with velocity , suffers between-'Xand X

The collision frequency at Oand * for particles with
the velocity V

The average collision frequency at "'andt

The mean free time between collisions

Any collision invariant

Subscripts



IV. TRANSITION REGIME PROBLEMS

We have obtained a purely integral formulation of the Boltzmann

equation and have discussed the approximate models that can be substi-

tuted for the exact collision terms in order to simplify solution in the

transition regime. Now it is necessary to discuss the types of problems

to which this formulation might be most applicable and indicate, in major

outline, the methods of attack for solving them.

The types of problems that arise in the "transition" regime can

be divided into subgroups along many lines. It certainly can be done

according to the basic geometry or according to the basic physical phe-

nomenon, such as diffusion, conduction, etc. No method of subdivision

can purport to include all possible subclasses and thus determine all

the problems to be encountered. Thus, though in no way claiming com-

pleteness, we divide the transition regime into three categories, initial

value, macroscopic discontinuity and boundary value problems. An

initial value problem in kinetic theory starts with completely determined

distribution function in some region Vat a time . The desired solution

is the distribution function withinf for all times later than t . Since

in kinetic theory time is essentially scaled by the mean free time between

collisions, initial value problems consist of solutions for times less than

and of the same order as the mean free time. In a general case, the

region Vmay be bounded or not bounded by a solid surface S. We shall

limit ourselves to discussion of initial value problems without solid

boundaries. The more general case can be included by combining the

initial value with a boundary value type problem.

A macroscopic discontinuity type problem consists of a sharp

variation of some property over distances of the order of a mean free

path, which makes it appear as a discontinuity on the macroscopic

scale. This could include such phenomena as a shock, a shear layer,



or an interface between two gases. Here no solid boundaries enter

the problem and the distribution function is not known at any particular

time t . The only information available is usually in the form of

asymptotic boundary conditions on the distribution function.

The third type, a boundary value problem, consists of the steady

state solution of the distribution functionin a region V bounded by a surface

on which certain thermodynamic variables are known. The characteristic

that identifies this type of problem is the necessity of evaluating the

distribution function of particles coming from the boundaries. Here the

actual knowledge of what takes place is very limited and the available

experimental information quite meager and imperfect. In the class of

boundary value problems treated here, the usual accomodation type of

treatment for the surface interactions is assumed valid.

The integral equation for the initial value case with no solid

boundaries and no external forces becomes

In order to make the substitution of the Krook' s type model easier one

can immediately divide up P ) into 19 ) ) ,

and call the latter term .(@) Furthermore, the lower limit need

not be zero but can be taken as any time ~l . With this change and the
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new notation the equation for;F becomes

= ff(#~(d),Q) jsbexpf t)Cf26*ui& A)l

It is immediately apparent that the distribution function at time t

depends only on the distribution function at time t, and the scattering

terms from the time t, , to the time t . Thus,the equation is similar to

the parabolic type and might be tractable, at least numerically, in small

increments of time.

Letting t~• `-At and defining a new variable -"

the expression for becomes

tt

+ f**- -ý-4 t) exp O 4)

Now if Lt is made to approach a small number the integral can be
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evaluated by Taylor series expansion about the point

conditions are known.

+*t-?)

+ ___tl

, where all

Id.

•÷.-, - tC f-W01.0O

and

-Vol

+........(fy-6.)
Iit2

(EV7- 5)
id'Edr'

err
3,,F'•"• " d•



Plugging this into the expression for f yields the result

fe F)= J~(
-i~~t £' t) /A*b-'7)

txpLI[
T-r A t)

x _ -a)'t '.0p .1

Integration to second order in At yields
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This equation can now be solved, in principle, in a step by step

numerical process when f,V, and 2 are known at sometime I ,

for anytime t later than "6 . The result to first order in A• is the

same as that obtained by transforming the original differential equation

into a difference equation to first order in d"t . The higher order

terms differ, however, because in the integration of the equation the ))

on the right hand side has been transposed into the left hand differential

operator. Thus, whereas in the direct change to a difference equation

terms like (-F4r..xt have to appear and thus result in a three
term recussion relation for 5, in the integrated form only the "driving

function" appears in the derivatives. It is important to remark here

that /A t is actually equal to+( . ++ t-J6
but it can always be reduced to terms proportional to the gradients of

the macroscopic properties by use of the conservation equations and

the dependence of the collision model on the macroscopic variables.

Treatment of a macroscopic discontinuity problem can be started

from the same basic integral equation, but with the initial value and

boundary terms omitted. Further, since effects in kinetic theory are

only felt several mean free paths away, the limits of integration can be

made to go to infinity once it is known no boundaries exist within a few

'mean free paths away from the point in question. Thus, the basic equation

becomes

with Pagain replaced by 'E to make the transition to Krook' s model sim-

pler. One notices that this equation can be integrated by parts as

0042Nd=07d T -,-)



This, however, yields results exactly as those obtained in the analysis

of the modifications of Krook' s model in Chapter III, i.e., an expansion

in inverse powers of the collision frequency. Thus,in this case, where

the operator (N Idv) cannot be assumed small because of

the large variations in a mean free path, this expansion is of very dubi-

ous value. As a matter of fact, the very purpose in turning to kinetic

theory in studies of structures of macroscopic discontinuities is to avoid

this assumption which is inherent in the Navier-Stokes relations.

Since the integral equation is not of the type that can be solved

by standard methods, the only alternative is to solve it approximately

by some form of iteration. The lack of standard means of solution also

precludes, in'the general case, the application of the standard tests of

convergence. Thus, for the present, iteration is suggested as a possi-

bility with actual convergence in each case being made plausible by the

approach of two successive iterations to the same value.

For the method to be powerful and have practical application it

should not be too sensitive to the initial choice of the trial function pro-

vided the proper boundary conditions are satisfied. One should be able

to obtain a reasonable approximation to the structure of a discontinuity

by starting with no information about the structure but only the necessary

asymptotic values on each side of the discontinuity. If this is the case,

then the method can have great power in analysing problems about which

there is little or no detail information, provided of course, only a few

iterations are needed for convergence.

In general, the results of Euler' s equation for a macroscopic

discontinuity will give discontinuous E and V which can be expressed in

the following form

w Nt(;%, i-eqJok V1 (Jq/



and

= 2.)(i )

V ) = Or)

(LV- 3)

Va OI -/4)

The equation

0

giving the shape of boundary locating the discontinuity and thus the

boundary between regions VI and Z2 is determined also from solution

of Euler' s equations. Substitution of this into the equation for fyields

r (it *)e d' d

0

fcL J+ j ez( V-A)f. -XIT)( 100
oso• = 5Etp-z i

JL0
4 E, -expL-~, d
ITS o, V1 1

where T is the value at which --L- crosses the boundary between

V, 4A-d V . Now if f(&rj) is evaluated it is apparent that • SQZ
is such that depending on the direction of velocity it is either zero or

infinity. Thus, if the direction of velocity is from V to0 VL the

wi~lr~ reft;b~

V, (27-1!r)
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expression for becomes

f~~ 'lrp-~7Ya~

2c D. 1 f r7 V -&,o VL

regardless of whether the formula in V or VI is used.

direction of velocity j is from V? to V , becomes

= Vp-7d

tv Ir

Likewise, when

(g-P8

V, -to VI
regardless of which formula is used.

This result is quite important for it shows that though FC )

has now become discontinuous in velocity space, it is continuous in

physical space. Therefore, all macroscopic properties, being integrals

over velocity space, become continuous across the original discontinuity.

The discontinuity in velocity space is only a spurious result of the wide

initial trial function and will probably also disappear with successive

iterations. As a matter of fact, the great crudeness of the initial

iterate means that iteration from this trial function is an extreme test

of the method's usefulness and validity, and thus can not be taken as an

absolute test of the method.
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The steady state boundary value problem can be analysed

; by starting with the basic equation

+ f ct ,) eF2

where TS is the time for a particle traveling at velocity V* to come from

the surface AS to the point " . To obtain the steady state solution,

i.e.,t•pe one needs only to drop the time dependence

Here again it is apparent that because of the non-linearity no

standard form of solving integral equations will work. Integration by

parts is again undesirable because of the resultant expansion in inverse

powers of collision frequency. Iteration is again a possibility, but two new

problems arise that did not appear in the macroscopic discontinuity prob-

lem. First of all the zeroth iterate, i.e., the trial function is not

immediately apparent. It is already known that by starting with the free



molecular solution iteration yields an expansion in inverse powers of

Knudsen number (with a logarithmic term included). This is unsat-

isfactory if the whole "transition regime" is to be covered. Secondly,

necessity of knowing f(tr-l•, V ) , i.e., the distribution of particles

emitted from a solid boundary brings up the whole problem of what really

happens to particles as they strike the boundary and are re-emitted. This

problem is the subject of much study at present, bult no really conclu-

sive results are yet available.

The choice of the initial trial function can be narrowed down by

looking at behavior of the integral equation at the two extremes. The

free molecular solution is immediately available from this equation in

exact form

Since near the surface has to be small to satisfy the free

molecular requirement the solution becomes simply

Thus, regardless of the initial choice of the trial function the solution of

the integral equation will always converge to the proper limit at the free

molecular extreme.

At the continuum extreme, where the boundaries can be neglected,

we have seen that the solution converges to the right limit by partial

integration, when the right model is used. In the iterative scheme this

implies that the model used have the macroscopic properties in it



converge to the right variations at the continuum end. If the exact form

of the collision integi'al is used, it is necessary that the trial distribution

function converge to the proper value to first order in the

Chapmnan-Enskog expansion to obtain the proper limit at continuum; and

that the parameters in it be solutions of the Navier Stokes relations at

this limit.

It is apparent, therefore, that a possible choice of trial function is

one that converges to the correct limits at the two extremes. In such a

case the integral equation has the best chance of giving a good approxi-

mation to the behavior in between the two extremes. When a Krook' s

type model is used in the equation no initial assumption has to be made

about the form of the distribution function. Only the behavior of the mac-

roscopic variables has to be known approximately over the whole

transition regime.

From the above considerations it seems apparent that the simpler

moment methods might supply the best choice of the initial trial function as

these will, at least, guarantee the conservation laws. Furthermore, if a

model is used in the iteration, only the macroscopic properties and not

the distribution function resulting from the moment method needs to be

used. This is desirable as the moment methods do not purport to

solve for the distribution function but tend to treat it more as just a con-

venient weighting function to satisfy the conservation equations in some

average way.

For the iterative scheme to be a powerful and practical tool the

zeroth iterate cannot demand too much labor to obtain. Also, the accuracy

requirement on this zeroth iterate cannot be too stringent. Lees'

moment method, therefore, seems the ideal choice for the initial trial

function (zeroth iterate). This method,though certainly not the most

accurate of the moment methods, requires the least amount of labor to

obtain solutions and always guarantees that they converge to the proper

limits in the macroscopic variables at both extremes. The undesirable

discontinuity in velocity space of the distribution function offers no prob-

lem if it is considered as a convenient weighting function alone, while the



macroscopic properties are considered as the solution.

The problem of applying the boundary conditions is a

serious one and proper analysis of it will undoubtedly have to wait for

better and more complete data. The presently accepted accomodation

type of treatment is actually quite well suited to the integral equation

formulation. In this treatment the distribution function of particles in

the half of velocity space with velocity direction pointing away from the

boundary is Maxwellian with the energy, density and velocity parameters

related to the wall conditions and to the same parameters of the distri-

bution function in the other half of velocity space. Thus, the boundary

conditions can, at least in principle, be applied after each iteration.

Integrating of the equation with the appropriate velocity moments over

each half of velocity space at the boundary and then relating the resulting

parameters through the accomodation coefficients and the continuity

equation yields a sufficient number of relations to determine the param-

eters in the distribution of particles leaving the boundary.

