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ABSTRACT

Discrete memoryless two-way channels having outputs y,y
and inputs x,x are defined by their set of transmission pro-
babilities p(y,y/x,x) . They were first studied by Shannon
who developed expressions for inner and outer bounds of the
capacity region. This thesis investigates strategy codes in
which messages are mapped into functions F and F, where F maps
received signal sequences Y into the channel input_signal
sequences X, and F maps received signal sequences Y into chan-
nel input signal sequences X. First a coding theorem is
developed, based on a generalization of the random argument
for independent assignments, extending Shannon's inner bound
to the capacity region, and showing that in this extension the
probability of decoding error is exponentially bounded with in-
creasing codeword length. The expression for the extended
inner bound of the capacity region is then studied, and it is
shown that for two-way channels which are not noiseless, all
codes involving strategy functions F and F will be such that
the information passing through the channel in both directions
will be strictly less than the information useable for message
decoding purposes. Hence the concept of coding information loss
is introduced and studied. With its help a tighter .outer bound
on the capacity region is developed, which, although extremely
difficult to evaluate in practice, is used to prove that a cer-
tain very broad class of two-way channels has capacity regions
strictly interior to Shannon's outer bound. Attention is then
focused on classification of different possible cases of binary
two-way channels whose transmission probabilities are restricted
by the relation P(y,y/xxX) = p(y/xi) p(y/xx). It is shown that
all such channels can be represented by a cascade combination
of two channels one of which has steady, uniform noise, and the
other has noise dependent on the identity of transmitted digits
only. It is further shown that the latter channels fall into



two canonic types, each requiring a different coding strategy
for optimal results. Finally, certain convexity theorems are
proved, and a way of quasi-optimizing the random ensemble is
developed, insuring the use of certain canonical strategy
functions F and F only, thus reducing drastically the number
of optimizing variables.

In the process of proving the above coding theorem, use
is made of a new theorem proving uniform convergence of cer-
tain probabilities associated with Markoff sources (see
Appendices III and IV). This theorem may be of mathematical
interest for its own sake.

Thesis Supervisor: R. M. Fano
Title: Professor of Electrical Communications.
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1. introduction

1,1 Definition of the Discrete Memoryless Two-way Channel

A discrete, memoryless two-way channel, shown schematically

in Figure 1-1, can be described as follows:

X
Y

rfV
Co

x w4Vc ý4X(

Figure 1-1

The channel consists of two terminals, each of which is pro-

vided with an input and an output. The input signal x at the

forward terminal is selected from a finite discrete alphabet

of a symbols. The output y at the same terminal belongs to

a discrete alphabet of b symbols. The input signal 7 and the

output signal 7 at the "reverse"' terminal are selected from

discrete alphabets of size a and b, respectively. The channel

operates synchronously: at given time intervals inputs x and

x are chosen and transmitted simultaneously through the channel;

outputs y and 7 may then be observed. The definition of the

channel is completed by a set of transmission probabilities

P(y,7/x,,)j. Since the channel is assumed to be memoryless,

it will have the property that:

PrY ' 2 ' ' n; Y1 ''' Y n2 " n/x ... .,; x' !'.'". ' n -

'r (Yifi/i i ) (1-1)

i=l



The most important feature of this channel is the nature

of its noise: transmission in one direction interferes with

the transmission in the opposite direction. it is thus clear

from the start that in an efficient coding scheme the signals

to be transmitted will be determined by taking into consideration

the identity of past signals received, the latter providing

information about the transmission in the opposite direction.



1.2. Examples of Two-way Channels

A trivial example of a two-way channel are two one-way

channels transmitting in opposite directions. This instance

lacks the essential feature of noise generated by opposite

transmission, A more: interesting example is pictured in

Figure 1-2.
Mod 2 adder

x

Y

x

IJ

Figure 1-2.

Here inputs and ott puts are binary and the channel operation

is defined by y=3y-x+R(mod 2). Shannon (1) points out that

it is possible to transmit one bit per second in each

direction simultaneously. "Arbitrarily binary digits may be

fed in at x and x but, to decode, the observed y's must be

corrected to compensate for the influence of the transmitted

x. Thus an observed y should be added to the just transmitted

x (mod 2) to determine the transmitted R."

Another example, again a "noiseless"' one(in the sense

that y and 7 are fully determined by the transmitted pair

x,x), is the binary multiplying channel of Figure 3, suggested

by Blackwell multiplier
X

y

X

v

Figure 1-3.

Y



All inputs and outputs are here binary, and the channel

operation is y=;7xR. The rate of information transmission in

one direction depends on the information rate in the opposite

direction: it is clear that one may transmit one bit per

signal in the forward direction if 3 is permanently fixed to

equal 1, while it is impossible to transmit any information at

all if R is 0. The region of approachable information rate-

pairs is computable by a formula developed later in the

thesis,

A final example of a noisy channel is given in Figure 1-4.

,, L - -i- ' .T.

Y

x

switch moves to terminal No. 1
with probability A(i)

Figure 1-4.

The inputs are again binary. It is clear that with probability

p(1),y = x, and with probability l-p(1), j = x. Hence the

channel is a sort of an erasure channel with the important

distinction that the receiver does not know when an erasure

X



occurred, although it does occasionally know when an erasure

did not occur: whenever y # , In Figure 1-4 one cannot fix

the signal x so that the forward transmission would be one

bit per signal. The exact region of approachable rate pairs

for this very complicated channel is not known, although this

thesis develops a formula for computing tight inner and outer

bounds for it. It should perhaps be pointed out that the

channel of Figure 1-4 is of central importance. It will be

shown in Article 8 that it possesses one of two possible

cannonical forms.



1.3 A Real Life Example

An example of the concept of the two-way channel is pro-

vided by the two-way microwave link with a repeater represented

by Figure 1-5.

forward
repeater

flf 
2

f repeater f

forward reverse
terminal terminal

Figure 1-5.

The forward terminal transmits in the frequency band fl and

its signal is being reshaped by the forward repeater and re-

transmitted in the frequency band f2. Conversely, the reverse

terminal transmits in the band fl and its signal is being re-

shaped by the reverse repeater and retransmitted in the fre-

quency band f2. The forward repeater's antenna, although

directional, picks up some of the reverse terminal's signal and

transmits it at frequency f2. Hence the reverse terminal's

reception depends also on its own transmission. This effect

is being compounded by the fact that the reverse repeater's

transmitting antenna, although directional, is not perfect and

hence that its signal is being picked up, however weakly, by

the reverse terminal's receiver. A similar situation exists

with respect to the reception at the forward terminal.

___.·_ _·__ __~__~·~ __i_



2. Shannon's Results

In his pioneering work on two-way channels (1) Shannon

derived important results which will be briefly summarized in

this article. He has shown that "for a memoryless discrete

channel there exists a convex region G of approachable rates.

For any point in G, say (R,R), there exist codes signalling

with rates arbitrarily close to the point and with arbitrarily

small error probability. The region G is of the form shown in

the middle curve of Figure 2-1.

Figure 2-1.

This curve can be described by a limiting expression involving

mutual informations for long sequences of inputs and outputs.

In addition"', Shannon found an "inner and outer bound, GI and

GO, which are more easily evaluated, involving, as they do, only

a maximizing process over single letters of the channel."

2.1 Shannon's Inner Bound G

The inner bound is found by use of a random coding

argument concerning codes which associate messages stric.l:

to transmitted sequences regardless of the identity of the

R



8

received sequence. The manner of association is the same as

the one used for one-way discrete memoryless channels: in the

ensemble a message m is associated to a signal sequence

XI x2, ... ,Xn with probability p(x 1 )p(x 2 )....p(xn ). Decoding

of (e.g.) the reverse message at the forward terminal when

sequence yl,..',yn was received and sequence x1,...,xn was

transmitted is done by maximizing the probability Pr(x',.. n .

y $P*Yn ,x 1.9.x n) over the signal sequences x ,19.,x

associated with the various messages of the reverse terminal.

The inner bound region G, is then defined by Shannon in

his Theorem 3 which we quote here in full:

"Theorem 3

Let G be the convex hull of points (R,R)

R = E log P(x)

S= E 4log Pr(/xv)

when P(x) and P(R) are given various probability

assignments. All points of GI are in the capacity

region. For any point (R,R) in G and any E> 0 we

can find points whose signalling rates are within e of

R and R and whose decoding error probabilities in both

directions are less than e-A(E)n for all sufficiently

large n."



Shannon further remarks: "It may be noted that the convex

hull GI in this theorem is a closed set containing all its

limit points". 'Furthermore, if GI contains a point (R,7),

it contains the projections (R,0) and (0,R).."
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272 Shannon's Outer Bound G

Shannon gives a partial converse to Theorem 3 quoted above

and an outer bound GO to the capacity region. This he obtains

not by an argument directly connected to some coding scheme,

but rather by examining the change

in the uncertainty about the forward message m due to the

reception of the signal i, when previously signals y'"" i-1

were received and message m was being transmitted at the reverse

terminal. He shows that

aL E(log Pr(xi/xi'i) )

P(xix
i )

and concludes that "the capacity region G is included in the

cnvex hull GO of all points (R,R)

Pr(x/-~)R - E (log P(x/ )

R = E (log Pr) )
P(R'/x)

when arbitrary joint probability assignments P(x,R) are made.'

I.e. whenever a code signals with forward rate R* and reverse

rate R* where the point (R*,R*) lies outside the region GO, the

probability of decoding error will at least in one direction be

bounded away from zero, independent of the code length n,

Shannon further shows that the information rates given

above are concave downward functions of the assigned input
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probabilities P(x,R), and develops conditions on the trans-

mission probability set {P(y,7/x,¶)I, whose fulfillment would

guarantee the coincidence of the regions GI and GO. Finally,

Shannon proves that bounds of GI and GO intersect the coordinate

axes at identical points.

_ _I ~I_ ___~~ ________ · _~3__ __·_
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2.3 Shannon's Capacity Region Solution G

Shannon considers the product two-way channel K whose

inputs and outputs are sequences of n signals of the given two-

way channel. An input "strategy letter" to the channel Kn at

the forward terminal may be represented by

[xo' fl(x 0 ;Y0 ) 'f 2 (x 0 ,x 1 ;y'l) ' n-1(x 0,x1,.. .,n-2;Y

Y'''''Yl n-2 ] X n

where the functions fi map pairs of i-tupples [x0 ,...,x i -i;

YO..'9i-1-] into signals xi. I.e there is a mapping relation-

ship

x fi (x0 ,..,i-x ; y,...,yi-)

for all possible pairs of i-tupples, A reverse strategy letter

may similarly be represented by

[x0 fl(x0;Y0)' f 2 ( x 0' x 1 ; y 0 ' y l )' '"" '  n-1(x0"XI''"xn-2;
[Ylof. 1 ,(x2)] _ )f

Y0'1' Y.9 n-2

One may then in a straightforward manner define the product

channel's transmission probabilities

Pr (Yn, n/XlX, n)

where Y YO 'Y1'" Yn-1 Y Y ''"Yn-

and evaluate the inner bound Gn for the capacity region of

the channel K by finding the convex hull of points (Re,R n ,
n

where

Rn 1= E ogn p Xn)



-n 1 Pr g Tai n
R - E log -

n •
P(X.

over the various probability assignments P(Xn) and PF(n).

Shannon next shows that Gn Gn+r

G = lim

n+-oo

and that the capacity region

n
G

I:



3. Proposed Attack on the Problem

3.1 Objectives of Two-way Channel Investigation

As illustrated in the introduction, the two-way channel

presents a new problem as yet not fully treated in information

theory: How to arrange a code so that the opposing terminals

cooperate in the selections of signals to be transmitted even

in situations in which the messages to be communicated remain

independent. It is of course possible to communicate through

a two-way channel without any signal cooperation, and Shannon

(1) found the region of pairs of signalling rates (R,R) for the

two directions which can be approached with arbitrarily small

error probabilities by non-cooperating codes (see Article 2).

One of our major objectives would be to see whether or not the

above capacity region can be extended by the use of cooperating

codes.

Another question to be asked concerns the construction of

the cooperating codes: what kind of cooperation is desirable

and effective and what are the features of the two-way channel

which make it so. In this connection one might ask whether

the desirable cooperation is of one kind only, or whether per-

haps there are several classes of two-way channels, each class

calling for a different sort of cooperation.

The cooperating codes will of course be of an as yet

uninvestigated type and their structure, besides being in an
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obvious way a more complicated one, might present new difficul-

ties of an essential nature not yet encountered by the treat-

ment of the usual codes, One would expect that the increase

in the complexity of the structure of the cooperating code will

be the price paid for its greater effectiveness. It might then

turn out that different grades of cooperation will exist, and

their respective effectiveness will be of interest.

Finally, one might compare the cooperating with the non-

cooperating codes in their effectiveness of limiting decoding

error probability at signalling rate pairs (R,R) within the

capacity region of the non-cooperating codes.
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3.2 Comment on Shannon's Results

A comment on Shannon's results in light of the objectives

listed in the preceding section is called for at this point.

The implications of the inner bound G described in section 2.1

are self-evident. The limiting procedure for the capacity

region solution described in section 2.3 is certainly sugges-

tive of a way of coding. However, one ought to point out that

for a binarychannel K the number of different input letters
n 4n

Xn suggested by this scheme is 2 . Better results than

those of the inner bound non-cooperative coding can be obtained

for values of n larger than or equal to 2, and for the latter

integer the number of different input letters is 32. Hence the

inner bound for K2 involves optimization over 64 quantities.

Moreover, it should be pointed out that such coding is actually

quite wasteful in terms of the number of input quantities intre-

duced compared to the probable effect: thus for n=2 only half

of the time any cooperation at all exists, and even this co-

operation will most probably not be very effective, since at

the next time interval it will again be interrupted. Intui-

tively it seems that in order for the two terminals to cooperate,

the signals must get into some sort of synchronism which the

repeated interruptions of cooperation will only hinder.

Now the outer bound results of section 2.2, although not

directly suggesting any coding scheme, tell us that cooperation



is indeed effective (Actually they only suggest the possibility

that the outer bound GO differs from the inner bound GI.

However, it is easy to compute in specific instances, such as

the multiplying channel mentioned earlier, or the cannonic

channel of Figure 1-4, that this is really the case). Before

going into more complicated schemes, one might wonder whether

a code mapping messages strictly into signal sequences could

not be arranged which would result in an average joint pro-

bability Pr(x,") of simultaneous occurrance of opposing signals

x and R such that Pr(x,R) # Pr(x) Pr(R). It turns out (as

shown in Appendix I) that any random assignment which maps a

forward message into a sequence X1'X 2
' ' ' ' ' xn with probability

P(x 1 )P(x 2 )...P(x n ) and a reverse message into a sequence x1'

with probability P(Xl)P(( 2 )...P( n) would on the

average lead to a code for which the probability Pr(x,) )-p

P(x)F(3) as the number of different forward and reverse code-

words k-LODo. On reflection this destroys our hope for ex-

tending the region G, by codes having strict message-to-

signal sequence mapping.

Thus we will after all have to resort to coding in which

the signal transmitted will depend on the identity of past

signals transmitted and received. As will be seen, we will

make use of the functions f. which help define the strategy

letters Xn in section 2.3, but we will try to exclude all

waste discussed in the paragraph preceding the last one.
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3.3 Restriction of Generality of Discussion

In the following work we will restrict our attention to

two-way channels characterized by a set of probabilities

P(y,3ix,3) = ~(y/x,Z) 5(F/x,-) (3-1)

defined over the set of possible input signals x, 3 and output

signals y, 7. Above restriction is not necessary for the proof

of the key theorems presented in this thesis. In fact, the

coding Theorem 6-2 and the Theorem 7-5 introducing the concept

of information coding loss are independent of the restriction

(3-1). On therother hand, it will be seen that the interpre-

tation of the problems introduced by the two-way channel con-

cept will be much clearer with the restriction (3-1) imposed.

By making use of the symmetries created by (3-1) we will be

able to separate the effects of transmission in one direction

from the effects of transmission in the other direction.

It should be noted that the simplification effected by

the restriction (3-1) is due to the fact that the received

signal at one terminal will depend only on the two signals sent

and not on the signal received at the other terminal.

Throughout the thesis all specific references will be to

a binary two-way channel, although the signal alphabets will

be unrestricted in all the proofs of the theorems presented.

However, the intuitively very important results of Article 8

will apply only to binary channels with restriction (3-1)

I
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i mposed on them.
Any binary channel whose transmission probabilities are

restricted by (3-1) is schematically representable by Figure

3-1.
. . p x) _

1

xO
l

q (x)

W~x
0

x
B!

q(x)

Figure 3-1.

The interpretation of the above diagram is as follows: if the

reverse transmitter sends the signal R = 0 (1) and simultaneously

the forward transmitter sends the signal x = 0 (1), the pro-

bability that at the reverse terminal a 0 (1) will be received

is p(7) ( q(7) ), and the probability that a 1 (0) will be

received is 1-p(l) (l-q(5) ). A similar interpretation applies

to the transmission in the reverse direction. Thus the identifi-

cation of the symbols introduced in Figure 3-1 with the set of

transmission probabilities defining the channel is as given in

the table below:

Sp() a p(0/O,7) (x) I p(O/y,O)
(3-2)

Sq() a p(ql/l,) ((x) u p(I/x,1)

0

y
Y1



20

3.4 Desirability of Sequential Encoding

In the preceding discussion we have shown that optimal

encoding of a message should be such that the signal trans-

mitted in any given time interval would be determined not only

by the message but also by all the signals received and trans-

mitted in the previous time intervals.

A signal transmitted when either sequential or block en-

coding is used, is dependent on n-l other signals. Hence

knowledge at the forward terminal of the signals received up

to time t-1 provides a probabilistic indication of the identity

of the signal to be transmitted at time t by the reverse terminal.

Since the latter signal will in the two-way channel determine

part of the noise on the transmission at time t in the forward

direction, it is essential that its probable value be considered

at the time when the forward terminal's signal is being

generated. This being the case, the natural encoding is

sequential, since using that scheme the signal to be transmitted

at time t is not yet determined at time t-l. We will therefore

modify Wozencraft's (2) sequential coding procedureto the needs

of two-way channel encoding. The procedurestree-like structure

will be retained, but not its code generator feature. In

what follows we will not concern ourselves with the obvious

decoding advantages of the sequential procedure.



3.5 State Diagram Representation of Sequential Encoding

It is assumed that the reader is familiar with Wozencraft's

work entitled "Sequential Decoding for Reliable Communication"

(2), In this section we will make use of its terminology.

Wozencraft determines the binary signal sequence to be

transmitted through the channel by means of a generator into

which a message, also in binary form, is fed. Because of the

way the generator operates (for description see pp 3-4 to 3-7

of (2)), the sequence to be transmitted through the channel

has the characteristic that any block of kn0 signals is

statistically constrained, while signals more than kn0 places

apart are statistically independent. The encoding is usually

presented in the form of a tree, the path through which is

determined by the binary message sequence. The branches of

the tree are associated with sequences of n0 binary signals

which are transmitted if the message path leads through the

branch. Such tree, however, does not give the complete pic-

ture of the generatable signal sequence of potentially infinite

length: one would have to extend the tree indefinitely, and

indeed the generator and its rules of operation give us the

means to do so, On the' other hand, a much more compact way to

present the entire process presents itself in the form of a

state diagram.



Let the state be determined by the sequence (zt-k',zt-k+l,.

... ,Zt-1;t) consisting of the time interval t (given modulo k)

and the last k binary message digits. For a given interval t

there are 2k states forming a "time string" (the reason for

such terminology will become apparent by inspection of the

state diagram given in Figure 3-3), and the state diagram con-

sists of a total of k2k states. Transition is possible only

from a state of interval t into a state of interval t+l, and

moreover, from any given state (zt-k, zt-k+,...,zt-,t) only

two transitions exist: into state (ztk+l,...,ztl, O;t+l) and

into state (zt-k+l,,..,z ,l;t+l). Hence the particular

transition taken is determined by the identity of the message

digit zt . Now each transition has associated with it a

sequence of no binary signals xt, ,xt l . . . , x t n  The

succession of the signal sequences then forms the encoded

transmitted communication.

As an example, consider the particular Wozencraft

scheme in which kn =9; n0 =3, k=3, and the generator sequence

g=110100. Then the tree of Figure 3-2 is obtained.

;I
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i0

11:

r

Figure 3-2.

This tree should, as explained above, be extended indefinitely.

Its equivalent state diagram is shown in Figure 3-3 in which,

with the exceptions of the transitions corresponding to the

tree above, the transition sequence values are left out. It

is hoped that this will serve to further elucidate the relation-

ship between Figures 3-2 and 3-3.

.I
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symmetrical structure of
the diagram.

Figure 3-3.



4. Notation Used

As will be seen further on, a treatment of signal co-

operating codes for the two-way channel will necessitate the

introduction of new, relatively complex notation. In order

that a ready reference to this notation be available throughout

the reading of this paper, we consider it best to introduce it

all at once.

4.1 .Indexing Notation

We will be dealing with two kinds of sequences of symbols.

One will pertain to sequential coding and the other to block

coding, Actually we will be using the sequential approach

most of the time but for certain mutual information and entropy

results the block approach allows greater notational simplicity

and can be used without any loss of generality,

In sequential coding we are concerned with tree branches

emanating from a common "departure" coding state whose identity

is assumed to be known to the decoder at the opposing terminal.

If the departure state was reached at time ithen the two

branches emanating from it, leading into states to be reached

at time i+l, will be indexed by the number i. In a sequential

code, to every tree branch there corresponds a sequence of sym-

bols of length n0. Then, for instance

0



x (j = 0,1,...,n 0 -1) will be the j+lth symbol (4-1.

.thcorresponding to some branch of the i time

interval.

Next, for reasons of notational simplicity that will become

apparent, we shall indicate by

-t th
x.i, the t preceeding symbol of x.i in any given 14-2)

sequence. Hence:

-t
x. = Xr where (i-r)n0 + (j-s) = t

In block coding we will adhere to the usual notation.

Thus

x. will be the ith symbol of a block.

4- 3)

(4-4)

Similar to the sequential notation,

-t thx. will be the t preceeding symbol of x. in any (4-5)
1 1

given sequence (it is allowed that t>i, so that

-t
x. and x. can belong to different blocks).

1 1



4.2 Symbol Notation

We will next display the symbolism used in the thesis.

We will do so by using the sequential index notation defined

above, any necessary changes for block notation will be

straightforward and require no further explanation.

In what follows we will deal with symbols pertinent to

the forward terminal. Their counterparts for the reverse

terminal are superscribed with a bar " - ". Hence x is the

symbol at the reverse terminal corresponding to x at the

forward terminal.

Message digits:

... ,z,zi+l,...,z i+j.. is a particular sequence

of message digits, where

(4-6)
z. indicates which branch

is to be followed out of

th
the i sequential encoding

state.

Channel input signals:

..."xi,0 xi,1 '  x . ' i , n -1,xi+l,0.'''xi+jlk'"

is a particular sequence

of input signals tc the

channel. Subscript nota-

tion was explained above.

4 - 7



Channel output signals:

"'Yi, 'Yi,l'"Yi,nO- 1'y i+l,O'"''  i+j,k' "

is a particular sequence
(4-8 )

of output signals from the

channel. Subscript nota-

tion was explained above.

In order to simplify notation, we will assign special symbols

to sequences of input and output signals of length L.

Thus we will define:

a -1 -2 -1
, (x ,x. , . ,x. )

3 3, 3 ,j P1,j

Finally)we would like to define a single letter notation

for sequences of symbols from the beginning of communication

to a given time (i,j),and for sequences of symbols from a given

time (i,j) to the time (i+K,j), where K is the number of time-

strings in an encoding diagram, i.e., the number of branches

taken into consideration for a single decoder decision. We

will have:

i,j (xi,j-1'xi,j-2' ..... x0, )

Yij (Yij-1 YO 0) 0,0

and



x+  = ( x)
, i,j) i,j~i' ** O X j-

X, S (x ,xi'j+1'....... xi+K,j-1

Y i - (Yi .............. 'Yi+K I )

A similar capital letter notation will be used for sequences

of any other symbols yet to be defined. If it should become

clear from the context that block coding is being considered,

then double subscripts will give way to single subscripts.

To illustrate, we will write e.g.:

Xi+1 -- (x i xi-1 , ...... ,x0 )

i x -1 x-2 -i x.1 ~i ) "·r~ i
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4.3 Encoding Functions

We will define functions f of "dependency" length 1,

mapping the space of sequence pairs (Xi ti) on the space of

channel input signals x.:

f ) = x. (4-13)

Similar functions are defined for the reverse terminal.

It is clear from definition (4-1 that the domain of

221
definition of any function f consists of 2 points (3Zi,

Yi) . Hence the function is fully defined if a table of its
22

values for the 2 possible different arguments is given. Thus

any function f can be represented by a binary sequence of 221

elements, each corresponding to a different point in the

domain of definition. We can write:

f (aO,a, ..... .,a ,......,a 2&) where ai is
2-1

the value of f when the

sequence (3E , ) consti-

tuting its argument is

the binary representation

of the integer i.
2R

It is then clear from (4-r1)that there are altogether 2 dif-

ferent possible functions f.

The script letter convention (4 - and the capital letter

conventions (4-10),(4-11),(4-Ll will also apply to encoding func-

tions, as well as the general indexing notation established above.



4.4 Derived Two-Way Channel

Consider the transducer of Figure 4-1.

fib

Figure 4-1.

It is designed for encoding functions of dependency length =P6.

It operates as follows: there are memory compartments storing

-1 -6the input signal sequence (x ,.....,,x ) and the output

-equence y- -6
sequence '(y ,...,y ) plus the function f. At given time

intervals the transducer puts out the signal

-1 -6 -1 -6
x f(x ... ,x ,y ,...,y )

and simultaneously shifts its stored sequences by one place

-6 -6to the right, discarding digits x , y and the function f.

Then its empty x-sequence slot is filled up by the signal x,

its empty y-sequence slot by signal y, and its f-slot by the

next function f+l. It is then ready to put out the signal

+1 +1 -1 -5 -1 5x f (x,x ,...,x ,y,y ,...,y )

and to repeat the same cycle. We will call the device of

Figure4*La "function-signal transducer", and it will be

understood that the number of x-sequence and y-sequence slots
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will always be equal to the defined dependency length of the

input functions f.

Consider now the channel of Figure 4-2.

f

Forward function-signal Reverse function-
transducer signal transducer

Figure 4-2.

The block arrangement is self-explanatory with the help of

Figure 4-1. The entire arrangement within the dotted border

2can be considered to be a derived two-way channel with 22

different possible inputs f and f and binary outputs y and y.

If it were agreed that communication will always start

with prescribed sequences in the memory compartments of both

transducers, then the derived channel would have finite state

memory. In fact, the derived channel state at time i is a

strict function of the state at time i-1, the channel inputs

f and fY - and the channel outputs Yi and 1
i-i i-1 i-



Nextewe will develop some more terminology. The derived

channel state denoted by (si 'i) is fully determined by the

sequences in the memory of the two transducers. Hence:

(si,) (4-15)

where *i and are the sequences in the memory of the forward

transducer at time i and AEi and are the sequences in the

memory of the reverse transducer at time i. We have left

out the superscripts I to simplify notation. Henceforth,

unless otherwise stated, any missing script letter superscripts

will be assumed to have the value 1.

The derived channel now has the following state trans-

mission probabilities:

Br i/fi(s),f )) (4-16)
V Si

It is also clear that there exist functions g and g such

that:

Si+m g(s fi+1"" i+m-1i' Yi+l ' ' 'Yi+m-1 ) (4-17)

Sim gs; f' f """' i+m-l;Yii+''"" ' i+m-
5i-hm tim)

Above is due to the working of the transducers described on p. 32

42
and to equation (4-13). There are of course 2 possible dif-

ferent derived channel states (s,g).

We shall assume, without any loss of generality that the

state (s , ) at the beginning of communication is always

that in which the memories of both transducers are filled with

L
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zeros only. Hence, by convention,

(so, so) = (0,0) (4-18)

where we have replaced the binary sequences (oX'o) and

( o,o) by their respective decimal values, a practice we

shall follow whenever convenient.
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5. Summary of Results

In view of the fact that the mathematical procedures used

in this thesis are quite complicated and that some of the

terminology and notation are new and pernaps cumbersome, it

seems best to present at this point a summary of the results

arrived at in the following articles. It is hoped that in this

way motivation will be provided for those steps taken by the

author which at first reading might otherwise appear capricious.

In all that follows it will be assumed that channel transmission

probabilities are restricted by the relation (3-1).

In Article 6 an ensemble of sequential codes is constructed

by associating forward messages with sequences fl 2'" i '

of encoding functions (having an arbitrary but fixed dependency

length t) independently at random with probability P(f )P(f2)..

P(fi)..., and reverse messages with sequences fl f 2,..., ,..
2

of encoding functions (having the same dependency length I as

the forward functions) independently at random with probability

P(f P(f 2 )..P(f )... (for terminology see section 4.3), where

?( ) and P( ) are arbitrary probability distributions. It is

then shown that the ensemble probability of forward and reverse

decoding error is exponentially bounded with increasing code-

word length n (i.e. it is shown that it is smaller than 2 - n A

where A is a function of the signalling rates), provided that

i



the forward signalling rate R and the reverse signalling rate

R are such that

RC!og(1-E(m))+E jo Pr(y,, ,,m _ -m _ (5-1)

Pr(y/ f,.mf m, -",

R<log(l-7(m))+E log m mm m
Pr(yi/f, ,m ,a m )

where the expectations are determined from the channel trans-

mission probabilities and from the probabilities P(f) and P(f)

used to generate the ensemble, and the functions E(m)-0O and

E(m)O-0 as the integer m--*oo. As the integer m grows larger,

the quantities on the right hand sides of the inequalities (5-1)

increase in value. It follows from (5-1) that if the point

(R,R) lies in the convex hull of points

S Pr(!frf f f z ,'f Y
lim E log - r-- r V' - r r- _ 1 1 1
r-)oo Pr(--,fr ,-1*"1, -'1" 7

(5-2)

!im E log PL r r1- r-1"f '" fr' r-!'1'' _r-1* '1r-(oo Pr(y /f,f - r "1
A.. r -r ' " -

obtained for different assignments P(f) and P(f), then a code

signalling with rate R in the forward direction and with rate

R in the reverse direction will exist, for which the Drobability

of decoding error will be bounded by 2 -n A(R,2R) where A(R,1)

is a positive real quantity.



It should be pointed out that the convex hull (5-2) is a

lower bound to the capacity region, tighter than Shannon's G,

Co which it reduces when the assignment distributions P(f) and

P(f) are appropriately restricted (by assigning non-zero pro-

babilities only to those f (T) which map all the 2 different

sequences ,• (i2,) into the same signal x ()).

The random argument used to reach the conclusion (5-1)

and evaluate the character of the function A(R,R) is complica-

ted by the fact that the random variables with which one deals

are dependent. The dependency is of a kind which can only

approximately be associated with a Markoff source, and an im-

portant step in the proof (see Appendices III and IV) consists

of showing that the error induced by the approximation is of

an appropriate kind. In fact, the functions e(m) and ~(m)

of (5-1) are the corrections necessitated by the approximation.

