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ABSTRACT

Discrete_memoryless two-way channels having outputs y, v
and inputs x,x are defined by their set of transmission pro-
babilities p(y,y/x,x) . They were first studied by Shannon( )
who developed expressions for inner and outer bounds of the
capacity region. This thesis investigates strategy codes in
which messages are mapped into functions F and F, where F maps
received signal sequences Y into the channel input_signal
sequences X, and F maps received signal sequences ¥ into chan-
nel input signal sequences X, First a coding theorem is
developed, based on a generalization of the random argument
for independent assignments, extending Shannon's inner bound
to the capacity region, and showing that in this extension the
probability of decoding error is exponentially bounded with in-
creasing codeword length. The expression for the extended
inner bound of the capacity region is then studied, and it is
shown that for two-way channels which are not noiseless, all
codes involving strategy functions F and F will be such that
the information passing through the channel in both directions
will be strictly less than the information useable for message
decoding purposes. Hence the concept of coding information loss
is introduced and studied, With its help a tighter .outer bound
on the capacity region is developed, which, although extremely
difficult to evaluate in practice, is used to prove that a cer-
tain very broad class of two-way channels has capacity regioms
strictly interior to Shannon's outer bound. Attention is then
focused on classification of different possible cases of binary
two-way channels whose transmission probabilities are restricted
by the relation P(y,y/xx) = p(y/xX) p(y/xX). 1t is shown that
all such channels can be represented by a cascade combination
of two channels one of which has steady, uniform noise, and the
other has noise dependent on the identity of transmitted digits
only. It is further shown that the latter channels fall into



two canonic types, each requiring a different coding strategy
for optimal results. Finally, certain convexity theorems are
proved, and a way of quasi-optimizing the random ensemble is
developed, insuring the use of certain canonical strategy
functions F and F only, thus reducing drastically the number
of optimizing variables,

In the process of proving the above coding theorem, use
is made of a new theorem proving uniform convergence of cer-
tain probabilities associated with Markoff sources (see
Appendices III and IV)., This theorem may be of mathematical
interest for its own sake, ’

Thesis Supervisor: R. M. Fano
Title: rofessor of Electrical Communications.
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1. Introduction

1.1 Definition of the Discrete Memorvyless Two-way Channel

A discrete, memoryless two-way channel, shown schematically

e

n Figure 1-1, can be described as follows:

i Lo
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Figure 1-1

The channel consists of twe terminals, each of which is pro-
vided with an input and an output. The input signal x at the
forward terminal is selected from a finite discrete alphabet
of a symbols, The output y at the same terminal belongs to
a discrete alphabet of b symbols, The input signal X and the
output signal y at the ''reverse’’ terminal are selected from
discrete alphabets of size a and b, respectively. The channel
operates synchronéusly: at given time intervals inputs x and
X are chosen and transmitted simultaneously through the channel;
outputs y and y may then be observed. The definition of the
channel is completed by a set of transmission probabilities
{P{ ,§7x,§}}° Since the channel is assumed to be memoryless,

it will have the property that:
Pr(yl’yZ”"”Yn; Yl’YZ’-'vayn/xl"'"’xn; S ERRRERS ) =

n’



- The most important feature of this channel is the nature
of its noise: transmission in one direction interferes with
the transmission in the opposite direction. It is thus clezar
from the start that in an efficient coding scheme the signals
to be transmitted will be determined by taking into consideration
the identity of past signals received, the latter providing

information about the transmission in the opposite direction.
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1.2. Examples of Two-way Channels

A trivial example of a two-way channel are two one-way
channels transmitting in opposite directions, This instance
lacks the essential feature of noise generated by opposite

transmission, A more: interesting example is pictured in

Figure 1-2,
Mod 2 adder _
* — + <« %
y —< > 3
Figure 1-2.

Here inputs and ou puts are binary and thewchannel operation
is defined by y=y=x+X(mod 2). Shannon (1) points out that
it is possible to transmit one bit per second in each
direction simultaneously. 'Arbitrarily binary digits may be
fed in at x and X but, to decode, the observed y's must be
corrected to compensate for the influence of the transmitted
X, Thus an observed y should be added to the just transmitted
x (mod 2) to determine the transmitted X.'

Another example, again a "noiseless’ one(in the sense
that y and y are fully determined by the transmitted pair
X,X), is the binary multiplying channel of Figure 3, suggested

by Blackwell multiplier i
X > X)r > X

igure 1-3.

fy
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All inputs and outputs are here binary, and the channel
operation is y=y=xX. The rate of information transmission in
one direction depends on the information rate in the opposite
direction: it is clear that one may transmit one bit per
signal in the forward direction if X is permanently fixed to
equal 1, while it is impossible to transmit any information at
all if X is 0; The region of approachable information rate-
pairs is computable by a formula developed later in the
thesis.

A final example of a noisy channel is given in Figure 1-4.

r_____,_.switch moves to terminal No. 1

2 = with probability p(1)  _
fr-——q-—-—f; > v
A=
4
L a
— _—v ““ -
\ 5 -<— %
\

switch moves to terminal No. 1
with probability F(1)

Figure 1-4,
The inputs are again binary. It is clear that with probability
p(1),¥ = X, and with probaﬁility 1-p(1l), ¥ = x. Hence the
channel is a sort of an erasure channel with the important

distinction that the receiver does not know when an erasure



occurred, although it does occasionally know when an erasure
did not occur: whenever y # X, In Figure 1-4 one cannot f£ix
the signal x so that the forward transmission would be one
bit per signal, The exact region of approachable rate pairs
for this very complicated channel is not known, although this
thesis develops a formula for computing tight inner and outer
bounds for it. - It should perhaps be pointed out that the
channel of Figure 1-4 is of central importance. It will be
shown in Article 8 that it possesses one of two possible

cannonical forms,



1.3 A Real Life Example

An example of the concept of the two-way channel is pro-

vided by the two-way microwave link with a repeater represented

by Figure 1-5.

forward
repeater
M—‘
fl
reverse
£ repeater
2
forward reverse
terminal terminal
Figure 1-5.

The forward terminal transmits in the frequency band fl and
its signal is being reshaped by the forward repeater and re-
transmitted in the frequency band fz‘ Conversely, the reverse
terminal transmits in the band f1 and its signal is being re-
shaped by the reverse repeater and retransmitted in the fre-
quency band f2° The forward repeater's antenna, although
directional, picks up some of the reverse terminal's signal and
transmits it at frequency fz. Hence the reverse terminal's
reception depends also on its own transmission. This effect
is being compounded by the fact that the reverse repeater's
transmitting antenna, although direcfional, is not perfect and
hence that its signal is being picked up, however weakly, by
the reverse terminal's receiver. A similar situation exists

with respect to the reception at the forward terminal.



2. Shannon's Results

(1)

In his pioneering work on two-way channels Shannon
derived important results which will be briefly summarized in
this article. He has shown that "for a memoryléss discrete
channel there exists a convex region G of approachable rates.
For any point in G, say (R,R), there exist codes signalling
with rates afbitrarily close to the point and with arbitrarily

small error probability, The region G is of the form shown in

the middle curve of Figure 2-1.

R

Figure 2-1.
This curve can be described by a limiting expression involving
mutual informations for long sequences of inputs and outputs.
In addition};, Shannon found an "inner and outer bound, GI and

GO’ which are more easily evaluated, involving, as they do, omnly

a maximizing process over single letters of the channel."

2.1 Shannon's Inner Bound Gy
The inner bound is found by use of a random coding
argument concerning codes which associate messages strictlr

to transmitted sequences regardless of the identity of the
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received sequence., The manner of association is the same as
the one used for one-way discrete memoryless channels: in the
ensemble a message m is associated to a signal sequence
Kps¥gs s X with probability p(xl)p(xz)....p(xn}. Decoding
of (e.g.) the reverse message at the forward terminal when
sequence yqy,ses,¥, was received and sequence Xqseee, X Was
transmitted is dome by maximizing the probability Pr(il,,..igl
yl,...,yn,xl,...,xn) over the signal saquences Ei,...;in
associated with the various messages of the reverse terminal.

The inner bound region GI is then defined by Shannon in
his Theorem 3 which we quote here in full:

"Theorem 3

Let GI be the convex hull of points (R,i)

E {103 Prfx/i,'z} }

R

P(x)

E {log 25%%%%;2).}

when P(x) and P(X) are given various probability

R

assignments. All points of G, are in the capacity

1
region. For any point (R,R) in G, and any € > 0 we

can find points whose signalling rates are within &€ of

R and R and whose decoding error probabilities in both

-A{€e)n

directions are less than e for all sufficiently

large n."



Shannon further remarks: "It may be noted that the convex
hull G1 in this theorem is a closed set containing all its
limit points'', ""Furthermore, if G, contains a point (R,R),

it contains the projections (R,0) and (O,R)."



272 Shannon's Quter Bound G

0

Shannon.gives a partial converse to Theorem 3 quoted above
and an outer bound G0 to the capacity region. This he obtains
not by an argument directly connected to some coding scheme,
but rather by examining the change

A = H(m/ﬁ,-);l’ .a . .,B-ri-l) ‘H(m/ﬁ’?l, e 0 e "?i_l)?i)
in the uncertainty-about the forward message m due to the
i-1

were received and message m was being transmitted at the reverse

reception of the signal ?i when previously signals ?1,...,§

terminal. He shows that

Pr(xi/X;¥;)

A€ E(log
P(XiTXi)

)

and concludes that ''the capacity region G is included in the
convex hull GO of all points (R,ﬁ)

Prgx[i,iz)

P(x/%®)

E (log Pr!i{x,zz)

P (X/x)

R =E (log

R

when arbitrary joint probability assignments P{x,X) are made.'
I.e. whenever a code signals with forward rate R* and reverse
rate R* where the point (R*,R*) lies outside the region Gy, the
probability of decoding error will at least in one direction be
bounded away from zero, independent of the code length 5.
Shannon further shows that the information rates given

above are concave downward functions of the assigned input



11
probabilities P(x,X), and develops conditions on the trans-
mission probability -set {P(y,?/x,?c)}, whose fulfillment would
guarantee the coincidence of the regions GI and GO' Finally,
Shannon proves that bounds of G, and G, intersect the coordinate

1 0

axes at identical points.
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2.3 Shannon's Capacity Region Solution G

Shannon considers the product two-way channel Kn whose
inputs and outputs are sequences of n signals of the given two-
way channel, An input "strategy letter' to the channel K, at

the forward terminal may be represented by

[xo: fl’ (XO;YO) )fz (Xo)xl;}’o:yl) e ’fn_l(xo:xls ve. 3xn_2 ;YO,

yl,...,yn_z) 15 x°

where the functions fi map pairs of i-fupples [XO""’xi~15
yo,...,yi_l] into signals x;. IL.e there is a mapping relation-
ship

x, = £, (XO""?xi-ls Yoree+s¥i_1)
for all possible pairs of‘i-tupples. A reverse strategy letter
may similarly be represented by
EOVE SRR /ORI SYCIVE SN 7 ZDFRTREFE SURE C SV SURTRPE SNPS

yo,yl,o..,yn,z)]sixfn.

One may then in a straightforward manner define the product
channel's transmission probabilities

Pr (¢, ¥/x",x™)

n =11 R -
where Y = }’O)yl;eoo’yn_l Y = yO,ylf""}yn_l

and evaluate the inner bound GII’L for the capacity region of

the channel K_ by finding the convex hull of points (Rn,ﬁn),
n

where a0 -1
Rn_;a,{1 MM}
& "‘nu

log
P.x™M)



-1,.0 .0
- "/ .
Rn=1]_.1 Eglogl’r(}f,fx:?f’
P

over the various probability assignments P(Xn) and 5(}’:“} .

n é: Gn+r

Shannon next shows that GI I and that the capacity region

G = 1lim G? .
n-»00
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3, Proposed Attack on the Problem

3,1 Obijectives of Two-wav Channél Investigation

As illustrated in the introduction, the two-way channel
presents a new problem as yet not fully treated in information
theory: How to arrange a code so that the opposing terminals
cooperate in the selections of signals to be transmitted even
in situations in which the messages to be tommunicated remain
independent. It is of course possible to communicate through
a two-way channel without any signal cooperation, and Shannon
(1) found the region of pairs of signalling rates (R,R) for the
two directions which can be approached with arbitrarily small
error probabilities by non-cooperating codes (see Article 2).
One of our major objectives would be to see whether or not the
above capacity region can be extended by the use of cooperating
codes.

Another question to be asked concerns the construction of
the cooperating codes: what kind of cooperation is desirable
aﬁd effective and what are the features of the two-way channel
which make it so. 1In this connection one might ask whether
the desirable cooperation is of one kind only, or whether per-
haps there are several classes of two-way channels, each class
calling for a different sort of cooperation:

The cooperating codes will of course be of an as vet

uninvestigated type and their structure, besides being in an



Pt
Ln

obvious way a more complicated one, might present new difficul-
ties of an essential nature not yet encountered by the treat-
ment of the usual codes, One would expect that the increase
in the complexity of the structure of the cooperating code will
be the price paid for its greater effectiveness. It might then
turn out that different grades of cooperation will exist, and
their respective effectiveness will be of interest,

Finally, one might compare the cooperating with the non-
cooperating codes in their effectiveness of limiting decoding
error probability at signalling rate pairs (R,R) within the

capacity region of the non-cooperating codes,
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3,2 Comment on Shannon's Results

A comment on Shannon's results in light of thelobjectives
listed in the preceding section is called for at this point.

The implications of the inner bound G, described in section 2.1

I
are self-evident. The limiting procedure for the capacity
region solutioﬁ described in section 2,3 is certainly sugges-
tive of a way of coding. However, one ought to point out that
for a binarychannel Kn the numbezngf different input letters

b suggested by this scheme is ZZ:T—. Better resulté than

those of the inner bound non-cooperative coding can be obtained
for values of n larger than or equal to 2, and for the latter
integer the number of different input letters is 32, Hence the
inner bound for K.2 involves optimization over 64 quantities,
Mcreover, it should be pointed out that such coding is actually
quite wasteful in terms ofAthe number of input quantities intre-
duced compared to the probable effect: ;hus for n=2 only half

of the time any cooperation at all exists, and even this co-
operation will most probably not be very effective, since at

the next time interval it will again be interrupted. Intui-
tively it seems that in order for the two terminals to cooperate,
the signals must get into some sort of synchronism which the
repeated interruptions of cooperation will oﬁly hinder.

Now the outer bound results of section 2.2, although not

directly suggesting any coding scheme, tell us that cooperation
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is indeed effective (&ctually they only suggest the possibility
that the outer bound GO differs from the inner bound GI'
However, it is easy to compute in specific instances, such as
the multiplying channel mentioned earlier, or the cannonic
channel of Figure 1-4, that this is really the case). Before
going into more complicated schemes, one might wonder whether
a code mapping messages strictly into signal sequences could
not be arranged which would result in an average joint pro-
bability Pr(x,X) of simultaneous occurrance of opposing signals
x and ¥ such that Pr(x,%) # Pr(x) Pr(X). It turns out (as
shown in Appendix I) that any random assignment which maps a
forward message into a sequence RysXogyeens X with probability
P(xl)P(XZ)"'P(Xn) and a reverse message into a sequence il,
iz,...,in with probability ?(§1)§(§2)...§(in) would on the
average lead to a code for which the probability Pr(x,X) —a»
P(x)P(X) as the number of different forward and reverse code-
words k=s . On reflection this destroys our hope for ex-

tending the region G, by codes having strict message-to-

I
signal sequence mapping.

Thus we will after all have to resort to coding in which
the signal transmitted will depend on the identity of past
‘signals transmitted and received. As will be seen, we will
make use of the functions fi which help define the strategy

letters X' in section 2.3, but we will try to exclude all

waste discussed in the paragraph preceding the last one.
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3.3 Restriction of Generality of Discussion

In the following work we will restrict our attention to
two-way channels characterized by a set of probabilities

P(y,¥'x,%) = p(y/x,%) p(F/x,%) (3-1)
defined over the set of possible input signals x, X and output
signals y, y. Above restriction is not necessary for the proof
of the key theorems presented in this thesis. In fact, the
coding Theorem 6-2 and the Theorem 7-5 introducing the concept
of information coding loss are independent of the restriction
(3-1). On therother hand, it will be séen that the interpre-
tation of the problems introduced by the two-way channel con-
cept will be much clearer with the restriction (3-1) imposed.
By making use of the symmetries created by (3-1) we will be
able to separate the effects of transmission in one direction
from the effects of transmission in the other directionm,

It should be noted that the simplification effected by
the restrictioﬁ (3-1) is due to the fact that the received
signal at one terminal will depend only on the two signals sent
and not on the signal received at the other terminal.

Throughout the thesis all specific references will be to
a binary two-way channel, although the signal alphabets will
be unrestricted in all the proofs of the theorems presented.
However, the intuitively very important results of Article 2

will apply only to binary channels with restriction (3-1)



imposed on them,
Any binary channel whose transmission probabilities are

restricted by {(3-1) is schematically representable by Figure

3-1.
p(x)
0 . 0
x y
1 > 1
q{x)
p(x)
0 < 0
y X
1 — 1
q{x)

Figure 3-1.

The interpretation of the above diagram is as follows: if the
reverse transmitter sends the signal X = 0 (1) and simultaneously
the forward transmitter sends the signal x = 0 (1), the pro-
bability that at the reverse terminal a 0 (1) will be received
is p(X)} ( q(X) ), and the probability that a 1 (0) will be
received is 1-p(X) (1-q(R) }. A similar interpretation applies
to the transmission in the reverse direction. Thus the identifi-
cation of the symbols introduced in Figure 3-1 with the set of
transmission probabilities defining the channel is as given in
the table below:

p(x) = p(9/0,%) pix) a p{0/x,0)

B = p(l/1,%) i) =a p(l/x,1)



3.4 Desirability of Sequential Encoding

In the preceding discussion we have shown that optimal
encoding of a message should be such that the signal trans-
mitted in any given time interval would be determined not only
by the message but also by all the signals received and trans-
mitted in the previous time intervals.

A signal transmitted when either sequential or block en-
coding is used, is dependent on n-1 other signals. Hence
knowledge at the forward terminal of the signals received up
to time t-1 provides a probabilistic indication of the identity
of the signal to be transmitted at time t by the reverse terminal.
Since the latter signal will in the two-way channel determine
part of the noise on the transmission at time t in the forward
direction, it is essential that its probable value be considered
at the time when the forward terminal's signal is being
generated, This being the case, the natural encoding is
sequential, since using that scheme the signal to be transmitted
at time t is not yet determined at time t-1, We will therefore
modify Wozencraft's (2) sequential coding procedureto the needs
of two-way channel encoding. The procedurestree-like structure
will be retained, but not its code generator feature, 1In
what follows we will not concern ourselves with the obvious

decoding advantages of the sequential procedure.
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3.5 State Diagram Representation of Sequential Encoding

It is assumed that the reader is familiar with WOzencraft's
work entitled '"Sequential Decoding for Reliable Communication’
(2). 1In this section we will make use of its terminology.

Wozencraft determines the binary signal sequence to be
transmitted through the channel by means of a generator into
which a message, also in binary form, is fed. Because of the
way the generator operates (for description see pp 3-4 to 3-7
of (2)), the sequence to be transmitted through the channel
has the characteristic that any block of kno'signals is
statistically constrained, while signals more than kno places
apart are statistically independent. The encoding is usually
presented in the form of a tree, the path through which is
determined by the Einary message sequence., The branches of
the tree are associated with sequences of n, binary signals
which are transmitted if the méssage path leads through the
branch, Such tree, however, does not give the complete pic-
ture of the generatable signal sequence of potentially infinite
length: one would have to extend the tree indefinitely, and
indeed the generator and its rules of operation give us the
means to do so, On the: other hand, a much more compact way to
present the entire process presents itself in the form of a

state diagram.
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Let the state be determined by the sequence (2o 10020 41

""zt-l;t) consisting of the time interval t {(given modulo k)
and the last k binary message digits. For a given interval t
there are Zk states forming a "'time string' (the reason for
such terminology will become apparent by inspection of the
state diagram given in Figure 3-3, and the state diagram con-
sists of a total of kzk states. Transition is possible only
from a state of interval t into a state of interval t+1, and

moreover, from any given state (z t) only

t-k’Ze-k+1’ """ o1

two transitions exist: into state (z 0;t+1) and

t-k+1? " %1’

into state (z 1;t+1). Hence the particular

E-k+1’ 00 P17

transition taken is determined by the identity of the message

digit z, . Now each transition has associated with it a

sequence of g binary signals x The

X L X .
t,0°7t,1’ ? t,no-l

succession of the signal sequences then forms the encoded
transmitted communication.

As an example, consider the particular Wozencraft
scheme in which kn0=9; n0=3, k=3, and the generator sequence

g=110100, Then the tree of Figure 3-2 is obtained.
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000
001
000
0 011
i 010
010
| 110
100
Y 111
1 110
101
110
100
Figure 3-2,

This tree should, as explained above,

Its equivalent state diagram is shown in Figure 3-3 in which,
with the exceptions of the transitions corresponding to the
tree above, the transition sequence values are left out.

is hoped that this will serve to further elucidate the relation-

ship between Figures 3-2 and 3-3,.

be extended indefinitely.

i~y
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4, Notation Used

As will be seen further on, a treatment of signal co-
operating codes for the two-way channel will necessitate the
introduction of new, relatively complex notation. In order
that a ready reference to this notation be available throughout
the reading of this paper, we consider it best to introduce it
all at once.

4,1 Indexing Notation

We will be dealing with two kinds of sequences of symbols,
One will pertain to sequential coding and the other to block
coding. Actually we will be using the sequential approach
most of the time but for certain mutual information and entropy
results the block approach allows greater notational simplicity
and can be used without any loss of generality,

In sequéntial coding we are concerned with tree branches
emanating from a common ''departure' coding state whose identity
is assumed to be known to the decoder at the opposing terminal.
If the departure state was reached at time i,then the two
branches emanating from it, leading into states to be reached
at time i+l, will be indexed by the number i. In a sequential
code, to every tree branch there corresponds a sequence of sym-

bols of length n;e. Then, for instance
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x, . (3
corresponding to some branch of the ith time
interval,

Next, for reasons of notational simplicity that will become

apparent, we shall indicate by

x.t. the tth preceeding symbdl of x, ., in any given
i,] 1,]

sequence, Hence:

-t
X, . =X h (i~ + (j- =
i3 s where (i r)n0 (j-s) t

In block coding we will adhere to the usual notationm.
Thus

Xs will be the ith symbol of a block.

Similar to the sequential notation,

x;t will be the tth preceeding symbol of X in any

O,l,...,no—l) will be the j+1th symbol {4-1)

(4-2)

s
H

(W)
s

(4-5)

given sequence (it is allowed that t» i, so that

-t

X and X; can belong to different blocks).
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4,2 Symbol Notation

We will next display the symbolism used in the thesis,
We will do so by using the sequential index notation defined
above, any necessary changes for block notation will be
straightforward and require no further explanation.

In what follows we will deal with symbols pertinent to
the forward terminal. Their counterparts for the reverse
terminal are superscribed with a bar " — ", Hence X is the
symbol at the reverse terminal corresponding to x at the
forward terminal,

Message digits:

'°"zi’zi+1""’zi+j"" is a particular sequence

of message digits, where
. (4-6)
z; indicates which branch
is to be followed out of
.th . .
the i sequential encoding

state.

Channel input signals:

> ¢ Q x- Xc L B X. xo * e o X| - LI
71,0771, 1 ’ i,n, 1’ i+1,0’ 2T+, Kk
is a particular sequence
of input signals tc the

channel. Subscript nota-

tion was explained above,
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Channel output signals:

e ’yi,O’yi, 12" ’yi,no-l’yi+1,0’ e ’yi'l'j k2Tt
is a particular sequence
(4-8)
of output signals from the
channel. Subscript nota-
tion was explained above.
In order to simplify notation, we will assign special symbols

to sequences of input and output signals of length £.

Thus we will define:

Lo -1 -2 -4
xi,j— (Xi,j,xi’j,...,xi,j) N

! gyl -4 (4-9)
yi,j ] yi,j)lsvnboto,yi,j

Finally)we would like to define a single letter notation
for sequences of symbols from the beginning of communication
to a given time (i,j),and for sequences of symbols from a given
time (i,j) to the time (i+K,j), where K is the number of time-
strings in an encoding diagram, i.e., the number of branches

taken into consideration for a single decoder decision. We

will have:
1,5 2 (g, 5e0 %, 50000 %0,0)
- fL-100
Y - X L]

i,j — (yi’j_lgoon‘o-loovn-,yo,o)

and
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(x

1]

1,5°%1, 5417 00000 iR, 5 1)

+
Yi,j _..(yi,j,-o-.QQ‘uo..oo-c,yi_‘_K’j—l)

A similar capital letter notation will be used for sequentes
of any other symbols yet to be defined. If it should become
clear from the context that block coding is being considered,

then double subscripts will give way to single subscripts.

To illustrate, we will write e.g.:

Xi+1 = (xi,xi-l’ ceee ..,xo)

Xip1 = ®RypoXipseseen® )



4.3 Encoding Functions

We will define functions f of "dependency' length £,
mapping the space of sequence pairs (xf, oyf) on the space of

channel input signals X,
2 4 ,
. P { 3
f(Jti,gfi) X, {4=13)
Similar functions are defined for the reverse terminal.
It is clear from definition (*13 that the domain of
definition of any function £ consists of 223 points (3£f,

2}§). Hence the function is fully defined if a table of its

values for the 22£ possible different arguments is given. Thus

any function f can be represented by a binary sequence of 223
elements, each corresponding to a different point in the
domain of definition. We can write:
f E(aO’al’“""’ai’""""322{) where a, is
the value of f when the
(4-14

sequence (xz ,7’2) consti-
tuting its argument is
the binary representation
of the integer 1i.
22£
It is then clear from (4-13) that there are altogether 2 dif-
ferent possible functions f.
The script letter convention (49 and the capital letter

conventions (4-10), (4-11) ,(4~12) will also apply to encoding func-

tions, as well as the general indexing notation established above.



4.4 Derived Two-Way Channel

Consider the transducer of Figure 4-1,

x - - -
L P L P S G

¥ > f

HEEREGES

XY
Y

Figure 4-1.

It is designed for encoding functions of dependency length £=6.
It operates as follows: there are memory compartments storing
the input signal sequence'(x-l,......,x_6) and the output
sequence (y-l,....,y-6) plus the function £. At given time
intervals the tranéducer puts out the signal

X = f(x-l,...,x-6,y-1,...,y-é)
and simultaneously shifts its stored sequences by one place
to the right, discarding digits x-6, y-6 and the function f.
Then its empty x-sequence slot is filled up by the signal x,
its empty y-sequence slot by signal y, and its f-slot by the
next function f+1. It is then ready to put out the signal

+1 + -1 - -1
x =Ff l(x,x seeeyX 5,y,y

5
yaeesY )
and to repeat the same cycle. We will call the device of
Figure # a "function-signal transducer'', and it will be

understood that the number of x-sequence and y-sequence slots
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will always be equal to the defined dependency length of the
input functions f£.

Consider now the channel of Figure 4-2.

r-——=—""""-""-""-"="-"=-"=-"=-""="-"=/== == 7

| |

i |

[ - -

| X y i y
et : | two-way > SRS

i [" f channel J | '

| { [ <] P (¥F/xR) ' —L

: y % f N\ e T

| AN I

‘ \

e e e ] e o . e o - — — .“ __________ -

derived channel
Forward function-signal . Reverse function-
transducer signal transducer

Figure 4-2.

The block arrangement is self-explanatory with the help of
Figure 4-1, The entire arrangement within the dotted border
can be considered to be a derived two-way channel with 2 #
different possible inputs f and £ and binary outputs y and y.

If it were agreed that communication will always start
with prescribed sequences in the memory compartments of both |
transducers, then the derived channel would have finite state
memory. In fact, the derived channel state at time i is a

strict function of the state at time i-1l, the channel inputs

fi-l and fi-l’ and the channel outputs Yi1 and Yio1°
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Next,we will develop some more terminology. The derived
channel state denoted by (si,§a) is fully determined by the

sequences in the memory of the two transducers. Hence:

(s;,5)) = (3%,9,.%,4) (4-15)
where &i and #i are the sequences in the memory of the forward
transducer at ti.me i and Ei and yi are the sequences in the
memory of the reverse transducer at time i. We have left
out the superscripts f to simplify notation. Henceforth,
unless otherwise stated, any missing script letter superscripts
will be assumed’to have the value £.

The derived channel now has the following state trans-

mission probabilities:

Bry s, OoTi/EpE) = plrpF/E (o), £ (5 (4-16)

It is also clear that there exist functions g and g such

that:

/2]
]

itm = 8O E e E g 1YY g1 e Y ) (41T

Sivm = BGGT s E 135 T e T i)
Above is due to the working of the transducers described on p,. 32
and to equation (4-13), There are of course 24z possible dif-
ferent derived channel states (s,s).

We shall assume, without any loss of generality that the

state (50,56) at the beginning of communication is always

that in which the memories of both transducers are filled with
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zeros only. Hence, by convention,

(s» s,) = (0,0) {4-18)

where we have replaced the binary sequences (xo,%) and
(36-0,5;) by their respective decimal values, a practice we

shall follow whenever convenient.
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5. Summary of Results

In view of the fact that the mathematical procedures used
in this thesis are quite complicated and that some of the
terminology and notation are new and perhaps cumbersome, it
seems best to present at this point a summary of the results
arrived at in the following articles. It is hoped that in this
way motivation will be provided for those steps taken by the
author which at first reading might otherwise appear capricious.
In all that follows it will be assumed that channel transmission
probabilities are restricted by the relation (3-1).

In Article 6 an ensemble of sequential codes is constructed
by associating forward messages with sequences fl’fZ”"’fi""
of encoding functions (having an arbitrary but fixed dependency
length ¢) independently at random with probability P(fl)P(fz)”

P(fi)“°’ and reverse messages with sequences fl’fz”"’f;"'

of encoding functions (having the same dependency length { as

the forward functions) independently at random with probability

ol

(El)ﬁ(fz)“ﬁ(fi)”' (for terminology see section 4.3), where
P{ )} and §( ) are arbitrary probability distributions. It is
then shown that the ensemble probability of forward and reverse
decoding error is exponentially bounded with increasing code-

word length n (i.e. it is shown that it is smaller than 2 s

where A is a function of the signalling rates), provided that
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the forward signalling rate R and the reverse signalling rate

R are such that

m m 5 2N
R &log(l-e(m))+E log Pr(y/L,ﬂ £ ﬂ * 07 -m’ {5-1)
Pr(y/f, ’Zm,gm,ifmﬂ?%m)

Priy/ 0 07" 5 )

re pm M )/
Pr(}”*r )7 :xm’m

R< log(1-E(m))+E{log

where the expectations are determined from the channel trans-
mission probabilities and from the probabilities P{f) and §(§)
used to generate the ensemble, and the functions &{(m)-»0 and
E(m)a-O as the integer m—®»c ., As the integer m grows larger,
the quantities on the right hand sides of the inequalities (5-1)
increase in value. It follows from (5-1) that if the point

(R,R) lies in the convex hull of points

iy

PrT /e E e L ELE L LELT L)

1im E 10g ’
r‘-)OO Dr(]/ 1,0;.,L1,]r 1,‘a0)y1}

1im

Pr(yr/fr,fr_l,...,fl,f f 1""’fl’yr-1""’y1>
Eflog
r—=-o

Pr{:y:/fr’fr-l’ tqo,fl,yr_l, o",yl)

obtained for different assignments P{(f) and P(f), then a code
signalling with rate R in the forward direction and with rate
R in the reverse direction will exist, for which the probability

-n A(R,g)

of decoding error will be bounded by 2 , where A{Z,R)

is a positive real quantity,
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It should be pointed cut that the convex hull (5-2) is a
lower bound tc the capacity region, tighter than Shannon's GI

co which it reduces when the assignment distributions P{f) and
P{f) are appropriately restricted (by assigning non-zerc pro-
babilities only to those £ (f) which map all the 22’g different
sequences 36,? (3‘5,43‘) into the same signal x (X)}.
The random argument used tc reach the conclusion {5-1)
and evaluate the character of the function A(R,R) is complica-
ted by the fact that the random variables with which one deals
are dependent. The dependency is of a kind which can only
approximately be associated with a Markoff source, and an im-
portant step in the proof (see aAppendices 111 and IV) consists
of showing that the error induced by the approximation is of
an appropriate kind, In fact, the functions &€(m) and &{m)
of (5-1) are the corrections necessitated by the approximation.
In Article 7 the properties of rhe expectations (5-2) are

examined. It is first pointed out that the expectation pairs

{5-2) are identical with the pairs
. )1 T o . -1 - . , .
1im E4=T{(Y7;F~/F73¢, lim EQd = I{¥Y";77/7) {5-3]
n n’’n' 'n n n’"n
T = 00 n =30
cf mutual informations, where the sequencas Y- Y~ F~ F~ of

) nt ndn

hy

i""

length n were defined in {4-12). It is then shown that

<
I

saquences F_ ., FT  wera transmitted and sequences Y:,
: n a’ "n

5 S i

were received, then the signal information which passed through
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the two-way channel in the forward directiom is equal to
I(§;;X;/ﬁ;), in the reverse direction is equal to I{?;;EA/X;),
and the total information which passed through the channel in
both directions is equal to
I(?;;X;/X;) + I(Y;;E;/x;) =
(5-4)
= I(X7,Y;X,¥) = 1(F, Y;-F; 7o),
where the function F;.mapped Y; into the sequence X;, and the
function ?; mapped ?; into the sequence i;. It moreover turns
out that if sequenceé Fn and ﬁn are picked at random with pro-
babilities Pr(F_) = ﬁ P(f,) and Pr(f;) = ﬁ P(£;) then
{r TR} soniTy) -
(5-5)
= Bfr(x, voi%, 1)) = e{re, v FL T
where the average on the right hand side is taken with respect
to probabilities P(f), P(f), while the expectations involving
as variables the signal sequences X;,Y;,ﬁ;,?; only may be
determined from the communication process represented in

Figure 5-1.