The possibility of applying the integral equation formulation, in

principle, to the three types of "transition" regime problems discussed

here,though not a conclusive proof of its practicability and usefulness,

shows that the method should yield results for a wide class of problems.

The three particular cases of, an initial expansion of a pressurized sphere

of gas expanding into another gas, the structure of a steady state normal

shock and heat transfer between parallel plates, carried out in the next

three chapters, illustrate the problems encountered in the practical

applications of the methods discussed in this chapter.
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NOMENCLATURE

V

V

1) t

Eyi F

The distribution function

The scattering function specifying the density in
phase space of particles scattered at -# and*
and having velocity V

Position vector

Position vector locating boundary betweenX and V.
in the macroscopic discontinuity problem

Surface bounding volume

Time

Time required for particle traveling at velocity v'
to go from surface 5 to position 50

Velocity of particle

Volume in which solution is desired

Volumes in the macroscopic discontinuity problem

Time increment in initial value problem

Density of particles with velocity V that have just
suffered a collision at and-t

The values E in the two regions and V in the
macroscopic discontinuity problem

Collision frequency for particles of velocity V
at position " and time -6

The values of ) in t, and V- in the macroscopic
discontinuity problem

Dummy variable appearing in integrations over time

Integrating factor in the integral form of the kinetic
theory equation
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V. EXPANDING SPHERE PROBLEM

An example of an initial value problem that has been of

some interest for a long time and has been relatively well analysed for
24, 25, 26

the inviscid case24,25,26 is the problem of a high pressure sphere of

gas being suddenly released into a surrounding medium at a much lower
24, 25

pressure. The similarity solution first obtained by Taylor gives the

strength and speed of outgoing shock resulting from the sudden expansion.

The numerical solutions by Brode6 determine the outgoing shock, as well

as other secondary shocks, and the density, velocity and temperature

profiles in the whole rekion. No continuum type solution (especially the

inviscid one) can hope, however, to solve for the initial behavior before

the shocks are fully formed and, thus, all continuum solutions are long

time solutions in comparison to the mean free time between collisions.

For all practical purposes at normal temperatures and pressures

and macroscopic size initial spheres the "long time" solution is the only

one of importance. The initial expansion during a time of the order of

a mean free time is a negligible portion of the total time history of the

problem. The inviscid solution is also sufficient because the effects of

transport properties are limited to the actual regions of the shocks and

to the contact surface between the two media. These are macroscopic

discontinuities and can be, at least in principle, left for separate later

solution when details are wanted. The fact that the contact surface

thickness is a diffusion effect increasing as \tC while the shock propa-

gates in the main proportionally tot further justifies initially neglecting

the contact surface thickness in solving for the shock pattern.

Now, if instead of looking at this problem in the case where the

original sphere diameter is many times the mean free path, as in the

case at normal conditions, we look at the identical problem but in the

case where the original sphere diameter is of the same order of



magnitude as the mean free path of the outside gas. For a one meter

sphere in air this would occur at outside pressures just below a micron

on mercury. In this case an appreciable portion of the problem takes

place during a time less than and equal to the mean free time in the

outside gas. Thus, no continuum theory can hope to give reasonable re-

sults. The problem can, however, be treated directly by means of the

formalism developed in the last chapter for treating initial value problems.

One can hope to obtain from this theory complete maps of the macroscopic

properties for times of the order of a mean free time in steps small

compared to the mean free time. From this one should be able to tell

exactly how much diffusion has taken place at the contact surface and

exactly how long it has taken to form a macroscopic discontinuity that

can be identified as a shock.

The particular problem carried out is one of a helium sphere

initially at a pressure ratio of 18 to the outside gas expanding into air.

This particular case, under inviscid conditions has been treated theoret-

ically by Brode in Ref. 26 and investigated experimentally by Boyer in

Ref. 27. The only difference introduced into our problem has been the

fact that the overall pressure level has been scaled to the point where

the initial sphere diameter is only equal to about one mean free path

in the air outside.

The problem can be stated in the following way. For times less

than zero the region of space for radii up to rr?-- consists of quiescent

helium of density ;Ao , temperature 1"r and pressure P4A . The

region of space for radii greater than 1r consists of quiescent air of

densityf o , temperature Ta, and pressure p,, . At time equal to

zero the membrane separating the two media and allowing them to main-

tain separate equilibrium levels is broken. The problem is to determine

f or t-to> f(0), TA(rt) p4(vA ),& ) T.tr,f), pa4&yt)
as well as the velocities L4(r'rt) and li(g,) . Also in the region

where the gases are mixed one would like to determine the mixture prop-

erties like density fA.A(rj), temperature T•.& ') pressure

P4A(.rL;) and the overall mass velocity 14,('r *) . In kinetic

theory, it is only necessary to determine a( r) and 4( t)
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and all the macroscopic properties will be known.

conditions in kinetic theory therefore become

Sep &L
_-4-, 2 ! _T "

and

~c tz'n,%.•o! exp L 2 7a,% J

F4(r. o) = o0

The initial

The relationship between f at t and fat t-At derived in the last

chapter should be sufficient to determine fA and f*_ for all times

greater than zero. The steps dt , however, have to be small compared

to the shortest mean free time in the problem and the solution cannot be

carried for excessively long times because of the accumulated error.

The equation relating ( ) to f(S-~tAt') derived in the

last chapter when reduced to the spherically syrmmetric case becomes

C_-4)

7- <.)
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where 8 is the angle between the velocity vector and the or vector, and

and

Here no assumptions have yet been made as to the form

of ) and ( . In principle, these could be calculated exactly

as f(:'Y~•, vctOt-) is a known function. Unfortunately the

collision integrals that would have to be evaluated to carry this out

are not easily done, even on an electronic computer, because of the

necessity of carrying out at least quadruple numerical integration.

A collision model is, therefore, ideal in this case because E and 1)

become simply algebraically related to the macroscopic variables

which have to be evaluated anyway. In the problem calculated the

simple Krook' s model was chosen, but extension to a more sophis-

ticated model is straight forward.

The solution is carried out in the following way. All variables



are non-dimensionalized by initial properties within the sphere
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and the macroscopic variables to be obtained from the distribution

function by the following integrations
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The expressions for E and?) have to be evaluated in terms of

these non-dimensional variables. The scattering function E takes the

form of a Maxwellian in Krook' s model and )) is independent of velocity.

A further restriction fixes the parameters in E by requiring the con-

servation laws to be satisfied. Since momentum and energy are conserved

in a mixture only for all the components together, and not individually, the

macroscopic velocity and temperature in the Krook' s model for either

species should be the total mixture, velocity and temperature respectively.

If the individual velocity and temperature is used in Krook' s model the

model becomes more restrictive than the exact collision integral. With

this in mind the scattering terms 4A and f are determined as

and

The collision frequency V in Krook' s model is just the average collision

frequency independent of velocity. It is, however, composed of two

terms: one due to collisions with like particles and the other due to

collisions with the other species. In this non-dimensional notation the

collision frequencies become

2) 5 4-A
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and

S ( -20)

where 9A , Sa and S4 are the collision cross sections for
helium-helium, helium-air and air-air collisions respectively. They

are, in general, functions of the temperatures of the species but here

they are assumed constant to correspond to a hard sphere collision

model. This may be inconsistent with the assumption of velocity inde-

pendent collision frequency assumed in the Krook' s model, as velocity

independent collision frequency is a result of fifth-power repulsion law.

If this is' carried to the extreme, however, one should also make the

collision frequency infinite as this also is a result of the fifth-power

repulsion. We, therefore, choose to consider the velocity independent

collision frequency in the Krook' s model as just an averaged frequency

substituted for the actual one in order to simplify the model. With

such an interpretation the choice of the repulsion law is still left

arbitrary.

The basic equations, under the application of all these assump-

tions and non-dimensionalization, become
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and

Thus, although a large amount of bookkeeping is involved,

solution of the problem relies entirely on evaluating -F'and ;C for

each P/" and X and determining Pf&rF ,•) from 5-& tZX' t-)
and the macroscopic variables at (- -s) . From this ivo r" )

the new macroscopic variables can be evaluated for all 7 at time T
From this, a new T can be evaluated for time -+A4 ; this process

continuing, in principle, up to any time , that one desires.

The large amount of bookleeping and the necessary numerical

evaluation of the macroscopic variables suggest machine solution of

the problem. Since a digital computer works only in a numerical fashion,

all functions, thus far discussed, become matrices. The fact that the

relationships between conditions at time * and -6-AT involve a shift of

position in physical space and direction in velocity space through 1•'

and X% respectively, necessitates interpolation as it is obvious that

'P and X ! will not, in general, fall on points at which conditions have

been evaluated. The integrations to obtain the macroscopic variables

become matrix multiplications of they matrices with certain weight-

ing matrices.

The actual machine solution was carried out with the relation-

ship to first order in A" , as computers are more efficient at



carrying out simpler manipulations more often. At time t = the

macroscopic variables are given for a certain mesh size in physical

space. Two new matrices representing the right hand sides of the

recursion relations are defined as follows:

and

Thus, to evaluate the distribution function matrix at •E•+• it is only

necessary to determine -'$ and X and then interpolate on the E,

and E. matrices. To evaluate the macroscopic properties it is only

necessary to multiply the and f matrices by the proper weighting

matrices. To carry the solution to the next time one needs only to

evaluate the EA and 4 matrices again, find the new'ý'and Kt'for each

S;, j*" and )Ck , and calculate the new f and natrices by

interpolation.

In the actual case calculated, the physical space mesh size was

not held fixed but was adjusted from a very fine mesh size of .05 initial

mean free Daths to larger sizes as the storage wa- filled un.

The double integration was carried out by quadratures in both
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directions. The integral was first transformed into

a/; dy 11 dx 2 6)f - ( zo )

which can be seen to be equivalent from geometric considerations.

The velocity integration was carried out by a Hermite-Gauss quadrature

to take advantage of the fact that the integrand always behaves as exp••&)
in the limits of V= to- . Ten points and weighting functions were

chosen, as it was found that this gave less than a one percent error

for such common integrands as polynomials or trigonometric functions.

The X integration was carried out by Legendre-Gauss quadrature as

this technique was found most useful for cases where no a priori knowl-

edge was available about the integrand. A six point evaluation was used

because of lack of enough memory storage locations on the computer.

This evaluation, however, is equivalent to an eleventh order Legendre

polynomial representation of the function which should certainly suffice

for most reasonable angular variations of the integrand.

The initial mesh size was chosen as .05 in the non-dimensionalized

units. This mesh was retained until the memory was filled up for either

matrix or . This occurred when the disturbance on reached

80 mesh size units out orfJ 120 mesh size units out. At such time the

program automatically readjusted the mesh size by doubling it and, thus,

freeing half the original storage available. This process was, of course,

repeated each time the storage was again filled. This doubling of the

m sh Ai wa ccoJmUJa ied b th-k doJr bl fJfi - i .f. 4-h 1

expected accuracy. The reason this was possible is a result of the fact

that though, in the beginning, the initial discontinuity requires a small

mesh size and a small increment of time to obtain reasonable accuracy,

the gradual lessening of the gradients on the molecular scale allows a
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a larger mesh size and a larger increment in time to retain the

same accuracy.

It was also found that the accumulated numerical errors in cal-

culating the macroscopic velocities by integrations of the distribution

function were sufficient to give results that did not conserve the total

number of particles for large times. This was circumvented, however,

by calculating the macroscopic velocity through the direct integration

of the continuity equation.

__ ~5 76 S) (Y2T.~

The integration was always started from the two asymptotic regions

where the velocity was known to be zero and carried on towards the

middle. This allowed calculating the velocity at any point by merely

knowing the velocity at a point one mesh size away and the density

change per unit time in between the two points. The calculations are

carried out from the two extremes toward the center to minimize accu-

mulated errors by placing the greatest accumulation of error at a point

where the velocity is likely to be the highest.

