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Doctor of Philosophy in Electrical Engineering

Abstract

In this thesis, theoretical and experimental work on the noise and dynamics in continuous
wave and mode-locked semiconductor lasers is presented. The main focus is on semicon-
ductor cascade lasers and semiconductor mode-locked lasers.

In semiconductor cascade lasers, multiple gain stages are connected electrically in series.
Each electron injected into a cascade laser is capable of producing more than one photon,
and the differential quantum efficiency of cascade lasers can be much larger than that of
conventional semiconductor lasers. The photon emission events in different gain stages in
cascade lasers are highly positively correlated, and these correlations increase the noise in
the laser output compared to a conventional laser. The work on cascade lasers has required
a revision of the previous work on laser noise, and the development of self-consistent theoret-
ical models for the current noise and the photon noise in semiconductor lasers. The current
and photon noise in both interband cascade lasers and intersubband quantum cascade lasers
are studied in this thesis.

The noise in optical pulses in semiconductor mode-locked lasers is also studied in this
thesis. In contrast to the previous work in this field, the models presented here are fully
quantum mechanical, self-consistent, and also take into account the effects of group velocity
dispersion, active phase and amplitude modulation, and pulse chirp on the pulse noise. In
semiconductor mode-locked lasers, as a result of the carrier density dependent refractive
index, pulses are heavily chirped. The pulse noise is found to be significantly affected by
the magnitude of the pulse chirp. The noise in harmonically mode-locked semiconductor
lasers is also discussed, and it is shown that the correlations in the noise of different pulses
inside the laser cavity can significantly affect the results when the pulse noise is measured
experimentally.

Thesis Supervisor: Rajeev J. Ram
Title: Associate Professor
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Chapter 1

Introduction and Motivation

Semiconductor lasers have become the most important sources of light for optical communi-

cation systems owing to their small size, low power consumption, high efficiency, flexibility

for selecting wavelengths, higher modulation speeds, and adaptability for photonic inte-

grated circuits [1]. As optical communication systems move to higher and higher bit rates,

and photonic integrated circuits become more and more dense, semiconductor lasers need

to be developed that are faster, smaller, and more efficient. Large signal to noise ratios

(SNRs) are also desirable in high bit rate communication systems and, therefore, low noise

semiconductor lasers will also become increasingly important. The research work presented

in this thesis will aim to realize novel semiconductor lasers that meet these challenges. The

research will focus on both continuous wave semiconductor lasers and also mode-locked

semiconductor lasers.

Continuous wave semiconductor lasers have important applications in both digital and

analog optical links [1]. The research proposed here will focus specifically on continuous wave

semiconductor cascade lasers. Semiconductor cascade lasers, discussed in more detail below,

are highly efficient sources of light that can also provide SNRs many times larger than those

obtained from conventional semiconductor lasers. In addition, intersubband cascade lasers

can potentially be used to realize ultra high speed semiconductor lasers with modulation

bandwidths exceeding 100 GHz. The main goals of the research on semiconductor cascade

lasers presented in this thesis have been the following:

1. Development of theoretical models for the electron and photon dynamics and fluctu-

ations in semiconductor interband and intersubband cascade lasers.
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2. Fabrication of semiconductor laser devices and design of experiments to verify the

theoretical models.

Semiconductor mode-locked lasers, which produce a periodic train of optical pulses,

provide a compact and cheap alternative to the larger and more expensive mode-locked

fiber lasers and are expected to find applications in return-to-zero (RZ) format TDM optical

networks, and also in high speed optical sampling, measurements, and spectroscopy [2]. Low

noise performance, specially reduced timing jitter, is critical to most of these applications.

The research on semiconductor mode-locked lasers that is presented in this thesis had the

following goals:

1. Development of theoretical models for the dynamics and noise in semiconductor mode-

locked lasers.

2. Design of semiconductor mode-locked lasers with reduced noise and timing jitter.

The semiconductor laser devices mentioned above, and the stated research goals, are

discussed in detail below.

1.1 Semiconductor Cascade Lasers

In semiconductor cascade lasers several gain stages are connected electrically in series as

shown in Fig. 1-1. These gain stages may be in the same optical cavity or in different

optical cavities. The fundamental difference between a semiconductor cascade laser and a

conventional semiconductor laser is that in a cascade laser each electron injected into the

device is recycled from one gain stage to the other and is able to produce multiple photons

(see Fig. 1-3). In a conventional laser each electron injected into the device cannot produce

more than one photon. Consequently, the differential quantum efficiency of a cascade laser

can be much greater than 100 percent, whereas the quantum efficiency of a conventional

laser is always less than 100 percent.

Directly current modulated semiconductor lasers have important applications in RF

photonic links (see Fig. 1-2). The modulation response of a semiconductor laser is defined

as the ratio of the small signal light output power to the small signal input current. For fre-

quencies much less than the laser relaxation oscillation frequency, the modulation response

of a conventional semiconductor laser is given by the simple expression q,77ihW,/e [1], where
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Figure 1-3: Multiple photons emitted by a single electron injected in a cascade laser.

r is the light output coupling efficiency, ri is the current injection efficiency, hp, is en-

ergy of a single photon, and e is the charge of an electron. The modulation response of a

semiconductor cascade laser with N cascaded gain stages is r71Nr/qhQo/e. The modulation

response of an N-stage cascade laser can therefore be N times larger than the modulation

response of a conventional laser. Because of their large modulation response, cascade lasers

are highly suitable for RF photonic links [3]. The RF power gain G of a photonic link with

an N-stage cascade laser is given by the expression [3],

G = (rqd L r0 oNri )
2 (1-_) 2  (1 1)

where L is the link loss, qld is the photo-detector quantum efficiency, and F is the reflection

coefficient which is equal to the ratio of the voltages in the RF signals reflected from and

incident on the laser. Cascade lasers can be used to realize photonic links with net RF gain

if N is large enough such that Lldr/qoNr/q(1 - F) > 1. An important figure of merit in RF

photonic links is the link Noise Figure (NF). The NF is defined as the ratio of the SNR at

the input of the link to the SNR at the output of the link, and it is expressed in dB scale.

It follows that,

NF = 10logio 1 + I (1.2)

where Ni is the noise at the input of the link (typically assumed to be the thermal noise
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Figure 1-4: Multiple cavity interconnect coupled cascade laser (MCCL).

of a 50 Q resistor) and Na is the noise added by the link. In order to compute the noise

added by the link, the photon noise in cascade lasers needs to be evaluated. The noise

behavior of cascade lasers can be significantly different from conventional semiconductor

lasers. Since all the gain stages are connected electrically in cascade lasers, the carrier

density fluctuations and, consequently, the photon emission events in different gain stages

are correlated. In the next two sections we briefly discuss the important and distinguishing

features of semiconductor interband and intersubband cascade lasers related to high speed

modulation and noise.

1.1.1 Semiconductor Interband Cascade Lasers

Figure 1-5: Split waveguide cascade laser (SWCL).
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Figure 1-6: Bipolar cascade laser (BCL).

diodes inside a single optical cavity [7, 8, 9, 10, 11]. In addition, parallel laser arrays, shown

in Fig. 1-7, are also considered. A property common to all these laser devices is that the gain

sections are all connected electrically. While semiconductor cascade lasers in recent years

have been receiving increased attention from experimentalists [3, 4, 5, 6, 7, 8, 9, 10, 11], so

far very few theoretical papers have appeared in the literature.

Theoretical models have been developed as a part of this research to understand the

electron and photon dynamics, noise, and correlations in semiconductor cascade lasers and

semiconductor parallel laser arrays. The correlations in photon emissions in cascade lasers

can be understood as follows. Suppose a photon is emitted from a gain stage in a cascade

laser (see Fig. 1-3). The emission of the photon decreases the carrier density in the gain

stage and this in turn decreases the potential drop across the gain stage. The potential drop

across all the other gain stages and across the circuit series resistances must increase since

the sum of the voltage drops across all the circuit elements in series must equal the applied

voltage bias. The increase in the potential drop across the other gain stages increases the

probability of photon emission in these gain stages. Therefore, the emission of a photon in

one gain stage increases the probability of photon emission in all the other gain stages.

When the gain stages are connected electrically in parallel, as in a parallel laser array,

the photon emission events in different gain stages are negatively correlated. The potential

drops across all the gain stages connected in parallel must be equal, and the total current

through all the gain stages must equal the applied current bias (see Fig. 1-7). When a

photon is emitted from a gain stage and the potential drop across this gain stage decreases,

extra current flows into this gain stage in order to keep the potential drop across it equal to

the potential drop across all the other gain stages. Consequently, the current going into all
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parallel laser array

Figure 1-7: Parallel laser array (PLA).

the other gain stages decreases and the probability of photon emission in these gain stages

also decreases. Theoretical modeling of photon correlations in cascade lasers requires that

careful attention be paid to modeling the relationship between carrier density fluctuations,

voltage fluctuations, and current fluctuations in each gain stage. The correlations in the

photon noise also depend sensitively on the electrical environment in which the cascade laser

device is embedded. Theoretical models for the dynamics and noise in interband cascade

lasers will be presented in Chapter 3. The correlations in photon noise in multiple cavity

cascade lasers and in parallel laser arrays can be measured experimentally. Experimental

results on photon noise correlations are also presented in Chapter 3.

1.1.2 Semiconductor Intersubband Quantum Cascade Lasers

Unipolar quantum cascade lasers (QCLs) utilizing intersubband transitions to generate

photons have become important sources of light in the mid-infrared wavelength region (5

Mm - 15 pm) [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. Recently, devices with

intersubband transitions at 1.55 pm have also been reported [25] and this has opened up

the possibility of realizing chirp-free intersubband lasers operating at 1.55 Am with large

modulation bandwidths. The single gain stage of a typical QCL is shown in Fig. 1-8.
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Figure 1-8: Gain stage of a Quantum Cascade Laser (QCL).

Electrons tunnel from the energy states in the injector into level 3 of the gain stage. Photons

are emitted when electrons make radiative transitions from level 3 to level 2. Transitions

from level 2 to level 1 occur primarily by emission of optical phonons. Electrons leave the

gain stage from level 1 by tunneling out into the injector of the next stage. In addition,

electrons also make non-radiative transitions from level 3 to levels 2 and 1. QCLs are

different from interband semiconductor cascade lasers in two important ways which can

have a significant impact on their noise properties:

1. Electron transport in QCLs takes place by tunneling between states in adjacent quan-

tum wells. It is well known that electronic correlations in resonant tunneling in quan-

tum well structures can suppress (or enhance) current noise by providing a negative

(or positive) feedback. [26, 27, 28] High impedance suppression of the current noise

in semiconductor diode lasers results in light output with squeezed photon number

fluctuations. [29] It is therefore intriguing whether suppression of the current noise

can also lead to squeezing in QCLs. Any model for the photon noise in QCLs must
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take into account these electronic correlations self-consistently.

2. In interband lasers, the carrier density in the energy level involved in the lasing action

does not increase beyond its threshold value and, therefore, the noise contributed

by the non-radiative recombination and generation processes also remains unchanged

beyond threshold. In QCLs, the electron densities in the upper and lower lasing states

do not clamp at threshold, and keep increasing when the bias current is increased

beyond threshold. As a result, non-radiative processes contribute significantly to

photon noise even at high bias currents.

Theoretical models for electron transport in QCLs, laser dynamics, current noise in

electron transport via tunneling, and photon noise will be presented in Chapter 4.

1.2 Semiconductor Mode-locked Lasers

Semiconductor mode-locked lasers have been used to produce sub-picosecond optical pulses

with repetition rates exceeding tens of gigahertz [30, 31]. Their compact size and the ability

to produce high repetition rate optical pulses make semiconductor mode-locked lasers ideal

for use in high data rate (RZ format) Time Division Multiplexed (TDM) optical networks

in place of the bulkier fiber mode-locked lasers. Semiconductor mode-locked lasers may also

find application in spectroscopy and in optical sampling such as optical analog-to-digital

(A/D) conversion [2].

Semiconductor mode-locked lasers must be able to produce short high power pulses with

reduced noise and timing jitter in order to compete with other mode-locked lasers. Fig. 1-9

shows the requirements on the root mean square (RMS) timing jitter of optical pulses for

optical A/D conversion [2, 32]. Fig. 1-9 shows that less than 100 femtosecond RMS jitter

is required for an A/D converter with 8 bits of resolution at a sampling frequency of 10

GHz, and less than 30 femtosecond of RMS jitter is required if the desired resolution is 10

bits at 10 GHz. Very few models have been reported in the literature that describe the

noise in mode-locked semiconductor lasers. Noise models for mode-locked lasers that have

been reported are either geared towards fiber and solid state mode-locked lasers [33, 34], or

ignore essential ingredients such as group velocity dispersion and phase modulation [35]. The

models for noise developed for solid state and fiber lasers use the soliton perturbation theory

in which the steady state pulse is assumed to be a soliton. An optical soliton is supported
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Figure 1-9: Requirements on pulse timing jitter for optical Analog-to-Digital conversion.

by the exact balance between group velocity dispersion and self-phase modulation due

to the Kerr non-linearity. In semiconductor mode-locked lasers, the steady state optical

pulses are not solitons. The group velocity dispersion is almost never balanced by the

phase modulation, and, consequently, the pulses in semiconductor mode-locked lasers are

usually highly chirped [30, 31]. Also, as a result of the carrier density refractive index

in semiconductors, active gain modulation in semiconductor mode-locked lasers is always

accompanied by strong active phase modulation.

As a part of this research, theoretical models were developed for the pulse noise in

actively mode-locked semiconductor lasers without using the soliton perturbation theory.

In Chapter 5, a model for the noise in mode-locked semiconductor lasers in the presence

of group velocity dispersion and amplitude/phase modulation is presented, and it is shown

that a non-zero pulse chirp significantly affects the noise in mode-locked lasers. To the best

of the author's knowledge, this is the first time a model has been put forward that describes

the noise in chirped mode-locked pulses. Design rules for obtaining low timing jitter in

semiconductor mode-locked laser pulses are also described.

The noise in harmonically mode-locked semiconductor lasers is discussed in Chapter 6.

In harmonically mode-locked lasers, the frequency of the active modulation is an integral
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multiple N of the cavity roundtrip frequency. Consequently, N different optical pulses

propagate in the laser cavity at the same time, and the pulse repetition frequency in the

output is N times the cavity roundtrip frequency. In harmonically mode-locked lasers, the

noise in the output pulses depends on the correlations in the noise in different pulses inside

the laser cavity. Models for these noise correlations are also discussed in Chapter 6.
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Chapter 2

Current Noise and Photon Noise in

Interband Semiconductor Lasers

2.1 Introduction

In this chapter, theoretical models for the current noise and the photon noise in a standard

multiple quantum well interband diode laser are presented. Noise in diode lasers has been

extensively studied both theoretically and experimentally in the last two decades (see [1,

41] and references therein). However, almost all the theoretical models that have been

presented in the literature ignore the current noise generated by the laser diodes. The work

of Yamamoto et. al. (see [29, 42] for example) has been the exception. In Ref. [29], it

was shown that diode lasers can produce amplitude squeezed light provided the noise in

the pump current ,ext (see Fig. 2-1) is suppressed below the shot noise value. In most

practical cases, the noise in the pump current does not come from the current or voltage

source that biases the laser, but it is generated by the laser itself. The current noise in diode

lasers is therefore closely tied with the photon noise. In the next Chapter, it will be shown

that the photon emission events in different gain stages in semiconductor cascade lasers are

correlated, and the magnitude of the correlation in photon emission events depends on the

current noise generated by each gain stage. In order to understand the photon noise in

semiconductor cascade lasers, it is necessary to accurately model the current noise in diode

lasers.

The model presented for the current noise in diode lasers in Ref. [29] holds well only
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for homojunction diode lasers. Even for homojunction diode lasers, the model in Ref. [29]

gives results for the current noise that become infinite when the external circuit impedance

Z, (see Fig. 2-1) approaches zero. In Ref. [43], Yamamoto and Haus argued that electrical

partition noise associated with current leakage in diode lasers does not contribute to the

photon noise. In this chapter, it is shown that partition noise associated with current

leakage in the active region of laser diodes significantly affects the photon noise and limits

the maximum squeezing achievable in laser diodes. The conclusion in Ref. [43] is based on

a model for current leakage in which a resistor is attached in parallel with the ideal diode,

as shown in Fig. 2-2. If at any instant more current (i.e. more than the average) were to go

into one branch of the parallel circuit, the potential drop V (see Fig. 2-2) will increase, and

this will force extra current into the other branch of the parallel circuit ensuring that the
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current in one branch does not increase at the expense of the current in the other branch.