X b4
source > two-way r
channel
v X
- - source

Figure 5-1



where the forward source generates signals x with probability
Prix/x,4) = q{(x) and the reverse source generates signals X
x

with probability Pr(x/¥,4) = (%) (for explanation of nota-

50
tion see (4-9) and (4-12». ’Fhe%source probabilities qéx} and
‘ig) are defined with the help of the probabilities P(g) and
§(%) as follows:
a0 = 2 pH q®m = 2 B (5-5)
7 faf(xm=x 7 BiEp=x

The information (5-4) transmitted through the channel is
then examined in relation to the informations (5-3) which in
the coding theorem were shown to be useful in message decoding.

Theorem 7-6 then states that

E{I(Y;;Y‘/F‘,X')f

T .y~ /T~ " T o=/
ESI(Yn"{n/Kn)} E{I(Y;’Fnl n’} n n’'n

(5-7)

il

EfI(YI;;f{;l/X;)} - E{I(Y;;?‘;/F;); Efi{Y;:?;/X;,f;)}

or, in other words, that not all the information that passes
through the channel is useful for message decoding purposes.
Further theorems show that the quantities E{I(Y;;?;}F;,Z;)}
and E{I(Y;;?;/K;,?;)f can be interpreted as an average loss of
information due to forward and reverse coding, respectively,
and that, except for the so called noiseless channels, all
codes which do not map messages strictly into channel signals
are associated with a positive average coding loss. A new

formula for the outer bound to the channel capacity region is
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developed in section 7-6, It is subsequently used, in con-
junction with the positiveness of the average coding loss, to
prove that for non-degenerate channels the capacity region G
is strictly interior to Shannon's outer bound GO'

In Article 8 binary two-way channels with transmission
probabilities restricted by the relation

P(y,5/x,%) = p(y/xX) B(§/xX) (5-8)

are discussed, It is recalled that theycan be represented
by the diagram of Figure 3-1 which can be said to consist of
a forward (top) and reverse (bottom) portion. The forward

portion, diagrammed in Figure 5-2,

{x
0 g>~> 0
x 7
X
1 q£’> 1

Figure 5-2,
is then examined with the conclusion that it must belong to
one of two classes, depending on the probability set {p(i),
q(i)} - Into Class A belong channel portions in which addi-
tional noise is caused by simultaneous transmission of signals
x and X such that x # X. Into Class B belong those portions in

which additional noise on the forward transmission is caused
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by one of the two possible signals X. It is then shown that
all portions of Figure 5-2 can be represented, either directly

or after a transformation by the cascade of Figure 5-3,

0 () 0 0
x y
1 ng) ‘;Pl 1
Figure 5-3

where the channel involving the probabilities Po and 1) is a
binary one-way channel, and the channel involving probabilities
a(x) and B(x) can be represented either as in Figure 5-4 or as

in Figure 5-5.

2 (0)=1 & (1)
( O - ‘ 0 > 0
X { ; X 9
\ 1 > 1 1 — 1
£ (0) 2(1)=1
x =0 x =1

a(0)=1 a{l)
0 —p— 0 —e
X y x v
1 1
2(0)=1 2 (1)
x= 0 zx =1

D;,j
=
03
[ o
a]
@D
wi

]
il
.



It is clear that if a channel portion is rapresentable by
Figure 5-3 directly (i.e. if no transformation ié necessary),
then if it belongs to Class A, it is representable by Figure
5-4, and if it belongs to Class B, it is representable by
Figure 5-5. Finally, interesting examples of binary two-way
channels restricted by (5-8) are given, exhibiting significant
symmetries,

Article 9 uses the results of Articles 7 and 8 to discuss

)

heuristically what kind of source probabilities q(x) and q(
Xy x
(see Figure 5-1) will insure high information transmission

X
§

through binary two-way channels whose defining transmission
probabilities p(y/x,X) and p(j/x,%) are qualitatively described
by membership in the classes of Article 8. Wethen go on to
prove that the six mutual information functions appearing in
the two equations {(5-7) are concave downward functions of the
probability assignments P(F;), P(f;).

Attention is then focussed on the problem of construction
of random ensembles from which to pick, with great lildihood,
codes which would signal at close to capacity rates with z
small probability of decoding error. If the intended ratio of

reverse to forward signalling rate is A then the probability

A
o

distributions P(£),P(f) should be determined by maximization

of the quantity
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Edlog

Pr(Y/E’P = 7:'[“ (5-9)
Priy/£,0°, F ) ’
+AE{10g i ,0 "4’7""-111 m}
Pr(y/ f’ﬂm’7m’¥—m’y-m

over the set of all possible independent symbol distributions
for some sufficiently large integer mé For a given dependency
length / there exist, however, 2 x 2 ! different functions £
and f, and therefore as many variables over which to maximize
(5-9). 1In view of Theorem 7-6 (see relations (5-7)) it is
suggested that one maximize instead of (5-9) the expression

3{1"3 5(?£X1.§3m R ) % +
Pr(Y/x,x :9 ’*-m’;"m)

(5-10)
+ E log Q(v/x,i)m —
Pr{y/x,x g X 7-m
over the set of 2 x 223 probabilities q(x) , q(X) and then,
=2
using the relations {5-6) as constraints, minimize
E{log p(v{x,x)m_ e > } +
Pr(y/f:l 1y X, :? ;iﬁm) :m}
!5"11}
. X,X -
/\Eglogp(ﬂ-) D m 7 ;}
Pr(y/f,ﬂm,x,z "% ,z_m,7_m)

over the possible distributions P(f) and 1?(;‘3_). A theorem is

then proven stating that, except for noiseless channeis, the



quasi-optimization involving {(5-10) and (5-11) will never lead
to the optimal solution. It is nevertheless concluded that
for practical reasons one must be satisfied with carrying out
even a weaker quasi-optimization: one involving step (5-10)
but replacing step (5-11) by an arbitrary determination of the
distribution P(f), P () satisfying constraints (5-6). It is
shown that for any given set Sq£§)§ of size 22’5 thera exists

a set of (222+l) non-zero P{f) wgich will satisfy the constraint
(5-56). The{P(f);set obtained is in a definite sense an optimal
one, and hence is called canonic., Using the idea of the canonic
setsﬁP(f)landiﬁkE3} another, better quasi-optimization procedure
is developed, involving maximization of the expression (5-9)

2‘i+1) canonical variables.

over the sets of different 2(2
We will finally call attention to Appendix III whose
results we believe to be c¢f mathematical interest for their
own sake., As already mentioned in the second paragraph
following {(5-2), the theorems derived in Appendix III are
necessary for the proof of the coding theorem of Article 6.
Suppose a Markoff source is given with an associated matrix
M of its transition probabilities. Let the source have k

states, {51,52,.,.,sk§, and let the value of a matrix element

1
m . be
Sre

i-1

{5-12)
r ) 5~12)

m_ = pl(s:
et p\st/s
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(ie. the probability that if the process was at time i-1 in

state s_, that it will be at time i in the state st)

Let the states of the source be partitioned intc # non-

empty classes Al,A',,..,A Appendix III develops the suf-

7 g°

Az

ficient conditions on the transition matrix (M which must be
satisfied so that the following statement will hold:
Given any € > 0, an integer A can be found such that
for all integers )«)A and @ 21 and for all sequences

. Ao 3 ' .
of successive states A’ . s At A 0+1,...,Al A,..Q,Al 1,A

i
for which

- n- c- :- -o
preat at-l oAt A,...,Al N4 o, (5-13)

the inequality

i-4 i-A-0

i-A i, ,0i-1
y-pr(at/att oAt AT D e

[Pr(Ai/Ai'l,.,.,A

is satisfied, where Ad e iAl’AZ""’Aég’

j = i“A-a,o-o,i'



I
[0))

b, Coding Theorem

6.1 Two-way Channel Sequential Function Codes

We will approach the coding pgoblem through the concept
of a derived channel described diagrammatically by Figure 4 -2,
In what follows we will use the terminology and concepts of
section 3.3 as well as the notation of Article 4.,

Consider a pair of sequential state coding diagrams
having the structure of Figure 3-3, one for each input terminal
of the derived channel of Figure 4-2, Let the number of time-
strings in the forward coding diagram be k. Associate with
each of the transitions out of each state of the fgrward
coding diagram a sequence of ny encoding functions, say

(fi’O’fi,l""’fi,nO-l) where fi,j is a function mapping the

space of possible past signal sequence pairs G¥? LM, )=

1,j°91,3°
-1 -4 -1 N . ‘ ,
.. 23, .5eee,¥:.) On the space of channel inputs
1,1 i] 1,] 1]
(

or more thorough discussion see section 4.3).

Fh

It ought to be recalled that the functions f_.j constitute
e
the input symbols to the derived channel of Figure 4 -2,

I

Hh

the message is encoded intc a string of binary digits,
the operation of the sequential coding diagram is identiéal

to the operation described in section 3.5 . Hence, for
instaﬁce, ziven the time t/mod k and the k most recent message

digits, the state of the encoder Is

Zt_k,Zt_k+1,;..,Zt_1,

determined. The next state and therefore the particular



transition to be taken, .together with the associated sequence
of input symbols to be transmitted through the channel, is

then determined by the message digit z The reverse encoding

t.
diagram, operates in the same way, except that the function
sequences associated with the state transitions will have

length ﬁo and will be denoted f.

LN I - . r S -
1,07 "1,n0-1 We can postu

late the reverse coding diagram's time-string number to be %.
The appropriate messages are of course Ei—sequences and in what
follows it will be assumed that the forward and reverse messages
are independent of each other.

Decoding will be sequential, one message digit at a time.
Hence at time i, on the basis of a known forward 'departure
state" (characterized by time i-k and the message digit
sequence Zi-Zk""’zi-k-l) and of a consequent set of all pos-
sible function words F:-k;o allowed by the forward coding dia-
gram, the reverse decoder will determine the next forward en-
coding state (i.e. the identity of the message digit zi-k)

by the e of its know ences F, .
y the us ts knowledge of sequ 1-%,0° Tik, 07T -k, 0’

f- -
Li-k’o and Yi—k,o'

that in section 4.2, FE

Perhaps the reader should be reminded here

k,0 was defined as the sequence (fi-

F - . . , ;
Fik1 °'ffi-1,n0-1) of derived channel input symbols, and

Fi-k,O was defined as the sequence (fO’O’

Similar definitions apply for the sequences F

k,0’°

fo’l,. "’fi-k—l,;ne-l)'
+ '?+
i-k,07 "i-k,0?

Fr K O’Y‘ k.Q> except for a slight modification explained below.
L™K, S )



We recall first that the integer 5 Was defined as the
number of symbols associated with a transition of the forward
encoding diagram, and that the integer EO was defined as the
number of symbols associated with a transition of the reverse
encoding diagram. But in gemeral nj £ Ny, From this it
follows that when one encoder reaches a state in time-string o
and is about to transmit the first symbol associated with the
next transition, the other encoder may be just about to trans-
mit the ith symbol of some transition out of time-string B.

We also recall that in general the number of time strings k of
the forward encoder does not equal the number of time-strings
k of the reverse encoder. Thus, according to the notation of

Article &4, the symbols fi and Er s might be transmitted

’J 2

simultaneously, where in general ifr, j#s, but inyg + 3 = rﬁO+s,
where i and r are considered to be absolute integers (i.e. not
integers modulo k and k, respectively). Such state of affairs
confuses very much the notational system. However, in what
follows we will always be concerned with either the decoding
of the forward or of the reverse messages only. When dealing
with the decoding of the forward transmission it will be
important to keep the forward indexing notation "straight”,
while the revefse indexing will matter only in so far as it

will indicate which forward and reverse symbol events occurred

simultaneously., It will therefore be advantageous to ''refer’



the reverse indexing to the forward notation. Hence when
dealing with the forward message decoding, it will be under-
stood that, for instance, f} i will refer to the reverse symbol‘

b4

transmitted simultaneously with the forward symbol fi," and
that the index (i,j),wherever it should occur, will indicate
the position on the forward encoding tree only. It will also
be convenient to pick in:any given code the integers k and k
so that kng = Eﬁo. This can always be done. When, on the
other hand, decoding of the reverse message will be considered,
all indexes will refer to the position on the reverse encoding
tree.

In the paragraph preceding the last one we have discussed

the decoding of the forward message, and hence the index nota-

=+ b - -
-k,0°i-k,0° Yi-k,0°F 110 Fi-k,0

is ‘to be referred to the forward side.

tion of the listed quantities FI
and ?;-k,O

Resuming our discussion of decoding, it ought to be noted
that the identity of signals transmitted or received at the
forward terminal of the two-way channel is never determined by
the reverse decoder, It is in fact possible to treat con-
sistently the derived channel as a ''black box" into whose in-
sides one never looks.

The decoding ﬁrocedure will now be considered in detail.

An arbitrary, not necessarily optimal, decoding decision rule

will be given. Let it then be stated again that decoding is
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to be pérformed one message digit at a time and that once a
decision is made it is never cancelled or re-considered: all
further work is done on the assumption that the decision was
a correct one, All derived channel communication follows the
convention established at the end of section 4.4; it always
starts from the derived channel transducer state (0,0) (see_
Eq. 4-18). The reverse decoder is at time i in possession of
the following knowledge:
(a) primary knowledge:
(1) 1initial state (0,0) of the derived chamnel

(ii) forward message digit sequence Zi-k

(6-1)
oo s A - s+
(iii) reverse message digit sequences zi-k’ and Zi-k
» » —* - -
(iv) reverse received sequences Yi-k’ and Yi "

(v) forward and reverse sequential coding diagrams.
(b) secondary knowledge (computable from primary):

(i) forward input symbol sequence F;-k

(ii) reverse input symbol sequences ?i > and Fo ..
. . - , =t

(ii) reverse input signal sequences X i and X, , .
{iv) reverse portion cf the derived channel state

sequence s vesesS. .

! 0,077 **%1-1,n -1

As mentioned, the determination of the message digit Z i is

desired, The forward coding diagram together with the known

1 -
. k ; .
departure state specify a set of 27 symbol words Fi % which
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could have been transmitted through the derived channel in the
‘forward direction, Basing itself on the available informatiom
(9-1), let the reverse decoder find the most probable werd of

+% A
the set, say Fi-k“ The word Fiin will correspond to some

+% . . . ® . .

message sequence zi-k’ which will include z,_j as its first
digit. In that case let the decoding decision be that Z;Xg
was actually transmitted. It is clear that the above decision

rule is based on finding in the allowable word-set the sequence

FF .  which will maximize the probability

i-k
Pr(F ] /] o Vo F o e Timd = | (6-2)
Pr VL Pt Fiow Fiow Timd PECLY
Pr(¥] /PP ?;-k)
oy L /Tt Tt Fiot Fion Toid
S ¢ ee@ sFTEC S

i-k' "i-k’ ik’ i-k’ i~k

where we have assumed that the messages transmitted from the
opposite terminals are statistically independent and equipro-
bable, The maximization over the allowable set can be carried
out on the probability (6-3) below, since the denominator on

the right hand side of (6-2) is not a function of F:_k.
=t
Pr (/] T o L Froe Timd)
i-1 n.-1
P peG. /£ % veeusEr L
r=i-k s=0 (erS/ r,s’ r,s-1 Ll'knc'yr:s"l:'-'

¥ i-k,0°%r,s” """ ik, 07 i-k’Fi-&
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6.2 Random Codes

As stated, our aim is to define a region G (which will in-
clude Shannon's inner bound region GI) of points (R,R) for which
the following statement can be made:

If a point (R,R) is in G then there exist two~way channel

codes, signalling at forward and reverse rates arbitrarily

close to R and R, respectively, for which the probability
of erroneous decoding can be made as small as desired.
In what follows we will use the well-known random coding
technique. Assume that the desired signalling rates are such
that

- L . z. L e
R= == ; R= 2 (6-3)

(assumption (6-5) will assure that in the sequential code used
each transition from one state to another will correspond to

. one message digit only, and hence that there will always be
two transitions out of each state, However, all that follows
will be readily generalizable for situations in which (6-5)
does not hold).

I1f the time-string numbers k and %k are also decided upon,
the forward and reverse decoding diagrams may be constructed.
Let us next assign a probability distribution P(f) and P(E)
over the possible forward and reverse input symbols to the

derived channel. A random code ensemble can then be generated
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by assigning the coding sequences f, 0,;..,5. to the

1,n0—1
transitions of the forward coding diagram, independently at

random with probabilities I’(fi O)P(fi 1).,;.P(f }. Hence
2 ) ]

i,no-l
a coding diagram whose coding sequences were chosen in the
above way will have an ensemble probability equal to the
product of probabilities of all the symbols f appearing in
it, The same procedure is to be applied to reverse coding
diagrams. The ensemble probability of a forward-reverse code
pair will then be equal to the product of probabilities of
its forward and reverse components.

In what follows we will be dealing with the decoding of
forward messages and our notation will be adjusted accordingly.

The ensemble probability that the forward terminal will transmit

the symbol sequence f0,0""’fi,j is:

i-1 n,-1
Pr(£00,Eqysee €y =0 T | T ece

r=0 s=0
'[P(fi,o)“'?(fij)‘s

The expression for the ensemble probability of transmission of
a reverse symbol sequence is of the same form. Hence the en-

semble probability of the event \foo,...,fi_l,no_l),(foo,...,

fi_lyho:i);(yoo:oo-,Yi_l,nO_l),(yoo,o-a,?i_l,no_l) is:



(W3]
=

- + == =t - + == ot
PrFy il iaof e Yioe Vi Vi Yo = (6-7)
i-1 nﬁ
) =0 s=0 P(fr’s)ﬁ(E%;S)P(yr,S/xrsxr,s)p(yr,s/xrsxrs)

where Xes — f(a%s’%&s)’ irs B f(a&,s’g&,s) and

o0°400) = (Xy0:%00) = (0,0
where for simplicity we have assumed the restriction
P(y,y/xx) = p(y/xX) P(§/xX) on the transmission probabilities
of the two-way channel, although, as will be seen from the
proof, this was not essential. Equation (6-7) shows that our
random process can be represented by a Markoff diagram having
2ZHZ states characterized by different quadruplets of channel
signal sequences of length f/ (i.e. by the states of the
derived channel): (x.g,i,g).

Transitions from Markoff state (1,7,52, 5)

to state (36',43',3.', 5') are possible only if

(X,)-r - X-r+l
(y.>-r - y-r+1
)T = g Tl (5-8)
(y,}-r - y-r+l

for re( 2,3,...,1%)
Given a state (34%,%3%) there are four possible transitionms
associated with any given pair of symbols f,f , the next

possible state being fixed except for the received signal pair



((v? ) , GG ). This follows from the fact that (x') -

£Qx, ?j and that (X"-l = 5(2,7\;}. Given the quantities (x,g,x}

217
; -1 s e
there are 22 functions f such that f(xé) = A and it is

therefore dear that there are either 0 or 2"(‘~ -1)

transitions
from any given Markoff state to another.
The probability of a tramsition from state (1,9,3,5) to

state (' ,g',i',lj') associated with the function pair f£,f is

Ao e TEy Thesg T tan Th.
P((aem',‘;g') £f) = ) :i(f)P(f)
X%k LE £(64)=(x") ", EG,§)=(R")

and (6-8) is satisfied {7-9)

=0 otherwise.
Thus the appropriate channel ensemble Markoff diagram can at

least in principle be constructed.
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6.3 Ensemble Average Probability of Error

If in the following argument. we were to [ry Lo use tae
decoding criterion (6-3) we would run into serious difficulty
when trying to estimate the average ensemble probability of
decoding error. This difficulty, it would turn out, would be
due entirely to the fact that, as can be seen from the product
on the right-hand side of (6-3), the decoding criterion takes
into account the entire past symbol sequences known to the
decoder. It will prove necessary to define for our purposes
a slightly weaker criterion in which the decoder will base its
decision on sequences of length m. of past known symbols,where
m is an arbitrarily picked integer. It will be seen later
that this weaker criterion will not diminish the strength of
the resulﬁing coding theorem at all, since after the desired
bound expression will be obtained for a given m, it will be
possible to carry it to the limit as m=» 0.

Hence we will define in (6-10a) below a probability-like

function
- +oat e mm =
Qo Oy /Ty oy oy qoF 0 Yo (6-10a)
i-1 n.-1

F?T - - m Am _m —~m
Pr(yr s/fr s fr s’#r s"#r s’yr s’sr s
r=i- s=0 ’ » ’ ) ’ ) ’

. . . ——m '
where m is an arbitrary integer and 5.  are the reverse

b

portions of the derived channel states as listed in (6-1,b,iv).
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They are determined from the knowledge of all the symbols

£ i and all the signals §n,j preceding the state E;?s in
time, by the use of the formula (4-17).

We stress again that the difference between (6-3) and
(6-10a) is that in the product on the right-hand side of
(6-10a) the conditional probabilities exhibit dependence on
sequences of constant length, while the dependency of the pro-
babilities on the right-hand side of (6-3) increases indefinitely
with increasing i. This of course accounts for the statement

that the criterion (6-10a) is weaker than (6-3).

For any given code the new decoding procedure is then the

=+
e Fiok

the reverse decoder is going to compute the

following one: Using its knowledge of the sequences F;

-+ -
Foao Yo Ty

quantity (6-10a) for all the sequences F;-k associated in the

forward code with the Zk different messages. Suppose that the

A

highest value of (6-10a) is obtained for the word ink associated

Then the reverse decoder will decide that

ol

+%
me e Z, ..
to the ssag ik

Z, the first digit of the message word Zi_k, was transmitted

i-k’
by the forward terminal.

Y,

Suppose therefore that the event FT_ FPooFT 7T o

ik P T Fik

occurred and that the reverse decoder is trying to

7+
Yi-k

determine the message digit z; having decoded correctly all

-k’

the preceding message digits Z;_ The decoder will make the

k)

wrong decision only if there is in the incorrect subset of the



sequential encoder (using Wozencraft's terminology) a symbol

ot

word F?“ such that for it

i-k
L st +* =+ - == i
O/ FimeF o FieFiaeYiad 2
(6-10b)
~ —‘.+ + =t - T -
2 QT P TiaeFiao i)
We can then define t Sg+ - (F+ T FT - ) of
ne a set S_ _k'?i-k i Fier Fiopr Ty ) ©
symbol words F k such that
o+ R - 6-11
Fia® Sey_ 3; k(Fi-k’Fi-k’Fi-k’Fi-k) (6-11)
if and only if (6-10b) holds.
We then get that
=+ g o
F, FH1 = 2 e (6-12)

-(F
*?
F€S+(F TFIET

YY

It will be convenient to state the criterion (6-10b) for
membership in the set (6-11) in a different way. Define an

inverse distance between the signal sequence 7t and the symbol

i-k

sequence F given that the word F, was transmitted and

i-k’ i-k
events F, k,F'_k;Y 1k occurred previously:
+ =t -t . - - =
Dm ( i~k’Y1-k/ i-k’ i- k’ -k’ -k’) (A-12)
St + =+ - ==
= 1og T /Ty o Fio T e Fs ol )
= ot =+ - 5=
¢ O oFeFieF e i)
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where G is an as yet unspecified function of the indicated
variables. The structure of G will be determined later so as
to facilitate the estimation of the probability of ensemble
decoding error. Since G is not a function of the symbol se-
quence F:;k’ the relation (6-10) can be replaced by (6-14)

below as the condition for membership in the set defined by

(6-11)0
A s i .
PP 3 e/ Fi oo Py o Fimer ) 2
2 D) Y /Pl oo T T - (6-14)

Now the probability over the code ensemble that no message
in the incorrect subset of the sequential encoding graph be

associated with a word F * & S-+ (F

- == .
i-K wFiaoFiaoFia) is

greater than or equal to
k-1

(1 - Pr[sgi_kyz-k(F e Fioe Fi-k F;~k)]]2 . (6-15)

Hence the probability of error averaged over the code ensemble
characterized by the Markoff source described in section 6.2 is
bounded as in (6-16):

=+ <+
P(e)€ ZPr(Fl PR SRR RS M 44 Ry (6-15)

+ - =
FiaeFiaef

Fm 5= o N1l 1o — + p- T+  T-
Fi-k’‘l'i-k"fzt-k;"g1 PGy - Flae Fioae Fia FX

In order to bound the right-hand side of (6-16) conveniently

we will now divide all events into two complementary sets T

1



e e o v

c . . . .
and T , according to a distance criterion D,:

0
+ =+ Gt == - =-
Let the event (Fi-k’Fi;k’Yi-k’Fi-k’Fi-k’Yi-k)E T :
(6-17)
ot =t
!

if and only if 1 D (F _ Fi-k’Fi-k;?l k’ -k)" 0

knO

otherwise let the event belong to the complementary set T?

1 Y

We will overbound 5?5) as follows:

P(e) & P (e) + P, (e) (6-18)
where

_ + - =t = = -
Byle) = ZT PrF; g0 Fs e F g0 F e Yo Y

k-1 + - = == ot g
Zc 20 Py e T e Bae Yiao Yiad o

- + ==
‘ Pr(S"{_k'f;_k(Fl-k’Fi-k’Fi-k’FJir-k))

*d
[\
~
(¢
~
i

Our task will then be to evaluate the two terms on the right-

hand side of (6-18).



6.4 A Bound on Eﬁ(e)

In this and in the following sections we will try to

find a bound on the decoding error probabilities Pl(e) and

2(e). We will succeed in displaying a region of signalling
rate points (R,R) for which the error probabilities will be
exponentially bounded with increasing decoding sequence length
kno. We will adopt here Shannon's (3) approach to error

bounding.

In the process of finding the bound on Pz(e) we will be
forced to choose the structure of the function G(§j-k’F;-k’
Fi-k’Fi-k’Yi-k) appearing in the denominator of the logarithm

defining the inverse distance Dm (see equation (6-13)). The

choice that we will make will turn out to be convenient for the

estimation of Pz(e) but will introduce a difficulty into the

estimation of Pl(e). We will be able to overcome this dif-
ficulty in the next section by proving in Appendices III and
iV a theorem about the convergence of certain probabilities.
As will be seen, there is an obvious way of defining the func-
*FT

tion G(?1~k"i-k’Fl—k’F;-k;§£-k) which would enable the estima-

tion of Pl(e) to be carried out in a routine way. It will be

shown at the beginning of section 6.5 that such definition

would make the estimation of Pz(e) impossible. To simplify
further notation we will from this point on, without any loss

in generality, change the subscripts (i-k) to subscripts i.
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From definition (6-17) and (6-13) it follows that whenever

(F*F*Y*F JF, ) &T° then

nD |
0 nygtmt o= 7~ sy @H/et 3t 7= v-=-

G(Y, F, F, F, ¥)<«Q T /F F; F, YD) (6-19)
where we write nakno
o o +_ mt= -

Hence if Fi € Si%ﬁf(FiFiFiFi), then

-nD '
0 +*..+ - o e wtet ===z
e Q, (Y /F l,Fi 17>c;(yi,1='i,1:' JF ,Yi') (6-20)
so that
- ———- +*
-nD Q, (%, /F ,FLLY)) Pr(F, ) *
0 : f_f AL > ey 62
G(Y ,F.,F.,F.,%)
1 l i 1

Summing the right hand side of the above over the set
S?-p? (F F F F. ), and the left hand side over the larger

set of all F (which includes the set S-_,Y (F F F+ F. ) we

get
+*—+ == S +*
e-—nD0 Z Q (- Y/F 1 F:L Yi) Pr(Fi ) S
x4 + - - ==
F G(Y,FT,F FY)
R R R

(6-22)
+ - =t =~
> Pr(s?:?:(Fl’FlyFi;F) )’

and therefore, according to the definition (6-18) we get a

tound on P, (e):

+
. -mD 2 Pr(F,,F
Pz(e)42k 1.0 i
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k-1 "Dy
We must now find a bound on the coefficient of 2 e

on the right hand side of (6-23). The standard technique of
handling this problem is to show that we are dealing with a
sum of probabilities whose value cannot exceed one. To do
this we must define the function G(?:,F;,F;,fi,?;) in such a
way that it will cancel out of the sum expression, so that the
latter will have no denominator. Hence the function G should

be a factor of the probability

+ - =t == =t o=
Pr(Fi,Fi,Fi,Fi,Yi,¥i) = Pr(F./F

or, more precisely, it should be a factor of the probability

~+ =t - =~ = ) ot =t = == o
Pr(Yi,Fi,Fi,Fi,Y ). We could equate G with Pr(¥i,Fi,Fi,Fi,¥i)
and successfully bound the sum on the right hand side of (6-23).

However, such identification would bring us into difficulties

when estimating Pl(e). It will turn out that the most convenient
way to define G is (see also discussions at the beginning of

this section and in section 6.5):

ot =t - == T = ot,ot - == o=
G(¥,F,F,F_,¥) Pr(Yi/Fi,Fi,Fi,Yi) (6-24b)
Using the above identification the sum on the right hand side

of (6-23) can be written as in (6-24c):
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+ o=t o ot o- |
P (F.’F-,F.’F-)Y.’Y-) ot
r i’ itTit i i E; ot/ ot et - =~ - o
Z ( Qm(Yi/Fi,Fi,Fi,?i,Yi)Pr(Fi )

- e 3
¢ Y, FLrT LT Fh
1 1 1 1 1
+oom oz oF oo o - = oy i
TZC Pr(F /P FLFLTLY) pr(FY) P FLY) (6-24¢)

.Z Q(Y/FFF Y)Pr(F)
+%

But from the definition (6-10a) it follows that

2 Z Pr(‘r‘ )Pr(F )ZQ( /F ?+ 1’?;{) =1 (6-25)
e gt

Hence we get:

+, = =t == =t =- =+ - = -
Zc Pr(Fi/Fi,Fi,Fi,Yi,Yi) Pr(F,) Pr(Fi,Fi,Yi) .
T

> s+, Hr=t
. F+* Qm(Yi/Fi’Fi’F

i

T - ——— — -'i-'i'\‘ -
» 2 Pr(F/F,F F, 91T TOPr(F ,F.,¥)Q (T,/F],F,F,F,¥).
S ST RS R D A R S R R |
F.’FI ’Y ’F'
i 1 i L
F- F—- ?- . PI’(F )Pr(F ) =
i,’ ' '

Z Pr(F F ?) 2 Pr(F )PrgF )Z_Q (¥, /F '+F 'F"'"
+ b

F.,F.
1 1 1’71 1

+ Z e CRLFLELTLD <1

(6-26)
Substituting the right hand side of (6-26) into (6-23) we get
finally the desired bound:

-nD -n(D,-R)
P(e\CZkle O(e 0

(6-27)

where we have used the relation (6-5).



We may now conclude that if the cut-off level DO
is such that Dy-R >0, the quantity Pz(e) will be exponentially

boimded as N-=» .,
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6.5 A Bound on Pl(e)

Next we wish to find a bound on -1(e), i.e. on the

probability
1 Q (/PRI FL D
: P_(T/FT FDFD D) 0
r it ti i i L
It is clear that we may expand
=+ .
Pr(Yi/F;'Fi Fi )
it+k-1 n,-1 _ _ _
= ir=i| E:L Pr(Yr S/ r,S’fr,S"l,.."fi O,i’r s_l,ou.,
1 0’ F' Yi)
(6-29)

so that using the definition (6-10a) we can re-write (6-28):

iHe-1 -1 Pr(y. /f 5.0 )
Pr[%ﬁ glog r,s' r,s’ rs!m /rs jr,s’ rs
el s=0 Pr(Yr s/ r,s’ " £y ,O’Yr,s-l’"” y1,0’
- == o= £D,.1]
FLE,T) 0
(6-30)

Thus we must find a bound on a distribution of a ' sum of

dependent random variables

log s # r S yr’SJ_EJE . (6-31)

Pr(yr s/f seeesEy 03Ty gopre ¥y 0oF o F T

,

The only known approach for finding such a bound is due to
Shannon and is presented in Appendix II. Shannon's procedure
is however restricted to cases in which the random variables

are associated with transitions of a Markoff process. As the



o
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process passes from state to state the sum is generated by
successive addition of those random variables which are as-
sociated with the tranéitions that have taken place.
Now, it is evident that the random variables (6-31)

cannot be associated with tfansitions of a Markoff process,
because the denominator of the logarithm is a probability of
an event conditioned on a sequence of past events, whose length
increases with increasing integer r and s. The numerator of
the logarithm, on the other hand, is a probability of an event
conditioned by a sequence of past events of fixed length m,
and causes therefore no trouble. The reason for the introduc-
tion of the weaker decoding criterion (6-10a) in place of the
criterion (6-3) now becomes apparent; had we used the criterion
(6-3) the numerator of the logarithm (6-31) would have been a
probability exhibiting a dependency on a potentially infinite
sequence of past events., We may therefore rightfully ask
whether we could have avoided in a similar way the trouble
caused by the denominator of the logarithm (6-31): could we
have, perhaps, in section (6-4), defined the function G (see
the definition (6-13) of the inverse distance Dm) in a manner
more convenient than (6-24b) for our present purposes? In
pérticular , was it possible to identify the function
G(¥,F.,FI,F7,¥]) with the probability P (¥ /F ,F.,FI,%0)

SR R SN Rt | A R A SR R |

defined below?
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itk-1 ng -1
Vmhmdp =g = - =t _t -t
PO /F R P ¥ |r=|i is=[0 Pr, o, o0 e, o, 0%, S
—= n Tmm- (6-32)

where s .0 g(sOO-O, Fi,¥i),

Iy .