Analysis of the accuracy of the results obtained is quite difficult.

The large number of variables and the appearance of nonlinear integral terms

in the recursion relation make the standard technique for choosing

optimum mesh sizes inapplicable. All that we can do is quote the sources

of error in the computation and guess at their magnitude. First of

all there are interpolation errors on both -F and X . These are prob-

ably of the order of one percent; except in the initial step the functions

don't vary more than a few percent from point to point. The next source

of error is, of course, from the numerical integrations. This is impos-

sible to predict analytically when the integrand is itself a numerical

function. The orders of the quadratures were chosen principally because



of the limits of storage locations on the computer. These quadratures

are, however, very accurate for well behaved functions. Thus, it is

hoped that they are also sufficient for the actual numerical functions

being integrated.

Beside these computational errors there is, of course, some

uncertainty of the effect of the Krook' s model on the accuracy of the re-

sults. It is known that at the continuum limit Krook' s model gives all

the correct physical behavior though quantitatively incorrect by 25 to

50 percent. The accuracy of the model itself gets worse when the dis-

tribution function is further away from local equilibrium, as is the

case for times much less than a mean free time near the initial discon-

tinuity. The effect of the model, however, is less as the initial effects

are almost entirely from the collision - less motion of the particles.

No conclusive statement can, therefore, be made as to the models effect

on the results, though we have every reason to believe that the general

trends in the physical behavior are correct.
rp L _ . . . ...1 L... . ..Z_ I- .- L _- 1_ _1 2. . . 1. . . . -_ _ _. _ L _ _ ___ _ - " - 1

.ne resulLs for rte nelium sphere expanadng into air at an initia1

pressure ratio of 18 and initial diameter of 75/W times the outside air

mean free path are shown in Figs. V-1 through V-9. If we look at the mix-

ture density profiles shown in Fig. V-i through V-4 we can see the building

up of a bump in the density of the air and the propagation of this bump

outwards into the gas.

Comparison with the inviscid results for the same initial pressure

ratio immediately indicates, however, that any identification of this

disturbance as a shock is impossible. This becomes reasonable when one

realizes that the large "shock" thickness to radius of curvature ratio

precludes the possibility of identification of upstream and downstream

equilibrium conditions which are necessary for a shock. The fact that the

distrubance doesn't even appear to be tending towards the inviscid results

as well as the lack of any secondary density disturbances is a direct

result of the fact that the volume effects and the results of just simple

collisionless "kinematic diffusion" tend to drive the whole profile to a uniform

condition in a time much shorter than the time for conlis inn to cr'ete a
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"shock". This is evident from a simple comparison of the results to

those of the collisionless motion calculated from results given by

Kornowski 4 1 in Figs. V-l to V-3. Figure V-4 is just a superposition

of the present results for three times to make apparent the outward

propagation. Figures V-5 through V-7 show the densities of the

individual components and thus indicate the large effects of diffusion in

the problem. Figure V-8 indicates the change in the mixture velocity

profile and Fig. V-9 shows the mixture temperature profiles for the

three representative times.

The overall results though not justifiable as correct because

numerical inaccuracies and incomplete understanding of the effects of

the approximate collision model, are certainly reasonable in nature and

clearly indicate the piling up effect of collisions. An important physical

result of the calculations is the determination that for initial diameters

of the order of a mean free path and moderate pressure ratios the

pressure overshoots are much smaller and become negligible much

sooner than the inviscid calculation indicate. The relative similarity

of the present calculations to the collisionless results also indicate

that probably the single most important effect is the simple kinematic

diffusion of the two species and the collisions only alter the profiles

slightly from this.
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NOMENCLATURE

,

VP
X

CoS &

SAt

V,-3 t

The distribution function

Number density of particles in physical s 1pace

The pressure of the gas

The gas constant

Position vector

Magnitude of position vector (radius from origin)

/~r-2 2· -t * (V. I) modified radius

Initial radius of pressurized sphere

Collision cross section for air-air collisions

Collision cross section for air-helium collisions

Collision cross section for helium-helium collisions

The temperature of the gas

Time

Radial macroscopic velocity of gas

Velocity vector of particle

Velocity magnitude of particle

The cosine of the angle between position and velocity
vectors

Modified cosine of e X' -x 't

Time increment in step by step solution

Density of particles that have velocity v' and have
just suffered a collision at r and t



9 Angle between position and velocity vector

Modified angle defined by equation

S? Collision frequency of particles with velocity V
at ' and "

f The mass density of the gas

Subscripts

ta, Designates air

c/L. Designates mixture of air and helium

Designates helium

0 Designates initial conditions

Lj Are subscripts used to designate discrete points used
in numerical computations

Superscript

Designates normalized, non-dimensional quantity
(Normalizations are listed in text on pages 63
through 64).
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VI. NORMAL SHOCK STRUCTURE

One macroscopic discontinuity that has been of interest to

aerodynamicists for years is the normal shock. A solution of the

one dimensional Euler equations gives a possibility of a discontinuous

jump in the density, temperature, pressure and velocity.

The second law of thermodynamics further limits the direction

of the property jumps to correspond to an entropy rise. This solution

is, of course, the simplest representation of a shock, but for most

purposes is sufficient if only the overall flow field is desired. The

actual shock cannot be an exact discontinuity but must rather have

some thickness through which the properties change from the upstream

to the downstream values.

The logical next step would, of course, be to solve for the

shock structure by going to the Navier-Stokes equation. This has been
28

done but the solution should really be rejected on theoretical grounds

because it gives gradients which are large per mean free path in con-

tradiction to the theory which relies on an expansion based on small

gradients per mean free path. Qualitatively, one can believe the order

of magnitude of thickness obtained. It is, however, still an unresolved

question why the theory, though theoretically unjustified, gives answers

that have at least for low Mach numbers been relatively well verified
29, 6by the few experimental results available. ' 6

Regardless of this, however, analysis of shock structure should,

in principle, be carried out by means of kinetic theory. Various approx-

irnate means have been used in recent years to solve for the shock structure

directly by kinetic theory. Probably the best known of these is the
30

Mott-Smith method There have been others done by different moment
3 1' 32

methods . Comparison to determine which is the best method is

very difficult because of the great scarcity of accurate experimental
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r
results. All the methods, however, give shock thicknesses of the

order of several mean free paths.

Since the integral equation formulation is particularly well

suited for problems involving a scale of a mean free path, it would

be a useful result to obtain the normal shock structure by means of

integral iteration. It is obvious that to test the power of the method

it is desirable to start with the crudest possible zeroth iterate

(trial function). The Rankine-Hugoniot shock relations give the

necessary boundary conditions, but every estimate of the shock thick-

ness itself requires a lot of labor. The zeroth iterate was, therefore,

chosen as a discontinuous set of macroscopic parameters satisfying

the Rankine-Hugoniot conditions across the discontinuity. This corre-

sponds to the zero shock thickness assumption and will thus test the

convergence of the iteration most severely. It is apparent that if

within several iterations the solution converged and gave a reasonable

shock structure the method would be quite powerful. The basic integral

equation when reduced to the steady one dimensional case without

boundaries becomes

Sri - I

and
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The distribution function is represented differently in each half of

velocity space because of the obvious physical fact that the distribution

of particles at position K with velocity components positive in the X

direction will be determined by all the particles scattered in the

physical space for all X < X while the distribution function for particles

with V < 0 will be determined by conditions in the region of physical

space for X >)C

The initial trial function can be represented in the kinetic theory

notation as

where r)L/ , Ta /7I and U.,/&ti satisfy the normal

shock relations. The first iteration can be immediately obtained since

the integrations over physical space can be carried out exactly.

The lower limit on the integration in the expression for .. i)
is taken as zero

)oo? v),XX <O



r
i|

and # and )4 are defined as the usual collision frequency

(:17 )

evaluated for X< 0 and X > 0 respectively. Substitution of the

above into the integral equation yields for the distribution function.

For X>O

9bb4)
91 +( )exlp(#214)

v, >o

V, 0

where F, and F"- are known exactly for this first iteration since

the zeroth iterate distributions are Maxwellian on either side of the

discontinuity. The detail balance at equilibrium guarantees that EC
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T

and E2 , therefore, correspond to the distributions themselves

and

(I 7r A 71 2 R7Tj

To obtain the first iterate on macroscopic variables it is only

necessary to integrate _- multiplied by the various velocity moments.

The general expression for 1(0) based on the original Maxwellian dis-

tributions is extremely complicated and contains error functions even

in the hard sphere case. It is, therefore, desired for simplicity to

take o0 "= 5 independent of V. This is essentially the same

assumption as was made in the Krookts model except that in this case

the form of 1 is exactly correct. It can also be considered as an

assumption of the inverse fifth power repulsion law which gives collision.

frequency independent of velocity.

Before proceeding to try to evaluate the macroscopic variables it

is advisable here to indicate the behavior of the solution at the original

discontinuity. If we evaluate

we vj l o

we eo

we notice that it converges to the same limit from either direction.



The first derivative, however, does not.

For X< 0

for V < 0

for V > 0

While for X > 0

for V,<

for V, > 0

Thus the first iteration eliminated the discontinuity but placed a

discontinuity in the first derivative.

To evaluate macroscopic variables it is, in general, necessary

(even with V= Y ) to evaluate functions that have not been tabulated.

These have the form

0-~/4)
0

( X:4U9

x44ai7

= O

(xO ) :0+

X +

= 31.
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Even though certain expansions are possible for evaluating these

functions in certain ranges of X and "A. it was found that it was

quickest to obtain them to within a few percent by numerical

integration. The method used and the results obtained are shown in

Appendix C. It is important here only to remark that these functions

,/ (I•fI 4) obey a recursion relation which makes it necessary to

compute the function for only three successive values of -t as all the

other r ( 1,? )J5 can be obtained from these.

The first iterates of the macroscopic variables can be expressed

entirely in terms of a sum of the above functions, while successive

iterations, in general, can be expressed as integrals of these functions

over X where 4 (OI1c,) is a function of X through )(•6) and A,, x)

obtained .in the previous iteration.

When the parameters in the problem are all non-dimensionalized

as follows

x o

the first iterate for the density in the hard sphere case becomes

X> o

X< o

R (9) ( ,Rz ra X)



The velocity at any point can be evaluated from the continuity

equation E :* = -I

The temperature in turn can be evaluated in terms of (k,1)

Sz(_y, 1)) and l_),

Other properties in the shock such as the heat flux and the

stress can be obtained in terms of C (}{)4,) , / (kr*) and (•,)

by direct integration over velocity space and the use of the recursion

relation derived in Appendix C and appearing as Eq. (C-3). These
same properties can, however, also be evaluated in terms of the

properties already calculated through the application of the momentum
and energy equations, which give the following results in this oneand energy equations, which give the following results in this one
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dimensional case.

=~1iT / (+ rM)) (r Zr~tal3 (Ih~)J

Comparison of the results for these transport quantities obtained by the

two different methods can serve as a test of the accuracy of the results.

The difference in the results between two successive iterations is, of

course, another way of testing the accuracy of the method.