Also, the increase in the potential drop V will reduce the current Iext being injected into

the device, and this will force the currents in both the branches of the parallel circuit to

return to their average values. Thus, electron partitioning at junctions in electrical circuits

does not lead to current noise since deviations in the current from its average value generate

voltage fluctuations that regulate the current. Since voltage fluctuations are not generated

in the charge neutral active region of a diode laser, it is expected that electron partitioning

associated with current leakage in the active region of a diode laser generates noise that

would contribute to the photon noise. Electron partitioning in the active region of diode

lasers was not considered in the model presented in Ref. [43]. In this chapter, a detailed

model for the current noise in heterostructure quantum well diode lasers is presented that

removes the shortcomings of the previous models.

2.2 Rate Equations for Diode Lasers

The active region of a quantum well diode laser is shown in Fig. 2-3. The carriers are

injected from the leads into the separate confinement heterostructure (SCH) region either

by tunneling or by thermionic emission over the hetero-barrier. The carriers in the SCH

region can either go into the quantum wells or recombine non-radiatively in the SCH region.
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The later contributes to current leakage. The rate equations for the carrier densities N,

and Nu in the SCH region and the quantum wells, respectively, and the photon density SP

in the laser cavity can be written as follows [1],

d Ne ext (1 1\ N. V,
= -Nc - + - + (2.1)

dt eV Te I Te V

dt -- N 1+ - -g g SP (2.2)
dt Tc V (e e

d S V g - SP + V p (2.3)
dt ( V 9  T ) *7jVg V

It is assumed that the carrier density Nc in the SCH region also includes the carriers inside

the quantum well barriers and also those in the quantum wells which have energy high

enough to not be confined within the quantum wells (Fig. 2-3). Only those carriers which

are confined within the quantum wells are included in the carrier density Nw. V and Vw

are the volumes of the SCH region and the quantum wells, respectively. V is the volume

of the optical mode. Tc and -e are the capture and emission times for electrons going into

the quantum wells from the SCH region and coming out of the quantum wells into the SCH

region, respectively. T is the lifetime associated with carrier leakage and recombination in

the SCH region. Tw is the non-radiative recombination time in the quantum wells. g is

the optical gain per unit length in the laser cavity. nr, is the spontaneous emission factor

which takes into account the incomplete inversion of the active medium. v9 is the group

velocity of the optical mode. Tp is the photon lifetime inside the laser cavity. Tp is given by

the expression [1],

- = V 9 log + Vgai (2.4)
rp L v1 R2

where L is the cavity length, R 1 and R 2 are the facet reflectivities, and ac is the intrinsic

loss in the cavity per unit length. Carrier leakage and recombination in the SCH region

results in a less than unity efficiency for current injection into the quantum wells. The

current injection efficiency 77 is,
Ti

S (= - )(2.5)
(7c + T)

The output power Pust from the laser can be written as,

P V
Pout = 770hQ0,P (2.6)

rP
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where q, is the laser output coupling efficiency.

The rate equations are not linear since the gain g is a function of the carrier density

Nu, inside the quantum wells [1]. However, some simple arguments can be used to derive

an expression for the output power of the laser. As the bias current Iext is increased, the

carrier density in the quantum well increases, and the optical gain also increases. When ext

equals the threshold bias Ith, the gain equals the cavity loss, and the laser starts oscillating.

At threshold, the gain equals the threshold gain 9th, where,

7 gt h -- (2.7)

Since in steady state operation the gain cannot exceed the loss, when the bias current is

increased beyond threshold, the gain remains clamped to its value 9th at threshold. As a

result, the carrier density N, in the quantum wells also remains clamped to its value at

threshold, and the non-radiative recombination rate, which depends on the carrier density,

also remains fixed above threshold. Therefore, carriers injected into the quantum wells

above the threshold injection rate recombine only by producing photons through stimulated

emission. Above threshold, the rate SpV/rp at which photons are emitted from the laser

is simply Til (Iext - Ith)/e, and the expression for the output power of the laser becomes,

Pout - 17ihQ0 ('ext - Ith) (2.8)
e

The factor q,,q hQ0 /e is the differential slope efficiency (units: Watt/Amp) of the laser.

2.3 Langevin Rate Equations for Noise in Diode Lasers

The model for the current and photon noise in quantum well diode lasers described here

follows the work published by the author in Refs. [44, 45, 46, 47]. The equations for the

fluctuations 6N, and 3N, in the carrier densities in the SCH region and the quantum wells,

respectively, and the fluctuations SSp in the photon density can be obtained by linearizing

the rate equations given in (2.1)-(2.3), and adding Langevin sources to model the noise,

dNVc _ -ext _ NcVc + + NwVw F, - F + Fe (2.9)
dt e \jC Ti Te
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d6NwVK0  6NCVC -(N 1! 1 1 V= N ~ N~ -N.vVw -- +-- + - V g6SpV+Fc-Fe-F,,r-FR (2.10)dt Tc Te Tw Tst Vp

d t st + ( 2. 11)SpVp + FR - FL

Here, Tst is the differential lifetime associated with stimulated and spontaneous emission

into the lasing mode. Tst is given by the expression,

1 __g nf\
Is= V9 d (Sp + (2.12)

Tst dNw V

where dg/dNw is the differential gain. The inclusion of the rate equation for carrier density

fluctuations in the SCH region is necessary to accurately model the noise associated with

current partition in the SCH region. Current partition occurs because the carriers injected

into the active region can either go into the quantum wells or they can contribute to leakage

and recombination in the SCH region. Since the active region is charge neutral, current

partition does not create charge imbalances and potential fluctuations that regulate the

associated noise. F1 , F,, and Fe in (2.9)-(2.11) are Langevin noise sources that model the

noise in carrier leakage, carrier capture and carrier emission events. Fr describes the noise

in non-radiative recombination in the quantum wells including spontaneous emission into

the non-lasing modes. FR models the noise associated with photon emission into the lasing

mode. FL models the noise associated with photon loss from the cavity. All the non-zero

correlations of the Langevin noise sources can be obtained from the methods described in

Ref. [1],
NcV

( Fe(t ) Fe(t')) = c c 6(t - t') (2.13)
Tc

NeV
(F1 ( t) F (t')) = " 6(t - t') (2.14)

Ti

N.V~
(Fe(t) Fe(t')) = 6(t - t') (2.15)

Te

(Fnr (t ) Fnr (0') = V 6(t - t') (2.16)

(FR (t) FR(t )) = V g 9 [(2n, - 1) SpVp + nsp] 6(t - t) (2.17)

VP

(FL(t) FL(t')) = V6(t - t') (2.18)
TP
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The noise 6P0st in the output power is,

6POSt = 770 JJ + Fo (2.19)

The Langevin source FO models the noise associated with photon partition at the output

facets, and has the following correlation functions,

(Fo(t) Fo(t')) = 7o (hQo)2 SP P 6(t - t') (2.20)

(Fo(t) FL (t')) = o (hQo) 6(t - t') (2.21)

In addition to the equations presented above, an equation is required to relate the fluctua-

tions 61ext in the current injected into the active region to the fluctuations 6V in the voltage

across the active region. This equation is [44, 47],

=ext _ G 6V - 6NcVc + Fin (2.22)
e e TG

The conductance G relates the increase in the injection current into the SCH region to

the increase in the voltage across the active region at a fixed carrier density. iG relates

the decrease in the current injection rate to the increase in the carrier density in the SCH

region. Approximate analytical expressions for G and rG in case of a conventional PN-diode

are given in Ref. [42]. (2.22) shows that the carrier density fluctuations in the active region

drive the current noise in the external circuit. Fin is the Langevin noise source associated

with carrier injection into the SCH region. Since the net current injected into the active

region is the difference of forward and reverse currents, i.e.,

Iext = Iforward - 'reverse (2.23)

Fin has the approximate correlation function [42],

Fin(t) Fin(t')) = 'forward + ireverse (2.24)e e
Iext N c) t(,~ -+ 2 'CV -t (2.25)

e G
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It must be emphasized that (2.22) is sufficiently general and holds for most microscopic

models for electron injection into the SCH region.

After Fourier transforming, the Langevin rate equation (2.9)-(2.11) can be put in the

following matrix form,

D11(w) D12 (w) 0 1Nc (__)_Vc I F(w)
- 6ext (22)D 21(w) D 22 (w) D 2 3 (w) J 1NV(w)V e 0 + F2 (w) (2.26)

0 D 3 2 (W) D 3 3 (w) 3Sp(w)Vp e F3 (w)

The elements of the matrix D are given in Appendix A.2, and the noise sources FI(w),

F2 (w), and F3 (w) are as follows,

F(w) = -Fe(w) - F(w) + Fe (W) (2.27)

F 2 (w) = Fc(w) - Fe (W) - Fnr () - FR(W) (2.28)

F3 (w) FR (w) - FL (w) (2.29)

2.4 Biasing Electrical Circuits

Two electrical circuits for biasing a diode laser are shown in Fig. 2-4. In circuit A the laser,

with impedance Z(w), is biased with a voltage source V in series with an impedance Z (w).

The thermal noise originating in the impedance Z, (w) is modeled by adding a voltage noise

source 6V. For the sake of economy of notation it will be assumed that the impedance Z, (W)

represents not just an external circuit impedance but the Thevenin equivalent impedance

of the device ohmic contacts, external circuit resistances, and device and circuit parasitics,

and the voltage noise source 6 V, represents the Thevenin equivalent of their individual

noise sources. Only the active region of the diode laser is not included within Z(w) and

is represented by the impedance Z(w). However, Z(w) will be loosely referred to as the

impedance of the diode laser.

Direct current modulation of a diode laser can be achieved by adding an RF voltage

source in series with SV, and this RF voltage source can also be represented by the voltage

source 6V. From the context it will be clear whether 6V, represents a RF signal source or

a noise source.
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Figure 2-4: Biasing circuits for diode lasers.

Diode lasers are frequently biased as shown in circuit B in Fig. 2-4. The laser is biased

with a current source in series with an ideal inductor, and it is also capacitively coupled

to a voltage source 6V with a series impedances Za(w) and Zb(w). If at frequencies of

interest the inductor and the coupling capacitor are almost open and short, respectively,

then this circuit is also equivalent to circuit A. Therefore, in this paper only circuit A will

be considered. In circuit A the current 6It can be expressed as,

Iei(w) =V(W) -V(W) (2.30)
Zs(w)

It is important to note here that 6It(w) may not be the noise current which would be

measured in an experiment. For example, suppose that the diode laser has a parasitic

capacitance C, in parallel with the actual device, as shown in Fig. 2-5. The laser is driven

with a series resistor R, and a noise voltage source 6V 0 (w) representing the thermal noise in

the resistor R,. Fig. 2-5 shows the distinction between the noise current &[ext(w) defined in

(2.30), and the noise current SImeas(W) that would be measured in an experiment. Notice
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that the Thevenin equivalent impedance Z (w) is a parallel combination of the resistance

R, and the capacitance C,. Z,(w) and 6V(w) are,

ZS(w) = RC
(1 + jw RoCo) SV(w) RC)

and the relation between 6ext (w) and 5 1 meas(w) is,

61ext (W) 6 meas (2.32)
(I + JW Z(W) CO)

Choosing to define Z8 (w) this way helps in formulating a noise model that is independent

of the specific nature of the device parasitics.
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Figure 2-6: Modulation response function JH(w) 2 for an InGaAsP/InP diode laser is plotted
for different values of the bias current. The values of different parameters of the laser are
given in Table 2.1.

2.5 Current Modulation Response

In this section the response 6Pout(W)/ 5 Iext(W) of diode lasers to external sinusoidal current

modulation &Iet(w) is determined 1. The behavior of noise in diode lasers at high frequen-

cies is closely tied to their current modulation response. The current modulation response

can be obtained from (2.26) assuming all the noise sources have been turned off,

6rPhQ 0  - hQD-3Iont(w) SSJVJ hQ0 Dj(w) (.3= 71, h, =0 er31 (2.33)
61ext (W) TP e r

Above threshold, and for frequencies less than the inverse of the carrier capture time Te, the

modulation response can be put in the following form [1],

_GO)= O Th H(w) (2.34)
6 Iext (W) e

It is assumed that P,t (t) = Po1 t + Real{6P0 t (w) e Wt} and Iet (t) = Iet + Real{3lext(w) eiWt}
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where the modulation response function H(w) is,

2
H(w) =R R (2.35)

(W 2 _ W2 +jw)

The relaxation oscillation frequency WR and the damping constant -y are,

2 1 (2.36)
Tst TP

1 l-r/s 1
_Y -+ +- KwR+70 (2.37)

Tw Te Tst

where,

K = TP and 7y = + (2.38)
TW T

e

Fig. 2-6 shows JH(u)|12 plotted for different bias currents for an InGaAsP/InP diode laser.

The values of laser parameters are given in Table 2.1. The peak in the modulation response

is due to the laser relaxation oscillations [1]. Near threshold, when y is small, the 3 dB

bandwidth of the modulation response is given by the approximate expression,

W3 dB- 1+V WR- 1.55WR (2.39)

As the bias current is increased beyond threshold, W3 dB increases until '7/Vs becomes equal

to WR. When the bias current is increased beyond this point, the modulation response

becomes over-damped, and w 3 dB starts to decrease. The maximum achievable modulation

bandwidth W3 dB max is related to the photon lifetime in the laser cavity as follows,

W3 dB max 2 -2(2.40)

2.6 Differential Resistance

The differential Impedance Z(w) of a diode laser can be obtained from (2.26) using (2.22),

Z 6V() 1 [ I + (2.41)
Hext (w) G TG I
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Table 2.1: Device Parameters for the InGaAsP/InP Diode Laser Used in
lations

Parameter Value
Lasing wavelength A 1.55 Pm
Operating temperature 300 K
Number of quantum wells 5
Cavity width 2.0 pm
Cavity length 600 pm

_P 4.1 ps

TC 15 pS

Te 101 ps
Tg 42 ps

Ti 90 PS
1/T" 2*B Nw+3*C* N
B 10-10 cm3/s

C 5 x 10-21 cm6/s

Ith 21 mA

Numerical Simu-

The differential resistance Rd of diode lasers, defined as Z(w = 0), below and above threshold

comes out to be,

G (1 + ')

Rd=

G(1+ 0)

(Iext < Ith)

(Iext > Ith)

0' and 0 are,

' TI T0 c oC (2.43)
TG - 7e) + Tc) TG (Ti + TC)

The carrier emission efficiency 77e is defined as Tw/(Te + Tw). Since Tw is usually around 1

ns, and the value of Te is expected to be around 100 ps or less, 77e is close to unity. The

discontinuity ARd in the differential resistance at threshold follows from (2.42),

1 0' 0'
ARd - (' -0) =:i Me - = 'qi e Rd

G G 1 +01'
(2.44)

'ext<Ith evaluated at Iext=Ith

Below threshold the current-voltage characteristics of a diode laser resemble that of a plane

PN diode [49],

Iext = Io exp( - 1
I mKBT

(2.45)
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where m is the diode ideality factor with values typically around 2.0. Therefore,

KBT
Rd = (2.46)

Iext <Ith ql,.t

and ARd becomes,
0/ KBT

AR+ = q 77e m t (2.47)1+0' q-1th

Above threshold, the impedance Z(w) can be expressed in terms of the modulation

response H(w),

Z(w) 1 + 0 1 + J P Tt + I + H(w) (2.48)
G e Tst Tnr

2.7 Current Noise

From Equation (2.22), it can be seen that the current noise Jlext(w) is driven by the carrier

density fluctuations JNc(w). The carrier density fluctuations 6Nc(w) can be obtained by

solving (2.26) in the presence of the noise sources,

6Ne(w)V = Dj (w) + 1 D -(w) Fk (w) (2.49)
e k=1

The current fluctuations ext (w) can be obtained by substituting the above expression in

(2.22) and using (2.30),

&V8(w)

ext (W) = V (O

Z8 (w) + Z(w)

+ Z()Z(w) - e 1
+Z,(P) + Z(LL) .Z(L,) GFi()

e 13 D -1(LL))D)TG Fk (W) (2.50)
Z(w) k=1 G

The form of (2.50) suggests that a circuit model for the current noise can be constructed

as in Fig. 2-7 where a current noise source 61(w) is attached in parallel with the diode laser.

61(w) is given by the expression,

61(w) = Z 1 [Fin(w) - DQ D (w) ( (2.51)
k=1 TG
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Figure 2-7: Circuit model for the current fluctuations in semiconductor diode lasers
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Figure 2-8: Low frequency current noise spectral density KI(O) (W < w3 dB) of an In-
GaAsP/InP diode laser is plotted as a function of the bias current. The values of the laser
parameters are given in Table 2.1.
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Figure 2-9: Fano Factor of the current noise of an InGaAsP/InP diode laser is plotted as a
function of the bias current. The values of the laser parameters are given in Table 2.1.
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Figure 2-10: Current noise spectral density Kr(w) of an InGaAsP/InP diode laser is plotted
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current is 21.0 mA. The current noise spectral density shows a peak at the laser relaxation
oscillation frequency Wf. The values of laser parameters are given in Table 2.1.
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Below threshold, and for frequencies less than W3 dB, 61(w) is,

61(w) Fin (w) + 0' (1 -Tle) [F,(w) - Fe (w)] + 0' Fi(w) + 0' ieFnr (w) (2.52)
e (1+0')

Above threshold 61(w) is,

I(w) Fin (w) + 0 [Fe(w) - Fe (w) + F(w)] + 0 (7s) [FR(w) - FL(w)]

(1+0)

The spectral density KI(w) of the current noise 61(w) follows from (2.52) and (2.53),

K1 (w < W3 dB , Iext < -th) - elext

KI (W < W3 dB , Iext > Ith) e lext + 2 e e 77i Ith O'
(1+0)

+ 2e ?sp ni ('ext - Ith) T ' (2.54)
(1 + )2

Fig. 2-9 shows the Fano Factor of the current noise of an InGaAsP/InP diode laser as a

function of the bias current. The values of the laser parameters are given in Table 2.1.