In Article 7 the properties of the expectations (5-2) are

examined. It is first pointed out that the expectation pairs

(5-2) are identical with the pairs

m , YT , lm 5 -n P n n nnn
n-o Co n->Cc

of mutual informations, where the sequences Y- Yn F-- F of

length n were defined in (4-12). It is then shown that if

sequences F , F were transmitted and sequences V" y-nwere received, then the signal informaion which passed through

were received, then the signal information which passed through
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the two-way channel in the forward direction is equal to

It(Y;Xn/Xn), in the reverse direction is equal to I•( ' ; !X/X n ),n n n n n n

and the total information which passed through the channel in

both directions is equal to

IQ7;X/3•/) + I(Y• . /X)
n n n n n

(5-4)
= I(X',Y;X,Y, ) = I(FY;F'Y),n n n n nn n n

where the function F- mapped Y- into the sequence X-, and then n n

function F" mapped Y- into the sequence X-. It moreover turnsn n n

out that if sequences F and F are picked at random with pro-f n n
n-1 n-

babilities Pr(Fn) I= TT P(f ) and Pr(F ) T P(F.) then
n i=O i n i=U 1

EII(Y ;X-/) )+ E{I(Y; /X') =

:* (5-5)
SEI(XY;XY)= E I(FY7;F ,Y) ,n n n n n n n n

where the average on the right hand side is taken with respect

to probabilities P(f), P(f), while the expectations involving

as variables the signal sequences X-,Yn,Xn,Y" only may ben n n n

determined from the communication process represented in

Figure 5-1.

Figure 5-1

i

i

i

J



where the forward source generates signals x with probability

Pr(x/x,p) = q(x) and the reverse source generates signals x

with probability Pr(x7/i,) = q') (for explanation of nota-

tion see (4-9) and (4-12)). The source probabilities q(x) and

(jx) are defined with the help of the probabilities P(f) and

P(f) as follows:

q(x) = P(f) •(() = P(f) (5-6)

The information (5-4) transmitted through the channel is

then examined in relation to the informations (5-3) which in

the coding theorem were shown to be useful in message decoding.

Theorem 7-6 then states that

EI(Y";X'/) - EfI(Y";F"/F E I(;Y/ X-

(5-7)

Ef I (Y;/ X) E- II(YV ;-F/F-)j E I(Y-:Y7/X-,F (

or, in other words, that not all the information that passes

through the channel is useful for message decoding purposes.

Further theorems show that the quantities EfI(Y-;-Y/F-,X1 )

and Ell(Y;'n" /Xn: n, ) can be interpreted as an average loss of

information due to forward and reverse coding, respectively,

and that, except for the so called noiseless channels, all

codes which do not map messages strictly into channel signals

are associated with a positive average coding loss. A new

formula for the outer bound to the channel capacity region is
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developed in section 7-6. It is subsequently used, in con-

junction with the positiveness of the average coding loss, to

prove that for non-degenerate channels the capacity region G

is strictly interior to Shannon's outer bound GO.

In Article 8 binary two-way channels with transmission

probabilities restricted by the relation

P(y,y/x,x) = p(y/xz) T(7/xR) (5-8)

are discussed. It is recalled that theycan be represented

by the diagram of Figure 3-1 which can be said to consist of

a forward (top) and reverse (bottom) portion. The forward

portion, diagrammed in Figure 5-2,

i
0

Figure 5-2.

is then examined with the conclusion that it must belong to

one of two classes, depending on the probability set p(o),

Sq(R) o Into Class A belong channel portions in which addi-

tional noise is caused by simultaneous transmission of signals

x and x such that x ý 7. Into Class B belong those portions in

which additional noise on the forward transmission is caused

L



by one of the two possible signals i. It is then shown that

all portions of Figure 5-2 can be represented, either directly

or after a transformation by the cascade of Figure 5-3,

a(x) P0
0

I

Figure 5-3

where the channel involving the probabilities pO and pl is a

binary one-way channel, and the channel involving probabilities

a(x) and B(x) can be represented either as in Figure 5-4 or as

in Figure 5-5.

a,(0)=1 a(1)
0 0 0

x y x y

1 , 1 1 , 1
S(0) B(1)=1

x 0 x =

Figure 5-4.

a(0)=1

tx= 0

Figure 5-5.

x- ()

x13

17
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It is clear that if a channel portion is representable by

Figure 5-3 directly (i.e. if no transformation is necessary),

then if it belongs to Class A, it is representable by Figure

5-4, and if it belongs to Class B, it is representable by

Figure 5-5. Finally, interesting examples of binary two-way

channels restricted by (5-8) are given, exhibiting significant

symmetries.

Article 9 uses the results of Articles 7 and 8 to discuss

heuristically what kind of source probabilities q(x) and iRjx)

(see Figure 5-1) will insure high information transmission

through binary two-way channels whose defining transmission

probabilities p(y/x,i) and F(7/'x,~) are qualitatively described

by membership in the classes of Article 8. Wethen go on to

prove that the six mutual information functions appearing in

the two equations (5-7) are concave downward functions of the

probability assignments P(Fn), P(f-).
n n

Attention is then focussed on the problem of construction

of random ensembles from which to pick, with great lil-ihood,

codes which would signal at close to capacity rates with a

small probability of decoding error. If the intended ratio of

reverse to forward signalling rate is A then the probability

distributions P(f),P f) should be determined by maximization

of the quantity



· pr(y/fpm, (•m__m , .E log

Pr(P /'Pm'-=m m-• g m5

+ AE og Pr(y/f, m f m

Pr(y/ f, m ,mYm )_ m

over the set of all possible independent symbol distributions

for some sufficiently large integer m. For a given dependency
222

length I there exist, however, 2 x 2 different functions f

and f, and therefore as many variables over which to maximize

(5-9). In view of Theorem 7-6 (see relations (5-7)) it is

suggested that one maximize instead of (5-9) the expression

E log ((f/x )+

SrP1/ m•-m(5-10)

+ E log p(x)
m m .

Priy/x,xm , _m, _m)

21over the set of 2 x 2 probabilities q(x) , q_() and then,

using the relations (5-6) as constraints, minimize

E log p(v/xx)
- E o m _ Im ,L +Pr(y/f ,, xIm X m, 6-m J-m

E log T amxn)
,Pr (y/ gx, m

over the possible distributions P(f) and A(f). A theorem is

then proven stating that, except for noiseless channels, the

L



quasi-optimization involving (5-10) and (5-11) will never lead

to the optimal solution. It is nevertheless concluded that

for practical reasons one must be satisfied with carrying out

even a weaker quasi-optimization: one involving step (5-10)

but replacing step (5-11) by an arbitrary determination of the

distribution P(f), P(f) satisfying constraints (5-6). It is

shown that for any given set fq(x)l of size 22 there exists

a set of (222+1) non-zero P(f) which will satisfy the constraint

(5-6). The{P(f) set obtained is in a definite sense an optimal

one, and hence is called canonic. Using the idea of the canonic

sets P(f)j and P(f() another, better quasi-optimization procedure

is developed, involving maximiation of the expression (5-9)

22
over the sets of different 2(22+1) canonical variables.

We will finally call attention to Appendix III whose

results we believe to be of mathematical interest for their

own sake. As already mentioned in the second paragraph

following (5-2), the theorems derived in Appendix III are

necessary for the proof of the coding theorem of Article 6.

Suppose a Markoff source is given with an associated matrix

['WI of its transition probabilities. Let the source have k

states, s 1', 2 ,...,' k , and let the value of a matrix element

in bert
S = P(s /s ) (512)
rt t r



(ie. the probability that if the process was at time i-1 in

state s r , that it will be at time i in the state s t ,

Let the states of the source be partitioned into A non-

empty classes A1 ,A2,...,A,. Appendix TII develops the suf-

ficient conditions on the transition matrix ["]J which must be

satisfied so that the following statement will hold:

Given any E > 0, an integer -A can be found such that

for all integers A>A and Q 1 and for all sequences

of successive states A , Ai-,.., ,..*,A ,A

for which

Pr(A ,A $0,A1 - A. i -A ) # 0, Y(5-13)

the inequality

1Pr(A Ai-1 i-A i- i-A i-A-
Pr(Ai /A ,.., )-Pr(A /A ,..,A ,...,A S

(5-14)

is satisfied, where Aj e ,A2,...,A 1

j = i'1.. i
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6. Coding Theorem

6.1 Two-way Channel Sequential Function Codes

We will approach the coding problem through the concept

of a derived channel described diagrammatically by Figure 4-2.

In what follows we will use the terminology and concepts of

section 3.5 as well as the notation of Article 4.,

Consider a pair of sequential state coding diagrams

having the structure of Figure 3-3, one for each input terminal

of the derived channel of Figure 4-2. Let the number of time-

strings in the forward coding diagram be k. Associate with

each of the transitions out of each state of the forward

coding diagram a sequence of n0  encoding functions, say

(f f ., where f. . is a function mapping the

space of possible past signal sequence pairs ( j j

-1 -ý -1 -1i
(xi,j'..,x.,y. i,j.,,Yij ý on the space of channel inputs

1,3 j3 '1, 3ij

signals x.. (for more thorough discussion see section 4 .3).ij

It ought to be recalled that the functions f.. constitute
1j

the input symbols to the derived channel of Figure 4-2.

If the message is encoded into a string of binary digits,

the operation of the sequential coding diagram is identical

to the operation described in section 3.5 Hence, for

instance, given the time t/mod k and the k most recent message

digits, Zt-kzt-k+!,' °.'  t-l' the state of the encoder is

determined. The next state and therefore the -articular
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transition to be taken, togrther with the associated sequence

of input symbols to be transmitted through the channel, is

then determined by the message digit zt. The reverse encoding

diagram, operates in the same way, except that the function

sequences associated with the state transitions will have

length F0 and will be denoted f. ,...f. 0- We can postu-

late the reverse coding diagram's time-string number to be k.

The appropriate messages are of course z -sequences and in what

follows it will be assumed that the forward and reverse messages

are independent of each other.

Decoding will be sequential, one message digit at a time.

Hence at time i, on the basis of a known forward "departure

state" (characterized by time i-k and the message digit

sequence zi-2k,...,,zi-kl) and of a consequent set of all pos-

sible function words F allowed by the forward coding dia-i-ky0
gram, the reverse decoder will determine the next forward en-

coding state (i.e. the identity of the message digit zi k )

by the use of its knowledge of sequences F ,Y Of F i-k,O'i-k,0 i-k,0 i-k,0
F. and "- Perhaps the reader should be reminded here
1-k,0 i-k,

that in section 4.2, Fi was defined as the sequence (f.• ,i-k,0 1-k,0

f ) of derived channel input symbols, and

w"as defined as the seauence (f".. f- . ...f.. • •
1,n0-

Similar definitions apply for the sequences Fk 0
i-k,O' i-k,O0

F k, except for a slight modification explained below.
i-k,0' ti-k,0'

i



We recall first that the integer n0 was defined as the

number of symbols associated with a transition of the forward

encoding diagram, and that the integer n0 was defined as the

number of symbols associated with a transition of the reverse

encoding diagram. But in general n0 # •0. From this it

follows that when one encoder reaches a state in time-string a

and is about to transmit the first symbol associated with the

next transition, the other encoder may be just about to trans-

.th
mit the i symbol of some transition out of time-string S.

We also recall that in general the number of time strings k of

the forward encoder does not equal the number of time-strings

k of the reverse encoder. Thus, according to the notation of

Article 4, the symbols f. . and s might be transmittedij r,s

simultaneously, where in general ibr, j#s, but in0 + j = rR0+s,

where i and r are considered to be absolute integers (i.e. not

integers modulo k and k, respectively). Such state of affairs

confuses very much the notational system. However, in what

follows we will always be concerned with either the decoding

of the forward or of the reverse messages only. Then dealing

with the decoding of the forward transmission it will be

important to keep the forward indexing notation "straight",

while the reverse indexing will matter only in so far as it

will indicate which forward and reverse symbol events occurred

simultaneously. It will therefore be advantageous to "refer"
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the reverse indexing to the forward notation. Hence when

dealing with the forward message decoding, it will be under-

stood that, for instance, fi.j will refer to the reverse symbol

transmitted simultaneously with the forward symbol f.,., and

that the index (i,j),wherever it should occur, will indicate

the position on the forward encoding tree only. It will also

be convenient to pick in.:any given code the integers k and k

so that kn0 = kf0" This can always be done. When, on the

other hand, decoding of the reverse message will be considered,

all indexes will refer to the position on the reverse encoding

tree.

In the paragraph preceding the last one we have discussed

the decoding of the forward message, and hence the index nota-

tion of the listed quantities F F 0+)Y ,F ,Fi-k,0' i - k , 0  i-k,0 i-k-0" i-k,0

and Y. is:to be referred to the forward side.i-k,0

Resuming our discussion of decoding, it ought to be noted

that the identity of signals transmitted or received at the

forward terminal of the two-way channel is never determined by

the reverse decoder. It is in fact possible to treat con-

sistently the derived channel as a "black box"' into whose in-

sides one never looks.

The decoding procedure will now be considered in detail.

An arbitrary, not nessaril onntimal . decodin• decision rrule

will be given. Let it then be stated again that decoding is

i.u



to be performed one message digit at a time and that once a

decision is made it is never cancelled or re-considered: all

further work is done on the assumption that the decision was

a correct one. All derived channel communication follows the

convention established at the end of section 4.4; it always

starts from the derived channel transducer state (0,0) (see

Eq. 4-18). The reverse decoder is at time i in possession of

the following knowledge:

(a) primary knowledge:

(i) initial state (0,0) of the derived channel

(ii) forward message digit sequence Zi k  (6-1)

(iii) reverse message digit sequences Zik, and Zk

(iv) reverse received sequences Y ,-k' and Y-ki-k i-k

(v) forward and reverse sequential coding diagrams.

(b) secondary knowledge (computable from primary):

(i) forward input symbol sequence Fi-k

(ii) reverse input symbol sequences F ik, and Fi-k.

(ii4 reverse input signal sequences Xk and

(iv) reverse portion of the derived channel state

sequence s , ....,s l n 00,0'....' i-l,n0-1
As mentioned, the determination of the message digit zi Ls

desired. The forward coding diagram together with the known

k
departure state specify a set of 2 symbol words ~F' which

i-k
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could have been transmitted through the derived channel in the

forward direction. Basing itself on the available information

(9-1), let the reverse decoder find the most probable word of

+* +*
the set, say F ik. The word F i-k will correspond to some

message sequence Zk, which will include z. as its firsti-k i-k

digit. In that case let the decoding decision be that Zik

was actually transmitted. It is clear that the above decision

rule is based on finding in the allowable word-set the sequence

F which will maximize the probability
i-k

Pr(F FF iV (6-2)i-k i-k- i-k' i- i-k k 1-k )

+ + +  +•
Pr(?T /F F F F Y ) Pr(Fi-k i-k i-k i-k i-k i-k i-k

Pr( / F F Y )i -k 3-k i-k' i-k i-k

Pr(Y. k/F F _  F Y1 i-k i-k i-k i-k i-k i-k

i-k i-k' i-k' i-k'i-k'

where we have assumed that the messages transmitted from the

opposite terminals are statistically independent and equipro-

bable. The naximization over the allowable set can be carried

out on the probability (6-3) below, since the denominator on

the right hand side of (6-2) is not a function of F.
Fi-k"

+ + +
Pr(Y i/F FF , F. -k) =  (6-3)i-k i-ki-kJ i-k k -

i-1 ni! (1 r

VTi Pr(( /f
r=i-k s=0 rs rs -

*.v. - F i• -Yi fk, ,I r F k i-k



6.2 Random Codes

As stated, our aim is to define a region G (which will in-

clude Shannon's inner bound region G ) of points (R,4) for which

the following statement can be made:

If a point (R,R) is in G then there exist two-way channel

codes, signalling at forward and reverse rates arbitrarily

close to R and R, respectively, for which the probability

of erroneous decoding can be made as small as desired.

In what follows we will use the well-known random coding

technique. Assume that the desired signalling rates are such

that

1 - 1
R = R = -- (6-5)

(assumption (6-5) will assure that in the sequential code used

each transition from one state to another will correspond to

one message digit only, and hence that there will always be

two transitions out of each state, However, all that follows

will be readily generalizable for situations in which (6-5)

does not hold),

If the time-string numbers k and k are also decided upon,

the forward and reverse decoding diagrams may be constructed.

Let us next assign a probability distribution P(f) and P()'

over the possible forward and reverse input symbols to the

derived channel. A random code ensemble can then be generated

I
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by assigning the coding sequences fi. 0 fin to the

transitions of the forward coding diagram, independently at

random with probabilities P(f 0)P(f )...P(fin . Hence

a coding diagram whose coding sequences were chosen in the

above way will have an ensemble probability equal to the

product of probabilities of all the symbols f appearing in

it, The same procedure is to be applied to reverse coding

diagrams. The ensemble probability of a forward-reverse code

pair will then be equal to the product of probabilities of

its forward and reverse components.

In what follows we will be dealing with the decoding of

forward messages and our notation will be adjusted accordingly.

The ensemble probability that the forward terminal will transmit

the symbol sequence f0, 0''"f is:

i i-1 n l
tj Pr(foo, fol,00fi0)-- T7 P(frs) ]"

r=0 s=0

(6-6)

( P(fi,0 •"' P(fij)

The expression for the ensemble probability of transmission of

a reverse symbol sequence is of the same form. Hence the en-

semble probability of the event (f00 ,, f. ) ,(f
00 -,n o-1 00

i-'n- - no1) is:

l



+ -- -+ + --

Pr(Fi- k ,Fi-kFi-kF i-k i-k i-k i-k i-k (6-7)

i-1 n -1

r s P(fr,s rP,s r,s rs r,s ,s /rs rs )

r= 0  s= 0

where x = f(ar ' )  r = s(~r• ) andrs rs s ' rs r,s ,

0 0100bo, = (0oo 'oo) = (0,0)

where for simplicity we have assumed the restriction

P(y,y/xx) = p(y/xR) P(7/xi) on the transmission probabilities

of the two-way channel, although, as will be seen from the

proof, this was not essential. Equation (6-7) shows that our

random process can be represented by a Markoff diagram having

2 states characterized by different quadruplets of channel

signal sequences of length I (i.e. by the states of the

derived channel): (Xf,AA>)).

Transitions from Markoff state (X,~,21

to state(a: ,a ') are possible only if

(x - r = -r+1

-r 
-r+l

(y') - y
.r .- r+1

for rE( 2,3,...,,)

Given a state (Aj,jA~) there are fnur possible transitions

associated with any given pair of symbols f,r , the next

possible state being fixed except for the received signal pair



-1 -I-
((y') ,(,-1). This follows from the fact that (x') -=

f( ) and that (V') = (AI). Given the quantities (X,A,x)

there are 2 functions f such that fXs ) = x and it is

therefore clear that there are either 0 or 22 -1) transitions

from any given Markoff state to another.

The probability of a transition from state (XI,V,Y,) to

state (%','~',i',') associated with the function pair f,f is

p(.(,' ),f) =P( P f)P(f)
r,5~ ."if f(,4)=(x')-,f(, )(•') -

and (6-8) is satisfied ( -0)

=0 otherwise.

Thus the appropriate channel ensemble Markoff diagram can at

least in principle be constructed.



6.3 Ensemble Average Probability of Error

If in the following argument, we were to try to use t~e

decoding criterion (6-3) we would run into serious difficulty

when trying to estimate the average ensemble probability of

decoding error. This difficulty, it would turn out, would be

due entirely to the fact that, as can be seen from the product

on the right-hand side of (6-3), the decoding criterion takes

into account the entire past symbol sequences known to the

decoder. It will prove necessary to define for our purposes

a slightly weaker criterion in which the decoder will base its

decision on sequences of length m. of past known symbols1where

m is an arbitrarily picked integer. It will be seen later

that this weaker criterion will not diminish the strength of

the resulting coding theorem at all, since after the desired

bound expression will be obtained for a given m, it will be

possible to carry it to the limit as m-oo .

Hence we will define in (6-10a) below a probability-like

function

(Q (Y" Fk(
S i-k/F i-k i-k Fi-k'-Fi-k' Yi-k) (6-10a)

i-l n -1
Pr ( /r f m m -m n f-m

r O rs r,s rs r,s r,s ' r,s r,s

-m
where m is an arbitrary integer and m are the reverse

r, s

portions of the derived channel states as listed in (6-1,b,iv).



They are determined from the knowledge of all the symbols

fj and all the signals nj preceding the state Sr, in

time, by the use of the formula (4-17).

We stress again that the difference between (6-3) and

(6-10a) is that in the product on the right-hand side of

(6-10a) the conditional probabilities exhibit dependence on

sequences of constant length, while the dependency of the pro-

babilities on the right-hand side of (6-3) increases indefinitely

with increasing i. This of course accounts for the statement

that the criterion (6-10a) is weaker than (6-3).

For any given code the new decoding procedure is then the

- +
following one: Using its knowledge of the sequences F ik, i-k

F iYk -V-k the reverse decoder is going to compute the

quantity (6-10a) for all the sequences Fik associated in the

forward code with the 2k different messages. Suppose that the

highest value of (6-10a) is obtained for the word F associatedi-k

to the message Z . Then the reverse decoder will decide that
Zi-k.

Zik, the first digit of the message word Z was transmitted

by the forward terminal.

- + -- -+ -- i
Suppose therefore that the event F. ,F iF ,Fi -i-k' i-k, i-k, i-kP 1ik,

i+ occurred and that the reverse decoder is trying toi-k

determine the message digit z ik, having decoded correctly all

the preceding message digits Z i-k, The decoder will make the

wrong decision only if there is in the incorrect subset of the



sequential encoder (using Wozencraft's terminology) a symbol

word i-k such that for it
i-k

+ +* + - -- --
Q /F F F IF ,Y )m i-k i-k' i-k' i-k i-k i-k-

(6-10b)

+ + +
SQ (Y /F. ,F F ,F ,Y )m i-k i-k' i-k ' i-k ' i-k i-k

+ - + --
We can then define a set S-+ - (F ,F ,F ,F ) ofSY _ i-kF i-kF i-k' i-k

t i-k, i-k
symbol words F i k  such that

F + S- (F F+ + ) (6-11)
i-k Y+ , i-k' i-k' i-k' i-k

1-k i-k

if and only if (6-10b) holds.

We then get that

Pr[S (F+,F -,F +, )] = Pr(F * )  (6-12)

Y

It will be convenient to state the criterion (6-10b) for

membership in the set (6-11) in a different way. Define an

-+inverse distance between the signal sequence Y i and the symbol
i-k

sequence F , given that the word F' .  was transmitted and
i-k' 1-k

events F F - 7,Yi occurred previously:
i-k' i-k i-k

+ -I -+ .
D (FiYi-k) IF F F ' (6-3m i-k' i-k i-k' i-k' i-k' i-k

F + _-+(Y /F F F V Y )m i-k i-k' i-k'F i-k' i-k' i-k---log
-+ -+

G (Y F F F Y )
i-k' i-k' i-k' i-k' i-k

"8
E
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where G is an as yet unspecified function of the indicated

variables. The structure of G will be determined later so as

to facilitate the estimation of the probability of ensemble

decoding error. Since G is not a function of the symbol se-

+
quence F ik, the relation (6-10) can be replaced by (6-14)

below as the condition for membership in the set defined by

(6-11).

+* -7+ + -__ - -k
m(F i-k i-k i-k F i-kFi -k , -k

-+
D (F F F . ). (6-14)m i-k I-k i-k i - k  i - k ' i-k

Now the probability over the code ensemble that no message

in the incorrect subset of the sequential encoding graph be

+* + - -.
associated with a word F X S--(F F i-kF i-kF ) is

i-k Y Y i-k i-k' i-k

greater than or equal to
+ k-l

+ _ 2
[1 -PrFSi -(F F Fi k)]] . (6-15)

Y[ i-k -k i-k [ -kii-k 

i-k

Hence the probability of error averaged over the code ensemble

characterized by the Markoff source described in section 6.2 is

bounded as in (6-16):

+ -Y+ --

P(e) Pr(FkFi-kFi-kFi-k i-k i-k * (6-16)+ F- Fk i kP i -
F F F Ii-k' i-k' i-ki

k-
F7 kY7 ,Yi k 1- [1-Pr(Sy- -. (Ft'_ F-_ Fi F7 2Fi-k 1T-k 1i-k Y. I -k i -kk

~1 -k k  -k i-k

In order to bound the right-hand side of (6-16) conveniently

we will now divide all events into two complementary sets T
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and TC, according to a distance criterion DO
+ -+ -+ -- , -

Let the event (F k,F k,Y F ,F ,Yi)k) Ti-k' i-k1 i-k' i-k i-k i-k
(6-17)

1 + + +
if and only if D (F -; /F +F ,i ,Yk ) Dkn m i-k i-k k i-k i-k i-k 0

otherwise let the event belong to the complementary set Tc

We will overbound P(e) as follows:

P(e) - P1(e) + P2(e) (6-18)

where

P (e) = Pr(F +  ,F- , )

k - - -+ --1 ( ki-k- F' k ' F i -  i- kik

P (e) = 2k Pr(F F F F.2 c i-k i-k' i-k' 1-k' i-k' i-k

- + -

ur task will then be i-khe two terms on

Our task will then be to evaluate the two terms on the right-

hand side of (6-18).

r

;I

B
i.

ii
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6.4 A Bound on P2 (e)

In this and in the following sections we will try to

find a bound on the decoding error probabilities Pl(e) and

P 2 (e). We will succeed in displaying a region of signalling

rate points (R,R) for which the error probabilities will be

exponentially bounded with increasing decoding sequence length

kn 0 . We will adopt here Shannon's (3) approach to error

bounding.

In the process of finding the bound on P2 (e) we will be

-+ +
forced to choose the structure of the function G(y ,F ,i-k i-k

F-k' F i-k'P ) appearing in the denominator of the logarithm

defining the inverse distance D (see equation (6-13)). The
um

choice that we will make will turn out to be convenient for the

estimation of P2 (e) but will introduce a difficulty into the

estimation of P1 (e). We will be able to overcome this dif-

ficulty in the next section by proving in Appendices III and

IV a theorem about the convergence of certain probabilities.

As will be seen, there is an obvious way of defining the func-

-+ -+ -
tion G(Y kF F F  ) which would enable the estima-i-k i-k i-k i-k i-k

tion of Pl(e) to be carried out in a routine way. It will be

shown at the beginning of section 6.5 that such definition

would make the estimation of P 2 (e) impossible. To simplify

further notation we will from this point on, without any loss

in generality, change the subscripts (i-k) to subscripts i.



From definition (6-17) and (6-13) it follows that whenever

+ 1+ 1+ Fi ) T c
(Fi i i i then

nD
e G(m. F. F. Y.)4Q (m./F. F. F. Y.•)

.~ u~ _+
where we write nekn0

Hence if F. +S (F.FF.F.); then

-nD 0
e Q + 1F ,1 .v. 1 1)>11G(Y F -- 1FFm .1 1 1 i i 1 1' FI i pi?

so that

-+ + -.
G(Y ,F ,Fi,F i ,Y)I i i i i

> Pr(F i )i

Summing the right hand side of the above over the set

SB.•-(F F Fi F ) , and the left hand side over the larger
ST + 7-+

set of all F. (which includes the set sp _(F. F. F. '.) we
get

get

-nD0

F

+ +*- + - i -Pr( + *

Qm(-P./F ,F i,Fi,FiY) Pr(Fm 1 1 1 1 1

1 F iF· i,

+ +
> Pr(S ,(F .,F , ) ),

1I 1

(6-22)

and therefore, according to the definition (6-18) we get a

iound on P (e)

2 (e). 2 kl

+ - -3 -- -+-nDg "5 Pr(F ,F ,F, Y,Y .)0 ~~ i i i iid
1T G(Y. 1F 1 F 1
1 i i i 1

m-+*--+ -. r2+*
Qm(Y/Fi F,.F F,Y) Pr(F*). (6-23)

(6-19)

(6-20)

(6-21)

+ +*-+ (F-*)
-nD 0  Q (¥i/Fi, F ,F ,Y-i) Pr(F )

0 mi jti ii, i i 1

I_

yi
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k-i -nD 0
We must now find a bound on the coefficient of 2

k -1 e

on the right hand side of (6-23). The standard technique of

handling this problem is to show that we are dealing with a

sum of probabilities whose value cannot exceed one. To do

-+ + - __
this we must define the function G(Yi F , F F ,P ) in such a

way that it will cancel out of the sum expression, so that the

latter will have no denominator. Hence the function G should

be a factor of the probability

+  _+ -+ -+ - +, - --- +--
Pr(F.,F ,F ,F ,Y.,Y ) = Pr(F /F ,F ,F .,Y ,.) r (6-24a)

+ Pr(YFF ,F

or, more precisely, it should be a factor of the probability

Pr(Yi ,F ,F ,Fi Y ). We could equate G with Pr(Yi,Fi,F ,Fi,.)
1 i i i 11 i1

and successfully bound the sum on the right hand side of (6-23).

However such identification would bring us into difficulties

when estimating P (e). It will turn out that the most convenient

way to define G is (see also discussions at the beginning of

this section and in section 6.5):

+ - -+ -+ - ._
G(Y ,F ,F ,F ,i7) - Pr(Y.C/F F F, ,i) (6-24b)1 i i 1 1 1 i i 1 1

Using the above identification the sum on the right hand side

of (6-23) can be written as in (6-24c):



64

P ( F ( F F , F , Y.)r *

S Pr(F ,F ,Y,Y.) Pr() Pr(F,F ,) (6-24c)
1c i i 1 ) er(F i 1 1

S Q(/Fi',i ' F i ' F Y >i Pr(F)
1 1 1 1 1 1 iF+*

But from the definition (6-10a) it follows that

SPr(F +* Pr() Q( /F ,F ,F= 1 (6-25)+* F+ -+ 1
F F Y

Hence we get:

Pr(F/Fi , F- - , F Yi) Pr(p+ ) Pr(F ,Fi-

S + +*-+--+ -- + *

Q ( i / F i F i F i FF Y ) Pr(F)

-m. i--+-- . = ---  --

4 __ Pr(F /F.PF ,Y,Y )Pr(F ,F,.)Q (Y/F F,F ,Fi,Yi).
- + i 1 1 i i3 i-tn 1 i

F ,Fi ,Y ,F
+* +

-F Y Pr(F )Pr( ) =
1 i 1 V

S"... , P( )Pr(F) Q /F F F 'i i)

1 F i Fi ii

+ Pr(F/F F ,'F'-- )=
+ 1 i i i i-Y iF

i (6-26)

Substituting the right hand side of (6-26) into (6-23) we get

finally the desired bound:
k - 1 -nDO -n(D0 -R)

P2(e) 4. 2 e e e (6-27)

where we have used the relation (6-5).



65

We may now conclude that if the cut-off level DO
is such that D0 -R>0, the quantity P2 (e) will be exponentially

bounded as n - oo .

r



6.5 A Bound on Pl(e)

Next we wish to find a bound on Pl (e), i.e. on the

probability

1
Pr [ - log

n

Q ( / F/ . F. F .