In attempting to evaluate the second and higher order iterations

it becomes immediately apparent that if this is done directly functions

like / (i;,A.) are going to appear because of the I term in the

integral. If the work could be continued analytically this would be no

problem as the logarithmic singularity that this function possesses

at) = 0 is integrable. Since, however, successive iterations have to

be done numerically it is advisable to try to avoid dealing with singular

functions. This can be easily done by integrating the equation by

parts once.

a;' j d ' Vc<



It is apparent from the above equation that the undesirable

12 giving the C , s,) function has been eliminated. The

general solution for any macroscopic property can, therefore, be

represented in terms of the previous value given by integrating

p6,) plus a correction term composed of integrals over / of
the CM, &I) functions for positive s multiplied by the property
gradients resulting from the previous iteration. The property gradients

come from the dependence of (X)ev' on the macroscopic properties.
For the case of the simple Krook' s model in the one dimensional case

= 7-R7c)) W A 7 w- 7.3))

the gradient becomes

jr (A)
4MOO

VX1
The resulting expression for the density becomes

RTU)
(-z4)
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and

2

A similary complicated result for the temperature can be obtained

but, in principle, no new complications are added and the results

can still be expressed in terms of integrals of the previously calcu-

lated properties and their gradients and the tabulated ( M)

functions.

As an example of the iterate solution the density profile for the

case of " = 1.667 and M, = 1.5 is plotted in Fig. VI-1. The discontin-

uous derivative at X = 0 in the first iterate is, of course, a spurious

result of the initial choice of trial function and does not have a physical

interpretation. This first iterate, however, is a crude representation

of the shock, and the second iteration gives only a slight improvement.

The difficulty lies near the point where the function was originally

discontinuous. This can be interpreted to mean that a more realistic

choice of initial trial function should be made as the discontinuous one

places too stringent a demand on the integral iteration process.

The results thus far obtained are thus insufficient to determine

the feasibility of integral iteration in calculating shock structure

though the tendency in each iteration is in the right direction. Thus

new efforts should be made by iterating from less unrealistic initial

assumptions and thus improving the chances of convergence of the

method within only a few iterations. Only in this way will the method be

given a fair trial.

I
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NOMENCLATURE

3t

Ix
R

7"

1.
V

Y

c cV<

S..A(x,

The distribution function

The Mach number

The number density of particles in physical space

The pressure of the gas

The x %component of the pressure tensor

The heat flux in X direction

The gas constant

The temperature of the gas

The macroscopic velocity of the gas

The velocity vector of a particle

The X , , Y components of V

Coordinate in direction normal to the shock

Special function tabulated in Appendix C

The specific heat ratio

The scattering function specifying the density of
particles with velocity v that have suffered a
collision at %

Integral over the collision frequency defined on

The collision frequency of particles with velocity V
at position ;

The average collision frequency at X

The differential collision cross section



Subscripts

SDesignates the half of velocity space where V > 0

Designates the half of velocity space where V, 0

Designates asymptotic conditions on the far
upstream side of the shock

a Designates asymptotic conditions on the far down-
stream side of the shock

Superscripts

Designates normalization with respect to upstream
conditions (Defined on pages 91 through 92 )

Ie Designates the l'th iteration solution

I,
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VII. HEAT TRANSFER BETWEEN PARALLEL PLATES

A relatively simple example of a boundary value problem in the

transition regime is the problem of heat transfer between parallel plates

at pressures low enough to make the mean free path of the same order as

the plate separation. The problem has all the basic features of the general

boundary value problem in the transition regime, but the geometry is very

simple, and the description of the problem is limited to a single variable,.

the temperature profile. There is also the additional advantage in this

problem in the fact that the continuum and free molecular solutions are

both well known and simple. We have,therefore,chosen this problem as an

illustration of the application of the integral iteration method to solution

of transition boundary value problems.

The problem can be stated as follows; two plates infinite in extant

are separated by a distance b and are maintained at temperatures T7J
and T WL respectively. The solution desired consists of the temperature

profile of the gas in the gap between the two plates, and the overall heat

flux, as a function of the pressure of the gas. The solutions for pressures

high enough to make the gap be many times the mean free path are

of course well known. The boundary conditions are such as to force the

gas temperature to the wall temperatures at the walls, and the profile is

either a straight line or varies as with i depending on the assumed

temperature dependence of the thermal conductivity. The heat flux is

directly proportional to the temperature difference and inversely propor-

tional to the plate separation while being independent of the pressure.

The low pressure or free molecular solution is also well known. The

temperature is a constant with a jump existing between the wall temper-

ature and the fluid temperature at the wall. The heat flux is still

proportional to the temperature difference between the two walls, but is

independent of the plate separation, while being proportional to the pressure.
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It is apparent, therefore, that the change in the mode of heat transfer

takes place someplace between the two extremes. It is our goal to try

to determine the temperature profile and heat flux for the whole range

of pressures between the continuum and the free-molecular condition.

Since it is apparent that the heat flux cannot really be a function of the

absolute value of the pressure, but rather some non-dimensional quantity,

it must depend on the pressure through the Knudsen number, which in this

case is the 'ratio of the mean free path to the plate separation.

When the variables are non-dimensionalized and the temperature

difference introduced as a parameter, the problem takes the following

form

Tw/ vrr-.

I
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The continuum solution is obtained from the energy equation. which

reduces to

(iiT-ady 0
$Lfq

where k is the thermal conductivity, and the boundary conditions are,

4i ) / The heat flux is
--- •CTi)b dTO-/ and is constant. Solution can be easily

obtained for simple relations between k and T.

The free molecular solution is likewise easily obtainable by

considering all the particles with positive y velocities to have come from

the bottom plate, and all those with negative y velocities to have come

from the top plate. The condition of no net mass transfer and the

accommodation coefficients at the walls completely determine the solution.,

which is simply

l7 T -:;)

whAer e oe , O. ,d CO.

CL 7 d

wAe-rc

47-e Me acco ,mPdA1I'-~ CDE'ffiý374v

ats t,•.- o;aT

f= , •7 + O)(I ,-)

@t, 1 C l -01 j z I 2.
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We, however, want to find the solution for all GKnudson numbers

in between. As discussed in Section IV, the application of the

integral equation formulation to a boundary value problem requires

iteration. Since the choice of the initial trial function will either greatly

enhance or hinder the iteration process, it is very important to choose

a good one. As was already mentioned, the integral iteration process

will in general quickly converge to the right limit in and near the free

molecular end. It is, therefore, most important that the initial function

chosen approach the continuum limit in a correct way as there conver-

gence is poorest. At the same time a choice of a particulary complicated

function will require a large amount of labor in the iteration and will

defeat its own purpose. The best compromise choice for the zeroth

iterate, therefore, seems to be a solution obtained by Lester Lees'

moment method. Though it is certainly true that this solution does not

approach the free molecular limit in the proper fashion and that the detail

profile cannot be correct, the gross behaviour is correct at both limits

and the trend in between is represented by a relatively simple smooth

function. We, therefore, propose to solve the heat transfer between

parallel plates problem by Lees' moment method and then iterate from

this in the integral equation.: The solution by Lees' moment method is

carried out in Appendix D so as not to complicate the train of thought

here by too many details.

The results for any of the several cases carried out in the appendix

always give a temperature profile that is identical with the continuum

profile in shape (for the same k(T) dependence) but has a temperature jump

at each wall. The heat flux is always equal to the heat flux at continuum

times some function of Knudsen number that reduces to at the free

molecular limit. Keeping this in mind, we can analyze the integral

iteration procedure without fixing our attention on any particular k(T)

dependence or equivalently any particular collision cross section depend-

ence.

The integral equation for the steady state one dimensional
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case with boundaries becomes

WI V

where

Iteration follows the same lines as that carried out for the normal

shock case but with a different zeroth iterate and the additional complica-

tion of ad and .) entering into the problem.

We again have a choice of using an exact evaluation of 9 V')

and EVC, ) based on the zeroth iterate or using a model based on

the macroscopic properties alone from the zeroth iterate. Here,,the choice

is quite obvious. Since our zeroth iterate is a moment method solution,

it is apparent that a model for E and V is actually a better as well as a

more convenient choice. The moment method solution does not really

purport to solve for the distribution function, but rather uses certain

free parameters in an assumed distribution function to satisfy the con-

servation laws as well as some higher moment equations. The macroscopic

variables can then be treated as the solution while the distribution function

can be considered as only a weighing function used in the solution. Espe-

cially in the case of Lees' method which assumes a distribution
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function discontinuous in velocity space the use of the distribution function

as a solution is undesirable.

We, therefore, choose for the model E and 2 a modified version

of the Krook's model. The collision frequency is still the velocity in-

dependent average collision frequency. We choose an ECy. P) , however,

that has an asymmetry proportional to the temperature gradient as derived in

Chapter III. In this case of no net macroscopic velocity and for no pressure

gradient (Lees' moment method solution) this becomes

When this type of model is substituted into the integral equation

and one tries to evaluate the macroscopic variables again an untabulated

kind of function appears of importance.

Even though these functions are only special cases of the 1 (if 14,)

functions they are evaluated and tabulated separately in Appendix E. They

are evaluated to a much greater accuracy than the •• J~( ) functions

because they can be evaluated by expansion for small)( and by method of

steepest descents for large). Again there is a recursion relation between

different orders 7f and some integral relations as well. The method of

evaluation and the tabulated results are presented in Appendix E.

With these results available we can now proceed to evaluate the

Sfirst iterate for our problem of heat transfer between parallel plates.

Lees' moment method is based on the assumption of the inverse

fifth power repulsion between-particles, thus, for consistancy one should

use the thermal conductivity proportional to T the temperature, and a

collision frequencyV) proportional to density alone. With these assumptions

our zeroth iterate becomes (from Appendix D)
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Now for a first try we can take the case of perfect accomodation which

reduces these equations to

v- 1 + 7 I+ (- 1  1 ,,
Saf i
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In principle it should be possible to substitute this F dependence for T
and the corresponding 5 dependence off into the expressions for Eip)
andtpt) and evaluate directly the first iterate in terms of the -1-
functions. The V appearing in the integral equation necessitates evaluat-

ing the solution in terms of integrals over the :r.(k) functions which have

a logarithmic singularity. (Appendix E shows that 4(is) behaves as

(4. *+b,) Xt~f) for small) and the differential relation 2' 4fl - dT",

shows that jI. (i) has a logarithmic singularity at H= 0,)

The fact that this singularity is integrable does not cause any problems in

an analytic solution if such:were possible. If, however, the iteration is

going to be carried out numerically the singularity will cause problems in

the integrations. It is, therefore, advisable to avoid this singularity by

integrating the integral equation by parts once and thus, eliminating the

l/4 term. This as in the normal shock case also has the advantage in

the fact that it gives the 't4 iterate of any macroscopic property directly

as theJ-I)'+A iterate plus some terms that are evaluated in terms of the

gradients of the macroscopic properties evaluated by the •I-) iterate.