The current noise increases dramatically near threshold and can become more than 100

times larger than the shot noise value of elext. The increase in the current noise near

threshold can be explained as follows. Below threshold, the cavity gain is less than the cavity

loss and the photon density fluctuations in the cavity are strongly damped. Much above

threshold, although the cavity gain equals the cavity loss, the photon density fluctuations

are stabilized by negative feedback from the carrier density as a result of the strong coupling

between the photon density and the carrier density above threshold. Near threshold, the

cavity gain almost equals the cavity loss, but the coupling between the photon density

and the carrier density is weak. Consequently, photon density fluctuations become large

near threshold. Since the carrier density is weakly coupled to the photon density, the

carrier density fluctuations, and consequently the current fluctuations, are also large near

threshold. In the expression for the current noise spectral density above threshold given in

(2.54), the last term dominates near threshold. Near threshold, the photon density S, is

small, and rt, given by the expression in (2.12), is large. It should be noted that this last

term is entirely due to the Langevin noise sources present in only the rate equation for the

fluctuations in the photon density.
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Fig. 2-10 shows the current noise spectral density plotted as a function of the frequency

for different values of the bias current. The current noise spectral density shows a resonance

peak at the laser relaxation oscillation frequency wR. Since the carrier density fluctuations

drive the current fluctuations, the relaxation oscillation peak is also present in the current

noise spectral density. These relaxation oscillations peaks in the current noise spectral

density can be observed experimentally, as shown in Section 2.10 of this Chapter. In the

limit ; -+ o, the current noise is just the noise associated with carrier injection into the

active region and has the spectral density,

KI(W +OO , Iext < Ith) eext (1+ 20')

Kj(w -oo, Iet > Ith) = elext (1+ 20)+ e e Tr It 0' (2.55)

2.7.1 Suppression of the Current Noise by Large External Impedance

The current noise 6lext(w) in the external circuit in the presence of an external impedance

Z,(w) and an external voltage noise source 6V,(w) is,

61ext (w) 6V(W + - (w) (2.56)
(Z(w) + Zs(w)) (Z(w) + Z8(w))

When Z,(w) is much larger than the differential impedance Z(w) of the active region, the

contribution from the noise source 6I(w) to the current noise in the external circuit is

suppressed, and the current noise in the external circuit is just the noise contributed by

the voltage noise source 6V(w). If 6V5 (w) represents the thermal noise originating in the

impedance Z,(w) then,

(6V*(w) 6Vs(w)) = 2KBT Re {Zs(w)} 27r6(w - ') (2.57)

By making the impedance Z(w) very large, the current noise in the external circuit can be

suppressed well below the shot noise value. When Z8 (w) is much smaller than Z(w), the

current noise in the external circuit is the noise 6I(w) plus the current noise contributed by

the external voltage noise source 6V(w).
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2.8 Photon Noise

The expression for the noise 6Put(w) in the output power can be obtained from (2.26) using

(2.19),

DjI(w) 6lext(L) 3 D(L,))
POt (D) = Fo hko + 7o h~o 3(w) + Fo(w) (2.58)

eP k=1i T

Above threshold, and for frequencies less than w 3 dB, 3oP 0 (w) is,

= rj~r~hQ0 
3 ext (w) hQ ( ?)6Pout G') =qo 77i h~o +1x G')F 7 h~o (I - ni) [Fec) Fe(W)] -qi F (Lj)

- Fnr (W) + ('Y7t - 1) FR(w) - -/ T st FL (w) + Fo(w) (2.59)

Note that the photon noise depends on the current noise 6lext(w) and not on the current

noise 61(w). High impedance suppression of the current noise 61ext(w) in the external circuit

can have a profound effect on the laser intensity noise. If 6 Iext(w) is suppressed, the spectral

density Kp(w) of the intensity noise, for frequencies less than w3 dB, is,

1 2- 2-
KP (w < U3 dB , lext > Ith) hQo Pot I -[1 + 270o sp ~-( + 1 ) 2

+ (10 hQo) 2 7 ( ext + (2.60)
ee.

The term proportional to Iext in the above Equation is due to the current partition noise.

Even if the current noise in the external circuit is suppressed, the noise due to current

partition in the active region is not suppressed. If the current injection efficiency 77 is close

unity, the contribution from the current partition noise to the photon noise is small. The

low frequency Fano Factor Fp(w) of the photon noise at very large bias currents is,

FP (W < W3 dB , lext > Ith) = 1 - o 77i (2.61)

In diode lasers both qo and qi have typical values around 0.80 - 0.90, and therefore

high impedance suppression of the current noise in the external circuit can result in more

than 5 dB suppression of the laser intensity noise below the shot noise value. The laser

output coupling efficiency and the current injection efficiency, therefore, set the upper limit

on the photon number squeezing achievable in diode lasers. If the external impedance
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Figure 2-11: Photon noise Fano Factor of an InGaAsP/InP diode laser is plotted as a
function of the bias current for different values of the external circuit impedance Z. Photon
noise is squeezed when Z, is very large. The values of different parameters of the laser are
given in Table 2.2.
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Figure 2-12: Photon noise Fano Factor of an InGaAsP/InP diode laser is plotted as a
function of the ratio Z,(w)/Z(o) for two different values of the bias current. Photon noise
is squeezed when Z, is much larger than Z. The values of different parameters of the laser
are given in Table 2.2.
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Table 2.2: Device
lations of Photon

Parameters for the InGaAsP/InP Diode Laser Used in Numerical Simu-
Noise

Parameter Value
Lasing wavelength A 1.55 pm
Operating temperature 300 K
Number of quantum wells 5
Cavity width 2.0 pm
Cavity length 400 pm
Cavity internal loss 9 cm-1

Tp 3.15 ps

TC 5 ps
Te 30 ps

T9 15 ps

Ti 50 Ps
1/T, 2*B N,+3*C* N 2
B 10 10 cm3/s

C 5 x 10-29 cmG/s

Ith 15 mA

77i 0.90

r/o 0.75
Rd=Z(w=0) 0.50 Q

Z,(w) is much smaller than the impedance Z(w) of the active region, current noise in the

external circuit is not suppressed. In this case, it can be shown that at large bias currents

the Fano Factor of the photon noise is greater than unity, and photon number squeezing

is not possible. Fig. 2-11 shows the low frequency Fano Factor of the photon noise of

an InGaAsP/InP diode laser as a function of the bias current for different values of the

external impedance Z 8 (w). Fig. 2-12 shows the photon noise Fano Factor as a function of

the ratio Z 8 (w)/Z(w) for two different values of the bias current. The laser parameters used

in generating these Figures are given in Table. 2.2. When Z, < Z(w), the photon noise is

above the shot noise value. When Z, > Z(w), the photon noise is squeezed when the bias

current exceeds four times the threshold value.

Photon number squeezing in diode lasers when the current noise 3 Iext(w) in the external

circuit is suppressed can be understood as follows. In the Langevin approach, the noise con-

tribution by different transitions to the photon number noise is proportional to the average

rate of the transitions. When a laser is biased much above threshold, the fastest process is

carrier recombination by stimulated emission of photons. Since the average carrier density
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in the quantum wells is clamped to its value at threshold, non-radiative carrier recombi-

nation is by comparison a much slower process. Also, if Th is close to unity then current

partition in the active region will also contribute little to the photon noise. Thus, much

above threshold stimulated emission is by far the most important process that contributes

to the photon number noise. Suppose in some small time interval photons in excess of the

average rate are emitted. Immediately after the emission of photons the carrier density in

the quantum wells, and the voltage drop across the active region, will be below their average

values. The decrease in the carrier density will result in reduced optical gain. Consequently,

the rate of stimulated emission of photons will also drop below its average value until the

carrier density recovers. This negative feedback provided by the carrier density reduces the

noise in photon emission and helps in photon number squeezing. If the carrier density in

the quantum wells were somehow clamped to a fixed value, it would not be able to provide

negative feedback to control the noise in photon emission. This is what happens when a

laser is biased with a low impedance electrical circuit. Every time the carrier density drops

below its average value, the circuit responds by pumping in extra current which quickly

restores the carrier density to its average value. The ability of the carrier density to provide

negative feedback to control the noise in photon emission is thus diminished. On the other

hand, a high impedance circuit suppresses the current noise in the circuit by not allowing

the circuit to respond to the carrier density fluctuations inside the laser. In addition to the

mechanism described here, noise from sources external to the laser, such as thermal noise

from circuit resistances, also contributes to the photon noise. Photon number squeezing

in diode lasers has been experimentally observed when the lasers are biased with a high

impedance circuit [50, 51]. The current noise model presented in the Section 2.7 is therefore

in agreement with the experimental observation of photon number squeezing in diode lasers.

The terms in Equation (2.58) containing elements of the matrix D- 1 are proportional

to the modulation response function H(w) and, therefore, for frequencies much larger than

the modulation bandwidth the noise in the output power is,

3Pot (w >> w3 dB) = Fo(w) (2.62)
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Table 2.3: Device Parameters of the InGaAsP/InP Fabry-Perot Laser Used in the Experi-
ments

Parameter Value
Lasing wavelength A 1.55 um

Operating temperature 300 K

Number of quantum wells 5

Quantum well thickness 60A

VC / V ~10
Cavity width 4.0 pm
Cavity length 800 pm

VC/V 10

ai 15 cm-1

R1 , R 2  0.3

Ith 44 mA
770 0.25

and the spectral density of the noise in the output power equals that of shot noise,

KP (W > w3 dB) hQo Pout (2.63)

2.9 Experiments for Parameter Extraction

In the previous Sections, a model for the laser noise was presented in which several different

parameters, including G, rg, 0', 0, and -e established a relation between the fluctuations

inside the laser and the fluctuations in the current in the external circuit. In this Section, it is

shown that the values of these parameters near threshold can be extracted from experimental

measurements. InGasAsP/InP Fabry-Perot laser was used in the experiments. The laser

parameters are given in Table 2.3, and the SEM of the laser structure is shown in Fig. 2-13.

The intrinsic cavity loss in the laser was determined by cleaving lasers of different lengths [1],

and was found to be approximately 15 cm- 1 . The output power coupling efficiency qo of

the laser (per facet), assuming facet reflectivities of 0.3, is then 0.25. Fig. 2-14 shows

the output power per facet. The differential slope efficiency of the laser near threshold is

measured to be 0.17 W/A. Using (2.8), the current injection efficiency 7i is found to be

0.85 near threshold. Fig. 2-15 shows the measured differential resistance of the laser. At

threshold, the discontinuity in the differential resistance is 0.56 Q. The differential resistance

just above threshold is 4.4 Q. Later in this Section, it is shown that just above threshold the
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Figure 2-13: A SEM of the InGaAsP/InP Fabry-Perot laser used in the experiments.
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Figure 2-14: The measured output power of an InGaAsP/InP Fabry-Perot laser is plotted.
The laser parameter values are given in Table 2.3. The solid line is the laser output power
per facet. The dashed line indicates a differential slope of 0.17 W/A near threshold.
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Figure 2-15: The measured differential resistance of an InGaAsP/InP Fabry-Perot laser is
plotted (solid line). The laser parameter values are given in Table 2.3. The two dashed
lines indicate a resistance discontinuity of 0.56 Q at threshold. Just above threshold the
differential resistance of the laser is 4.4 Q.
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differential resistance of the junction is approximately 0.65 Q. The impedance Z, in series

with the junction is then 3.75 Q. For any bias current, the voltage V across the junction can

be estimated from the relation V = V - Iet Z, where V is the voltage measured across the

entire laser device. As discussed in Section 2.6, below threshold the laser current-voltage

characteristics resemble that of a plane PN diode,

(eV N 1
Iext = o exp - 1 (2.64)

(mKBT

Note that V in the above Equation is the voltage across the junction. It follows that the

slope of log (Iext) plotted as a function of the junction voltage V gives the value of e/mKBT.

This plot is shown in Fig. 2-16. The dashed line gives the slope just before threshold, and

the value of e/mKT is found to be approximately 19 1/V. The resistance discontinuity at

threshold is given by Equation (2.47),

0/ K BTA Rd = 7 ie m T (2.65)

The above relation can be used to obtain the value of 0' near threshold if the value of 'qe is

known. The value of Tie will be assumed to be 0.92 and this value will be verified later in

this Section. Using (2.65), the value of 0' is found to be approximately 1.46. Since 0 equals

0'(1 - Ti Te), the value of 0 near threshold is 0.3. Using the relation given in (2.44),

ARd = G (0' -0) (2.66)

the value of G is found to be 2.1 Q-1. The differential resistance of the junction just

below and just above threshold can be found using (2.42), and comes out to be 1.18 Q

and 0.65 , respectively. The value of m obtained from the measured value of e/mKBT,

assuming T ~ 300, is approximately 2.0. The conventional theory, as formulated in Ref. [49],

assumes that the current-voltage characteristics of a diode laser below threshold is given

by a relation similar to (2.64), and the differential resistance of the laser above threshold is

assumed to be zero. The discontinuity in the differential resistance of the laser at threshold,

as predicted by the conventional theory, is therefore mKB T/eIth. For the laser used in the

experiments, mKB T/elth equals 1.18 Q which is almost twice the value of the discontinuity

in the differential resistance measured experimentally (see Fig. 2-15). The theory presented
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in this Chapter agrees well with the experiments. Knowing the values of 0', 0, qe, and

qi, the ratios Tc/Tg, and Tc/rT can be determined and are found to be 0.357 and 0.167,

respectively. The value of -e can be obtained from the value of G and the ratio Tc/Tg as

follows. Below threshold, the ratio of the carrier densities N, and N follow from the rate

equations (2.1)-(2.3),

NeV = NwVw (2.67)
Wg 17e

It is assumed that below threshold the carrier density N, is related to the junction voltage

as follows,
IeV N

NcV oc exp I T (2.68)
mKBT

Differentiating the above Equation with respect to V one obtains,

NCVc _ e NcVc (2.69)
6V mKT

The ratio JNcVc/6V can also be obtained from (2.22) and (2.30) assuming that the laser is

biased with a current source (Zs o ) and the noise sources are turned off,

JNeV T9 G
6V - e (2.70)
81V e

Using (2.67), (2.68) and (2.69), the value of Te near threshold can be estimated by the

relation,

- =1 ( ( (2.71)re e Tc e NwVw 1,x,=1,h

At threshold, the carrier density N, can be determined by equating the cavity gain to the

cavity loss. The quantum well gain can be obtained from a model based on 6-band k.p

theory (see [54]),

9 = go log (lw (2.72)
Ntr

where go = 2800 1/cm, and Ntr = 1.5 x 1018 1/cm 3 . The value of re comes out to be

approximately 101 ps. Earlier in this Section, the value of TIe was assumed to be 0.92, and

this assumption can now be verified. Near threshold, the value of Tw can be determined

from values of the B and C coefficients given in Table. 2.1, and comes out to be 1.1 ns. The

value of qe, given by the expression rw/(Te + rw), is indeed 0.92. The carrier capture time

We cannot be obtained from the measurements presented here. It can be estimated from the
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Table 2.4: Values of the Laser Parameters Extracted From Measurements

Parameter Value
0' 1.46
O 0.30
G 2.10
Rd = Z(w =0) (below threshold) 1. 18 Q
Rd = Z(W 0) (above threshold) 0.62 Q
77 0.857
Te 101 ps

mC 10 ps - 20 ps

T9 2.8 Tc = 28 ps - 56 ps

Ti - 6.0 Tc = 60 ps - 120 ps

theoretical result in Ref. [52],

Tc ~ 1.0ps - 2.Ops x V (7
VW

For the lasers used in the experiments, V/V. was approximately 10, and the value of Tc is

estimated to be between 10 ps and 20 ps. Since the ratios Tc/Tg and Tc/Tl are known from

the measurements, the values of 1r and -g can also be estimated and are approximately

60 - 120 ps and 28 - 56 ps, respectively. The values of Tc, TI, Tg, -r, 0, 0', and G determined

in this Section near the laser threshold, and given in Table 2.4, are expected to be strong

functions of the temperature and the bias current.