+ F- - DO]

It is clear that we may expand

Pr(-7iTI/+ F7 V ;j)

i+k-1 n, -1

F F" Pr(yr , f fi
r=i s=O s

(6-29)

so that using the definition (6-10a) we can re-write (6-28):

logPr[ r
r=i

Pr(y /f f fn m smrm)r,s r,s r,s rsors rs rs

Pr(',s rs'"" iO'r,s- '" i,0'

F- Y-) - D

(6-30)

Thus we must find a bound on a distribution of a sum of

dependent random variables

log
Pr f ,f 4M m m _M s-m

r,s r,s r,s' rs' r,s'Ir,s 'r,s

Pr(,s r,s i, '0' -l , 0,F

. (6-31)

The only known approach for finding such a bound is due to

Shannon and is presented in Appendix II. Shannon's procedure

is however restricted to cases in which the random variables

are associated with transitions of a Markoff process. As the

(6-28)



Now,it is evident that the random variables (6-31)

cannot be associated with transitions of a Markoff process,

because the denominator of the logarithm is a probability of

an event conditioned on a sequence of past events, whose length

increases with increasing integer r and s. The numerator of

the logarithm, on the other hand, is a probability of an event

conditioned by a sequence of past events of fixed length m,

and causes therefore no trouble. The reason for the introduc-

tion of the weaker decoding criterion (6-10a) in place of the

criterion (6-3) now becomes apparent; had we used the criterion

(6-3) the numerator of the logarithm (6-31) would have been a

probability exhibiting a dependency on a potentially infinite

sequence of past events. We may therefore rightfully ask

whether we could have avoided in a similar way the trouble

caused by the denominator of the logarithm (6-31): could we

have, perhaps, in section (6-4), defined the function G (see

the definition (6-13) of the inverse distance D m) in a manner

more convenient than (6-24b) for our present purposes? In

particular , was it possible to identify the function

pI(j/- -

G(Y.,Fi,Fi,Fi,Y ) with the probability P (Y F 4,F Y
1e i in t1 e oi

defined below?

7 IV, `

7

process passes from state to state the sum is generated by

successive addition of those random variables which are as-

sociated with the transitions that have taken place.
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S + i+k-l n -1
P (Y F. F' F l nT7• Pr(Yr, SFr s - 7t 1 1 1 r=i O r,sr,s 'r,s' r,s

where s, 0  g s000, - (6-32)

" = g( , , y ) and t is anr,s r,s rs rs
arbitrary integer.

(for definition of the function g see equation (4-17) and

preceding discussion)

To answer the above question we must return to the dis-

cussion of the paragraph following equation (6-23). There it

was pointed out that it is necessary for successful bounding

-+-
of the probability P (e) that the function G~( --+F ', F F

2 1 1 11 1
-+F- -•F ). Hence we

be a factor of the probability Pr( F,F.,F .. Hence we

'I +-+
must ask whether the probability P t( Fi.Fi, F ) defined

t i 1 1 1-+--+ -

above is a factor of Pr(Y ,FF.,F , V). But we may write
i i 1 1 1

+ -Pr(Y ,i ,Fi P -
1 11 11

i+k-l n -1
= Pr(F ,F ,1 ) 1B[ P(f )Pr(7 1ff ,....SPr(Fi,FY rs rs rs ' i,0 rs-l'

r=i s=,

... yi, 0,Fi,Fi,Y), (6-33)

and since the probability Pr(~r, s  rts' ,s' r,s is not

in general a factor of the probability Pr( r /fr ,s''" i,0'

yr,s-l''''i,o'Fi 'IF 'Ti), we see by comparing (6-32) with (6-33)
-+ +-+-

that the function G Yt ,F Fi, ~ ) cannot be identified with
i i i i 1

the probability P' (Y/TP.,F - ,F. ,V.) without causing (insurpassable,t £ 1 1 i 1
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as will be seen from the discussion at the end of section 5-5)

difficulties in the bounding of the probability Po(e).

The above conclusion brings us back to the beginning of

the discussion in the last paragraph. We must resolve how to

circumvent the difficulty caused oy the character of the pro-

bability in the denominator of the logarithm (5-31). ,e will

do so by showing that for a sufficiently large integer t the

probabilities Pr(~ f I t --t
Prr,s r,s lr, s r,s r,s

closely the probabilities Pr(7 rf f ' f " ,s-l"
-TS r~ s , _,s1

yi,oFF,') and that we may therefore replace the latter

probabilities by the former in the expression of the random

variable (3-31). It will be seen that we will thus cause an

f"epsilon change" in the computed capacity region for the two-

way channel.

We will now make our approach more precise:

-In A ndix TII we rove a tnheo1 m ivi7 n h P he sufif i- t d-

tions for the existence of an integer t such that for all t >

the probability of an event A*.. conditioned on a sequence

- -2 -t
A ,A ,A of precedin events will diffrer ry an

arbitrarily small amount from tihe probability of the event A

;-1 i-2 -t -t-
conditioned on any sequence A ,...,A -

- t wnere v is any positive integer. This result ~s applied

in Appendix IV to certain events generated by a particular class

of Markoff sources,. It is shown there in particular that the

probabilities (6 -29) can result from a process of that class,

and that therefore these probabilities behave in a y
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satisfying the following theorem:

Theorem 6-1

Given any e>0 there exists an integer t 0 such that for

all t > t0
e1 -t t-t

Pr / f ,. ., ,Y ,. , , ) -
---1 3

pr -- 1I- t-1 f-t-r _-1
- Pr(/f,f ,...,f ,..., ,y ,... (6-34)

-t - -t-r t-r
... ,y ,...,Y ,s ) •.

Pr ylff-l -t -1 -t -t
.Pr(y/f,f .. ,f ,y ,y ,s )

r = (1,2,...)

provided that
Pr(-f1 --t-r -- t-r 0
Pr(f, ,,..,f ,y,.,,,y ) # 0

and --t -t-r -t-r -t- -t-r _-t-
s = g(s ,f ,.., f ,y ,...,y )

(i.e. the reverse portion of the derived channel state
--- t

s is determined from preceding state portion

-- t -rs by use of the knowledge of symbols f and signals 7

which occurred between the time intervals (-t) and (-t-r).

g is defined in (4-17).)

If use is made of the expansion (6-29) and of the

definition (6-32), it follows from Theorem 6-1 that

(1-)n P'(Y/F F- F. .) (-S 1 1 1 1 (6-35)

- + - - +--
SPr(Y./ F F F. Y ) 6( 1 +F)i P' (./. F. Fi 7 )

2 . 1 1 1 .t. 1 1 Yi

where n e nok.



Thus, using also definition (6-10a), we may write for i

sufficiently large

/QY F Fm F1. Y1-1 m 1 ' > 0
log

n +f Pr(Y./F. F F Yi )
1 1 1 1 1

+1
i+k n I -3

Slog + log Tf(6-36
r=i s=0

- m -m n -m
Pr( /f f jm n -m

r,s r,s r,sr r,s 'r,s ' r, ,s r,s

Pr(r s/fr, s , ,s )
r,s rsl rs 7r,s r,s

and consequently, again for i sufficiently large,

1 m(fQ/F F i'F Fi' Yi)
Pr log m ID 4n -+ -i F )

S F. F Y )11 1 1 1

i+k-l r(n -1 Pr(,T U4/f ,
PrP 1 log _.Prs r , r,s s' r, r,s r,s' s

L Pr n log Pr / F 1t _ _-t
=rs r,s r sY r ,s r,s

CD O + d f (6-37)

where J = log (1+s)

Our task will therefore be accomplished by finding a bound on

the right hand side of (6-33). This should be possible by the

method of Appendix II, since the newly obtained random variable

can be thought of as a cumulative sum of random variables

generated by the Markoff process described below.

However, let us first make a slight adjustment which will

simplify the description of the mentioned process. Since the

probability Pr(Y/F ,F , F-,Y) does not involve the integer m
i i 1 1



used in the definition (6-10a) of the probability

(i/ FiFi,FI,F ,Y )  we may, instead of bounding the right

hand side of (6-37), bound the probability

i- Pr( /f M -M -M

Pr log i- n . rsr,s r,s,.' sr, r ,sr,s

r=i-k s=0 P r, r(,s / ,  , ' ,sr)rs r,s ,s r~s r s

where M - max (m,t) .Do 0 d (6-38)

If M = m, then the correctness of the relation (6-37) will not

be affected if we substitute in it M for t. If, on the other

hand, M = t, we may change, without any detriment to decoding,

the definition (6-10a) by substituting M for m.

Consider then a Markoff process having states characterized

by the different possible sequences.

S,-M " ,s-- •M) = WM (6-39)

We can make the state

the left hand side of

sequences M , , j

-1 -1
f , y ,

-2 -2
f , y ,

f M -M

-M ---JMf , y-M -'M-

characterizations clearer by displaying

(6-39) as an array whose columns are the

Hence we can write

-1 ..- l
f , y

-- 2 -- 2
, y (6-40)

-M -M
, y

s , S

The states ~' into which a transition from state W; exists are

representable by



-1( ) -1- -I2 C -2-1C 2 1, y- -, ((' , ky, (Y''
- - - .- M+ - - -M -

, y , r , y (f -, (y') , (')* , (7y(

S , s) =r (sps r s

2(2 -+1)There are therefore 22(2+ possible transitions out of any

state 1W, each leading to a different state ' . The transi-

tion probabilities will then be defined:

e((y,)-1/(x')-z1 ,)-F((,) -(x,)-1(I,)-1

W •=P((f')l((E) -) (6-42)

If W' and W are representable as in (6-40) and

(6-41),respectively. In the above product

(x)- (f, -1((s')-1 •,I) -1 ,- )-

0 otherwise.

If we compare the Markoff process defined above with the

one of section 6.2, and in particular if we compare equation

(6-42) with equation (6-9), we see that the probabilities of

the functions and signals attached to the transitions are

identical. We may thus compute the bound on P (e) by using

the process described by equation (6-39). Thus to each

transition from state WM to state W, (the states being des-



cribed as in (6-40) and (6-41), respectively) we shall associate

the random variable

e•,-1 -1 -1 ,IM .- M

log -1 / 1 am M ) (6-43)

and estimate a bound on the distribution (6-38) by use of the

methods of Appendix II. Identifying the distribution (6-38)

with the function G(n,n(D0+4)), we get from equation (A-II-37):

G(n,nj (t))i ge - n ( t ' (t)-f(t)) (6-44)

where the quantities t(t) and t (t) are defined in equations

(A-II-9) and (A-II-19), respectively. The identification

D'(t) = D +b (6-45)

is then made, We will not bother to make a complete translation

here into the notation of Appendix II. It is straightforward

but quite complicated. We will only observe that the exponent

on the right hand side of (6-44) is in the range t :- 0 eaual to

zero for t = 0 and is negative otherwise, and that in the range

t * 0 the threshold t' (t) increases with increasing t, and is

largest when t = 0, as can be seen from equations (A-II-28) and

(A-II-20). But

d (0) = E 10g Pr(v/f,, , 'M M -M, (6-
P (Y ff ,. ,f ,f ,.., ,y ,..y , )

= E log 1 -M--I -M -M
Pr(7/f,f ,..,f ,y ,..,y ,s )

where the expectation is to be computed over the probability

i



distribution of the Markoff process described by (6-41), or,

equivalently, over the distribution of the process described

in section 6.2, in particular by the transition probabilities

(6-9).

The symbol g in (6-44) stands for the number of states

in the process and we have

M(22 +1) + 41-g =2 (6-47)

Although g is a very large number indeed, it is independent

of the code length n, and therefore as long as (t0'(t)-,(t))O0,

the right hand side of (6-44) can be made arbitrarily small by

use of a sufficiently large n. Thus we may conclude that P1le)

is exponentially bounded whenever the quantity (6-46) is larger

than DO + T. 5 can be made, by a sufficiently large M, as
small as desired. Taking into account the results of section

6.4, in particular equation (6-27), it can be stated that as

n-.-oo the average probability of the reverse decoding error

decreases exponentially, provided that the forward rate R

satisfied the inequality

Ra -log (1+e) + E log (6-48)

where the positive quantity EO> is a function of M and is

determined by the equation (6-34).

It is obvious that since in principle the forward direction

differs in no way from the reverse one, all the statements in
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sections 6.3, 6.4 and 6.5 made with respect to reverse decoding

of forward messages apply as well to forward decoding of

reverse messages. Hence the probability of forward decoding

errors decreases exponentially with increasing n, provided

that the reverse rate R satisfies the inequality

R<-log (1+9) + E Pr(v/f"f ' sM, -M I) (6-49)
pr(y/f,,- Ads )

where E 0 is a quantity analogous to £, pertaining to the

cts imat ion fr Pr/( /f PM a -M " -- /i

(6-34).
It might be stressed here than in the foregoing argument

h t tt +_ 4- A I.. U I- i 1 b Ab bId-h
we ave no a emp e to o ta n e

probability of the decoding error when the signalling rates

R and R satisfy equations (6-48) and (6-49), respectively.

We have, for instance, made no attempt to determine the proper

choice of the cutoff threshold D0. Thus we are leaving undecided

the question of the best obtainable exponent combination in the

probability of forward transmission error bound

--ee) --(e) + P 2 (e) -e-n(' (t)--R)+ ge-n(t' (t)-P(t)

(6-50)

in cases where the rate R is considerably smaller than

('(0)- o ). Rather, we have limited ourselves to displaying

the region of points (R,R) for which the probabilities of error

are exponentially bounded with increasing n.
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6.6 The Main Coding Result

We will state here the main result of the present article:

Theorem 6-2

Given any binary memoryless two-waydhannel having input

signals x and 7, and output signals y and 7, characterized

by the transmission probabilities

Pr' y, /x,R) = p(y/x ) p(y/x:i). (6-51)

For an arbitrary dependence length I a derived two-way

channel can be constructed as in Figure 4-2 . For any

pair of positive numbers E, E and for any probability

distributions P(f) and P(f) over the input symbols of

the d'erived channel, an integer M can be found such that

for all integers m > M

, s -Pr (y/mf m m, r r -m-r)l
(Pr(y/f,m m, ms )Pr(y ',, -m'g -mi s ) L

Pr(B/ gJmfr -Pr(f, Pr(y/fir m ~m,-mr (6-2m M --m,

:s Pr(y/f, , •,•s)

whenever

m Im-1 f-m-r mi -m-1 -m-r -m-r
Pr(f, ,y ,.., ,y,.,y ,..,y ,s ) 0

Pr(f, m --m-1 -- r .. -m-1 . -m-r m-rm-

For the above two-way channel, for all m>M, codes signal-

ling simultaneously in the forward direction at a rate R

and in the reverse direction at a rate R such that



R -log(l+e) + E 10g

14- log(l+) + E log

I (6-54)

S (6-55)

can be found, for which the probabilities of reverse

and forward decoding errors will decrease exponentially

with increasing code length n. Hence for a sufficiently

large n there will exist codes signalling at rates R, R

whose probability of decoding error will be as small as

desired.

The consequences and implications of the above theorem

will be discussed in the following Articles. The author,

however, wishes to make one final comment on the expressions

on the right hand sides of inequalities (6-54) and (6-55),

and on the technique used to obtain them:

From the discussion preceding equation (6-38) it

follows that the right hand side of (6-54) could be written

as in (6-56)

-log(1+s(t)) + E log Pr(;/ff,m 'n, sm,,m) J•m6
Pt

where the integers t and m are controllable independently. As

m is increased, the value of the expression (6-56) increases

or stays the same, since it is a well known result (see for

instance Fano (4), Equation (4.11)) that

-E flog Pr-'(1if,f, m m m .--m )• •

I Em+1 s-m+l64.- E log Pr -i (74 f ,  M+ son f "IpE, r~~
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This is as we would expect it, since an increase in m corresponds

to an improvement of the decoding criterion Qm defined in

(6-10a). Indeed, as m - coo the decoding criterion Qm becomes

optimal, and we therefore conclude that our final result was

not weakened at all by the temporary adoption of the less than

optimal decoding criterion, while it was this adoption which

enabled us to carry the random argument through in the only way

known so far: by use of the Shannon method for bounding dis-

tributions of sums of random variables generated by a Markoff

process (see Appendix II).

The result (6-56) also shows conclusively that in section

6.4 it was not possible to identify the function G(7y,F ,F.,

F.,Y7), used in the definition (6-13) of the inverse distance
1 1

+ +
D , with the probability P' (7i/Fi F ,FiY) defined in (6-32).m t i i i 1.
We recall from the discussion of section 6.5 that such

identification would have made the bounding of Pl(e) easy.

In fact, it would have resulted in the elimination of the

term -log(l+e(t)) from the expression (6-56). But such

elimination would cause an increase of the capacity region

of the two-waychannel. It should further be noted that

P f I(6-58)

logIPr -,ý .t-1 Is -



and hence if G were to be identified with P' and if then a
t

bounding of P2(e) were possible, the capacity region of the

two-way channel could be increased by the simple strategem

of choosing t=0. This is absurd and hence it follows that

with this choice of G the probability P2 (e) cannot be

bounded.

Finally we wish to note that it follows from Appendix

IV that as t-Poo, e(t)--->0. Combining this with the con-

clusion reached in the paragraph before last, we see that

the capacity region includes the convex hull of points

-1  1 -1
Elog Pr(V/(f,f- .)(f,f- )(7 . (6-59

E1 
l1 - P

log Pr(y/(f,f -,.)(y-,...))

obtainable by different assignments of probabilities P(f) and

P(f). However, the conclusion embodied in (6-59) has no

practical value since, because of the infinite dependence

implied, the expectation expressions cannot be evaluated.



7. Coding Loss and Bounds on the Capacity Region

In the preceding Article we proved a coding theorem which

can be interpreted as giving a lower bound on the two-way

channel capacity region. It involves evaluation of the right

hand sides of equations (6-54) and (6-55) for some input pro-

bability distributions of the derived channel's input symbols,

P(f) and P(f). We would like to investigate these distributions.

7.1 Interpretation of Capacity Bound Expression

Consider the derived channel of Figure 4-2 to whose input

terminals are attached function sources generating input sym-

bols independently at random, with probabilities P(f) and P(f).

In what follows we will switch from sequential to block notation,

because of its greater simplicity (see in particular section

4.1). The probability of the symbol sequence F. will then be:

+i+n-1
Pr(F+) = F P(fj) (7-1)

j=i

and similarly, the probability of a sequence F. will be:

i+n-l
Pr(F.) = [ T7 ) (7-2)

j=1-

Consider the information about the forward source trans-

,+ --
mitted through the channel when a given sequence F.=F.,F. is

transmitted from the reverse source and a given sequence

= YY is received. It is:
I I 1



Pr(Y i/Fi,•F i)
I (Yi;Fi/F.) = log Pr

But we have

But we have

rim
n-* cC)

SI Pr(YO/Fo, FOE n log _ _
n Pr(Yo/FoTOIFO

SEj~log
j =1

= lim E log
n--oof

Pr(y/f' fi-'"" 1' f 1' 1f ' _f"-l flY - '

Pr(j /f,fj-. l , flJ-l

Pr(n /fn n-l" ' 1 n n-l" fl'n-1 " )

Pr(ynn n- f' -n-i1 1

So that we may conclude that the per symbol expectations of

information passing through the channel in the forward and re-

verse directions, respectively are

limoo ElI(Yo;F/ ) = limn E og
n-.oo in o 0 0 n-"oo

Pr(-n/f n".f 1fn''y f'
(n n'- In )

Pr fnP'""' 1'Yn-11"" 91

n-'""Y 1 (7-5)

and
Pr(yn f,"flf 1n, f1 n , y1

lim E 1- I(Y;F/F) lim E log nn "ln-I' '

(7-6)

Examining (7-5) and (6-54) it becomes obvious that the two

expectation functions appearing in these equations would be

identical if the decoding criterion (6-10a) were to be ideal.

The same is true for equations (7-6) and (6-55). Hence we

= lim

n--, oD

(7-3)

(7-4)



see that the coding theorem 6-2 provided us with a result which

our experience would have led us to expect: the arbitrarily low

error rate bound is associated in the usual manner with the

information passing through the channel. This of course sug-

gests very strongly that the capacity region of the channel is

associated in the usual manner with the average mutual informa-

tion for which the successive input symbols to the derived

channel are not necessarily independent of each other. Indeed,

examination of the argument in Article 6 leading to Theorem 6-2

would show that the random code could have been generated by

symbol probability assignments p(ff -f ., and

-- -- 1 -- 2Pt(ff 7, ,...,f ) where 0 and ; is any pair of positive
inqludes

integers. Hence the capacity region the convex hull of

points lim E - I(Y ;FF lim E ;/F ) obtainable
n-4oo 000 n--o n 00

by different assignments P(f/f ,.., ) and P(/r

as I and & vary over all positive integers. We did not prove

Theorem 6-2 in all its possible breadth because we believe

that to do so would have necessitated consideration of issues

extraneous to the main goal of this thesis: the clarification

of the essential differences between cooperative and non-cc-

operative coding.

We will therefore study the expressions (7-5) and (7-6)

further, eliminating the restriction of independent assignment

of input symbols f and f. In particular we shall try to learn:



!

lower bound of Theorem 6-2.

(b) Whether the information flow through the channelcan

be improved by removing the independence restriction on

the input symbols to the derived channel.

(c) Whether one can interpret Theorem (6-2) and the expres-

sions (7-5) and (7-6) in some way that could prove a guide

for appropriate code construction for binary two-way

channels.

In this Article we plan to deal with points (a) and (b) above,

and we will leave point (c) for Article 9.

(a) The relationship of Shannon's lower bound to the



7.2 Derived Channel and Signal Source Interpretation

Consider the derived channel of Figure 4-2 to which sta-

tionary sources have been attached generating successive symbols

independently with probabilities 1(f) and P(f). The situation

is pictured in Figure 7-1.

| I

Figure 7-1,

Consider next the binary two-way channel embedded inside

the derived channel of Figure 7-1. If one were to consider

the input and output signals to the two-way channel only, then

the process could be represented by Figure 7-2 in which the

signal sources have random outputs depending on the identity

of some combinations of previous input and output signals at

the terminals of the given two-waydhannel.

Figure 7-2.

i

i
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It would be helpful to find out what the signal-source

probabilities of Figure 7-2 are for given symbol source pro-

babilities of Figure 7-1. In this respect we can prove the

following:

Theorem 7-1

The two-way channel input signal x will depend on a

finite number I of immediately preceding channel input

-1 -i -l -.
and output signals (x ,..,,x ,y ,...,y ) if and only

if the successive input symbols f to the derived channel

are statistically independent of each other. The integer

A is equal to the dependency length of the symbols f used.

Proof:

Comparing Figures 7-1 and 7-2 we see that

-1 -2 -1 -2 x-l -2 -1 -2,Pr(x/(x x ,.o.), ,y ,...)) = Pr(f/( ,x ,y .. )).

f f(g) =x (7-7)

As seen from Figure 7-1, any function f in the above equation
-• -j

can depend on channel signals x j and y only in so far as

these are indicative of symbols generated in the past. It

is further seen from the summation in (7-7) that even if suc-

cessive f symbols are independent, the signal x will depend on

-1the immediately preceding input and output signals (x ,...,

x ,y ,...,y ), since on these depends the choice of symbols

f to be included in the summation. .Similarly, the identity



of symbols f

figuration (x

1 which could have caused x- dependswhich could have caused x -depends

-2 -2-1 -2
,o·,X *7

Pr(f f) # (f-)

then we can write

P(f)

.) , Y 4,.

on the con-

Thus if

(7-8)

Pr( -2 -1 -2
Pr(f/(x ,x ,...)(y ,y ))

f1 -1 (-1

. ~. I
-i -i -if a f 1E

7-l)= -1
Pr(f/f - F-i (x-i-
P r - a 1 6. (X

,-i) -i
,~ )=x

.Pr(f l/f-2 , ,f-i -i-l , -i-I
,(x• ..)(y ,..))......

It thus may be seen from (7-9) that as soon as successive sym-

bols are dependent, the signal x will depend onthe entire

finite past of received and transmitted signals

-1 -2
(Y ,Y ,...).

generates

true that

If, however, the symbol source in Figure 7-1

successive symbols independently, then it is certainly

P-1 - -1 -2Pr(x/(x ,x .. )(y , ,..)) 2 P(f)
fgf(Xy) = x

and thus in such a case x will depend on the finite past

only.

Q.E.D.

-2 2e
f (3E

·0 0 0

-i-l
.. ), (y .. )) .

(7-9)

in-

(7-10)

(3e,#Y

-2
P, ) -x

-r -i-I -i-2 -i-1 -i-2)*Pr(f /(x ,x ,..),(y ,y ))

-1 -2
(x ,x ,...),



In the following sections we will deal with sources

generating successive symbols independently. In view of

equation (7-10) it will be useful to define a set of probabili-

tiesf q(x) , (x) which will determine the operation of the

signal sources of Figure 7-2. Let

q(x) 2 P 1 ) () - (7-11)
f f'f (31 =x faf( (-A)=x
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7.3 Information Flow Through the Two-Way Channel

We will here consider the channel of Figure 7-28r which

the signal sources are defined by the set of probabilities (7-11).

We would like to ask what the average information flow is

through the channel in the forward and reverse directions,

respectively. The information available at the forward terminal

about the actual operation of the reverse source is provided by

the identity of the signal sequences X and Y, where the implied

subscript "0" was left out (i.e. for instance, X = x1,x2, 'x n )

However, X depends on X only because X depends on Y through the

signal source, and Y depends on X. Hence all the information

about the output of the reverse source is provided by the re-

ceived signal sequence Y and depends on X only in so far as the

latter sequence modifies the noise in the channel. The manner

of generation of X must then be irrelevant to the determination

of information flow, which must hence be computable from the

situation represented by Figure 7-3,

Figure 7-3. signal source qx

Of course, when averaging the information flow, the weight to

be given to the information measure involving quantities X, Y

I



90

and X must be the probability Pr(X,Y,X) derived from the

operation of the channel of Figure 7-2. We therefore con-

clude that the information flow in the reverse direction is

to be measured by the quantity

Pr(y/X,X)
I'(Y;Y/X) = log '(YX (7-12)

Pr(Y/X)

where the prime indicates that the conditioning

sequence X is fixed independently of the other

sequences.

Similarly, the information flow in the forward direction

is measured by the quantity

I"( ) = log (/X) (7-13)

The average information flow in the reverse direction through

the channel having sources as in Figure 7-2 is

E !'(Y;/X)/ = Pr(XY5) log P,(Y/X) (7-13a)
XEYX Pr(Y/X)

where

Pr(XYR) = Pr(XYXr) -

where = 0 by convention. (7

where Yl i = 1=i 0 by convention.

In (7-14) and from here on the fulfillment of the restriction

P(y.,/xE)=p(yi/x3)(F/x3) assumed in (3-1 ) is essential. Next,



r(X.Y"C) = Pr(XYRi) = T' ( x i )q(,) pD( y i / xx • x--

Y Y i= l xi i i

7-15)

where P'( ) is an arbitrary distribution.

Hence

Pr (YX )  n/
r(Y/XX) YXX ~ P xi) (7-16)

and

Pr(Y/X)'= nr(YY) i) p(Yi/Xii)(7i/xx )i
X XY i=1 34c

(7-17)

Similarly, the average information flow in the forward

direction through the channel of Figure 7-2 is

E Pr(Y/10 )
E 1(Y;X/)(X log (7-18)

XXY Pr(T/-)

where

(7-i9)

where =1=•  Li =.1 = 0 by convention.

Pr (x7,) = A q(xi) #(E.) p(yi/xix-) #(9 /x.Ei )

Y i=1 M7 /
( 7-2 0)

Sn
Pr(v/XX) = (rii : )  (7-21)

i=2



and

Pr(/X) = q(x.) p(y/x.x.) pXY i=1. xz'd;
(7-22)

Having now fully defined the respective information flows

through the two-way channel, we would like to prove

Theorem 7-2

The sum of information flows in the forward and reverse

direction through the channel of Figure 7-2 is given by

the information measure I(X,Y;7,Y'). Hence the following

relationship holds:

I' (Y;7/X)+I"(Y;X/R) = I (Y;R/X)+I (V;X/R)+I (X; )

Proof:

By elementary information measure properties we get

l(XY;Th) = I(Y;W/X) + I(X; Th"

(7-23)

(7-24)

= I(Y;Y/ XX) + I(Y;X/X) + I(7;X/R) + I(X;r).

But

I(Y i T/XX) = log

where

Pr(Y Y/Xd)

Pr (Y/Xf)Pr (/XxR)

n

T q(xi) q(x') p(Y -)(i/xi
i=l - j 10 R4 ixx

. - (Y'* 71Xx

Y n
Y,Y i=l

q(xi)•sx) p(y /x. . p y.1 .x.)A Z I ": R.i

Pr(Y/ X) = Pr(Y, /XS)
y

(7-28)

(7-25)

(7-2 ,)

I



Therefore we get

qi C(xi ) QX F /x~ w )3; /xT )

Pr(Y/X )Pr( /XX) ( nq x- ) p y . xi x• ) -i
Y 1= 1 .a Y i=

and taking (7-25) into consideration conclude that

I(X,Y:-X) = I(Y;X/X) + i( ;X/ ) + (X;) .

But also

= log
Pr(X,Y) P rY) \i7-31

where

Pr (XCY•Y~)

Pr(XY) =

Pr(7T) =

Hence we have

Pr (XYA )
Pr (XY)Pr(X)

n

n= q(x.) q•(.) p(yi/x, .) 7(- /x.~i )

i=1 *"(2 irIXL. )

SPr (XY-f )

XY
PrXY?)*

KY rr

, xi 7 7 xixi
Jia-- q .)pq x )( /x xi

• PT q(x ) p(7 ./× • (xi ) /xi -
KY i=l Y

Taking into consideration equations (7-l6),(7-17), ,(7-21,

and (7-22) we see that

q i ) 7D (i/ ii
q(xi ) pY /x ~)

(7-29)

(7-30)

'7-32

7 -34)

X ~Y;XY.,,



Pr( TXYY) Ir (Y / " 7
Pr(XY)Pr( ( r Pr(Y/X) (7/) (7-36

Thus from (7-12), (7-13), (7-31), and (7-36) we conclude that

I(XY;,X) = T'(Y;./X) + :(;,,•) (7-37)

Q.E.D.

It can be noted that equation (7-23) confirms that Figure

7-3 represents the reverse information flow situation correctly,

since the mutual information I(X;.) can have a non-zero value

only if communication between the two channel terminals is

established and causes the two signal sources to be correlated.

Hence the quantity I(Y';/X) + I(7;X/2) does not account for the

total information flow sum; I(X;X) must be added to it.

As a consequence of Theorem 7-2 and of the averaging

process of (7-13) and (7-18) we can also state

Theorem 7-3

The sum of the average information about signal sources

through the two-way channel of Figure 7-2 in forward

and reverse directions is

E I(X,Y:XY) = E I'(X;/) I"Y;X/1 7-38

E11(Y;X/X)Ji + E I7;- I+
Ef(XQj



7.4 Information Loss Due to Coding

Consider now the derived channel of Figure 7-1 with both

input sources generating successive symbols f and f independently

at random with probabilities P(f) and F(f). The average mutual
information

E [I(F,Y:F, )] = E[log Pr(FY)Pr() (7-39a)

between the symbol sequences of the opposing derived channel

terminals can then be computed.

As the sources operate, the transducers of the derived

channel generate input symbols x and R to the two-way channel

which in turn cause the channel output signals y and 7.

As pointed out at the beginning of section 7-2, the random

signal relationships in the derived channel can be repre-

sented by the process of Figure 7-2, and for it the mutual

information

[ Pr(XXYY)
E[I(XY; YX] = E( log Pr(Y)Pr( (7-39b)

etween si nal se uencs at the oi osi an oo hnl t r i%

nals can be computed. The signal source porbabilities for

Figure 7-2 are fully determined by relations (7-11) from the

symbol source probabilities of the derived channel of Figure

7-1. We are interested in the relationship between the cor-

responding mutual informations E[I(F,Y;P,?)] and E[I(X,Y;,Y)')],

about which we can prove



Theorem 7-4

Given the derived channel of Figure 7-1 whose input sym-

bol sources generate successive symbols f and f inde-

pendently at random with probabilities P(f) and Pf;.