The integral equation for f in terms of the normalized coordinates

becomes

5) ) 4 r TJl v "0

tAere -VAL)) 41

10
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When this is integrated by parts once it becomes

;f~dczc) -e(fA*.) ~ -~

-8tL- L A,4;1 401'
1.f F'dýb 154

, v1)o

= +I) -

.t:
+bf,

fDY

~·$P ~C5eI~

v'<qbc

When any velocity moment is calculated to determine the macroscopic pro-

perties the integration of the first term contributes the previous iterate

automatically because of the choice of EC#). The correction to this
term is supplied by a boundary term from each side and an integral of the

property gradients times the T71(0)(i.e. rZ, )r)/x, ) ) functions.
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Thus, the first iterate on the density becomes
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The first iterate on the temperature can be obtained also by a similar pro-

cedure and can be expressed as follows.
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Vt~
The heat flux can be evaluated directly from the original integral

equation because the v' term in the numerator of the weighing function

cancels out the V~, in the denominator of the equation. The expression

for the heat flux, therefore, becomes
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The.M) appearing in the above expressions can be evaluated

analytically for this first iterate. A.j) is defined as

2-
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and YV(5) can be taken as )) ?M5h) where IP()is a constant and

?O( ) is the zeroth iterate solution for the density. The fact that the

Lester Lees' moment method solution gives a constant pressure allows us

to evaluate this immediately in terms of the temperature. This gives the

equation

This in turn can be easily integrated for the case of Maxwellian particles as

and

thus

or

With the above relations, it is now possible to evaluate the first

iterate by numerical integrations. Successive iterations can be continued

by use of the same basic integral relation, but the fact that the pressure

will not in general be a constant will cause some modification in the evalua-

tion of the asymmetric term in the collision model, and of course the.(51)

will not in general be available analytically.
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As an example of the effect of the first iteration on Lees' moment

method solution the temperature profile was calculated for the case of

Knudsen number equal to 8/15. The results are plotted in Fig. VII-1. It

can be immediately seen that the first iteration introduces a boundary " layer

type" effect near the boundaries and reduces the actual temperature jump

at the walls. Both these effects are in the right direction as on physical

grounds it is easy to see that near the walls the effect of the walls is going

to produce a kind of boundary layer resulting from the -eP U-5 Pg
scattering of the particles that came originally from the wall. Likewise,

it is known that Lees' moment method overestimates the slip at a
23wall in the linearized Couette flow problem and thus, it is reason-

able to assume that it also overestimates the temperature jump in the heat

transfer problem. The results in Fig. VII-1 therefore, show that the iteration

process is at least tending towards results that are physically more realistic

than the original trial function. A real test of the convergence of the method

in this case, however, will require further iteration as well as calculations

in other Knudsen number ranges. The preliminary results indicated here,

certainly allows us to have high hopes for the quick convergence of the re-

sults and their physical validity.
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NOMENCLATURE

bThe plate separation

C, Constant in correction to Krook' s model to give
proper continuum limit

The distribution function

,r• (K) Function defined and evaluated in Appendix E

SK Parameter (which is 15/8 times the Knudson num-
ber) appearing in Lester Lees' moment method solution.

Thermal conductivity

p PThe pressure of the gas

The heat flux between the plates

The gas constant

1 The temperature of the gas

17 Temperature normalized by the hot wall temperature

V Velocity vector of a particle

v V V 3They , and 7 components of V respectively

Coordinate normal to the plates and having its origin
halfway between them

Normalized coordinate ( I/b )

o The accomodation coefficient

Normalized temperature difference

- The scattering function designating the density of
particles with velocity that have just suffered a
collision at

1
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WL
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L

Integral of collision frequency overp (defined
on page )

The mean free path

The collision frequency of particles with velocity
V at position b

A function defined as x?, (, ) and tab-
ulated in Appendix E

Constant appearing in Lester Lees' moment method
solution (defines the normalized temperature at J= 0)

Heat flux divided by the value at continuum conditions

Subscripts

Designates conditions based on the hot wall temperature

Designates conditions based on the cold wall temperature

Designates the continuum asymptote

Designates the half of velocity space where the com-
ponent 1 is positive

Designates the half of velocity space where the 0 com-
ponent of 7 is negative

Superscripts

Designates the zeroth iterate, i.e., Lester Lees'
moment method solution

Designates the first iteration solution

I
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Figure VII- 1. Temperature profile between parallel plates
AT/T = 3/4 and Xkw/b = 8/15

117



r

This page is blank

118



VIII. HEAT TRANSFER EXPERIMENT

Because of the great scarcity of available experimental information

in the transition range of Knudsen numbers even very simple experiments

that only determine gross effects in this range are of some value.. One

experiment that, at least in principle, can be performed with very simple

apparatus in the measurement of heat flux between two large parallel plates,

separated by a gap containing a gas, as a function of the pressure of the

gas. Though this will not answer such important questions as what is the

temperature jump at the walls or how does the temperature profile change

with the pressure,it will give an indication of the variation of the heat flux

as a function of Knudsen number and thus serve, at least, as a partial

reference for comparison of different theoretical methods.

The experiment as such is, of course, not new as it has been done

as long ago as 1898 by Von Smoluchowski36 and more recently with a
37slightly modified geometry by Wiedman and Trumpler in connection

with determination of accomodation coefficients. The results up to the

present, however, are by no means conclusive, and certainly more

work remains to be done.

Of course, very similar measurements can be obtained with the

different geometry of a wire inside a cylinder. This geometry allows

great simplicity in the apparatus as the central wire acts as the heater

and the measuring instrument as well as one of the surfaces between which

the heat flux is taking place. Unfortunately, there are several disadvantages

to this experiment. First of all there are really two Knudsen numbers in
this problem based on the radii of the inner and outer cylinder. This

complicates the interpretation of the results as the mode of the heat flux

may actually be both free molecular near the central wire and continuum

near the outer cylinder at a single level of the pressure. Secondly, besides

the radiation transfer and fringe effects which will appear in any heat
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transfer problem, this geometry includes the possibility of convective

effects which unlike the other two is pressure dependent and thus more

difficult to isolate. The parallel plate geometry introduces neither of

these difficulties. Convection can be entirely eliminated in the central

portion between the plates by having the hotter plate on top and thus in-

ducing a very stable density gradient. The fact that there is only one

physical dimension of importance, provided the aspect ratio (plate

dimension divided by the plate separation) is high, means that only one

Knudsen number is necessary to describe the physical situation. This,
in turn, aids in the interpretation of results by guaranteeing that for any

one Knudsen number the mode of heat flux is the same everywhere be-

tween the two plates.

The experimental apparatus consists of two polished and gold

plated copper plates each 3/4 inches thick and 10 inches in diameter

separated by a gap of .034 inches. The separation is maintained by 3

quartz tubes of 2mm I.D. and 4mm O.D. and about 1/2 long. These

are mounted on micrometer screws so as to allow adjustment of plate

separation between zero and 1/4 inch. Into the top side of the top

copper plate a teflon insulated nichrome wire is wound so as to act

as a heating coil. On top of this is a 5/8 inch thick teflon plate with

an identical heating coil on the other side and a stainless steel plate

on top of that. The teflon plate and second heating coil are included

in order to have a means 'of nulling the thermal gradient across the

teflon and thus guaranteeing that all the power going into the lower heat-

ing coil is transmitted as heat flux across the gap between the plates.

The bottom plate is mounted on 4 copper coils potted together. These

coils carry cold methanol and are capable of maintaining the bottom

plate at any temperature down to -90*F with the existing pump and

heat exchanger. A sketch of the two plates in assembled position is
shown in Fig. VIII-1.

The plates as described above are mounted on a stainless steel

plate with electrical feed throughs. A bell jar with an inlet for feeding
in helium at the top is placed on top of the stainless steel plate. The

vacuum equipment consists of a two inch diffusion pump and a backing
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pump, as well as some vacuum tanks, to increase the volume and thus

decrease the percentage leakage of air into the system. The instrumen-

tation consists of two thermocouples mounted in each copper plate, one

on each side of the teflon plate and one on the top stainless steel plate.

The pressure measurements are taken with a McLeod gage, with a tube

coming through the-bottom plate, for pressures below a millimeter, and

with a Haas manometer for pressures above a millimeter. The heat flux

is read directly on a wattmeter attached to the line going into the coil on

top of the copper plate. A schematic diagram of the apparatus and asso-

ciated equipment is shown in Fig. VIII-Z.

After many months of correcting trivial details and making the

vacuum equipment tight, some preliminary data was obtained with helium.

It was found that takina the bottom Dlate to temperatures lower than about

-30 *F resulted in leaks around the seals in the stainless steel base and

thus operations were restricted to temperatures above this level. A series

of 14 data points were taken at operating conditions of about 100"F temper-

ature difference and pressures from .02 microns to 100 millimeters. The

raw data is shown in Table VIII-1 and the heat flux normalized to a 100 *F

temperature difference is plotted in Fig. VIII-3 as a function of pressure.

The reason only 14 points were obtained and the fact that the temperature

difference was not always exactly maintained at the same level is a result
,~L--C "-I , -. .. .1,I L--- -&2 . . .. --L __& ..... 1 1" -1 ___-&l~_ a._ 1__" ... L __ _1_ a_ __" _

of LICe very long Lime conSLant associated win taking of each Qat;a point.
It was found that the heat flux for pressures below about a micron

is constant and independent of the pressure. This value must, therefore,

correspond to the sum of the radiation heat flux and the end losses through

the quartz tubes. To get the conduction heat flux it is only necessary to

subtract this from the total heat flux at any pressure. The fact that the

temperature difference was not always the same means that a different

amount should be subtracted at each point to normalize properly. Since

no information is available as to the relative ratio of radiation and quartz

tube conduction in this asymptotic heat flux, it was normalized linearly

with the temperature difference to facillitate calculation. This is reasonable
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as the radiation heat flux can be written as proportional to

and in this experiment the variation in the quantity

was well below the experimental accuracy of the pressure measurments.

When this asymptotic heat flux is subtracted the remaining con-

duction heat flux varies linearly with pressure for pressures below 100

microns. This means that in this range the heat flux is definitely free

molecular. Since the formula for free molecular heat flux is well known

as a function of accomodation coefficient, we can determine an average

accomodation coefficient for the two walls by merely plugging our exper-

imentally determined slope of dp into the theoretical

formula and determining the average accomodation coefficient. The re-

sulting value of accomodation coefficient a( = .45b is at the high end of experi-
38mental scatter of other investigators . Though this does not give any

information as to its correctness, it probably does mean that the equipment
used in this experiment was relatively dirty. It also means that for this

particular apparatus the accomodation coefficient is probably correct.

Once the accomodation coefficient is available it is possible to

compare the experimental results to some theoretical results for the same

accomodation coefficient. A plot of heat flux normalized by the continuum

value versus Knudsen number is shown in Fig. VIII-4. The theoretical re-

sults are those obtained by Lees' moment method with four moment

equations. The results shown are for the constant property case as for this

value of P7" E .19 there is no appreciable difference between this
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and the Maxwellian molecule case. The experimental results are also

shown on this graph. The Knudsen number for the theoretical results is

calculated by making sure that in the free molecular limit the experi-

mental points agree with theory. This is necessary as the inaccuracies

in the measurement of plate separation, and the lack of clarity as to what

properties the Knudsen number should be based on are such as to make

comparison between theory and experiment unfeasible unless some ref-

erence point is fixed.

As could be expected, the experiments generally follow the basic

pattern of this simple theory. The accuracy of the experiments is certainly

not sufficient to compare different theoretical results purely on the basis

of available data. The experiment does, however, give some information

as to the accomodation coefficient and also the general behavior between

free molecular and continuum conditions. It verifies, quite conclusively,

the predictions of almost any theory that deviation from the asymptotes of

free molecular and continuum occurs over a relatively narrow range of

only two orders of magnitude of Knudsen number. The level where this

transition occurs is, of course, strongly dependent on the accomodation

coefficient. This, in turn, means that probably the single most important

piece of information necessary for proper prediction of results in the

transition regime is the knowledge of the accomodation coefficient, which

is certainly imperfect at present. Of course, more basic data that would

allow prediction of accomodation coefficients theoretically is even more

desirable and hopefully will some day be available.

The data, so far obtained, is certainly neither extensive enough

nor accurate enough to draw any far reaching conclusions. It does

indicate, however, that the apparatus can be used for measurements of

heat flux over a range wide enough to include both limiting conditions on

Knudsen number without excessively high radiation and end effects.
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TABLE I

Heat Transfer Data

p y TW2 W1 Tss w
Millimeters Watts F F F F

-5
2 x 10 2.5 -23.0 66.0 65.0 89.0

.02075 7.0 -24.9 63.8 63.2 88.7

.04500 13.0 -23.9 74.0 74.0 97.9

.1000 22.5 -23.6 62.0 62.5 85.6

. 2050 50.0 -22.7 77.5 77.0 100.2

.3870 83.5 -24.4 61.1 60.8 85.5

. 6150 145.0 -22.6 79.8 80.0 102.4

1.024 177.0 -23.9 65.9 65.5 89.8

1.940 265.0 -23.3 69.8 69.7 93.1

3.780 390.0 -21.0 76.5 76.5 97.5

7.470 464.0 -19.5 72,0 72.0 91.5

14.85 500.0 -21.9 72.2 72.1 94.1

50. 10 565.0 -23.7 77.2 77.5 100.9

100.0 520.0 -23.0 70.0 70.5 93.0

p Pressure in gap in millimeters of mercury

qy Total heat flux in watts

T Lower plate temperature in *Fw2
T Upper plate temperature in*FW1
T Top stainless steel cover temperature in 'F

AT Temperature difference in *Fw
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IX. CONCLUSIONS

The stated objective of this thesis is the analysis and description

of physical phenomena in the transition between free molecular and

continuum conditions. The approach used has been to transform the

Boltzmann equation into a purely integral form and substitute simplified

models for the collision term. This description has the advantage of

showing the effects of boundaries explicitly and is amenable to numerical

iteration procedures.