2.10 Current Noise Experiments

The experimental setup used for measuring the current noise in diode lasers is shown in

Fig. 2-17. For the experiments, InGaAsP/InP distributed feedback (DFB) diode lasers

were fabricated in collaboration with Michael H. Lim and and Elisabeth Koontz. The laser

structure consisted of polyimide planarized ridge optical waveguides that had negligible

parasitic capacitance between the top metal contact and the substrate. The laser structure

was similar to that of the Fabry-Perot laser shown in Fig. 2-13. This ensured that high

frequency current noise measurements would not be affected by RC parasitics. The lasers

had a side mode suppression ratio (SMSR) better than 40 dB a little above threshold, as

shown in Fig. 2-18. The threshold current of 600 x 2 pm 2 area devices, with uncoated facets,
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above threshold.
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Table 2.5: Device Parameters for the InGaAsP/InP DFB Laser Used in Experiments

Parameter Value
Lasing wavelength A 1.55 Pm
Operating temperature 300 K
Number of quantum wells 5
Cavity width 2.0 pm
Cavity length 600 pm

Tp 4.1 ps
Tc 15 ps

Te 101 Ps

__ 42 ps

Ti 90 ps
1/7w 2 B N+3*C*N2
B 10-10 cm3 /s
C 5 x 10-21 cm6/s
Ith 21 mA

was 21 mA. The values of the laser parameters are given in Table. 2.5. The lasers were

biased with a current source through a bias tee, as shown in Fig. 2-17. The signal from the

RF port of the bias tee was fed into a low noise amplifier (LNA) with a 30 dB gain over the

frequency range from 200 MHz to 2 GHz, and a Noise Figure (NF) less than 1.5 dB. The

LNA had a 50 Q input impedance. The signal from the LNA was fed directly into a RF

spectrum analyzer. Co-axial SMA cables were used at each stage of the setup. The large

impedance mismatch between the lasers, with junction impedance typically less than 1 Q

above threshold, and the 50 Q LNA made it difficult to couple noise power from the lasers

into the LNA. A rough estimate of the noise power delivered to the RF spectrum analyzer

can made as follows. As shown in Fig. 2-8, the current noise of a diode laser attains its

maximum value near threshold. A little above threshold, the current noise spectral density

is about -185 dB-Amp 2 /Hz (see Fig. 2-10). Assuming the differential resistance of the

junction to be 1 Q near threshold, the spectral density of the current noise going into the

LNA is -219 dB-Amp 2/Hz. The noise power delivered to the LNA is -172 dBm/Hz, and

the noise power delivered to the RF spectrum analyzer is -142 dBm/Hz (LNA gain is 30

dB). The noise floor of the measurement setup is around -140 dBm/Hz. The noise power

coupled into the RF spectrum analyzer is, therefore, very close to the noise floor.

Fig. 2-19 shows the noise power measured by the RF spectrum analyzer for different
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Figure 2-19: The noise power measured with the RF spectrum analyzer (units: dBm)

is shown for different values of the bias current from 21.3 mA to 24.0 mA in 0.3 mA

increments (solid lines). The threshold current is 21.0 mA. The dotted line shows the

noise floor measured with the input to the LNA shorted. The resolution bandwidth of the

RF spectrum analyzer was 3 MHz. The measured noise spectral densities show the laser

relaxation oscillation peaks.

values of the laser bias current; from 21.3 mA to 24.0 mA in 0.3 mA increments. The laser

relaxation oscillation peaks are clearly visible in the measured spectra. The signal measured

by the RF spectrum analyzer is, as expected, close to the noise floor. The total noise power

SN(w) (units: dBm) measured by the RF spectrum analyzer can be written as,

SN (w) = 10 10 10 [2KI(w) (+ Ze ) 2 Zext 10 3 G RB + Nf(w)j (2.74)
Z + Ze+Zext

Here, Z, is the impedance of the diode excluding the junction impedance and was measured

to be 6.0 , Z is the differential resistance of the junction, Zext is the input impedance of

the LNA and is assumed to be 50 , G is the LNA gain and equals 103 , RB is the resolution

bandwidth of the spectrum analyzer and equals 3 MHz, and N(W) represents the noise

floor. The factor of two on the right hand side in (2.74) converts from the double-sided

noise spectral density K 1 (w) to the single-sided noise power SN(W). The dotted line in

Fig. 2-19 is the noise floor (obtained by shorting the inputs to the LNA). The current noise
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Figure 2-20: The laser current noise spectral density K(W), estimated from the noise power
measured with the RF spectrum analyzer, is shown for different values of the bias current
from 21.3 mA to 24.0 mA in 0.3 mA increments. The measured noise spectral densities
show the laser relaxation oscillation peaks. The measured current noise spectral density is
in excellent agreement with the theoretical results shown in Fig. 2-21.
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Figure 2-21: The laser current noise spectral density K(w) calculated from the theory is
shown for different values of the bias current from 21.3 mA to 24.0 mA in 0.3 mA increments.
The values of the laser parameters are given in Table. 2.5. The calculated current noise
spectral density is in excellent agreement with the measured results shown in Fig. 2-20.
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spectral density Ki(w) of the laser can be determined by inverting the relation in (2.74).

Fig. 2-20 shows the measured laser current noise spectra for different values of the bias

current. The theoretical results for the laser current noise spectra using the parameter

values given in Table. 2.5 are shown in Fig. 2-21. The measured results agree very well with

the theory. The value of the junction impedance Z in Fig. 2-20 was assumed to be 0.65 Q in

order to obtain a match with the theoretical results in Fig. 2-21. This is to our knowledge

the first reported measurement of the laser current noise spectral density. The error in the

measured value of Ki(w) was estimated to be less than ±2 dB-Amp 2 /Hz. There is a good

reason why the theoretical results agree so well with the measurements. Above threshold,

the dominant term contributing to the laser current noise, as explained earlier, is the last

term on the right hand side in (2.54),

2e qs 'i (Iext - Ith) Z2 (2.75)

The magnitude of this term depends critically on the factor (O/Gre)2 . The other factors

are either known or can be estimated fairly accurately. Using (2.71), one can obtain an

expression for O/GTe valid near the laser threshold,

0 mKBT)
= re ei C e Ith)(2.76)

GTe e eNtV = 1 t

The right hand side in (2.76) can be estimated accurately given that both TI, and 7i are

close to unity. The laser parameters used in generating the theoretical results in Fig.2-21

(see Table 2.5) satisfy (2.76). The spectral density of the current noise in the external

circuit is given by the expression in (2.75) multiplied by a current division factor which

is approximately [Z/(Ze + Zext)]2 . So the junction impedance Z cancels out, and in the

ideal case the noise power measured by the RF spectrum analyzer can be predicted fairly

accurately. The junction impedance Z is needed to convert back from the noise power

measured by the RF spectrum analyzer to the spectral density of the laser current noise.

As mentioned above, the junction impedance was assumed to be 0.65 Q to obtain a good

match between the theory and the experimental data.

The current noise measurements, especially the observance of the relaxation oscillation

peaks in the measured current noise spectra, show that the current noise in diode lasers is
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driven by the carrier density fluctuations inside the active region. In the next Chapter, the

theoretical models presented in this Chapter will be used to develop models for the noise

in semiconductor interband cascade lasers.
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Chapter 3

Noise and Correlations in

Semiconductor Interband Cascade

Lasers

Semiconductor cascade lasers were introduced in Chapter 1. In semiconductor cascade

lasers, several gain stages are connected electrically in series as shown in Fig. 1-1 of Chap-

ter 1. These gain stages may be in the same optical cavity or in different optical cavities.

The fundamental difference between a semiconductor cascade laser and a conventional semi-

conductor laser is that each electron injected into a cascade laser is recycled from one gain

stage to the other and is able to produce multiple photons (see Fig. 1-3). In a conventional

laser, each electron injected into the device cannot produce more than one photon. Conse-

quently, the quantum efficiency of a cascade laser can be much greater than 100 percent,

whereas the quantum efficiency of a conventional laser is always less than 100 percent. In

Chapter 1, it was shown that the increased quantum efficiency of cascade lasers make them

highly suitable for RF photonic links. The noise behavior of cascade lasers can be signifi-

cantly different from that of conventional semiconductor lasers. In cascade lasers, since all

the gain stages are connected electrically, the carrier density fluctuations and, consequently,

the photon emission events in different gain stages are correlated. In this Chapter, theoret-

ical models are presented for the noise and correlations in semiconductor interband cascade

lasers. Experimental results that verify the theoretical models are also presented.

In Section 3.1, interconnect-coupled multiple cavity cascade lasers, shown in Fig. 1-4
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Figure 3-2: A circuit model for the current noise in a multiple cavity cascade laser (MCCL).

of Chapter 1, are discussed. Parallel laser arrays, shown in Fig.1-7 of Chapter 1, are also

discussed in the same Section. Parallel laser arrays are not cascade devices, but their noise

characteristics are closely related to those of multiple cavity cascade lasers. In Section 3.3,

experimental results on the correlations in the photon noise in multiple cavity cascade lasers

and parallel laser arrays are presented. In Section 3.4, the noise in interconnect coupled split

waveguide cascade lasers, shown in Fig. 1-5 of Chapter 1, is discussed, and in Section 3.5,
theoretical models for the noise in bipolar cascade lasers, shown in Fig. 1-6, are presented.

68

Zs

SVs -

a --



3.1 Multiple Cavity Cascade Lasers

3.1.1 Theoretical Model

In a multiple cavity cascade laser (MCCL), cascaded stages are connected electrically in

series in separate optical cavities. An integrated MCCL is shown in Fig. 1-4 of Chapter 1 [3,

4]. For application in RF photonic links, light from all the optical cavities needs to be

collected before it can be transmitted over an optical fiber, as shown in Fig. 3-1. The noise

characteristics of MCCLs can be derived from the models of the laser current noise and

photon noise presented in Chapter 2. The Langevin rate equations for the carrier and the

photon densities in the j-th cascaded stage are as follows,

d6NV _ V 'ext I 1 ) NwVF
= -Nc'Vc -+ - +c - F 1F+ Fe (3.1)dt e F(Ti Te

d3Nw' Vw 6 NeVc I INIv(I 1V
= r -6NwJVw -+-+- "V Ug 6SP3V+ Fc'- Fel- Fn,.-FR3.2)dt Tc Te Tw Tst VP

dSV t ( V- I- S|Vp+ F- F (3.3)
dt rst ) P PJP R

The Equations above are the same as those given in (2.9)-(2.11) for a conventional semicon-

ductor laser except for the superscript j. Since the same current flows through all the stages

connected electrically in series, 61 ext in (3.1) does not have a superscript. The fluctuation

in the output power 6POt from the j-th stage is,

6Po = r0 hQ0 6 S + F , (3.4)

The fluctuation 6PoT in the collected output power is = wojut, where N is the total

number of cascaded stages. The current noise 3 1
ext in the external circuit can be related to

the carrier density fluctuations in the j-th section as shown below,

Sl=xt G - F5V _ NVc IJ (3.5)
e e TG

The correlation functions of all the Langevin noise sources are given in Chapter 2. The

Langevin noise sources belonging to different stages in the cascade are uncorrelated. The
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condition imposed by the external circuit is given as (see Fig. 3-2),

6V(LO) - EN I 6Vi~)
6lext(w) == (3.6)Z(w)

Equations (3.1)-(3.3), together with (3.5) and (3.6), can be solved in the frequency domain

to yield the circuit model shown in Fig. 3-2 in which a current noise source 6I (Lo) is attached

in parallel with the active region of the j-th stage. The impedance Z(w) of each active region

is the same as that given in (2.41) in Chapter 2. The parasitic series resistances in all the

stages are lumped in with the impedance Z, (Lu). The expression for the current noise source

6Ii (Lv) is also given by an expression identical to that in (2.51) in Chapter 2, except that

all the Langevin noise sources in the expression have the superscript j,

e I - 3 Da (w M6Ii (w) =Z(w) 1 [F( -i (WG F (w) (3.7)
Z L)Gk-i TG kj

The current fluctuation 6Text in the external circuit is,

6V (W) Z '(w) )N ()Jlext(W) = +( ( Zc \ (w) (3.8)
N Z(w) + Z, (w) N Z(w) + Z, (w)

The noise 6P at(L) in the output power from the j-th cascade section follows from (2.58)

in Chapter 2

hQ, D-',u) 3 D- (Lo)3P&oi ) (Q wQ3w)=lext (w) + 3k h F (w) + F (3.9)
e Tp k=1 Tp

hQ, D 1(w) V (LO)

e Tp N Z(w) + Z,(w)

hQo D-(w) Z(w) ) N
e TG N Z (w ) + Z(cv) E3 p)

+ -r 0 hQo 3k (3.10)
k=1 P

3.1.2 Correlations in the Photon Noise of Cascade Sections

Since the current noise that contributes to the photon noise of a cascade section has contri-

butions from the noise generated in all the cascade sections, the photon noise in different

cascade sections is correlated. The cross-spectral density Kj(W) of the noise in the output

70



0.7 Z = 0.8'Q
Z =2Q

0.6. C
0

0.5- z 0 Q

L0.4
" 0.3-

Z 0.2-
0
0 0.1- Z =500 -

-0.1
0 1 2 3 / 4 5 6

ext th

Figure 3-3: The low frequency correlation in the noise in the output powers of two different
sections of a two-section multiple cavity cascade laser is plotted as a function of the bias
current for different values of the circuit impedance Z,(w). Each laser in the cascade device
is assumed to be a InGaAsP/InP diode laser operating at 1550 nm. The laser parameters
are given in Table. 3.1.

powers from the j-th and the q-th cascade sections is defined as follows,

Kp (w) J dr R (T) exp (-jw T) (3.11)

where the correlation function R7p(T) is,

Ry (T) = (WPlat(t) JPgot(t + T)) (3.12)

Symmetry implies Rp(T) = RP (T), and symmetry with stationarity implies Rp(-T) =

RP(T). It follows that K (-w) = Kq *(L) = Kiq(L). The cross-spectral density K (p)

can also be calculated directly in the frequency domain (also see Appendix A.1),

K (V) = (JPd.t*()L ')) (3.13)_ 170 27 0U L)+L))

In what follows, it is convenient to introduce Kp(w)|z(w) as the spectral density of the

noise in the output power of a conventional semiconductor laser when the active region of
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Table 3.1: Device Parameters for the InGaAsP/InP MCCL Used in Numerical Simulations
of the Correlations in the Photon Noise

Parameter Value
Lasing wavelength A 1.55 pIm
Operating temperature 300 K
Number of quantum wells 5
Cavity width 2.0 pm
Cavity length 400 tm
Cavity internal loss 9 cm-1

Tp 3.15 ps

TC 5 Ps
Te 30 ps

T9 15 ps

Ti 100 ps

1/Tw 2 B N+3*C*N2
B 10-10 cm3 /s
C 5 x 10-29 cm6/S

Ith 15 mA
77i 0.95

77o 0.75
Rd= Z(w=0) 0.80 Q
Ze(w = 0) 2.0 Q

the laser is in series with an impedance Zo(w) in the absence of any source of noise external

to the active region, including thermal noise in any of the circuit impedances. Kp(w)z(w)

can be calculated from the formulas given in Chapter 2. K j(c) can then be written in the

following form,

hQo D 1(W) 2
e T

1
N Z(w) + Z,(w)

2

+ (N 1 hQ0 D- (w) 2 Z(w) 2

e 7-P N Z(w) + Z(w) K, (w)

+ KP(w)I(N-1 )Z(w)+Z,(W) - (1 - j) Kp(w)K 0

The normalized correlation Cp (w) in the photon noise of two different cascade sections is,

(L )
Cp (P) = K

Kpj (Lo) Ky~ P
(3.15)
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Schwartz inequality, and the fact that KI () is real, imply that,

-1 < Cj (w) < 1 (3.16)

Using (3.14), one obtains,

Ci(P ) = 1 - Kp (w) (3.17)
Ky (w)

From (3.14), and the analysis presented in Chapter 2, it follows that KpJ (w) is always

greater than Kp(w) o for frequencies smaller than the modulation bandwidth of the laser

and, therefore, at small frequencies the noise in the output power of two different cascade

sections is positively correlated. At frequencies much larger than the modulation bandwidth

both Kp(w) 1 and Kpi (w) approach the shot noise spectral density and the noise correlation

CpY (w) approaches zero. The positive correlation in the photon noise of two different cascade

sections at low frequencies can be understood as follows. Suppose in some time interval

photons in excess of the average rate are emitted in a cascade section. As a result, the

carrier density in the active region of that section, and the voltage across the active region,

will drop below their average values, and the current in the circuit will become larger than

its average value. The increase in the circuit current will in turn increase the chances of

photon emissions in excess of the average emission rate in all the other cascade sections.

Thus, photon noise in different cascade sections is positively correlated. In addition, noise

sources external to the laser, such as thermal noise in the circuit resistances, also positively

correlates the photon noise in different cascade sections.