Represent the two-way input and output signal generation

resulting from the derived channel communication by the

process of Figure 7-2. If E[I(F,Y;F,Y)] is the average

mutual information between the symbol sequences at the

opposing derived channel terminals, and E[I(X,Y;_X') j is

the average mutual information between the input and out-

put signal sequences of the corresponding two-way channel

of Figure 7-2, then the relationship

E[I(F,Y;FT)] = E[I(X,Y;XT)] (7-40)

holds.

Proof:

First of all let it be understood that if F= f,•,...,f
n

then

F(Y) = X if and only if f=( ., .) =i.,n)

w here •J = = 0 (74 '

Then we have

Pr(Y,Y,F, =) Pr Y,Y,,X, F -
X, it can be show that

and it can be shown that



Pr(Y,Y, X,f ,F ,F)

where

Tn-

I.
Pr' (Y]/XX)Pr"(Y/X1)P(F)~F )

if F(Y)=X, F(Y)=X

0

P(F) = I I P(f.
i=l

otherwise.

n

i=1

Thus from (7-42) and (7-43) we can write

Pr(Y,Y,F,F) Pr' (Y/F (Y) ,F () )Pr"(/F(Y)() )P(F)P(F)
( 7 - i• )

Pr(Y,Y,F,F) =

Pr' (Y/F(Y) ,X) _ P(F)
F F (Y)=X

P (F).

(7-46).

Hence we may write from (7-39)

Pr' (Y/F (Y) ,7() ) Pr"(/F (Y), F/7) F
Pr' (Y/F(Y),:)[·r

71
Pr (7/ (y)irt5,X)P F()]

Pr (Y/X,F(7)
y

But notice that

a- P(F) =
F9 F(Y)=X

n
= P(fi)

(fn'' · n3, n

i1 (

(7-43)

and

Pr(Y,F)

xr

= log

(7-47)

P(F)]
F(Y)=X,

= x, (7- 'P"

) Pr" (Y/F (Y)
Y

[I Pr"(Y/X,F(Y)



= ( 2 P(fn)

f .3 f n(n Vn ) = xnn n n'n n

P,(f n
• ril

f f ( -) f
n-l n-1 n-1'n-1 n-I

Hence using the definition (7-11) we may write

and

2 P (F)
F 3F(Y)=X

a r()=

n= F7
i=1l

i=1

(7-49)

(7-50)

(7-47)

q (xi

It should be noted that for a given X and X the quantity

will have the same value for all F and F such that F(Y)=X and

F(()=X, Taking into consideration this fact plus equations

(7-45), (7-47), (7-49) and (7-50), we get

SPr(Y,Y,F,F) log Pr (Y, 7,F9er (Y, F) Pr (F,

Xx yY, FF (Y) =X

(7-51)

(, r ) )( .;" "

Slog Pr' (Y/X •)Pr" x~/X)

[I Pr'(Y/X ')Pr"''/X')i•T q (i) '.][ Pr' (Y'i1 )
f•, Xx V y.

n
Pr"(/ X' ') -q (xi ')

)( 2

.( r P(fl

f f l 1 •T, J )=x



n
Ip(y /xxi)p x..)q (x i ) . (x.)

XXYY i=1 ii 4 &••e

nx. 70

(T P /x ) (i/ /xi)
Slog

nIg P(Yi! xi!" ) ( /x " ) -  )  ]V
S Rp(y/xiyix i/xii.)q (x')

X' Y i=1 41

Comparing the right hand side of the previous equation with

(7-35) we see from (7-31) that

EI I(YF;FF E [T(XY;2)(-)
QE. D.

The significance of Theorem 7-4 isthat it shows that the

mutual information between the signals at the two terminals of

the two-way channel is equal to the mutual information between
tHIP s mbolsQ atthe twofnf terminMals- of1 Ah delrive channel0 (0e

Figure 7-1). It should be noted that the signal mutual in-

formation in Figure 7-1 is that obtainable from the set-up

of Figure 7-3, and that anything obtainable from the latter

is obtainable from the former by judicious selection of the

probabilities P(f) and P(T). Further importance of Theorem

7-4 will be seen from Theorem 7-5 which follows.

We will see that except for special, rather degenerate

two-way channels, the information carried through the channel

by the signals cannot be completely used as information about

the messages being transmitted. Some of it is lost, and -this
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loss is directly attributable to coding. In fact, any "stra-

tegy-like:' encoding which does not associate a signal with a

message in a one to one way will cause such information loss.

Theorem 7-5

Given transmission through a two-way derived channel in

which the sources generate input symbols at opposite

terminals independently from one another, the following

average mutual information relations between symbols

and signals hold:

E I(X,Y;; iY) -(EII(Y;f/F)I+ EfI(V;F/f) )=E (Y;?/F,f) #0
(7-53)

Equality on the right hand side of (7-53) holds if

and only if whenever P(F) # 0 and 0(') # 0 then simul-

taneously

(a) Pr'(Y/F(Y),F(Y)) = K for all Y such that

Pr"(Y/F(Y),f(Y)) # 0 and

(b) Pr"("/F(Y),F7()) = K2 for all Y such that

Pr'(Y/F(Y),F(!)) # 0

where K1 and K2 are some constants.

Proof:

From Theorem 7-3 we know that (7-52) holds. From elemen-

tary information measure algebra we get

EjI(X,Y:XY)I= EfI(FY;FY) =

= E I(Y;F/F)J+ EfI(Y;F/F) + EI(Y;Y/FF)j

+ EfI(F;F)J. (7-54)
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But F and F are assumed to be generated independently and

therefore

E I(F,F) = 0 , (7-55)

which proves the validity of the equation (7-53).

Next,

E I(Y;y/FF)} = Pr(Y,Y,F,*) log Pr(Y/Y F,F)
SY, F, F Pr(Y/FF)Y,Y,F,F

(7-56)
and therefore

-E I(Y;Y/FF)-S I Pr(Y,7,F,F) [ Pr(Y/F) - 1] (7-57)
YYFF Pr (Y/YFF)

where equality holds only if

Pr(Y/FF) = Pr(Y/TFF) whenever Pr(Y,Y,F,F) # 0. (7-58)

Before we start investigating conditions under which (7-58) can

hold, we will break up (7-56). We have:

E I(Y;Y/FF)? =E flog Pr'(Y/F(Y)F()) +
Pr' (Y/F(Y),F (?))Pr"(f"'/F(Y) I(f'))

Y' (7-59)

+ log Pr"(/F(Y) F()))

o Pr'(Y'/F(Y')F(Y))Pr"(~/F(Y')F(1))

S LY'

L: T~whePPre uinO rnea o ~in hrlr-? d~CC~ irc~~ h
"-A-"6 gLLIP sY n eLye t e process or proving

Theorem 7-4, we can write:

E logPr'(Y/F(Y)F(j)) 
=

Pr'(Y/F(Y)F`('))Pr"(9'/F(Y)F(''))_
Y'

= - Pr'(Y/X F(7))Pr"(I/X 7(ý)) F(T)(, P(F) ) (7-60)
YXFY F*F(Y)=X
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logPr'(Y/X,F(Y))

2 Pr' (Y/X,X') Pr"('/X')

and similarly,S Pr"(Y/F(Y)(2))I
E log =

S Pr'(Y'/F(Y')P (7))Pr"(Y/F(Y') (Y))
Y'

=> Pr'(Y/F(Y),X)Pr"(Y/F(Y)•) P(F)(. P(F)).

• ' log Pr"(Y/F(Y)X) (7-61)

J2 Pr"(I/X'7) M Pr'(Y'/X')
X' Y'- F (Y')=X'

In the next section we will interpret (7-60) and (7-61)

"physically". Right now it is clear that if (7-59) is to be

zero, both (7-60) and (7-61) must be. But (7-60) is zero if
and only if

Pr' (Y/X,F (Y))= Pr'(Y/XX') Pr(Y'/XX') (7-62)

whenever

Pr'(Y/XF())Prr"(Y/XF(Y)) (X)(T P(F) ) # 0 .
FOF(Y)=X

The right hand side of (7-62) is independent of Y. Hence

it is necessary that for all combinations Y,X such that

I P(F) # 0 whenever P( F) ý 0 we must have
FaF(Y)=X

Pr'(Y/X,F(Y)) = const. (7-63)

for all 7 such that er'(Y/X,F(Y))Pr"(Y/X,F(Y))# 0.

However, as a matter of fact, even more is necessary, namely

that

I1
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For all F,Y,X - P(F) . 0 P(F) # 0 (7-64)
F F (Y)=X

Pr' (Y/X,F(Y)) = const. for all Y . Pr"(Y/X,F(f)) # 0.

Assume that the above is not true, i.e. that there exists a •'

such that

PI(Y/X,F(Y')) = 0 while Pr"(Y'/XF(Y')) f 0 (7-65)

and Pr(Y/XF(()) = K v Y # -' Pr'"(/X,/(X)) # O1

But then surely

2 Pr' (Y/X(Y))Pr"'(7/XF~()) K Pr"(Y-/XF ()) ~ K (7-66)

since

XPr"(Y/XF(Y)) = 1 T(ýj /x.f.•( )) = 1 (7-67)
Y Y j=l

and it was assumed that Pr"(T'/X-(f))> 0,

and applying (7-66) to (7-62) we see that equality cannot hold

since for Y # -' the left hand side is equal to K while the

right hand side is smaller than K. This contradiction

establishes the necessity of the condition (7-64). The

latter is however also seen to be a sufficient condition to

establish (7-62) since if (7-64) holds then

2Pr' (Y/XF(2))Pr"((X~(/XF ))=K •Pr •"(Y/XF(Y))=K (7-68)
Y Y

for all F,Y,X D 2. P(F) # 0 P(F) # 0
SFF(Y)

If (7-64) is a necessary and sufficient condition for (7-60)

to be zero, then the necessary and sufficient condition for
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(7-61) to be zero must be

For all F,Y,7 such that 0 i (F) # 0 and P(F) # 0
)=X (7-69)

Pr"'(Y/F(Y),X)= constant for all Y9Pr'(Y/F(Y),X) # 0

But (7-64) and (7-69) when formulated together give the condi-

tion of Theorem 7-5 which we are trying to prove.

Q.E.D.

From the preceding proof it is clear that the quantity

E I(Y;Y/F,F)j which is seen from (7-53) to be the difference

between the total average information passing through the

channel in both directions and the parts of it useful for

message transmission, is closely associated with the kind of

message encoding for the two-way channel which we are using.

SWe will interpret and study it in the next section, in parti-

cular the question under what condition it can be made to

equal zero.



J
E I(Y;F/F,) = E flog Pr'(Y/XIF(Y+))

2Pr' (Y/X, (Y'))Pr" (Y'/X, F (' )
Y'

+E log Pr" (Y/F(Y), X)+E log Pr' (Y',/4(t)Pr"(Y/F(Y')X) )

iY (7-70)

where we can interpret the first term on the right hand side

as the average loss of information in the reverse function-

signal transducer of the derived channel. We can similarly

interpret the second term on the right hand side of (7-70)

as the average loss of information in the forward function-

signal transducer of the derived channel. Focusing our at-

tention on the first term, i.e. on the expression (7-60),

we seethat we are averaging the expression

log - - I' (Y;Y/F,X) (7-71)
X Pr' (Y/X,F (Y'))P(' / X, F ('))

which, from our experience gained in section 7.3 with respect

to expressions (7-13) and (7-18) we can identify as the in-

formation provided by Y about Y when X and F are known and

the signal X is fixed independently of the received signal Y.
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7.5 Interpretation of Coding Loss

7.5.1 Forward and Reverse Coding Loss

We have shown in (7-59), (7-60) and (7-61) that the

following break-up of the coding-loss function is possible:
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Hence we are dealing with a mutual information pertaining to

the situation represented in Figure 7-4.

( j~' Clrr

symbol source

Figure 7-4.

In the expression (7-60) the information (7-71) is

being averaged by use of probabilities

Pr(X,Y,F,Y) = Pr'(Y/X,F(Yý))Pr"( /X,F(V))!( ) • P(F)
F F (Y)=X

(7-72)

giving the actual frequency of simultaneous occurrence of the

events X,Y,F,Y in the ensemble. If we note that the decoder

at the forward terminal is not interested in identification

of the received signal Y for its own sake, it becomes clear

why (7-60) is called the reverse coding information loss: it

is the information about Y provided by Y after the message F

was identified.'

In a similar manner, of course, the expression (7-73)

can be identified with the information provided by Y about Y

when F and X are known and X was fixed independently of the

signal Y:

j

r

f
r

z



Pr" (Y/F (Y) ,I)
log rr ())

A Pr' (Y'/F(Y') )Pr" (Y/F (Y')X )

- •"(Y;7/F, )

Hence the expectation of (7-73) arrived at by averaging with

probabilities

F F(Y)=2
(7-74)

can be called the forward coding information loss, and we can

re-write (7-70) as follows

EfI(Y;Y/F,F) = EfI'(Y;/X,F)j + EfI"(Y;Y/F,R) . (7-75)

The following theorem will prove useful for finding distribu-

tions P(f) and P(f) giving good random codes (See Article 9):

Theorem 7-6

If F(Y) = X and if F(ý) = 7, then

I'(Y;X/X) - I(Y;F/F) = I'(Y;Y/X,F) (7-76)

and

I"(Y;X/1) - I(Y;F/F) = I"(Y;Y/F,) , (7-77)

where the quantities in the above equations are defined

as in (7-3), (7-12), (7-13), (7-71) and (7-73).

Proof:

It will certainly be sufficient to prove (7-76); (7-77)

will then follow.

We have:

'(Y; -iX) log er' (Y
Pr' (Y/X)

I'(Y;X/X) = log Pr'(Y/X)
(7-78)

107O

(7-73)

Pr( ,9,FY)=Pr'(Y/F(Y),2)Pr"(7/X,7(Y))P(F)(2 ?(2)
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Pr (Y/F ýI(Y;F/F) = log Pr(Y/F) (-79)
Pr (Y/F)

Pr' (Y/X,F) Pr' Y/X,F(Y))0)
I'(Y;Y/X,F) = log Pr'(Y/X,F) = log Pr(Y/X)(7-80)

where Pr' (Y/X,X), Pr'(Y/X) and Pr(Y/X,F) are shown in equations

(7-16), (7-17) and (7-71), respectively. From there it is

clear that if F(Y)=X", then Pr' (Y/XX)=Pr' (Y/X,P(Y)).

Also

A Pr(Y/F)- P (F)P(F)Pr' (Y/F(Y)F(;))Pr"(7/F (Y)F())
Pr(Y/FF') Y

P(F)P (F)Pr (Y/F (Y)F(') )Pr" (/F (Y)F ('))
Y,Y

= 5.Pr' (Y/F(Y)F(f))Pr"(Y/F(Y)F(Yf)) (7-81)

where the last equality follows from (7-67). Hence by in-

spection of (7-71) we see that Pr(Y/F,F) = Pr(Y/X,F), provided

F(Y)=X. Finally:

e= P(F)P(F)Pr' (Y/F(Y)F(Y))Pr" (/F(Y)(7())
Pr(Y/F) = (7-82)

P(F)

Pr' (Y/XX')Pr"'('/XX') 2 P(I )

=n

Hn pyi/x b s i (7x.-.7 s(x 't
e 'Y' i=l i(a te

Hence by inspection of (7-17) we see that if F(Y)=X then

'`,/C/V llC/1 ~ rl- - ilL- -- l- ~ L -I-L

Pr (Y/X) = Pr(Y/F). Thi 

)

Q.E.D.

i
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7.5.2 Conditions for Absence of Coding Loss

It is interesting to inquire in what way the necessary and

sufficient condition of Theorem 7-5 for the absence of coding

loss can be met, and what coding restrictions this implies.

For convenient reference we repeat here the losslessness con-

dition:

The coding loss E I(Y;Y/FF)j is identically zero if and

only i-f in the given code whenever P(F) A 0 and P(E) P 0

then simultaneously

Pr' (Y/F(Y)F(Y)) = const. for all V39 Pr"(Y/F(Y),,(Y-)) A 0

and (7-83)

Pr"(Y/F(Y)F(Y)) = const. for all Y*Pr'(Y/F(Y),F(C)) A 0.

It is of course immediately obvious that (7-83) will be

satisfied if for all allowable Y (i.e. those for which P(Y/F(Y)

F7()) # 0 for all F,Y),F(Y) = X(F) for all F, and simultaneously

for all allowable Y, F(Y) = X(F) for all F. But in such a

case, the coding we have is one in which messages are associated

with signals in a one to one manner, and we have the situation

of "one-way channel coding". There are, however, special chan-

nels in which (7-83) is satisfied for any kind of coding. We

can state the

Theorem 7-7

The condition (7-83) is satisfied for a derived two-way

channel for any probability distribution over possible

i
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input symbol words F and F if and only if the two-way

channel is characterized by transmission probabilities

having the following property:

either (a) one cannot communicate through the two-way

channel at all. i.e. the probability p(y/x,3)

is a function of x and y only, and the pro-

bability T(\/x,R) is a function of 5 and 7 only.

or (b) for any signal combination x,x the channel trans-

mission probabilities p(y/x,3E) and: /x, )are

equal to either 0 or I.

or (c) there exists one direction, say the forward one,

such that p(F/x,xE) is a function of 7 and R

only and also equals either 0 or 1.

Proof:

If part (a) is true, it is trivially clear that (7-83)

is satisfied. If condition (b) holds then surely for every

X and F there is only one T such that Pr"(Y/X,f(Y)) ' 0.

Also for every X and F there is only one Y such that Pr'(Y/F(Y),

X) B 0. Hence for every F and F there exists only one combina-

tion Y,Y such that Pr'(Y/F(Y)F(Y)) # 0 Pr"(Y/F(Y)F(Y)) # 0,

insuring that (7-83) is satisfied. Finally, if condition (c)

holds, then for any F, F, Pr'(Y/F(Y),F(Y)) = const. for all Y,

and there exists only one Y such that Pr(Y/F(Y),7(F)) # 0.
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Hence F maps into one X only and the first part of (7-83) is

then satisfied as well.

We next wish to show that unless either of the conditions

(a), (b), or (c) is satisfied, there will exist a combination

F, T" for which condition (7-83) will fail to hold. Now in

case neither (a), (b) nor (c) hold, communication must be

possible at least in one direction, and there will exist a

combination x,x such that either p(y/x,R) or ý(7/x,R) equal

neither 0 nor 1.

Case I.: p(y/x,R) is not a function of y and x only, there

is a combination x,x such that Odp(y/x,3) 41, and

(c) is not satisfied in the forward direction.

(i) for all x,7x, P(7/x,R) is either 1 or 0.

In this case, without loss of generality, let

O4p(y/0,0)4 1 and let 5(0/0,0) = 1

T(0/1,0) = 0

Then we can let T(7) =(O,0,...,0)for all Y

and F(Y) =(0, f2 (yl),0,....,0)for all Y, where

f2(0) = 0 f2(1) = 1

Let further Y' =(0, y2,'"ny)

Y" =(I, y2"'.yy n )

In this case clearly Pr'"(ý/F(Y')F~())

Pr"I (7/iF (Y")F())

and (7-83) fails.
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(ii) there exists x,E such that 04~(y/x,7)4 1.

Without loss of generality let 0~(9/0,0)( 1

There must also be an x such that p(y/x,0)#p(y/x,l)

Without loss of generality let this x=1. Then let

F(Y) =(O,O,l,0,...,O)for all Y. Also let

I(-) =(0,0,f3 2),0,...,0)for all Ywhere Y3(0)= 0

f3 (1)= 1

Case II.:

Clearly if Y' = ( 07,0,y3=*0 n

1" = (•1173 1*3 ''' n

then Pr'(Y/F(Y)F(Y'))Pr((Y/Y)F(")) and (7-83)

fails again. (Note both ', " are allowable!!!)

p(y/x,R) is not a function of y and x only and there

is a combination x,x such that 04F(ý/x,k)4l.

Without any loss of generality let 0cp(y/x,O)4 1

and let p(y/l,0) # p(y/l,l).

Then let F(Y) =(0,0,l,0,...,0) for all Y

and let 7(y) =(0,0,f3(72 ),0,....,0)for all ?

where f3 (0) = 0

f3 (1) = 1.

Then surely both of the sequences below are allowable:

p" =@•I'0Y3' "''~'n

and Pr'(Y/F(Y)F(Y')) # Pr(Y/F(Y)P(T"))

Thus condition (7-83) fails even in this case.

Q.E.D.
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We will now investigate whether condition (7-83) can be

met in channels not fulfilling any of the conditions of Theorem

7-7. Specifically we are interested whether losslessness is

possible when a code is used which could potentially get bet-

ter communication results than a simple one-way channel type

code, which maps messages directly into signals. Hence we

are not interested in the trivial possibility mentioned in
paragraph

the/preceding Theorem 7-7 where F(Y) = X(F) and F(O) =- (F),

and neither are we interested in codes whose job could be

done as well by a one-way type code.

We use the derived channel type of coding in order to

create signal cooperation between the opposing terminals so

as to reduce transmission noise in the channel. If the first

part of condition (7-83) holds, then it is clear that for all

message words F of a code all the possible reverse signals

F(Y) for any given F are equivalent as far as the reverse

transmission is concerned. Hence as far asthe reverse noise

goes, if the irst part of (7-83) is to be fulfilled, there

is no advantage gained by the fact that F(Y) may differ for

different Y. However, the forward noise can be improved in

the above way, since it is conceivable that for a given F,

F(Y) assumes that value X which will maximize Pr(Y/F(Y),F(Y)).

I.E. Given F(Y) let

Pr"(f*/F(Y),k*) - max (Pr"(Y/F(Y)R)) (7-84)Y,x
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then it is conceivable that F(Y*) = 2*. Hence decoding dis-

crimination at the reverse terminal can conceivably be made

sharper by this device without in any way affecting the pro-

bable success of reverse transmission, and it is worthwhile

to ask the question proposed on the top of this page.

It turns out that losslessness is possible only in

more or less degenerate channel situations, and examples can

easily be constructed of such lossless codes which could con-

ceivably accomplish better communication results than one-way

type codes,. "Whether some of these actually do accomplish more

is not known, but this is strongly doubted by the author, In

any case, it was possible to prove

Theorem 7-8

Given a two-way channel whose transmission probabilities

do not fulfill any of the conditions (a), (b), or (c)

of Theorem 7-7, and are such that 04p(y/x,R)4 1 and

0- F(7/x,) )41 for all signals x,x-,y,3. Then there can

exist no code not equivalent to some one-way type code

such that for it the condition (7-83) could be satisfied

(i.e. there exists no code with zero coding loss).

Proof:

Consider a set of codewords JFJ and I7 of any length n.

Let at least one of the codewords F = F* be such that there
1exist signal sequences and such that () 2)

exist signal sequences Y Y such that F* (Y ) # F* (Y ).
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It is clear that above is a necessary condition so thatthe

code be non-equivalent to some one-way type code.

Since O p(j/x,i~)A) for all x,j' then all sequences ?

are possible for any given pair F, F. Consider now any par-

ticular of the codewords F and the word F*. Under the

channel transmission probability restrictions, if (7-83) is

to be satisfied, then we must have

Pr' (Y/F(Y)F*(Y ))= Pr' (Y/F(Y)F*(72))for all Y. (7-85)

Pick -any sequence Y and let F(Y) = X'. Then, in conformity with

our convention 1 l -= 0 we can write:

Pr' (Y/X'F-*(Y)) = P( ("1 1~ ))p( 2  f ( r2)2 "

... pn-1 n/x' - 1  n- n/xn • n ) ) (7-87

Pr" (•Ix•-F*(7 1 )) -

1 1 TI 1 (•I'I " n-1 n- 1 n-1 n-l 1
(*i /xl' f *(n wl)) (7-88)

n n n n n

Pr,"(Y/X F*(y2 )) =

'2 2* 2 -22 2 2 - 2
-(y1/x f• (a ))-P(y 1/_/x f* f (*- nc 2

1 1 1 n-1 n-1 n-1 n-I n-1

2 ' -2 •-2
P(7n/xn f* (2 j n2 ) ) . (7-89)

Let ,*(y) =- and *(2) = 2. Then one possibility of how

.1 2(7-83) could hold would be that whenever x. # then x. would
1 1 1
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2 2 1be such that p(yi/x x ) P(y i /x x ). On the other hand,

by assumption, the channel is such that at least for one X, say

x=O, p(y/00) # p(y/01)O. But then it is only possible that

x. = 1 and thus wherever x x. then if (7-83) were to hold
1 1 1

for all F, it would do soty virtue of the fact that for all F

and Y, x. = 1. But in such a case the codeword F* could just

I

as well be replaced by a constant signalword X, since any

possible reverse signal adjustment in the ith place makes no

sense, x. being in advance known to equal 1.

Therefore if the code is to be non-equivalent to a one-

way type code there mustbe some F such that for at least some

Y the signal X be such that when x. 1 x. then x. = 0. Consider
1 1 1

now that we have picked such a (F, Y)-combination for which in

-1 -2
some places i, x. = 0 and x. # x.. Let these places be

numbered il, i2, ***'k where

1 i i 1  i 2
4 ... .ikC n (7-90)

Then for the given F and all Y and consequent X=F(Y), if (7-83)

is to hold, it must be true that

p(y i/x x  )...p(y /x i 1 )=p(y )/x X. ).., p(y /x. x  )1ii1 1 1i 121 111 'k. kk 1 111 k k 'k

(7-91)
Consider now whether it be possible that ik = n. In

1 ~ 2that case, for some Y at least, p(y n/x x )#p(y /x ) . But

in that case surely,

L:~ir;a
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1 1 .2

1i11 1 • ' -1 k-1 lk-l 1 1 1

... p(y. /x. ) (7-92)
'k-1 k-1 'k-i

However, since all Y are possible by assumption, then y could

actually occur and it should be noted that yn cannot have any

effect on the identity of the signal x . Hence (7-83) couldn

hold only if

(yn/n ) = P(yn/n x ) = 1/2

p(y/x "x2) = p (y /x )  1/2(793)
n n n n n n

1 2But in that case p(yn/x n ) = p(yn/xn x) which is against

our assumption. Hence we conclude that ik n .

Next we can ask whether possibly ik - n-i, and it is

clear that by an identical argument we will be led to con-

clude that since ik # n, then also ik = n-1. Continuing fur-

ther we will finally end up with the conclusion that in the

channel meeting the transmission probability restrictions of

the theorem, the condition

Pr'(Y/F(Y)F*(Y)) = const. for all Y (7-94)

can be satisfied at least for some Y if and only if either

F*(Y) = X for all Y, or if F*(i4F* (q2) and whenever. x.
1 1

x. is such that p(y/x X.) p(y./x. x.). for all F.
1 1 1 1= 1 1

Q.E.D.



118

7.6 The Outer Bound to the Capacity Region

In view of the results of the preceding section involving

the concept of coding loss, it seems desirable to derive a new

expression for the outer bound to the capacity region of the

two-way channel, involving the expectations of mutual signal

information. If we succeeded in showing that this new bound

is completely included in the Shannon (1) outer bound GO

(described in section 2.2), it would follow from Theorems 7-6,

7-7. and 7-8 that. except in degenerate situations, the capacity
-~~~ ~~~ ~ ~~~~~~~ •r ... . -- L . . . • . . . . . . . . . . . . . .• . .

region G is entirely interior to Shannon's outer bound (this

conclusion would be due to the introduction of coding loss by

any cooperative code). Above can, in fact, be shown, and we

will do so with the help of a slight modification of Shannon's

argument proving the outer bound GO (see (1), pages 23-26).

A code for the two-way channel will either fall into the

block class or into the sequential class (of course it might

happen that e.g. the forward terminal encodes into a block

code, while the reverse terminal encodes into a sequential

code). In a block code messages m are mapped into functions

F which map sequences of n received signals Y into sequences

of length n of channel input signalsX. The identity of the

thi signal in a block is determined by the function F and by

the identity of the signals x1 ,X2 ,..2,xi- 1,Y 1 ,y 2 ,...,yi-1.
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It is uninfluenced by any other signals, in particular by

those which did not take place within the block to which x.

belongs. The most general kind of transmission is one consis-

ting of the selection of only one message encoded into some

function F mapping.into an appropriately long blocklength n.

We will therefore consider this kind of coding in what follows.

For this section and this section only we will adopt the

following notation:

A function F will be understood to consist of a sequence

of functions

F = (fl' f2''' fn)

maps
where f ithe signal sequence xl ,...,Xi-lY1',..Yi- 1 into the

signal x.. Hence, in our previous terminology, f. will be
1 1

assumed to have a dependency length equal to i-l. We will

also denote by Fi and F. the sequences

+F. fl' f f F (f f f
Fi 1 2"'' i) i i+l' i+2''' n"

so that clearly

F = (F., F ).
i. i

An identical notation will be adopted with respect to the

remaining quantities of interest. Hence:

f= (2,Fi ) = [(fl' f2  ' (i+ l) ' +2
' ' )]

where f maps the signal sequence l,x 2 ,...,x 1-'Y ..2'j-1

into the signal 3.. Also:
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X = [x:,x] = [(x ,..,x )(x i( ,.., xn )

x = [x.,'t] =[l i i  '  ) ]
i 1n

Y I M

Therefore we have, for instance, the functional relationships:

- - - + - + +
F(Y) = X; Fi(Y ) = X.; F(X ,Y ,Y ) = X..

We are now ready to state our theorem:

Theorem 7-9

Given a discrete memoryless two-way channel.

For any arbitrary positive integer i define the con-

vex hull G1 (n a i) of pointsn

E log nr( n

Pr"( /n )Zr'(n n xn- 1,l Xn-i+l'yn- ''Yn-i+l )

(7-95)
Pr(y /x x )

E log n n n

Pr'(y n/xx n -' Xn 1'Y"xn-i+'n-1 Yn-I'xn-i+l

obtained for different assignments P?(fl f2" " fn )

P(fl f2 .,) of symbol sequence of length n.

Let lim G• = G . Then for any i, G is an outer
n n 0 0

bound on the capacity region of the two-way channel.

The following set-inclusion relationships are satisfied:
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Gn SG n - 1 -_ ,4G.. 66G G t n
n n n 0

Gi G i+ l  °  aG G %i (7-96)
1 +1 0 0

G Gi Y
0

where G is the capacity region and GO is Shannon's

outer bound to it.

Proof:

Suppose we have an arbitrary code for the two-way channel

which at time zero is to transmit messages m and m from the

two terminals. The selection of forward and reverse messages

for transmission is to be an independent one. The messages

will be associated with some codewords F = F., F. and F =

F.- + of length n, where n and i are arbitrary integers,i n.

After (i-1) operations of the channel, let Y and Y. be- i-1
the received signal blocks at the two terminals, and let x ,

xiY,•'i be the next transmitted and received signals. Consider

the change in "equivocation" of message at the two terminals

due to the next received signal. At the reverse terminal, for

example, this change is

= H(m/,Y )-H(m/, ,y) =

_ Pr

(7-97)
(cont.)



122

Pr( / _1 !,m,T)
= E lo p

1 
)

H (H/•i_ 1 ,() - H(ii/Y_ ,m,f ) .