The method has been applied to three different types of problems.

Only relatively preliminary results have been obtained in all three as the

excessive complication in the numerical computations coupled with a

limited availability of computer time prevented extensive study of any

individual problem. Furthermore, it was felt more desirable to carry

the method far enough in several problems to allow numerical computation,

but to avoid getting involved in the many technical refinements of numerical

techniques that are necessary in an accurate numerical solution. These

preliminary results,, however, are certainly sufficient to indicate that the

integral equation formulation of kinetic theory can be of some use in the

transition regime, both quantitatively and as an aid to intuition.

The results shown at the end of Section V for the expanding sphere

problem cannot be considered final as the accuracy of the numerical tech-

niques has not been sufficiently well analysed. Though numerical refinements

could undoubtedly improve the accuracy and make all the macroscopic

quantities well behaved, the available results are sufficient to show a

reasonable behavior of the density disturbance propagation. This is

immediately apparent from a glance at the density profiles shown in

Figs. V-l through V-4. These. figures also show that for the moderate

pressure ratio chosen and an initial diameter of the order of the outside

mean free path the solution lies much closer to the collisionless case
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than to the inviscid results. Though there is an apparent tendency for

the solution to get closer to the inviscid results, the effects of just

simple collisionless "kinematic diffusion" overpower this effect and drive

the gas toward uniform properties in a time much shorter than the time

required to approach the inviscid profile. Figures V-5 through V-7

indicate the fact that diffusion of the two species far from being a small

effect is the dominant one for the conditions chosen. The much higher

mean speed of the helium particles directly accounts for the much quicker

diffusion of helium into the air than vice versa. This further suggests

that extreme care should be used in interpreting results as collisionless

motion of two components with different "diffusion" rates represented by

their different mean speeds can have results that at first glance appear

similar to collision dominated effects. This in interpreting the results

shown in Figs. V-I through V-3 one realizes that only part of the density

overshoot is a result of collisions while a portion of it is only the effect

of the different mean speeds of the two species. The results of the

present calculation are, however, sufficient to indicate the effects of

collisions and thus show usefulness of the method for solving problems

between the collisionless and collision-dominated regimes.

The results for the normal shock structure shown in Fig. 6-1 are

not complete because they were carried out by hand computation. The

fact that the I S(A,&k ) s5 needed in the calculations are calculated

with doubtful accuracy would make any more extensive calculations of

dubious value. The results available are certainly sufficient, however, to

show some power of the method in tending toward reasonable answers in

two iterations from the very unrealistic zero shock thickness assumption.

Further iteration poses no new problems and with electronic computers

should be easily obtainable provided an accurate technique for calculating

the (j %( ) ) 5 is devised. Though a better alternative seems to be to
iterate from a more reasonable initial trial function and thus relax the

convergence requirements of the method.

The dependence of solutions "on integrals over the distance normal-

ized by the local mean free path further justifies making general statements
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as to the asymmetry of the shock structure as well as suggesting a different

definition of shock thickness. Because of the actual asymmetric shaDe of

the shock structure the usual definition based on the maximum slope has

a dubious meaning. A more meaningful definition would seem to be

based on the integral

carried out between limits where the properties are a certain fixed

percentage away from the asymptotes.

The results obtained for the heat transfer between parallel plates

by a single iteration are sufficient to justify confidence in the method though

certainly additional results are needed before any conclusive statements

can be made. The deviation from Lees' method occurs principally

near the walls where that method is known to be least accurate. The

resulting reduction in the actual temperature jump at the wall is physically

justifiable because of the boundary layer type influence of the particles

coming from the walls, but the inability of ever actually measuring the
temperature of the gas at a wall casts doubt as to whether the temperature

jump obtained by extrapolation of the temperature gradient to the wall is
not the more easily verifiable quantity. Whatever the case, however, we

can certainly say that the integral equation solution appears capable of

adequately describing the physical situation.

The I;2 () functions calculated to a relatively good accuracy in

Appendix E will certainly arise in other problems and are thus certainly

of general usefulness. The fact that the accuracy can be improved to any

order desired by just numerical computations from the quoted results,

makes this a feasible method for more extensive tabulations. The avail-
ability of analytic expressions for the behavior of the functions throughout
the range allows making certain statements that have physical significance.

The e [ -)• behavior for large J indicates that the influence of the
wall or any distrubance on a macroscopic property is felt within a distance

where 3 ) is roughly 4 or 5. The fact that ; can be related to
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an integral of

where c) is the local mean free path gives us a sort of "sphere of

influence" criterion for kinetic theory phenomena. Furthermore, the

ratio between 7Tz and "o which is proportional to indicates again

that energy disturbances have a larger "sphere of influence" than density

disturbances.

The experimental results obtained certainly cannot be used as a

conclusive proof of validity of any single theory, but in this field con-

clusive results are not yet available for any problem. The fact that the

accomodation coefficient measured with the apparatus lies at the high end

of the experimental scatter of other investigators is not too surprising,

as no special care was taken to chemically clean or treat the surfaces.

The resultant possibility of adsorbed material on the surfaces would

certainly make the accomodation coefficient tend to be higher than for clean

surfaces. As a matter of fact, the value of .455 obtained from the experi-

ment is close to the value of .500 predicted by the Baule 3 4 theory of

accomodation of helium with adsorbed helium at the wall. Though this

theory is not, in general, too accurate it does indicate the fact that walls

with adsorbed layers of the same material as is being accomodated tend

to increase the accomodation coefficient by as much as an order of mag-

nitude over the "clean" wall result.

The fact that all the experimental points in the transition regime

tend to lie above the Lees' moment method solution, suggests that

this solution may underestimate the heat flux in this region. The fact that

the difference is only of the order of 10 percent, which is also the order

of accuracy of the measurements, precludes making a definitive judgement

on this or on the relative merits of any other theory.

The theoretical results obtained, at least tentatively, indicate

that the integral equation formulation of kinetic theory can have great power

in the analysis and solution of problems in the transition range of Knudsen

n mbersPC T Mhe e M e i e tl eM lt- btai -C t il fl
. p r n r su s o ne are cer a n

y o some va ue

in defining the behavior of heat transfer between free molecular and
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continuum conditions and also give the helium accomodation coefficient ob-

tained by a method different from that usually used. A large amount of

additional work, however, remains in both the theoretical and experimen-

tal parts before the implications of the work started are fully determined.

Aside from the general improvement in the numerical techniques

that should be done to better utilize the integral equation formulation, and

the more detail calculation of the /" ('/, w•) functions to obtain their

analytic properties, the imperfect conservation of mass, momentum and

energy that occurs in all the problems should be investigated. In the

initial value problem the accuracy can be increased relatively simply by

not only solving the problem through the step by step recursion relation,

but upon this initial solution iterating in the actual integral equation until

the successive iterations are the same. In the steady state problems the

fact that the model uses the previous iterate values of the macroscopic

variables and thus does not conserve the collision invariants exactly,

could cause problems in the convergence of the results and should be in-

vestigated more fully. The fact, however, that in the limit when the

successive iterations are the same the conservation laws are satisfied

exactly, indicates that probably when the initial trial function is not too

incorrect the inaccuracies in the conservation laws should be no more

serious than the other numerical computation problems.

The experimental apparatus designed and built for this thesis should

certainly be used for additional measurements on helium as well as other

gases. Some modifications in the apparatus should also allow increasing

the accuracy of the results as well as possibly taking some temperature

profile data. The apparatus as such can also be used for more extensive

measurements of accomodation coefficients by a technique different from

the usual "hot wire in a cylinder" method. The relatively low level of

radiation heat flux and the ability to adjust the gap size should allow

more accurate measurements than with the standard method. The fact

that a whole series of points can be taken in the free molecular region

further allows computing the accomodation coefficient by taking the slope

of the heat flux with respect to pressure and thus avoiding the inherently

inaccurate procedure in subtracting the radiation heat flux from the total.
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APPENDIX A

BOUNDARY CONDITIONS IN INTEGRAL EQUATION

The boundary conditions in the integral equation consist of

two terms

I

The solution desired is for the volume 7 bounded by the surface .

With a little geometry it is easy to show that both terms do not contribute

simultaneously. Putting the coordinate system at an arbitrary point 0
within V we get the following geometry

$
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Now we notice that both boundary terms contain delta functions which

contribute only when the argument is zero. Thus, the second term can

contribute only if i.w -t lies within the volume V . When this is

true, however, =o--"-t-) can only lie on a line between -! and _-"

for positive values of t less than " . Thus, it cannot be on the boundary

and the argument of the delta function for any S on the boundary and

time to between zero and t cannot be zero. The converse can easily

be seen to be true, for when the argument of the delta function is zero

for a positive value of t , than -- talways lies outside the volume V

The case of - • lying on the surface creates problems because both

delta functions have their arguments zero at the edges of volumes of

integration. In this case either term can be taken, as physically there

is no difference between them. Mathematically this can be accomplished

by considering "t7 to go from 1 to t, thus excluding the t="Ocase from

the first term. This was actually assumed in the original derivation

anyway as the Greent s function contained a term U..(,o) which is non-zero

only for "toO.

It is immediately obvious that the second term contribution, when

it exists, will be simply

This is purely a result of integrating the delta function over .

To first term contribution can be evaluated by considering a coor-

dinate system of which two coordinates lie within the surface S and the

third coordinate is Ir,*O- . This means that this term will only

contribute for the case when t6=j where 's is determined by the equation.

where rs is the intersection of the line from o" in the negative Ir direc-

tion with the surface $ . The result becomes

1-6 -A tt)~Ytl
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APPENDIX

COLLISION MODEL

We discuss here

represented as

a class of collision models that can be

whereV is the average collision frequency and 6 ) is determined

in such a way as to satisfy the conservation equations, as well as give

quantitatively correct transport coefficients in the continuum limit. The

E chosen is, therefore, a local Maxwellian multiplied by a series

f.(I+ * (s-1)

where all the Oiare such as to give zero contribution

momentum and energy integrals.

fffl $W0 t) 0 --1 -

to the density,

(8-2)

%v I -e r e

) ) LP1 (8-3)
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Furthermore, A alone guarantees proper transport properties to

first order in the Chapman-Enskog expansion in the limit while ~

plus Oz give proper limits to second order, etc.

The method of determining the functions A consists of sub-

stituting this form into the general integral equation and then integrating

by parts, identifying the various terms in the resulting expansion in

inverse collision frequency with the respective terms in the

Chapman-Enskog expansion, and choosing the ) to give the same answer

to that order in ) . The general integral equation can be used with the

boundary terms omitted as the expansion from continuum is only valid

at locations a sufficient distance away from the boundaries to make

their effect negligible, i.e., several mean free paths.