‘¥ 2 -j-1 =-j-1 _--3-1 .

£ s g( £,s ’ fr,s » Iels ), and t is an

arbitrary integer.
(for definition of the function g see equation (4-17) and
preceding discussion)

To answer the above question we must return to the dis-
cus8ion of the paragraph following equation (6-23). There it

was pointed out that it is necessary for successful bounding

of the probability P,(e) that the function c;(?*i,?**‘i,ri,?'i 7))
be a factor of the probability Pr(¥TF§:+F.'ff'¥f). Hence we
must ask whether the probability P (Y /F F ) defined

above is a factor of Pr(¥i’Fi’Fi’Fi’¥£)' But we may write

ot mm -
Pr(?i)Fi:Fi)FijyiB =

e m __ itk-1 n,-1 g _
- Pr(Fi,Fi,Y ) R ( )Pr(yr S/ r, s""’fi,O’yr,s-l"'
o.oyi’O,Fi’Fi,Y-i), (6'33}

and since the probability Pr(yr sqfrts’_¥ S,@& & 52 ) is not

in general a factor of the probability Pr(y /f ,...,f

i, 0’
r,s-12°71, 0°FrF1,¥;), we see by comparing (6- 32) with (6-33)
2 2
that the function Gd@f‘ﬁf F;,--'Y ) cannot be identified with

the probability P_ (? /?r Fi:Fi,?i) without causing (insurpassable,
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ion at the end of section 5-5)

-
(7

s

*J

as will be seen from the discus

do so by showing that for a sufficiently large integer t the

probabilities Pr 4? )} approximate
: {‘yrs r,s’ rs?rs r,s’ Pproxs

:lcsely the probabilities Px (¥ /f S,..,E
r, ,

e s

xl

,0°7r, 517

=

o.§i’O,F1,?T,? ) and that we may therefore replace the latter
probabilities by the former in the expression of the random
variable (4-31). It will be seen that we will thus cause an
"ensilon change'' in the computed capacity region for the two-
way channel,

We will now make our approach more precise:
In Appendix III we prove a theorem giving the sufficient condi

tions for the existence of an Integer t such that for all £>¢t

,."
the probability cf an event A~ conditiomed on a sequencs

2 i-t
; - A ol 13 B . ead 11 1oe i
A ,A yes oA of preceding esvents will differ by an

conditicned on any sequence &5 T,A7 T, ...,A SAT T T, 0T,

in Appendix IV to certain avents generated by a particular clas

F
wy
D
M
[
oo
3
J
w
=
rt
fie
[¢]
w©
‘.—.«l
{w
H
ot

F Markoff sources It is shown

Qo

probabilities {(£-29) can resu

3 . - 3 ER A, B S ? 1 2 -
and that rthereferzs rthese vorobabilitiss behave in g wa

C



satisfying the following theorem:

Theorem 6-1

Given any &> 0 there exists an integer t_. such that for

0
all t > ¢t

0
1 =-t _~1

e - -t -t
lPr(y/f,f ,...,f »y ,-ou'? ,§

) -

1 =-t

- pe(3/E, E7L, ... FE, F T Frt-r 5ol

yees,t 3T e (6-34)

==t -—t-r _-t-7r
o.p,y ,..’,y ,S )é_

< & Pr(y/f,fnl,...,f-t,y-l,y-t,s-t)
r=(1,2,...)
provided that
pr(E,E Y, .. L E Ny, .., 5D £ 0

-t-r =-t-r ==t-1 _-t-r --t-1

d _-t o f
anc s = (8 , £ yoossk , Y seeesy )

(i.e. the reverse portion of the derived channel state

-
—

) t is determined from preceding state portion
gET by use of the knowledge of symbols f and signals 7
which occurred between the time intervals (-t) and {(-t-r).
g is defined in (4-17).)
If use is made of the expansion (6-29) and of the
definition (6-32), it follows from Theorem 6-1 that

n gt o+
(1-6)" pL(Y[/F] F

=t =t = = n .y ,=tmt - = —-
ﬁPr(Yi/Fi F.F, v, ) € (1+§) P (Yi/Fi F,F. Yi}

where n = nok.



Thus, using also definition (6-10a), we may write for i

sufficiently large -

1 Q (Fi/F7 i’Fi FL YD
o log T Et
Pr(Y /F FOFYD
it on-1
> log Tre + = log | | [ (6-36)
r=1i s=0

and consequently, again for i sufficiently large,

=gt = o . =

==

L EFLELELELED

Pr -r-l-log T ——— éDO <
Pr(Y;/F; F; F; Y;)

itk-1 ng-1 Pr(y, /£ E. _pT Ao F 3D
< Pr%-tl;log r,s r,s’ pr aﬂl:;syr,s r,8 e
r,s)

r=i =0 Pr(y, / Z
< Dy + d ;) (6-37)

where d = log (1+€)
Our task will therefore be accomplished by finding a bound on
the right hand side of (6-33). This should be possible by the
method of Appendix 11, since the newly obtained random variable
can be thought of as a cumulative sum of random variables
generated by the Markoff process described below.b

However, let us first make a slight adjustment which will
simplify the description of the mentioned process. Since the

probability Pr(?{/?*}wl F',Y ) does not involve the integer m



used in the definition (6-10a) of the probability
qu?I/FZ,fz,F;,F;,@;), we may, instead of bounding the right
hand side of (6-37), bound the probability

= M P M
-1 pe(y. /f_. L,E_  , )
Pr _1_ log -|—T TB-[ r,s r,s r,s/fi 'a-MS 'yr s’ <
r=i-k s=0 Pr(y /f X ,gf »8_7)
r,s’fr,s’Jr,s’ r,s

<D, +J'}(6-38)

where M = max (m,t)
If M = m, then the correctness of the relation (6-37) will not
be affected if we substitute in it M for t. 1I1If, on the other
hand, M = t, we may change, without any detriment to decoding,
the definition (6-10a) by substituting M for m.

Consider then a Markoff process having states characterized

by the different possible sequences.

({M?’ 7 A MMt g = W, (6-39)

We can make the state characterizations clearer by displaying
the left hand side of (6-39) as an array whose columns are the

sequences£ ﬁ Hence we can write
-1

f,y,?,‘i (6-40)

M M =M _-M
y y

“M M /
s , s

The states W“;I into which a transition from state W’M exists are

representable by



- - -1 -1 R -1 - "1

£, v, £, ¥, Y [ED, GO, ENTY, Y

-1 -1 =1 -1 -2 <2 e =2 =2
‘? ’ Yy ) vy (3?’> 2 (Y') , (£') 7, ";{_7') .

. . 5%:,,'
*-M+1 M+l =M+l =M+ Sy =M N s T N T A Wil
T,y L, B, T =\, T, (BT, G (6-41)

- - "'lvr , "'M p":. -] - o - = ..1\/!’ ¢ - "a.’
gL, g ) (s ™M= M>,’ks'> =£ (5 )

2 (22447

There are therefore 2 possible transitions out of any

state W', each leading to a different state Wﬁ . The transi-

tion probabilities will then be defined:

P(yH T O Y THEEHY T @ The) ™
By (o= (£ THF(ED™ (6-42)
If ﬂ; and w"are representable as in (6-40) and
(6-41), respectively. In the above product
&) = s ™y @ =@ ey

0 otherwise,

If we compare the Markoff process defined above with the
one of section 6.2, and in particular if we compare equation
(6-42) with equation (6-9), we see that the probabilities of
the functions and signals attached to the transitions are
identical. We may thus compute the bound on 5;?;) by using

the process described by equation (6-39). Thus to each

» - -~ - N --' - . - . -
transition from state ﬂM,to state WM’ {the states being des-



cribed as in (6-40) and (6-41), respectively) we shall associate

the random variable
Pz "t /(f')' Lant !Q ,g“," )
log Pr((5") /(f )~14PM W (6-43)

and estimate a bound on the distribution (6-38) by use of the

methods of Appendix II. Identifying the distribution (6-38)

with the function G(n,n(DO+J3), we get from equation (A-II-37):

- ' -
G(n,nf' (t)) £ ge n(td (£)-4(t)) (6-44)
where the quantities f(t) and Q' (t) are defined in equationms
(A-1I-9) and (A-II-19), respectiveiy. The identification

7' (¥) =D, +0 | (6-45)

is then made., We will not bother to make a complete translation
here into the notation of Appendix II. It is straightforward

but quite complicated. We will only observe that the exponent

on the right hand side of (6-44) is in the range t £ 0 equal to
zero for t = 0 and is negative otherwise, and that in the range

t € 0 the threshold {'(t) increases with increasing t, and is
largest when t = 0, as can be seen from equations (A-1I1-28) and

(A-I1-20). But

S/ F M M. M
! _ o
J ) = E{log Pr('i/'{,f,ﬂmﬁl ig,s )}= s
Pr(y/f,pM,ij“,g' )
Pr(‘?/f,f"l,.o,f'M,E,E‘lL..,E‘M,?'l,..?"ﬂg'm)z
) 100 Pr (3;/ f’ f-li e E"M,}—i-l; . :§‘M)-S-M>

where the expectation is to be computed over the probability
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distribution of the Markoff process described by (6-41), or,
equivalently, over the distribution of the process described
in section 6.2, in particular by the transition probabilities
(6-9).

The symbol g in (6-44) stands for the number of states
in the pfocess and we have

22+1

M(2 +1) + 44

g =2
Although g is a very large number indeed, it is independent
of the code length n, and therefore as long as (td'(t)-d(t))2 0,
the right hand side of (6-44) can be made arbitrarily small by
use of a sufficiently large n. Thus we may conclude that 5;?5}
is exponentially bounded whenever the quantity (6-46)'is larger
than D0 +J. ; can be made, by a sufficiently large M, as
small as desired. Taking into account the results of section
6.4, in particular equation (6-27), it can be stated that as
n—p»00 the average probability of the reverse decoding error

decreases exponentially, provided that the forward rate R

satisfied the inequality

R4 -log (1+e) + E;log (6-48)

where the positive quantity € »0 is a function of M and is
determined by the equation (6-34).
It is obvious that since in principle the forward direction

differs in no way from the reverse one, all the statements in
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sections 6.3, 6.4 and 6.5 made with respect to reverse decoding
of forward messages apply as well to forward decoding of
reverse messages. Hence the probability of forward decoding
errors decreases exponentially with increasing n, provided

that the reverse rate R satisfies the inequality

Pr(v/f,E Myt MS—MI
priy/e,f s )

where € » 0 is a quantity analogous to €, pertaining to the

R¢ -log (148) + Ei (6-49)

estimation of Pr(y/f,fM,%g,s-M) in the manner of equation
(6-34).
It might be stressed here than in the foregoing argument
we have not attempted to obtain the best possible bound on the
probability of the decoding error when the signalling rates
R and R satisfy equations (6-48) and (6-49), respectively.
We have, for instance, made no attempt to determine the proper
choice of the cutoff threshold DO° Thus we are leaving undecided

the question of the best obtainable exponent combination in the

probability of forward transmission error bound

A CAIOR R A OR S

(6-50)

—— | emeesssss

P(e)& pi(e) + P (e)ge

in cases where the rate R is considerably smaller than
(F'(0)-d ). Rather, we have limited ourselves to displaying
the region of points (R,R) for which the probabilities of error

are exponentially bounded with increasing n.
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The Main Coding Result

We will state here the main result of the present article:

Theorem 6-2

Given any binary memoryless two-way channel having input
signals x and X, and output signals y and §, characterized
by the transmission probabilities

Pr'{y,¥/%,%) = p(y/xx) B(y/xX). (6-51)
For an arbitrary dependence length / a derived two-way
channel can be construéted as in Figure 4-2 , For any
pair of positive numbers €, € and for any probability
distributions P(f) and P(£f) over the input symbols of
the derived channel, an integer M can be found such that

for all integers m>» M

\?r(y/f# ? )-Pr(y/£, 'é 4 ﬁ_m q o mrle
&€ Pr(y/f,ﬂm,ym,s-m}

lpr /£, Zm"gm’g’m} Pr /T, ?m"gm’/ T AT FHe (5-52)

oy , = —m m --m
4E Pr(‘]/f,/ ,7 ;8 )
whenever

m m-1 -m-r m -m-1 -m~-r -m-r ,
Pr(f,p 8 7,0 E N s ooV ) S } # D

P
O
}
Ut
{2
s’

o= =-m-Yr _ -m-1 S\ T -m-Y .
Pr(fF . :~':fm ,Y:y ym :*')‘]mr;gm ) £ 0

For the above two-way channel, for all mpoM, codes signal-
ling simultanecusly in the forward direction at a rate R

and in the reverse direction at a rate R such that



. = P2 Puo =m —-m.
R { -log (1+€) +E§log P (/L. JZ y: LG5 } (6-54)
Pr(F/%, —n,§' m)
m fm ,m ~-m
R¢- log(l+e) + E{log Priy/£.£ ! ? 2.5 (6-553)
Priy/£f, )

can be found, for which the probabllltles of reverse

and forward decoding errors will decrease exponentially

with increasing code length n. Hence for a sufficiently
large n there will exist codes signalling at rates R, R

whose probability of decoding error will be as small as

desired.

The consequences and implications of the above theorem
"will be discussed in the following Articles. The author,
however, wishes to make one final comment on the expressions
on the right hand sides of inequalities (6-54) and (6-55),
and on the technique used to obtain them:

From the discussion preceding equation (6-38) it
follows that the right hand side of (6-54) could be written

as in (6-56)

m — m ~m
~log(1+e(t)) + E{l Pr(y/f, fl fm-tﬁ .3 )}, (6-56
s

where the integers t and m are controllable independently. As

m is increased, the value of the expression (6-56) increases
or stays the same, since it is a well known resﬁlt (see for
instance Fano (4), Equation (4.11)) that

-5 {1og Pr-1(§1'f,f, #m,zm,gm, s‘-m)} &

£-E {1og Pr-l(%f’grﬂjm-e-l,?m+1,§-m+1>}

~~
Oh
]
(¥}
~J
Suus?
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This is as we would expect it, since an increase in m corresponds
to an improvement of the decoding criterion Qm defined in
(6-10a). 1Indeed, as m - 0o the decoding criterion Qm becomes
optimal, and we therefore conclude that our final result was
not weakened at all by the temporary adoption of the less than
optimal decoding criterion, while it was this adoption which
enabled us to carry the random argument through in the only way
known so far: by use of the Shannon method for bounding dis-
tributions of sums of random variables generated by a Markoff
process (see Appendix II).

The result (6-56) also shows conclusively that in section
6.4 it was not possible to identify the function G(Y;,?Q,Fi,
f;,Y;), used in the definition (6-13) of the inverse distance
D , with the probability P! (?1’/?”1*,5‘;1?;?;) defined in (6-32).
We recall from the discussion of section 6,5 that such
identification would have made the bounding of EI?Z) easy.
In fact, it would have resulted in the elimination of the
term ~-log(l+e(t)) from the expression (6-56). But such
elimination would cause an increase of the capacity region

of the two-way channel. It should further be noted that

E{log —-—‘i—i‘--t fs
Pr(y/f,l A4 ,5 )
1 (6-58)
£ E {1og ;
- —=at-1 _t-1 _~t<!
Pr(}’/f: t )9 l)S t)



and hence if G were to be identified with Pé and if then a

bounding of Pz(e) were possible, the capacity region of the
two-way channel could be increased by the simple strategem

of choosing t=0, This is absurd and hence it follows that

with this choice of G the probability Pz(e) cannot be
bounded.

Finally we wish to note that it follows from Appendix
IV that as t-»o0, €(t)—>0. Combining this with the con-
clusion reached in the paragraph before last, we see that

the capacity region includes the convex hull of points

- -1 = == _-
Eilog Pr(@/ (L ) (L L@ 1,..)>)}’ (5-59)
prG/(EET, . OGT.D)

-1 = =-1 -1
E{m Priy/(£,£ L. )EE . )G ",.))
& -1 -1
Pr(Y/(f,f ,oo)(y ,"’))
obtainable by different assignments of probabilities P(f) and
51%3. However, the conclusion embodied in (6-59) has no

practical value since, because of the infinite dependence

implied, the expectation expressions cannot be evaluated.



7. Coding Loss and Bounds on the Capacity Region

In the preceding Article we proved a coding theorem which
can be interpreted as giving a lower bound on the two-way
channel capacity region. It involves evaluation of the right
hand sides of equations (6-54) and (6-53) for some input pro-
bability distributions of the derived channel's input symbols,
P(f) and P(f). We would like to investigate these distributions.

7,1 Interpretation of Capacity Bound Expression

Consider the derived channel of Figure 4-2 to whose input
terminals are attached function sources generating input sym-
bols independently at random, with probabilities P(f) and P(E).
In what follows we will switch from sequential to block notation,
because of its greater simplicity (see in particular section

4,1). The probability of the symbol sequence Fz will then be:
i+n-1

Pr@F) = T P(E,) | (7-1)
j=i

and similarly, the probability of a sequence F? will be:
— itn-1
prFp =TT PG (7-2)

j=1

Consider the information about the forward source trans-

. . = =+ .
mitted through the channel when a given sequence Fi=Fi,Fi is

transmitted from the reverse source and a given sequence

+ ==, . .
Yi Yi,fi is received. It is:



Pr(Y. /r )
F = . 7 -
I (Y 3F . / ) log Pr (T, / (7-3)
But we have
Pr(Y¥./F,,F.)
lim E‘-l- log —2—9° 9 {. (7-6)
n-» o Pr<Y0/F )
n Pr(g,/f,,6, 150»f ,E.,E’._ yeesEysTa qs0esTq)
= 1lm %- { :EE 1og 1 l 1 1 1 1 1 1 1 }=
n—»d J=1 Dr(y /f 1,na,fl,y3 lgnao,yl)
Pr(y /f ,’t’,f ,E ,f-,..’-f- ,?‘- ,o',?)
- 1ig E{log n’fa-1 N5 s N B Ll
n*m Pr(yn/fn’fn-l".’fl’yn-l’”’yl)

So that we may conclude that the per symbol expectations of
information passing through the channel in the forward and re-

verse directions, respectively are

Pr(7 /f_,. .,fl,fn, . ,El,
log
N—» OO nF‘OO

lim E{l 1(Y ;F /F )}= lim -
n o] (o] o] P (_./E E - - )
r yn n,ooy 1:yn-1}",y1

7n-1""?1)§ (7-5)

and

g Pr(y /f .°,f1,§n,,.,f.1,yn-1..y1>
1 .

1im E§—~I(Y ,F /F );— lim EQglog o
0 0 Pl’.’( /f v:flyyn_l"!)"!_/

N =00 n=—Q
(7-6)
Examining (7-5) and (6-54) it becomes obvious that the two
expectation functions appearing in these equations would be
identical if the decoding criterion (6-10a) were to be ideal.

The same is true for equations (7-56) and (6-55). Hence we
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see that the coding theorem 6-2 provided us with a result which
our axperience would have led us to expect: the arbitrarily low
error rate bound is associated in the usual manner with the
information passing through the channel. This of course sug-
gests very strongly that the capacity region of the channel is
asscciated in the usual manner with the average mutual informa-
tion for which the successive input symbols to the derived
channel are not necessarily independent of each other. Indeed,
examination of the argument in Article 6 leading to Theorem 6-2
would show that the random code could have been generated by

-1 - -
symbol probability assignments P(f/f -, f 2,...,f J} and

-1 ==2 ==V J )i . A
£ 7,f7,...,f ) where and is any pair of positive

ingludes
integers., Hence the capacity region _/ the convex hull of

~h ]

P(

t

es 1im ell 17 .5 F R ¢ R bile
points %EEOOL{n I(YO’FO/FO)}’ %Egaj ﬁ;n ‘(YO"O/FO)KObtalnabE“
-1 =V,

. = - =
by different assignments P(f/f ~,...,f ) and P(f/f 1,...,5

S

as ¥ and ¥ vary over all positive integers. We did not prove
Theorem 6-2 in all its possible breadth because we believe
that to do so would have necessitated consideration of issues
extraneous to the main goal of this thesis: the clarification
of the essential differences between cooperative and non-z2c-
operative coding.

We will therefore study the expressions (7-3) and (7-%&)
further, eliminating the restriction ¢f independent assignment

of input symbols f and f. 1In particular we shall trv to learn:



(a) The relationship of Shannon's lower bound to the
lower bound of Theorem 6-2.
(b) Whether the information flow through the channelcan
be improved by removing the independence restriction on
the input symbols to the derived channel.
(c) Whether one can interpret Theorem (6-2) and the expres-
sions (7-5) and (7-6) in some way that could prove a guide
for appropriate code construction for binary two-way
channels.

In this Article we plan to deal with points (a) and (b) above,

and we will leave point (c) for Article 9,
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7.2 Derived Channel and Signal Source Interpretation

Consider the derived channel of Figure 4-2 to which sta-

tionary sources have been attached generating successive symbols

independently with probabilities F{f) and P{f). The situation

is pictured in Figure 7-1,

r-—"~>""~>~>"T7="==7=7- 77 ~=~=77~° Tt

trans
ducer

symbol

two-way
source

channel
Frans -|

v £E|E ducer]

S AN D - —— - — —

|

—»ﬂ}:
b
Yo

symbol
s

|

‘<2j\
n

Ly

| PO -

r-——-|--
|
|
!
|
|

Figure 7-1,

Consider next the binary two-way channel embedded inside
the derivedvchannel of Figure 7-1. If one were to consider
the input and output signals to the two-way channel only, then
the process could be represented by Figure 7-2 in which the
signal sources have random outputs depending on the identity
of some combinations of previous input and output signals at

the terminals of the given two-way channel,

signal X y
source — twe-way —
{¥ channel }
< < signal
¥ ‘X sgyurce

Figure 7-2.
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It would be helpful to find out what the signal-source
probabilities of Figure 7-2 are for given symbol source pro-
babilities of Figure 7-1. 1In this respect we can prove the
following:

Theorem 7-1

The two-way channel input signal x will depend on a
finite number £ of immediately preceding channel input

and output signals (x-l,...,x z;y-l,...,y-i) if and only
if the successive input symbols f to the derived channel
are statistically independent of each other., The integer
! is equal to the dependency length of the symbols £ used.

Proof:
Comparing Figures 7-1 and 7-2 we see that

2y Lyt =2 e xR, 0y

faf{x,y)=x (7-7)

Pr(x/(x-l,x

As seen from Figure 7-1, any function £ in the above equation
-3 -3

can depend on channel signals x ¥ and vy J only in sc far as

these are indicative of symbols £ = generatad in the past. It

is further seen from the summation in {(7-7) that even if suc-

cessive £ symbols are independent, the signal x will depend on

s . . . . ;=1

the immediately preceding input and output signals (x ,...,

-2 1

- -1
X 7,7 T,e.e.,¥ ), since on these depends the choice of symbols

£ to be included in the summatiom.. 3imilarly, the identity
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- -1 '
of symbols £ t which could have caused x ~ depends on the con-

-3-1 -2 -4=-1,
ey

. .. -2 .
figuration (x 7,..,X yessY }. Thus if

pr(el £) £ 2(eY) P(E) (7-8)
then we can write
Pr(f/(x-l,x-z,..-)(Ynl,y-2)> =
£ ey = £73 f'z(x'2,7‘2)=x'2
> pece/eL, e L L o7 L),
£75 £yt

i-1

JPr(e e e & oy Ly

Pr(e 2 Ly, 7 vy (7-9)

It thus may be seen from (7-9) that as soon as successive sym-

bols are dependent, the signal x will depend on the entire in-

finite past of received and transmitted signals (x-l,x-z,..a},

-1 -2 .
(y by "5...). 1If, however, the symbol source in Figure 7-1
generates successive symbols independently, then it is certainly

true that

?r(x/(x'l,x"..)(y'l,y'z,,.)) - 2 2D (7-10}
£f (3:,9) = X

and thus in such a case x will depend on the finite past (x,y}

only,
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In the following sections we will deal with sources
generating successive symbols independently. In view of
equation (7-10) it will be useful to define a set of probabili-
ti&s{qéf} , 51%}; which will determine the operation of the

X9

2

signal sources of Figure 7-2., Let

W = 2 () @ =

(£) . (7-11)
x4 faf(x7)=x x5  faf(xewn)
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7.3 Information Flow Through the Two-Way Channel

We will here consider the channel of Figure 7-2 for which
the signal sources are defined by the set of probabilities (7-11).

We would like to ask what the average information flow is
through the channel in the forward and reverse directionms,
respectively. The information available at the forward terminal
about the actual operation of the reverse source is provided by
the identity of the signal sequences X and Y, where the implied
subscript "0 was left out (i.e. for instanée, X = xl,xz,...,xn).
However, X depends on E'only because X depends on Y through the
signal source, and Y depenas on X. Hence all the information
about the output of the reverse source is provided by the re-
ceived signal sequence Y and depends on X only in so far as the
latter sequence modifies the noise in the channel. The manner
of generation of X must then be irrelevant to the determination
of information flow, which must hence be computable from the

situation represented by Figure 7-3,

(] ﬁ
Y
s
4y

two-way

- ~ channel

,J?

signal source g_(x)
x

Figure 7-3.

QgL

Of course, when averaging the information flow, the weight to

be given to the information measure involving quantities X, Y



and X must be the probability Pr(K,Y,}-{) derived from the
operation of the channel of Figure 7-2. We therefcre con-
clude that the information flow in the reverse direction is

to be measured by the quantity

I'(V;%/X) = log SECI/X.X) (7-12)

Pr(Y/X)

where the prime indicates that the conditioning
sequence X is fixed independently of the other
sequences,

Similarly, the information flow in the forward direction

is measured by the quantity

, I"(xf;x/j{) = log Eﬂﬂ.@)_

H—

Pr(¥/X) °

The average information flow in the reverse direction through

(7-13)

the channel having sources as in Figure 7-2 is

Pr(¥/xX)

Pr(Y/X) (7-132)

Efl'(Y;X‘/x)} = Z_ Pr(XYX) log
YR
where

Pr(XYX) = 2 Pr(XYXY?) =

Z ﬁq(X) q(X) p(y; /xx )p(ym 1) (7
Y 1*.'3. uy,_

~}
]
[
4~
N

where X =M = 71 = 0 by convention.
In (7-14) and from here on the fulfillment of the restriction

P(y,5/xX)=p(y/xX)P(F/xX) assumed in (3-1 ) is essential. Next,



0
Pr (XYX) =§P’r(§(¥f‘?} = E ﬂ?'(x )alx,) ply. /x.x,p(y. /%K)
Y ? ]’_:1 1 i."sil S 1 1 s A A
{7-15)
where P'{ ) is an arbitrary distribution.
Hence
Pr (YXX) 2
V/ 7 = - e = b3 {7 - 6
Y
and
T n
Pr(y/x) = 2 EEED _ > [ 3(%.) p(y./x,R)FF./x.%.).
Pr(X: p— = i’ 71T RS S
X LY i=1 xt [N
(7-17)
Similarly, the average information flow in the forward
direction through the channel of Figure 7-2 is
it - -
E;I”("[';X/i)} - 2 Pr(XXT) log il id) (7-18)
XXT Pr(Y/X)
where
:E n
Pr(XR7) = ICORE(CHRICHERDECHE RN
: Y i=1 *y; %:9:
: (7-19)
where 351=%_ = 55-1 =?1 = 0 by convention.
1 n
pr (G0 = 2 [ alx) BE) p(s./x.8) 5G./x.F)
Y i_:;‘_ x‘:?.: i 1 1 e 1 1
(7-205
T V 1!
(¥/¥X) = ¥y X (7221
Pr{¥/¥X) T—Tp(yl/xl :) (7-21;



and

Pr(¥/X) = Z n q(x p(yi/xi}?i) §(§i/x.i’.) . (7-22)

XY i=1 u?. i%i

Having now fully defined the respective information flows
through the two-way channel, we would like to prove

Theorem 7-2

The sum of information £flows in the forward and reverse

direction through the channel of Figure 7-2 is given by

the information measure I(X,Y;ﬁ,?). Hence the following

relationship holds:

I' (X X))+ (Y:X/X) = T(R/)+1(T;/XD+1(X;%) (7-23)
Proof:

By elementary information measure properties we get

I1(X,Y;XY)

I1(Y;XY/X) + I(X;XY) (7-24)

I(Y;Y/5X) + I1(9:X/X) + 1(T;/%) + 1(X%:X).

But
I(YiT/XX) = 1 Pr(YY/XX) (7-25)
Pr (¥/xX)Pr (¥/xXX)
where n
T-T q(xl) q(“'&) 0(5’ ll‘{ X, ;U(Y /K ®
57w i=] M4 X4 11’ 5N
"*’(Y'Y/‘{X) (7-::.\?;

. ' bad \- — '/( ‘-
? P(yi/xixi;p(yi.xixi)

Pr(Y,¥/x0). : (7-28)
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Therefore we get

"

- 2_ H q{zi> UZD G i/’:‘:_;i:',;}?)'{?,.;’x_,ii}
Pr(¥Y,Y/ L _¥Y i=} *cau 19: i ot _
Pr(¥/ X)) Pr (T/XX) Do —— - n . -

‘ RAR R 2. (.Y p(T./x.R.) (x.} s{v./x.R.
2 (%) (7, /%, a(x,) (s
¥ i=1 &k oY=t ot
(7-29)
and taking (7-25) into consideration conclude that
I(X,Y:XY) = 1(0;T/X) + 1(T;X/D) + 160D (7-30)
But alsc
=5 Pr (XXYT) .
I(XY;X¥) = 1o - = {7-315
(X80 = log 5ok vyern Ve
where
0 « 3
Pr(XYXY) = T—T a{x.) a(X,) p{y./x.%X,) F./x.8.) 17-32)
: i i s A A A R R |
i=1 a4 N
Pr(XY) = 2 Pr (XYXT) (7-33)
Pr(XY¥) = 2 Pr(XyXY?) . (7-34)
XY
Hence we have n
[T oG, /225G /2.7,
Pr (XYXY) s
Pr (XY)Pr (XY 0 - = '« = \S(T =
T (XY)Pr (X¥) > qx%i} P(i;/? K{)p{y;/xgx4}
1 Ty B S
. ‘\r“":ﬂ;),‘
2 ™ alx) o, /x,E)FF,/x,F)
XY i=1 40 * i

“
(oW

Taking into consideration equations (7-15)

y {.7'17} »

e
4
N

and (7-22) we see that

7-21

S’ pd



Pr (XYXY) o P/ DB (T/xX) (7.6
Pr(XY¥)Pr(XY)  Pr(¥/X) Pr(Y¥/X) ’ A
Thus from (7-12), (7-13), {(7-31), and (7-36) we conclude that

ICY;XT) = 1R/ + 17T K (7-37)
QcEnDo

Nert®

It can be noted that equation (7-23) confirms that Figure
7-3 represents the reverse information flow situation correctly,
since the mutual information I(X;X) can have a non-zero value
only if communication between the two channel terminals is
established and causes the two signal sources to be correlated.
Hence the quantity I(Y;X/X) + I(¥;X/X) does not account for the
total information flow sum; I(X;g) must be added to it,

As a consequence of Theorem 7-2 and of the averaging
process of (7-13) and (7-18) we can also state

Theorem 7-3

The sum of the average information about signal sources
through the two-way channel of Figure 7-2 in forward

and reverse directions is

E{l(x,Y:;"{?)}

(2
o
P

efi (9% - 170737/ 0 (7-2

efr X0} + s @D+

1}
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7.4 Information Loss Due to Coding

Consider now the derived channel of Figure 7-1 with both
input sources generating successive -symbols f and £ independently
at random with probabilities P(f) and P(f). The average mutual

information

E [I(F,Y:F,¥)] = E[log %)] (7-39a)

between the symbol sequences of the opposing derived channel
terminals can then be computed.

As the sources operate, the transducers of the derived
.channel generate input symbols x and X to the two-way channel
which in turn cause the channel output signals y- and y.