But clearly

H(i/7_ ,m,M) -H(7i/• -_,Y_,m,'~) = H(7i/xi,x)

(7-98)
since adding a conditioning variable cannot increase an entropy,

and since

Pr(Vi/Y _l,,Y._ ,m) =

= Pr(y.i/F.,Y ,F Y )= Pr(7./x.,7 i.)1 1 i-1 i i-i 1 1 1 (7.-99)

Also

H(iY -1) = H(i/Yi i

= H(li-,X i)

where F(Y) = - .

Hence from (7-97) we get

,L- 1-I t

(7-100)

= E logf C
Pr (i/xixF)

where the necessary averaging is done with respect to the pro-

babilities of the different strategies F7 and F- for the par-

ticular code used, and where the probability P"'(7j./ •,I i

defined by:

(7- 101.



123

P' (Y,/X.) P(F )

Y.,X. F-.3 F(Y)= X. (7-101a)

i i 1 P(Y[-_1 Y i- 1 /X.Xi P(Fi )
Y X_ F F (Y 7)=X

where P(Y,Y./X 77.) = p(y.3j/x. 5 .)
1 j=1

A similar inequality may be obtained for the change of

equivocation at the reverse terminal due to the reception, at

time i, of the signal, y.,. It is:
1

SE log
Pr(y. x.i.)

Pr' 1 Y

Pr'(y.I/X Y )1 1' i-1

(7-102)

where the probability Pr'(y./X ,Y _l) is defined by:
1 1 i-1

P, (Y-.9T /X Xt (
1 1' (

1' 1 1 1 1
Pr' (ix.y-

P(YiI•i_ T/X _ ,-Y ) )( • _ )

Y-1I1-1 F-1 i--Ii- )
1 1

(7-102a)

It therefore follows that in any code, the vector change

th
in equivocation due to the reception of the ith signal must be

a vector with components bounded by

E log Pr(/X E log1

Pr"(/X'Y

Pr(yi/xiXi )

Pr'(y./X,Y )
i i-l

i (7-103)

for some distribution P(Fi), P(Fi), where we assumed that the

messages m and " were selected independently for transmission.
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Hence the vector change is included in the convex hull GC

of all vectors (7-103) generated by varying the distributions

P(Fi), P(Fi). Since for any distribution P(F ), P(F ) the
1 1 i i

inequality

E log 1 (7-104)
mi xi,...,x2,'i-,. 2)

1 E log I
SPr" (.i Ei,... y l i-1..i )

holds, it is clear that

G G -1 (7-105)
1 1

where G ,(j-Q i),is the convex hull of points

E l o g  P

Pr,, (i/K•i, - _ _ _j+l )"x ".xi-j+1Yi"" ij+1

(7-106)

S Pr(y./x.,.Pr'(Yi/x ,..,xi-j+lYi-1l, 
.Yi-j+l)

obtained for various assignments P(Fi), P(Fi).
1 1

It is also true that

Gj (F F ) S G (F• ) (7-107)
i i' i i+l i+1 +1

since we can let only those words Fi+ and F i+have non-zero

probabilities for which
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Fi+l( Y 2, yi ) = Fi+l(Y2 ,...y i ) = x0,x,...,i+

Fi+ 1 . i= Fi+1 2., i) = x0,x,...,xi+

where x0 and 70 are fixed signals. (7-108)

The convex hull of points

II Pr ('i+ 1/x i+l ' i+

Pr"( i+/i (7-109)
Pr' Pr (Y+I/Xi+l i+l)

E log

Pr'(Yi+/xi+l, ...,xij+2'yi , .40'Yi-j+ 2
)

obtained by varying the probability assignments of the words

F + , F+ allowed by (7-108) will then be identical with thei+1 i+l

convex hull of points (7-106).

Suppose that a signal block of length n was transmitted

and received. Then the total change in equivocation resulting

from reception must be a vector lying in the convex hull

Gn n -+ GcG n + G + ... + G 1n n-1 1
Gn  + Gn -  +. + G + G +i- + +
n n n n

+ G S1 (n-i+l) G + (i-1) G 1
n n n

i i-l 1 i
=n [G + - [G - G]] (7-110)n n n n

Thus given any positive integer i however large, and any A > 0,

there exists an integer n* such that for all signal blocks of

length n>n*(i) the total change in equivocation resulting
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from reception must be a vector lying in the convex hull

n[G +E ]5n[G +1 ]. Consider now any code signalling at
n 0

1- 1
rates R = -,_log M and R = -,.log M where n' is the length of

n n

the signal block used in decoding, and M and M is the number

of differentfbrward and reverse messages encoded into signal

blocks of length n'. If n'4 n* (i) we may, without any detri-

ment to the probability of error, decode blocks of length hn'

where h is some positive integer such that hn'>n*. In what

follows we will quote Shannon (1), p. 25:

"The initialequivocations of message are nR and nR (where

n=hn'). Suppose the point (nR,nR) is outside the convex hull

n[G O +f ] with nearest distance n , Figure 7-5.
0

n[G + s]
0

)

Figure 7-5.

Construct a line L passing through the nearest point of

n.[G0 + ] and perpendicular to the nearest approach segment

with n[G +E ] on one side (using the fact that n[G0 + 6] is

a convex region). It is clear that for any point (nRV nR*) on

the n[G 0 +£ ] side of L and, particularly, for any point of
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n [G + ], that we have jnR - nR*f+ MR + nR*/n (since

the shortest distance is ndr) and furthermore, at least one of

InR - nR*Iand InR - nR*Iis at least n- . (In a right triangle atr2
least one leg is as great as the hypotenuse divided by FI.)"

"Thus after n uses of the channel, if the signalling rate

pair R, R is distance J outside the convex hull (G + E), at

least one of the two final equivocations is at least r
(All equivocations on a per use of the channel basis). Thus

for signalling rates do outside of (GO + e) the equivocations

per use of the channel are bounded from below independent of

the code length n. This implies that the error probability

is also bounded from below, that is, at least in one direction

the error probability will be >f( )>0 independent of n," as

shown in Fano (4) p. 186.

Since as n-*oo, E- 0, this proves the theorem, except

for the assertion in (7-96) that G1. GO ( if this is proven,n 0

it follows from previous discussion that GO _ G)0

Now G is the convex hull of pointsn
Pr(n/xn%) Pr(y /x ,)

E log Pr"(n/ ) , E logPr' (Yn/n) (7-111)
Pr"(if (7n n) Pr' (yn /xn(71)

obtained by varying the symbol assignments P(Fn), P(Fn), whilen n

GO is the set of points (7-111) obtained by varying the assign-

ments P(x 3, ). But, for instance,n n
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E log . n n Pr(nl/xl n ) Pr'(x • )

Pr(•n/x n )
log n n (7-112)

Pr(7 /x 7 )Pr'(x n )
in t n nnxn

and it is obvious that any point (7-112) obtainable by a

symbol assignment P(Fn), P(Fn) can also be obtained by some

signal assignment P(x ,3E). This completes the proof of then n

theorem.

Q.E.D.

Whenever Shannon's outer bound GO is not equal to his

inner bound GI, it follows from Theorem 7-9, and Theorems 7-5

and 7-8 that the capacity region G will be, under certain

conditions, strictly interior to GO . We will state this in

a more precise manner:

Theorem 7-10

Given a discrete, memoryless two-way channel defined by

the set of probabilities P(y,3/xR) = p(y/x.)p(7/xi).

Whenever Shannon's outer bound to the capacity region

GO does not correspond to his inner bound G , the

capacity region G will be a proper subset of GO pro-

vided the channel is not noiseless (i.e. it does not

satisfy any of the conditions (a), (b), or (c) of

Theorem 7-7) and 04p(y/x,R)4l and 04,(7/x,x-)4 1

for all signals x,x,y,y.
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7.7 A New Inner Bound on Capacity Region

It is a consequence of Theorem 6-2 that the convex hull

of points

E l Pr(7y/fff•m m / ms-mr
m m M, m -m)

logPr(yf, 
,

E log Pr(y/f, ,., y m, ,sm ) (7-113)
Pr(y/f, P ?,ms-)

m

where Pr(m) =F p(f-i
i=1

Pr(fm) = T P(f-)
i=l

is certainly included in the totality of points forming the

capacity region G, and in turn includes the totality of points

in Shannon's inner bound GI to the capacity region. Hence

(7-113) gives a tighter inner bound to the capacity region

that GI did.

From Theorem 7-6 it follows that the convex hull of

points

E n I(Y;F/F) , E n I(Y;F/F) (7-114)

obtainable from all input symbol probability assignments

P(f) and (Ef) is included in the convex hull of points

E - i(Y';X/X) , E -- i(Y;'/X) (7-115)
n n

obtainable from all input symbol probability assignments P(f)

and P(f), and thus following the discussion of section 7-2,
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from all the input signal probability assignments q (x) ,

_(R) (always dealing with an arbitrary but fixed dependency

l 7 11

engt . ut as n-hoo, t e set - s nclu e n t e

(7

-114

) hil 5

set ,I-I~) w e o te tst)iLL er an , set - ) as

n-*co, equal to the cnnvex hull of points

lim E log P (37n /n 3n
n -po Pr" (y /x 2 yx ., ,y.y )

IL LL LL- . LL.L .

lim E log P(yn/xn Xn) (7-116)
n-*oo Pr'(yn/xn xn-1, .,x1 'Yn-. yl)

(for proof see for instance Fano (4), p. 87) obtained from all

the possible signal probability assignments q (x) , (2)

It follows from the discussion of the previous section that the

set of points (7-116) is included in Shannon's outer bound GO.

Given any set of probabilities fq (x) , i ) it can

be shown (and will be, in Article 9) that there exists a set

of probabilities jP(f) , P()~) such that for them

q (x) = P(f) , M (i) = TP(f) (7-117)
f* f(, )=x f .4 f-(* f i )=X

Then to any point (7-116) obtained for some probabilities

j (x)? , .q(x) points (7-113) correspond, the latter points

being obtained for those probability sets P(f)j, I.P(f)J

satisfying (7-117). Since for a given I the number of elements

in the set )q (x) is 221, and the number of elements in theL[
4.
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2'

set P(f)l is 22 above correspondence suggests a useful

way to bound the boundary of the region of points (7-113) from

below: the boundary of the region of points (7-116) can be

found, and for each set Iq (x)j, ()) corresponding to a

point on the boundary, a set IP(f), fP(f)J is found satisfying

(7-117). Using the latter sets, corresponding points (7-113)

are found and it is known that these are included inside the

boundary of the region containing all the points (7-117).

The advantage of this bounding will be shown more fully in

Article 9 where related questions of practical coding importance

will be discussed.
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codes are effective and why, we wish to analyze and classify

the different possible two-way binary channels meeting the

restriction

p(y,-/x~i) = p(y/xR) p(r/x&) (8-1)

In Article 9 we will then carry out a synthesis of the results

of Articles 6, 7 and 8 and display some important properties

of two-way channels.

The restriction (8-1) insures that the success of the

signal transmission in the forward direction will depend on

the identity of the signal sent in the reverse direction and

not on the consequent signal received at the forward terminal.

A similar statement can be made about transmission in the

reverse direction. The noise of a two-way channel postulated

in this way will then consist of two components:

(a) natural directional channel noise, analogous to

the one we are used to in one-way channels

(b) noise induced by the signal transmitted in the

opposite direction.

The noise components are superimposed upon one another.

132

8. Classification of Two-Way Channels and Development of

Canonical Channels.

The results of previous sections have provided us with

intuitive insight into the workings of binary two-way channels.

In order to further our understanding as to which kinds o-f
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. . .. . . . . . . .- . . . . . . . . . . . . . . . . . . .- - - - - - -

tions of one-way and two-way channels. We hope that such

I separation would show us a way to reduce the (b) component

of the noise by signal cooperation of the opposing terminals.

In what follows we will keep ourselves restricted to the

binary case.
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It would be interesting to separate the two components

and see more clearly the essential difference between opera-

i.._
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8.1 Terminal Labeling Rule for Channels Representable by

Figure 3-1.

For the general one-way channel representable as in

Figure (8-1), the usual practice is to identify the output

p
a

b

Figure 8-1

alphabet (a,b) with the input alphabet (0,1). A decision

must then be made whether a or b is to be made to correspond

to 0. Usually

if p 1 - q we let a = 0 and b = 1

if p 4•.1 - q we let a = 1 and b = 0 (8-2)

An identification problem similar to the above one exists

for the two-way channel, broken up into forward and reverse

portions as in Figure 3-1. Since the probability functions

p( ), q( ) are defined independently of the functions T( ),

•( ), we will deal with the two portions separately.

Each portion is characterized by a transition probability

set having four elements, e.g. the forward portion is

characterized by the set lp(0), p(1), q(0), q(1) . Without

any loss of generality, the sets of both portions may be

required to fulfill the following conditions:

S0

1
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(a) At least one of the following relations must be true:

p(l) p(O) 1(() f ((0)

q(l) q(O) 0(1) # 7(0) (8-3)

otherwise no interaction noise is present and the two-way

channel breaks up into two separate one-way channels.

(b) At least two members of a probability set have values

greater than or equal to 1/2, and in addition, the sum of

the values of the four members of a set must be greater

than or equal to 2.

(i.e. p(O) + p(l) + q(O) + q(1) ( 2

p(O) + p(l) + q(O) + q(1) _ 2 ) (8-4)

It should be noted that if necessary the above can always

be arranged by switching the "0" and "1" labels at the

channel output.
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8.2 Classes of Channel Portions

There exist two different classes of channel portions.

All channel portions either belong directly to these classes

or are equivalent to portions that belong to them. We have:

Class A:

Channels in which additional noise is caused by simul-

taneous transmission of signals having different digit values.

A channel portion belongs to this class if simultaneously:

lýp(0)-p(1) 2 0

1 2q(1) -q(O) Z 0 (8-5)

Class B:

Channels in which one of the input symbols of the reverse

portion causes exceptionally noisy conditions for forward

transmission.

A channel portion belongs to this class if simultaneously

1 p(O) 2 p(l) 1 0

ltq(0) > q(1) 7. 0 (8-6)

(Under the assumption that x = 1 is the noise-causing digit)

Equivalent Class A:

1 _ p(1) > p(o) Z 0

l Z q(0) > q(1)- 0 (8-5a)
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Equivalent Class B:

1 - p(1) > p(O) ? 0

1 q(1) 1 q(0)>. 0 (8-6a)
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8.3 Equivalent Channel Portion Representations A and B

In order to separate the noise components (a) from (b)

we would like to display a channel portion as consisting of

a part in which only noise component (a) would be present,

and a part having only noise component (b). Such a break-up

is evident in Figure 8-2, where the newly introduced pro-

babilities are defined as follows:

p() + P- 1
PO + p1 - 1

q(R) + p0 - 1 (8-7)

tB(i) =
pl +0 - 1

Representation by Figure 8-2 is possible only if probabilities

pl and p 0 can be picked so that simultaneously:

0 P 0 / 10o p0I I

06a(R) 4 1 3 = 0,1 (8-8)

x) x) p () 1

p (x) a kX) p
0 0

x

q (x) pe (X 1P

Figure 8-2.

0

X

1
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The noise in the second part of Figure 8-2 consists of

component (b) only. The noise in the first part will consist

only of component (a), provided that a(7) = 1 for some R and

(77) = 1 for some ~, We shall now see whether this condition

together with the requirement (8-8) can be satisfied, and in

what case.

For Class A we expect that we will be able to make

a(0) = (1l) = 1 (8-9)

For Class B we expect that we will be able to make

a(0) = B(0) = 1 (8-10)

Equation (8-9) leads to the equivalent channel representa-

tion of Figure 8-3. Relations (8-7) then become:

PO = p(O)

pl = q(l)

ct(l) - P(l) + t(l) - 1 _ b (8-Il)p(O) + q(l) - ba•_(i) = p(0) + q(1) - ! a

(0) p(0) + q (0) - 1 c_
p(O) + q(l) - 1 a

If we limit ourselves to Class A, then from (8-5) it follows

that whenever a 4 0 then also b 0 and c4 0. But labeling

rule (3-4) requires that b + c( 0. Hence we must conclude

that in Class A always a> 0. Therefore (8-8) can be satisfied

if and only if



(c) p(0) + q(0) 1 (8-12)

(d) q(0) ! q(l)

1 o al1) o
0 0 0 0

1 1 1 1
B(0) Pl 1 P1

=o0 Figure 8-3 x=1

Equivalent Channel Portion Representation A

It is furthermore clear that whenever a portion belongs

to Class A and labeling rules (8-4) are satisfied, then (8-12b)

and (8-12d) will always be fulfilled, and at most one of

(8-12a) and (8-12c) will be violated. We will deal with this

possibility in the next article.

Consider next relations (8-10) which lead to the

Equivalent Channel Portion Representation B of Figure (8-4)

II

0 0

1 1

T)
0

"1

SP

1

1 Pl e(i) Pl
x=0 Figure 8-4. x=1

Equivalent Channel Portion Representation B

0

1
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(a) p(l) + q(1) & 1

) b( (g1) (o)
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Relations (8-7) then become:

P 0 = p(O)

pl =  q(0)

l) = p(1) + q(O) - 1 b (8-13)
p(O) + q(0) - 1 a

p(0) + q(1) - 1 c
p(0) + q(0) - 1 a

Again, if we limit ourselves to Class B, then from (8-6)

it will follow that whenever a< 0 then also b % 0 and c< 0.

Labeling rule (8-4) requires that b + c> 0. Hence we must

conclude that in Class B always a > 0. Therefore for Class B

(8-8) can be satisfied only if

(a) p(l) + q(0) I 1

(b) p(1) 4 p(0)

(c) q(1) +.p(0) 1 (8-14)

(d) q(1) 4 q(0)

But whenever labeling rules (8-4) and relations (8-6) are

satisfied, then (8-14b) and (8-14d) are always fulfilled, and

at most one of (8-14a) and (8-14c) is violated. We will

deal also with this possibility in the next article.
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the reverse direction. There is, however, no reason why the

identification of digits 0, 1 with the constant a should be

independent of the digit E being transmitted. We could,

for instance, identify a with 0 whenever x=0 and a with 1

whenever x=l. In such a case we would get instead of the

usual channel portion the portion of Figure 8-5, where we

assume that rule (8-4) has been kept for the new probabilities

r(x) and s(x).

0

1

0(x)

1(x)

Figure 8-5

From ruile (8-LL) it follow that~ if

p(O) + q(0) > p(1) + q(1) (8-15)
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8.4 Channel Equivalence Through Transformation

In section 8.1 we have decided upon a labeling rule.

The received symbols a and b were identified with the trans-

mitted symbols 0 and 1. If, for the sake of argument, we

are dealing with forward transmission, then whenever rules

(8-4) are satisfied, a is identified with 0 and b with 1

dl f th, 4d A 4 4t U A 4d
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then 0(M = 0) = a 0(R = 1) = b

1(E = 0) = b I( = 0) = a

and r(0) = p(0) r(l) = 1 - p(1)

s(0) = q(0) s(1) = 1 - q(1)

and if

p(0) + q(0) <p(1) + q(1) (8-16)

then

0(0) = b , 0(1) = a

1(0) = b 1, (1) = a

and r(0) = l-p(O) ; r(1) = p(1)

s(0) = 1-q(0) s(1) = q(1)

Of course the channel portion of Figure 8-5 may be trans-

formed into equivalent channel portions of Figure 8-3 or

Figure 8-4, whichever is applicable. Hence suppose that we

are dealing with a channel portion of Class A for which condi-

tion (8-12a) fails. We can transform such a portinn into the

channel of Figure 8-5, where relations (8-15) are applicable.

We may now attempt to fit the new channel into the schemes

or eitner Equivalent Channel Portion Representation A or

Equivalent Channel Portion Representation B. This, of course,

depends on whether the new probabilities r(R) and s(I)

satisfy conditions (8-5) or (8-6).

(It should be noted that the new channel could also

satisfy equivalent conditions (8-5a) or (8-6a) arising from

(8-5) and (8-6) by substitution of the argument "1" by the

argument "0" and of the argument "0" by the argument '
1")o

L..
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Now if conditions (8-5) are satisfied, then we have

1 p(O) > - p(l1) 0

1 >1 - q(l) q(0) - 0 (8-17)

and the question is whether (8-18) is satisfied:

p(1) + q(1) 4 1

p(O) + q(0) 6 1 (8-18)

But the satisfaction of (8-18) was the reason why we transformed

into the equivalent portion of Figure 8-5 in the first place.

Next, if conditions (8-6) are satisfied for the new

probabilities, then we have

1 B p(0) > 1 - p(1) > 0

1 >.q(0) > 1 - q(1) 2. 0 (8-19)

and the question is whether (8-20) is satisfied:

q(0) p(l)

p(0) ~ q(l) (8-20)

But, as pointed out, inequalities (8-18) hold by assumption

and (8-20) follow from (8-18) and {8-19).

Finally, thenew probabilities might satisfy Equivalent

Class A definition. Then we would have:

1 1 - p(1) > p(0).0

1 L q(0) 1 - q(1) .0 (8-21)

and the question is again whether (8-18) is satisfied, and,

as has been pointed out, it is.
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(Equivalent Class B cannot hold for the new probabilities

because, as can be checked, this would mean a violation of

the labeling rule for the original probabilities). We have

thus successfully finished treating Class A when (8-12a)

Snie "nfl hnlt_.
All together, there are the following possible

troublesome cases, which can be treated by the transformation

of Figure 8-5, as can be shown by reasoning similar to the one

employed above:

(1) Chnnel.ai-" *n ^f (^li oF Cl A h ieli (8- 1c)\

fails to hold (was treated above).

(2) Channel Portion of Class A where inequality (8-12c)

is not satisfied. In this case the probabilities r(x)

and s(x) can fulfill the requirements of: (a) Class A,

(b) Equivalent Class A, (c) Equivalent Class B.

(3) Channel portion of Class B where inequality (8-14a)

is not satisfied. The transformed channel portion then

satisfies inequalities (8-15) and the probabilities r(3)

and s(R) can fulfill the requirements of: (a) Class A,

(b) Class B, (c) Equivalent Class A.

(4) Channel portion of Class B where inequality (8-14c)

is not satisfied. The transformed channel then satisfies

inequalities (8-16) and the probabilities r(R) and s(R)

can fulfill the requirements of: (a) Class A, (b) Equiva-

lent Class A, (c) Equivalent Class B.
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From the discussion in this and the preceding article

we can therefore conclude that every portion of a binary two-

way channel whose transition probabilities satisfy equation

(8-2) can be treated either directly, or after preliminary

transformation into the channel portion of Figure 8-5, as

either the Equivalent Channel Portion Representation A, or as

the Equivalent Channel Portion Representation B. In other

words, it can always be broken up into a cascade of two

components, the first of which has noise due to the trans-

mission signal in the opposite direction, and the second of

which has steady noise uninfluenced by the opposite signal.
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8.5 Symmetrical Equivalent Channels

As pointed out, there are only four different possible

h l i C
cil n -n I pULtJ. oVs- Lass A, Class D, Equivalent Cliass -, ana

Equivalent Class B. Every channel consists of a forward and

a reverse portion, and consequently there are 10 essentially

different two-way channel classes (that is, if we consider

a case and its equivalent to be different). However, it is

reasonable to assume that in most cases both portions of a

two-way channel will belong to the same class.

Further interesting symmetry conditions can, however,

be obtained. We will term a channel "horizontally symmetri-

cal" if for both directions the transmission conditions of a 0

and a 1 are the same. We will term a channel "vertically

symmetrical" if the transmission conditions ýfr the forward

direction are identical with those for the reverse directions.

A "completely symmetrical" channel is one which possesses

both horizontal and vertical symmetries.

Horizontal symmetry results in very interesting situations

for both Class A and B.

Horizontal Class A

Clearly the conditions

p(O) = q(1) "(0) = 7(l)
(8-22)

p(1) = q(0) (1) = (0)

must be satisfied.

I



148

Inspecting relations (8-11) we see that

P0 = 1 = p = p(0)

0 = = p(0) (8-23)

a(1) (0) P p(1) + p(0) - 1
2p(0) - I

== - -(1) + ((0) - 1
2P(0) - 1

and therefore we obtain the channel of Figure 8-6.

x y

1 C(X")

P a(x)
0 0

c r
P a(kx) (Note: x is the

complement of x
-C

Figure 8-6. x is the
complement of x)

Thus, we have for both directions a reversible z-channel

followed by a cnnstant binary symmetric channel. Further re-

flection shows that the channel of Figure 8-6 can be repre-

sented by the configuration of Figure 8-7, the latter repre-

sentation being conducive to further interesting interpretations.
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i Y

It is seen in Figure 8-7 that the transmission noise is

produced by four independent noise sources (outputs 0 and I

with probabilities indicated), the noises N and N being

"gated" by multipliers. N and N are blocked wheneverthe

signals x and x are in agreement. One can derive a boolean

expression for the received signals:

= z n = (x N') (N N) Gn
(8-24)

y = Q n = (2 ~') $ (x '") DT

and it is understood that
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P(N = 1) = 1 - a(1)

P(N = 1) = 1 - a(1)

P(n =1) = 1 - p +8-25)

P~ = I) = 1 - p

From (8-24) we notice that:

a) If N = 0 (i.e. no noise) then '= x)n

If N = 1 (i.e. noise) then Q =· n

and therefore the "variable" channel acts like an erasure

channel (if there is noise the output tells nothing at all

about input) but the receiver does not know where the erasures

occurred.

(b) If it were not for the constant channel in cascade,

the receiver would know sometimes when an erasure did not

occur, i.e. if n = 0 and f 3E then necessarily j3 x,

c) Noise patterns n and N are independent of each

other, and even if they are known, the output y will not,

in general specify input x.

Because of the results pointed out above, channels be-

longing to horizontally symmetrical Class A can also be re-

presented as in Figure 8-8.

Horizontal Class B

Here the conditions

p(O) = q(0) (0) = (0)

p(1) = q(1) T(1) = ý(1) (8-26)

must be satisfied.
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- - terminal No. I
write probability

Figure 8-8 p(1) = 1-a(1)

Inspecting relations (8-13) we see that we have:

P = P p(0) = p

P 0  P = (0) = p

(8-27)

a(1) = B(1) = p(l) + p(O) - 1
2p(0) - 1

a(l) = P(1) p(l) + p(O) - 1
2p(0) - 1

Therefore we obtain the channel represented by Figure 8-9.

Y

Y

x
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y

1

P a(x)

Figure 8!-9

0

x

1

We thus have for both directions a variable symmetrical

channel (which is noisy if the signal transmitted in the

opposite direction was a 1) followed by a binary symmetric

channel. Further reflection shows that the channel of

Figure 8-9 can be represented by the configuration of Figure

8-10, the latter configuration being conducive to further

interesting interpretation.

It is seen that in Figure 8-10 the transmission noise

is produced by four independent noise sources, the noises N

and N being "gated" by multipliers. N and N are blocked

wherever x and R are equal to 0, respectively. The boolean

expression for the received signal is:

yz()n = x, (N ) x 8)n
(8-28)

y = z (1n = x 0 (f 0x) S n
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a(x) p
0 0

x y

1 1
(x)(x) a (x)
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From (8-28) we notice that

a) If N -= 0 (i.e. no noise) then y = x + n

If N = 1 (i.e. noise) then y = x + x + n

In other words knowing the noise patterns N and n the

receiver y can determine what x was, since it always knows

the signal x.

b) Except for the independent additive noise n, a

receiver controls its own noise by its transmission. i.e.

if it sends out only O's, it can guarantee noiselessness in

the variable part of the channel. Thus, except for the

F

Y

X
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constant BSC in cascade, by reducing its signalling rate to

zero the terminal in question can assure perfect, noisless

reception.

It can easily be seen that channels belonging to the

horizontally symmetrical Class B can also be represented as

in Figure 8-11.

.. q j

switch in No. 1 position
with probability p(1)=l-a'(1)

DOSEiTon WlCn
probability
p (1) =1 -a (1)

Figure 8-11

b -

+ .0-v7T
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From the results of this section we may conclude that

a study of channels consisting of portions in which all the

noise is due entirely to signal transmission in the opposite

direction, would give results very indicative of the situation

of two-way binary channels unrestricted otherwise than by

the relation (8-1). This may prove crucial in the selection

of examples to illustrate the coding results derived in this

thesis. In the present article we have also developed a tool

for judging possible relevance of particular examples to the

general case. Figures 8-8 and 8-11 provide us for given

channels with an intuitive guide as to what kind of signal

cooperation between opposing terminals could prove useful.
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9. Properties of Two-Way Channel Codes

9.1 Philosophy of Strategy Coding

A word F of input symbols to the derived channel of Figure

4-2 can be looked upon as a strategy by which the signal input

to the two-way channel is determined. I.e., the signal word

F(Y) is decided in advance for any possible received signal

word Y. Thus the kind of coding examined in this thesis can

rightfully be called "strategy coding". It was demonstrated in

Article 8 that a coding strategy for a two-way channel with

specified transmission probabilities ought to result in such

signal cooperation between the opposing transmitters as would

reduce the noise in the variable part of the forward and re-

verse channel portions (see Figure 8-2). It was further shown

that in essence only two different types of channels exist

and hence that only two different general types of strategies

are necessary.

It is clear from Article 7 that the possible decrease

of noise in the variable part of the channel is paid for by

a loss of information resulting from the fact that in

strategy coding the identification of the signal sent is not,

in general, sufficient for the correct decoding of the message

associated with a symbol word.

One may then ask whether and how the gains of our method

overbalance its drawbacks. It should first be pointed out
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that in a good code the strategies of the two terminals are

correlated in the sense that the strategy of the forward

terminal is best for a given strategy of the reverse terminal,

and vice versa. (This optimization is accomplished by the

maximization of the quantities on the right hand sides of in-

equalities (6-54) and (6-55) over the different possible input

symbol probability distributions P(f) and -(f).). In view of

the extreme complexity of the situation, the author is unable

to describe in detail the character of those strategies which

will insure the optimal correlation of input signals. Instead,

he will try to indicate heuristically how such strategies work.

The sought for principle is one of variable signalling rate.

Namely, when using a good code the forward terminal will in-

crease its rate at timesin which by its "judgement" (a) its

own decoder can afford the resulting noise increase, and (b)

the reverse decoder can cope with the rate increase. Conversely

the forward transmitter will lower its rate at times when

either the forward or the reverse decoders have trouble operating.

All this is done in correlation with the actions of the re-

verse transmitter, so that, e.g., both do not increase their

rates at the same time. 'We will illustrate the above in a

moment, but right now we wish to point out that the "judgement"

mentioned is accomplished by virtue of the fact that the

selection of the transmitted signal x is based, through the

strategy function f, on the identity of A past transmitted
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and received signals ae,J,, which in turn are indicative of the

I past received and transmitted signals &,' at the reverse

terminal.

Consider now a two-way channel whose forward and reverse

portions are both representable by the Equivalent Channel B

of Figure 8-4. A good code will then have the property that

when used, the frequency of transmission of the signal 1

through the channel in both forward and reverse directions

will be smaller than the frequency of transmisiion of:the sig-

nal 0. Hence the signal will carry more information than the

signal 0. Now the transmission of a 1 from any terminal increases

that terminal's reception noise. Hence the transmission frequency

of l's will in a good code be highest at times when the trans-

mitting terminal's decoding is in good shape and the reception

noise of the receiving terminal is expected to be low. Thus

maximal use will be made of the increased information content of

the contemplated signal. It is reasonable to expect that the

above strategy can indeed be implemented.