The equation, therefore, becomes

where

and

142



The contribution from J--=t is left out because the Chapman-Enskog

expansion also assumes that time variations are small for times of the

order of a mean free time between collisions. This means only solu-

tions for large times compared to the mean free time are desired. This

makes the initial value give zero contribution because of the exponential

Before trying to evaluate the integral it is advisable to define the

term

(13-7)

This term can, in turn, be related to the collision frequency through

the definitions of 420(t

(6-8)
O

and

T•his gives the expression for *$)

(8-9)

-t j, (+-I-*J~tD
p-i'
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From this it is immediately apparent that

and the limits +,- and- = t

~ I/ O0 respectively.
take the following form

This makes the equation for -)

Oýr -"1)

This equation can be immediately evaluated by successive

integrations by parts.

Id&I~b

(8-I2)

become o};i and

', IA) +4

+
(f ý - r
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This can now be transformed back to the physical variables 7/ t

5~t~)

and with the substitution

low'

ECL~7~yU)

-13)

15 ~L-,2;

I>t:ef-lf p-i-4)

The meaning of (e,(E .t;-o) 1, here is actually

+9 ~STt
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as it is the total derivative with respect to t o

It is now possible to determine the ,functions from this equation

up to any order 1% . This is done in a step by step process. First of all

the E up to the first order in inverse collision frequency is substituted

into the equation and only terms up to this order are retained. This gives

the

corresponds to the 2?operator in the Chapman-Enskog expansion 1

Thus, with the help of the conservation equations (to zeroth order in 1/1))
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where

f is the density

L, is the macroscopic velocity

p is the pressure

" is the temperature

q is the heat flux

k is the Boltzmann constant

'm is the molecular mass

and the state equation

k= kT

this term can be reduced to

'fo =-9-44) 7. r

where 3 is the unit tensor and the double dot product designates A; Bi"'
summed over all t and in the summation notation.

These terms are identical to those appearing on the right hand

side of the Chapman-Enskog equation for f, , the first order solution.

Thus, they satisfy all the same requirements, i.e., their velocity

moments over mass, momentum and energy are zero and the -/-

contributes only to the heat flux while V. contributes only to the

pressure tensor. The evaluation of these quantities using our expression
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for jwith #/•') assumed zero give the resulting

transport coefficients with a correct parametric dependence but the

wrong numerical factor. From this it is obvious that (-/

should be chosen in such a way that the correct numerical coefficients

are obtained for the thermal conductivity and viscosity independently.

This condition is satisfied when t r•/ ) takes the form

+-2

where C, and CL are determined by insisting that the transport coefficients

are correct when evaluated by using the distribution function evaluated

to first order in k) .
This determines the coefficients C, and CL as

J L-C 0<6zr

and

where o( varies from zero to .026 and E varies from zero to .016

depending on the collision model.
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The complete scattering function in the collision model takes

the form

I

where the constants 4 and F and the variable) are determined

for the collision repulsion law used. For Maxwellian (inverse fifth

power repulsion) molecules o( and E. are both zero and •0•, t) is

proportional to the density alone, while for hard sphere molecules .(
and I take on their maximum values of .026 and .016 respectively while

the collision frequency ~ t) is proportional to the density times the

square root of the temperature.

The next order function can be obtained by straight forward exten-

sion of the method. Terms of order L are retained in the relation

between }{ and .- ' . The conservation equations can

now be used up to first order in which can be considered the solution

for containing terms up to . Of course, a whole series of terms

will arise just like in the Chapman-Enskog expansion but _can, in

principle, be evaluated by insisting that the coefficients in front of the
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terms in the heat flux vector and pressure tensor are correct. The

extension is not, however, carried out because there is doubt as to

the theoretical validity of the Chapman-Enskog expansion beyond the

first term, as well as complete lack of experimental means of deter-

mining any of the coefficients in the higher order terms.

50O
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APPENDIX C

EVALUATION OF r (k, u) FUNCTIONS IN SOLVING

KINETIC THEORY PROBLEMS

In solving kinetic theory problems by integral iteration a par-

ticular form of an integral repeatedly appears. It is, therefore,

advisable to define and tabulate this function as well as discover some

of its properties. The general function is defined as

where

For the special case ýa this function can be evaluated in terms of

error functions, also in the special case of .. 7=O it can be expanded

for smallIand integrated by the method of steepest descents for large/.
This is done in Appendix E in connection with the heat transfer problem.

Before proceeding to determine the functions (r,(, ,) , however,

we can save ourselves a lot of work by determining analytically certain

properties and relations that these functions satisfy. By integrating by
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parts in velocity space and juggling terms around we can get the

r elation

A-TI

77 AI& - J

4 rl~~Ter r (C. .)

which gives us the third order recursion relation for different orders ?.

Z. (C-s)2=

This means that once the PI functions are known for three orders ?%,

all others can be determined frorm an algebraic expression.

If we try to integrate the " function over we quickly realize

tl:.: -rtrain integral rela cist i bet een 15 for different .

P SL

Ir '% Idfor
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Integration over ) just puts another 0r into the numerator raising

the value of - by one. The following integral relations are, therefore,

true

and

Also the inverse differential relation is satisfied

The actual evaluation of the functions can be carried out by

expansions in powers of f for small K and by method of steepest

decent for large K . The expansion, however, still requires evaluating

error function type integrals and is very messy. Also, the region of

convergence is very much dependent on the value of 1-. The method of

steepest descents requires solving a cubic equation and is again only

valid for certain regions of 4. for anything but extremely large o . To

get a first order estimate of the behavior of the functions it was, therefore,

decided to evaluate them by numerical integrations.

The numerical integrations were done on a small slow computer

and were thus carried out by only a sixth order Legendre-Gauss quad-

rature. The results were analysed for accuracy by comparing the
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r

functions obtained with the exact values for the case of k=-- . In all
cases the error was less than a percent. An additional check was

carried out for the case .4=0 by comparing the functions with those

obtained by the more exact method of Appendix E. Here again the

error was under one percent.

The numerical integration scheme consisted of replacing the

infinite integration by the integral

i-gF~v) (+
0

This allowed evaluation by the Legendre-Gauss quadrature

4) +H I P.

where and ' are the ordinates and weighting factors for the
0 33sixth order Legendre-Gauss quadrature

The results for 1 7{1,) , } /JI4,) and / •J

are shown in tables I through 10. The normalized forms IQO~ )/M 4),
1/f7Cr)//7(o• )  and C9.)// (0o4) are plotted in figures L'I

through C-) , so as to allow determination of the effect of be.- on the
behavior of the functions. The fact that the decay to zero is much quicker
for negative 14, than for positive ones is quite evident, and is certainly

consistent with the physical fact that effects are felt farther downstream
than upstream.
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APPENDIX

SOLUTION OF THE HEAT TRANSFER BETWEEN PARALLEL PLATES

PROBLEM BY LESTER LEES' MOMENT METHOD

The geometry of the problem consists of

TrW,.

7;r,

where T7- and 7~. are the wall temperatures and b is the plate

separation.

Lester Lees' moment method suggests using an assumed distri-

bution function of the form

71Le4,
277 R7?- '3/ ··rT~~- rt(R1r1
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From this distribution function it is possible to evaluate

the relationship between the physical properties which are integrals

over all velocity space and the assumed parameters T)/7,1r  7 *"

:1C~) - 7tely)(P -2

Te- p e f-p.+r&,e

Ot 
2V

)5j41 *fv t fciy&dvd4vk

(D-3)f~ld)7;(,) + nbT)
- --- --- --W

PO) =

V = macroscopic velocity in direction = ,•• , -71
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The physical equations for this geometry and restraints are

V =0

P9 y= constant

r = 0 where

A4 3 7.

is the heat flux

is the transport
of the heat flux

The first two equations become

(I?-?)
These can be used to eliminate ?l• and 21•

AP 
(A S7 Cp-s)

The second two equations become the following when the form of f(0 )
assumed is used

T I/
~Rvv~

(p-u)(;P-1o)
(P -11

-7
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Substitution of expressions for 17 and ?7yields

/7L- P-rr 0

SscL
~~#5 L*4AU

where his the conductivity h - )f;,/ • R
can be reduced by juggling and using Eq. (D-12)

-j _. .

. Equation (D-13)

to this form

t/h (P -/4)

Substitution for ?7 and4' in the expression for T also

shows that

(P -Fs)

The two pertinent equations can now be solved. The difference

from the continuum equations appears only in the boundary conditions

as now these are imposed on T7 and T not just onT7. Before solving

172

CP -I?.)

r7



these equations it is desirable to non-dimensionalize

jj - .-w~~M z hw, (TW- -T

/6 ?b

!·- ,,

where is the mean free path for Maxwell particles at wall 1.

this notation the equations become

75re1 -- Yz =
P •L-- ••

(w W

cGL e~s

Tw, k,4
WpbJ 1

( I-IY1

(P/,e)
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For Maxwellian particles k -- kv iP & but keeping

the problem more general even if not rigorously consistent let us first

assume that k w.= I ( ,I • ) where -4 can be made to

represent the real variation over a certain range of temperatures. For

this assumption the general solution looks as follows

Thus

r· _ " ?"'Ir _. "3r .I . . .

These can be solved for g and 1Lquite easily, but the

application of boundary conditions to determine the undetermined

constants cannot, in general, be carried out for both arbitrary "1 and

arbitrary accomodation coefficient. These constants are 0 and -P

and it is easily seen that a solution for arbitrary '? may involve solving

higher order equations.

As a first attempt one can assume that the accomodation

coefficient is unity. This allows putting the boundary conditions in directly:

and (p-3)02.+) dr
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Thus

Ll -' 3
( -2,)

~-8SY;B~ rf) a'Y22tlua

The three cases that can be considered analytically are 71Z 0, 12., "•.
These correspond to the assumptions of constant property case, hard

sphere case, and Maxwellian particle case respectively. The - = (

solution is very easy

/ fy, .2

/ +· X(/I7+-)

H ~ 2.

(P-2d)
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Transforming this back to the physical quantities

= K-74w, t

4- LEA
I -t·I--L ) - -r L

-'W4 a

The next case we can consider is the case 'g-- I and accomodation

coefficient of unity. This is the case that is consistant with the equa-

tions used in Lester Lees' mo:ment method and represents Maxwellian

particles. The equations for the boundary conditions are

+ n'a- + -"PxJl- fpl7

-~7 - 2-3K)(Lg±'), + 2 ,- o
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This appears as a very complicated mess and also has an

ambiguity in sign. It can be shown, however, that for ) 4() this

reduces to a form similar to that forn'=0 and also the ambiguity is

dissolved as only the minus sign can have physical significance

(kp- 2L

This can be seen to approach the solution for "-- as where

the fact that using the average conductivity brings in the term - /.

and using the average Knudson number brings in the term- )

instead of . I

Scan also be found to be
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If one realizes that is always less than one and thus the parameter

2-t 2 i+-)

is also less than unity one can carry the expansion further.

Defining

1X( H (
(p -. a)

the expression takes the form

L)

For -3- this can be put in

order of accuracy

+ I-
a IH/#l(

*r

i
+ J+
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closed form to that

(P-31)
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The important results needed for future use are, however, contained

in the expression that

The solution for ??-ne can be seen to be even more complicated
as the resulting equation for the boundary conditions is a cubic, with

all that this implies in complication. This solution is, therefore, not

carried out in detail, though if need be this can be done in a straight-

forward& manner.

A more interesting phenomenon to investigate is the influence

of thermal accomodation at the walls. This is expressible in the follow-

ing way

T-, (-i=e)

S--76)

TWI - WC•)

In the non-dimensionalized coordinates used so far, these become:

C1, - J) a

Calling 611(-4T) B9-..), and I respectively and
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191. and 6t, respectively one obtains the9,1J) and ,
relations.