As pointed out at the beginning of section 7-2, the random
signal relationships in the derived channel can be repre-
sented by the process of Figure 7-2, and for it the mutual

information

o T = Pr X}-(Y? _
E[T(XY;XY)] = E[ log Pr (X0) P (0 ] (7-39Db)

between signal sequences at the opposing two-way channel termi-
nals can be computed, The signal source porbabilities for
Figure 7-2 are fully determined by relations (7-11) from the
symbol source probabilities of the derived channel of Figure
7-1. We are interested in-the relationship between the cor-
responding mutual informaticus E[I(F,Y;F,¥)] and E[1(X,Y;X,T) ],

about which we can prove



Theorem 7-4

Given the derived channel of Figure 7-1 whose input sym-
bol sources generate successive symbols £ and f inde-
pendently at random with probabilities P{f) and P{!
Represent the two-way input and output signal generation
resulting from the derived channel communication by the
process of Figuré 7-2., 1f E?I(F,Y;f;§)} is the averags
mutual information between the symbol sequences at the
opposing derived channel terminals, and E[I(X,Y;X¥)] is
the average mutual information between the input and out-
put signal sequences of the corresponding two-way channel

of Figure 7-2, then the relationship

E[I(F,Y;FD) = E[I(X,¥;X9) ] (7-40}
holds.
Proof:
First of all let it be understood that if F= fi’fZ""’fn
then
F(Y) = X if and only if fi(JEi,'?i} = x, i =01,2,...,07
where '*1 = 71 =0 (7-41)
Then we have
or(y,Y,F,F) = Z Pr(‘f,?,i.f(,:f,??} (7-423

X, X

and it can be shown that
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Pr' (Y/ 0P (T/XDP(FYF ()
Pr(y,%,%x,%,7,F) = if F(O)=X, F(T)=% (7-43)

0 otherwise.
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Thus from (7-42) and (7-43) we can write

Pr(Y,Y,F,F) = Px' (¥/FY),F (D))" (H/FOFD)PE)F(F)

(7"’;‘-./“
and
Pr(Y,F) = _Z- Pr(Y,Y,F,F) =
7,F
= Z 23 (Y/f(Y)wZPv‘(Y/M V), 5_< PE) 2(F)
F®F(¥)=X

Hence we may write from (7-39)

I(vF;F9) = log Pr' (Y/F(Y),F(D)) Pr"(F/F(D),F(T))

YF ;T .
[Z pe' (W/F(V),D ZP (T, ) E PR ]
R4 FTaF(D)=17

1 (7-47>

Z Pr"(Y/X FT)) EPr(Y/‘( F(O)Z P(F)]
F3F(Y)=X

But notice that
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fna fn(xn’ gn) “Xn

£ D Y=y
n-1 fn-l(a’;m—l’yn-l" *n-1

..(ZPV(fl)

af( 71 =X,

Hence using the definition (7-11) we may write

Il

S rE = [ s &)
¥ 3F(Y)=X i=1 "= b (7-49)
and
- - n -
2 P = TT 3G . (7-59)

K
It should be noted that for a given X and X the quantity (7-47)
will have the same value for all F and F such that F(Y)=X and

(¥)=X. Taking into consideration this fact plus equations

o1

~45), (7-47), (7-49) and (7-50), we get

E Pr(Y,¥,F,F) 1log gr%; 7%'?) = (7-51)
i i

= 2 2 pr’ ¥/ XX P (F/5T) (2 P ) 25y .
K v,Y F:-F{Y}=K ﬁf{’}=§
log Pr' (Y/XX)Pr" (¥/xX) |
¢ *+Yo
[_2_ r' (¥/xK")pr (T /xR )ﬁ q (Fi") 1l pr'(¥'/ &)
X'y! =1 4% X'y!




~
39

= !
o I;{p(y .x %! )p(y /xl 179

p(¥./x'% x)
.LQE;' T:lp(y /x )p(yi/xixi)qim;(:;;:l

Comparing the right hand side of the previous equation with
(7-35) we see from (7-31) that

EfI(YF;¥F)] = Ef1(xe;XD)] (7-52)
Q.E.D.

The significance of Theorem 7-4 isthat it shows that the
mutual information between the signals at the two terminals of
the two-way channel is equal to the mutual information between
the symbols at the two terminals of the derived channel (see
Figure 7-1). It should be noted that the signal mutual in-
formation in Figure 7-1 is that obtainable from the set-upn
of Figure 7-3, and that anything obtainable from the latter
is obtainable from the former by judicious selection of the
probabilities P(f) and P(F). Further importance of Theorem
7=-4 will be seen from Theorem 7-5 which follows.

We will see that except for special, rather degenerate
two-way channels, the information carried through the channel

by the signals cannot be completely used as information about

the messages being transmitted. Some of it is lost, and this
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loss is directly attributable to coding. 1In fact, any '"stra-
tegy-like' encoding which does not associate a signal with a
message in a one to one way will cause such information loss.

Theorem 7-5

Given transmission through a two-way derived channel in
which the sources generate input symbols at opposite
terminals independently from one another, the following
average mutual information relations between symbols
and signals hold: |

Ef1(, ;X0 - (Rf1(v;F/F) + EfLEE/])=E Lt T/F, P20

(7-53)
Equality on the right hand side of (7-53) holds if

and only if whenever P(F) # 0 and P(F) # 0 then simul-
taneously
K, for all Y such that

1
Pr"(Y/F(Y),F(¥)) # 0 and

(a) Pr' (Y/F(Y),F(T))

(b) Pr'(¥/F(Y),F(T))

K2 for all Y such that
Pr' (Y/F(Y),F(E)) # 0
where Kl and K2 are some constants.

Proof:
From Theorem 7-3 we know that (7-52) holds. From elemen-
tary information measure algebra we get
E{I(X,v:XD)} = EfL(Fy;FD)) =
= 2fr(v;E/m) + EfLEE/E) + Bf1(y;T/FR)}

+ E{I (F;F) . (7-54)
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But F and F are assumed to be generated independently and
therefore

E{1E, B} = o, (7-55)
which proves the validity of the equation (7-53).

Next,

) o= L - = Pr(Y/Y,F,F)
B {1(v;¥/7D)) = . % o PTOLLEE) 1og by iy

(7-56)
and therefore
-E fI(Y;Y/FF)}s 2 pr(y,¥,F,F) [ BEXQU/EE) oy (7-57)
YOFF Pr (Y/TFF)
where equality holds only if
Pr(Y/FF) = Pr(Y/YFF) whenever Pr(Y,Y,F,F) # 0. (7-58)

Before we start investigating conditions under which (7-58) can

hold, we will break up (7-56). We have:

e { 1(0;2/70)] = §10g ZEUEQLED) ==t
2 pr' (Y/FD),F@er" (T /FOFE)) 5y
T {(7=59
+ 1og —PEIEE) F@) )Z
2 pr' (Y'/FOF@)er" (T/FE)HFD)
Yl

where, using reasoning employed intthe process of proving

Theorem 7-4, we can write:
. glog Pr'(Y/F(Y)F(E)Z _ __ }
Z pr' W/ OF @R @ /FOFE)

= 2_—_ Pr' (Y/X F(D))Pr"(Y/X F(¥)) FE)(Z P(F) ) « (7-50)
YXFY FaF (Y)=X



Pr' (Y/X,F(¥))

ZPr (¥/X,X") 2 pr’' (T'/XX")
I F(T")=X"'

* log

and similarly,

Eilo P! (F/F (V)F (F)) {
g
Z Pr' (Y'/F(Y")F@))Pr" (T/F (Y)HF (D))

Z Pr' (Y/F (1), DR F/F D 2 (2 BF) -
YXYF FaF (V) =X
Pr" (Y/F (Y)X)

Z Pr'(I/X'X) = pr'(Y'/X'T)
Y's F(Y')=X'

[ 1Qg . (7"61)
In the next section we will interpret (7-60) and (7-61)
"physically", Right now it is clear that if (7-59) is to be

zero, both (7-60) and (7-61) must be., But (7-60) is zero if

and only if
Pr' (¥/X, F(Y))-Z Pr' (Y/XX ) Z Pr(Y /XX ) (7-62)
'3 F(Y )=X"
whenever

Pr' (Y/XF (D))Pr" (F/F(@)PE) (= P(F) ) £ 0 .
F2F(Y)=X

The right hand side of (7-62) is independent of Y. Hence
it is necessary that for all combinations Y,X such that

2 P(F) # 0 whenever E( F-) # 0 we must have
FIF(Y)=X

Pr' (Y/X,ET(‘}-)) = const. (7-63)
for all Y such that Pr'(Y/X,F(D))Pr"(¥/X,F(E)# 0.
However, as a matter of fact, even more is necessary, namely

that
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For all F,¥,X 2 P(F) #0 P(F) # 0 (7-64)
F®F(Y)=X
Pr' (Y/X,F(¥)) = const. for all ¥ & Pr'"(Y/X,F(D)) # 0.
Assume that the above is not true, i.e. that there exists a ¢'

such that

PE(Y/X,F(¥')) = 0  while Pr"(¥'/XF(¥")) £ 0 (7-65)

and P (Y/XF(Y)) K ¥ 343 Pe"(F/X,FD) # 0.

But then surely

Z_ Pr' (Y/XF (¥))Pr'" (¥/XF ()£ K _% P (Y/XF(T))4 K (7-66)
Y YFY'

since

S @FED) =2
Y Y

)

.

irf@j/xjf-j(gjij” -t (7-67)
and it was assumed that Pr”(?'/ﬁ(ﬂ)) 0,

and applying (7-66) to (7-62) we see that equaiity cannot hold

since for Y # ¥} the left hand side is equal to K while the

right hand side is smaller than K. This contradiction

establishes the necessity of the condition (7-64). The

latter is however also seen to be a sufficient condition to

establish (7-62) since if (7-64) holds then

;?Pr'(Y/Xf(?))Pr"(?7X§(?))=K-gs?r”(Y/XF(Y))=K {(7-68)
Y k4
for all ?,Y,X > Z P(F) # 0 ,l?(f) £0 .
F3F(Y)

If (7-64) is a necessary and sufficient condition for (7-60)

to be zero, then the necessary and sufficient condition for
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(7-61) to be zero must be

For all F,Y,X such that _ :E;_ _?(f) #0 and P(F) #0
‘ F3 F(Y)=X (7-69)

Pr'' (Y/F(Y),X)= constant for all Y2Pr'(Y/F(Y),X) # O
But (7-64) and (7-59) when formulated together give the condi-
tion of Theorem 7-5 which we are trying to prove.

Q.E.D.

From the preceding proof it is clear that the quantity
EfI(Y;?/F,%)} which is seen from (7-53) to be the difference
between the total average information passing through the
channel in both directions and the parts of it useful for
message transmission, is closely associated with the kind of
message encoding for the two-way channel which we are using.
We will interpret and study it in the next section, in parti-
cular the question under what condition it can be made to

equal zero,.
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7.5 Interpretation of Coding Loss

7.5.1 Forward and Reverse Coding Loss

We have shown in (7-59), (7-60) and (7-61) that the

following break-up of the coding-loss function is possible:

E {I(Y;Y/F,F)}= E {1og Pr (WX.E(T) = i -
- 2Pr' (¥/X,F(E@))Pr" (T'/X,F(T"))
Y!

Pr"(Y/F(Y),X)
+E {1° S Pr' (WED D P (I/F(T)X) } ’
Y‘

(7-70)

where we can interpret the first term on the right hand side
as the average loss of information in the reverse function-
signal transducer of the derived channel. We can similarly
interpret the second térm on the right hand side of (7-70)
as the average loss of information in the forward function-
signal transducer of the derived channel. Focusing our at-
tention on the first term, i.e. on the expression (7-60),

we seethat we are averaging the expression

Pr' (Y/XF(Y))
§.'. Pr' (Y/X,F(E"))PT'/X,FE))
Y'

log = 1'(Y;¥/F,X) (7-71)
which, from our experience gained in section 7.3 with respect
to expressions (7-13) and (7-18) we can identify as the in-
formation provided by Y about Y when X and F are known and

the signal X is fixed independently of the received signal Y.
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Hence we are dealing with a mutual information pertaining to

the situation represented in Figure 7-4.

signal source

_-/x = }_,
> —3 >—
' channel
e
- N -
y b'd f f /;4?r
symbol source
Figure 7-4.

In the expression (7-60) the information (7-71) is
being averaged by use of probabilities

Pr(X,Y,F,T) = Pr'(¥/X,F(D))ec" (T/X,FANPF) < P(F)
F 9 F(Y)=X

(7-72)

giving the actual frequency of simultaneous occurrence of the
events X,Y,f,§'in the ensemble. If we note that the decoder
at the forward terminal is not interested in identification
of the received signal Y for its own sake, it becomes clear
why (7-60) is called the reverse coding information loss: it
is the information about Y provided by Y after the message F
was identified}
In a similar manner, of course, the expression (7-73)

can be identified with the information provided by Y about Y
when F and X are known and X was fixed independently of the

signal ¥:
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Pr" (Y/F(Y),X)

= pr' (Y /FENHDPT/F (DD
Y'

log = 1Y Y/FL,X) 0 (7-73)
Hence the expectation of (7-73) arrived at by averaging with
probabilities

pr(%,%,F,v)=Pr' (¥/F(V),DPr" FLFENPE (L EE) )

F2F(¥)=X
(7-74)

can be called the forward coding:ﬁformation loss, and we can
re-write (7-70) as follows

E{I(Y;?/F,f)} = E{I'(Y;?/x,f)} + EfI”(Y;*’{'/F,i)} . (7-75)
The following theorem will prove useful for finding distribu-
tions P(f) and P(%) giving good random codes (See Article 9):

Theorem 7-6

If F(Y) = X and if F(¥) = X, then

I'(Y;X/X) - I(Y;F/F) = 1'(Y;¥/%X,F) - (7-76)
and
I"(Y;x/X) - 1(4;F/F) = 1"(:;7/F,% (7-77)

where the quantities in the above equations are defined
as in (7-3), (7-12),(7-13),(7-71) and (7-73).
Proof:
It will certainly be sufficient to prove (7-76); (7-77)
will then follow.

We have:

Pr' (Y/XX)

(7-78)



1(Y;F/F) = log %/L%D | (3-79)
I' (¥;9/%,F) = log g;:(y;F)YL log gﬁ'(YY/X)F ) (7-80)

where Pr'(Y/X,X), Pr'(Y/X) and Pr(Y/X,F) are shown in equatioms
(7-16), (7-17) and (7-71), respectively. From there it is

clear that if F(¥)=X, then Pr'(¥/xX)=Pr'(Y/X,F(D)).

Also 2 - —_ - -
. S EREPREPr (Y/FF)P" Y/FNFR))
Pr(Y/FF)= =

YS? P(F)P (F)Pr (Y/F (Y)F(?) YPx" (Y/F(D)F (X))

»

= 2.Pr' (Y/F@)F@))pr" (F/F (VFE)) (7-81)

R e L

where the last equality follows from (7-67). Hence by in-
spection of (7-71) we see that Pr(Y/F,F) = Pr(¥/X,F), provided

F(Y)=X, Finally:
P(F)P(F)Pr' (Y/F(OF (D)) Pr"(¥/F(V)F())
P (F)

M

(7-82)

Pr(Y/F) =

__2_ Pr' (Y/XX")Pr" (T'/XX) <& P(F)
X'y st(Y|)=}‘(!

n
-2 = NS e E ) T (5
Pl /=E DG T qi,(..x.i_ )
wH

s7

Hence by inspection of (7-17) we see that if F(Y¥)=X then
Pri(¥/X) = Px(¥Y/F). This completes the proof of (7-76)

Q.E.D.
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7.5.2 Conditions for Absence of Coding Loss

It is interesting to inquire in what way the necessary and
sufficient condition of Theorem 7-5 for the absence of coding
loss can be met, and what coding restrictions this implies,

For convenient reference we repeat here the losslessness con-
~dition:

The coding loss E(I(Y;?VFF)} is identically zero if and

only if in the given code whenever P(F) # 0 and P(F) # O

then simultaneously |

Pr' (Y/F(Y)F(X)) = const. for all ¥ 3 Pr'"(¥/F(Y),F(Y)) # 0

and (7-83)

Pr" (Y/F(Y)F(Y)) = const. for all Y2 Pr'(Y/F(Y),FX)) # O.

It is of course immediately obvious that (7-83) will be
satisfied if for all allowable Y (i.e. those for which P(Y/F(Y)
F(Y)) # 0 for all F,Y),F(Y) = X(F) for all F, and simultaneously
for all allowable ¥, F(¥) = X(F) for all F. But in such a
case, the coding we have is one in which messages are associated
with signals in a one to one manner, and we have the situation
of "one~-way channel coding''. There are, however, special chan-
nels in which (7-83) is satisfied for any kind of coding. We
can state the

Theorem 7-7

The condition (7-83) is satisfied for a derived two-way

channel for any probability distribution over possible
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input symbol words F and F if and only if the two~-way
channei is characterized by transmission probabilities
having the following property:
either (a) one cannot communicate through the two-way
channel at all, i,e, the probability p(y/x,X)
is a function of x and y only, and the pro-
bability p(¥/x,X) is a function of X and ¥ only.
or (b) for any signal combination x,x the channel trans-
mission probabilities p(y/x,X) and P(F/x%,X) are
equal :to either 0 or 1.
or (c) there}exists one direction, say the forward one,
such that p(y/x,X) is a function of ¥ and X
only and also equals either 0 or 1.
Proof:
If part (a) is true, it is trivially clear that (7-83)
is satisfied. 1If condition (b) holds then surely for every
X and F there is only one Y such that Pr'(¥/X,F(¥)) # 0.
Also for every X and F there is only one Y such that Pr'(Y/F(Y),
X) # 0. Hence for every F and F there exists only one combina-
tion ¥,Y such that Pr'(Y/F(D)F(Y)) # 0 Pr'"(¥/F(MF()) # 0,
insuring that (7-83) is satisfied. Finally, if condition (c)
holds, then for any F, ¥, Pr'(Y/F(Y),F(¥)) = const. for all Y,

and there exists only one Y such that Pn(?VF(Y),FKis) £ 0.
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Hence F maps into one E'only and the first part of (7-83) is
then satisfied as well,
We next wish to show that unless either of the conditions
(a), (b), or (c) is satisfied, there will exist a combination
F, F for which condition (7-83) will fail to hold, Now in
case neither (a), (b) nor (c) hold, communication must be
possible at least in one direction, and there will exist a
combination x,X such that either p(y/x,X) or B(j/x,X) equal
neither 0 nor 1.
Case I.: p(y/x,X) is not a function of y and x ontly, there
is a combination x,X such that 0<p(y/x,%) €1, and
(¢) is not satisfied in the forWard direction.
(1) for all x,X, p(§/x,X) is either 1 or O.
In this case, without loss of generality, let

04 p(y/0,0)4 1 and let 5(0/0,0)

1

p(0/1,0) = 0

Then we can let F(¥) ={0,0,...,0)for all ¥
and F(¥) =(0, £,(y,),0,....,0)for all ¥, where
£,(0) =0 £,(1) =1
Let further Y' =(0, y2,...,yn)
Y o=(1, Fpseees¥y )
In this case clearly Pr''(Y/F(¥")F(T)) f
P (¥/F (Y")F(Y))

and (7-83) fails.
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(ii) there exists x,X such that 0<P(y/x,X)¢ 1.
Without loss of generality let 0<£p(3/0,0)& 1
There must also be an x such that p(y/x,O)#ﬁ(y/x,l)
Without loss of generality let this x=1. Then let

F(Y) =(0,0,1,0,...,0)for all Y. Also let

rE) =(O,O,f—;(?2),0,...,0)for all Y where F,(0)
5 (D)

f 0
£ 1
Clearly if Y' = (371,0,?'3,...,;7n)
¥ = (7,1,55,00457,)
then Pr'(Y/F(Y)F(¥"))APr(Y/F(Y)F(¥")) and (7-83)
fails again.A (Note both Y', V' are allowable!!!
Case II.: p(y/x,%) is not a function of y and x only and there
is a combination x,X such that 0<p(y/x,%) & 1.
Without any loss of generality let 0<p(y/x,0)<&1
and let p(y/1,0) # p(y/1,1).
Then let F(Y) =(0,0,1,0,...,0) for all Y
and let F(Y) =(o,o,‘f'3(5;2),0,...,,o)for all ¥

where ) =0

£
E5(D) = L.
Then surely both of the sequences below are allowable:
¥ =(5,,0,55,...,7,)
Y =155 00057,)
and Pr'(Y/F(Y)F(¥')) # Pr(Y/F(YF(EIM))

Thus condition (7-83) fails even in this case.
' Q.E.D.
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We will now investigate whether condition (7-83) can be
met in channels not fulfilling any of the conditions of Theorem
7-7, Specifically we are interested whether 1§sslessness is
possible when a code is used which could potentially get bet-
ter communication results than a simple one-way channel type
code, which maps messages directly into signals. Hence we
are not interested in the trivial possibility mentioned in

paragraph ' - - =
the/preceding Theorem 7-7 where F(Y) = X(F) and F(Y) = X(¥),
and neither are we interested in codes whose job could be
done as well by a one=way type code.

We use the derived channel type of coding in order to
create signal cooperation between the opposing terminals so
as to reduce transmission noise in the channel. If the first
part of condition (7-83) holds, then it is clear that for all
message words F of a code all the possible reverse signals
F(?) for any given F are equivalent as far as the reverse
transmission is concerned. Hence as far asthe reverse noise
goes, if the first part of (7-83) is to be fulfilled, there
is no advantage gained by the fact that F(Y) may differ for
different Y. However, the forward noise can be improved in
the above way, since it is conceivable that for a given F,
F(Y) assumes that value X which will maximize Pr(Y/F(Y),F(Y)).
I.E. Given F(Y) let |

Pr' (T#/F (¥),5%) = max__ (2r" (T/F (D) (7-84)

Y,
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then it is conceivablé that F(¥*) = T*. Hence decoding dis-
crimination at the reverse terminal can conceivably be made
sharper by this device without in any way affecting the pro-
bable success of reverse transmission, and it is worthwhile
to ask the question proposed on the top of this page.

It turns out that losslessness is possible only in
more or less degenerate channel situations, and examples can
easily be constructed of such lossless codes which could con-
ceivably accomplish better communication results than one-way
type codes,. Whether some of these actually do accomplish more
is not known, but this is strongly doubted by the author, In
any case, it was possible to prove

Theorem 7-8

Given a twc-way channel whose transmission probabilities

do not fulfill any of the conditions (a), (b), or (c)

of Theorem 7-7, and are such that 0<& p(y/ﬁ,§)< 1 and

0¢p(y/x,x) 41 for all signals x,X,y,§. Then there can

exist no code not equivalent to some one-way type code

such that for it the condition (7-83) could be satisfied

(i.e. there exists no code wiﬁh zero coding loss).
Proof:

Consider a set of codéwords {Fg and {?} of any length n.
Let at least one of the codewords F = F* be such that there

» - —9 — - -— -
exist signal sequences Y1 and Y~ such that F#* (Yl) # F* (YZ).
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It is clear that above is a necessary condition so that the
code be non-equivalent to some one-way type code.

Since 04 p(y/x,X) &1 for all x,Xy then all sequences ¥
are possible for any given pair F, F. Consider now any par-
ticular of the codewords F and the word F*. Under the
channel transmission probability restrictions, if (7-83) is
to be satisfied, then we must have.

Pr' (Y/F(V)F*I)) = Pr' (Y/F(V)F*(F)) for all Y. (7-85)

'

Pick any sequence Y and let F(Y) = X'. Then, in conformity with

our convention i’l = '51 = 0 we can write:
Pr' (Y/X'F*(¥)) = p(iffi/x‘,'_ f—i'(a—cl,gl))p(jiz/ﬁé f'g (i‘z,iz)).;-
...p(yn 1/ -1 n-l( n-l’yn 1) Py /XI; E:(inﬁn)) (7-87‘)
Py (F4/X'F*(TL)) =

= PGy F (i) DG L x B (R 4%00)

P/« Er(el, 41)) (7-88)
Pr(T2/X F*@Z)) -
= p(yl /X 51))"' (Yn /%01 g (a‘n-l"?n 1)

pGa/x, £ (X2,52)). (7-39)

1 2

Let ?*("5-{1) = X and F*(S—{z) = X°. Then one possibility of how

(7-83) could hold would be that whenever ii # ?ci then x; would
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T2, _ 1 =1
be such that p(yi/xi xi) = p(yi/xi Xi)' On the other hand,
by assumption, the channel is such that at least for one ¥, say
x=0, p(y/00) # p(y/04,. But then it is only possible that

x. = 1 and thus wherever i? F i?
i i i

then if (7-83) were to hold
for all F, it would do solby virtue of the fact that for all F
and Y, x; = 1. But in such a case the codeword F* could just
as well be replaced by a constant signalword )_(“-, since any
possible reverse signal adjustment in the ith place makes no
sense, X, being in advance known to equal 1.

Therefore if the code is to be non-equivalent to a one-
way type code there must be some F such that for at least some
Y the signal X be such that when Ri # ii then x, = 0. Consider
now that we have picked such a (F, Y)-combination for which in

some places i, x, = 0 and ii # ii. Let these places be

numbered.il, 12,...,ik where

1¢i,¢ 1

&...&i & n (7-90)
Then for the given F and all Y and consequent X=F(Y), if (7-83)

is to hold, it must be true that

(v; /%, By Deeunly, Ix, % )=ply, /%, T )..ply, /2, %
pyl i 4 pylkxklkgpy i, 4, PVs xkxlk

(7-91)
Consider now whether it be possible that ik =n, In

that case, for some Y at least, p(yn/xnii)#p(yn/xnii). But

in that case surely,
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. 1%, . ) Fply. /x,
1 1 h k-1 xlk-l k-1 F yl1 1

-2
X, Desve
11

ceop(y. Ix, %
-1 k-1 k-1

However, since all Y are possible by assumption, then yg could

) (7-92)

actually occur and it should be noted that y, ¢annot have any
effect on the identity of the signal X . Hence (7-83) could
hold only if
p(y_/x 21) = p(yS/x 21) = 1/2
n"'nn Yo' *n *n
Py /x, ) =ply /x X)) =1/2

But in that case p(y_/x il

~ 2y .
o ¥q ) = p(yn/xn % ) which is against

our assumption. Henee we conclude that i # n .

Next we can ask whether possibly ik = g-l, and it is
clear thaf by an i&entical argument we will be led: to con-
clude that since i # n, then also i, =n-1. Continuing fur-
ther we will finally end up with the conclusion that in the
channel meeting the transmission probability restrictions of
the theorem, the condition

Pr' (Y/F(Y)F*(Y¥)) = const. for all ¥ (7-94)
can be satisfied at least for some Y if and only if either
F*(¥) = X for all ¥, or if ?*(?%#@*(?2) and whenever ii # ii

» —1 '2 ’
= x Y.
%, is such that p(yi/xi xi) p(]i/xi X, for all F.

Q.E.D.



7.6 The Quter Bound to the Capacity Region

In view of the results of the preceding section involving
the concept of coding loss, it seems desirable to derive a new
expression for the outer bound to the capacity region of the
two-way channel, involving the expectations of mutual signal
information. If we succeeded in showing that this new bound
is completely included in the Shannon (1) outer bound Gy
(described in section 2.2), it would follow from Theorems 7-6,
7-7, and 7-8 that, except in degenerate situations, the capacity
region G is entirely interior to Shannon's outer bound (this
conclusion would be due to the introduction of coding loss by
any cooperative code), Above can, in fact, be shown, and we
will do so with the help of'a slight modification of Shannon's
argument proving the outer bound G, (see (1), pages 23-26).

A code for the two-way channel will either fall into the
block class or into the sequential class {of course it might
happen that e.g. the forward terminal encodes into a block
code, while the reverse terminal encodes into a sequential
code). 1In a block code messages m are mapped into functions
F which map sequences of n received signals Y into sequences
of length n of channel input signals,X. The identity of the
ith signal in a block is determined by the function F and by

the identity of the signals XysXpseeos Xy 15F15Vps 0¥y q-
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It is uninfluenced‘by any other signals, in particular by
those which did not take place within the block to which X,
Vbelongs. The most general kind of transmission is one consis-
ting of the selection of only one message encoded into some
function F mapping.into an appropriately long blocklength n.
We will therefore consider this kind of coding in what follows.
For this section and this section only we will adopt the
following notation:
A function F will be understood to consist of a sequence

of functions

F = (f

maps
where fihthe signal sequence L PRERPE SURT) AFRERI ST into the

fz,o.o, f )

1’ n

signal X, . ‘Hence, in our previous terminology, fi will be
assumed to have a dependency length equal to i-1. We will

also denote by F; and Fz the sequences

F, = (£ £ £.)

1’ i+27°° "

+—
fz’voo,fi) Fi - (fi+l,

so that clearly

H.

F = (Fi’ Fl

An identical notation will be adopted with respect to the
remaining quantities of interest. Hence:

- -— - + — —— -— — —

F - (Fi,?i) = [(fl’fZ""fi)’(fi+1’f.i+2’”’fn)}

where fj maps the signal sequence Xl’xz""’xj-l’yl’yz’"'yj-l

into the signal i%. Also:
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o oty L
X = [Xi,Ai] {(xl,..,xi)(xi+1,..,xn)]
- 4
Y = [Yi’Yi] - [(y1”°’yi) (Yi+1:-°:yn)]
- == =+ _ - -— - -—
X = [Xi) i] = [(Xl""xi)(xi‘}'].’."xn)]
=137 = 165,50 53
i’7i AR LA TS ERRER AN

Therefore we have, for instance, the functional relationships:
- o - F o o ot +
F(Y) = X; Fi(Yi) f Xi’ Fi(xi’Yi’Yi) = Xi.
We are now ready to state our theorem:

Theorem 7-9

Given a discrete memoryless two-way channel.

For any arbitrary positive integer i define the con-

-

vex hull G; {(n ® i) of points
Pr(y /x_ ¥ )
E {1og n_n n E ,
My o= = - - -
Pr (yn/xn’xn-l’°'Xn—i+l’yn-1’""yn-i+l)
(7-95)

Pr(y /x_ X )

E glog oo o i
!

Pr (yn/xn’xn~1""Xn-i+l’yn-l’"’xn-i+1)
obtained for different assignments ?(fl,fz,...,fn)
f(-i,fé,g.,f;) of symbol sequence of length n.

Let lim Gi = Gg . Then for any i, Gg is an outer
n<> o

bound on the capacity region of the two-way channel.

The following set-inclusion relationships are satisfied:
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feeg™le .., eclec ¥ n
n n

G;QG? & ... €G- &¢

i+1 0~ S0 Vi o (7-96)

c& gl ¥i
0

where G is the capacity region and G0 is Shannon's

outer bound to it.
Proof:

Suppose we have an arbitrary code for the two-way channel
which at time zero is to transmit messages m and m from the
two terminals, The selection of forward and reverse messages
for transmission is to be an independent one. The messages
will be associated with some codewords F = F;, FI and F =
f‘;, F-:' of iength n, where n and i are arbitrary integers,i4n,
After (i-1l) operations of the channel, let Y;-l and'?;_l be
the received signal blocks at the two terminals, and let X,
ii’yi’?i be the next transmitted and received signals, Consider
the change in "equivocation'' of message at tﬁe two terminals
due to the next received signal. At the reverse terminal, for

example, this change is

A = B/, Y] _)-H@/&Y]_ ,v,) =

1=

[

t=i

-~
J
H
N
Bl
1 =i
o
]
[y
N’

N

S

Pr(@ Y. ,,¥. 1)
- ?Slo i-1"71-1 }
=108 Pr(m,ﬁ,YE_l,ii_l)
(7-97)
(cont.)
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{ Pr(y, /L. .1 T)
E 9log
Pr(F; /ﬁ. 1°®

H (E;i/Y 1,m) - p(y /J_ 1,'“ m) .

But clearly

B(7 /Y] _om®) 2H(F, /Y], Y] m® = H(F,/x,,%,)
(7-98)

since adding a conditioning variable cannot increase an entropy,
and since

Pr(y /Y 1,m, ;_1,m) =

= Pr(yi/Fi,Yi 17 SF 4 Y. _ 1)- Pr(y /x ,X. ) (7-99)

Also

H(y /Yl 1’m) = H(Y /Yl 1’ ) =

= H(Y, /Yl 1,X ) (7-100)
where Fi(Yi-l) = Xi .
Hence from (7-97) we get
P A ~H (S ) =
A w— H(yi/Yi'l’X ) ﬂ(yi/.‘{"" 7/
Pr(v./x%.X.)
=E {1og R } (7-101)
Pr'(y./X] ¥

where the necessary averaging is done with respect to the pPro-

babilities of the different strategies F; and F; for the par-

ticular code used, and where the probability P"(§4/§;,Y£ l) is
e P -

defined by:
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Z P! (YT,?'./X ) Z P(FI)

oy = Y%, > F (Y] )- : - (7-101a)
Pr’(y X =
1 1
3 PF
YZ;(Yll,llv:/;)FZ (F )(Y .
i-1""i-1 i-1% i-1 i-1
L i
where P(Yi’Yi/xi Xi) = g=£ P(Y / x )

A similar inequality may be obtained for the change of
equivocation at the reverse terminal due to the reception, at

time i, of the signal, yie It is:

v ‘ Pr(y./x.X.)
A £ E{log o { (7-102)
' )

where the probability Pr'(y./XT,YT_l) is defined by:

> P' (Y], T5/XL, X)) =2 BEFD)

¥ ,x L F s?‘(Y )=
Pr'(y,/X,Y] = L it
i-1 _———
;:Ei _ (Yl 1Y1 1/ i- 1’ i- 1) :EL ?ﬁvl ;_ _
Yi 1% CFr T GLpP=%]

(7-102a)

It therefore follows that in any code, the vector change
in equivocation due to the reception of the ith signal must be

a vector with components bounded by

™

E § log

Pr(y,/%;X,) | Pr(y;/x,X.)
» E jlog (7-103)
)

Pr'" (7, /X LY, Pr'(y,/X7,¥7_

i-1 1)
for some distribution P(Fi)’ 5(?;), where we assumed that the

messages m and T were selected independently for transmission.
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Hence the vector change is included in the convex hull,Gi
of all vectors (7-103) generated by varying the distributions
P(F), 'ﬁ(’f;). Since for any distribution P(F,), P(F,) the

inequality

E {109, 1 } 2 (7-104)
Pr"(yi/ii, LY ’,')—cz’—ii-l’ e oyz)

2 E{log L : f
)

Pr (R e R T T

holds, it is clear that
¢d e ¢it (7-105)
i i
where Gi,(jé'i),is the convex hull of points

: {1og Pr(y,/x;X,) { ’
)

Pr'(5,/%,, .-,

XYY
(7-106)

Pr(y,/x.X.)
E{ log

: :
Pri(ys/®gs e oo®s gY500 Y5440

obtained for various assignments ?(f;), P(F).