The degree of the noise correlation depends sensitively on the total impedance NZ(w) +

Z, (w) of the circuit. If the circuit impedance becomes large, Kpjj (w) approaches Kp (w)I,

and the noise correlation approaches zero. Without loosing generality, the impedance Z,(w)

is assumed to consist of an external circuit impedance Zet(w) and also parasitic impedances

Ze(w) associated with each cascade section, i.e. Z8 (w) = N Ze(w) + Zext(w). Fig. 3-3 shows

the low frequency correlation in the noise in the output power of a two section MCCL as

a function of the bias current for different values of the circuit impedance Zext(w). Each

cascade section is assumed to be a InGaAsP/InP diode laser operating at 1550 nm. The

laser parameters are given in Table. 3.1. Fig. 3-3 shows that the correlation in the photon

noise of the two cascade sections is almost 60 percent when the circuit impedance Zext(w)

is small. The maximum correlation is limited by the series impedance Z, of each cascade
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Figure 3-4: The Fano Factor of the noise in the collected output power is plotted as a
function of the number of sections in a multiple cavity cascade laser for different values of
the impedance Zext(w). Each laser in the cascade device is assumed to be a InGaAsP/InP
diode laser operating at 1550 nm. The laser parameters are given in Table. 3.1. The bias
current is assumed to be three times the threshold bias.

section which is assumed to be 2.0 Q in Fig. 3-3.

3.1.3 Photon Noise in the Collected Output Power

Since the photon emissions in different cascade sections are positively correlated, it is rea-

sonable to expect that these positive correlations would increase the photon noise when

light from all the cascade sections is collected. An interesting scaling relation can be de-

rived for the noise 6PTt in the collected output power. Summing both sides of (3.10) over

the superscript j, one obtains,

N

6 pT =>6P()
ouot ou t (W )

j=1

hQo D- 1(w) N V(w)
rp NZ(w)+Z,(w)

_N 0_ D3 ( NZ(w)

q=1 T P NZP+Z~)
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3 D-'(L,)
3k q+, r/o k o (L;) + Fj (3.18)

In what follows, it will be assumed that the noise source V (w) represents the thermal noise

associated with circuit impedances, and its spectral density Kv,(w) equals 2KBT Re{Z},

where Z,(w) = NZc(w) + Zext(w). The spectral density of the noise in the collected output

power depends on the average output power (or the ratio Iext/Ith), the external circuit

impedance Zext(w), and the number N of cascade sections. The spectral density of the

noise in the collected output power follows from (3.18), and it can be written in a way that

explicitly shows the scaling of the noise with the number of cascade sections,

KpT (w, Iext/Ith, Zext, N) = N KpT (w, Iext/Ith, Zext/N, 1) (3.19)

If the noise in the output power of different sections were uncorrelated, the spectral density

of the noise in the collected output power would be N times the spectral density of the

noise in a single section laser. The positive correlations in the photon noise of different

sections results in increased noise in the collected output power. Interestingly, the increase

in the noise can be expressed as a scaled external circuit impedance as shown in (3.19)

above (recall from Chapter 2 that a laser biased with smaller series impedance has larger

noise in the output power). When Zext(w) is very large, the current fluctuations in the

circuit, and, consequently, the positive correlations in the photon noise in different cascade

sections are suppressed, and the noise in the collected output power is N times the noise in

the output power of a single section laser. When Zext(w) is zero, the spectral density of the

noise in the collected output power is again N times the spectral density of the noise in a

single section laser. This is because the increase in the noise due to the positive correlations

in the photon noise in different cascade sections is exactly balanced by the decrease in the

photon noise due to the increase in the circuit impedance seen by each cascade section

with the increase in the number of cascade sections (the total impedance of the circuit,

NZ(w) + NZc(w) + Zext(w), increases linearly with N when Zext(w) is zero). Fig.3-4 shows

the Fano Factor of the noise in the collected output power as a function of the number

of sections in a MCCL for different values of the impedance Zext(w). Each section in the

MCCL is assumed to be a InGaAsP/InP laser operating at 1550 nm. The laser parameters

are given in Table. 3.1.
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Figure 3-5: A circuit model for the current noise in a parallel laser array.

3.2 Parallel Laser Arrays

3.2.1 Theoretical Model

In a parallel laser array (PLA), laser sections are connected electrically in parallel as shown

in Fig. 1-7 of Chapter 1. PLAs are not cascade devices but their noise properties bear a

close relationship to cascade devices since in PLAs, like in cascade devices, the gain sections

are connected electrically. The noise characteristics of PLAs can be derived using methods

similar to those used for MCCL devices. In MCCLs, the current flowing through all the

cascaded sections is the same. In PLAs, the potential drop across all the sections is the

same since they are connected electrically in parallel. A circuit model for the noise in a

PLA is shown in Fig. 3-5. A current noise source 3Ii(w), given by the expression in (3.7),

is attached in parallel with the j-th section. In addition, a voltage noise source 6V§ (w) is

also attached in series with j-th section and represents the thermal noise associated with

the series impedance Zc(w) of each array section. The noise 6Poi t(w) in the output power

from the j-th section can be found using the methods described earlier for MCCLs,

hQ0 D-'(w) tVext(W)
Ut 1 e Tp Z+Zc+NZext
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hD(w) ( Z Z + Zc+(N-1)Zext) ()
31 Z+Z Z + Zc+NZe

hlQ0 D31
1 (w) Z Zext ) Iq

e T Z + Zc Z + Z + NZext

±io D3Z(w) 1 Z +Zc +(N - 1)Zext) V(
e rI Z + Z + Zc + NZext

hQO D3 G ; Z+ Zc Z + Z + NZext q j

3 D~7()JF (3.20)
+ qO hO D P ( Fj (w) + Fo (.)

k=1

Its convenient to define impedances Z 1 and Z 2 as follows,

Z1 = (Z + Zc) Z + Zc( +N> ) Z (3.21)

1Z Zc - I Zxt

Z2 =(Z+Ze) Z +Z+NZext -Z (3.22)
Zext

The spectral densities KpJ3(w) and K q(W) (j $ q) can then be written as,

hQ0 D11 ( ) 1 2

K" =/0 Toe Z + Z + NZext Kx (w)

hQO D31 (L) 2 1 2 1 21 KV+ 1/0e [z+ Z, + (N- Z+ Z2 J (L)

+ o hQO Dyj(W) 2 Z 21 Ki(w)
e L - Z + Z2  K3.23

+ Kp (w)zi() (3.23)

K3(qp) Q hQ0 D V(w) 2 1 2K e TP Z+Zc+NZext Kne(W)

hQO D-1 2  1 2 2 121
C Z Z1 + -) Z + Z2  Z+ZcJK(w)

± hQO D 1'(W) 2 Z 2 + 2 N Z 2 Z 2 (

/ e K |zZ + Z1+ Z + Z2 Z + Z (3.24)-KP (W)|IZ2 (W) + Kp (L) Ioo (.4
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Figure 3-6: The low frequency correlation in the noise in the output powers of two different
array sections of a two-section parallel laser array is plotted as a function of the bias current
for different values of the circuit impedance Zext(w). Each laser in the array is assumed to
be a InGaAsP/InP diode laser operating at 1550 nm. The laser parameters are given in
Table. 3.1.

3.2.2 Correlations in the Photon Noise of Array Sections

The normalized correlation Cpj(w) in the photon noise of two different array sections can

be determined using (3.23) and (3.23) with (3.15),

Cy(W) 1 1 KhQ 0 D~ (w) 2 Z 2
CKpl' = . Kp(Lj)|zc(L) + 1/0_ 31 K (u;)

K()e TP Z + Z1

+ hQ 0  ( Kvc(w) (3.25)
e T Z + Z(

If Kvext(w) = 0, then Cp'(w) < 0 and the photon noise in any two array sections is neg-

atively correlated at frequencies smaller than the modulation bandwidth of the laser. At

frequencies much larger than the modulation bandwidth, C]j(w) approaches zero. The con-

tribution to the photon noise from the voltage noise source 6Vrt(w) is positively correlated

in different array sections, and if Ks (w) is large enough, Cp4'(w) can become positive at

low frequencies. However, in most cases of interest, where 6Vext(w) represents the thermal



noise in the impedance Zext(w), Kv (w) makes only a modest contribution to the photon

noise and CJJ(w) is negative. When N = 2, it can be shown that C () for the parallel laser

array with Zext(w) = oc and Cpf(w) for the multiple cavity cascade laser with Zext(w) = 0

are equal in magnitude but opposite in sign. This result follows simply from the symmetry

of the two problems.

The negative correlation in the photon noise of two array sections at low frequencies can

be understood as follows. Suppose in some time interval photons in excess of the average

rate are emitted in an array section. As a result, the carrier density in the active region of

that section will drop below its average value. Since the voltage across all the array sections

connected in parallel must be the same, the circuit will pump extra current in this array

section in order to maintain the voltage across the section. Consequently, the current in all

the other array sections will decrease and the photon emission rate in all the other sections

will fall below the average emission rate. Thus, photon noise in different array sections is

negatively correlated. In addition, noise sources external to the laser, such as the voltage

noise sources 3V/ (w), also negatively correlates the photon noise in different array sections.

Fig. 3-6 shows the low frequency correlation in the noise in the output power of a two

section PLA as a function of the bias current for different values of the impedance Zext(w).

Each array section is assumed to be a InGaAsP/InP diode laser operating at 1550 nm. The

laser parameters are given in Table. 3.1. The maximum correlation is limited by the series

impedance Z, of each array section which is assumed to be 2.0 Q in Fig. 3-6.

3.2.3 Photon Noise in the Collected Output Power

Since the photon emissions in different array sections are negatively correlated, it is reason-

able to expect that these negative correlations would decrease the photon noise when light

from all the cascade sections is collected. As in the case of MCCLs, a scaling relation can be

derived for the spectral density of the noise jpTL in the collected output power. Summing

both sides of (3.20) over the superscript j, one obtains,

N

out= 6 Put(w)
j=1

hQ0 D (w) N (SVext(w) + EN c 1
e 31 Z(w) + Z(w) + NZert(w)
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Figure 3-7: The Fano Factor of the noise in the collected output power of a parallel laser
array is plotted as a function of the number of array sections for different values of the
impedance Zext(w). Each laser in the array is assumed to be a InGaAsP/InP diode laser
operating at 1550 nm. The laser parameters are given in Table. 3.1. The bias current is
assumed to be three times the threshold bias.

N QO DV(W) Z(W) jqW+ 10 e Z (w) + Z,(w) + NZext(w)

3 D 1(w)
+ D hO FT)FP] (3.26)

k=1 "

It will be assumed that the noise sources 3 Vet(w) and JVc(w) represent the thermal noise

associated with circuit impedances Zc(w) and Zext(w), respectively. The spectral density

KpT (w) of the noise in the collected output power depends on the average output power

(or the ratio Ibias/'th for each array section), the external circuit impedance Zext(w), and

the number N of array sections. KpT(w) follows from (3.26), and it can be written in a

way that explicitly shows the scaling of the noise with the number of array sections,

KpT (w, Ibias /th, Zext, N) = N KpT (w, Ibias /th, NZext, 1) (3.27)

The negative correlations in the photon noise of different array sections decrease the noise in

the collected output power, and this decrease in the noise, like in MCCLs, can be expressed
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Figure 3-8: Experimental setup for measuring the photon noise correlations in diode lasers

connected electrically in series or in parallel.

as a scaled external circuit impedance as shown in (3.27) above (recall from Chapter 2 that

a laser biased with larger impedance has smaller noise in the output power). When Zext(w)

is very small, the current fluctuations generated by each array section do not couple into

other array sections, and the photon noise in different array sections is uncorrelated. The

spectral density of the noise in the collected output power is therefore N times the spectral

density of the noise in a single section array. When Zext(w) is very large, the spectral

density of the noise in the collected output power is again N times the spectral density of

the noise in a single section array. This is because the decrease in the photon noise Fano

Factor due to the negative correlations in the photon noise in different array sections is

exactly balanced by the increase in the photon noise due to the decrease in the impedance

seen by each array section with the increase in the number of array sections. Fig.3-7 shows

the Fano Factor of the noise in the collected output power of a PLA as a function of the

number of array sections for different values of the impedance Zext(w). Each section in the

array is assumed to be a InGaAsP/InP laser operating at 1550 nm. The laser parameters

are given in Table. 3.1.
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Table 3.2: Device Parameters of GaAs/AlGaAs Fabry-Perot Lasers Used in Experiments.

Parameter Value
Lasing wavelength A 850 nm

Operating temperature 300 K
Number of quantum wells 3

Quantum well thickness 70A

Cavity width 2.0 pm

Cavity length 400 pm

Facet reflectivities 0.85 and 0.10

Threshold current 15 mA

Slope efficiency 1.13 Watt/Amp

3.3 Photon Noise Correlations: Experiments

3.3.1 Experimental Setup

The theory for the noise in multiple cavity cascade lasers and parallel laser arrays presented

in this Chapter predicts large positive (negative) correlations in the photon noise of lasers

connected electrically in series (parallel). The experimental setup for measuring these noise

correlations is shown in Fig.3-8 [56]. Two GaAs/AlGaAs Fabry-Perot lasers, part number

SDL-5400-C (JDS Uniphase), operating at 850 nm were used in these experiments. The

lasers were mounted such that they could be connected electrically in series or in parallel.

The lasers were biased with a noiseless current source made using a lithium battery in series

with a potentiometer and a large inductor. This high impedance source could be converted

into a low impedance source by a large capacitor in the circuit, as shown in Fig. 3-8. At

frequencies of interest, the capacitor acted like a short. The light from each laser was col-

lected by a large area (1 cm 2 ) Silicon PIN photodiode, part number S3590-1 (Hamamatsu).

The quantum efficiency of each photodiode was close to 80 percent (responsivity: 0.55

Amp/Watt). The photodiodes were slightly tilted with respect to the direction of incident

light to avoid back reflections into the lasers. The bandwidth of the photodiode response

was slightly larger than 1 MHz under a reverse bias of 40 V. The photodiode output signals

were capacitively coupled into 50 Q input channels of a dual-channel HP89410A FFT Signal

Analyzer. The FFT Signal Analyzer had a measurement bandwidth of 10 MHz, and could

compute the power spectral densities and the power cross-spectral density of the signals at

its two input channels.
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Figure 3-9: Laser differential resistance is plotted as a function of the bias current. The
discontinuity in the differential resistance at threshold is 2.9 Q.
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Figure 3-10: log(Iext) is plotted as a function of the junction voltage. The slope of the curve
just before threshold is 18 V- 1 .
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Table 3.3: Values of Laser Parameters Extracted From Measurements.

Parameter Value
External slope efficiency 1.13 Watt/Amp

0.814

0.957
Device series resistance Zc(w) 2.3 Q
Junction impedance Z(w) below threshold 3.7 Q
Junction impedance Z(w) above threshold 0.8 Q

Tc 5 Ps

T = 22.4 Tc = 112 ps

_T9 = 2.5 Tc = 12.5 PS

Te 32 Ps
ne 0.972

0' 5.44
0 0.38
G 1.74

3.3.2 Extraction of the Laser Parameters

The lasers used in the experiments were first characterized using the methods described in

Chapter 2 to extract the values of the parameters that were introduced in the theoretical

model to describe the current noise and the photon noise in diode lasers. The differential

slope efficiency of the lasers was measured to be approximately 1.13 Watt/Amp. The prod-

uct qo qi for the lasers was therefore 0.773. The approximate values of the laser parameters

obtained from the vendor are listed in Table. 3.2. Assuming 5 cm- 1 cavity internal loss, the

value of qO comes out to be 0.814, and 7i is therefore 0.957. The laser differential resistance

is plotted in Fig. 3-9 which shows a discontinuity of 2.9 Q in the differential resistance at

threshold, and a total differential resistance (i.e. Z + Z,) of 3.1 Q above threshold. Fig. 3-

10 shows log(Iext) plotted as a function of the junction voltage, and the slope of the curve

just before threshold is approximately 18 1/V. From these measurements, the values of the

parameters G, 0', 0, and Te, and the ratios Tc/Tg and Tc/T can be determined (see Chapter 2

for details). The values of the laser parameters determined through measurements are given

in Table. 3.3. In obtaining the results in Table. 3.3, Tc was assumed to be 5 ps, and the

material gain was assumed to be related to the carrier density N" in the quantum wells

through the relation [1],

9 = go log Nw + Ns (3.28)
(Ntr + Ns)
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where go = 3000 cm- 1 , Ntr = 1.8 x 1018 cm-3, and N, = 1.2 x 1018 cm-3. As explained

in Chapter 2, the values of the laser parameters given in Table 3.3 are valid only near the

laser threshold and are not expected to be valid much above threshold.