The strategy to be adopted is not as obvious when dealing

with a symmetrical channel of class A of Figure 8-6. In the

variable part, noise is generated when the signals transmitted

simultaneously from the two terminals are different. If the

forward transmitter expects a 1 to be transmitted from the

reverse side, increasing the probability of x=l will decrease
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the channel noise level and also the contemplated signal's

information content, and hence the rate. Therefore, information

rate can be increased in favorable situations by increasing the

frequency of digits apt to cause more noise, and it can be de-

creased in unfavorable situations by opposite action.. Thus a

vehicle of fruitful signal cooperation between opposing terminals

is conceivable.
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9.2 Dependent Symbol Coding for the Derived Channel

It was shown by Shannon (1) (for discussion see Section 3.3)

that the convex hull of the set of points E(I (F;Y/F));

E(I (F;YIF)) obtained for different probability assignments

P(F) and P(F) will constitute the set of points of the capacity

region of the two-way channel, as the code word length n and

the symbol dependency length I grow appropriately large. (The

preceding statement is actually Shannon's theorem given in the

notation and terminology of this thesis). According to Theorem

7-5 this capacity region will be included in the convex hull

of points E(I"(X;?XI)); E(I'(X;Y/X)) obtained for different

probability assignments P(F), P(F) for different sizes of n

and L. We have argued in the preceding section that the aim of

the employment of strategic codes is the achievement of signal

cooperation between opposing channel terminals, which would

result in an increase of the size of the convex hull of average

mutual information points [E II"(X;Y/X)}, E fI' (;Y/X)] over

that obtainable by non-strategic codes. We have discussed the

above information measures in sections 7.2, 7.3 and 7.4, and

we have concluded (see especially Theorem 7-1), that any value

of EP(F)() (I"(X,/XL),I'(YXY!X)) can be approached arbitrarily

closely by independent symbol probability assignments P(f) and

F(f), if the dependency length I is made long enough. The

question therefore arises whether all results achievable by
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dependent symbol coding (e.g. by word probability assignments

-P(F), FP())cannot also be achieved by independent symbol coding

associated with the symbol assignment probabilities P(f), F(f),

when an appropriately long dependency length I is used. The

answer to this question hinges according to the conclusion of

Theorem 7-5, on whether or not the use of dependent sources

can reduce the coding loss E(I(Y;~/F,F)).

The author did not succeed in answering the last question.

Two possible approaches to the problem exist and the discussion

below will give the reader an idea of why neither of them was

fruitful.

Firstly, one could try to hold the value of the quantities

E I"(X;Y/X)}, Efi'(iX;X:)I constant, and inquire whether it is

possible under this constraint to reduce the coding loss

EII(Y;-Y/F,F) by switching from independent to dependent symbol

sources. Unfortunately it follows from Theorem 7-1 that no

such constraint, except in some degenerate cases, can be satis-

fied, since for independent symbol sources the channel input

signals depend on a finite number of preceding input and output

signals, while for dependent sources the channel input signals

depend on an infinite number of preceding input and output

signals.

I



162

Secondly, one could attempt to attack the problem in all

its breadth, by trying to prove that every point E(I(F;Y/F));

E(I(F;Y/F)) achievable by dependent sources P(F), '(T) for a

given I can be approached arbitrarily closely by independent

sources P(f), P(f) when an appropriately long dependency length

2* is used. But the usual approach to similar proofs for the

one-way channel (see Fano, (4), p.125), in which the independent

distribution P(f) is determined from the dependent distribution

P(F) by the equation

fi fl f2 fn) (9-1)p(f.) = P(F = fl, 2 i'''' n1)

flV .. fi-1 fi+l1 •. f

will not work. In fact, it is intuitively clear that if the

suggested theorem were true, then the dependency lengths tPand

t of the symbols put out by the dependent and independent

sources, respectively, would in general not be equal, and hence

that the symbols put out by the equivalent dependent and in-

dependent sources would be of a different character.

Therefore we are reduced to only asserting that for loss-

less channels (ie. those satisfying either of conditions (a),

(b) or (c) of Theorem 7-7) the capacity regions of dependent

and independent coding are equal.

For reasons similar to those given in the paragraph pre-

ceding the last one (made more evident bytheproof that follows)
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Given the transition probabilities p(y/x,R)

for a two-way channel, the rates

and P(/x,R).,

A = E(I(F;y/F))

are concave downward functions

probabilities P(F)

of the assigned input

and P ().

It is only necessary to show that

1 - 1
R( [PL (F)+P 2 (F)],[ 1( 2 (F) -)2 2 1()+2 f)]2

2
11 2

i-Il

2
j=1j=1 R(P (F),P. ())

and the theorem concerning both R and R will follow.

If we could show that

1P(F))? -[R(P (F),P(F))+R(P (F),P(F)),

and also

Si1R(P(F),, l(Fl(F)+P-(F)))X[R(P(F),,1(F))+R(P(F),P2(F))],

then (9-3) would follow, since by

2 R( (P1 (F)+P2 (F)) 'i ())
2 12 '2 ''i 4

(9-4)

2

j=1

and by (9-5)

R( (P (F)+P 2 (F)) p-(2 2I R( (Pl2

( -4)) -
i=1 j=1

the author did not succeed in proving the independent

version of

Theorem 9-1
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coding

R = E(I(F;YI/))

Proof:

(9-2)

R( (P (F)+P 2 (F)),

(9-3)

(9-4)

(9-5)

P (R (F ) F 
(F) 

)

, ' (9-6)

(9-7)

L\ \~L I I • -- I I I" • •

(F)+ 1- (F) ) ) >

R(P (F),Pi(F)).



We will first prove (9-4).

1
PO(F) =2

Let

(P1 (F) + P2 (F)).

Pri(Y/F,F)
)=E(log Pr (P(F )Pr P(V(7) )

V~- /

i=0,1,2

where by equation (7-81)

Pri (Y/FF)
Y

Pr' (Y/F(Y)F(Y)) Pr"(Y/F(Y)F(y))

for all i,

and by (7-82)

Pri (Y/F)
1.

Pr' (v/FP (v F (ý) P r i (/F (v)v-G01e P

Y,F

F,F
PO(F)P(F)2 Pr(Y/FF)

Y
log Pr(Y/FF)

=2 (H1 (Y/FF)

Moreover

+ H2 (/F) ] -

P(F)Prl (/F)

P (F)Pr2 (Y/F)

H0 (YVF) =

Pr0 (Y/F)

log erl(7 /)

log Pr 2 (yIF)P2 (/)

Relations (9-12) and (9-13) together with (9-9) prove

Our next task is to prove (9-5).
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then

R(P (F), (F)

(9-8)

= V I (9F-H (ý -FF)
P, (9-9)

(9-10)

But

(F). (9-11)

(9-12)

2 [H F)

+2
F Y

] £0. 0-13)

(9-4).

\ /l " "J ""

\II \Ir

HO (y/FF) = -

+ H2 ( 7/FF)).

Let now
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PrT. (Y/FF) - (9-14)
R(P(F),Pi(F)) = E(log ~F ) = H /F ) - H (Y/FF)  (9-14)

where again P0 (F) - I(P (F) + P2(F))

It follows from (7-81) and(7-82) that probabilities Pr* (Y/F,F)
1

and Pr.(Y/F) are constant over i=0,1,2. Hence

HO(Y/F F )-  - P(F)P 0 (F) Pr(i7/FF)log Pr(-,/FF)
0 "

12 H1 (Y/FF) + H2 (Y/FF), (9-15)

and

H0 (Y-/F)= -~ 0 (F)Pr(,/F)log Pr(Y/F) -

1 * *
2 (H1 (Y'/F) + H2 (Y/F)). (9-16)

Probabilities (9-15) and (9-16) together with (9-14) prove (9-5).

Q.E.D.

We next prove a similar theorem for dependent function

assignments 
about the coding loss:

Theorem 9-2

Given the transition probabilities p( /x 2) and p"(f/x E)

for a two-way channel. For a probability assignment of

input words to the corresponding derived channel, P(F)

and P(F), define the coding loss function

.C.. (- o/F )
L L(P(F)9P (F) )=Eo1 Pr(y/FT)Pr(r/F7) (9-17)

Given any two pairs of input probability assignments

(Pl(F)i(F) (2 (F ( ) ), the equation

1 lF)P '2')

L

i



166

1L( (Pl(F)+P2 (F)).f 1
- (Pl(F)+P2 (F)))

1 L

(9-18)

holds.

Proof:

Because of symmetry, all we must show is that

1
L(-(P 1 (F)+P 2

1L
2 [L(P 1

(F),P(F))+L(P2 (F) ,F()) ].

The equation (9-18) will then follow by the reasoning employed

in proving (9-3) from (9-4)

Let equation

T (P (F\ P('\ - U= U

(9-8) hold

(V/( FV4 I

and (9-5).

I. Then

i (y/FF) -Hi (Y-/Ff)
1 1

i=0,1,2.

But from (9-12) we get

HO (Y/F,F) 12 H
= (1/FF) 2 H2 (Y/FF),

and from

HO (Y/FF) = - H (Y/FF)
1H 2 (+ - H2(Y/FF).

From (7-45) it follows that

Pri (YY/FF) = Pr'(y/F(y)F(y)) Pr" (j/F (y)F(j))

for all i ,

so that

= -2 P 0 (F)P(FP)

1
= 2 H1(Y,/FF)

Pr(yy/FF) log Pr((y/FF)

S1
+ H2(Y, /FF)

Equality (9-19) then follows from (9-20, -21, -22, -24).

Q.E.D.

(9-19)

I, (9-20)

(9-16) we get

(9-21)

(9-22)

(9-23)

(9-24)

(P (F),Pi(F))

(F)),P(F))

u,\J ·- I I - Y

H0 (YY!FF)
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Finally, from theorems 9-1 and 9-2, by use of theorem 7-5

there follows

Theorem 9-3

Given the transition probabilities p(y/x R) and y(y/x 2)

. . . ... .... . . .... . . . ... . . . . . . . . . . . - J -- R ) . . -7 )

for a two-way channel, the average sum of the signal

informations received through the channel at the two

terminals,

E(I(F, ;F,9Y)) = E(I(X,Y;X,Y)), (9-25)

is a concave downward function of the assigned input

probabilities P(F) and P(F) of the corresponding derived

channel.

From the preceding theorems the usual convexity con-

sequences about rate maximizations follow. Amongst these it

is worth mentioning that for any given assignment P(F) there

is in general only one assignment P(F) which will maximize

E(I(F,Y;F,?)) and one assignment P(F) which will maximize

E(I(y;F/F)+I(Y;F/F)). (See Fano, ( p.135).
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9.3 Random Construction of Codes

In order to construct a random ensemble from which to

pick good codes for signalling at c lose to capacity rates, one

would ordinarily proceed as follows:

(a) Pick a dependency length I (see Section 5.3).

(b) Pick decoding criterion length m (see equation (6-10a)

and compare with (6-38)).

(c) Maximize the expression (9-26) over the possible

independent probability symbol assignments P(f)

and P(F), where is a positive real number con-

trolling the intended relation between forward and

reverse transmission rates (see equations (6-50) and

(6-51))

E flog I + (9-26)

+,A Elog Pr(v/f f•m m 9
s - m)m -m)

Pr(y/f,m,, 's)

(d) Using the optimizing distributions P(f) and P(f)

found in (c), evaluate S and E for equations (6-52)

and (6-53) by use of the procedure indicated in

( TuJ-/c7\ 41...A..e fT171.2n A f ITTI.1\ - A
\iv-cIJ .LLuVVIJ.LV.LL \.V---. aLU \.LVU.- 9 J. • 'UUm•t•e LIne

expressions log(l+e) and log(l+9) and decide whether

the length m picked in (b) was sufficiently large

(see (6-50) and (6-51)). If not, go through the

complete procedure starting with step (b) again

I

I 

.
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(note that for a different m the optimizing probabilities P(f)

and P(f) will, in general, have different values).

The procedure listed above is certainly a very complicated

one and must in any case be carried out with the help of a

computer. Most prohibiting is step (c), not only because it

involves evaluation of the complicated expressions (9-26),
2

but especially because optimization over a set of 2 variables

is necessary. The enormity of the task is readily realized if

22
it is pointed out that the number 2 equals 32 for P=1, and

131,072 for 1=2' The implications of this remark might seem

hilarious to a detached observer but not to the author who

labored hard to reach this point. Theorem 7-6 suggests a

possible way out of this calamity. One might, perhaps maximize

the expression

p/x)
E +Iog Pr(/ Rim mt-h +

+ A Eflog p (V xx)mm m (9-27)
SPr (y/x,k I Ys

over the signal assignment probabilities q(x), q(x), and then

using the optimizing probabilities q*(x), t(x') as constraints

i4 th l t (7-11 i i i t% ie
LI LIl J.. •; JL . •LLL. - .LJ../ , /LIILWLL,..•, LI : , • J;r , _ LI

o Pr(/f,f , m ,m , -m ,-m (9-28)

Pr(y/f,f ,/mf , m, -m
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over the--probabilities P(f) and P(f). Thig can be done any-

way for lossless channels satisfying conditions (a), (b), or

(c) of Theorem 7-7, and in such cases minimization (9-28) is

not even carried out. It is true that in (9-28) the number

of variables 
is the same as in (9-26), but we could perhaps

eliminate this last step in practice, if a good way was found

to satisfy the constraints (7-11) so that (9-28) would be

small compared with (9-27). As will be seen later, such a

good way really exists, and so we would like to find out how

good or how bad the quasioptimization involving (9-27) and (9-28)

is compared with the totimization (9-26).

Before dealing with the problem stated in the previous

sentence, it is worthwhile to point out that because of

Shannon's outer and inner bounds and Theorem 7-9, the expres-

slon Iv-z2) is to De optimizea only over a restrictea range or

probabilities q(x), 1). Namely over those combinations

q(x), (i) for which the expression would give a distribution
Pr(x,k) such that for it the point

E log Pr(r/x) , E log Pr(v/xR) (9-29)

would lie outside of Shannon's inner bound to the capacity

region of the given two-way channel.

We will now turn our attention to the questions discussed

in the paragraph preceding the last one and will prove

r r 1 r r 1 · r r
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Theorem 9-4

Given a two-way channel whose transdission probabilities

do not fulfill any of the conditions (a), (b), or (c)

of Theorem 7-7, and are such that O.p(y/xi)~..l,

0e( I/xi) -1 for all signals x,x,y,.. If the actual

capacity region exceeds Shannon's inner bound, the maxi-

mization of the expression (9-26) over the input assign-

ment probabilities P(f) and P(f) will never result through

equations (7-11) in signal probabilities q(x), q(x) which

would maximize the expression (9-27). Hence the maximiza-

tion involving (9-26) and quasi-maximization involving

(9-27) and (9-28) will have, in the general case, different

results.

Proof:

For notational simplicity we will prove a slightly narrower

theorem, but as will be seen, the argument can be generalized

to cover the entire extent of Theorem 9-4.

From Theorem 7-5 we have

E(I(F;Y/F)) + E(I(F;Y/F)) = E(I(XY;XY)) - E(I(Y:y/F,F)), (9-30)

and we are free to maximize the right hand side of the above.

Let

h (q(0) ,fo' 9" 22f  ) q(O) - P(f)

h 0(q{0) ,f .. ) (0- fV2 -1 f2 21_1)-0 f0''" " f 2 22



2- -1 Vf

h(f0 ". '* 2 ) 2 1 (9-31)
02 -2

22 -1 V f
21

Relations (9-31) constitute 2(2 +1) constraints between the

quantities q(O), q(0), P(f), P(f). Defining for each constraint

a Lagrangian multiplier, we then wish it find the extrema with

respect to the variables q(O), P(f), P(f) of the function

E(I(XYy; ))-E(I(Y;Y/F,F)) +h +

h+ h.. + Ah + h, (9-32)

where we let q(l) =-q(O) and q.(1) =-q(O). The solution

we are looking for will be the maximum of the obtained extrema.

The different extrema themselves are found by partially dif-

ferentiating (9-32) with respect to all the 22L variables q(0)
21 2 r1

22 2 2
the 2 2variables q(0), the 2 variables P(f), the 2 vari-

21 21
ables P(f), the 2 variables A the 222 variables 2- , and

21
the 2 variables A and A . We will thus get 422 + 22 + 2

simultaneous equations which should lead to solutions with

04 q(0) _1; O •O)A 1, in order to be acceptable. It is

expected that in the general case the solutions will lie on

the boundary of the P(f) and P(f) coordinates, i.e. that some

P(f) and P(f) will ultimately be made O0 It is further expected

172

h(f 0" f 21 ) 1 - 2P(f)



(v) h (q(0), f0"' 2 ) 00 f 2 22

(vi) h. (q(0), f T ) = 0
2 -1

(vii)h(f0 fl'1, 'f2 2 ) U 0
21 -1

(viii)h(f0 ', F 1,.,f2 ) = 0

S -1

The anticipated setting of P(f) and P(f) to zero for

some f and f will in no' way change the equations (i) and (ii).

It will eliminate some equations (iii) and (iv), but will not

change the firm of the remaining ones. It will leave the number

of equations (v), (vi), (vii) and (viii) constant, while

changing their form in so far as some of the terms in the

sums
right hand side of (9-31) will be eliminated.

173

that none of the ZL(Q), q(O) will in the general case come out

to be either 0 or 1. It will prove convenient to display the

different types of the simultaneous equations mentioned above:

M q(i ) E(I(X;T ) + = o0
(i)q (0)

C(ii))(0 ) E{I(XY;XY)l+ +1 -=0 (9-33)

(iii)B P(f EAi(' -A = 0

IV / \ \~ \f )Y I r- 1'; /J -L~ ~L b V



(ii) 0) EfI(X,Y;)J = 0 , (9-34)

where t is again understood that q(1) = l-q(0) and T(!)=1-4~i).

It then follows that if (9-34) is to lead to the same solution

as (9-33), then for the absolute maximum at least, the optimizing

variables L ,, must come out to be - - 0 for all

~(•.,). But then the constraints (9-33 'v, -vi) play no role

whatever in the minimization of E I('Y;Y/FF) . This in turn

implies that the function EfI(Y;j/FF)j will attain its absolute

minimum for such P(f) and F(f) as would satisfy the constraints

imposed by the distributions q(0) and q•0) obtained from the

optimization of EfI(XY;-XY)j. However, we know that under the

assumptions about the two-way channel listed in this theorem

the unique minimum of the function EfI(Y;Y/FF)) is obtained for

the distribution

P(f) P(f) if f(x,g) = f() ,(9-35)
0 otherwise.

But the above distribution, if constraints (9-33-v,-vi) are to

be satisfied, leads to the conclusion that the q(0), Q(0) optimi-

zting- E I(XY;XY) would be

q(0) = q(0) .,V ; q(0) = j(0) 1.Uj, (9-36)La ·Ia

A
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When maximizing the function EfI(X,Y;Y--), we will get

equations of the type

(iW q(O) E(I(X,Y;XY)j 0
i q(0)
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which under this theorem's assumptions about the two-way

channel is false. This proves the theorem

Q.E.D.

Actually it is highly probable that the conclusions of

the above theorem hold even if the restriction

0 4 p(y/xx) ( 1; 0 4 p(y/xx) 4 1 on the transmission pro-

babilities of the two-way channel is removed. We must then

conclude that our quasi-optimization scheme will in most cases

be just that-it will not be equivalent to a full-fledged

optimization. On the other hand, for practical reasons

(namely that for A=1 the number of variables q(O)+ qO) is

8 and for £=2 the number is 32) we might still be forced to

quasi-optimize rather than optimize, and then by some procedure

find the distributions P(f) and P(f) which would satisfy the

constraints (9-33-v-vi). Such procedure will be described in

the next section.

We wish to conclude this section by observing that a

consequence of Theorem 9-4 is that in order to maximize the

flow of useful information through the channel, one must not in

general maximize the total flow of information through the

channel. Ratherzone must make a compromise and send less in-

formation through the channel, of which however a greater part

can be used for message identification. Thus, up to a certain

point, an increase in total information flow through the channel
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due to strategy coding can be made in such a way that an in-

crease in useful information will correspond to it; beyond that

point however, any increase in total information will be accom-

panied by an even greater increase in coding information loss,

so that the net amount of useful information will actually

decrease.

L.
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9.4 Canonical Distributions (f) ~SSaisfVing the Constraints of

lq ()J, IF))Distributions

Given a distribution4q(0) , we can assign indexes is(l,

2L
2,...,2 ) to the various configurations (~4) according to

the following rule:

When i< j then either a () q (0)

or q0( = q and the integer represented

hv b h hi-nar, numhbe (- /)_ is. smalle r th.an thp

integer represented by (3,f)j.

(9-37)

The index rule (9-37)then assigns a unique and different index

to each different configuration (A, ).

For the same given distributionfq(O) we will define a new

notation for the symbols f:

Given a function f such that

I for (x,i)e (., ) i,j(,) i, (W,) i)
1 2 n

0 for remaining ( ,) (9-38)

Let f f fY
il'i2,..,,in#

Also the above rule is unambiguous, but it should be stressed

that it applies only for a specified fq (0)o . For a different

( hh~ tqU 13 L te rule operates in general differently. Note t a
according to (9-38),

f L- f* if f(X,V) - 0 for all (3,p)

and (9-39)
f " fl2 22 if f (,t) = 1 for all (W,:)

f "M f 21 ,



We may now construct the distribution P(f)

Let

P(f*) = q(0)

P(f) ( = (O)1W
P(fl, 2 )

192

1,2,

( 0)

as follows:

- q(0)

- q(0)
1 X3V,

2.21 _) = q(0)... (X2), Jn-pe
P(f* 2U)

1,2,.. .,2

P(f) = 0

= 1 - q(0)
tr ica

Vf k (f*, , f'
1 1,2,. .,

It is clear from the above and from the indexing convention

(9-37) that P(f) 2. 0, Vf and also P(f) = 1. Moreover

= P(f*)+P(f*)+...+ P(f1 112, .

+[q(O)
(9-41)

- q(0)waph
[q(0) - q(0) 1 =

for all k s(1,2,..., 22 )
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- q(0) (9-40)

2 P(f)

f£ f((9 3)k)=0

= q(0)

= q(0)

.. 22 L1... ,O.2
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so that the assignment (9-40) satisfies the constraints of

equations (7-11) for the signal probability distribution

fq(0)j. We have thus displayed a procedure for finding

distribution P(f) for any constraint (7-11). Such distribution

is in a sense a cannonical one, since in general it satisfies

(7-11) with a minimal number of symbols which are to have non-

zero probabilities. As seen from (9-40) the maximum number of

non-zero probabilities necessary for this assignment method is

2 2+1.

Our interest in P(f) and P(f) assignments satisfying

the constraints of signal distributions jq(x),J(R 1) arose

in the preceding section from the consideration of a practical

way to optimize expressions (9-26). We were there suggesting

that, for distribution fq(x)j,f3) maximizing the expression

(9-27), a distribution P(f) and P(f) should be found which

would minimize (9-28). The author has not succeeded in proving

that the assignment (9-40) is the one which would accomplish

that, but an argument can be presented showing that it is a

good assignment in some sense:

It follows from Section 7.5.2 that a code giving a minimal

coding loss will in general contain such words F whose range

F(Y)=X is small over those Y's which occur with overwhelming

probability. We would thus wish to include into the codejall

other things being equal (and in the next section we will
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discuss a condition under which they are not), only those

symbols f which with overwhelming probability would generate

one of the binary digits, and only with a very small probability

its complement. Roughly speaking then, the forward codewords

ought to consist of those f's for which the number of different

configurations (t,•) such that f~(3 )=x would very much

exceed the number of different (Mj~) such that f(1, )=x C

We wouldthus like to give the greatest possible probability

weight to those f's exhibiting the above imbalance the most.

But inspection of (9-40) convinces us that such is exactly the

result of that assignment. Namely, of all possible assign-

ments satisfying the constraints (7-11) for a given distribution

jq(x)j, Ii, ) the assignment (9-40) gives the greatest possible

weight to the symbols f* and f* 2,22 and given the

previous, it gives the greatest possible weight to f* and

f*1 .2- , etc. etc. Hence, in this sense, at least,

procedure (9-40) gives the optimal results.
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9.5 Further Note on Quasi-optimization of P(f) and P(f)

Distributions.

It is reasonable to expect that the optimal distribution

P(f) and P(f) maximizing the expression (9-26) will depend on

the length m of the decoding criterion defined in (6-10a).

This can be seen by consideration of the results of Appendices

III and IV. Surely, if the probability Pr(3/f,f,/m, mm, -m

cannot be said for a sufficiently large m to converge to the

b*~F;·', bilitF PI PL9/fJ ~AI1
pro a ~r y r(~y J,r ,)f ) 1 Y ULV LIY

- -m- 1 .- m- 1 . - -m- 1
all sequences (s ,y ,.yf ., ,..,f) for which

..-m . -m- 1 m- -- -m-1 -1 -m- 1
s =g gs ,f ,y ) and Pr~y~ ,,y ,f,.., T ,m 1f,,,f

p-m-) f 0, then it follows that the criterion is not a very

accurate one, and that the probabilities of f's and f's ought

to be weighted so as to make the inaccuracy least damaging.

As m increases, such inaccuracy must have a smaller and smaller

effect on the resulting probability of a decoding error, and

it must hence be taken into consideration less and less when

the distributions P(f) and (f-) are being determined.

Now, as shown in Section 6-2 and in particular by equation

(6-7) the sequences (y,..,y LU,y,, L,f,*,f ,f,..,m) can

be considered as having been generated by a Markoff source.

Thus the treatment of Appendices III and IV applies to the

construction of the probabilities Pr(y/f,f ,/m,, m m .-m)

the Markoff source in question belonging to the class treated
I
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k %d-= I (9-43)
otherwise
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in Appendix IV. Set-transition matrices3 (f) can then be

constructed, but it can be shown that unless the set of f's and
& P(f)#O

f's for which P(f) # O/is restricted to those for which f(X,O ) =

f(x) and f(5)) = f(A), the condition of Theorems III-1

or IV-2 on the set-transition matrices guaranteeing the con-

vergence of Pr(Y/f,jf ,m 3 sm,9'm) cannot be satisfied. Hence

in general, the latter probabilities will not converge.

An example of how such non-convergence occurs will be

given. It should be pointed out that the convergence required

must be of the type of equations (IV-39) of (IV-55), so that

reasoning analogous to that involving equation (6-31) can be

employed. The latter is necessary if the conclusion is to be

made that the magnitude of m does not have a large influence

on the optimizing distribution P(f) and (f-). Now note that

Pr(/f,, m,m m, s-m) = (7/0 ) Pr(0/f,/m ~m -m +

+ ý(7/1R) Pr( /f m m 3-m (9-42)

where 7,3 m is determined fmms ,i ,

Hence if it should turn out that for some particular identity

-m-1 / m m -m -m-1
of f , e.g., Pr(0/f ~ m ) = 0, while for other f-m-I

the last probability is non-zero, then the probability (9-42)

would not converge as required. This can certainly happen.

For suppose that

all fi, ie(0,-l,o..,-m) are such that

S 0 if (3,E) = 0



183

Then if f-m- were such that f--(a) = 1 for all •, the

probability Pr(O/f, f m ,sm) would indeed be zero. Thus

we have exhibited a non-converging example. Of course, much

less drastic examples are possible, but the whole problem is
best approached from construction of set-transition matrices

as mentioned earlier. We conclude therefore, that further

safeguards on:the quasi-optimization process might prove neces-

sary. We will list two practical possibilities, the second more

complicated than the first, but also a more nearly optimal one.

9.5.1 Quasi-optimization: Practical Procedure One

(i) Pick the dependency length I (see section 4.3).

(ii) Pick the decoding criterion length m (see equation

(6-10a) and compare it with (6-38)).

(iii) Maximize over all the possible signal probability

distributions k(x) , 1I)4 the expression

E log m(j/xi m  +A E iog p(v/x
Pn (P,,-m pr(ylx,mm s-m )

(9-44)

where A is a positive real number controlling the

intended relation between forward and reverse trans-

mission rates (see (6-50) and (6-51).

(iv) Using the distributions (x) i) maximizing

(9-44) as a set of constraints, determine by the

procedure of Section 9.4 the cannonical sets

L. af) S and fj=P
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(v) Arbitrarily let

P(f) = 0 for all f S F(f) = 0 for all 7 S (9-45)

and determine the remainder of the distribution P(f)

P(f) by maximizing the expression

E lo +-mPr ya
+AEflog Am EW5 (9-46)

Pr(y/f mY ,s )
over the input symbol probabilities left undetermined

by (9-45).

(vi) Using the optimized distributiontP(f)I IP(F)j found

in steps (v) add (iv) evaluate the positive constants

e & E for equation (6-52) by the use of the procedure

indicated in (IV-47), involving (IV-43) and (IV-45).

Compute the expressions log (1+E) and log (1+4) and

decide whether the criterion length m picked in (ii)

was a sufficient one (see (6-54) and (6-55)). If not,

increase m and go through the entire procedure again,

starting with step (iii).

9.5.2 Quasi-optimization: Practical Procedure Two

Before we describe this method step by step, we wish to

return to Section 9.4 and point out that by the rule (9-37)

j

and (9-38) there exist altogether 221' different possible

canonical sets jf*3, each associated with a different ordering

Laoia
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by magnitude of the members of the signal probability set

q(x)j . Hence, if for any of the 221: canonical sets the pro-

babilities of symbols f not in the set are made equal to zero,

and the remaining P(f) left unspecified, any set of signal pro-

babilitiesfq(x)) whose ordering is that which defined the picked

canonical set f*J, can be obtained. Hence, when optimizing

under the restriction that only one canonical set of f's can

end up with non-zero probabilities, we proceed as follows:

(i) Pick a dependency length I (see section 4.3)

(ii) Pick the decoding criterion length m (see equation

(6-10a) and compare it with (6-38)).

(iii) There are (22· 1 2 possible different combinations

of canonical sets If*) and f* . For all of them

in turn maximize the expression

E log Pr(/7f, f TfmMm ,. +

Pr(7/ , mS-m

+ E log Pr(y/f, •,Am m, ms-mTh

Pr(y/if,/ m, ms-m

over the probabilities P(f), fe , and P(f),

fEff*), where arbitrarily P(f)=O for f t f*J and

P(f)=0 for fOFA . In the expression (9-47), A is

a positive real number controlling the intended re-

lation between forward and reverse transmission

rates. (See (6-50) and (6-51)). The maxima of (9-47)

obtained for each canonical set combination should be

recorded and stored.
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(iv) Compare the maxima obtained in (iii) and let the

greatest of them correspond to the cannonical

-i · ~ ( I - - -~~

probablilty set r7~(tw)j, ji~rI ).f For it evaluate

the positive constants E and F for equation (6-52)

by use of the procedure indicated in (IV-47) in-

volving (IV-43) and (IV-45). Compute the expres-

sions log(l+E) and log(l+e) and decide whether the

criterion length m picked in (ii) was a sufficient

one (see (6-54) and (6-55)). If not, increase m

and go through the entire procedure again, starting

with step (iii).

It is clear that all points obtained by the procedure

9.5.1 are i:cluded in the convex hull of the.points obtained by

9.5.2. The latter in turn are contained in the convex hull of

points obtained by the optimization for independent symbol

coding of Section 9.3. Thus it might be interesting to draw

for a given two-way channel a series of nested capacity regions

each corresponding to a different complexity of optimization.