It is also true that

P R i
G; FyoF) = 6o (FiyioFigy) (7-107)

since we can let only those words F; and F;+ have non-zero

+1 1

probabilities for which



FinGpsyyseenyy) = Fipppreeooyy) = xguxpsee x4y

Fi+1(y1,y2,...,yi) = Fi+1(y2’...,yi) = RprEyseeesXiyg

where Xy and io are fixed signals. (7-108)

The convex hull of points

{ Pr(¥ /%41, F4) ?
E 1og )
Pr''(¥.,,/

(7-109)

141 %41 %5420 T 100 0T og40)

Pr(y, /%,,:,%.,,)
B {log i+l i+l i f
!
Fr (yi+1/xi+1’"”xi—j+2’yi""’yi-j+2)
obtained by varying the probability assignments of the words

Fi+l’ Fi+1 allowed by (7-108) will then be identical with the
convex hull of points (7-106).
Suppose that a signal block of length n was transmitted

and received. Then the total change in equivocation resulting

from reception must be a vector lying in the convex hull

i i-1 (.1 i
n T o [Gn B Gn]] (7-110)

l
5
()

Thus given any positive integer i however large, and any £ > 0,
there exists an integer n* such that for all signal blocks of

length n >n*(i) the total change in equivocation resulting
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from reception must be a vector lying in the convex hull
n[Gi + & ).‘.n[Gé + €], Consider now any code signalling at
rates R = %,-1og M and R = %f¢1og M where n' is the length of
the signal block used in decoding, and M and M is the number
of different forward and reverse messages encoded into signal
blocks of length n'. If n'<n* (i) we may, without any detri-
ment to the probability of error, decode blocks of length hn'
where h is some positive integer such that hn'>» n*. In what
follows we will quote Shannon (1), p. 25:

"The initial equivocations of message are nR and nR (where
n=hn'). Suppose the point (nR,nR) is outside the convex hull

n[Gg +&€ ] with nearest distance nJ, Figure 7-5.

né
(nR, nR)
n[Gg + €]
Figure 7-5.

Construct a line L passing through the nearest point of

nLGS + & ] and perpendicular to the nearest approach segment

with n[G; + & ] on one side (using the fact that n(Gg +<€] is

a convex region). It is clear that for any point (nR¥ nR¥*) on

i

the n[GO

+¢ ] side of L and, particularly, for any point of
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n[Gé’ +€& ], that we have ‘.InR - nR*l+ fnR + nR*/}.n)- (since
the shortest distance is nd ) and furthermore, at least one of
InR - nR*|and jnR - nR*|is at least ?é; . (In a right triangle at
least one leg is as great as the hyéotenuse divided by 2.
"Thus after n uses of the channel, if the signalling rate
pair R, R is distance 9 outside the convex hull (Gé + €), at
least one of the two final equivocations is at least fér R
(All equivocations on a per use of the channel basis).2 Thus
for signalling rates d outside of (Gé + €) the equivocations
per use of the channel are bounded from below independent of
the code length n. This implies that the error probability
is also bounded from below, that is, at least in one direction
the error probability will be 3f(3) 2 0 independent of n," as
shown in Fano (4) p. 186.
Since as n=»00, £-» 0, this proves the theorem, except
for the assertion in (7-96) that Grllﬁ GO ( if this is proven,
it follows from previous discussion that Gé‘ < GO)

Now Grll is the convex hull of points

E Slog PGy ) f E; log Pr(yn/xn’in)f 7-111
Pr"('}'r'n/:‘c'n) ’ Pr'(yn/xn) (7-111)

obtained by varying the symbol assignments P(F;)’ P(f‘r‘l), while
G0 is the set of points (7-111) obtained by varying the assign-

ments P(xn,"zn). But, for instance,
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Pr(y /x X )
I= 2 Pr(§n/xn£n) Pr'(xn,in)

Pr'(?;/in) xn,in,§£
Pr(F /x %)
log o nm (7-112)
- -— ' -—
% Pr(yn/xnxn)Pr (xnxn)
n

and it is obvious that any point (7-112) obtainable by a
symbol assignment ?(F;), P(F;) can also be obtained by some
signal assignment P(xn,in). This}completes the proof of the.
theorem.
Q.E.D.
Whenever Shannon's outer bound G0 is not equal to his
inner bound GI’ it follows from Theorem 7-9, and Theorems 7-5 |

- and 7-8 that the capacity region G will be, under certain

conditions, strictly interior to G We will state this in

O.
a more precise manner:

Theorem 7-10

Given a discrete, memoryless two-way channel defined by
the set of probabilities P(y,§/xX) = p(y/xX)p(F/xX).
Whenever Shannon's outer bound to the capacity region
GO does not corréspond to his inner bound GI’ the

™

capacity region G will be a proper subset of G, pro-

0
vided the channel is not noiseless (i.e. it does not
satisfy any of the conditions (a), (b), or (c) of
Theorem 7-7) and 0<&p(y/x,%X)41 and 0<p(y/x,X)< 1

for all signals x,R,v,y.



7.7 A New Inner Bound on Capacity Region
It is a consequence of Theorem 46-2 that the convex hull
of points
| - = m 1m-m_-m
Pr5/E, 2", 575

. - m ‘m m -m
E{log Pr(y/f,f,f { = >f (7-113)
Pr(y/f,/ ;Y s )
m .
where Pr(/m) =1 P(£7)
i=1
m

Pr(zm)

1]
avl
~
Fhy
1
’,J
g

is certainly included in the totality of points forming the
capacity region G, and in turn includes the totality of points
in Shannon's inner bound GI to the capacity region. Hence
(7-113) gives a tighter inner bound to the capacity region
that GI did.

From Theorem 7-6 it follows that the convex hull of
points

E{% 1(?;1«"/’?)} , :{i— I(Y;f/F)? (7-11%)

obtainable from all input symbol probability assignments

P(f) and 5(53 is included in the convex hull of points
o T o 1-v.3/ ‘7115
sfl i@}, = i) (7-115)

obtainable from all input symbol probability assignments P(£)

and §(f), and thus following the discussion of section 7-2,
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from all the input lsignal probability assignments qt(x) s
q_(x) (always dealing with an arbitrary but fixed dependency
length £). But as n-»00, the set {7-113) is included in the
set (7-114), while, on the other hand, set (7-115) is, as

n-»o, equal to the convex hull of points

p(y_ /x
lim E {log o %o’ %) g )
" - = -
n->wo Pr (yn/xn’xn-l""xl’yn-l""y )
p(y /x_ %) -
lim { log n'n 'n (7-115)

(for proof see for instance Fano (4), p 87) obtained from alll

the possible signal probability assignments qx (%) , 'cIi X)

It follows from the discussion of the previous?section that the

set of points (7-116) is included in Shannon's outer bound GO.
Given any set of probabilities {q (x)} q_é}'&)} it can

be shown (and will be, in Article 9) that there exists a set

of probabilities §P(f)} , 1-;(713-)} such that for them

q (x) = 2 D g & = P(f) (7-117)
X4 £3 £(,4 )=x x4 ?£(,4% )=x

Then to any point (7-116) obtained for some probabilities

gq (x)} fq_(x)} points (7413) correspond, the latter points
belng obta:.ned for those probability sets {P(f)} ;P(f)}
satisfying (7-117). Since for a given ! the number of elements

in the set 3q (x)} is 22“", and the number of elements in the

*9
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_ - 24 : -
set {P(f)} is 22 , above correspondence suggests a useful

way to bound the boundary of the region of points (7-113) from
below: the boundary of the region of points (7-116) can be
found, aﬁd for each set {qx(x)} , fﬁ'i(g)} corrésponding to a
point on the boundary, a set iP(f)}, fﬁ(f)} is found satisfying
(7-117). Using the latter sets, corresponding points (7-113)
are found and it is known that these are included inside the
boundary of the region gontaining all the points (7-117).

The advéntage of this bounding will be shown more fully in
Article 9 where related questions of practical coding importance

will be discussed.
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8, Classification of Two-Way Channels and DeVelopment'of

 Canonical Chanmels.

The results of previous sections have provided gs'with
intuitive insight into the workings Ofvbinary two-way channels.
In order to further our understanding as to which kinds of |
codes are effective and why, we wish to aﬁalyze and classify
tﬁe different possible two-way binary channels meeting the
restriction

p(y,5/5%) = p(y/x®) p(F/xR) (8-1)
In Article 9 we will then carfy out a synthesis of the results
of Articles 6, 7 énd 8 and display some important properties
of two-way channels,

The restriction (8-1) insures that the success of the
signal transmissién in the forward direction will depend on
the identity of the signal sent in tﬁe reverse direction and
not on the consequent signal received ét the‘forward terminal.
A similar statement can be made about transmission in the
reverse direction. The noise of a two-way channel postulated
in this way will then consist of two components:

(a) natufal directional channel noise, analogous to

the one we are used to in one-way channels

(b) noise induced by the signal transmitted in the

opposite direction.

The noise components are superimposed upon one another,
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It would be interesting to separate the two components
and see more clearly the essential difference between opera-
tions of one-way and two-way channels. We hope that such
separation would show us a way to reduce the (b) component
of the noise by signal cooperation of the opposing terminals.
In what follows we will keep ourselves restricted to the

binary case.
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8.1 Terminal Labeling Rule for Channels Regreéentable by

Figure 3-1.

For the general one-way channel representable as in

Figure (8-1), the usual practice is to identify the output

p
i 0 1-p): a
1-q
1 %r b
,Figure 8-1

alphabet (a,b) with the input alphabet (0,1). A decision
must then be made whether a or b is to be made to correspond
to 0. Usually

0 and b

1

if po>1-¢ we let a

1 and b

if pel - qv we let a 0 (8-2)
An identification problem similar to the above one exists
for the two-way channel, broken up into for%ard and reverse
portions as in Figure 3-1, ‘Since the pfobability functions
p( ), q( ) are defined independently of the functions F( ),
q( ), we will deal with the two portions separately.
Each portion is characterized by a transition probability
set having four elements, e.g. the forward portiom is
characterized by the set fp(O), p(1), q(0), q(l)}. Without

any loss of generality, the sets of both portions may be

required to fulfill the following conditions:



135

ta) At least one of the following relations must be true:

p(1) # p(0) (1) #5(0)

q(1) # q(0) q(1) # g(o) (8-3)
otherwise né interaction noise is present and the two-way
channel breaks up into two separate one-way channels.

(b) At least two members of a probability set have values
greater than or equal to 1/2, and in addition, the sum of
the values of the four members of a set must be greater
than or equal to 2.
(i.e. p(0) +p(1) +q(0) +q(1) =22

p(0) + p(1) +q(0) + q(1) 22 ) (8-4)
It should be noted that if necessary the above can always
be arranged by switching the "0 and "1" labels at the

channel output.



8.2 Classes of Channel Portions

There exist two different classes of channel portions.
All channel portions either belong directly to these classes
or are equivalent to portions that belong to them, We have:
Class A:

Channels in which additional noise is caused by simul-

taneous transmission of signals having different digit values.

A channel portion belongs to this class if simultaneously:
12p(0)Z2p(1) 20
12q(1) 2q(0) 2 0 S (8-5)
Class B:

Channels in which one of the input symbols of the reverse:

portion causes exceptionally noisy conditions for forward

transmission,

A channel portion belongs to this class if simultaneously
12p(0) 2p(1) 20
12q(0) >q(1) 20 (8-6)
(Under the assumption that x = 1 isthe noise-causing digit)
Equivalent Class A:
12 p(1) >p(0) 20

12q(0)> q(1)Z 0 (8-5a)



Equivalent Class B:
12p(1) >p(0)2 0

1 2q(1) 2 q(0)2 0

13

-
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8.3 Equivalent Channel Portion Representations A and B

In order to separate the noise components (a) from (b)
we would like to display a channel portion as consisting of
a part in which only noise component (a) would be present,
and a part having only noise component (b). Such a break-up
is evident in Figure 8-2, where the newly introduced pro-
babilities are defined as follows:

p(x) +p; -1
Pgtpp -1

p1+Po"l

a(X) =

(8-7)
B (X)

Representation by Figure 8-2 is possible only if probabilities
Py and Py can be picked so that simultaneously:
0 £ Py e 1
pa
0« Py & 1
0&a(x)&1 Xx=0,1 (8-8)

0£p(R) el

P (x) a (%) P
—— 0 0 — 32 0
j§ ¢=>' X N2
> 1 1 > = 1
q(x) B (x) Py

Figure 3-2.,
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The noise in the second part of Figure 8-2 consists of
component (b) only. The noise in the first part will consist
only of component (a), provided that a(X) = 1 for some ¥ and
R(X) = 1 for some X, We shall now see whether this condition
together with the requirement (8-8) can be satisfied, and in
what case.

For Class A we expect that we will be able to make

a(0) B(l) = 1 (8-9)

For Class B we expect that we will be able to make

a(0)

(o) = 1 (8-10)
Equation (8-9) leads to the equivalent channel representa-

tion of Figure 8-3. Relations (8-7) then become:

PO=P(O)
Py = q(1)

C p() +q() -1 b 1
“ = S0 F D -1 a (810
o p(0) +a(0) -1 ¢
PO = S F e -1 a

If we limit ourselves to Class A, then from (8-5) it follows
that whenever a €& 0 then also b€ 0 and ¢4 0, But labeling

rule (8-4) requires that b + ¢c< 0. Hence we must conclude

that in Class A always a > 0. Therefore (8-8) can be satisfied

if and only if



(a) p() +q(1)21

(b) p(l)< p(0) |

(c¢) p(0) + q(0)21 (8-12)
(d) q(0) £ q(1)

1 . po a 1) pO
o — > 0 0 2 > 0
1 —> > 1 1 > —— 1
B8 (0) Py 1 Py
=0 Figure 8-3

x=1

Equivalent Channel Portion Representationm A
It is furthermore clear thatvwhenever a portion belongs
to Class A and labeling rules (8-4) are satisfied, then (8-12b)
and (8-12d) will always be fulfilled, and at most one of
(8-12a) and (8-12c) will be violated. We will deal with this
possibility in the next article.
Consider next relations (8-10) which lead to the

Equivalent Channel Portion Representation B of Figure (8-4)

1
1
R(l)
i=o x=1

Figure 8-4,

Equivalent Channel Portion Representation B




Relations (8-7) then become:

po = P(O)
p; = a(0)
_p(1) +4q(0) -1 _ -

]
o i e L

- p(O) +q(1)
B = 5(0) + q(0)

oo ol

Again, if we limit ourselves té Class B, then from (8-6)
it will follow that whenever a € 0 then also b< 0 and ¢ < 0.
Labeling rule (8-4) requires that b + ¢> 0. Hence we must
conclude that in Class B always a > 0., Therefore for Class B
(8-8) can be satisfied only if
(a) p(l) +q(0) 21
(b) p(1) & p(0)
(¢)  a(l) +.p(0) 21

(d) q(1) € q(0)

(8-14)

But whenever labeling rules (8-4) and relations (8-6) are
satisfied, then (8-14b) and (8-14d) are always fulfilled, and
at most one of (8-14a) and (8-14c) is violated, We will

deal also with this possibility in the next article.
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8.4 Channel Equivalence Through Transformation

In section 8.1 we have decided upon a labeling rule.
The received symbols a and b were identified with the trans-
mitted symbols 0 and 1. If, for the sake of argument, we
are dealing with forward transmission, then whenever rules
(8-4) are satisfied, a is identified with 0 and b with 1
regardless of the identity of the signal x transmitted in
the reverse direction. There is, however, no reason why the
identification of digits 0, 1 with the constant a should be
independent of the digit X being transmitted. We could,
for instance, identify a with 0 whenever x=0 and a with 1
whenever x=1. In such a case we would get instead of the
usual channel portion the portion of Figure 8-5, where we
assume that rule (8-4) has been kept for the new probabilities

r(x) and s(x).

r(x)
0 > 0(x)
Ney 1
Figure 8-5

From rule (8-4) it follows that if

p(0) + q(0) > p(1) + q(1) (8-15)
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then 0(X=0) =a 0(x=1) =b
1(XR=0) =b 1(XR=0) =2
and r(0) = p(0) r(l) =1 - p(1)
s(0) = q(0) s(1) = 1-- q(l)
and if
p(0) + q(0) <p(1) + q(1) (8-16)
then
0(0) = b , 0(l) = a
1(0) = b , 1(1) = a
and r(0) = 1-p(0) ; r(1) = p(1)
s(0) = 1-q(0) s(1) =

q(1)

Of course the channel portion of Figure 8-5 may be trans-
formed into equivalent channel portions of Figure 8-3 or
Figure 8-4, whichever ié applicable. Hence suppose that we
are dealing with a channel portion of Class A for which condi-
tion (8-12a) fails. We can transform such a portion into the
channel of Figure 8-5, where relations (8-15) are applicable.
We may now attempt to fit the new channel into the schemes
of either Equivalent Channel Portion Representation A or
Equivalent Channel Portion Representation B. This, of course,
depends on whether the new probabilities r(X) and s(X)
satisfy conditions (8-5) or (8-6).

(It should be noted that the new channel could also
satisfy equivalent conditions (8-5a) or (8-6a) arising from
(8-5) and (8-6) by substitution of the argument "1" by the

argument "0" and of the argument "0" by the argument "1").
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Now if conditions (8-5) are satisfied, then we have
12p(0)>1 - p(L)20
121 - q(1) >q(0)2 0 (8-17)
and the question is whether (8-18) is satisfied:
p(l) +q(1)€ 1
p(0) +q(0) & 1 (8-18)
But the satisfaction of (8-18) was the reason why we transformed
into the equivalent portion of Figure 8-5 in the first place.
Next, if conditions (8-6) are satisfied for the new
probabilities, then we have
12p(0)>1-p(1)20
1 2q0)> 1 -q(1)2 0 (8-19)
and the question is whether (8-20) is satisfied:
q(0) 2 p(1)
p(0) 2 q(1) (8-20)
But, as pointed out, inequalities (8-18) hold by assumption
and (8-20) follow from (8-18) and €8-19).
Finally, therew probabilities might satisfy Equivalent
Class A definition. Then we would have:
121-p(1)> p(0)20
12q(0)2> 1 -q(1)20 (8-21)
and the question is again whether (8-18) is satisfied, and,

as has been pointed out, it is.
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(Equivalent Class B cannot hold for the new probabilities
because, as can be checked, this would mean a violation of
the labeling rule for the original probabilities). We have
thus successfully finished treating Class A when (8-12a)
does not hold. |
All together, .there are the following possible
troublesome cases, which can be treated by the transformation
of Figure 8-5, as can be shown by reasoning similar to the ome
employed above:
(1) Channel portion of Class A where inequality (8-12a)
fails to hold (was treated above). |
(2) Channel Portion of Class A where inequality (8-12c¢)
is not satisfied., In this case the probabilities r(X)
and s(X) can fulfill the requirements of: (a) Class A,
(b) Equivalent Class A, (c¢) Equivalent Class B.
(3) Channel portion of Class B where inequality (8-14a)
is not satisfied. The transformed channel portion then
satisfies inequalities (8-15) and the probabiltties r(X)
and s(X) can fulfill the requirements of: (a) Class A,
. (b) Class B, {c) Equivalent Class A.
'(4) Channel portion of Class B where inequality (8-1l4c)
is not satisfied. The transformed channel then satisfies
inequalities (8-16) and the probabilities r{X) and s(X)
can fulfill the requirements of: (a) Class A, (b) Equiva-

lent Class A, (c¢) Equivalent Class B.
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From the discussion in this and the preceding article
we can therefore conclude that every portion of a binary two-
way channel whose transition probabilities satisfy equation
(8-2) can be treated either directly, or after preliminary
transformation into the channel portion of Figufe 8-5, as
either the Equivalent Channel Portion Representation A, or as
the Equivalent Channel Portion Representation B. In other
words, it can always be broken up into a cascade of two
components, the first of which has noise due to the trans-
mission signal in the opposite direction, and the second of

which has steady noise uninfluenced by the opposite signal.



8.5 Svmmetrical Equivalent Channels

As pointed out, there are only four different possible
channel portions: Class A, Class B, Equivalent Class A, and
Equivalent Class B, Every channel consists of a forward and
a reverse portion, and consequently there are 10 essentially
different two-way channel classes (that is, if we consider
a case and its equivalent to be different). However, it is
reasonable to assume that in most cases both portions of a
two-way channel will belong to the same class,

Further interesting symmetry conditions can, however,
be obtained. We will term a channel 'horizontally symmetri-
cal” if for both directions the transmission conditions of a 0
and a 1 are the same. We will term a channel 'vertically
symmetrical' if the transmission conditions o r the forward
direction are identical with those for the reverse directions.
A "completely symmetrical” channel is one which possesses
both horizontal and vertical symmetries.

Horizontal symmetry results in very interesting situations
for both Class A and B.

Horizontal Class A

Clearly the conditions
p(0)

(1)

Il
fl

q(1) (0) = q(1)

q(0) p(1) = 3(0)

(8-22)

]

must be satisfied.
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Inspecting relations (8-11) we see that

Pg = Py =P = p(0)

Pg =P = P = p(0® | (8-23)
1) +p(0) -1
= 0 = p(
- - p(1) + p(0) -1
1) =) = &)
G(1) = B(L) = B s
and therefore we obtain the channel of Figure 8-6.
0 a(y) 5P
x y
1 - >
a(x™) D
p a(x)
0 —— < 0
y X
1 - —€ 1
P a(x7) (Note: x° is the
complement of x
Figure 8-6. %° is the

complement of X)

Thus, we have for both directions a reversible z-channel

followed by a constant binary symmetric channel. Further re-
flection shows that the channel of Figure 8-6 can be repre-
'sented by the configuration of Figure 8-7, the latter repre-

sentation being conducive to further interesting interpretations.



noise source
p(L)=1-a(1)

2

noise sourq
p(1)=1-a(1)

It is seen in Figure 8-7 that the transmission noise is
produced by four independent noise sources (outputs 0 and 1
with probabilities indicated), the noises N and N being
"gated" by multipliers. N and N are blocked whenever the
signals x and X are in agreement. One can derive a boolean
expression for the received sigﬁals:

7=2@0n= ON) O E@NM On

y=Z®n= G O =@V OF

and it is understood that

(8-24)



PN=1) =1 - a(l)
2(ﬁ'= 1) =1 - a(l)
Pn=1)=1-p €8-25)

P@=1=1-p
From (8-24) we notice that:

0 (i.e. no noise) then ¥y = x@n

a) If N

If N =1 (i.e. noise) then 7 = X ®n
and therefore the "variable'" channel acts like an erasure
channel (if there is noise the output tells nothing at all
about input) but the receiver does not know where the erasures
occurred.

(b) 1f it were not fbr the constant channel in cascade,
the receiver would know sometimes when an erasure did not
occur, i.e. if n = 0 and 7 # X then necessarilfgi = x,

c) Noise patterns n and N are independent of each
other, and even if they are known, the output ¥ will not,
in general specify input x.

Because of the results pointed out above, channels be-
longing to horizontally symmetrical Class A can also be re-
presented as in Figure 8-8,

Horizontal Class B

Here the condifions
p(0) = q(0) p(0)
p(1) = q(1) p (L)

must be satisfied,

3(0)

q(1) (8-26)
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p(n=1)=1-p
n
o> > 0
\ -
1 = —('_/ > ° y
\ 4
~
z by A
¢ < K;h¥, &
switch moves to - -
terminal No. 1 p(n=1)=1-p
write probability switch moves to
p(1) = 1-a(1) terminal No. 1
write probability
Figure 8-8 p(1) = 1-a(1)

Inspeetihg relations (8-13) we see that we have:

Py = Py = p(0)

50 = 51 = 5(0)
a(l) = B(1)
a(l) =B(1) =

Therefore we obtain the

_ p(

=P
=p
1D +p(0) -1
2p(0) -1
p(1l) + p(0) -1

2p(0) -1

(8-27)

channel represented by Figure 8-9.
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a(x) P
0 > > 0
X y
1 > %: 1
a(x) 3 (%)
0 ‘% ~ 0
y X
1 < — 1
P a(x)
Figure 8-9

We thus have for both directions a variable symmetrical
channel (which is noiéy if the signal transmitted in the
opposite direction was a 1) followed by a binary symmetric
channel. Further reflection shows that the channel of
Figure 8-9 can be represented by the configuration of Figure
8-10, the latter configuration being conducive to further
interesting interpretationm.

It is seen that in Figure 8-10 the transmission noise
is produced by four independent noise sources, the noises N
and N being "gated" by multipliers. N and N are blocked
wherever x and X are equal to 0, respectively. The booclean
expression for the received signal is:

y=z@n=x@ @O On
y=z@n=x@® T@®x) ®n

(8-28)
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p(n=1)=
1l-p

p(N=1)=1-a(1)
N
N
p(N=1)=1-a(l)
| N
< © < (H——< <

- z

p(n=1)=1-p
Figure 8-10

From (8-28) we notice that

a) If N =0 (i.e. no noise) then y = x + n
If N=1 (i.e. noise) theny =x+ x + n
In other words knowing the noise patterns N and n the

receiver y can determine what x was, since it always knows

the signal X.

b) Except for the independent additive noise n, a
receiver controls its own noise by its transmission. 1i.e.
if it sends out only O's, it can guarantee noiselessness in

the variable part of the channel. Thus, except for the

]

w



154
~constant BSC in cascade, by reducing its signalling rate to
zero the terminal in question can assure perfect, noisiess
reception. )
It can easily be seen that channels belonging to the

horizontally symmetrical Class B can also be represented as

in Figure 8-11.

p(n=1)=1-p
n
—> N —>- o 0O 2
\ R + . L -
ot A / - 'y
e 1
N
lL < +
N B C¥] ) __— ~
S \ ’ 2 -
- 0 < <—0 X
+rl AN
p(n=1)=1-p
switch in No, 1
position with
switch in No. 1 position probability
with probability p(1l)=1-q{1) p(1)=1-a(1)

Figure 8-11
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F:om the results of this sgction we may conclude that
a study of channels consisting of portions in which all the
noise is due entirely to signal transmission in the opposite
direction, would give results very indicative of the situation
of two-way binary channels unrestricted otherwise than by
the relation (8-1). This may prove crucial in the selection
of examples to illustrate the coding results derived in this
thesis, In the present article we have also developed a tool
for judging possible relevance of particular examples to the
genéral case, Figures 8-8 and 8-11 provide us for given
channels with an intuitive guide as to what kind of signal

cooperation between opposing terminals could prove useful.



9. Properties of Two-Way Channel Codes

9,1 Philosophy of Strategy Coding

A word F of input symbols to the derived channel of Figure
4-2 can be looked upon as a strategy by which the signal input
to the two-way channel is determined. I.e., the signal word
F(Y) is decided in advance for any possible received signal
word Y. Thus the kind of coding examined in this thesis can
rightfully be called "strategy coding'. It was demonstrated in
Article 8 that a coding strategy for a two-way channel with
specified transmission probabilities ought to result in such
signal cooperation between the opbbsing transmitters as would
reduce the noise in the variable part of the forward and re-
verse channel portions (see Figure 8-2). It was further shown
that in essence only two different types of channels exist
and hence that only two different general types of strategies
are necessary.

It is clear from Article 7 that the possible decrease
of noise in the variable part of the channel is paid for by
a loss of information resulting from the fact that in
strategy coding the identification of the signal sent is not,
in general, sufficient for the correct decoding of the message
associated with a symbol word.

One may then ask whether and how the gains of our method

over balance its drawbacks. It should first be pointed out
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that.iﬁ a good code the strategies of the two terminals are
correlated in the sense that the strategy of the forward
terminal is best for a given strategy of the reverse terminal,
énd vice versa. (This optimization is accomplished by the
maximization of the quantities on the right hand sides of in-
equalities (6-54) and (6-55) over the different possible input
symbol probability distributions.P(f) énd’?(fs.). _In view of
the extreme complexity of the situation, the author is unable
to describe in detail the character of those strategies which
will insure the optimal correlation of input signals. Instead,
he will try to indicate heuristically how such strategies work.
The sought for principle is one of variable signalling rate.
Namely, when using a good code the forward terminal will in-
crease its rate at times in which by its ''judgement" (a) its
own decoder can afford the resulting noise increase, and (b)
the reverse decoder can cope with the rate increase. Conversely
the forward transmitter will lower its rate at times when
either the forward or the reverse decoders have trouble operating.
All this is done in correlation with the actions of the re-
verse transmitter, so that, e.g., both do not increase their
Tates at the same time, We will illustrate the above in a
moment, but right now we wish to point out that ﬁhe "judgement"
mentioned is accomplished by wvirtue of the fact that the
selection of the transmitted signal x is based, through the

strategy function £, on the identity of / past transmitted
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and received signals 3¢, 4, which in turn are indicative of the
! past received and transmitted signals Eﬁ%} at the reverse
terminal.

Consider now a two-way channel whose forward and reverse
portions are both representable by the Equivalent Channel B
of Figure 8-4. A good code will then have the property that
when used, the frequency of transmission of the signal 1
through the channel in both forward and reverse directionms
will be smaller than the frequency of transmisiion of :the sig-
nal 0. Hence the signg}}will carry more information than the
signal 0. Now the transmission of a 1 from any terminal increases
that terminal's reception noise. Hence the transmission frequency
of 1's will in a good code be highest at times when the trans-
mitting terminal's decoding is in good shape and the reception
noise of the receiving terminal is expected to be low. Thus
maximal use will be made of the increased information content of
the contemplated signal. It is reasonable to expect that the
above strategy can indeed be implemented.

The strategy to be adopted is not as obvious when dealing
with a symmetrical channel of class A of Figure 8-6. In the
variable part, noise is generated when the signals transmitted
simultaneously from the two terminals are different. -If the
forward transmitter expects a 1 to be transmitted from the

reverse side, increasing the probability of x=1 will decrease
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the channel noise level and also the contemplated signal's
information content, and hence the rate. Therefore, information
rate can be increased in favorable situations by increasing the
frequency of digits apt to cause more noise, and it can be de-
creased in unfavorable situations by opposite action.. Thus a
vehicle of fruitful signal cooperation between opposing terminals

is conceivable.
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9.2 Dependent Symbol Coding for the Derived Channel
(1)

It was shown by Shannon'™’ (for discussion see Section 3.3)
that the convex hull of the set of points E(I (F;¥/F));

E(I (F:;¥/F)) obtained for different probabiiity assignments
P(F) and F(f) will cqnstitute thé set of points of the capacity
region of the two-way channel, as the code word length n and

t he symbol dependency length £/ grow appropriately large. (The
predé&ing statement is actually Shannon's theorem given in the
notation and terminology of this thesis). According to Theorem
7-5 this capaéity region will be included in fhe convex hull

of points E(I'(X;¥/X)); E(I'(X;¥/X)) obtained for different
probabiiity assignments P(F), P(F) for different sizes of n

and L. We have argued in the preceding section that the aim of
the employment of strategic codes is the achievement of signal
cooperation between opposing channel terminals, which would
result in an increase of the size of the convex hull of average
mutual information .points [E ;1"(){;&/'2)}, E {I'(E;Y/X)}] over
that obtainable by non-strategic codes. We have discussed the
above information measures in sections 7.2, 7.3 and 7.4, and

we have concluded (éee especially Theorem 7-1), that any value
of Ep(é)?(f)(ln(}g§7§)’l'(igij)) can be approached arbitrarily
closely by independent symbol probability assignments P(f) and

P(f), if the dependency length £/ is made long enough. The

question therefore arises whether all results achievable by



depéndent symbol coding (e.g. by word probability assignménts.
P(F), P(F)) cannot also be achieved by independent symbol coding
associated with the symbol assignment probabilities P(f), 5(5},
when an appropriately long dependency length [/ is used. The
answer to this question hinges according to the conclusion of
Theorem 7-5, on whether or not the use of dependent sources
can reduce the coding loss E(I(Y;ﬁVF,f)).