Using the relation , - 4 = V-p at wall (1) and (2) one gets

The solutions of these equations are

// = -I+ OW?)ýI-4(

(p-40o)

and the previous equations become

= 7+/

-4Q)

1 9Z-L (Y P K)]
t- t/y A

1.
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- 92 Cl-~)= ) ,) ý

.oild

+ (/-A)

M -- 3tlý, -

_ -+/

(P -31)

0- (-o) IaK_

LL9,(191 -YMo 1,1_



It can be seen that the solution is going to be difficult even for the

-=7O case unless some assumption can be made to eliminate the

square root term. The general equations for V" and P look as follows:

[ ,1 (-.j(- - -+

(I--a)

for 1-- the equation for P becomes

~u~- I-~Lk(ZY-""k

+

This cannot be solved directly unless one assumes that

o'~. /
<<KI

In this case

II-- 2~dK(uf-'r
Thus

(fit- )
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Since the contribution of the term becomes important only for A7
large, let us investigate the magnitude of this term for .jf--

Thus, for reasonable values of for which the

7t -0 case can be expected to be valid

Thus, even for 4 << .

1- 0 < < 38,6

For the same but K.I (right on the transition range)

]-a ) 5--I

One can thus conclude that for - (which is necessary to

allow assumption of ~r=D ) the approximation holds for all values of

o, and thus

/9-C 04 (D -17)
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The situation for -i / is not quite as simple,

assumption of

but under a similar

'a!(, <

The equation for W becomes:

v .0 (1
-;-ct~ rr,,

CD-4-1)

The solution of this equation is

11) - F
T -0 92 Y -dI

P1
Which for

a ~4B÷ )(i-
oc( / t- ULK(+I,-~97 1

becomes

V
Lf'- _______t ~5r

I, -'

(D-4 )

(P -5-)

A

N v<9 z]

B-:jd

21~-~-4



Thus, again, con

that the /- 7/-L

and the 2- 3/Z

verging to the answer for ?i• . provided one realizes

term only normalizes V by multiplying by k/k•

term only redefines the Knudson number in terms of

averaged conditions based on .-T.

Carrying the expansion further just as in the n=. case one

gets the following

lkl
9-R,

I -' IKr-)4 (9

.-3
(P-1/)

where

LT;-J

and

This again reduces to a closed form solution

y/ .=
/ P/1 ?~r -

I-i-
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for -«

This can be seen to converge to the proper answers for 41

and also for o•o 1

The case for •--• will, of course, be more complicated

because the equation to be solved will be a cubic. It can be shown,

however, that a solution can be found for the case of

just as in the '-- , and ?I'-/ cases.

A plot of heat flux versus Knudson number for both the constant

property and Maxwellian case is shown in Fig. D-1. It can be seen

that all answers converge to the same point (because of the normaliza-

tion) in the continuum while their slopes always become the same in

the free molecular limit. It can further be seen that only between a

Knudson number of .05 and 10 is there any measurable deviation from

the asymptotic solutions.
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APPENDIX E

EVALUATION OF THE I (k) FUNCTIONS

In the application of the integral-iteration scheme to the

solution of transition regime heat transfer problems a certain

type of integral continually reappears. It is, therefore, advisable

to analyse the functions defined by this type of integral and if they

are not representable by known functions tabulate them. The integral

is of the form

The goal is to determine as many analytic properties of the set of

functions ,• and then find a method of evaluating them for all

X and .
Integration by parts in velocity space yields the immediate result

"A z ftxpVAj"

2/ (E-
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which give the recursion relation

IC;KW- n-
P 2 (E-3)

thus, requiring the determination of only three -lTV in order to

determine all the others through algebraic relations.

Integrations over K yield the useful results

'PI

KTA- Oe

and

I4 (0) can be easily determined as these definite integrals are
well known for positive VL.

-7, v -Je Lr7%d vd

,+Oe % dd.

(E- 4)
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Differentiation with respect to ý yields the differential relation

Since only three TX (I) )S are needed to determine all others

through algebraic relations we choose to determine To (i , k ()A)
and -•I ( . The function I (If) is not directly determined even

though it comes in directly in the integral iteration scheme because it

has a logarithmic singularity at =O . The first object, therefore, is

to evaluate

For small values of JI this can be done by expanding the integrand in
powers of K. It cannot, however, be done blindly as A/- is not

necessarily small even for small )J when V" approaches zero. It is

possible to first split up the integrations

By proper changing of variables these can be reduced to integrals that
can be evaluated term by term in terms of polynomials and error functions
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and E& functions. (EL functions are defined as

I

Further expansion of these functions in powers of J, where possible,

yields the results thatj (r)

-T

can, in general, be expressed as

(e

The coefficients can, in turn, be determined from the -expansion

mentioned. They are actually themselves determined in terms of

infinite series which we can define as follows

0 ( / 0.. . - /- 3! -5_L -jt

±!

+ X/ _

-_ II! --

I~f r47

7!4!

+1s!

//!x F!
-IO

--! +.11 .
/j xd! I~7

etc.

The general term is

t--o

f 7-

.R-2!
/01

'-4--

I'
012 Sz!r

)
.9)
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and

1)- ( 2 -L ) !1 ! (I* / ( +i
C9" odd

From this we can determine new constants

-/ -
·-- (•.-/-• I)(X- I- 2t)! 0-2Z) 0 Lt

e r e -

= L-

L I.

2-( 1 e
:0I

a 3 --.. t• D. 577Z157
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(E -la)

f0-1- (E -.:I)

where

- OICC3~

C::o

Ir f~-~
I'

3t, ~t

t-f(;))

32 Odd

t·33P

=I -- L rv¢,e -



and where all sums are assumed zero when the upper limit is lower

in value than the lower limit. In addition, we need to calculate the

additional constants E, which are

eo = (1 -e-f• ,)

V, [, /, -'

-e -- ' , .3- Z, 3.1 3!

and

T -- U - ,') -3) .. -.- -, ,!-,-x - (-..0

(E-' )
for-A even and 2>

and

for %i' odd and >
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OWith these constants it is now possible to evaluate C; which is

a Ci +e,

The value of is much more

bo -I

easily obtained from the expansion and is

for A odd

(E-, )

and -P for ? even

When the calculated values of 4, and

expression for •I•(K)

bo are substituted into the

it becomes

, (K) = , 6Z a29 -C q v -7" )

- .88 A29 X2 + -, 244844-.1/6"17I))r3

4+. 049235o3)' 4 _ (.o3/3 •io"- 4.Jd7s;/•

- .Zb, x/o f( •7.79 2• 74x, ,/O3 6x7••)j<

÷ •.7a•o-k•-i~g (,,•-o9/,•,•-•- /.,••,E~o-•.7•1)•
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where 4 is the point at which ~ = 0 and where the
desired integral is

The substitution results in the integral

where daMr can be evaluated in terms of a power series

The answer is expressible in terms of the coefficients a),as follows

4xr ~f#~/yr
c~p~·f~8~12 r~:O I 9
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If we examine the next term we see that it is about J 0"- 9

Thus, even for = 2.5 the above expansion neglects only terms of order

I 04 and below. This makes the above expansion up to the ninth term

accurate to .01 percent up to '= 2.5.

It is now necessary to find a means of evaluating .o(O) for

large ){. This can be done most easily by obtaining the asympotic series

by the method of steepest descents. The generalized method given in

Ref. 35 consists of making the substitution



and the coefficients 4zare in turn expressible in terms the derivatives

of f) at = . When this method is applied to evaluating

To () we choose / , )= -( -)
The solution of f ) becomes

The values of the coefficients 42, become

/8

= ± +, o W---)4
0Iq

and the value of To,() becomes

T0(K)e exrp - 3 r 1-. O O 7778 ()

(E-)c?)
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It is important to realize that this is an asympotic series
and that one should always retain only the terms up to the one where
the series begins to diverge. Fortunately, in our case for values of

of the order of .01 percent. We have shown that in order to have

the complete set of Zx0) 15 available it is only necessary to

evaluate 2(h), 21 (,) and r2 (.') and obtain the rest through

the recursion relation to the same accuracy. We have, however, also

the integral relations which can be used to evaluate .X(k) and .7(k)

from T2(X) . For the expansion from A = 0 it is only necessary
to integrate the expression and evaluate the zero order term to obtain

! (i'H) . A second integration will, in turn, yield XI CL) . In

general, the following recursion relation is satisfied by the coefficients

in the expansion of (H) for positive 't .

71
r70 ,""5"..7 •-/3 even

C) /ae •?. odd
46 -V2.
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I> " 2. 5 the last term is always the smallest. Furthermore, we can

increase the accuracy of the answer by averaging over the series with

and without the last term. This makes the expected maximum error of

the order of 1/2 the last term which, in our case, becomes

.oo 21873 ._

or roughly .1 percent. This appears not as accurate at this point as

the series expansion from k = 0 but we compared the term in that

expansion to the initial value of the function whereas here we are

comparing it to the actual value of the function ati" = 2.5. At this

point the value of the junction is only about 4 percent of the initial

value at f = 0. Thus, based on the same scale the error becomes



b O

The reason the 2 , for negative values of 3? cannot be obtained by

this process is the fact that though series can be integrated term by

term they cannot, in general, be differentiated term by term. These

functions can, however, be obtained by use of the three term recursion

relation on the functions themselves.

The T2'! for positive S15 and large can also be obtained by

direct integration but the recursion relations are different for even

and odd orders of 71 . Furthermore, it becomes quickly apparent that

the accuracy is decreased as In increases. We, therefore, evaluate

here only the •IOk) and Il• .. ) by this method. If we define the variable

The expression for •) can be written as
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The expressions for I, and I in this notation become

27(x) ~ I
IL j

d'= / a,,4

= ltZd• 0-f,4d_

4 ~3 (1 +2 aIO 46s

and

where

Ci

L
I

!19

where

x X+
(E-2a)

e;(P -) I)L,-I

~lx'z) -exp



The functions o() ,) , ) , Z (~.) were calculated by

the above derived formulas as follows: for A from zero to 2.5 they were

calculated by the expansion up to 9th order in K while for values of

K> 2.5 they were calculated from the asymptotic expansions, up to the

fourth term. The results are tabulated in a form normalized by the value

for/$= 0. These normalized functions called T (Ik) are shown in

Table E-l and are also plotted in Fig. E-l to facillitate comparison.

It is interesting to notice here that the higher order functions decay

more gradually at large values of K than do the lower order ones.

Whereas the M7(k) function is down to one percent at W. = 3.95 the7 (7 )

function does not come down to one percent until H = 5.23 and "T~ (k)

not until t< = 6.23. This behavior is, of course, expected as the higher

moments represented by the higher values of - should have their influence

extend further because of the heavier weighting on the higher velocities.

Physically, this will mean that the influence of the temperature at a point

is felt further away than the influence of the density.
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Figure E- 1. Tr functions
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Table E-

TTn(K) Function

K O 11 Tr2

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

,1.9

2.0

2.5

3.0

3.5

4.0

5.0

6.0

7.0

8.0

9.0

10.0
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1. 1 1

.71575 .85268 .88812

.57123 .73953 .80632

.47099 .64764 .72823

.39579 .57111 .65960

.33709 .50634 .59891

.28988 .45093 .54498

.25120 .40311 .49685

.21918 .36147 .45378

.19215 .32514 .41506

.16998 .29313 .38023

.14976 .26495 .34878

.13229 .23988 .32033

.11842 .21764 .29454

.10574 .19820 .27113

.09469 .18004 .24984

.08541 .16459 .23044

.07672 .14974 .21275

.06915 .13675 .19659

.06250 .12545 .18180

.05632 .11480 .16824

.03488 .07534 .11538

.01937 .05050 .08039

.01434 .03446 .05677

.00973 .02386 .04053

.00454 .01187 .02124

.00222 .00554 .01039

.00112 .00326 .00636

.00060 .00178 .00360

.00032 .00100 .00199

.00018 .00037 .00122
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