3.3.3 Results and Discussion

The FFT Signal Analyzer can measure the spectral densities K (w) and the cross-spectral

density K 4(w) (j f q) of the noise in the photodetector currents. The correlation CJ2(w)

in the noise in the photodetector currents is given by a relation similar to (3.15),

K 12(
c12(o = O (3.29)

01() K(w) K2e

The spectral densities KJ (w) and K 4(I) (j = q) are related to the spectral densities

KJ (w) and Kp (w) of the laser intensity noise as follows [1],

K (w) =(e) [n2Kg (w) + (1 - 77) hQOPOt] (3.30)

Kj q(p) = 2[7 2 Ky ( (3.31)

Here, Pout is the average laser output power and 17 = 770k, where 7d is the photodetector

quantum efficiency and 77, is the light collection efficiency. Since q < 1, the correlation

Cy2 (w) in the laser intensity noise is not equal to CJ 2(w). For the lasers used in the

experiments, the noise in the output power was much larger than the shot noise value.

The measured photon noise Fano Factors for each laser were larger than 100 for most

values of the bias current and larger than 10 for all values of the bias current [56]. Since

Kj (w) > hQPut, and Ti is estimated to be at least 0.75, CJ(w) can be safely approximated

by CJ 2 (w). The measured value of CjJ(w) is not sensitive to the post-detection signal gains

in the two channels of the FFT Spectrum Analyzer since multiplicative gain factors cancel

out when CJ2(w) is computed using (3.29).

Fig. 3-11 and Fig. 3-12 show the low frequency value of Cp2 (w) when the lasers are

connected electrically in series and parallel, respectively, as a function of the bias current

for two different values of the circuit impedance Zext(w); OQ and ooQ. The noise correlation

data shown in Fig. 3-11 and Fig. 3-12 was obtained by averaging the measured value of
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Figure 3-11: The low frequency correlation in the noise in the output powers of two lasers
connected electrically in series is plotted as a function of the bias current for two different
values of the circuit impedance Zt(w). The solid lines with circles are the experimental
data. The solid lines without circles are the predictions of the theoretical model using the
laser parameter values given in Table. 3.3.

75 90

Figure 3-12: The low frequency correlation in the noise in the output powers of two lasers
connected electrically in parallel is plotted as a function of the bias current for two different
values of the circuit impedance Zext(w). The solid lines with circles are the experimental
data. The solid lines without circles are the predictions of the theoretical model using the
laser parameter values given in Table. 3.3.
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C 2 (w) over a 400 KHz wide frequency window centered at 500 KHz. CJJ(w) was found to

be flat between 200 KHz and 800 KHz, and changing the center frequency of the averaging

window did not affect the final results. Fig. 3-11 and Fig. 3-12 show that when the lasers

are connected in series the noise in the output powers is positively correlated, and when

the lasers are connected in parallel the noise is negatively correlated. The experimental

results also exhibit the expected dependence of the noise correlations on the impedance

Zet(w) in both the series and the parallel configurations. The results obtained from the

theoretical models using the parameter values given in Table. 3.3 are also shown in Fig. 3-11

and Fig. 3-12. The theoretical results are in good agreement with the experimental data

near the laser threshold.

The laser spectrum showed multiple longitudinal modes lasing at the same time. The

theoretical models for the noise correlations presented in this Chapter are based on the

assumption of a single lasing mode. The photon noise in different lasing modes of a laser

is negatively correlated as a result of gain competition, but, as shown in Ref. [68], the

combined noise of all the lasing modes is adequately described by a single mode model.

Since the noise in different lasing modes is negatively correlated, equal number of photons

must be collected from all the lasing modes when making noise measurements otherwise

noise in addition to that predicted by the single mode model can be introduced. Mode

selective loss inside and/or outside the laser cavity can make this difficult in practice. The

agreement between theoretical results and experimental data in Fig. 3-11 and Fig. 3-12

becomes poor much above threshold. This is not surprising since, as described earlier, the

parameter values used in the calculations are valid only near threshold. Mode switching and

mode hopping in multimode lasers can also introduce noise which may not be describable

by linearized noise models such as the ones presented in this Chapter. In the lasers used

in the experiments, excessive mode hopping was observed when the bias current had values

between 30 mA and 60 mA.

3.4 Split Waveguide Cascade Lasers

3.4.1 Theoretical Model

A split waveguide cascade laser (SWCL) is shown in Fig. 3-13. In a SWCL, a single optical

waveguide is split into sections that are connected electrically in series [5, 6]. The Langevin
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Figure 3-13: A two section split waveguide cascade laser (SWCL).
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Figure 3-14: A circuit model for the noise in a split waveguide cascade laser.

rate equations for the carrier densities in the j-th section and the photon density in the

optical cavity for an N section SWCL are as follows,

- 6N V -1
(e T

1 N
+ -Ti

+ - F| - F/+ F
Te

NVc 6N 1 1 1 V
T 6NVW +-+ T V g6SpV+F-Fg-F,.-F

re r se et p

yV g g
P

N

6S~pV Z+EFi -F
j=1

The Equations above are almost the same as those used for multiple cavity cascade lasers.

The difference is that in SWCLs the carrier densities in all the cascade sections interact
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with the same optical field. The active region volumes V, and V of each cascade section

are N times smaller than the active region volumes in a conventional unsplit laser. The

current noise 6Iext in the external circuit is related to the carrier density fluctuations in the

j-th section by the expression,

& =ext - + GSV- _ FN. (3.35)
e e TG

Since G scales with the area, G becomes N times smaller when a waveguide is split into N

cascade sections. The noise in the output power is given by an expression similar to (2.19)

for conventional lasers,

6Pout = n hR, + Fo (3.36)

A circuit model for the current noise in a SWCL is shown in Fig. 3-14. The condition

imposed by the external circuit is,

6V (W) - EN I 6Vj(w)
6Iext ( 8 w) (3.37)

Z'(w)

The condition for lasing is,

N 1= (3.38)

The Equation above implies that the threshold carrier density in each cascade section does

not scale with the number N of sections. The threshold current scales as 1/N. The average

output power Pust can be written as,

Pout = 7ori -" N (Iext - Ith) (3.39)
e

For the same output power, a SWCL requires N times less bias current compared to a

conventional laser.

Equations (3.32)-(3.34) can be solved by summing both sides of (3.32) and (3.33) with

respect to the superscript j, and after Fourier transforming one obtains the following matrix
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equation,

DII(w) D 12 (w) 0 YN 1 N (w)Vc 1 F1(w)
i:N 6Nwj(w) Nw 0 + F2(L,)

D 2 1(w) D 2 2 (w) D 2 3 (w) z=1 SNijw)V. = 0 +

0 D 32 (w) D33 (w) jSP G)V 0 F3(W)
(3.40)

For the same output power, the elements of the matrix D are exactly the same as the

elements of the matrix D for a conventional laser (see Equation (2.26)). The noise sources

Fi(w), F2 (w), and F3 (w) are as follows,

N N N

F(w) = - 3 Fg(L) - E F1j'(w) + E F,)(w) (3.41)
j=1 j=1 j=1

N N N N

F2 (w) = 3 (Fj(w) - Fj (w) - Fi(w) - Fj (w) (3.42)
j=1I j=1 j=1 j=1

N

F3 (O) =3Fj(w) - FL (W) (3.43)
j=1

For the same output power, the correlations of the noise sources F (w), F2 (w), and F3 (w)

are also the same as the correlations of the corresponding noise sources in a conventional

laser. The total impedance Z(w) of the active regions of all the cascade sections can be

found by summing (3.35) with respect to the superscript j, and using (3.40),

6 Ev 1 VJ(W) N~DN)
Z(w) V -- 1 + (3.44)

JIext(W) G TG

As described earlier, G scales as 1/N with the number N of cascade sections. Z(w) therefore

increases as N 2 with the number of cascade sections.

3.4.2 Current Noise

A circuit model for the current noise in SWCLs in which current noise sources are attached

in parallel with each cascade section is not particularly useful since the carrier density in

each cascade section interacts with the same optical field and the current noise sources of

different sections become highly correlated. Current noise in a SWCL can be modeled by

attaching a single current noise source JI(w) in parallel with all the cascade sections, as
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shown in Fig. 3-14. Defining Fi,(w) as ZE F73(w), the current noise 61(w) comes out to

be,

I 1 -. 3 D-(u))
61(w) =Z -- ( D 'w F k(w)1 (3.45)

Z (w) G k= G

The expression in (3.45) is almost identical to the expression for the current noise in a

conventional laser given in (2.51). The correlations of the noise sources Fi,(w), Fi(w),

F2 (w), and F3 (w) in (3.45) do not scale with the number N of cascade sections. The factor

Z(w)G in the denominator in (3.45) scales linearly with N. Consequently, for a fixed output

power the spectral density of the current noise in a SWCL scales as 1/N 2 with the number

of cascade sections, i.e.,

KI(w, Iext/Ith, N) = 2 Ki(w, Iext/ith, 1) (3.46)

This scaling of the current noise can be understood if one realizes that the current noise

in the external circuit is equal to 5I(w) when the impedance Z (w) and the voltage noise

source 6V1(w) are both zero. When Zs(w) is zero, only a fraction 1/N of the current noise

of each cascade section is able to couple into the circuit since the impedance of a single

cascade section is N times smaller than the combined impedance of all the cascade sections.

3.4.3 Photon Noise

The noise in the output power can be determined by using the solution of (3.40) in (3.36),

hQ D-(') 3 D-_
6Foot() = IO -- " N 6ext(a) + ,o h O 3 Fk (w) + Fo(w) (3.47)

eP k-i T

where 6lext(w) is,

61ext GJ) = V + Z I(w) (3.48)
Z(W) + Z'(w) Z(w) + ZS(w)

The impedance Z, (w) is assumed to consist of an external circuit impedance Zext (w) and

also a parasitic impedance Zc(w). Both Z(w) and Zc(w) scale as N 2 with the number N

of cascade sections. The spectral density of the noise in the output power can be obtained

from (3.47). Assuming that the voltage noise source 3V(w) represents the thermal noise

associated with the impedance Z,(w), the spectral density of the noise in the output power

91



L'
0

C.

(U

U-

0

(U
.5z
0
.-W
0
M~

1

1.

0

0.

2

Figure 3-15: The Fano Factor of the noise in the output power in a SWCL is plotted as a
function of the number N of cascade sections for different values of the impedance Zext(w).
The output power is kept fixed when N is varied by reducing the bias current. The laser
parameters are given in Table. 3.1.

can be expressed as follows,

KP(P, Iext/th, Zext, N) = KP(P, Iext/Ith, Zext/N 2 , 1) (3.49)

The above Equation shows that for the same output power the spectral density of the

photon noise in a N-section SWCL with an external circuit impedance Zext(w) is equal to

that in a conventional laser in which the external circuit impedance is Zext(w)/N 2 . Thus,

as in MCCLs, the increase in the photon noise in SWCLs due to the positive correlations in

photon emissions in different cascade sections can be expressed in terms of a scaled external

circuit impedance. Fig.3-15 shows the Fano Factor of the noise in the output power as a

function of the number of cascade sections in a InGaAsP/InP SWCL for different values

of the impedance Zext(w). Since the threshold current in a SWCL scales as 1/N with the

number of cascade sections, the bias currents in Fig.3-15 are also scaled to keep the output

power fixed for all values of N. The laser parameters are given in Table. 3.1.
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Figure 3-16: A two section bipolar cascade laser (BCL).

3.5 Bipolar Cascade Lasers

3.5.1 Theoretical Model

A bipolar cascade laser (BCL) is shown in Fig. 3-16. In BCLs, multiple gain sections

are connected electrically in series within a single optical cavity by reverse biased tunnel

junctions [8, 9, 10, 11]. In a BCL the mode volume V is assumed to scale linearly with

the number of cascade sections N. The Langevin rate equations for the carrier and photon

densities for a BCL have exactly the same form as Equations (3.32)-(3.34) presented in the

previous section for SWCLs. The only difference is that the mode volume V, instead of the

active region volumes V, and V, scales with the number of cascade sections. The equations

for the circuit current noise and the noise in the output power for BCLs are also identical

to Equations (3.35) and (3.36) for SWCLs. The condition for lasing is,

V 1
N -v g = - (3.50)

The threshold carrier density in each cascade section in BCLs does not scale with the

number of sections. The threshold current also does not scale with the number of sections.

The average output power Post is given by the expression,

Pout -?JoT/i Q N ('ext - Ith) (3.51)
e
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Figure 3-17: A circuit model for the noise in a bipolar cascade laser.

For a fixed bias current, the output power in BCLs scales linearly with the number N of

cascade sections. Since the mode volume also increases linearly with N, the photon density

in the cavity does not scale with N.

The total impedance Z(w) of the active regions in all the cascade sections in a BCL is

given by an expression identical to (3.44) for SWCLs,

Z(w) N1+ D
6lext(W) G TG

(3.52)

Since the device area does not scale with N in BCLs, G does not scale with N, and Z(w)

scales linearly with N.

3.5.2 Current Noise

Current noise in a BCL can be modeled by attaching a single current noise source 61(w)

in parallel with all the cascade sections, as shown in Fig. 3-17. The current noise 61(w) is

given by an expression identical to (3.45) for SWCLs,

(3.53)
e 1 -3 D -1

1() Z([Fin(W) - i Fk (w)
Z(w) G TGI
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Figure 3-18: The Fano Factor of the noise in the output power in a InGaAsP/InP BCL

is plotted as a function of the number N of cascade sections for different values of the

impedance Zext(w) keeping the bias current fixed. The laser parameters are given in Ta-

ble. 3.1. The reverse biased tunnel junctions are assumed to have zero impedance.

The correlations of the noise sources Fn(w), F1(w), F2(w), and F3(w) in (3.45) scale linearly

with N for a fixed bias current. The factor Z(w)G in the denominator in (3.53) also scales

linearly with N. Consequently, for a fixed bias current the spectral density of the current

noise scales as 1/N, i.e.,

K1 (w, Iext/Ith, N) = KI(w, Iext/Ith, 1) (3.54)

3.5.3 Photon Noise

The noise 6P,t(w) in the output power in a BCL is also given by an expression similar to

(3.47) for a SWCL,

N D-j1(w) 3 D (w)
6Poqt(w) =+ 7o hQY Fk(L) + Fo() (3.55)

e kP i
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Figure 3-19: The Fano Factor of the noise in the output power in a InGaAsP/InP BCL
is plotted as a function of the number N of cascade sections for different values of the
impedance Zext(w) keeping the bias current fixed. The combined impedance of the reversed
biased tunnel junctions is assumed to be (N - 1)Z 0 (w), where Zt0 (w) is assumed to be 1

where JIext(w) is,

JV (W) Z(W)6 lext(W) = ( + JI(w) (3.56)
Z(w) + Z (w) Z(w) + Z8(w)

The impedance Zs(w) consists of an external circuit impedance Zext(w), the combined

impedance Zt(w) of all the reverse biased tunnel junctions, and a parasitic impedance

Zc(w). The impedance Ze(w), which is expected to be dominated by the resistance of the

ohmic contacts, is independent of the number of cascade sections. The impedance Zt(w)

scales linearly with the number of cascade sections, and it is convenient to write Zt(w) as

(N- 1)Zt0 (w), where Zt,(w) is the impedance of a single reverse biased tunnel junction. The

combined impedance of the active regions can also be written as NZ(w), where Z0 (w) is the

impedance of the active region of a single section. The voltage noise source JV (w) represents

the thermal noise in the circuit impedances Zext(w) and Ze(w). The reversed biased tunnel

junctions are assumed to produce no noise. With these definitions and assumptions, the
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spectral density of the noise in the output power can be written as,

Kp(w, Iext/Ith, Zc, Zext, N) N Kp(w, Iext/Ith, Zr/N, Zext/N + Zto(N - 1)/N,1)

- 7o hQ N
e Tp

Z0 (w)N 2KBT Re{Zto(w)(N - 1)} (357)
Zo(u))N + Zc(w) + Zto(w)(N - 1) + Zext (W) 1

Since the reversed biased tunnel junctions are assumed to not produce thermal noise, the

second term on the right hand side accounts for this by subtracting out the thermal noise

contribution from the tunnel junctions which is contained in the first term. If the tunnel

junctions produce thermal noise, or if Zt,(w) = 0, then the second term on the right hand

side is not needed. The above Equation shows that for the same bias current the spectral

density of the photon noise in a N-section BCL, with an external circuit impedance Zext(w),

a parasitic impedance Zc(w), and tunnel junction impedance Zt,(W) equal to zero, is N times

that in a single section laser in which the external circuit impedance is Zext(w)/N and the

parasitic impedance is Zc(w)/N.

Fig.3-18 shows the Fano Factor of the noise in the output power as a function of the

number of cascade sections in a InGaAsP/InP BCL for different values of the impedance

Zext(w) when Zto(w) = 0. Fig.3-19 shows the photon noise Fano Factor when ZtO(w) = 1

Q. The laser parameters are given in Table. 3.1. Since the parasitic impedance Zc(w) in

BCLs does not scale with N, the Fano Factor of the photon noise increases with N by large

amounts for small values of Zext(w) when ZtO(w) is zero. Noise in electron transport through

the reversed biased tunnel junctions may also contribute to the circuit current noise and to

the photon noise, and this noise has not been taken into account in the analysis presented

here.