The author did not succeed in answering the last question.
Two possible approaches to the problem exist and the discussion
below will give the reader an idea of why neither of them was
fruitful, |

Firstly, one could try to hold the value of the quantities
EfI"('X;?/ﬁ)}, EfI'(}E;;YﬁX:)} ‘constant, and inquire whether it is
possible under this constraint to reduce the coding loss
E{I(Y;&/F,f)) by switching from independent to dependent symbol
sources. Unfortunately it follows from Theorem 7-1 that no
such constraint, except in some degenerate cases, can be satis-
fied, since fof independent symbol sources the channel input
signals depend oﬁ a finite number of preceding input and output
signals, while for dependent sources the channel input signals
depend on an infinite number of preceding input and output

signals.
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Secondly, one could attempt to attack the problem in all
its breadth, by trying to prove that every point E(I(F;¥/F));
E(1(F;¥fF)) achievable by dependent sources P(F), P(F) for a
given £ can be approached arbitrarily closely by independent
sources P(f), P(f) when an appropriately long dependency length
4% is used. But the usual approach to similar proofs for the
one-way channel (see Fano, (4), p.125), in which the independent
distribution P?f) is determined from the dependent distribution

P(F) by the equation

§in) = P(F = £y, f2,.c0,f5,000,E) (9-1)

S S ST

n

will not work. In fact, it is intuitively clear that if the
suggested theorem were true, then the dependency lengths £~ and
% of the symbols put out by the dependent and independent
sources, respectively, would in general not be equal, and hence
that the s&mbols put out by the equivalent dependent and in-
dependent sources would be of a different character.

Therefore we are reduced to only asserting that for loss-
less channels (ie. those satisfying either of conditiomns (a),
(b) or (c) of Theorem 7-7) the capacity regions of dependent
and independent coding are equal.

For reasons similar to those given in the paragraph pre-

ceding the last one (made more evident by the proof that follows)
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the author did not succeed in proving the independent coding
version of

Theorem 9-1

Given the transition probabilities p(y/x,%) and p(§/x,%).,
for a two-way chammel, the rates
= E(I(F;¥/F)) R = E(L(F;¥/F)) (9-2)
are concave downward functions of the assigned input
probabilities P(F) and P(F).
Proof:

It is only necessary to show that

RGP, (B)4+2,(®) ], [F) (F)+F, (F) 1D 2 £ 21 21 R(P, (F),F, () (9-3)
i

and the theorem concerning both R and R will follow.

If we could show that
RG(@, ()42, (F)), F(E) 2 2R, (F),FENRE,E),FE), (9-4)
and also
R((F), 3B (OF, () FREE),F FN+REE),F, )], (9-5)

then (9-3) would follow, since by (9-4)

et

2 RG(@ (E)+2, (), B, (M) 2% 2 R(P,(F),P,(F)),  (9-6)
j=1 :

and by (9-5)

RGE, ()42, (F)) ,5F, )+ 37, )21 Z R(G(B, (F)+2, (F));

2 - X
P2l 2 2 rE®),F,®). (9-1)
LTSI t
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We will first prove (9-4). Let

1
Po(F) =35 (By(F) + P, (F)). (9-8)
then
Pr(WFF) _ _
R(P, (F), P(F))=E(log e (Y(F) ) = H, (Y/F)-H, (Y/FF), (9-9)
i=0,1,2

where by equation (7-81)

pry (I/FF) = 2 P (WEOFD) " @FQF@) (9-10)
Y .
for all i,

and by (7-82)

Pri(§7F) ;25 Pr' (Y/F(Y)F(Y\)Pr”(Y/F(Y)F(Y))P (F). (9-11)

Y,F
But
H, (Y/FF)= - ;Ei P (F)P(F);E‘Pr(Y/FF) log Pr(¥/FF)
F,F
- ,% (u, (¥/FF) + H, (T/FD). (9-12)
Moreover

1 - - - - - g
s F/F) + 8, /F)] - Ho(z/F) -

5 P(F)Pr (Y/F) log ——(?7?—' +

;E; H Pr (YAF) w3 o13)
“~ P(F)Pr (¥/F 1og < 0. 13
Fy (Y/fi

Relations (9-12) and (9-13) together with (9-9) prove (9-4).

Our next task is to prove (9-5). Let now
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Pr, (Y/FF) * — - . — -
R(P(F),P (F)) = E(log mﬁ? ) = H;(¥/F) - H,(¥/FF) (9-14)

where again P (F) = -2-('151(17") + B, ()

It follows from (7-81) and(7-82) that probabilities Pr¥ (¥/F,F)
and Pr:(?/F) are constant over i=0,1,2. Hence
H (Y/FF)- - Z P(F)P (F)Z Pr(¥/FF)log Pr(¥/FF) =

F, F

- 3 1(Y/FF) + 3 Wy @/FF), (9-15)

and

Hz(Y?/F)= -PZ?f"O(f)Pr(‘Z-*/f)log Pr&/F) =

7 ] @/F) + H,@/F). | (9-16)

Probabilities (9-15) and (.9-16) together with (9-14) prove (9-5).
Q.E.D.
We next prove a similar theorem for dependent function
assignments about the coding loss:

Theorem 9-2

Given the transition probabilities p(y/x,?) and p(¥/x,X%)
for a two-way channel. For a probability assignment of
input words to the corresponding derived channel, P(F).

and .i’-(f‘-), define the coding loss function

L(P(F),ﬁ(f))ﬂ{l*og pr(Y/F ggr(Y/FF)§ | (9;17)

Given any two pairs of input probability assignments

(B, (F),P, (F)) (B, (F),B, (F)), the equation
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2
LG, (F)42, (®)), $(F, F)+F,(F))) = 1 123; RICHOBAD)

‘ (9~-18)
holds.

Proof:

Because of symmetry, all we must show is that
LG (F)42, (F)),E(F) = 2(L(2, (F), BENHLE,(®),FE) ). (9-19)

The equation (9-18) will then follow by the reasoning employed
in proving (9-3) from (9-4) and (9-5).

Let equation (9-8) hold. Then
L(Pi(F),ﬁ(F)) = Hi(Y/F,F)+Hi(y/F§)-Hi(yi/Fﬁj i=0,1,2. (9-20)

But from (9-12) we get

VFF) =+u (F/p ) 4+ L 7/FF -
Hy(¥/F,F) = 3 H, (¥/F,F) + 5 H, (Y/FF), (9-21)
and from (9-16) we get
v /ey = L v/eEy 4 L 3 -
H,(Y/FF) = 5 Hl(Y/FF) + 3 HZ(Y/FF). (9-22)
From (7-45) it follows that
Pr, (YY/FF) = Pr' (¢/F(DF (D) Pr"(W/F(DFD) (9-23)
for all i ,
so that
HO(Y,§?FF)==-2§PO(F>§x§) ;Ei Pr(YY/FF)log Pr(YY/FF) =
FE Y,Y
-1 v /TR 1 7 /PR YA
=3 Hl(Y,Y/FF) +3 HZ(Y,Y/FF) (9-24)

Equality (9-19) then follows from (9-20,-21,-22,-24),.

Q'E.D’



Finally, from theorems 9-1 and 9-2, by use of theorem 7-5
there follows

Theorem 9-3

Given the transition probabilities p(y/x,%X) and p(y/x,X)
for a two-way channel, the average sum of the signal
informations received through the channel at the two
terminals,

E(I(F,¥;F,¥)) = EQ(X,¥:X,¥)), (9-25)

is a concave downward function of the assigned input

probabilities P(F) and F(f} of the corresponding derived
channel.

From the preceding theorems the usual convexity con-
sequences about rate maximizations follow. Amongstthese it
is worth mentioning that for any given assignment ?(f) there
is in general only one assignment P(F) which will maximize
E(I(F,Y;f}%)) and one assignment P(F) which will maximize

E(1(Y;F/F)41(7;F/F)). (See Fano, ® p.135).
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9.3 Random Construction of Codes

In order to construct a random ensemble from which to

pick good codes for signalling at Gclose to capacity rates, one

would ordinarily proceed as follows:

(a)
(b)

()

(d)

Pick a dependency length £ (see Section 5.3).

Pick decoding criterion length m (see equation (6-10a)
and compare with (6-38)).

Maximize the expression (9-26) over the possible
independent probability symbol assignments P(f)

and P(f), where JA is a positive real number con-
trolling the intended relation between forward and

reverse transmission rates (see equations (6-50) and

(6-51))

| E{log Pr(J/E, fj“‘/‘“ %‘“ 5 )f . (5-26)
)

pr(5/EL0,5",5"

Prgz[f,;‘.-zg ,2 ,#‘m,s-mzf

Using the optimizing distributions P(f) and §(E>
found in {c}, evaluate € and € for equationms (6-52)
and (6-53) by use of the procedure indicated in
(IV-47) involving.(IV-AB) and (IV-45). Compute the
expressions log(l+e) and log(l+€) and decide whether
the length m picked in (b) was sufficiently large
(see (6-50) and (6-51)). If not, go through the

complete procedure starting with step (b) again



(note that for a different m the optimizing probabilities P(f)
and P (f) will, in general, have different values).

The procedure listed above is certainly a very complicated
one and must in any case be carried out with the ﬁelp of a
computer. Most prohibiting is step (c), not only because it
involves evaluation of the complicated expressions (9-26),
but especially because optimization over a set of 2 # variables
is necessary. The enormity of the task is readily realized if
it is pointed out that the number 222£ equals 32 for /=1, and
131,072 for £=2. The implications of this remark might seem
hilarious to a detached observer but not to the author who
labored hard to reach this point. Theorem 7-6 suggests a

possible way out of this calamity. One might, perhaps maximize

the expression

P(y/%,%)
Ef“g Pr(s‘r/i,im,gm,g‘%} ¥

+ A E{log p("/XX)m — _ f (9-27)
Pr(y/x,% & |
over the signal assignment probabilities q(x), q(x), and then
xy ' xg
using the optimizing probabilities q:(x), §§(§) as constraints
7

in the relations (7-11), minimize the expression

M M
{108 Pr(v/f fg ;! ,41 1'3 28 -8 ) f +

Pr(§/£, f/ }“‘ 0 =)

= M M .Mm -M —-m
+ A E{log Pr(y/f,£ e )} (9-28)

Pr(y/£, f/‘“/@“‘ o
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over the-probabilities P(f) and P(f). This can be done any-
way for lossless channels satisfying conditions (a), (b),'or
(c) of Theorem 7-7, and in such cases minimization (9-28) is
not even carried out. It is true that in (9-28) the number
.of variables is the same as in (9-26), but we could perhaps
eliminate this last step in practice, if a good way was féund
to satisfy the constraints (7-11) so that (9-28) would be
small compared with (9-27). As will be seen later, such a
good way really exists, and so we would like to find out how
good or how bad the quasioptimization involving (9-27) and (9-28)
is compared with the totimization (9-26).

Before dealing with the problem stated in the previous
sentence, it is worthwhile to point out that because of
Shannon's outer and inner bounds and Theorem 7-9, the expres-
sion (9-27) is to be optimized only ovér a restricted range of
probabilities q(f), ié%). Namely over those combinations
q(x), §§i) for wﬂich the expression would give'a distribution

Pr(x,%) such that for it the point

Pr(¥/xx Pr(v/xx
E {1og§r4(%/%x)l , E {1og -1;;%%")—1 (9-29)

would lie outside of Shannon's inner bound to the capacity
région of the given two-way channel.
We will now turn our attention to the questions discussed

in the paragraph preceding the last one and will prove
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Theorem 9-4

Given a two-way channel whose tranqymﬁon probabilities
do not fulfill any of the conditions (a), (b), or (c)
of Theorem 7-7, and are such that O<p(y/xx)e 1,
04 p(§/%X) «1 for all signals x,X,y,y. If the actual
capacity region exceeds Shannon's inner bound, the maxi-
mization of the expression (9-26) over the input assign-
ment probabilities P(f) and ?(f) will never result through
equations (7-11) in signal probabilities qﬁg), igg) which
would maximize the expression (9-27). Hence the maximiza-
tion involving (9-26) and quasi-maximization involving
(9-27) and (9-28) will have, in the genéral case, different
results.
Proof:
For notational simplicity we will prove a slightly narrower
theorem, but as will be seen, the argument can be generalized
to cover the entire extent of Theorem 9-4.

From Theorem 7-5 we have

CE(L(F;¥/F)) + E(I(F;¥/F)) = E(I(XY;XY¥)) - E(I(Y:¥/F,F)), (9-30)

and we are free to maximize the right hand side of the above.

Let
h 0) ,E.,.04, =q(0) -
xy(qéag 00 oo f oy )T YD 2 P(f)
2 -1 faf(x,9)=o
R @GO ,E,...,F )= 3(0) - 2 B(D)
5 x5 0 2222-1 x4 -



pucd
~d
g%}

h(Egseesf 5y ) E L - D P(f)

22 1 V£
B(Epeesf 5, V1 - 285 . (9-31)
2% 1 ¥

Relations (9-31) constitute 2(22!'+1) constraints between the
quantities q(0), q(0), P(f), ?(f). Defining for each constraint
*y X3

a Lagrangian multiplier, we then wish to find the extrema with

respect to the variables q(0), q(0), P(f), P(f) of the functionm
x

E(L(X, % XD) -E(L(GYE, ) +2. ) h, +

+ Z A)ZT’ h-?a‘* + Ah + Ah, (9-32)

where we let q(1) = 1-q(0) and q(1) = 1-q(0). The solution
x4 Xy &5 4

we are looking for will be the maximum of the obtained extrema.

The different extrema themselves are found by partially dif-

ferentiating (9-32) with respect to all the 22“6 variables q(0)

2 o )24 2L %%
the 27 variables qjgg), the 2 variables P(f), the 2 vari-
- - ? Y
ables P(f), the 2” variables AJ!" the 225 variables ’\55 , and
9 21

the 2 variables A and A . We will thus get &2“ + 222 + 2

simultaneous equations which should lead to solutions with

04 q(0)&1; 0¢ 51}0_)-‘- 1, in order to be acceptable. It is
x4 3

expected that in the general case the solutions will lie on

the boundary of the P(f) and §(f) coordinates, i.e. that some

P(f) and f’(f—) will ultimately be made O, It is further expected



that none of the q(0), q(0) will in the
x5 ik |

to be either 0 or 1.
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general case come out

It will prove convenient to display the

different types of the simultaneous equations mentioned above:

(i) ’3%5)_ E{I(xv;XD} + /\a:?= 0

(1:\.)3?(0) E{I(}W ;X)) ‘“\2“ 0

(9-33)

3
(111)3—— 16 ;¥/F,F) 2 '\a: A= 0
P(£;) f }xgaf (z,g)-O
(iv) -a?(- E{I(y,z/y " 2 A 55 A= o0
1 béf (5 )
) LI fo,...,fzzu-l) =0
(vi) _ﬁi (é%), f—o,...,f 22!’ ) =0
- 2° -1
(v11)h(f0,fl,...,f 24 )
22

(viii)ﬁ(fo_,fl,...,‘f gy ) =0

227 1

The anticipated setting of P(f) and P(f) to zero for

some f and f will in no
It will eliminate some equations (iii)

change the form of the remaining onmes.

way change the equations (i) and (ii).

and (iv), but will not

1t will leave the number

of equations (v), (vi), (vii) and (viii) constant, while

changing their form in so far as some of the terms in the

right hand sigéj\mgf (9-31) will be eliminated.
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When maximizing the function E{I(X,Y;gfg, we will get

equations of the type

(1) 5—%-(7)—)-E{I(X,Y;i§)}= 0

iy @ R =
(i) 3 5 efrx,v;&0H} = o, (9-34)
where it is again understood that q(l) = 1-q(0) and E(l)=1-§§;).
x4 £ xy ?

It then follows that if (9-34) is to lead to the same solution
as (9-33), then for the absolute maximum at least, the optimizing
variables Axa)A;‘WSt come out to be )\3%=)\is = 0 for all
(19:5'5). But then the constraints (9-33 =v, -vi) play no role
whatever in the minimization of EfI(Y}?/Ff)}. This in turn
implies that the function E{I(Y;?/FF)} will attain ité absolute
minimum for such P(f) and ?(E} as would satisfy the constraints
imposed by the distributions §£0) and qgﬁ) obtained from the
optimization of EfI(XY,‘XY)} . ngever, w: know that under the
assumptions about the two-way channel listed in this theorem
the unique minimum of the function E{I(Y;inf)} is obtained for

the distribution

P(£) if flx,y) = £@) Yy
P(f) = (9-35)

0] otherwise.
But the above distribution, if constraints (9-33-v,-vi) are to

be satisfied, leads to the conclusion that the q(O), qLO) optimi-
k)

Xy
zing . E I(XY;XY) would be

q(0) = q(0) "‘at:, 5 q (0) = q(0) ¥&4, (9-36)
.'!

x4 é; i
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which under this theorem's assumptions about the two-way
channel is false. This proves the theorem
Q.E.D.

Actually it is highly probable that the conclusions of
the above theorem hold even if the restriction
0 < p(y/xx) & 1; 04 p(y/xx) & 1 on the transmission pro-
babilities of the two-way channel is removed. We must then
conclude that our quasi-optimization scheme will in most cases
be just that-it will not be equivalent to a full-fledged
optimization. On the other hand, for practical reasons
(namely that for £=1 the number of variables qé0)+ qég) is
8 and for £=2 the number is 32) we might still ge forzed to
quasi-optimize rather than optimize, and then by some procedure
find the distributions P(f) and P(f) which would satisfy the
constraints (9-33-v-vi). Such procedure will be described in
the next section.

We wish to conclude this section by observing that a
consequence of Theorem 9-4 is that in order to maximize the
flow of useful information through the channel, one must not in
general maximize the total flow of information through the
channel. Rather,one must make a compromise and send less in-
formation through the channel, of which howe?er a greater part
can be used for message identification. Thus, up to a certain

point, an increase in total information flow through the channel
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due to strategy coding can be made in such a way that an in-

crease in useful information will correspond to it; beyond that

point however, any increase in total information will be accom-
panied by an even greater increasein coding information loss,
so that the net amount of useful information will actually

decrease.
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9.4 Canonical Distributions E(fﬁﬁﬁgg;isfying the Constraints of

iq a:((’3)}, fﬁ'ig ;d)}Distribut ions

Given a distribution%q:(‘o) , we can assign indexes ie(1,
?
2,...,22!’) to the various configurations (3:,7) according to

the following rule:

When i< j then either % x(;;)- ‘q(x.lg?-)
. J

or (0) = ?{_ and the integer represented
X ()

by the binary number (Jt,g)i is smaller than the
integer represented by (&',g)j.
' (9-37)
The index rule (9-37)then assigns a unique and different index

to each different configuration (i',g).

For the same given distributionfqi;)} we will define a new

notation ;Eoi: the symbols f:

Given a function f such that’

1 for (x,')ﬁ (-*) )- J('!, ) ,""(x, )-
R L {9, O

0 for remaining @ 4) (9-38)
Let £ = £% .
11,123000’1110
Also the above rulte is unambiguous, but it should be stressed

that it applies only for a specified qugo)} . For a different
{qég)} the rule operates in general differently. Note that
according to (9-38),

f2 f* if f(x,?) =0 for all (x,%)

and R oy if £@g) =1 for all (x,4) (9-39)
= 1,2,0..,2 ‘
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We may now construct the distribution P(f) as follows:

Let

P(£%) = q(0)

%),

P(f*) = %") - q(0)
L X
P(f1 9) = %EO) - q(0)

xy)y
P(f 25 ) = q(0) - q(0)
1 2,--.,2 -1 qu’)ag_e q&’) t',
P(£* =1 - q(0)
( 1, 2,...,225) Cllxg)ew
p(e) =0 V& & (£%, £F, B o 12,20

)

(9-40)

It is clear from the above and from the indexing convention

(9-37) that P(f)

= 2(£)

£3 £((34),)=0

2 0,¥ £ and also %_ P(f) = 1.

POE)+P(ED)+. .+ P(EY 5 o q) =

q(0) +[q(0) - q(0) I+...+

u?)' 0(9)‘ «3"
[q(0) - q(0) ] =
(&Q)k @‘Mt o

q(0) for all k €(3,2,..., 2 ),
eyl

Moreover

(9-41)
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so that the aséignment (9-40) satisfies the constraints of
equations (7-11) for the signal probability distribution
fqéO)z. We have thus displayed a procedure for finding
disgribution P(f) for apy~constraint (7-11). Such distribution
is in a sense a cannonical one; sinee in general it satisfies
(7-11) with a minimal number of symbols which are to have non-
zero probabilities, As seen from (9-40) the maximum number of
non-zero probabilities necessary for this assignment method is
2244,

Our interest in P(f) and f(f§ assignments satisfying
the constraints of signal distributions fqa(.;:)},figg)} arose
in the preceding section from the considerationvof a practical
way to optimize expressions (9-26). We were there suggesting
that, fqr distribution fﬁé:)},fﬁé§)} maximizing the expression

(9-27), a distribution P(f) and P(f) should be found which

- would minimize (9-28). The author has not succeeded in proving

that the assignment (9-40) is the one which would accomplish
that, but an argument can be presented showing that it is a
good.assignment in some sense:

It follows from Section 7.5.2 that a code giving a minimal
coding loss will in general contain such words F whose range
F(Y)=X is small over those Y's which occur with overwhelming
probability, We would thus wish to include into the code,all

other things being equal (and in the next section we will
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discuss a condition under which they are not), only those
symbols f which with overwhelming probability would generate

one of the binary digits, and only with a very small probability
its complement. Roughly speaking then, the forward codewords
ought to consist of those f's for which the number of different
configurations (%,4) such that f Ge,4 )=x would very much

exceed the number of different (x,g') such that £(3, 9 y=x°.

We wouldthus like to give the greatest possible probability
weight to those f's exhibiting the above imbalance the most.

But inspection of (9-40) convinces us that such is exactly the
result of that assignment. Namely, of all possible assign- .
ments satisfying the constraints (7-11) for a given distribution
{q’(‘:;);, ;Eé:;c_)} the assignment (9-40) gives the greatest possible
weight to the symbols f* and ff’z,...,zzz, and given the
previous, it gives the gréatest possible weight tb ff and

fi‘ 2 225_1, etc, etc. Hence, in this sense, at least,
ey v ey

procedure (9-40) gives the optimal results.



9.5 Further Note on Quasi-optimization of P(f) and P(F)

Distributions.

It ié reasonable to expect that the optimal distribution
P(£f) and P() maximizing the expression (9-26) will depend on

the length m of the decoding criterion defined in (6-10a).

This can be seen by consideration of the results of Appendices
IIT and IV. Surely, if the probability Pr(§/f,E L™, L°,3",5™
cannot be said for a sufficiently large m to converge to thé
probability Pr(?/f,f-,,n;m,ﬁn, ﬁ];fmil,yﬂ#lﬁluniformly for

all sequences (§-m-1,?-m-1,..,?,fm_l,.f,f-m-l,..,f) for which

50 = g™ LETLF™Y and prF,. L3 LE LT e, e
§’m-1) # 0, then it follows that the criterion is not a very

accurate one, and that the probabilities of f's and f's ought
to be weighted so as to make the inaccuracy least damaging.
As m increases, such inaccuracy must have # smaller and smaller
effect on the resulting probability of a decoding error, and
it must hence be taken into consideration less and less when
»the distributions P(f) and B(f) are being determined.

Now, as shown in Section 6-2 and in particular by equation

E.LE™ can

(6-7) the sequences (y,..,y-m,?}..,?rm,f,.,,f
be considered as having been generated by a Markoff source.
Thus the treatment of Appendices III and IV applies to the
construction of the probabilities Pr(y/f,f%!mdim,s , 8,

the Markoff source in question belonging to the class treated
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in Appendix IV, Set-transition matrices@a (B) can then be
constructed, but it can be_shown that unless the set of f's and
_ & P(E)£0
f's for which P(f) # 0/ is restricted to those for which f(x.é) =
f(3¢) and E(ig) = —(i), the condition of Theorems III-1
or IV-2 on the set-transition matrices guaranteeing the con-
vergence of Pr(?/f,f,ﬁm,[“,am, ™™ cannot be satisfied. Hence
in general, the latter probabilities will not‘converge.

An example of how such non-convergence occurs will be
given. It should be pointed out that the convergence required
must be of the type of equations (IV-39) of (IV-55), so that
reasoning analogous to that involving equatioh (6-31) can be
employed. The latter is necessary if the conclusion is to be

made that the magnitude of m does not have a large influence

on the optimizing distribution P(f) and P(f). Now note that
Py £ ELN 0T8T = BG/0D) Pr(o/e 4T ENE",ET +

+ B(5/1%) Pr(l/f /m,g”,“m,g““) (9-42)

- =m . . —==M M
where x,%  is determined fmm S A , £

Hence if it should turn out that for some particular identity

-m-1 1

of £ y €.8., Pr(O/f,/m,im,gm,s;m) = 0, while for other £
the last probability is non-zero, then the probability (9-42)
would not converge as required. This can certainly happen.
For suppose that

all fi, ie(0,-1,...,-m) are such that
. 0 if (3:,9) =0
i
£7(ay) 'i (9-43)

1 otherwise
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Then if f-m-l were such that f-m-lché') = 1 for all x5, the
probability Pr(olf1!m, 2", ™" would indeed be zero. Thus
we have exhibited a non-converging example. Of course, much
less drastic examples are possible, but the whole problem is
beét approached from construction of set-transition matrices

as mentioned earlier. We conclude therefore, that further
safeguards op:the quasi-optimization process might prove neces-
sary. We will list two practical possibilities, the second more
complicated than the first, but also a more nearly optimal one.

9,5.1 Quasi-optimization: Practical Procedure One

(1) ~ Pick the dependency length / (see section 4.3).

(ii) Pick the decoding criterion length m (see equation
(6-10a) and compare it with (6-38)).

(iii) Maximize over all the possible signal probability

distributions{q(x)}, ;ﬁ!i)} the expression
x =

B.(5/x%) p(y/x%) -
Edlog B . +A Elog
{ Br(?/?c,i‘“,s‘“,:e:'“‘)g- { Pr(y/x,x'“,g“‘,s““)i
(9-44)

where A is a positive real number controlling the

intended relation between forward and reverse trans-
mission rates (see (6-50) and (6-51).
(iv) Using the distributions fq(x)} {iég)} maximizing
' X9 ?
(9-44) as a set of constraints, determine by the

procedure of Section 9.4 the cannonical sets

$£} = s ana §3] = .
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(v) Arbitrarily let
P(f) = 0 for all’f% S 5I53 = 0 for all f} S (9-45)

and determine the remainder of the distribution P(f)

5( ) by maximizing the expression

£ g8 ) } (9-46)
Pr(y/£, »4 58 )

over the input symbol probabilities left undetermined
by (9-45).

(vi) Using the optimized distribution{l’(f)}, {F(E)} found
in steps (v) add (iv) evaluate the positive constants
€ & € for equation (6-52) by the use of the procedure
indicated in (1v-47), involving (IV-43) and (IV-45).
Compute the expressions log (1+t€) and log (1+€) and
decide whether the criterion length m picked in (ii)
was a sufficient one (see (6-54) and (6-55)). If not,
increase m and go through the entire proéedure again,
starting with step (iii).

9.5.2 Quasi-optimization: Practical Procedure Two

Before we describe this method step by step, we wish to
return to Section 9.4 and point out that by the rule (9-37)
and (9-38) there exist altogether 2251 different possible

canonical sets ff*}, each associated with a different ordering
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by magnitude of the members of the signal probability set
g%éx)g . Hence, if for any of the 2233 canonical sets the pro-
babilities of symbols f not in the set are made equal to zero,
and the remaining P(f) left unspecified, any set of signal pro-
babilities{%§x);’whose ordering is that which defined the picked
cancnical set{f*}, can be obtained. Hence, when optimizing
under the restriction that only one canonical set of £'s can
end up with non-zero probabilities, we proceed as follows:

(i) Pick a dépendency length £ (see section 4.3)

(ii) Pick the decoding criteriom ieng;h m (see equation

(6-10a) and compare it with (6-38)).
(iii) There are (221’!)2 possible different combinations
of canonical sets lf*} and ff*}. For all of them

in turn maximize the expression

E{mg Pr(3/ €., lm !m 5" "‘“)}

Pr(y/f / 7

over the probabilities P{f), fe{f*}, and'E(E},

e ff‘“f“}, where arbitrarily P{(f)=0 for f tff*} and
?(E)=O for f\f’?‘} . In the expression (9-47), /\ is

a positive real number controlling the intended re-
lation between forward and reverse transmission
rates. (See (6-50) and (6-51)). The maxima of (9-47)

obtained for each canonical set combination should be

recorded and stored.
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(iv) Compare the ﬁaxiﬁa obtained in (iii) and let the
greatest of them cofrespond to the cannonical
probability set (P*(f*)} s {P‘*(f.*)}. For it evaluate
the positive constants € and € for equation (6-52)
by use of the procedure indicated in (Iv-47) in-
volving (IV-43) and (IV-45). Compute the expres-
sions log(l+e) and log(l+€) and decide whether the
criterion length m picked in (ii) was a sufficient
one (see (6-54) and (6-55)). If not, increase m
and go through the entire procedure again, starting
with step (iii).

It is clear that all points obtained by the procedure
9.5.1 are included in the convex hull of the.points obtained by
9.5.2. The latter in turn are contained in the convex hull of
points obtained by the optimization for independent symbol
coding of Section 9.3. Thus it might be interesting to draw
for a given two-way channel a series of nested capacity regions
each corresponding to a different complexity of optimization.
One might then obtain a graph having the general shape displayed

by Figure 9-1.
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APPENDIX I

It is clear that an effective code will consist of a set
of words which are the greatest possible "distap;e” apart, con-
sistent with the relative signal frequencylwhich would match
the channel. A random code which accomplishes this on the

average is one whose words x seeerX are picked with the

1°%2
probability P(xl)P(xz)....P(xn), where the probability distri-
bution P( ) is one matching the channel. Now in a two-way

the
channel code,above probability relationship should hold for

A

codewords for béth terminals, and hence we would wish that
also reverse terminal codewords il’§2”"’§ﬁ be picked with
probability '15(21)5(:-:2) ee.P (% ). One may then ask when picking
the word pairs simultanéously, what freedom remains which could
be utilized to insure that when the random code is in operation,
the signals x and X be simultaneously transmitted through the
channel with probability Pr(x,X).

The only way in which one can attempt this is to proceed
as outlined below., Suppose that a code consisting of k forward
and reverse Qords is to be picked. If the length of codewords
is to be n then one can arrange these in two arrays of k rows
and n columns and pick the column pairs as follows: The forward
signal X (i=1,2,;..,k) in the ith Tow is selectgd with probabkility
P(xi), and the reverse signal with probability Q(ii/xi). If

this is done then the probability that in the ith row of the
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reverse code the signal }'{i was picked is ?(ii) = gQ(ii/
xi)P(Xi) so that the randomness desired, as deécribedlin the
first paragraph of this appendix, is achieved, One will then
ask what joint probabilities Pr(x,x) of simultaneous signal
transmission can be achieved by judicious choice of the pro-
babilities Q(:?i/xi), Assuming the messages to be equiprobable,
we get: |

Pr(x,X) = 2 Pr(messages m=i, m=j were transmitted).

2 QE/OP () + 2 F@P(x)

From the above it follows that regardless of the pro-
babilities Q(®/x), as the number of messages k —»=o00, the

probability Pr(x,x)-» P(x)P(X).
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APPENDIX II

Distribution of a cumulative sum of random variables, produced

by 4 Markoff Process.

The method for bounding of random variable distributions
discussed here was developed by C. E. Shannon in an unpublished
paper portions of which will be paraphrased in what follows.

As will be seen it is a generalization of the Chernoff bound
to probability dependences derivable from a Markoff process.

Suppose that a Markoff source is given having states
ie(1,2,.....,8), and that there are at most d possible paths
from any state i to any state j. Let £§(a,j) be the pro-
bability of a transition frqm state 1 to state j via path
a g (1,2,...,4d). .Wifh each‘transition let there be associated

a real number Va A cumulative sum of these associated

ij°
numbers is being produced by the process, its value being Sn
after n steps. If the process then is in state i and a
transition into state j'via path a occurs, the cumulative
sum becomes:

S = Sn + Va" (I1-1)

n+l ij

If the system is started in a given state (or in any of the
states with certain preSc;ibed probabilities pj) and operated
for n steps, the cumulative sum Sn is a random variable. We

wish to investigate the distribution of this random variable,

particularly its asymptotic properties for large n.
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Let
Gij(n,x) = Pr {Snézx; final state j/initial state i} (11-2)

i.e. Gi j(n,x) is a distribution function.
b

Let the corresponding moment generating function be

oo
‘P-ij (n,s) = [.oo e5¥ d Gij (n,x) (1I-3)

We now develop a difference equation for the distribution
function and translate it into a relation involving the moment
generating functions. By considering the different ways of
starting in state i and ending in state j with a sum Gij(n+1,x)

after n+l steps, we have:

Gij(n+1,x) = Zk Za Pk(aj) Gik(n,x-Vakj) (1I-4)

This may also be written in terms of functions vij(x)
defined as follows:

Yy = 2 B (11-5)
dava:k,j&x

Thus 9U£j(x) is like the distribution function for the change
in the cumulative sum when in state k but only for the transi-

tion into state j. Then equation (II-4) may be written:
Gi.j (nt+l,x) = kZ[Gik(n,.x-y) dl}’kj (y) (11-6)

The convolution involved above may be translated into a pro-
duct of the moment generating function for G and the analogue

of a moment generating function for 9” The latter is:

kj*
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' o V. .38
Bres () = /.0o e ¥ 0 = g . MR @, (11

Taking moment generating functions of each side, equation

(11-6) becomes:

"Pij (n+1,S) = Zk wik(nas) ﬁkj(s) (II‘S)

Thinking of i and j as fixed and the second subscript
of ¢?as ranging over a set of coordinates, this gives a
linear difference relationship for generating the n+l vector
from the nth vector. The process for fixed i and s is similar
to that familiar in ordinary Markoff analysis, but the
[Bkj(s)] is not, for general s, a stochastic matrix. The
Bkj(s)'s are non-negative, but their sum on j is not neces-
sarily 1. However, for s=0 the sum is 1 and, indeed, the
equation then becomes the ordinary Markoff equation for thé
process where y%j(n,O) is identified as the probability of
state j after n steps of the process.