One might then obtain a graph having the general shape displayed

by Figure 9-1.
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APPENDIX I

It is clear that an effective code will consist of a set

of words which are thegreatest possible "distance" apart, con-

sistent with the relative signal frequency which would match

the channel. A random code which accomplishes this on the

average is one whose words xl,X2,...,xn are picked with the

probability P(xl)P(x 2)....P(xn), where the probability distri-

bution P( ) is one matching the channel. Now in a two-way
the

channel code above probability relationship should hold for

codewords for both terminals, and hence we would wish that
also reverse terminal codewords xRx2 '' °'.. n be picked with

probability P(ZI)P( 2)...P(x). One may then ask when picking
the word pairs simultaneously, what freedom remains which could

be utilized to insure that when the random code is in operation,

the signals x and 5 be simultaneously transmitted through the

channel with probability Pr(x,R).

The only way in which one can attempt this is to proceed

as outlined below. Suppose that a code consisting of k forward

and reverse words is to be picked. If the length of codewords

is to be n then one can arrange these in two arrays of k rows

and n columns and pick the column pairs as follows: The forward

thsignal x (i1.2 ..... k in the i row is selected with nrobabilitv

P(xi), and the reverse signal with probability Q(7i./x.). If

this is done then the probability that in the ith row of the
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reverse code the signal i. was picked is 3(i)  = UQ(i./

xi)P(xi ) so that the randomness desired, as described in the

first paragraph of this appendix, is achieved. One will then

ask what joint probabilities Pr(x,i) of simultaneous signal

transmission can be achieved by judicious choice of the pro-

babilities Q(•'./xi). Assuming the messages to be equiprobable,

we get:

Pr(x,R) = 2 Pr(messagesm=i, F=j were transmitted).
i,j

Pr(x =x,,x.=x=)= -- Pr(x =x,x.x) =

k kk i
- Q(i/x)P(x) + k-i P(i)P(x)

From the above it follows that regardless of the pro-

babilities Q(R/x), as the number of messages k-b-oo, the

probability Pr(x,x)-* P(x)P(ý).

I
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APPENDIX II

Distribution of a cumulative sum of random variables, produced

by a Markoff Process.

The method for bounding of random variable distributions

discussed here was developed by C. E. Shannon in an unpublished

paper portions of which will be paraphrased in what follows.

As will be seen it is a generalization of the Chernoff bound

to probability dependences derivable from a Markoff process.

Suppose that a Markoff source is given having states

i s (1,2,.....,g), and that there are at most d possible paths

from any state i to any state j. Let (i(a,j) be the pro-

bability of a transition from state i to state j via path

aE (l,2,...,d). With each transition let there be associated

a real number V i. A cumulative sum of these associated

numbers is being produced by the process, its value being Snn

after n steps. If the process then is in state i and a

transition into state j via path a occurs, the cumulative

sum becomes:

Sn S + V .. (II-1)
n+1 n aij

If the system is started in a given state (or in any of the

states with certain prescribed probabilities pj) and operated

for n steps, the cumulative sum Sn is a random variable. We

wish to investigate the distribution of this random variable,

particularly its asymptotic properties for large n.
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Let

G.j(n,x) = PT Sn•x; final state j/initial state ij (II-2)

i.e. G. .ij(n,x) is a distribution function.

Let the corresponding moment generating function be

(Pj (n,s) es x d Gj (n,x) (II-3)

We now develop a difference equation for the distribution

function and translate it into a relation involving the moment

generating functions. By considering the different ways of

starting in state i and ending in state j with a sum G ij(n+l,x)

after n+l steps, we have:

Gij(n+l,,x) -- Pk(aj) Gik(n,x-V kj  (II-4)
k a

This may also be written in terms of functions kj(x)

defined as follows:

( jkj(x) Pk(a,j) (11-5)

dav a.k,kC'

Thus (Pkj(x) is like the distribution function for the change

in the cumulative sum when in state k but only for the transi-

tion into state j. Then equation (II-4) may be written:

Gij (n+l,x) = 2 Gik(n,x-y) d I1kj (y) (11-6)k f

The convolution involved above may be translated into a pro-

duct of the moment generating function for G and the analogue

of a moment generating function for V kj. The latter is:
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kj exs 0x= P eVakj Pk(a,j) (11-7)
k-o a

Taking moment generating functions of each side, equation

(11-6) becomes:

~'..(~l~) W n~) ~(1-8
ij(n+l,s) = ik ( n ,' s ) Bkj(s) (II-8)

k ik (

Thinking of i and j as fixed and the second subscript

of (as ranging over a set of coordinates, this gives a

linear difference relationship for generating the n+l vector

from the nth vector. The process for fixed i and s is similar

to that familiar in ordinary Markoff analysis, but the

[Pkj ( s ) ] is not, for general s, a stochastic matrix. The

Pkj(S)'s are non-negative, but their sum on j is not neces-

sarily 1. However, for s=0O the sum is 1 and, indeed, the

equation then becomes the ordinary Markoff equation for the

process where Oij(n,0) is identified as the probability of

state j after n steps of the process.

Note also that if pkj(0) # 0 (i.e. there is some positive

Pk(a,j)), then for all s, Bkj(s) 0 0. This implies that pro-

perties of the matrix [pkj(s)] which depend only on the

vanishing or non-vanishing of elements will be true for every

s if they are true for s=0. This includes important pro-

perties familiar in the theory of finite state Markoff pro-

cesses relating to the subdivision of states into transient,

R

I
I

I
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recurrent and ergodic subsets. Also, the greatest common

divisor of the length of closed paths through a group of

states, a quantity of importance in asymptotic behavior, will

not depend on s.

Using Frobenius theory, asymptotic behavior of high

powers of the matrix [Bij(s)] can be evaluated. It is pos-

sible to give a reasonably explicit formula for the general

term n) ij(s) of the matrix [pij( s )]n.

Let the characteristic equation

IBij(s) - v(s) 6ij= 0 (II-9)

have roots v1 (s), v2 (s),..., v (s). We assume, for simplicity,

that the roots are distinct, but slight alterations of what

follows give the general case.

Let the characteristic vector for the root v t(s) be

(t)A. (s)(and for the transposed matrix let the characteristic
1

vector be B. (t)(s). Thus:

A i (t)ij(s)=vt(s ) A (s);j Bj ( t ) ( s ) i j ( s ) = v t ( s ) B i ( t ) ( s )

(II-10)
The A. (t)(s) and B (ts) vectors are orthogonal if1 (

vt(s) # v (s) and the inner product of these vectors can be

normalized to 1 when r=t. When the normalizing is done, the

thgeneral element in the n power of the matrix [Bij (s)] is
ij
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given explicitly in terms of the characteristic values and

vectors as follows:

B (n)(s) - A. (s) Bi (s) vn(s) (II-11)

In the case where the greatest common divisor of the path

lengths is I (the case of the most interest to us), one of

the eigenvalues is real and dominates all others in absolute

(n)value . If we call this v1 (s), then Bij (s) is asymptotic,

and

(n) B I nlim (n)(s) = A (s) B (s) v n(s) (11-12)
n- oo 1 1

It can be seen from (11-8) and by comparison of (11-7)

with (11-3) and of (11-2) with (11-5) that

[(j(ns)n] = [1ij(s)]n (11-13)

and consequently, taking (11-12) into consideration, that

i Aj( 1 n
lim ". (n,s) = A.(s) B (s) v n(s) (11-14)
n --> oo

Using the properties of the distribution function for

all possible single steps of the Markoff process, we have thus

obtained the moment generating function of a cumulative sum of

Markoff-dependent random variables. Similarly to the indepen-

dent case, knowing the moment generating function we can ob-

tain an upper bound on the associated distribution:



S SSni j (u)
.i .j(n,s )  = e (13

1,3r Fur f r i

Pn(i,j,u) (11-15)
SU oLmJ.JL . LU j

where u is the n-step transition "route"
followed from i to j and on it S =S .. (u)

n nij

Therefore

S(n,s) >2.e SSnij(u)
(11-16)

-V u Snij () xn

> e s n x  Pn(i,j,u) = esnx G..(n,nx)

SSnij xn if s 4 0

Hence we get the result

G. (n,xn) L e - s n x V (n,s)
.J j for s ý 0 (II-17)

which, applying equation (11-14) can, for n sufficiently

large, be written as follows:

-n[sx-2n v1 (s) ]
Gij (-nx)4 e for s . 0

As is customary, we may optimize the above bound by defining

the function

(s) i- n v1(s) (11-19)

The optimization leads to the result

x = t(s)

and thus we get

G. (n;n (s)) e - () ) s 0

(11-20)

(11-21)

In order for the bound (11-21) to be of real value to

us, we must show that the exponent on the right hand side

is always negative. For this purpose, as is usual, we will

195

2,J

(1-18)

Pn(i,j,u) >
--
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define a tilted probability distribution q(i,a,j,s) such

that for it:

(s) (S) V. .i j q (i,a,j,s) = V(s) (11-22)

i.e. the cut-off value of the distribution (11-21) becomes

the average value of the random variable over the tilted

ensemble.

We first need to investigate some properties of the

characteristic values of equation (II-9). From (II-10) and

the normalizing requirement we get:

v(s)= v AB A k jk(s) Bk= Z AjBk ýjk(s) (11-23)
j j k jk

where, to avoid confusion, we have dropped the superscript 1

from the dominant eigenvalue and eigenvectors.

Also from (II-10)

v'(s) A.B. AiBjij + AiBj ij- A B (11-24)
S iij k jk

hence

v'(s)=v'(s) A.B.= ZA Bjij + A.i B.
j 3 i . j Z .ij

- Bkk (11-25)
- A. Z B kjk

and consequently

v'(s) -= A.(s) B.(s) B (s) (II-26)
i,j

I



Therefore we get from (11-22) )

1 1
v(s) i9C

(II-26) and (II- 7):

sVi.j
Ai (s) Bj(s) V. es i P.(j) =

- *iV. j q(iajs)
ija

and comparing like terms we get the definition for the

tilted distribution:

I sV. .
q(i,a,js) = (s) A B. e P (,j) (II-28)

From (11-23) and (II- 7) it is clear that we are dealing

with a well defined probability whose sum is equal to 1 as it

should be.

From (11-28) it is clear that

log (ia, ,s)
log i(,j) B.(s) Ai (s)

Therefore from (11-22) we ha

sy'(s)-y(s) = 2 q(i,a
iaj

S- y(s) + s V iaj

ve the equation

,j,s)

iaj

(11-29)

q(i,c,tj,s) -

log A.(s)Bj(s) Pi(a,j)

log Aq(i,a, j,s) +Ai(s)Bi(s)Pi(c,j)

B.(s)
+ log B.(s)

J

(II-30)

However, from (11-28) and (11-7) we get:

197

(11-27)

q(i,a,j,s)
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B i

n q(i,,j,s) = A.B. i [in B .- n B.]
S . qs v(s) I ijij a ij

= A.B. In B - ZA.B. In B = 0 (11-31)

The last equality being obtained with the help of Eq. (II-10).

But from (11-28) we can also write:

q(i, s) = q(i,a,j,s) = V) B. ij(s) = A.(s) B.(s)
j,c j

(11-32)

So that we can finally re-write (11-30):

s- ' ( s ) - y ( s ) = Ž q(ia,j,s) log q(i,, ij,s) >0
iaj q(i,s)Pi(a,j)

V s (11-33)

It should be noted that (11-33) equals 0 if and only if s=O,

since then v(O) = 1, B.(0) = 1 for all j, and thus q(i,a,j,s)=

Ai(0)Pi(a,j). Note that in such a case

y'(0) = V(0) = Viaj  (11-34)

Therefore we have proven the usefulness of the bound (11-21).

With reference to equation (11-2) and the discussion

of the preceding paragraph, it should finally be noted that

the general random variable distribution for n steps starting

in state i will be

Gi(n,x) = Pr fS n x/initial state i= G. G (n,x) (11-35)
1 n ij
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and if the system is started in state i with probability

Pi' then the over-all distribution surely is

G(n,x) = Pr Sn& x} = pG (n,x) . G I (n,x)

(II-36)

If we wish to find a bound on (11-36) we note that (11-21)

is independent of i and j, so that we get the bound

G(n,ny'(s)) : g e'n(sy'(s)-y(s)) ,s O0. (11-37)

This concludes the discussion of this appendix.
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matrix [M] of its transition probabilities. Let the source

have k states; sl, s 2, ... sk, and let the value of a matrix

element mrt be:

m = p(s /s ) where the superscript i (III-1)rt t r refers to a time interval.

We may, if we wish, divide the k states into I non-empty

classes: Al, A2,**...A The question we are concerned with

is: what is the probability p(AY, A ... , A ) ij,...,qs(l,2,...,I)
I j q

that the source will be found, at successive intervals, in

states belonging to the sets i,j,...,q ?

Example III-1

To illustrate: let k-3, i=2

A1 = = s21

A2 = sl' s31

43 2 1 4 3 2 1 4 3 2 1
Then P(A 1 ,A 2 ,A 2 ,A 1 ) = P(S 2 ,s 1 ,s 1 ,s 2 ) + P(s 2 ,s 1 ,s 3 ,s 2)

43 2 1 4 3 2 1
+ p(s 2 ,s 3 ,s 1 ,s 2 ) + P(s2,s3,s3 ,s2)

A general answer for our problem may be obtained with the

help of the matrixLM2.

pA P(s ,s ,...,s

3 q
SVA. s EA. s A EA

2 v-1 21
s EA. EA

(111-2)
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APPENDIX III

Suppose a Markoff source is given with an associated
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Define the k x k set-transition matrix ai(j), i,j s(1,2,...,e)

as follows:

a) . ( j ) h a s elementsbij r,t s(1 ... , k)1 rt

b) bi j = mrtrt

0

if s EA.
r 1

otherwise.

(111-3)

Define the vector P(i)]in Rk space as follows:

a) P(i)] has elements p$, re(l,2,...,k)
r

i r
b) p =r

if s EA.r r

otherwise

where p(s r ) is the stationary probability of the state sr of

the Markoff source.

kDefine the vector 1] in R space:

all elements of 1] are equal to the integer 1.

Lemma 1:

A,..A , A )- P(q) x, (i) WX 1]i w q LZ " I

(111-5)

(111-6)

Proof:

Let '(w)....2.() =Cq i

> ., r . , b QW .. bj

A=1C =1

(111-7)

But for (III-3) we can write:

d
va

..... 0

?E w p -* L eA

b VVA... b j i

ýa (111-8)

Therefore we have from (III-3) and (111-4)

(III-4)

then d
vo

iYI
··
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S [ ] 1] =d p
V a

vas sA a*.s sA.v q ao

(III-9)

pq dv va

and we see, after inspection of (III-2,-8,-9), that

P( 1 v- )P(s2 1
s eA s2eA s VeA. s A.

q w 1
(III-10)

... p(a /s ) Q.E.D.

We therefore see that given the r x r matrix [M] and any

state partition Al, A2, ... AP, one can, by the use of

matrices (i(j) defined in (111-3) and vectors.P(i) defined

in (111-4) easily derive a notationally compact expression

(111-6) for the probability of successive states being members

of specified state-sets.

It should be noted that:

P(i) [Q.(k)] =  0 if i #j
3 (III-11)

[ ( (r)][ 5(k)] = [0] if r # jq 3
Therefore, as a consequence of (III-11), a non-zero answer

will be obtained only if the product of matrices Q(M) pre-
V

multiplied by a vector P(i) and postmultiplied by 1] actually

makes sense.

We may, however, drop the above mentioned safety pre-

caution and contract further the square k x k matrices

S 0(j) into, in general, rectangular v x h matrices 9i(j)
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where v is the no. of states in set A.
1

and X is the no. of states in set A..
J

Equally, we may contract the k-dimensional vectorP(i), into

the v-dimensional vector OP(i) if the set A. has v states.

The contraction from2 (j), defined in (III-3),

to( 5(j) is done by eliminating from 3 .(j) all

the rows r such that the state sr Ai and all

the columns t such that the state st A .

Similarly, the contraction from P(i• , defined in (111-3

(111-4) to P(i)1 is accomplished by eliminating

from P(i) all the coordinates with indexes r

such that the state s r A.. In both of the

above elimination operations the order of rows

and columns is to remain unchanged.

On reflection it is obvious that although the precaution

(III-11) was dropped, it is still true that

v v-l 2 1 A? ID.p(A., A ,...,A A) = P 6q (W()... ai(i) 1] (III-1

since (i) i (q) are compatible matrices, being of dimension

v x A and A x a, respectively.

Example 111-2

An example will be in order:

As in (9), let again: k = 3, a = 2

A -= s2 ; A2 = fSl, s3ý

b)

2)



Then we have:

-P(1), = o, p(s2), O

P(2), - ,p(s,), , p(s ).

,1, = , 1 , 1 1,

0 0 0(1) -0 m22 0

&0 0 0

0 0 o

a,(2) = m21 0 m23

0 0 0

p(A A2A) =A 2 A ,)(2)(2) 2 (2) q (1) 1]

0 0 0 m12

=0,p(s2),0 m21mll+m23m31 0 m21m13 +m23m33 0

S0 0 0 m2

= P(S 2 ) (m2 1m1 1 +m2 3 m3 1 )m12 +(m21m13+m23m33 ) m321

= p(2,1,1,2) + p(2, 1, 3 , 2 )+p( 2 , 3 ,1,2)+p(2,3,3,2)

The contracted matrices and vectors are:

P(1) = p(s )

.(2) =.P(S1),p(so)2

1i(1) = [m22)] (2) = [m21 , m23]

-- 2 ml m13]- m 11 m13
2 2(2) =

m31 m33]

m 12

204

(2 ( 1 )
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p(A1 A2 A2 Al) r 12) (2) 1( 2)c(1) 1] =

11 13 12
=.P(s 2 ), [m 2 1 ,m 2 3] I1 1]Em LM31 M33j m3

= p(s 2 ) [(m 2 1m1 1+m2 3 m31 )m12 +(m21 m13 +m2 3m33 ) 3 2 ]

In what follows we will always be dealing with contracted

vectors POi and matrices [ 3.(j)]. In order to simplify

notation, we will henceforth drop the bar " --- ' from the

above quantities - contraction will be assumed as a matter of

course. Suppose the Markoff source is now enclosed inside

a black box supplied with a printer which,upon the sources

arriving in state si.prints out the set A. to which s. belongs.

It is then interesting to ask for the probability of a print-

i i-1 i-2
out of Ai given the record of all sets A , A ,... reached

by the source in the past.

It is clear that unless the transition matrix IM] is

degenerate in some special way, the best prediction of Ai is

obtained by the use of the entire available record of past

state sets.

We wish to ask under what conditions the probability of

Ai given a past of A immediately preceeding sets Ai- l

A will have a value within a prescribed e > 0 of the

probability of Ai given any longer past Ai , . . . . , A

i-A-1

In this regard we will first prove

1.
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Lemma 2

Given a Markoff source with states sl1...,sk partitioned

into non-empty sets A1,...AIJi k. For any sequence of

sets A, A i-1 .,A i .. i such that for it

Pr i-(Ai Ai  Ai-1A ) > 0 ( -1Pr A,A ,o....A >, 0 (III-Ii

.,A )-Pr(A /Ai-1,..., A 
i

will hold, provided that given any E >0

be found such that whenever Aý4 then fo

i i-'l i Aj ( •A
sequences A , A ,.,A A A .

i-A i-A i-)
all states s, , so eA for which

i i-1 i-A+1 i-A

Pr (Ai, A ,..°,A /S ) 0

the inequality

jPr(A /A i -  ,Ai i- )-Pr(A /Ai-I
" , S,)-P~r(t-

holds.

Proof:

p(Ai/Ai- 1,...A- ) =

-... Ai-)" 2s

(111-14)

an integer A can

r all possible

and for

(111I-15)

i-+1 i-,...,A ,s ) A1

(III-16)

SP (A 1  i -A i-l =i- (A, s /A ) A )

= 2i P(A /Ai'
s

i-+ i-A i-ý i A-SA s A A )

i-A i-l i-A-0-
x P(s /A . . . A*

inequality

Pr(A /Ai-1,..

3)

(III-17)
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But

(A/Ai -l i-A
P(A /A *..s )..A

i i-i i-A i-A-O-P(A IA .. ,s .* A
i-iP

P(A
i-A i- --

... s .A )

Ai i-A+i i- i-A i i- ) -
P(A ... A i-/s i-)P(s •A i  .Ai-A

P(A , .,A/s P I A ) ..

Therefore:

S(Ai- i-A i-0
oos .. A

P(Ai/A I .. - A+i s  )

0 ifsi-A Ai-

i- A i-A
s SA

We have now from

P(A /Ai - 1 P(A /Ai . Ai-+1s )A
i- i - Js eA

i-A/Ai-1i A - )
, P(s /A ... A )

Now if (111-16) is satisfied, then

i i-1 i-A+i i-A i-i i-A-
P(A /A . A S/ )-e4 P(Ai/A ...A ) -

L P(Ai/Ai .. A s ) +• i i-A i-
s SEA

But from (111-20) also

P'(A -A 7A iA- s )-E LP(A i/A i - i .oA
i i i-i

S(A i-i
P(A /A1

i-A
s5,,4)

i-A i-,A+ ES EA

(111-22)

and therefore certainly

- P(Ai/A, - .. ,A • / 2

Q.E.D.

(111-18)

(111-17)
(111-19)

(111-20)

(111-21)

.. PAi - )

Ai-4+1, .AI

P i-i•-1 i-A )P (A /A ? .. , ) ?
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We would next like to know what circumstances would guarantee

the satisfaction of the sufficient condition of the preceeding

lemma. For this purpose we will introduce the notion of

directional distance D(a>,) between two vectors I& Jin

R space.

Consider the vectors

1 2Y t***t11
_.,, I. t'l. I

having real non-negative elements only.

The ratios ./. of like-numbered coordinates of the two

vectors , • can be formed and arranged according to in-

creasing value into an ordered set S from which the ratio

2r/C. will be excluded if and only if . =c. = 0. The
i 3.i

numbers of the set S are to be left in their fractional form,

so that if . = 0 # . the ratio d/3. will be a member of1 1

S. If . = = 0 and 8> # 0 then i/d will be of" : i j i

higher order than Ida. in the set S.

Let = min (111-23)

and

i max - s (III-24)
8 d L Vi

Then the directional distance between vector rand vector 3

will be defined as follows:

* The measure D(r, ) was suggested to:the author by
Dr. H. Furstenberg of the Mathematics Department of the
University of Minnesota.

r
r

i
t
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Dd d( (111-25)

We are now ready to state

Lemma 3

Given a Markoff source having a transition probability

matrix [M], with states s 1 ,...,'k partitioned into non-

empty sets A1 , A2 ,...,AP, .Lk. Let the partitioning

lead to the contracted set-transition matrices 63i(j),

i,js(l,2,...,2). Choose any possible sequence of sets

A A 2,...,A , As EA I A ,..*A . To such a sequence

there will correspond a set-transition matrix product

1•(h) 2h .. (It) (III-26)

where if A = A and Ai +  = A then i ().

Suppose two arbitrary, real, non-negative vectors

= , ', , P; ,1.'-.,0* are given, where #

is the number of states in the set Al1 Then the above

transition matrix product will transform the vectors

and ~into vectors randy , respectively:

w= 1 h 2 A- 1 i A

- Q1 (2 2 0 A-1_ 0 0A- (111-27)

where /^is the no. of states in A*.

209
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Consider

Proposition 1:

Given any 81> 0 there exists an integerA such that when-

ever 1 >Athen any set-transition matrix product

010 32 ... -1 corresponding to a sequence of states

1 2 1A ,A ,..,A ,AA for which

Pr (A ,AA' 1,...,Al) # 0 (111-28)

will transform any pair of non-negative vectors a,_ ,p

for which

a, 6l• .X A-l

1. 2 .A-1 ~ 0 (111-29)

into vectors I& $ such that for them the inequality

1D(,b) - 1 e1 (111-30)

is satisfied.

Proposition 2:

Given any s > 0 an integer A can be found such that
whenever ) >Athen for all possible sequences

A1,A 2 ,...A , Aj s A1I,...,A3 and for all states
1 1 1

s^, s ) ror wnhicn

Pr (A ,A ... A 2 /s) # 0

Pr (A ,A ,...,A 2 /s1 )1 0

the inequality

Pr(A A/AA-1,...,A2,s - Pr(A /AA-1,... ,A2,S 12 1

holds. (111-32)

I Consider

Proposition I:

L ~ rr *L ~___ __L1_L
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Proposition 1 is a sufficient condition for Proposi-

tion 2 to hold.

Proof:

First of all we wish to remark that the arbitrary vectors

'" ,  must of course conform dimensionally to the& 1 in

question, so that product (111-27) be possible. Thus for
I 1different stating sets A in general different vectors 2,

3P must be csosen. Equally the dimension of &Zi will differ

depending on the size of the state set A .

Let state s AV. From P(O) construct the vector (111-33)

C() by replacing in P() all the elements except p(sg)

by zeros, and replacing the latter element by one.

Eq. if P(0), = p(s ), p(sP), p(s). , then
C(0),= o i o

Using the reasoning employed in Lemma 1, it is clear

that we may write

Pr(A , AA-1',...,A2/sl) C( 1 16312  . 11

and therefore

A A-1 2 1 1 ) l2 ... L 11
Pr(A /A ,...,AA s2 ) = C( ) 2

where the notation introduced in (III-26) was followed.

Let

G(2,3,h..r.o-1)t 22t 3

Then Proposition 2 states that

(III-34)

(III-34)

S(111-35)
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G(2,...,*-I)6
A

G(2,...,A-l)

(111-37)

(E

for all s~, s, E A

Next, let

,c 91
,C() 3 1 Ip

Further let EE
11 = B] (111-39)

(III-40)

The requirement

1]

S3 -B ]

1 * 1-

But

Now

a) if f5.

we get

(111-37) reduces

-.
...... 1

J
1

.11 1
(I1-43)

La

and

(III-38)

L [G ] =

L [G] =
to:

Lt. B]
(111-41)

S4Bj 1.> 3 2.73-

i 1

(111-42)

0; 0~o

<t~r <T. -7. ( >
4. 1 1 1

. . .,A -1A)
I

I

sr -t. ~~ LU J.) U Cr ~

.&ý) & 1

IC 31

I
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But following definitions (111-23) and (111-24) it is cer-

tainly true that (see Lemma 4)

c 1 d

OC d0i Od

Then certainly

1 c •1 - ( ) 1 d
r c #d Pj Ori Cc d

(111-44)

(111-45)

b) If . = . =
J J

then the quantity (111-43) is identically equal to

1 A2  ANow suppose that for all sequences A A ... A a [G] results

from (111-36) such that the vectors obtained from (111-40)

satisfy (111-30) [it should be noted that in such a case it

cannot be that either =0 0 or # 0
J j j

Then by definition (111-45) becomes:

111-E1 ar 3 or1

and from (111-35, -37, -42) we get:

PI( +l/A 10A A +A 1 0jP(A /A 1 ,A P( /A ,,A sIA A
) 1^ 0

. = 0].

(111-46)

1 1
1-e

1

Z Bj..

and we can clearly choose E1 small enough so that the right-

hand side of (111-47) becomes smaller than any given a > 0

for all vectors B] obtainable from (111-39).
Q.E.D.

(111-47)
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In order to be able to determine under what conditions

statement (111-30) can be made, we will next prove a lemma

about the behavior of ratios (111-23) and (111-24).

Lemma 4

Given any set of finite, non-negative, well defined

ratios x1/Y1, x2/y2 , ... xk/Yk, and any set of non-

negative real constants al, a 2 ,...,a k . Let

x.
= min (--)

i Yi

x.
- max ( )

i Yi

i = 1, 2, ... k

(111-48)

i = 1, 2, ... k

+ a2x 2 + ... +

+ a2 Y2 + ... +
akxkv xd

akYk Yd

equality an the left-hand side being possible if and

only if
X.

a. = 0
I Yi

xc (III-50)

equality 6n the right-hand side being possible if and

only if
x.

a. = 0 Vi
Yi

1111-51)

Note that by assumption of the lemma YiO0 for all ie(1,2,...,k)
although possibly x.=0 for some je(l,2,...,k).

x c
YC

Xd

Yd

then

x
Yc

alx1
al 1 (111-49)II

X d
yc



Proof:

a) alx1 +...+akxk xc
alY1 +...+akYk Yc

Xl Y1
XcY [a l(C- - ) +

(alYl +...+ akYk) Yc

xc y Xk Yk
+ a (- -4)+...+akc Yc c Yc

but x i/x - yi/Yc 0 by assumption (111-48), therefore:

(111-53)
alx +...+ aky x
alYl1 +''" + akYk Yd

equality being possible if and only if each of the numerator

terms on the right-hand side of (I-52) is equal to 0.

alx1+...+akxk

alYl + . .+akY k

xdYd [a1 (Yl
Yd

x
Xd)+...+Xd

yd . xd Yk . xk+ a .. .+akd Yd Xd kd xd
Yi x.

but - > 0 by assumption (111-48), therefore:
Yd Xd

al x1 +...+ akxk d
alY1 +.. + akYk Yd (111-55)

equality being possible if and only if each of the numerator

terms on the right-hand side of (111-54) is equal to 0.

Q.E.D.
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(111-52)

b) xd

yd
Yd(alY1 +...+ akYk )

(III-54)
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It was shown in Lemma 3 that Proposition 1 constitutes a

sufficient condition on the product of any A set-transition

matrices 8i(j) guarenteeing the satisfaction of Proposition

2. In the following Lemma 5 we will state those properties

on individual matrices •i(j) which insure that Proposi-

tion 1 be fulfilled.

Lemma 5

Given any finite set S of rectangular matrices

1 2~l,2. ..t having the following property:

a) If GdaS and has dimensions r x t then there

exists at least one matrix eS having dimen- (111-56)

sions t x v, and at least one matrix 0"

having dimensions q x r.

b) If esS then all its elements are such that

b..ij 0 and whenever b..ij=0 then either b =0 (111-57)

for all £, or b. =0 for all h.

Given any E > a positive integer A can be found
such that for all A >A all possible products

1i2 .A
1 2 of A matrices, each taken from the set

S, have the following property:

Given any two non-negative vectors a , in Rt space

such that

.. O
(111-58)

w t h'c me...C8 fo o,
where t is the number of rows of •I
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Let

j=ai 03 1Q2

L= 1a ~3122 .. 03)

(111-59)

then

1 - D(i )t)ILe (111-6

where D(d2O ) was defined in (111-25).

Proof:

It should be noted that condition (111-56) makes pro-

ducts of matrices in S of any length possible and assumes

that whenever the i h matrix is • there exists a matrix

tth
ýi in S which can take the (i+l)th place in the matrix

product.

We will first prove that given any matrix 63 of

dimension r x t and any two non-zero vectors ,x, ,y. of

dimension r such that

2 68 #ý 0 ; , #0 (111-6

0)

1)

then whenever

0 4 D(x,y) L 1

the inequality

0 ý D(x,y) 4 D(.x,(", M 1) (111-62)

will be satisfied provided 0 has the property (111-65).

Using definitions (III-25,-26), inequalities (111-62) hold,

provided
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xx. b. .

Yc Z Yi bij Yd
I

for all j. (111-63)

where b.. are the elements of 03, because then
ij

Xc Yd
x. b..

i iij
jib

But (111-72) is guaranteed by Lemma 4 whenever Yd#O and

b..> 0 for all i, j. (by assumption, Yc#O. otherwise Ly would

be a zero vector). Furthermore, (111-63) is also satisfied

in the case Yd=0, provided bij> 0, #i,j, since by assumptibn

not all yi=0.