3.6 Conclusion

In this Chapter, models for the current noise and photon noise in semiconductor cascade

lasers and parallel laser arrays were presented. It was shown that the photon emissions

in different sections are positively correlated in cascade lasers and negatively correlated

in parallel laser arrays. The correlations in the noise in the output power were measured

experimentally in lasers connected electrically in series and in parallel and the results were
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found to agree well with the theory. The scaling of the current and photon noise with the

number of sections in cascade lasers and in parallel laser arrays were also described. The

positive correlation in photon emission in different cascade sections results in an increase in

the noise in the output power. It was shown that this increase in the noise in the output

power could be expressed in terms of a scaled external circuit impedance.
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Chapter 4

Dynamics and Noise in

Semiconductor Intersubband

Quantum Cascade Lasers

4.1 Introduction

In this Chapter, a comprehensive model for the dynamics and noise in QCLs is presented.

QCLs are different from interband semiconductor diode lasers in three important ways

which can have a significant impact on their noise properties:

1. Electron transport in QCLs takes place by tunneling between states in adjacent quan-

tum wells. It is well known that electronic correlations in resonant tunneling in quan-

tum well structures can suppress (or enhance) current noise by providing a negative

(or positive) feedback [26, 27, 28]. High impedance suppression of the current noise

in semiconductor diode lasers results in light output with squeezed photon number

fluctuations [29]. It is therefore intriguing whether suppression of the current noise

can also lead to squeezing in QCLs. Any model for the photon noise in QCLs must

take into account these electronic correlations self-consistently.

2. In diode lasers the carrier density in the energy level involved in the lasing action does

not increase beyond its threshold value and, therefore, the noise contributed by the

non-radiative recombination and generation processes also remains unchanged beyond

threshold. In QCLs the electron densities in the upper and lower lasing states do not
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clamp at threshold, and keep increasing when the bias current is increased beyond

threshold. As a result, non-radiative processes contribute significantly to photon noise

even at high bias currents.

3. Since all the gain sections in a QCL are connected electrically and optically, electron

density fluctuations and photon emission events in different gain sections become

correlated. The effect of these correlations on the photon noise in interband cascade

lasers has already been discussed in detail in Chapter 2, and the aim of this Chapter

is to investigate the role of these correlations in QCLs.

Conventionally, the noise in lasers has been studied using either Langevin rate equations

or Fokker-Plank equations [64]. On the other hand, the noise in electron transport in

mesoscopic devices is handled using quantum mechanical scattering approaches pioneered

by R. Landauer and M. Buttiker [58, 59]. Since the photon noise depends on the current

noise, a technique needs to be developed for QCLs that can be used to model the photon

noise as well as the noise in electron transport. In Appendix C.1. it is shown that Langevin

equations can also be used to model the noise in electron transport in multiple quantum

well structures. Therefore, Langevin rate equations are used to model the photon noise and

the current noise in QCLs.

4.2 Outline

In section 4.4 the non-linear rate equations for the electron and photon densities in QCLs

are presented. The steady state solution of these rate equations below and above threshold

are described. In section 4.5 the non-linear rate equations are linearized to obtain Langevin

rate equations for the fluctuations in the electron and photon densities. Electron transport

in the multiple quantum well structure of QCLs is discussed in detail, and a self-consistent

model for the fluctuations in the electron charge densities and the electron current density

is presented. It is shown that a self-consistent description of the fluctuations in the charge

and current densities can be carried out in terms of a few device parameters. Langevin noise

sources are also used to model the noise associated with electron transport by tunneling.

Section 4.5 is the main part of this Chapter. In section 4.6 the set of coupled linearized

Langevin rate equations for the fluctuations in the electron densities in different levels of

all the cascaded gain stages and the fluctuations in the photon density are solved under
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Figure 4-1: Superlattice quantum cascade laser.

the constraints imposed by the biasing electrical circuit. In addition, the direct current

modulation response of QCLs is also evaluated and the maximum possible modulation

bandwidth is discussed. The analytical and numerical results on the current noise and the

photon noise in QCLs are presented and discussed in section 4.7 and section 4.8, respectively.

In these sections the results obtained are compared with the current and photon noise in

interband semiconductor diode lasers. Readers not familiar with the results on the current

and photon noise in diode lasers are encouraged to read Chapter 2 before proceeding.

4.3 Types of Quantum Cascade Lasers

Many different types of QCL structures have been reported in the literature [12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24]. Almost all of these QCL structures can be classified into

two categories:

1. Superlattice QCLs in which the gain stage consists of a superlattice structure and the

photons are emitted when the electrons make transitions between two minibands of

this superlattice. These minibands are actually clusters of closely spaced energy levels
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Figure 4-2: Multiple quantum well quantum cascade laser.

(Fig. 4-1) [21, 22, 23, 24].

2. Multiple quantum well QCLs in which the gain stage consists of multiple quantum

wells (typically two or three) and the radiative electronic transitions occur between

two discrete energy levels (Fig. 4-2) [12, 13, 14, 15, 16, 17].

In both types of QCLs, two successive gain stages are separated usually by a superlattice

structure known as the injector. The superlattice injector has a mini-gap which prevents the

electrons from tunneling out into the injector from the upper energy level(s) of the previous

gain stage and, therefore, increases the radiative efficiency. Electrons from the lower energy

level(s) of a gain stage can tunnel into the injector, and the injector injects these electrons

into the upper energy level(s) of the next gain stage.

In this Chapter, photon noise and current noise in only multiple quantum well QCLs

is discussed. The methods presented in this Chapter are fairly general and can be used

to analyze noise and dynamics in a wide variety of QCLs including those with superlattice

gain stages. The focus in this Chapter will be on the QCL structure shown in Fig. 4-2.

The operation of this QCL is as follows. Electrons tunnel from the energy states in the

superlattice injector into level 3 of the gain stage. Photons are emitted when electrons
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make radiative transitions from level 3 to level 2. Transitions from level 2 to level 1 occur

primarily by emission of optical phonons. Electrons leave the gain stage from level 1 by

tunneling out into the superlattice injector of the next stage. In addition, electrons also

make non-radiative transitions from level 3 to levels 2 and 1. This QCL structure is fairly

general in the sense that the linearized dynamics of many different multiple quantum well

QCLs can be described by a three level system with an injector state, or with an even

simpler model. Therefore, with minor adjustments the model presented here can be used

to study different multiple quantum well QCL structures that have been reported in the

literature. For example, in the multiple quantum well QCL structure employing diagonal

radiative electron transitions described in Ref. [60] level 3 is the same as the injector state,

and level 1 is the same as the injector state of the next gain stage. The linearized dynamics

of the QCL in Ref. [60] can be captured in the model presented here if the transition rates

from the injector state into level 3 and from level 1 into the injector state of the next gain

stage are made very fast.

4.4 Rate Equations and Steady State Solutions

For the multiple quantum well QCL structure shown in Fig. 4-2, the non-linear rate equa-

tions for the electron and photon densities are as follows,

3 -n- R 2Ji n') - R 3n, n') -- Fjvg g(ni, n) S 41dnt e (2Ms2 3 ('1±,n WL) (4.1)

=2 R32 (n], n3) - R21(n', ni) + Fjvg g(ni, ni) SP + nyp (4.2)

d nd1 = R31(n3, n3) + R2 1(n3 ,n) - J0 (4.3)
dt e

dSp N
= E Z Fv 9g(nj, n)(Sp + nsp - (4.4)

dt j1 3 W WL T

P0.t = jo hQo WLS (4.5)

In the above equations, ni is the electron density (cm- 2 ) in the kth energy level of the jth

gain stage. Ji and Jut are the electron current densities (cm--2 ) tunneling into level 3 and

tunneling out of level 1 of the jth gain stage, respectively. Only in steady state Ji equals
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Jo. Sp is the photon density (cm- 2 ) inside the optical cavity. Sp is equal to the total

number of photons inside the cavity divided by the width W and the length L of the cavity.

v9 is the group velocity of the lasing mode and g is the optical gain (cm- 1) contributed by

a single gain stage. P is the mode confinement factor for the jth gain stage. N is the total

number of cascaded gain stages. R 32 is the net transition rate from level 3 to level 2 through

non-radiative processes and spontaneous emission into the non-lasing modes. Similarly, R 3 1

and R 2 1 are the net transition rates from level 3 and level 2 into level 1, respectively. nr, is

the spontaneous emission factor [1]. Put is the output power from the laser. qo is the power

output coupling efficiency and Tp is the photon lifetime inside the cavity. The expression

for Tp is,
1 -i1]
-vg(ai+am)=v + (4.6)

L V/R1 R 2

where ac is the internal loss of the cavity, am is the loss from the cavity facets, and R 1 and

R2 are the facet reflectivities. The power output coupling efficiency %o from the facet with

reflectivity R 1 is,

(1 - R1)V/f 2  am
[(1 - R1)v/2 + (1 - R2)/R] (am +ai) (4.7)

For simplicity it is assumed that all the gain stages have the same mode confinement

factor, i.e. F4 = F for all j. This assumption is valid if all the cascaded gain stages are

located close to the peak of the transverse profile of the optical mode where the field strength

varies slowly. Even for QCLs with large number of gain stages numerical simulations show

that corrections to the solution obtained by assuming all fj to be equal are small. Under

this assumption, the steady state electron densities n' are the same in all the gain stages,

and the index j may be suppressed when calculating the steady state electron densities.

4.4.1 Steady State Solutions

Below Threshold

The steady state solution to the rate equations can be found by setting all the time deriva-

tives equal to zero, and putting Jin = Jet. Below threshold, steady state carrier densities
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Figure 4-3: Energy subbands of the three levels of the gain stage. Most favored electronic

transitions by optical phonon emission are almost horizontal in the E(k) - k space.

can be found by putting Sp = 0, and solving the equations (the index j has been suppressed),

R32(n3 , n2 ) + R 3 1 (n3 , n1) Jext
e

(4.8)

(4.9)R32 (n3, n2) = R 21 (n2 , ni)

The third equation can be obtained by realizing that J0 st is also a function of ni,

Jout(ni) = Jext

To proceed further, analytical expressions for the transition rates are required.

transition rates can be approximated as,

R32 (n3, n2) n3-
732

R31 (n3, ni) an3
T31

(4.10)

These

(4.11)

(4.12)

105



R 2 1(n 2 , ni) £ 2 (4.13)
721

Jout(ni) n1
e Tout

The rationale for the approximations in (4.11)-(4.13) is that optical phonons are largely

responsible for intersubband transitions. As shown in Fig. 4-3, optical phonon mediated

intersubband transitions that are almost horizontal in E(k)-k plane are more likely to

occur [61]. Therefore, the transitions rates from an upper to a lower subband are not much

affected by the electron density in the lower subband, as long as the electron density in the

lower subband is small. More complicated expressions for these transition rates, such as,

Rqk(nq,nk) = n. --k (4.15)
T qk Tkq

may be used if necessary.

The expression for Just in (4.14) does not depend upon on the electron density in the

injector since electrons in the injector states are assumed to relax very quickly into the

ground state of the injector which is spatially localized near the next gain stage. Using

(4.11)-(4.14) in (4.8)-(4.10), expressions for the carrier densities can be obtained as a func-

tion of the current density,

_ Jext T32T31 (4.16)
e T32 + T31

Jext 721 T31 (4.17)
e 732 + 731

n JeXt out (4.18)

Above Threshold

Above threshold, the gain is clamped to a value determined by equating the gain with the

loss,
N1

F vgg(n, n ) = NFvg 9g(n 3 , n2) = - (4.19)

For perfectly parabolic subbands, the expression for the gain may be approximated as,

g(n3, n 2) = a (n3 - n2 ) (4.20)
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where a is the differential gain. In the parabolic band approximation a is [62],

1 4're2zj2
a = I 4e(32 (4.21)

LP Eonef f Ao (2-N2)

z32 is the optical dipole matrix element, co is the vacuum dielectric constant, neff is the

effective index of the optical mode, AO is the lasing wavelength, ( 2 Y32) is the full width at

half maximum (FWHM) of the optical transition, and Lp is the length of a single gain stage

over which the integration is performed when calculating the mode confinement factor F.

The carrier and photon densities above threshold can be obtained by solving the equations,

R 3 1(n 3 , ni) + R 2 1 (n 2 , n1 ) n 3 + n2 _ (4.22)
T31 T21 e

Jout _ fi _Jext (.3
2-4-=(4.23)

e Tout e

NFvg a(n3 - n2) - (4.24)
Tp

which results in,

n3 = Jext T21 T31 + 1 31 (4.25)
e T21 + T31 NFvg aTp T21 + T31

n2 = Jext T21 T31 1 T21 (4.26)
e T2 I + 73 1 N]Pvg arp T21 + T31

n= JeXt out (4.27)
e

SP = Ur N (Jext Jth) TP (4.28)

Pout = 7o Tr h- N (Iext - Ith) (4.29)
e

where the threshold current density Jth and the radiative efficiency W7 are,

Jth -- + - (4.30)
NF9 arp (T32 T31 (I - T21/T32)

J r = (I - T21 T31 (4.31)
\( T32/ (T21 + T31)

The radiative efficiency r, for a QCL is defined as that fraction of the total number of

electrons injected into each gain stage per second which contribute to photon emission.
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Table 4.1: Device Parameters Used in Numerical Simulations (From Ref. [16])

Parameter Value
Lasing wavelength A 5.0 _pm

Operating temperature 20 K

Number of gain stages N 25 (unless stated otherwise)

Total confinement factor jil erf (0.019 N) ~ 0.02 N
Cavity width W 11.7 pm
Cavity length L 3 mm
Facet reflectivities r1 , r2 0.27

Cavity internal loss ai 11 cm-1

Mode effective index neff 3.29

Mode group index ng 3.4

Differential gain a 4.0 x 109 cm

Length of a single gain stage LP 45.3 nm

Tin, Tout, T3 1.0 ps

T2, Ti 00

T32 2.1 ps

731 3.4 ps

T21 0.5 ps

Cinj 0.31 pF/cm 2

C3, C2 0.56 pF/cm2

Ci 0.81 pF/cm2

Xin, Xout ~__ _ II

Equations (4.25) and (4.26) show that above threshold, even though the gain is clamped

to its threshold value, the electron densities keep increasing with the bias current. This is

in contrast to what happens in a semiconductor diode laser in which the carrier density in

the lasing state does not increase beyond its threshold value. As a result, an increase in the

injected current density in QCLs does not only lead to an increase in the photon emission

rate but it also leads to an increase in the rate of non-radiative transitions. For this reason,

QCLs tend to have radiative efficiencies q, significantly smaller than unity. If the lifetime

T21 of the electrons in the lower lasing state is much smaller than both the non-radiative

lifetimes, T32 and p31, then the electron densities in levels 3 and 2 would not increase much

beyond threshold, and the radiative efficiency q, would be close to unity. As will be shown

later, the value of Tr has a significant impact on the noise properties of QCLs.

Fig. 4-4 shows the electron densities n 3 and n 2 plotted as a function of the bias current.

The values of the various device parameters used in generating Fig. 4-4 belong to the QCL
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Figure 4-4: Electron densities in level 3 and level 2 of the gain stage, and the output power

per facet are plotted as a function of the bias current. There is a discontinuity in the rate

of increase of the electron densities with the bias current at threshold. For values of the

QCL parameters see Table 4.1.

reported in Ref. [16], and these values are given in Table 4.1. Fig. 4-4 shows that the rate of

change of electron densities in levels 3 and 2 with the bias current exhibits discontinuities at

threshold. This can be confirmed by comparing Equations (4.25) and (4.26) with Equations

(4.16) and (4.17). As will be shown later in this Chapter, these discontinuities in the rate

of increase of electron densities with the bias current result in a discontinuity in the value

of the differential resistance of the laser at threshold.

4.5 Noise and Fluctuations

The model for the noise presented here consists of a set of coupled self-consistent Langevin

rate equations for the fluctuations in the electron density in different energy levels of a

gain stage. Fluctuations in the electron density are caused by radiative and non-radiative

scattering processes, electron tunneling processes and also by fluctuations in the current

injected into the gain stage. Fluctuations in the current are a relaxational response to

electron scattering and tunneling events occurring inside all the gain stages of the QCL,
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and they are also caused by sources external to the laser which include thermal noise

sources associated with circuit resistances. Photon density fluctuations are also modeled

by Langevin rate equations. Electron density fluctuations in different gain stages are all

coupled to the photon density fluctuations and also to the fluctuations in the current which

flows through all the gain stages connected in series. The system of equations obtained

this way can easily be solved analytically or numerically to give the spectral density of the

photon number fluctuations and the current fluctuations.