Note also that if Bkj(O) # 0 (i.e. there is some positive
Pk(a,j», then for all s, Bkj(s) # 0. This implies that pro-
perties of the matrix [Bkj(s)] which depend only on the
vanishing or non-vanishing of elements will be true for every
s if they are true for s=0. This includes important pro-

perties familiar in the theory of finite state Markoff pro-

cesses relating to the subdivision of states into transient,
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recurrent and ergodic subsets. Also, the greatest common
divisor of the length of closed paths through a group of
states, a quantity of importance in asymptotic behavior, will
not depend on s.

Using Frobenius theory, asymptotic behavior of high
powers of the matrix [ﬁij(s)] can be evaluated. It is pos-
sible to give a reasonably explicit formula for the general
term Bi§n)(s) of the matrix [Bij(s)]n.

Let the characteristic equation
Iaij(s) - v(s) ‘513-" 0 (11-9)

have roots vl(s), vz(s),..., vg(s). We assume, for simplicity,
that the roots are distinct, but slight alterations of what
follows give the general case.

Let the characteristic vector for the root vt(s) be
Ai(t)(s);and for the transposed matrix let the characteristic

vector be Bi(t)(s). Thus:

ziAi(t)gij OENOFRLIE % 5, 0, (v, (28, (5
(I1-10)

The Ai(t)(s) and Bi(t)(s) vectors are orthogonal if
vt(s) # vr(s) and the inner product of these vectors can be
normalized to 1 when r=t. When the normalizing is done, the

general element in the nth power of the matrix [Bij(s)] is
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given explicitly in terms of the characteristic values and
vectors as follows:

?1j(n)(s) - égg'Aj”(s) B (s) v, () (1I-11)
In the case where the greatest common divisor of the path
lengths is 1 (the case of the most interest to us), one of
the eigenvalues is real and dominates all others in absolute
value: . If we call this vl(s), then Bij(n)(s) is asymptotic,
and

lim Bij(n)(s) - A;(s) B, (s) v,™(s) (11-12)
n— 0o

It can be seen from (II-8) and by comparison of (II-7)

with (II-3) and of (II-2) with (II-5) that

| n
(B, ] = (8;,(s)] (11-13)
and consequently, taking (II-12) into consideration, that
, qp 1 1 n
lim ..(n,s) = A,(s) B,(s) v, (s) (11-14)
ij j i 1
n =» 00

Using the properties of the distribution function for
all possible single steps of the Markoff process, we have thus
obtained the moment generating function of a cumulative sum of
Markoff-dependent random variables. Similarly to the indepen-
dent case, knowing the moment generating functién we can ob-

tain an upper bound on the associated distribution:



195

sS_..(u)
@ .(n,s) = Z e ™ P (4,5,u) (I1-15)
ts] ¥u from i to j

where u is the n-step transition ''route"
followed from i to j and on it Sn=snij(u)

Therefore

sS_..(u)
Lpi J,(n,s) >Ze nid Pn(i,j,u) > (11-16)
? ‘VuQSnij (M)(xn

> ¥ Z P (i,j,u) = ™ Gy 5 (n,nx)

i
¥yuas ., (u)¢ xn
nij if s« 0

Hence we get the result
6y £ ™ () for s & 0 (11-17)

which, applying equation (II-14) can, for n sufficiently
large, be written as follows:

-n[sx-4in vl(s)]
Gij(njnx)é.e for s £ 0 (I1-18)

As is customary, we may optimize the above bound by defining
the function

ak(s) = 4In vl(s) (11-19)
The optimization leads to the result

X = f(s) (11-20)
and thus we get

6, (in F(s)yeensT - - ar-2

In order for the bound (II-21) to be of real value to
us, we must show that the exponent on the right hand side

is always negative. For this purpose, as is usual, we will
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define a tilted probability distribution q(i,a,j,s) such

that for it:

¥ (s)= v (s) 2 v oy @ (1,6,3,8) =T (11-22)

S

i.e. the cut-off value of the distribution (II-21) becomes
the average value of the random variable over the tilted
ensemble.

We first need to investigate some properties of the
characteristic values of equation (II-9). From (II-10) and

the normalizing requirement we get:

v(s)= ?v A= Z Al jk(s) B, = J’Zk AR B(s)  (I1-23)

where, to avoid confusion, we have dropped the superscript 1
from the dominant eigenvalue and eigenvectors.

Also from (II-10)

v'(s) AB, ZAlBstl Zl . jB'ij - ZkA'jBkajk (11-24)
hence
V()= () .J?A B.- ZA ZB By 2A JZBJ.B;j
' (11-25)
- %Aj ZkBkBjk
and consequently
V) = 2 A(S) BL(S) By (o) (11-26)

i,]
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Therefore we get from (II-22) (I1-26) and (I1II- 7):
)

\'
1 :E $¥ia3 N
o) P Ai(s) Bj(s) Viaj e Pi(aJ) =
s]sQ
(11-27)

ija

and comparing like terms we get the definition for the

tilted distribution:
o 1 Va3 ,
q(l’a,J:S) = ;zgy A. B, e Pi(a,j) (11-28)

i
From (II-23) and (II- 7) it is clear that we are dealing
with a well defined probability whose sum is equal to 1 as it

should be.

From (II-28) it is clear that

q(i,a,j,s) _
198 5 {a, 1) B.(s) A () T v(s) +8 V4 (11-29)

Therefore from (II-22) we have the equation

' _ L q(i,a,j,s) -
sv'(s)-v(s) ;E q(i,a,j,s) log Ai(s)Bj(s) P.(a,3)

iaj

_ L q(i,a,i,s)
= 2 a(i,0,3,8) log A (9B, ()P (1)

iaj

B, (s)
+ log B.(S) (II"BO)
J

However, from (II-28) and (II-7) we get:
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B
> B S )
In B q(i,a,j,s) = :E A B, Bij[ﬁn B, in Bj]

i,j j a i,]

= gAiBi n B, - JZAij In By = 0 (I1-31)

The last equality being obtained with the help of Eq. (II-10).
But from (II-28) we can also write:
A,
) _ .. _ i -
q(i,s) jZa q(i,a,j,s) 705) Zij Bij(s) A, (s) B, (s)
(11-32)

So that we can finally re-write (II-30):

! - - . s Q(i,a,i,S) >
sy'(s)=y(s) Z q(i,a,j,s) log q(i,s)Pi(a,j)’O

iaj
¥s (I1-33)
It should be noted that (II-33) equals 0 if and only if s=0,
since then v(0) =1, Bj(O) = 1 for all j, and thus q(i,a,j,s)=
Ai(O)Pi(a,j). Note that in such a case
avg

v'(0) =Vv(0) = Viaj (1I-34)

Therefore we have proven the usefulness of the bound (II-21).
With reference to equation (II-2) and the discussion

of the preceding paragraph, it should finally be noted that

the general random variable distribution for n steps starting

in state i will be

Gi(n,x) = Pr {Sns-x/initial state i}*=2£Gij(n,x) (I1-35)
j
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and if the system is started in state i with probability

Py then the over-all distribution surely is

G(n,x) = P:E_{Sni-. x} = Z.paGi(n,x) = Z.HGi,j(n,x)
1 1L,]
(11-36)
If we wish to find a bound on (II-36) we note that (II-21)

is independent of i and j, so that we get the bound

G(n,ny'(s))4g e-n(sy'(s)-‘y(s)) ;S < 0. (11-37)

This concludes the discussion of this appendix.
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APPENDIX ITI

Suppose a Markoff source is given with an associated

matrix [M] of its transition probabilities. Let the source

have k states, Sl’ Sys e 812 and let the value of & matrix
element m be: '
rt
i, i-1 . .
m_ = p(st/sr ) where the superscript i (I11-1)

refers to a time interval.
We may, if we wish, divide the k states into / non-empty

classes: A,, A ..A,. The question we are concerned with

1’ 27 Y
v-1

is: what is the probability p(A;, Aj

that the source will be found, at successive intervals, in

!
v A Ldee,a8(1,2, 00008

states belonging to the sets i,j,...,q ?

Example II1I-1

To illustrate: let k=3, £=2
Ay = {s,}

A2 = 551, 33}

4 3 .2

Then p(Al’AZ’A . Z 1

1, _ 2 1 4 3
281) = P(sy,87,81,8)) + p(sy,87,85:8))

4 3 2 1 4 3 2 1
+ p(sz,s3,sl,sz) + p(sz,s3,s3,s2)

A general answer for our problem may be obtained with the

help of the matrix[MJ.

p(AY, AY:l..., Al) = :E :Z tee ;EE (sv,sv-l,...,sl)=
S q v v-1 r P
s €A s eAj s sAq
-1 2
= VZ Zv-l 1Z p(s’/s" ™) . . .p(s /sl)p(sl)
s eA. s €A, STEA
1 J q
(111-2)
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Define the k x k set-transition matrix (z%(j), i,j (1,2,...,4)
as follows:

a) CBi(j)has elementsb;i r,t el ..., k)

1 m_ - if s_€ Ai (111-3)
®) brt ) s . € A
t
0 otherwise.

Define the vector P(i) ]Jin Rk space as follows:
a) P(i)] has elements p;, re(l,2,...,k)

) i p(s) if s € A, (I1I-4)
b) p =
r 0 otherwise

whefe p(sr)}is the stationary probability of the state s.. of
the Markoff saurce.
Define the vecﬁo: 1] in RE space:
all elements of 1) are equal to the integer 1. (1II1-5)
Lemma 1:

1 2 1 .
p(A;, A;”'Aw’ Aq)== P(q)' x@q(w)...a;(l) x 1] (111-6)

Proof:

Let Czi(w)....czg(j) = CQD

k .
then d = i te trrene - bqw e s le (111-7)
vo =i ' Zuﬁ-l VA Lo

But for (III-3) we can write:

i = 2 . Z pd¥ .. pit (1II-8)

vo VA uo
k:sxeAw uasuaAj

Therefore we have from (III-3) and (III-4)
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= q "
2@ @111=2 203 ag

(I11-9)
2 =
= P d
v Vo
vasveAq ca»sosAi
and we see, after inspection of (III-2,-8,-9), that
L(q) D] 1] = % Zz" v-Zl ? p(sHp(s?/sh ...
, - s"eA_  sTeA s EA, s EA,
q w j i
| ) (I111-10)
...p(sv/sv 1) Q.E.D.

We therefore see that given the r x r matrix (M] and any
state partition Al’ A2’ cee Az, one can, by the use of
matrices Cai(j) defined in (III-3) and vectorsggsib defined
in (III-4) easily derive a notationally compact expression
(I11-6) for the probability of succeséive states being members
of specified state-sets.

It should be noted that:

P(i) [@j(k)] = 0 ifi#] (I1I-11)

[@qu‘)][@j(k)] - (0] if £ #

Therefore, as a consequence of (III-11), a non-zero answer
will be obtained only if the product of matrices Cav(x) pre-
multiplied by a vector P(i), and postmultiplied by 1] actually
makes sense.

We may, however, drop the above mentioned safety pre-

caution and contract further the square k x k matrices

Cj3i(j) into, in general, rectangular v x A matrices Czi(j)
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where v is the no. of states in set Ai
and A is the no. of states in set Aj’
Equally, we may contract the k-dimensional vector P(i), into
the v-dimensional vectoré:(_;b if the set A; has v states.
The contraction from @l(j), defined in (III-3),
to éi(j) is done by eliminating fromﬁi(j) all
the rows r such that the state srk A; and all
the columns t such that the state st*. Aj’
Similarly, the contraction from,_lf&}l, defined in (III-3b)
(111-4) togg_.l' is accomplished by eliminating
from P(i), all the coordinates with indexes r
such that the state sriAi. In both of the
above elimination operations the order of rows
and columns is to remain unchanged.
On reflection it is obvious that although the precaution

(I11-11) was dropped, it is still true that

v-1

v

2 1 ) R, .
b, AD) = PG @q(m)... 0%(1) 1] (III-12)

since@j(i) d—%(q) are compatible matrices, being of dimension
v X AN and A x 0, respectively.

Example I1I-2

An example will be in order:

As in (9), let again: k 3, £ =2

A= 1sb s Ay = sy, 833
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Then we have:

L(1), = 0, p(sy), O, L, =1, 1, 1,

L2Q2), = p(sy), O, p(s,y),

0 0 0 0 0 0
@1(1) = 10 m, 0 031(2) =|m,, 0 m, 5
0 0 0 0 0 0

p(Azl’AgAgAi) - P, @1(2)@2(2)@(1) 1]

pon -y

0 0 0 m12
=0,p(s,),0  [™21™11% %331 O MWypPztmygmygl = O
_0 0 0 1 m3%

= p(sy) [lmyymy y4m) gmyy Jmy ) +(my my pHmy gmo o) Tmg ]

=p(2,1,1,2) + p(2, 1,3,2)+p(2,3,1,2)+p(2,3,3,2)

The contracted matrices and vectors are:

(), =\p(s4),p(s,),

LD = [my,] B, (2) = [my,, my, ]
=~ M2 = ™M1 M3
B, = B, ) =

W39 W31 W33
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P(A]_ Az Az Al) =£.Q‘_2a@l(2) 0‘%(2)@2(1) 1] =

11 ™13 12
-.E(sz)‘ [m21}m23] 1]
31 M3 |P3
= p(sy) [(myymy,+m, gmyy dmy o+ (myymy gHmy amg ) gy, ]

In what follows we will always be dealing with contracted
vectorsﬁfziL and matrices [d§i(j)]. In order to simplify
notation, we will henceforth drop the bar " —' from the
above quantities - contraction will be assumed as a matter of
course. Suppose the Markoff source is now enclosed inside
a blaek box supplied with a printer which,upon the source's
arriving in state si,prints out the set Aj to which s; belongs.
It is then interesting to ask for the probability of a print-
out of Ai givenlthe record of all sets Ai-l, Ai-z,... reached
by the source in the past.

It is clear fhat unless the transition matrix [M] is
degenerate in some special way, the best prediction of Ai is
obgained by the use of the entire available record of past
state sets.

We wish to ask under what conditions the probability of

A" given a past of A immediately preceeding sets Al-l,...

al"? 4i11 have a value within a prescribed € > 0 of the

pfobability of Al given any longer past Al'l,....,Al'A s

Ai-A-l

b 2R L

In this regard we will first prove
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Lemma 2
Given a Markoff source with states SpsevesSy partitioned

into non-empty sets Al,...,Az,ﬁ"k. For any sequence of

t sets Al, Al-l,...,Al-x,...,Al-A-o—such that for it

i-1 i-A-0

) >0 (I11-13)

1 i
prat,at™l, . a2 A

inequality
[erat/at™t, .. ALy pral/attl, L Al ATA Y,

(I11-14)
will hold, provided that given any € >0 an integerJA.can

be found such that whenever))A then for all possible

sequences Al, Al-l,...,Al-A , Ajs {Al,...,Azg and for
all states si:), s%-AeAl-) for which
pr at, al™, a0 4
RS SRR C - PR T NN (111-15)
Pr (A%’ seees o
the inequality
[prat/al=t, ... al-A1 sf‘:’\) cpral/al-l, . al-A¥L sf,"' )[ e
; (11I-16)
it holds.
:ﬁ Proof:

s i 1 - I U/ . . _ . _ c o\
P(Al/Al 1)°“A'l A ) = g} P(Al)sl )/Al)l'.'Al ) r) =

N i-)-O‘S -

i-M1 i-A i-)\
A ) ST ,..,A

- i,,i-1
sZi"‘ P(AT/ATT.L,

k x P(si’A/Ai'l...Ai"\“r) (I11-17)

=
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But
i, i-1 i-A i=-A=0" P(A;,Al-}..,sl:A..,Al-A-os
P(A /A ) oa,s }--'QA ) = i_l i_A i,-)-O" =
P(A ) ++-8) ..}A )
i P(Ai‘.‘Ai-A+1/Si-))P(Si-a i; ..,Ai‘A'°§ (111-18)
P(Al~}..’A1°A+l/sl-))P(sl-¢Altf'..Al'A-O)
Therefore:
P(Ai/Ai;l..,Ai-A+lsi7l) if
P(Ai/Al;l..,sl’A..,Ai:)fo'= si-Ag g1
0 if siTAyalA
(I11-19)

We have now from (III-17)

P(Ai/Ai;l..,Ai"+}si'A) .

si™e al™A

i-A-0-

P(Ai/Ai'l..,A )=

i=A-0

x P(si-A/Ai-l...A ) (I11-20)

Now if (III-16) is satisfied, then

i=A+1 i-A

i-A"O. ‘_
S )-

P(Ai/Ai;lo.,A ecp@ai/al-l.. a ) &
i-dl _i-A i-hg,i-p (I11-2D)
A ) S ) + &5 s €A

i, i-1
g_P(A/A, .o .

)
But from (I1I-20) also

i-1 i-M1

PAL, AT AT si:A)-e,gP(Al/Al'l..oAl‘A)‘

(IT1-22)
P(Al/Aﬁ'l...A -

and therefore certainly

lpat/ait ath - paiall..
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We would next like to know what circumstances would guarantee
the satisfaction of the sufficient condition of the preceeding
lemma. For this purpose we will introduce the notion of

. . . * I J
directional distance D(T,J) between two vectors & in
)

R™ space.

Consider the vectors

y- ¥, ¥ & d- J,....5
—4 3 mny

1P 200t m) o LAttt

-having real non-negative elements only.

The ratios J}/Jj of like-numbered coordinates of the two
vectors d R 0 can be formed and arranged according to in-
creasing value into an ordered set S from which the ratio

¥ /J, will be excluded if and only if & =J, = 0. The
numbers of the set S are to be left in their fractional form,
so that if Ji =0 # d; the ratio al—/(); will be a member of
s. 1f J, =Jj =0and 9> 5;"# 0 then /4] will be of

higher order than 3; /b’j in the set S.

L

Let {- =‘ min -{i' €S (I11-23)
a'c < Ji )

and -
dy A
a—;; = maic 5:]-_— € S (I11-24)

Then the directional distance between vector 7and vector 5

will be defined. as follows:

* The measure D(¥,J ) was suggested to :the author by
Dr. H. Furstenberg of the Mathematics Department of the
University of Minnesota.
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p(7,d) T i (111-25)

i

(¢]
Q.

We are now ready to state
Lemma 3
Given a Markoff source having a transition probability
matrix M), with states SyseecsSy partitioned into non-

empty sets Al’ Az,...,A L4 k. Let the partitioning

z’
lead to the contracted set-transition matrices Qi(j),
i,je(1,2,...,£). Chdose any possible sequence of sets
Al,AZ, .o .,A) s A'e iAl’AZ’ . .,Az} . To such a sequence

there will correspond a set-transition matrix product

A3 ;(h)@ i(i)....@:l {v) (I1I-26)

where if Ai = A'l and Ai+1 = Af then @i =O?z(§).

Suppose two arbitrary, real, non-negative vectors

PR PR TR FLC B.= 5:_]""’50 are given, where ¥

is the number of states in the set A]'. Then the above
transition matrix product will transform the vectors

& and B, into vectors \Z;and @ , respectively:

Te o, B1®B2.. O £, 8,

1222
-

J- 5 G@®:..GBMY - T, (111-27)
A

where M is the no. of states in A",
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Consider

Proposition 1:
Given any sl> 0 there exists an integerl\ such :that when-
ever A >/lthen any set-transition matrix product

CB]CBZ...GBA-l corresponding to a sequencé of states

Al,AZ,...,AA-l,A? for which

pr a4 oAb 4 o (I11-28)
will transform any pair of non-negative vectors a,, B

for which
o B Q4
8, Bla? ..B% 4+ o

into vectors,gr& é; such that for them the inequality

(111-29)

jn(f,{) - 1]¢ € (111-30)
is satisfied.

Proposition 2:

Given any € > 0 an integerJﬂ,can be found such that

whenever A >11then for all possible sequences

Al,Az,...A), Ade {Al"‘°’A£§ and for all states

§i, s% € A1 for ﬁhich

Pr (A)‘,A*'l,,..,AZ/slp,) £ 0

- (111-31)
pr a*at1, L a%sh ) £ o

the inequality

Ipr(A*/A*'l,...,AZ,gj;)- prd/a L, L a2, ) e

holds. (I11-32)
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Proposition 1 is a sufficient condition for Proposi-

tion 2 to hold.

Proof:
First of all we wish to remark that the arbltrary vectors
& » B, must of course conform dimensionally to theCBl in
question, so that product (III-27) be possible. Thus for
different stgging sets Al,in general different vectors a,
8, must be chosen. Equally the dimension of @I@E will differ
depending on the size of the state set Aé.

Let state S, & AQ‘ Fromlgﬁgl’construct the vector (III-33)
Lgﬁzzlby replacing in P(#) all the elements except P(§u)
by gerog, and replacing the latter element by omne.

Eq. if P(#), = p(s. ), p(su), P(sp), , then

C@),=0 , 1 , 0,

Using the reasoning employed in Lemma 1, it is clear
that we may write
A
pr(a®, a27h, L0780 ) = cw) BB ... B 1) (111-34)

and therefore

IQBZ Q?
1]
prat/ar-1, ... 4% Ly e (11I-34)

al
c), AR'@..@M

where the notation introduced in (III-26) was followed.

Let

G(2,3,00.,A-1)= @2@ 3 QR

Then Proposition 2 states that

(111-35)
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ew, A e,... 0B 1)
€00, B 62,0, A1) 1]

(II1-37)
c¥), R G(z,...,,\-l)@'\ 1]
- 1 {e
CW), BT G6@2,...,4-1) 1]
for all Sus 8y € Al
Next, let
|C£&2|@15&4
1 (III-38)
L) @ = B,
Further let
@?l] = B] (I1I-39)
and
oy [G] =:£
(111-40)
8, [61=9,
The requirement (III-37) reduces to:
J . B «J;. B]
_———I' - T.’ 1 Le, (III-41)
But a, 5 Ps
g8 J. B]l |Z.Bj[ j(z. i)'();(z. i) ]
i ey b L = L (III-42)
L L E e )
i 1
Now
a) if tf}.#o; J;#o
we get
. >
IR NCIANN S S TV I
(ET)H)(E T I 75 1.251

(I11-43)
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But following definitions (III-23) and (III-24) it is cer-

tainly true that (see Lemma 4)

.,2%, 4 '
Jc = ZJ':. & Urd (111-44)

Then certainly

I ¥ ¢1 7 ZJ‘;)<1 Iﬁg‘—‘ I11-45
¥ecda 'a‘j(za’i‘ -Jc d( ")

b) If J;=c)'=o

then the quantity (III-43) is identically equal to

0.

A
2 ... A a [G] results

Now suppose that for all sequences Al A
from (III-36) such that the vectors obtained from (III-40)

satisfy (III-30) [it should be noted that in such a case it
cannot be that either J; =0 J; # 0 or d;-# 0 J} = 0].

Then by definition (III-45) becomes:

-gl J" 2_ f 4
21 - (111-46)
1 -sl :E dr
and from (III-35, -37, -42) we get:
A
[2@*1ad. 4t 80 ) ptld | Al sS)lé
€
1 1
< B, J. I1I-47
2J; 15 Z i ( ‘
1 J

and we can clearly choose €1 small enough so that the right-

hand side of (III-47) becomes smaller than any given & > 0

for all vectors B] obtainable from (III-39).
Q.E.D.
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In order to be able to determine under what conditions
statement (II1I-30) can be made, we will next prove a lemma
about the behavior of ratios (III-23) and (III-24).

Lemma 4

Given any set of finite, non-negative, well defined

ratios xl/yl, x2/y2, cee xk/yk, and any set of non-

negative real constants a;, az,..,,ak. Let

xc xi *
— = min ( =) i=1, 2, ... k
Ye i Vi
(111-48)
%4 x
y, = max ( =) i=1, 2, ... k
d i v |
then
X a,x, + ax, + ... + X .
L L1 22 e, (I11-49)

Yo~ @y T Ayt Ay vy
equality on the left-hand side being possible if and
only if |

X, X
. ¥isy L} © -
a, =0 ; ¥is 7t X 7. (I1I-50)

equality 6n the right-hand side being possible if and
only if

v xi xd
a, =0 ;¥i 5 L ¢4 I1I-51
1 ) yi :\: yc I )

— .
Note that by assumption of the lemma yi#O for all ie(1,2,...,k)
although possibly xj=0 for some je(1,2,...,k).
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Proof:
froor A
x.y.[a (— - sl
a) a,x; +ooota x i ﬁ:_ ) 21'% Ve
a y +ooo+ Y. y
171 Wk e (agy; +e.ot ay) Ve
I1I-52
ba 2 -loy e (X ( )
c'x Ve cee T X, c
but xi/xc - yi/yc 2 0 by assumption (III-48), therefore:
a x +.O.+
Ll Xk > (111-53)

syt oy T v
equality being possible if and only if each of the numerator

terms on the right-hand side of (III-52) is equal to 0.

b) x ded[al(z-l- - x—1-)+ +
—é 1 1 o o0 akﬁ - yd xd LK BN J
Yqg ayqteeetay,

yd(alyl +...+ akyk)

(111-54)
Ya %3 X%
+ a, (—-— - —)+...+ Gk . )]
Y4 ak Ya  *q
i X
but == - == 2 0 by assumption (III1-48), therefore:
Ya  *a
a,x, +...+ X
- Kk > d (I1I-55)

a;y, +...+ a ¥y Y4
equality being possible if and only if each of the numexator

terms on the right-hand side of (III-54) is equal to 0.

Q.E.D.
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It was shown in Lemma 3 that Proposition 1 constitutes a
sufficient condition on the product of any Arset-transition
matrices @i(j) guarenteeing the satisfaction of Proposition
2. In the following Lemma 5 we will state those properties
on individual matrices @i(j) which insure that Proposi-
tion 1 be fulfilled.

Lemma 5

Given any finite set S of rectangular matrices

{@1,@2, '"'@k} having the following property:

a) If @e_s and Bhas dimensions r x t then there

exists at least one matrix GBiES having dimen- (III-56)

Ne 3
sions t x v, and at least one matrix A €S

having dimensions q x r.

b) If @es then all its elements are such that
bij?- 0 and whenever bij=0 then either b£j=0 (III-57)
for all 4, or bih=0 for all h.

Given any € >0 a positive integer A can be found

such that for all )\)A all possible products

O}lQZ,..@A of A matrices, each taken from the set

S, have the following property:

Given any two non-negative vectors aq,, B, in Rt space

such that

1 52 A
9@y B@B...B +o
5 B®...B +o,

[
where t is the number of rows of @ .

(I11-58)



217

Let
AR @i@i aaj 115
N=8 BG..48B

then
|1 - p( &) lce (111-60)

where D(13Q_) was defined in (III-25).

Proof:

It should be noted that condition (III1-56) makes pro-
ducts of matrices in S of any length possible and assumes
that whenever the iEh>matrix is (B there exists a matrix
CB? in S which can take the (:i.+1)£t-1 placé in the matrix
product.

We will first prove that given any matrix @ of
dimension r x t and any two non-zero vectors ,x,,,y, of
dimension r such that

,_x__,@ # 0 ‘_L@ #£0 (I11I-61)
then whenever

0 & D(x,y) £ 1
the inequaliﬁy

04 D(x,y) 4 D(x,B, yB) ¢1 (111-62)
will be satisfied provided (B has the property (III-65).
Using definitions (I1I1-25,-26), inequalities (III-62) hold,

provided
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e
e
e
]

;7_9. ¢ i ¢ 4 for a1l j. (I11-63)
C

27 LI Y4

where bij are the elements of GB, because then

25 x. b, .
; i ij

XY
c d . i 1
— — 4 (min . ) (I11-64)
. . b..
Yo *4 i é. Vi Pij % X bij

max
312 Vi Py
i

But (III-72) is guaranteed by Lemma 4 whenever yd#O and
bij>-0 for all i, j. (by assumption, yc¢0; otherwise y, would
be a zero vector). Furthermore, (III-63) is also satisfied
in the case yd=0, provided bij> 0, ¥i,j, since by assumption
not all yi=0'

Next suppose that there exists i,j such that bij=0.
Then, by the assumption of this lemma,either

(a) bij =0 V.

In this case EZ X, sz = Zy,y*”’ sz =0

> x, b,.
1] J
and is not considered in the determination
%Vz sz
of D(x®B; v3).
or (b) bih=o,v'h.

Case (i) In this case consider first the situation in which
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From Lemma 4 it is clear that either (I1I-63) is
satisfied anyway, or one of the two inequalities in
(I1I-63) becomes an equality.

Assume first that

X, % X bij
£ — (I11-65)

Ye 3 Y5 Py
i

But by (III-50) this may be only if

X X

b,. =0 for all i 3 —= 4 -
H i Ve

(I11-66)

But in the above case,'by the property (III-57)yrelation
(I11-66) must be true for all j and so must (III-65).
In such a case D(~§jﬂ ; CB) = 1 and (I1I-62) is

satisfied. Also if
x | ;E X, bi'
d

J

1
Y4 S Vi Py
i

(111-67)

then the same argument holds and again
p(,x,®B; yB) -1

Case (ii) Consider now the situation where X, = 0; Y4 #0
In such a case (III-65) cannot be true, because if it
were, then by the above argument ,x, @ = 0, which against
our assumption. Thus only (II1I-67) can hold and such a
case is taken care of in (1i).
If Y4 = 0, X, # 0,(111-65) and not (III-66) can hold

and all is well again.
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Case (iii) Finally’if V4=V, = 0, then neither (III-65) nor
c
(II1-67) can hold,and (III-64) must again be satisfied.

We have therefore shown the validity of (IIL-62) under the

assumptions of ou® Lemma.

Next, let
b b b, , b,
mg _mp _ . L2 ik (I11-68)
b b o b,, b,
nq mp i,j,k, 4 Ljs ik

By the assumption (III-57))clear1y

b b
1 2 b—mﬂ—b‘-‘E >0 (111-69)
nq mp
equality on the left-hand side being possible only if
b, b

blz = bik for all i,j,k,£, i.e. if the rank of CB is ome.
j4 jk

We will show that:

bmg bng

bnq bmp 9

D(x.B; v B)p(x;y)> 2R — 1 - D (x,y)]
1+ =R p(x,y)
nd - op (I1I-70)

Now
D( ,LQ ;.1,03 )-D(x;y) =
( %xﬂ bz:'.) gyk bkj
= m%n S 5 5 :E - -
ij E(z”“)kx“ kj
. zzk Poi Py (XpVVeXa - B pETd!
= min 1 -

Ll ] Yo *q sz Pri Py Vg Vi
b

Yl o (111-71)
d

I
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From definition (III-23) & (II11-24) it is clear that yc#O,
xd#O. However, it is certainly possible that in some cases

yc=0 or xd=0. Furthermore, there might exist some additional

i, 1 # ¢, such that x, =0, or some additional j, j # d,
such that yj = 0. We must take notice of all these ﬁos-
sibilities.

Let us first eliminate from the summations in both
the numerator and denominator of the right-hand side of

(I11-71) all terms including coordinate products X, Ve

s Ve = 0. Also, property (III-57) in-

sures that whenever bzi bkj= 0 then also bki sz = 0, We

will then further eliminate from the sums of the right-hand

such that X Y, =X

side of (1II-71) all the terms which will include the matrix
element products bzi bkj = bki sz é 0. The remaining terms

in the summations then are such that at least one of

(byy Pry X5 Yie» Py Pyy ¥ ¥y) and ome of (b, b, x y,,

bki sz 1 yk) are non-zero. Taking this into considerationm,
it follows from (III-49) of Lemma 4 that
| EE XeYd
by by, 5 x
min c.d 2
b,. b .y -
i,] ji £i "kj 74 %
X, X,y
(%7, %, ]b [ 4
LT AL R i ©iPe3 T ¥V 5 Xq
min
2 + b b
i,j,k ﬁ Pei Prj ¥ Yo ¥ By Pyy ¥ Vi

(I11-72)
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Therefore inequality (III-73) holds,

xcyd
LITLILIV R R ycxd] +
D(x B, 3B )-d(x,y)> nin
R P

| Xy

c’d
* PuciPay 90 chd] (111-73)

* Byi Pyy Xp Vi

where only those terms which were not eliminated in the
above procedure were taken into consideration when :the mini-
mum on the right-hand side of (I1I1-73) was being determined.
We will now show that.the right-hand side of (III-73)

is greater than or equal to the right-hand side of (III-70).
This will be accomplished if we succeed in proving that for
all i,j,k,2the inequality (III-74) holds :

%4 ¥4

Xzyk[bzibkj'bkisz ycxd] + xkyz[bkisz’bzibkj Y Xg

X9k PriPsy T AT PuiPi

]

X y,2
c _“d.
L bnp y.xq (1 - (y Xd) ]
2 « < =
bnq bmp Y%gq + Enq bnp X Y4 (111-74)
Xy
c’d
= Y%4 bmq bnp + XY4q [-bmq hnp ycxd]

Ye*d bnq bmp + XYd bmq bnp

Subtracting the right-hand side of (III-74) from the left-

hand side, we get the expression
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/
Psi Pii Pug Pup EeTiETa T BT Rt Pyl b bog |

(Xﬂyk bki bﬂj + Ry bﬂi bkj)(ycxd bnq bmp + X4 bmq bnp

y

(%3 XY ¥y % v 4] + bkibzibmqbnp[xkyzxcyd'xzykxdyc] +

* Pii Py Pup Png BT RS T XXy (II1-75)

. b, . - -
[bil ki bmq bnp bki bﬁi bgp bnq][xﬂykxcyd xkylxdyc] +

(g9 Prg By ¥ 2y By b)) % By by + %0y by bhp)

* Iy by by bogby; By bng Pop ! ETiEaY e XY X Y 4 )

and we should show that (III-75) is greater than or equal to
zero.
Now two cases are possible:
Case I:
either x, = 0 or Yq = 0
In such a case to prove (III-74) we must only show that for

all i,j,k,4

b
bzi bkj bmp bnq [ b

A\
o

£i bkj bmp bnq

b (I11-75a)

Pri Pg5 Pmp Png [ 5

. b . b b
£1i_kj _ “mq “mp 1% 0
ki bﬂj bmp bnq
But (III-75) is satisfied by definition (I11-68).