Next suppose that there exists i,j such that bij=0.

Then, by the assumption of this lemma,either

(a) b.. = 0

In this case

and

x2 bj =b y2 bj = 0

x, b,.
Sis not considered in the determination
y'Z. bp•

of D(x,~ ; ay, ).

or (b) bih = 0 )h.

Case (i) In this case consider first the situation in which

xc # 0; yd # 0O

1

max

(111-64)

rV NJ
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From Lemma 4 it is clear that either (111-63) is

satisfied anyway, or one of the two inequalities in

(111-63) becomes an equality.

Assume first that

Sx b..ij
--- = (111-65)
Yc Yi bij

i

But by (111-50) this may be only if

X. X

b.. = 0 for all i c -  (111-66)S13 Yi Yc

But in the above case, by the property (III-57),relation

(111-66) must be true for all j and so must (111-65).

In such a case D( xg) ;.V L ) = 1 and (111-62) is

satisfied. Also if

r x. b..
Xd i 3d--- (111-67)
Yd Yi bij

i

then the same argument holds and again

x(03; ' 3 )= 1

Case (ii) Consider now the situation where x = 0; yd # 0

In such a case (111-65) cannot be true, because if it

were, then by the above argument .x, L = 0, which against

our assumption. Thus only (111-67) can hold and such a

case is taken care of in (i).

If Yd = 0, Xc # 0,(III-65) and not (111-66) can hold

and all is well again.
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Case (iii) Finallyt if d = y = 0, then neither (111-65) nor

(111-67) can hold,and (111-64) must again be satisfied.

We have therefore shown the validity of (111-62) under the

assumptions of our Lemma.

Next, let

b b
M = np

D
nq mp

rb b 1
tin lb b1ijk b. b I ik
~ii,j,k,a la £K RJIk

(111-68)

By the assumption (III-57))clearly

b b
1 > m np> 0b b

nq mp
(III-69)

equality on the left-hand side being possible only if
b b
bi--= bik for all i,j,k,I, i.e. if the rank of ( is one.
bji bjk
We will show that:

b b
mq np

b b
D()-D(x;y) n mpD(.x.'7i;bm M( )- % [1 

-
D2(x 

)]

L
• -

1 + mq np D(x,y)nqb b
nq mp

.1-

(111-70)

D( .x, ; .y• -D (x;y)-

= min f

ij L( YL bi)

2Yk bkjk

I xk bkji

c d = (111-71)Yc xd

- xkYixcYd

bLi bkj Ya Yk

Now

= min
i,j

_I

i [x iYkYcxd



From definition (111-23) & (11-24) it is clear that Yc#0,

xd#0. However, it is certainly possible that in some cases

yc=0 or xd=O. Furthermore, there might exist some additional

i, i # c, such that x. = 0, or some additional j, j A d,

such that yj = 0. We must take notice of all these pos-

sibilities.

Let us first eliminate from the summations in both

the numerator and denominator of the right-hand side of

(111-71) all terms including coordinate products xQ yk

such that xk yL = x, yk = 0. Also, property (111-57) in-

sures that whenever bIi bk = 0 then also bki bIj = 0. We

will then further eliminate from the sums of the right-hand

side of (111-71) all the terms which will include the matrix

element products bIi bkj = bki b = 0. The remaining terms

in the summations then are such that at least one of

(bli bkj xl Yk' bkf bLj xk y ) and one of (bIi bkj xk Y'

bki b j xA yk ) are non-zero. Taking this into consideration,

it follows from (111-49) of Lemma 4 that

bi bkj [xbYXk' d
min kj yk c

i,j b bkj Y• xk

X Yd b XcYd
blibkj[xlYk-XkY YXd +kib [xkY-x k YcXd

m min I
i,j,k,L bi bkj x k Y + bki b j xI Yk

L
(111-72)

AI·~
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Therefore inequality (111-73) holds,

D( x~, , Lyf )-D(x,y)> min I.
i,j,k;L

L

+ b b [kyLx y ]-
ki bj j[xkY x1Yk YcXd

+ bki bj xi yk

XcYd
bibkj [xLYk-kY L YcXd

bLi bkj xk Yi +

(111-73)

where only those terms which were not eliminated in the

above procedure were taken into consideration when the mini-

mum on the right-hand side of (111-73) was being determined.

We will now show that the right-hand side of (111-73)

is greater than or equal to the right-hand side of (111-70).

This will be accomplished if we succeed in proving that for

all i,j,k,tthe inequality (111-74) holds:

x [b b -b b XcYd] + xkyj[b blj-bl.b xcyd
xJYk [bibkj- bkij ycXdb kY [ b ibkj ycxd -

xyk bkibij + xkYl bi bkj

x Yd 2
b b y [1 - ( c d

mq npYcXd Y xd

bn b Y +nq mp cdd

= YcX d mq np

b b xydWbq np cd

+ XcYd [-bmq hnp
XcYd

ycxd

(111-74)

YcXd b b b + x y b bnq mp cd mq np

Subtracting the right-hand side of (111-74) from the left-

hand side, we get the expression
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bi bki bmq bnp kxcYd - xkYXdY c + bibk bmp bn [,nip rnq
(x yk bki b2 j + xkYl b i bkj)(Ycxd bnq bmp + XcYd bmq bnp)

[x ykxdYc-xkyixcyd] + bkib b b p[xky xydx ykxd cI~k~Y,-r~x cd ' ci'L lmq np [xkY1XcYd-XLYkXdY c ]

ki b mp bnq xkYxdYc - XiykxcYd]
(111-75)

[b1i bkj b b
mimq np

- b bki b b b x ykxdxkxdy] +

(x yk bki b j + xkYi bi bkj)(Ycd bd bmq b + X b np)

+ [b bk b b n-bki bIaiki ip rig ki al q np] [xtykxdYc-xkXcY d

and we should show that (111-75)

zero.

Now two cases are possible:

Case I:

is greater than or equal to

either xc = 0 or yd = 0

In such a case to prove (111-74) we must only show that for

all i,j,k,i

b b
b i bkj b b ki aj
Skj mp nq b i bkj

b£i bkj

bki bj b b b .
ki 3mp nq bki b

b b
mq np 3 0
b b

mp nq

b b
mq np ] 0

b b
mp nq

But (III-754 is satisfied by definition (111-68).

Case II.

Xc # 0 and y d # 0

(III-75a)
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In this case it is clear from (111-75) that in addition to
q

(II111-75) we must also show that for all i,j,k,l:

XkYl XcYd ] >
xlykxdyc [ ]Y 0Y Yk Yc Xd

Yk XcXd (111-76)

xkYXdy c  Yxk Ycd 0
Y22 k Ycyd

But (111-76) is satisfied by definition (111-25). Hence the

assertion (111-70) is proven.

Consider now all the matrices 1i in the set S, together

with their corresponding quantities (111-68). Among the
b* b*

latter there must be one, say having the largestb b+b- b- nq mp
value, and one, say bm np having the smallest value.

nq mp
Then for all matrices OsS the inequality

D(,x • ; Zv12) - D(x;y) >

bm bnp (111-77)
b- b-

n p b b÷  [I -D 2 (x;y)]

1 + D(x;y) bmq np
nq mp

must hold. But (111-77) shows that after each transformation

of vectors x, ,L by the matrix (, the resulting vectors

x G, ,_G have a directional distance closer to the value

1, and moreover that the value 1 is actually approached in

the limit, since otherwise the right-hand side of (111-77)

would always remain a finite quantity so that the value 1

would actually be exceeded in the end. Thus Lemma 5 is

proven.
Q.E.D.
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The previously proven Lemmas 1,2,3,4 & 5, taken all together

lead to the following, aimed for

Theorem

Given a Markoff source having a transition probability

matrix [M], with states sl,...,sk partitioned into dis-

joint non-empty sets AI,A2,...,AA , A I4 k. Construct,

by the procedure described in paragraph (III-3b), the

contracted set-transition matrices C.(j), i,je(l,2,...,&).

Given any z > 0 an integer A can be found such that
for all integers ) >A)and 0•- 1 and for all sequences

i i-l i- i-A --
A ,A ,...,A ,...,A for which

i i i- - 0
Pr(A ,...,A ,...,A ) # 0 (1-78)

the inequality

I iPr(AA/A ... A A V/Ao* *.A .A )

(111-79)

is satisfied, provided that all set sequences fulfilling

(111-78) correspond to set transition matrix products

8 i-i-+ i- (111-80)

(where notation (111-26) is used) having the following

property:

There exists a fixed integer t such that if any of the

products (111-80) is expressed as a product of subproducts

of t matrices:
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[i-... i-,A+t-l] j i-A+t ~ i-A+2t-].1 [-i-A+st.. i-1]

where st ,~_A (s+l)t (III-81)

then each of the subproducts results in a matrix

G(i-ý+jt, ... ,i-A+(j+1)t-1)= [gi-A+jt .... i-A+(j+l)t-1]

(111-82)

having elements gi,j such that whenever gij = 0 then either

gip = 0 for all p, or gqj = 0 for all q.
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Appendix IV

Uniform Convergence of Probabilities of Disjoint Sets of Markoff States

conditioned by a State Set Past of Fixed Length, when the Source States

are Determined by a Finite Past of Discrete Outputs.

In this appendix we will be concerned with the question of when the set-

transition matrices of a special class of Markoff sources satisfy the

sufficient condition for set probability convergence given in Theorem III-1.

As the heading implies, the states of the Markoff sources of interest are

to be determined by discrete outputs in a manner to be described below.

Without any loss in generality we will in the following exposition limit

the alphabet of the outputs to a binary one. It will be clear that a

straightforward generalization to n-ary outputs exists.

Consider now the following class of Markoff sources. At given discrete

time intervals the source changes state and puts out a binary sequence of

length n whose identity is a function of the newly assumed state. Hence

at time i the source switches from state s to state si, putting out

simultaneously the sequence

(Xi-1 i-2 i-1 i i-1I
(x1  , x2  , ... , x ) 0(s) x. (0,1) (Iv-l)

There are 2n 1 states and at any time the present state is determined by

immediately preceding outputs. Consequently, 2 n(~ l) states have identical

outputs and there is a one-to-one mapping of each point in the state space

onto the output space of ordered sequences of binary n-tupples.
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Therefore we can write that

li-1 i-1 i-i
x, ,x 2 0 •..,x n

i-2 i-2 i-2
X1  ,x2  ,...,x

si

(IV - 2)

Si-~ i-R i-L
--!

and an inverse function from arrays of A n-tupples to states exists.

i i+l
If s occurred then a transition is possible to only those states s

which are characterized in terms of the array on the right hand side of

(IV-2) as follows:

(a) they can have any 1st row

(b) their kth row (k=2,3,...,1) is identical with the
st i(k-l)st row of s .

Therefore, given state s , there are 2m possible next states, ad 2 possible

immediately preceding states. By this we mean that transitions into any

other state but those characterized as in (IV-3) must have the probability 0.

Each row in (IV-2) can be considered as a binary number and as such has a

decimal equivalent. Let us denote it by

- -k2n- +1  i-k n-2 i-k
+ x 2  + ... + x

Similarly we can characterize the state s of (IV-2) by the decimal

number &,

,+f OL t •, 4- . .(IV-6)
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where were the decimal equivalents to the rows of the array on the

right hand side of (IV-2) as described in (IV-4). Identifying now states

and outputs by their decimal correspondents, we can describe the transition

matrix [ of the Markoff source. Its elements are

+ p (s r/(Iov-7)
and we know that

unless ( 2-)? ~' (0 ) · (V-8)

Thus the matrix will have at most 2n non-zero entries in each row or column.

Suppose that in the expression (IV-1) we suppress v of the D digits (w~n,).

Without loss in generality, weý may suppose that we suppressed the first w

digits. Thus the new output will be, instead of the word (IV-l), the word

(Iv-9)
i-i i-i i-i

( lw+l ,Xw+2 ' ... ' n-

If we were to observe the new output now,we would never be able to determine

what state the Markoff source was in, no matter how much of the output past

we took into account. In fact, unless some unusual degeneracies occurred,

if we wished to make the best possible prediction of the next output, we

would have to use our knowledge of the entire past output since the beginning

of the source's operation.

If should be observed that now 2 +n( 1) different states will give the

same observable output (IV-9). In fact, any state is, as far as its output
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past and present goes, indistinguishable from 2w other states. Thus we

may partition the 2 states of the Markoff source into 2

disjoint sets, each containing all the states characterized by the same

array of non-suppressed outputs. After the manner of Appendix III we

will denote the sets by the letters Ai, there being a one-to-one mapping

of each point in the set-space onto the space of ordered sequences of

binary (n-w)-tupple outputs. We can therefore write that

i-1 i-1 i-1
X+l Y xv+2 , .. , Xn
i-2 i-2 i-2

xv+1 ,v+2 ' n

Ai g (IV-10)

i-1 i-e i-4
x+l xw+2 ' n.

and an inverse function i). from arrays of t(n-v)-tupples to state-

sets exists.

Again, each row in (IV-lO) can be considered a binary number with a decimal

equivalent denoted by

- K ;.- | + c 2 + * * + ,

S(IV-11)

Then also sets A can be characterized by a decimal number C( defined

below

(.-w)bt-,) - .. ,,lA)
.- (IV-12)

where I were the decimal equivalents of the rows of the array on the

right hand side of (IV-10), as described in (IV-11). A transition from a



state -S A- to a state 4 Aa is possible if and only if

2w32( e 2 - V .~ . -13)

The operation of the source with some of its outputs suppressed can be

illustrated by Figure IV-I

A I available
outputs

suppression box

Figure IV-1

i i+l i+ u
It's obvious that a sequence of state sets A , A ,i+. A identifies

outputs (n-w)-tupples for times Z-m JP-l)....i~uuI , and vice versa.

Thus the best possible prediction of the output (n-w)-tupple at time i is

obtained by the use of our knowledge of the sequence of sets ...

S...6 A .The proper conditional probability is
I..is

)(A #,* 
> #

where the first row of theAanalogous to (IV-10) characterizing Ai + 1 is

the (n-w)-tupple whose probability we want to determine.

Clearly:

Z > e

(Iv-14)

(IV-J5)

2 3.1

r , ,,,, - 7

I

i

I
I
I
r

-k .0 A 'Lj IA '
P(A i ,
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To find the numerator and denominator probabilities in (IV-15) we proceed

as in Appendix III.

Suppose we know the original Markoff matrix fL ]with elements defined in

(IV-7) and (IV-8). By the procedure (III-3b) we will construct the con-

tracted set-transition matrices ( )from set i to set 4 (Note

that by our notation set A has the decimal equivalent representation

S ). They will have dimensions ?)( . Similarly, by

the same procedure, we will construct the contracted vectors ______ having

c - coordinates. Then by Lemma III-1 we can write:

kl e-

where it was assumed that A-7 Aq and if A-= A and A -

then J (r).

The preceding notation and definitions will now be illustrated by an example.

Example IV-1:

Let f=. , n=l, wvl

The source will then have the output (xl,x2 ) and 16 states whose decimal

equivalence representation is illustrated below:

-1 -x21(0 1x x1 00 1

-2 -2 0 0

( 0 0

1 1~(: 85 t 4

IL
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As seen in Figure IV-2, the output x1 is to be suppressed.

I----------------------------

upFJression box

L----------.-----J

Figure IV-2
This creates four state subsets as follows:

A=0(0
0\ 1 0 0 1ol)0 0) 1 0 01

A, (01 11 0 1)0 {( 0 )/0 0 ( 0 ),1
0 1 {( 0 1 )1 1/ 1
{c 1 1) D0 1D0 1 / (0 '1 1 1 )

0
OJ

101

1)

1

! uppression box
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The pertinent contracted state transition matrices are:

A*"
1 OIL

0 0

o 0

~htp *,aL
0 o

0 0 %O I.,',

/'4,o~

0

0 0

-W In0 0~

ou O -O1%, /%.

(00

S4 3, 0 0

a0 0

'W IPI

0

G[) =() )
4<0o i4<0

0 0

t'@*q got#

=Lo]
=[o0
=[oJ

63("

d)3(o)

44'I

o a -WC

-n
*&I 'I

0 oq s4,e

- B2(3)

- ~(i)

[03

A,,6 0 0

o M ,IN

0 44'

I
c(ah

£~
'WI 0 0

7jiy

o 0 A"i, & ,MI lr

0 0

i'" -
449*

o 0

O o
JIlT-

0 0A
tells 11a

'3)

i1$i

13,7

0 o

0 0

0 DC441 ,5

0

0 0

0 0

O
r:, a

A% /46tel 941

0

~L(4)-

4, a , 4as

~ (()~
2

F-

i

rrryii

Vh #Is

CB~ (3) ~r A"s:
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while the pertinent contracted vectors are:

= ,p(), p(2), p(8), p(10),

,P(3),

,p(1), p(3), p(9), p(11),

,p(,), p(6), p(,(12), p(14),

.p(5), p(11), p(13), p(15)

As an example

p(A- / A 2

of a conditional probability

3 2 o (1)0

oP(0) o0 (1)

we have:

1l(2) 2(0)
(81(2) 1]

p(x=O/ x2 = 0 =1, x2 = 0, x= 0)

Viewing the matrices of this example, we notice that if all the allowed

transitions have non-zero probability, then any possible product of two

matrices, 6(j , (k) , results in a matrix having non-zero elements

only. If that were the case for all the set-transition matrix products

of the class of Markoff sources introduced in this appendix, then for all

sources of the class the sufficient condition of Theorem III-1 for con-

vergence of conditional probabilities of sets would be fulfilled. As a

matter of fact we will prove just that in

I " "
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Theorem IV-1

Given the special class of Markoff sources described in this

appendix with the n binary outputs occurring at time i being

functions of the state si reached:

i-1 - (IV-17)(xl , ... , xn (IV-7)

Let the first w output digits be suppressed so that only outputs

i-1 i-1(xw+ i , "' , xn (I-18)

are observable. Let the states be determined as in (IV-2),

represented by decimal number equivalents as in (IV-6), and

classified into sets according the . immediately preceding

output (n-w)-tupples as in (IV-10). Let the sets in turn be

represented by their decimal number equivalents as in (IV-12),

and let the state transition rules described by (IV-8) apply.

The corresponding set transition matrices (~)constructed by

the rule (III-3b) from the Markoff transition matrix [) will

then have the following property:

If all the transitions allowed by rule (IV-8) have non-zero

probability, then any set-transition matrix product of length ,

(IV-19)

pertaining to a set sequence , " js. such that for it

L
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Pr A '  A*o (IV-20)

results in a matrix whose every element is positive, i.e.:

C 0 for all i, j. (IV-21)

As a consequence it follows from Theorem III-1 that for all

fQO there exists an integer A such that for all A >A
and U'11 the inequality

/Pr(A/Ai-1, ... ,Ai-) - Pr(Ai/Ai-l, ... ,A .,A i 4- *) /4A (IV-22)

holds for any set sequence iAi- -0, ...,Ai * for which

Pr(A ,.,A ) 0 (IV-23)

Proof:

If (IV-20) is to hold then the succeeding sets in the sequence

SAi.... must be such that if AJ = Ao and A+1 = A
AA

then relation (IV-13) is satisfied. Any given matrix in suchAsituation

is then completely determined by the sets A i- and A since the sets in

the sequence A i-A ,...,A) for which (IV-20) holds must be determined

by the sets Ai-  & A i . In that case

c e~(4h/4j (Iv-24)

is a matrix whose elements c ij have the value:
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c. = probability of a transition in t steps from the kth
i-t th istate of set A to the j state of set Ai .

If A = A then A can be represented by

q( Zmu

=? Z ) o )

iA
S (0 -W) , -)

(IV-26)

as pointed out in (IV-12). It is then clear from (IV-2) and (IV-10)
CmQ

f and only if S 9S.where
0C

4J2 ~PZ

that 'e $ i

0- = f.4 2

+Jd~f e 2 + .l..

aqP-) J2Sq_
•-eI· -O-s-I,z 1 ...

ize )

th40 I 11

It then follows from (IV-27) that the kth state of Ai is one represented

by the decimal number (IV-27) where

k= ' 4-f 2 2---. 2
"atL

If Ai = A

4- .) (e-a)2 + %cc-
S% * I

I * 2

&-e

(IV-27)

WEN. 1)

where

, 4.( ....,,a -) (iv- 8)

, •-

(IV-29)

%,M0
4-

1

i=

Iw-w)lP1~I

A~=2~'!e O-I



i -.9+h a rS·L~then we must have A A where

tai ·.t**,4-L) 43 0e ) )
fe--1 +""' Q ""tPI l ,. (IV 30)

Similarly, if J u A is repr

to state s = s. Ai represented by

esented as in (IV-27) then a transition

is possible only through state ich is reprs

is possible only through state = PLA"P+ hich is repres~

(Iv-31)

ented

by

(IV-32)

It therefore follows that for every state .J4 '- there is a unique

transition path to any state siL Ai and that therefore every element

ci,j in the matrix (IV-24) is non-zero if all the state transitions allowed

by rule (IV-8) have a non-zero probability.

Q.E.D.

It is interesting to display diagrammatically the appearance of a matrix

Ca () . By equation (IV-28) a certain order of states in any set Ai

was implied. From rule (IV-8) it follows that given any state si I Ai

there are 2W states J lf A& into which a transition from s is possible.

i+1By convention (IV-28) these will occupy in the ordered set A neighboring

places, because they are determined by the value of I only.

by
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Consequently each row of the matrix (4) where d & 43 satisfy the

relation (IV-13), will have 2w  non-zero elements appearing in a block

of 2' neighboring columns. By inspection of (IV-26), (IV-27), (IV-30),

and (IV-32) we see that the first state si E Ai has transitions to the

first block of 2 states s i+l  Ai+l , the second state to the second

block of 2 , etc. Finally the c • 5"state s Ai has transitions

to the last block of 2w states si+L Ai+l. (Note that the

state is represented by numbers 2f ~ I for jW I a.., Q-I

and by).

Now the (a.I- state in Ai is represented by the number:

(Iv-33)

and consequently has transitions into the same states in Ai +l  as the

first state in Ai had, i.e., it has transitions into the first block of

2 states of set Ai +  The cycle now repeats, so that the (L w(E ) L
s i 2w st i i+l

state & A has transitions into the second block of 2w  states in A , etc.

We can therefore represent C "( A) in the following block form,

regardless of the identity of the sets Ai and Ai , as long as a transition

from A to A i + is possible by rule (IV-13).

41 + 2 + ' a% 0 1bI to e~c Pl
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% '

S

Fig. IV-3

Row cycle repeats. There are altogether 2w such cycles. The elements

marked "x" are potentially positive.

2-41

~,-------- ,, - - - -- Y-

3, ,,,,,,,,,- - -O 0- - - .x

a
OF

4 lb

w 2%0 w2 f.010ftfts 2 /*JON it's to IUwr k to/40*413-M^--
OIIIIIIII'III - I I- I -·· II -· I ·L II. (I I II -I I I O

KI I II X 00 I ~ ~ ·I I I · I) · I··· I ·II~ II - IIIII · b

O xX- - - -X oa, ,,,,,,,-- --- -_o
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Considering multiplications of matrices of the type of Figure IV-3 it is

not difficult to see that the product of r of them, where P, will

have the diagrammatical appearance of Figure IV-4. Such will then be the

appearance of the product

(IV-34)
which corresponds to a sequence of sets Ai , Ai + l , ... , Ai+r for

which

Pr(Ai+r Ai+r - l , ... , Ai) 0 (IV-35)

We will next prove a stronger statement of Theorem III-1.

Theorem IV-2

Given a Markoff process and a state partitioning with corresponding

set-transition matrices .j) as described in Theorem III-1.

Then whenever there exists an integer r such that there

corresponds to all set sequences Ai - r , ... , Ail for which

Pr(Ai , Ai -l, ... , Ai-r) 0 (IV-36)

a set-transition matrix product

..... (IV-37)

for which the element ckj = 0 if and only if either ckt = 0 for

all t , or csj = 0 for all j , there will also exist for any

E > 0 an integer A such that for all set sequences

i A'" Ac-A A I A > Afor which

Pr(Ai , Ai - , ... , Ai - , .. , Ai - - ) 0 (IV-38)

the inequality

PrA(AAA
i-  i-i

E Pr(A /A ,...,A )
will be satisfied.
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Fzw Ph rr

j PAPIDm14 1? 2 uO/el a We O/IuN4faS alL C.OISV/t

-- -- - -~I - , Cirr I · r I rr r I1 ii I rr

XX x 00 ,O
IrI Ir I rr I II I rr ii rr I,

IIIIII ~ca x ~,,,, x oo,,,,,,,,,,,,,,o

- wo. - - 1ý - -- - - - - -- -v - - - - - - -0 .....
00-0

x-. ..xO_.. - -o

00.1 .00 .... I I I1 lI·-OI I0

I'

I

I,'

&1

Fig. IV-4
Appearance of the matrix

S(Ai+l) (A i+2)( Ai+rSAi+( . . . i+r-(ir , ridA A A
TO

Row cycle repeats. There are altogether 2'" such cycles. Elements

marked "x" are potentially positive.

I II ·. II I II I1·· · II III ..) I II I I 0

V

_I _ 1

'4
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Proof:

It should first be noted that except for (IV-39), the above theorem is

stated identically with Theorem 1 of Appendix III. In fact, it is a

stronger statement of it.

Now, for any fixed X we are dealing here with a finite number of possible

sequences fA ,A i- 1 ,...,AP such that

pr(Ai,Ai-1,...,Ai -?) # 0 (IV-40)

Hence, if (IV-40) holds, it is possible to define a set of states S(A i )

where

si-1 L S(A i ) if and only if Pr(Ai,s i' l ) > 0. (IV-41)

(Note that Pr(A ,s ) is the probability that at a certain time interval

i-1 the system will be in state si1  and that at the next interval it

will be in one of the states of the set Ai ).

It is clear that for all sequences satisfying (IV-38) the following

inequality will hold:

Pr(Ai/Ai-1,...,Ai - " ) k min [p(Ai/si-l=s)r3 0
s S(Al )  (IV-42)

Thus we can define a quantity

SSS(A9

which will satisfy inequality

Pr(Ai/Ai-l,...,Ai -X) ~ ) 0 (iv-44)

for all A,A' ,...,A

such that (IV-40) holds.

I-
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It should be noted that (IV-44) holds independently of the value of the

integer X . Thus, given any 0>O we can define the quantity

and since under the conditions of the present theorem the Theorem III-1

holds, we can find the integer A for which

Ip(Ai/Ai' l, ... ,Ai-k) - p(Ai/Ai-, ... ,A' A. CE, (IV-46)

for all .>A and 06•1 whenever (IV-38) is satisfied. But the

integer A which satisfies (IV-46) will surely satisfy (IV-39) as well,

and therefore the theorem is proven.

Q.E.D.

It should be noted here, that because of Lemma 3 of Appendix III, the

integer A is found for a given e, > o by examination of the differences

/ p(Ai/Ai- .,AI i ) - p(A/AiiA -k-l) (IV-47)

for all s I S(Ai-4). The difference (IV-47) then suggests a very

definite procedure for finding an appropriate A .

Q.E.D.

Finally, we would like to deal with the actual aim of this Appendix. We

would like to prove the theorem needed in Section 6.5 and listed there

under the heading 6-1.
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Theorem IV-3

Given the special class of Markoff sources described in this

appendix with states characterized by configurations

faX ) 2C, (c.f. definition (4-9) with (IV-2) ),

having 2 transitions from a state (rlZ) to

state (provided. that

X,- -r -r+1

x-r -r+l
Y = Y

-,-r -r+l

x =y

- ,-r -r+1
y =

r (2,3,...,Q) 3

(Iv-48)

each transition associated with a different pair f,f such that

the transition probabilities

defined by

P (,;s

-= , -1x-
of the allowed transitions being

p(y' "t/xx' )( /x )P(f) P()

if (IV-49) holds

otherwise

Whenever for all

-ZP(*) 40
;fd* 3,)m

; ~ca.~~*0
k'~a

(Iv-49)

(IV-5o)

(Iv-5i)



2then for any there exists an integer t47 such that

then for any C> 0 there exists an integer t such that whenever

pr(ff .,1 ...,-t-r
Pr(f ,f , ... ,±'

-1. -t-r t-r,y,y ,...,y , s ) 0

the inequality

SPr(y ff-1 -t -1 -t -t -r(yff-1 -t-r -1

y-t-r',st-r) -t - Pr(yf,f-1 .,f-t -1 ,,-ts-t )

-t -t-r -t-r -t-1 -t-r -t-ls g(s ,f ,..,f y y (I-53)

holds, and for any £) 0 there exists an integer t0 such that

whenever

-- 1 -t-r - -- 1, . --- t-r - -t-r,
Pr(T, "  ,. ,yy ,..,y ,s ) 0

t> to, r . 1

the inequality

Pr( t r ,-1 -t -1 oo·-y -t -t

. Pr( ,-,1 ,t-r -1 -- t-r ,-t-r )

,C Pr( ,-1 -t Y-1 I -t -t

S- .- ,-.-,y , -t)

=, .Y .

(Iv-55)
holds.

t >to r~ 1 (IV-52)

(Iv-54)
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Proof:

We are dealing here with a special case of the general situation described

in (IV-9) where n=4 and wv2. We will prove the part involving (IV-54 )

and (IV-55) only, the rest will follow. We will first define notation

for identification and ordering of states along the lines developed

earlier in this appendix. A state (I, ,uUj) can be displayed as

-1 -1 --1 -- 1x y x y
-2 -2 ..-2 ..-2-___ x y x y

(Iv-56)
x ;y x y

and the state set to which it belongs as

-1 -1l
y Y

-- 2 -- 2x y

(Iv-57)
x y

The latter can then be represented by the number

Wher (Iv-58)

where

% Ie x+Y (Iv-59)
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The state (A, &I P)can then be represented by the decimal number

6 (a-) it-

(M-60)

where

kt(ks P,. - v (Iv- 61)

The order of the state in the set ( i)vill depend on

the magnitude of the number

J & (irv-62)

A transition from state (c ',lf, represented by 0 to state

(Cie4 9  ) represented by 1 is possible only if (IV-8) is

satisfied for n=4. Similarly, a transition from set (~ # represented

by O to set (', represented by 4 is possible only if

(IV-13) is satisfied for n-wv2.

Any state set (Al plus "output" (f,y) specify the next state set

(X• 5 . We are dealing here with a little more general case than

the one defined by (IV-7) since whenever a transition between two states

is not precluded by rule (IV-48), there actually exist C

possible different transitions. Hence a somewhat different set-transition

matrix

s(IV-63)
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of dimension for each transition determined by f from a

state set ( •j) to state set (•#jis defined by elements

bhj= .if (IV-48)and (IV-49) hold

O otherwise

where the ordering h for state (aXj JiC and j for state

( ,D a , ) is defined by (IV-62).

From Lemma III-1 and the above discussion it is then clear that we may write

P (v-65)

P8 0' ;
w•h •e•D:~ ~~c ,p•"•'•5' --. ,. ,,..

where .S

and vector L wjas

j~ JPq~j 3Y

defined by (111-36).

Thus, by the discussion preceding Theorem III-1, it follows from Theorem

(IV-2) that (IV-55) will hold if it can be shown that the matrices defined

by (IV-63) can be diagrammatically represented by Figure (IV-3) for w=2.

But from (IV-64) we see that this is precisely the case whenever (IV-51)

and (IV-54) hold.

Q.E.D.

(Iv-64)
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