Case II.

X # 0 and Y4 £ 0
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In this case it is clear from (III-75) that in addition to

qQ
(III-?;) we must also show that for all i,j,k,4:

y, X7
2 ETd 5
Y9 Ye*a

xEykxdyc [

III-76
%9, ( )

v,y -
xk £7d’c szk ycyd

But (III-76) is satisfied by definition (III-25). Hence the
assertion (III-70) is proven.
Consider now all the matrices (3" in the set S, together

with their corresponding quantit%es (111-68). Among the

b’ b*
latter there must bebgneé_say E%S—E%E having the largest
nq mp
value, and one, say EQH_EER having the smallest value.
nq mp

Then for all matrices (RBeS the inequality

D(x@®; QLCB) - D(x;y) 2

Png Pop (111-77)
b;g,b;p 2
? b» b’ [1‘D (X;Y) ]
1+ D(x;y) o
nq mp

must hold. But (III-77) shows that after each transformation
of vectors |x,,.y by the matrix @, the resulting vectors
X, Qg,,jbqa have a directional distance closer to the value
1, and moreover, that the value 1 is actually approached in
the limit, since otherwise the right-hand side of (III-77)
would always remain a finite quantity so that the value 1
would actually be exceeded in the end. Thus Lemma 5 is

proven.
Q.E.D.
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The previously proven Lemmas 1,2,3,4 & 5, taken all together
lead to the following, aimed for
Theorem
Given a Markoff source having a transition probability
matrix [M], with states Syseees8y partitioned into dis-
joint non-empty sets AI’AZ""’AZ » £4 k. Construct,
by the procedure described in paragraph (III-3b), the
contracted set-transition matrices d%ﬁj), i,je(1,2,...,4).
Given any € > 0 an integer A can be found such that

for all integers ) >fand @21 and for all sequences
i ,i-1 i-) i-A-0-

A7, A seneshA seeesA for which
preal,...,at, L A 4 o (I11-78)
the inequality
|eral/at=l, . athpral/al-l, . at, a0
(I11-79)

- is satisfied, provided that all set sequences fulfilling

(I11-78) correspond to set transition matrix products

@t @ittt L. @ttt (I1I-80)
(where notation (I1I-26) is used) having the following
property:

There exists a fixed integer t such that if any of the
products (III-80) is expressed as a product of subproducts

of t matrices:
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[@i-r\ L @i-/\+t-1] (R i-)+t' ) i-/\+2t-l] (B i-/\+st. AR i-1]

where st ¢ A ¢ (s+1)t ) (II1I-81)
then each of the subproducts results in a matrix
vy . . - L=A+(j -
G(i=Mit, v, i-p(HD)e-1)=[@IE gt~ (D1,
(111-82)

having elements 8; i such that whenever gij = 0 then either
E4

gip = 0 for all p, or gqj = 0 for all q.
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Appendix IV

Uniform Convergence of Probabilities of Disjoint Sets of Markoff States

conditioned by a State Set Past of Fixed Length, when the Source States

are Determined by a Finite Past of Discrete Outputs.

In this appendix we will be concerned with the question of when the set-
transition matrices of a special class of Markoff sources satisfy the

sufficient condition for set probability convergence given in Theorem III-1.

As the heading implies, the states of the Markoff sources of interest are
to be determined by discrete outputs in a manner to be described below.
Without any loss in generality we will in the following exposition limit
the alphabet of the outputs to a binary §ne. It will be clear that a

straightforward generalization to n-ary outputs exists.

Consider now the following class of Markoff sources. At given discrete
time intervals the source changes state and puts out a binary sequence of
length n whose identity is a function of the newly assumed state. Hence
at time i the source switches from state si'l to state si, putting out
simultaneously the sequence

i-1 i-2 i-1 i i-1
(xll. 2 xel y *c xn ) = ¢(S ) xj é (O’l) (Iv-l)

There are 2n£ states and at any time the present state is determined by ﬁ

2n(.Q -1)

immediately preceding outputs. Consequently, states have identical
outputs and there is a one-to-one mapping of each point in the state space

onto the output space of ordered sequences of.e binary n-tupples.



Therefore we can write that

x l'l,x i-1 . i-1l

2
2R Xy (v - 2)

\ D iR i-R i-2 /

xl ,X2 "OO’X
and an inverse function VV from arrays of'l! n-tupples to states exists.

If s* occurred then a transition is possible to only those states s1+l

which are characterized in terms of the array on the right hand side of
(Iv-2) as follows:
(a) they can have any 15% row

kth

(b) their row (k=2,3,...,8) is identical with the

_ (1v-3)
(k--l)St row of s .
. i m . R _m .
Therefore, given state s™, there are 2 possible next states, 84d 2" possible
immediately preceding states. By this we mean that transitions into any

other state but those characterized as in (IV-3) must have the probability O.

Each row in (IV-2) can be considered as a binary number and as such has a

decimal equivalent. Let us denote it by

i . : :
= . i-k,n-1 i-k ,n-2 i-k

§ _-_-_-xlke + Xy 2 *oeee X
k

(Tv-4)

Similarly we can characterize the state s of (IV-2) by the decimal

[
number o s

: : ¢ _mle-l) ¢ n(e-) ¢
[ A Cem ¢ J T4 @ 4 b eieees -
RPN :fzé +g‘£_'8 + +f' (1v-6)
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vhere f X were the decimal equivalents to the rows of the array on the
right hand side of (IV-2) as described in (IV-4). Identifying now states
and outputs by their decimal correspondents, we can describe the transition

matrix [ 772] of the Markoff source. Its elements are

(Y] ¢ .
- o
My = p Ter 75620 (v-1)

and we know that
Moo= o ne “
l L]
unless {a—an- f(ﬂzn ) eT <& (0'2 = 5‘(0')8 }+£ (1v-8)
‘ .

Thus the matrix will have at most 2R non-zero entries in each row or colum.

Suppose that in the expression (IV-1) we suppress w of the B digits (W<mni).
Without loss in generality, we may suppose that we suppressed the first w
digits. Thus the new output will be, instead of the word (IV-l), the word
(1v-9)
i-1 i-1 i-1

(g » Xup 2 o 7 %y ) (19-9)
If we were to observe the new output now,we would never be able to determine
vhat state the Markoff source was in, no matter how much of the output past
we took into account. In fact, unless some unusual degeneracies occurred,
if we wished to make the best possible prediction of the next output, we
would have to use our knowledge of the entire past output since the beginning

of the source's operation.

2w+n(£ ~1)

If should be observed that now different states will give the-

same observable output (IV-9). In fact, any state is, as far as its output
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past and present goes, indistinguishable from 2% other states. Thus we
s ne (n-w)2

may pertition the 2 states of the Markoff source into 2

disjoint sets, each containing all the states characterized by the same

array of non-suppressed outputs. After the manner of Appendix IIT we

will denote the sets by the letters Ai’ there being a one-to-one mapping

of each point in the set-space onto the space of ordered sequences of

binary (n-w)-tupple outputs. We can therefore write that

i-1 i-1 i-1
i-2 i-2 i-2
Tl P Ko ? 0 %y

=0 : (1v-10)
i-2  i-2 ' i-2
Xl ? B 2 0t 0 Xy

-}
and an inverse function f)_ from arrays of M(n-w)-tupples to state-

sets exists.

Again, each row in (IV-10) can be considered a binary number with a decimal

equivalent denoted by

. ke V) MY ok
qk E X ...xw’a L JCEETEE 5 n

wei (1v-11)

s L
Then also sets A can be characterized by a decimal number & defined

below

: R R (h-w)l!-l) - m-w)j(2-2) C
A =Q‘2 + 7‘_, * oot ""I, (1v-12)

.
vhere 7“ were the decimal equivalents of the rows of the array on the

right hand side of (IV-10), as described in (IV-11). A transition from a
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. v Y
state S & A Y to a state < A is possible if and only if

"ne -wje -w)‘( New
@2 -p@e )mc(dé g2

The operation of the source with some of its outputs suppressed can be

illustrated by Figure IV-1l

5 |

| ! i
i Markoff + > %.n
I source,stat : P Xy
| uniquely 7 N gl YO available
defined by : | . outputs
' : N () p
gk 4
: output : "fw ; we
} ‘—-:—'—'—7)(‘; :
! v
L e e, —e e e - e - 4
suppression box
Figure 1IV-1
i+V
It's obvious that a sequence of state sets Ai R Aiﬂ' yoee A1+ identifies

outputs (n-w)-tupples for times i-f, C-Q-o-l).--;, t+V=l | and viee versa.

Thus the best possible prediction of the output (m-w)-tupple at time i is
2,04

obtained by the use of our knowledge of the sequence of sets A ) A

A" . The proper conditional probability is

ey
CHl Lot Aot e .
[ 3
P (A /A’A ....)A } V >‘e (Tv-1k)
array
vwhere the first row of the,analogous to (Iv-10) characterizing At

the (n-w)-tupple whose probability we want to determine.

Clearly:

+' Y N ‘ )
PN K= m,fm:}” e T
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To find the numerator and denominator probabilities in (IV-15) we proceed

as in Appendix III.

Suppose we know the original Markoff matrix [M}with elements defined in
(Iv-7) and (IV-8). By the procedure (III-3b) we will construct the con-
tracted set-transition matrices Qm) from set Acl to set AA (Note
that by our notation set Ad has the decimal eguivalent representation

Q"VIQX a(“'w)‘e

[ { ). They will have dimensions £ Similarly, by

the same procedure, we will construct the contracted vectors |P/ q}| having

f-w) R
Pt coordinates. Then by Lemma III-1 we can write:

-k _c-ks) el
¢ ) ple) -k L B A .2 ﬂ
p{A /A )--../A = P{d) aC‘kat“f:{. GC-& !‘7 ' (IV-16)
L, — Yy
where it wB.s assumed that A‘.k= ol and if AJ‘—' AIS and 04 ’:.- Af
then 642 aa(rL

The preceding notation and definitions will now be illustrated by an example.

Example IV-1:
Let £=2 , n=1, w=1 .
The source will then have the output (x1 ,x2) and 16 states whose decimal

equivalence representation is illustrated below:

xl'l x2"1 0 0 0 1
0 &> = 5
-2 x..2 0 O . o 1
Xl ) .
4] 1 . 0 1
1 &> 9 <
: 0O 0 . ~\1 o
0 0© .

=
(@]
=
s’
l_J
N
A
=]
[
e’
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As seen in Figure IV-2, the output x, is to be suppressed.

1

> X5

A

sgurce

—— S — — — e —
e R S

Figure 1IV-2

This creates four state subsets as follows:

e CEEEN
S €9 N W 8 |
{00,000
s {60,000



The pertinent contracted state transition matrices are:

My Mo, O O ]
0 o MJ,P ”na.ao
@ (a) = m ] 0
0 ey oz
L_0 (4] m:o,a M\,,'w
qu' Mgy O o |
& ( © o M’oq M‘a"
1) =
A ) my, g, O O
0 (s Mm  m
B 0,9 0,n
@) -@3) =[0]
@) =B 1) =1[0]
M,ﬂ Ml;b 0 fs]
@ (2) ° o Ms,u "‘},m
ST My Mes 9 09
J..o o M”)’! ")"'
- -
.m"s M'ﬁ 0o (7
o 0 M Mus
@,(3)3 Mg My, 0 0
L_o o A“n,u M"ﬂf

'- -
Mo ™y (o) 0
®,fo) = 0 0 M Mo
Mo M., O o
_O o Ml s o
— —_
Bo=| o O e T
2 M My, © o
__0 o Mu,,q Mm,n_
@ () = @ (3) =[0]
e e
£3(0) = @3(1) = [OJ
""“s,y Ml‘.‘ . 0 0
o 0 M7 " M'q,l'v
@,(2)= '
3 Mu,q '”‘ll,t. o o
__0 o Mcr,u m‘-f,l:
MSA’ M";" ] o
@( ) o o M3 M e
3)=
3 m,3‘ < M‘:x,-, o 0
_O 0 m 513 M5 'ﬂ

234
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wvhile the pertinent contracted vectors are:

L

(2(0)

2(0), 2(2), p(8), »(10),

L) = pf1), p(3), p(9), p(11),
IPSEZI = |Egh')’ 2(6); P(le): P(ll")l
2(3)

= 2(5), p(11), p(13), p(15)

As an example of a conditional probability we have:

0, B 1) B.(2) B0
sk 2 - B0 B0 B 3
2(0), B (1) B,(2) 1

:p(xg#)/xg=0, xg=l,xg=0, x]2.=0)
Viewing the matrices of this example, we notice that if all the allowed
transitions have non-zero probability, then any possible product of two
matrices, G‘(j) @J- ( k) , results in a matrix having non-zero elements
only. If that were the case for all the set-transition matrix products
of the class of Markoff sources introduced in this appendix, then for all
sources of the class the sufficient condition of Theorem III-1l for con-
vergence of conditional probabilities of sets would be rulfilled; As a

matter of fact we will prove just that in



236
Theorem IV-l )
Given the special class of Markoff sources described in this
appendix with the n binary outputs occurring at time i being
functions of the state si reached:
i-1 i-1 i
(xl y cee xn ) = ¢(S ) (IV-17)

Let the first w output digits be suppressed so that only outputs

i-1 11
Xy s woe s Xy ) | (1v-18)

are observable. Iet the states be determined as in (IV-2),
represented by decimal number equivalents as in (IV-6), and
classified into sets according the ae immediately preceding
output (n-w)-tupples as in (IV-10). Let the sets in turn be
represented by their decimal number equivalents as in (IV-12),

and let the state transition rules described by (IV-8) apply.

The corresponding set transition matrices @q(‘s) constructed by
the rule (III-3b) from the Markoff transition matrix ] will

then have the following property:

If all the transitions allowed by rule (IV-8) have non-zero

probability, then any set-transition matrix product of length 2 ’

ai-e @C-BM ai-l = e

hey )

(1v-19)
-2 ¢ '
pertaining to a set sequence { A ) A )" A such that for it
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¢ alel v-2
P" (A)A )"") A } # 0 (Iv_eo)
results in a matrix whose every element is positive, i.e.:

C; 4 > 0 for all 1i,J - (1Iv-21)

As a consequence it follows from Theorem III-1 that for all
&)0 there exists an integer A such that for all A >A

and 2] the inequality

s . - . i- i A A0
I‘Pr(Ai/Al LA™ Ceral/all, .4t LAt yeg (m-22)

{1-A-0-

holds for any set sequence {A R ,Al } for which

My 4

pr(al,... At 0 (Iv-23)

Proof:
If (IV-20) is to hold then the succeeding sets in the sequence

Y N ) c _ T J+L _
{A,A ’._,,,A} must be such that if A" = Ay and A —A:s
then relation (IV-13) is satisfied. Any given matrix €Cin such, situation
i-g

is then completely determined by the sets A and A* since the sets in

the sequence {'Al"' s e esAT } for vhich (IV-20) holds must be determined.

by the sets a2 & al. In that case

C=ea/n

is a matrix whose elements ci have the value:

»d

(Tv-2L)
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c 3 = probability of a transn.tlon m 2 steps from the k th

state of set A -2 to the ,j state of set A

If Ai"2= Ay then Al"e can be represented by
e i@ e(...w)(e-:) e St (8 e
«C=q *, s (1v-26)

as pointed out in (IV-12). It is then clear from (IV-2) and (IV-10)

that 5‘.e 40. if and only if s* =‘é_where
al8-l) -2 n(2-2) )

ey f:‘g j e e s =

‘_g -2  n-w -0
= -+-f 2? + 7 éz -*‘{ t? z; c? *‘
nlzqd cz

(1v-27)

o€
Aoeees om 2 2
2

-Q u-w -_¢ =@ -
_f f )f,: e(9)--,2%1)

It then follows from (IV-27) that the kth state of A is one represented

by the decimal number (IV-27) where

i@ wie-1)

kefl"e*f 2 - -...-J-f a k;(o /) (1v-28)
If Ai =A’3 where

(n-w)(2-1) . (a-w)fe-3) :

A -.-222 +2‘¢-' .,..-..,.?’ (1V-29)
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then we mus£ have Ai"z*h = Af he (0/ lyyR) wnere

. | - new) {@-1 \ (n—w)lO-L . i‘l-lﬂ“ g "‘"y"""}
p gt L g St

Q-4 h~ ' .
Similarly, if J -% é A is represented as in (IV-27) then a transition

to state sl = s’_ F 3 A represented by

“w) tn-wv @-1)u Lucw
=q +f2 a*fa "‘”“‘le "52 (Tv-31)

R VY c-@+4
is possible only through state =% ¢ & A which is represented
by '
— ..u. ) M -w .e wh
c.-l.-'-h el o-----*? j e 2 +
'In-a.-n) f 4'" £ (IV-32)

PR Chel)aw X -
j enh Y e ..ee nit.y) 2»0 w

‘ e ‘.‘ -h
It therefore follows that for every state < & A there is a unique

transition path to any state ssl F 3 Al and that therefore every element

¢; in the matrix (IV-24) is non-zero if all the state transitions allowed
)

by rule (IV-8) have a non-zero probability.

Q.E.D.

It is interesting to display diagrammatically the appearance of a matrix
@«(4) . By equation (IV-28) a certain order of states in any set A™

wvas implied. From rule (IV-8) it follows that given any state s & A~
W Lot U . . i, :
there are 2 states 3 & A into which a transition from s~ is possible.

By convention (IV-28) these will occupy in the ordered set Al+l neighboring

LS
places, because they are determined by the value of f only.
]
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Consequently each row of the matrix @ el(6) vhere o & A satisfy the
relation (IV-13), will have 2" non-zero elements appearing in a block
of 2% neighboring columns. By inspection of (IV-26), (IV-27), (IV-30),

and (IV-32) we see that the first state s" & Ai has transitions to the

first block of 2" states sl+l 3 AH’l , the second state to the second

w(e-) & i i
4 —state s é A" has transitions
. . w(e-1)

to the last block of 2° states s ' & AY™. (Note that the & «

block of 2% , ete. Finally the e

w ‘
state is represented by numbers f = =l for J=he,... ,2-1
<

and b =0).
smavy S, n) - .
Now the (2% '"#+1)= state in A" is represented by the number:

_ i - N N L) LI T
0’““2: *'I:z_‘""*‘l; 2 -p----uz;& + 2 (Iv-33)

and consequently has transitions into the same states in Ai+l as the

first state in Ai had, i.e., it has transitions into the first block of

. w(@-
2" states of set Alﬂ'. The cycle now repeats, so that the ( e )+2)g‘

state & A' has transitions into the second block of 2° states in Al'Y, etc.
@ (&™) |
We can therefore represent A': in the following block form,

regardless of the identity of the sets Ai and Al+l

i+l

, as long as a transition

from A” to A™'" is possible by rule (IV-13).
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2“:olum~s cholu....., auzo‘uwu: &“:o(wun;
XX X00_ o e e e —————- 0
“ t00-_---oxx--._xoa..__...._-_.--._..-_.--..__._-.a
\?: 00 e OXYe e . XOO o _____0
- 1}
o i
v 1]
3 }
N
VI Yo S ¢ P & S X
| XKoo e XOO_ e e e e e e e e e e e e —————- 0
slloo—_Oxwe __x0_ e ————-—- - 0
Q ]
3‘4 !
$
3 !
N 00 o o o o e e e e e _OXX e e - X
XX...._-.XOO-_.____._.-___-...._.....-000 ..... o
I
[}
]
!

rows

)

2
-
o
i
|

wi{-t

Figo IV"3

Row cycle repeats. There are altogether 2¥ such cycles. The elements

marked "x" are potentially positive.
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Considering multiplications of matrices of the type of Figure IV-3 it is
not difficult to see that the product of r of them, where Pe € will
have the diagrammatical appearance of Figure IV-4. Such will then be the
appearance of the product
DY L

» ®B... B (Iv-3k)
which corresponds to a sequence of sets SAi, Ai+l, cee Ai+r } for
which

pr(a®*T, ATl 0 Aty 40 . (Iv-35)

We will next prove a stronger statement of Theorem III-1.

Theorem IV-2

Given a Markoff process and a state partitioning with corresponding
set-transition matrices @. (J) as described in Theorem III-1.
Then whenever there exists an integer r such that there

corresponds to all set sequences {Al"r, cee Al } for which

pr(at, a¥h, ..., AT £ o (IV-36)

a set-transition matrix product
C=» C=re) el
@ @ ..-.-Q - e (Iv_37)
for which the element ckj = 0 1if and only if either Crt = 0 for

all t , orec =0 for all Jj , there will also exist for any

sJ
&> 0 an integer A\ such that for all set sequences

i-A -0 C=A < )
iA )....,A )"’/A }) A >Afor which

pr(at, AL, o AR, L AT 20 0e2) (wv-39)

the inequality

|pr(at/al-l, .. ain -
- Pr(A%/pi-1 - ;
JAtTL LAl A,..’Al-x-o)l,_

2 g er(a'a™™ 2t (1v-39)

will be satisfied.
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dr‘:plmuus e’:’OIvmu a’:-,OIUma; ayrah/ncu
(ﬂr““‘-—"\ ,—-—-‘~___\,‘———&-._\
XXX eeeoo X OO0 _ _ _ . | o o o M o - ---_----0!
3 \|00-__.. O xx....x00_ _ _ _ _ _ _ _ ... -e___.0
o3 {00 O x0O0_ 0
s |
t 3 I
N
\00-__.._..__---_.-_.---__,-__-_--Oxx ..... X
XX___.x 00_ __ o o e . 0
g 00.._.0xX-_X0__ _ ___ & @ @ e eeee___0
]
TS K
Q', [
3-\, 00 - e o e e e ___ Oxx____. X
{(x----XOO ....................... 000..___. 0
i
i
]
]
i
{]
K SR & /7 SRS /
o ]
~\ /]
1.» i
s !
3 _0 _._______________“_,__-_..___._.--_--Oxx...----x_

Fig. IV-k4

Appearance of the matrix
i+l i+2 i+r
aai(A ) QAiﬂ.(A ) L. aii-t—r-l(A ) , r4£.0

Row cycle repeats. There are altogether 2™ such cycles. Elements
marked "x" are potentially positive.
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Proof:

It should first be noted that except for (IV-39), the above theorem is
stated identically with Theorem 1 of Appendix III. In fact, it is a

stronger statement of it.

Now, for any fixed AN we are dealing here with a finite number of possible

sequences {Al,Al-l,...,Ai')"} such that
pr(at,at™, a4 0 (IV-k0)

Hence, if (IV-40) holds, it is possible to define a set of states S(Ai)
vhere

L & s(al) if and oniy iz pr(at,s*™) £o. (1v-b1)

(Wote that Pr(al,s'™!) is the probability that at a certain time interval
i-1 the system will be in state s™1 and that at the next interval it

will be in one of the states of the set A~ ).

It is clear that for all sequences satisfying (IV-38) the following

inequality will hold:

pr(at/att, ... a1 ™M ) [P(Al,/sl ls)]»o0
s & S(A (TV-42)

Thus we can define a quantity

= min [ Mmin P(A‘ 3.:."3)
J = _4‘( StS(Ag) / ]) (1v-43)

which will satisfy inequality
pr(at/att, ... a2 M 2d >0 (IV-bk)
for all {Al i- 1, .. .,Ai'hg

such that (IV-L4O) holds.
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Iﬁ should be noted that (IV-44) holds independently of the value of the

integer A . Thus, given any &20 we can define the quantity

£ =60 | (1-45)
and since under the conditions of the present theorem the Theorem III-1l

holds, we can find the integer A for which -
i, i- i-A i, i- i=X
[o(ai/ai-t, . a1y Cpatal Al M) ¢, (1v-46)

for a11 A >N  ana @21 shenever (Iv-38) is satisfied. But the
integer f) which satisfies (IV-46) will surely satisfy (IV-39) as well,
and therefore the theorem is proven.

Q.E.D.

It should be noted here, that hecause of Lemma 3 of Appendix III, the

integer A is found for a given §, » o by examination of the differences

l P(Ai/Ai-l: ce :Ai- A ;sji-k-l) - P(Ai/Ai-l: > ‘,Ai-A )si-k-l) ’ (Tv-kT)

for all s § S(Ai-'\) . The difference (IV-47) then suggests a very
definite procedure for finding an appropriate A .

Q.E.D.

Finally, we would like to deal with the actual aim of this Appendix. We
would like to prove the theorem needed in Section 6.5 and listed there

under the heading 6-1.
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Theorem IV-3

Given the special class of Markoff sources described in this

appendix with states characterized by configurations

{x,g,x,'y) (c.f. definition (§-9) with (Iv-2) ),

a.(a -l

having @& transitions from a state ( x,q,i,ﬁ) to

state (3%, 4',%,4') provided that

qt T o Tl St er_ T+l
r (2:3;"';2) ’
T -r+]1 -y =T -r+1
y =¥ y =Y
(Iv-L8)
each transition associated with a different pair f,f such that
=1 = - -y =1
£(3,4) = x' ; I(%,F) = x' g (Iv-b9)

the transition probabilities of the allowed transitions being

defined by -
v xR e T xe = he(e) B(E)

0~ if (IV-49) hold
P (x ')':x) ') ) ( o
3&72

0 otherwise (IV-50)

Whenever for all 'i., ﬂa ) 3 ) '5‘, X,o?

g v 3 PG) 30 {(s;)az P(E) +0
*e féf(.z,q)-.-x
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then for any € O there exists an integer tO such that whenever

-1 “t-r _ -1 -t-r _t- ‘
Pr(£,87 5 e f Ly ey 0, 80 ) A0t T2l (1v-52)

the inequality

| er(y / £, .27t gL

t- 1

-t -t -1 wter -
yee Y L8 )'Pr(y/f)f PREEPS ¢ Y seves

-t- -t- - - - - -
y T g7t r)l‘i pr(yf £,07), .0ty Ly e

-t ~ter _=ter -tel _-t-r -t
s = g(s »T PEERYS 4 Y PREEE 4 l) (1Iv-53)
holds, and for any £ 2 O there exists an integer 't—o such that
whenever
—1 metel — ==1. ... met-r —t-r :
Pr(¥,f ~,...,T 2TY s ¥ r:S ) #0
to> :EO’ r21 (IV"5)"')
the inequality
= 1 t —-1 —=t —=t
IPr(YI-f:T- seensT LT see¥ t:s ) -
- -1 -t-r -1 —t=r -t~
- PI‘(YIT,T yeeesT r)y PREEEN A »S r) I‘
- - -1 -t —~1 -t =t
g Pr(F[ET, .. 77,75
-t _ o/~t-r ~t-r ~t-1l _-t- 2
5" =g(3 T PRRRYS 4 l:y r;"" l)
(1Iv-55)

holds.
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Proof:
We are dealing here with a special case of the general situation described
in (IV-9) where n=4 and w=2. We will prove the part involving (IV-54)
and (IV-55) only, the rest will follow. We will first define notation
for identification and ordering of states along the lines developed
eariier in this appendix. A state (3, 4 )2,05 ) can be displayed as

x-l y-l f‘l ?-l

-2 =2 _=2 =2
y x ¥

= x
(2,9,2,3) <« .
(1Iv-56)
syttt
and the state set to which it belongs as
x-l ?.-l
=2 =2
- Xy
(R,4) <[
. (Iv-57)
i" ‘ ?-‘
The latter can then be represented by the number
- 2(e-2) -
-— — 82(’ ')+i a +-.~..-'ﬁ ’
ol = e‘ 21 (Iv-58)
where
- --k a - - k k | l)
h =Xxg C+Y (Y., (1v-59)
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The state (&/3, 5,§)can then be represented by the decimal number

| 2 q* 6_’ e &a("‘), aat-a
0= '[' "'5, 2. an jae 21 j‘ (1v-60)

vhere

-k -k
fk =k +y ke (1,2,...., 8 (1-61)

The order of the state (. -“:7;5‘:‘5) in the set ( 25}?111 depend on

the magnitude of the number

wUe-l)

h=§, + _gae"»---ff‘é

(1v-62)

A transition from state (,4),R,4) represented by 0= to state
(a,',q;i', 4')  represented by T is possible only if (IV-8) is
satisfied for n=4. Similarly, a transition from set { E. ‘5} represented
by o toset (& 5 ') represented by /3 is possible only if

(Iv-13) is satisfied for n-w=2.

Any state set (E,é) plus "output" (f,y) specify the next state set
(i‘ /5'} - We are dealing here with a little more general case than
the one defined by (IV-7) since whenever a transition between t:rg states
is not precluded by rule (IV-48), there actually exist :!“a ")
possible different transitions. Hence a somewhat different set-transition
matrix

B _(5,5,%8,4) (1v-63)

.i,?
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of dimension 2 X a for each transition determined by f from a

state set (&, &) to state set (&)4G))is derined by elements

yhe e e e E TR Z e
£» flx, 4 x'

bhj = if (IV-M8)a.ndA (Iv-49) hold

(Iv-64)
0 _ otherwise

vwhere the ordering h for state (34,3 g) and j for state

(3¢ ,7' &, 7'} is defined by (IV-62).

From Lemma III-1 and the above discussion it is then clear that we may write

ot ‘t 3t
Pr(f --') )'?J')'”l ? }’ (1v-65)

pa5Y m__t(-.f*“* £™g) @i_gﬁ‘;" F Sy

@ng,j,' £'4') ﬂ

where ,\‘o;.': ; -“./:J '} --' =y

_-t -Ot . . -
and vector ‘_P(.g [i}' was defined by (III-3§).

Thus, by the discussion preceding Theorem III-1, it follows from Theorem
(Iv-2) that (IV-55) will hold if it can be shown that the matrices defined
by (IV-63) can be diagrammatically represented by Fiéure (Iv=3) for w=2.
But from (IV-64) we see that this is precisely the case whenever (IV-51)
and (IV-54) hold.

Q.E.D.



251
BIOGRAPHICAL NOCTE

The author was born in Prague, Czechoslovakia on November
18, 1932, He emigrated into the United States in Ogtobef 1949,
" and in June 1950 graduated from the High School of Commerce in
New York. He then went to work for the Universal Mfg. Co. in
Paterson, N.J. and enrolled as a student of‘EIectrical Engineering
in the Evening Session of the City'College'éf Néﬁ York.} In
June 1953 he was awarded a scholarship from thé-Mid Eﬁ#opean'
Studies Center in New York and‘as é,conseqﬁeﬁcé.transférréd to
Day Session of the City'CoiIége.:'In‘Ju§¢J1954vthe scholarship
was extended to cover tuitionueipenseéfatlﬁhe Massachusetts
Institute of Technology which-thé‘éuﬁhér started attending in
September. He graduated in Junéiggé, h#ving written a thesis
enfitled "Realization of Minimum Phase Functions in the Form
of Ladder Networks' under the supervision of Professor E. A,
Guillemin, |

The author was appointed a.teaching assistant at M,I.T.
in February 1956, and continued his studies receiving his
Master's degree in June 1958, This thesis was supervised by
Professor R, M. Fano and was entitled, ”Codihg and Decoding of
Bihary Group Codes'. 1In June 1959 the authbr‘was promoted to
the rank of instructor. While at M.I.T; the authorfhas been
teaching various graduate and undergraduate courses in

Network Theory and Mathematics. In the Summer of 1959



252

he was a consultant on coding theory to R.C.A. in Camden,
N. J., and is currently consulting on Network Theory for
‘Burnell & Co,

The author is a member of Tau Beta Pi, an associate
member of the Sigma Xi, and a stﬁdent member of I.R.E,

The author is married and has a one month old daughter.



253

BIBLIOGRAPHY

C. E. Shannon, Two-Way Communication Channels',

Proc, of the Fourth Berkelev Svmposium on Mathematical

Statistics and Probability (to be published),

J. M. Wozencraft, ''Sequential Decoding for Reliable
Communication', Technical Report No. 325, Research

Laboratory of Electronics, M.I.T. (August, 1957).

C. E. Shannon, ''Certain Results in Coding Theory for

Noisy Channels'', Information and Control, Vol, 1,

pPp. 6-25, September, 1957.

R. M. Fano, Transmission of Information, The M.I.T. Press

and John Wiley and Sons, New York, 1961,