4.5.1 Linearized Langevin Rate Equations for Electron and Photon den-

sities

The non-linear rate equations can be linearized around any bias point to obtain rate equa-

tions for the fluctuations. Linearized Langevin rate equations for these fluctuations are as

follows,

d 6n, 6J 6n) 6n]d3 in 3 3 _ _ V, [a (6n -Fnv) (S, + s + g(nj,nj)6S]dt e 732 731 . 2 WL) J

-fd3'2 - f2 I - AN (432)

d on' 6nj 6nj

dt 2 = - + Fi, a (n - n) (Sp + n + g(nj, n)6Sp1 + f32  f l f AN

(4.33)

d 3+ 2+ 3 -6 "'jt (4.34)+_ - + 3±f1 +f~ 1
dt T31 T21 e

d6p N /S Nj _

= Fv [a (snp - nj) (Sp + nsp + g(nj, nj)JSS - FL + Ef] (4-35)dt E~FV [ ~? 3 5f2) ' WL) I. V3 I2JU~P
J~ Pj=1-

6pout = r 0 h O + Fo (4.36)

Equations (4.11)-(4.13) have been used above for approximating the transition rates Rqk.

f32, f31, and f21 are Langevin sources which model the noise associated with the non-

radiative intersubband transitions and also the radiative transitions into the non-lasing
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modes. fRN and fRS are Langevin sources which model the noise in photon emission and

absorption from the lasing mode. FL and F, describe the noise associated with photon loss

from the cavity [1]. All the Langevin noise sources have a white spectral density. All the

non-zero correlations among the noise sources are given in Appendix C.2.

4.5.2 Linearized Electron Transport, Coulomb Correlations and Noise

In order to determine 3Jin and J , the electron transport through the active region needs

to be looked at in detail. Self-consistent modeling of electron transport in multiple quantum

well structures poses a significant challenge, and the steady state current-voltage charac-

teristics of QCLs are difficult to compute accurately. On the other hand, a self-consistent

analysis for the fluctuations in the electron current density and the electron charge density

can be carried out in terms of only a few device parameters. The values of these parame-

ters can either be determined experimentally or computed theoretically from more detailed

self-consistent transport models.

The expression for the direct sequential tunneling current density from the injector state

into level 3 of the gain stage can be written as [63],

Jin = Jin-forward - Jin-backward

fdk d dk' 27w 2IT((.~~
= 2e T , 2) dE A (E - Ein (k)) A (E - E 3 (k)) x

(27r) h kk( 27) 2

f (E - Pin) - f (E - P3) (4.37)

where the forward and backward components of the injection current are,

f
2  J d2 k' 2w 2 JA

Jin-forward = 2e (2dr)2 (27r)2 h kpk dE A (E - Eini (k)) A (E - E 3(k')) x

f (E - pin ) 11 - f (E - /13) (4.38)

Jin-backward 2e I(2r)2 r )2 2 2 J0 dE A (E - E,,j (k)) A (E - E3 (k)) X
T27 (27w) 2 h k fk 0

f (E - P3) 1 - f (E - Pinj) (4.39)

T ., is the coupling constant, and its related to the transmission probability. Eij (k)
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and E 3 (k) are the energies of electrons in the injector state and level 3 of the gain stage,

respectively. A(E) is a normalized Lorentzian function with FWHM equal to the broadening

of the energy levels, and f(E - p) is the Fermi-Dirac distribution function with a chemical

potential 1-. Expressions similar to (4.37) can also be written for the phonon assisted

tunneling current density. The analysis presented in this paper is independent of the specific

nature of the electron tunneling mechanisms. In what follows, Eij and E3 will stand for

Einj (k = 0) and E 3 (k = 0), respectively. The tunneling current in (4.37) depends upon the

following three quantities,

" The difference (1upij - Einj) between the injector chemical potential and the energy

of the injector state.

" The difference (P3 - E3) between the chemical potential and the energy of level 3 of

the gain stage.

" The relative difference (Einj - E3) between the energies of the injector state and level

3 of the gain stage.

The current can change if the number of electrons in the injector level or in level 3 of the

gain stage changes. The current can also change if the energy of the injector level shifts

with respect to the energy of level 3. 6Jin can be written as,

Jin/6(ping- Ein ) i 6Jinl6QP3 - E3)
n 6nini/6( ptn- Einj) znj Jn3/6(/P3 - E3) 3

6(Ein - E3) mi - +ef'n (4.40)
- J 6J-fl- -J

rninj + - 6 + (nj _3) (Ein£ - 6E3) + efin (4.41)
6nini 6n3 (ig 3

fin is a Langevin noise source which models the noise in electron tunneling. As shown in

Appendix C.1, noise in electron transport by sequential tunneling in multiple quantum well

structures can be described with Langevin noise sources. In Ref. [26], the current noise

in double barrier resonant tunneling structures is evaluated using a quantum mechanical

scattering approach. It can be shown that Langevin rate equations yield results identical

to those presented in Ref. [26] for the current noise in double barrier resonant tunneling

devices (see Appendix C.1). A linearized analysis based on Langevin rate equations may

become invalid for highly non-linear devices. The correlation function for the noise source

112



1 A
ninj n3 ninj

1.2 n2

> .4--- - -- - -- --- ----- - ------

0.28-nze

dopants

0
20 30 40 50 60 70 80

Distance (nm)

Figure 4-5: Charge densities associated with the electron densities Jnrnj, Sn 3, Sn2, and
Sni are shown. The electron charge densities are imaged on the positively charged ionized
dopants present in the superlattice injector of the subsequent stage.

finis

1
W L ( fji(t ) fk,§~t')) =- ( Jin-forward -\ Jin-backward) 5 jk S(t -- t') (4.42)

~ ri Xin 5 jk S(t - i') (4.43)

The factor Xin relates the sum of the forward and backward tunneling currents to their

difference which is the total injection current Jin At low temperatures Xin is expected to

be close to unity since Pauli's exclusion would restrict the available phase space for the

backward tunneling current (28]. For the same reason, Xin is expected to be close to unity

for large values of the injection current Jd. At high temperatures and small values of the

injection current, Xin can be larger than unity. Although the expression in (4.41) for the

change in current density is derived for direct sequential tunneling, it also holds for phonon

assisted tunneling. Even if the energy distribution of electrons inside each energy level in

the steady state were not a Fermi-Dirac distribution with a well defined chemical potential,

(4.41) would still hold.
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It is assumed that the superlattice injector is doped in regions not close to the gain

stage. Electric field lines from electron density fluctuations 6n , r6n] ,n , and 6n] are

imaged on the ionized dopants in the injector layer of the (j + 1)th gain stage, as shown in

Fig. 4-5. Therefore, the fluctuation 6V in the potential difference across the jth gain stage

can be written as,
. _nin. + en crn q+rnVJ = 3+ 3 + + -F - (4.44)
Cinj C3 C,2 C1

Cini, C3, C2, and C1 are capacitances which relate the incremental change in the potential

difference across a gain stage to the changes in the electron densities in different energy

levels. Using first order quantum mechanical perturbation theory, 6EnJ - 6E' can be

related to the fluctuation in the average potential difference between the injector level and

level 3 of the gain stage. The fluctuation in the average potential difference between these

two levels can also be expressed in terms of capacitances. Therefore, the expression for

SEq - 6E' becomes,

. 2 e2ini e26n e2 ni
SEJ - 6E1= e n 3  

2  1 (4.45)
Cn C C2 C1

Using (4.44) and (4.45), (4.41) can be put in the form,

e - + 3 (Gin)n6n, _ -G )n + fi (4.46)

C tn C ni -~ (t G+ C3 n 2 GC/ 1
-Cn (i ±2G~) C2> (ig )c7J± -I- )]n

=+ Gin 60( 1n + G n [Q + (I- + Gin ('S
in ne Cin /nj C3 t3 C3' _

t i ig in Cinj Gtin
+ + Gi)(Gn n j 1+ Gn+ (G n n

tin Cinj C2 C/ 2 tin C/ C

+ fi (4.47)

In (4.47), Gin, tin, and t3 are given by,

1 J1Sin 1 _6; 1 6UJin
Gin = e 6n - - - -- (4.48)

6(Einj - E 3 ) tin e 6ninj ' t 3  e 6n 3

More generally, there may be more than just one energy level in the injector from which

electrons get injected into level 3 of the gain stage. (4.46) can be modified appropriately to

take into account the contributions from all the energy levels inside the injector. However,
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if the values of tin are roughly the same for all such states in the injector then the final form

of (4.46) will remain unchanged, but ninj will then represent the total electron density in

all the injector states.

Similarly, the fluctuation 6J t in the tunneling current density from level 1 of the gain

stage into the injector is given by the expression,

= "/ E1) + "6 (6E3 - SE ' ) + efout (4.49)
6n1/6(1 - E1 ) S(E1 - Eijn)

S on + " , (6E- - W -) + efst (4.50)
6n 1  6(E1 - Enj) ( - 3 

.)

The Langevin noise source fo has the correlation function,

k 1 1
WL (fout(t) fot(t - (Jout-forward - Jout-backward) 6jk 6(t - t') (4.51)

e

eou Xout 6jk 6(t -t) (4.52)

In a well designed QCL, the backward tunneling current from the injector of the next stage

into level 1 of the gain stage is small, and Xout is expected to be close to unity. E3 is the

energy of the injector level of the next stage into which electrons tunnel from level 1 of the

gain stage. 6E - 6EZ , as before, can be expressed in terms of capacitances,

e 26n eon 06ni e2n,
6E -SE 3  = C' C' C'1  (4.53)

''' Ci// +n C C2 C1'

Using (4.44) and (4.53), 6J0 becomes,

_ J.G _ (CGnG 5V Gout CinjG Gou ngi G_ __ CG_
S' e Cz/' C. C3 ') Ct'l C2 ' 2c"ln nou ( 3/ c$n j C2" rv

- [-t ( + Gout + (4.54)

where tout and Gout are,

1 _1 SJout SJout- = -ju Gout = e u (4.55)
tout e 6ni ' o 6(E1 - Eini)

In (4.49), it is assumed that electrons in the injector relax into the ground state of the

injector sufficiently fast so that electron occupation in the injector levels do not effect the
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electron escape rate out of level 1 of the gain stage. Note that Gin and G0 st can be positive

or negative depending upon the relative alignment of the energy levels Einj and E 3 in the

steady state. The scheme used in deriving (4.47) and (4.54) is fairly general and can be

used to derive self-consistent linearized transport equations for a variety of QCL structures.

Approximations can be made to simplify (4.47) and (4.54). Expression for 6Ji can also be

written as,

6J~ 1 1 1 1
- J n 6 n4 I n '- -- n 3 6nI- +fj (4.56)C Tin in 33 T2 2 Ti i

___ 6Vi (1 C- 1

Tin e Tin 3 T3

I j + -) Jn i - -( I ii + onj + fin (4.57)
Tin C2 722 Tin C1 Ti1

For the sake of economy of notation, new parameters have been introduced in the above

Equation,

1 1 Gn 1 1 Gin 1 Gin 1 Gin
- = + - = + -- - -- - - (4.58)Tin tin C0 nj T3 t 3  T2 T C

Simple electrostatic arguments can be used to show that T2 and Ti will be large, and can

be assumed to be infinite.

The injector is assumed to have a large number of closely spaced energy levels. Jout is,

therefore, largely insensitive to the relative shifts in E 1 and Enja. This implies that terms

containing Gout in the expression for 6JJ may be neglected, and the simplified expression

for 6JJ,u becomes,

S I n + 3. (4.59)
e Tout

where Tout is just tout. (4.57) and (4.59) show that in addition to the parameters given in

the electron and photon density rate equations (Equations (4.32)-(4.35)), the only other

parameters necessary for describing electron transport through the gain stage are Cini, C3,

C2, C1, Tin, T3, T2, and Ti.
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4.5.3 Displacement Currents

The noise current 8 Jext, which flows in the external circuit, is not equal to 6Jin or 6j out.

Jext also includes displacement currents and is given by the expression,

.d 6n]
6Jext = 6 J + e i (4.60)

Since all the gain stages are connected electrically in series, the same current 3 Jext flows

through all the gain stages. The second term on the right hand side in (4.60) is the contri-

bution to 6Jext from displacement currents. Differentiating both sides of Equation (4.44)

with respect to time, and rearranging yields,

d n d6 Vi C. . d ri

d t d t Ck d t

Using the above Equation, the expression for 6Je.xt becomes,

6Jext = 6,+Cin deCnj d6k (4.61)
k=1

d 6Vj 3 C d 6ni
= Jut +Cinj dt + e I ) dtk (4.62)

dt k=1 k d

(4.62) follows from (4.61) using the particle number conservation equation,

3 eder uonaJ
( e k -6 J] - 6 J,

k=1

(4.61) and (4.62) satisfy the Ramo-Shockley theorem [66].

4.5.4 Differential Resistance

Below threshold, the total differential resistance Rd of all the gain stages can be calculated

by using (4.16)-(4.18) in (4.57),

Rd= - N Tin [ Cin +I T32731

WL Cinj Tin C3 T3 732 + T311 Cing 7217(1 1 COg
+ (l-inj + T2T31+ - + -) Tout] (4.63)

'Tin C2 T2 T32 + T31 7in CI Ti .

N 1-
N Tin(1 + + ' + 01) (4.64)

W L Cinj
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Figure 4-6: Differential Resistance of a QCL is shown as a function of the bias current. The
experimentally measured discontinuity in the differential resistance at threshold is about
0.3 Q. The theoretical model reproduces the discontinuity exactly. The experimental data
is taken from [16].

Above threshold, the differential resistance can be computed by using (4.25)-(4.27) in (4.57),

N in (1 Cin + 1 ) T21 731
Rd = 11+ + )

WL Cin I Tin C3 T3 T21 + T31

+ (-I + -2) +21 T31 + - Tout] (4.65)
Ti n C2 T2 T21 + T31 Tin C1 7-1

N (1 + 03 + 02 + 01) (4.66)
WL Cinj

Expressions for the parameters 03, 0'3, 02, 0', and 01 are given in Appendix C.3. Notice

the similarity between the expressions in (4.64) and (4.66), and the expression in (2.42)

for the differential resistance of interband semiconductor diode lasers given in Chapter 2.

Unlike the active regions of diode lasers, the active regions of unipolar QCLs are not charge

neutral, and as a result various capacitances appear in the expression for the differential

resistance of QCLs.
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The discontinuity ARd in the differential resistance at threshold for an N stage QCL is,

ARd~ - N ren I Cinj+ 1 ( 732T31 T21T31

W L Cin I( Tin C3 T3 T32 + T31 T21 + T31

+ ( 1 Cin+ 1 )( T21T31 _ T21T31 (4.67)
Tin C2 T2 T32 + 7-31 T21 + T31

N r-
WL N ,[(n - 03) + (0' - 02)] (4.68)
W L Cinj (3

The Incremental change in the potential drop across a gain stage is related to the incremental

changes in electron densities through (4.44). Therefore, the discontinuity in the differential

resistance at threshold results from the discontinuity at threshold in the rate of change

of electron densities in levels 3 and 2 of the gain stage with the bias current. Fig. 4-6

shows the calculated and measured differential resistance of a QCL as a function of the

bias current. The experimental data is taken from [16]. The values of the various device

parameters are given in Table 4.1. Values of 721, - 3 1 and 732 are taken from [16]. Values

of all the capacitances that are given in Table 4.1 are estimated for the QCL structure

described in Ref. [16]. Values of in, 73, and -Tt are estimated from (4.48) and (4.55).

The total resistance of the ohmic contacts and the superlattice injectors is assumed to

be approximately 0.3 Q at threshold. The experimentally observed discontinuity in the

differential resistance at threshold is exactly reproduced in the calculated results without

the use of any fitting parameters. This agreement suggests that the self-consistent model for

the linearized electron transport presented in this paper adequately captures the essential

ingredients.

Diode lasers also exhibit a discontinuity in the differential resistance at threshold. As

shown in Chapter 2, the discontinuity in the differential resistance of diode lasers at thresh-

old is KBT/elth times a factor of the order of unity, which can be compared with the more

complicated expression given in (4.67) for QCLs.

4.5.5 Electron Transport in the Superlattice Injector

In this Chapter, no attention has been given to modeling the electron transport through the

superlattice injector. In the absence of any bias current, the energy levels in the injector are

not suitably aligned to facilitate electron transport, and the resistance of the injector region

is large. As the bias current is gradually increased, electrons pile up in different quantum
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Figure 4-7: Circuits used for biasing QCLs.

wells until their presence modifies the potential profile and aligns the energy levels such

that the electron current can flow. Once the injector has been turned on in this fashion, the

differential resistance of the injector region is negligible, and the only bottleneck for electron

transport is the gain stage. As a result of the small differential resistance of the injector

region, any current noise originating in the injector region will not couple well into the

external circuit. Therefore, electron transport in the injector region may be ignored when

modeling noise. If necessary, the impedance of the superlattice injectors can be modeled

with a lumped element, and the current noise generated inside the injector regions can be

modeled with a voltage source in series (or a current source in parallel) with that element,

as shown below. A detailed discussion of the current noise in superlattice structures is

beyond the scope of this paper.

4.5.6 Biasing Electrical Circuits

Two electrical circuits for biasing QCLs are shown in Fig. 4-7. In circuit A the QCL, with

an impedance Z(w), is biased with a voltage source V in series with an impedance Z8(W).

The thermal noise originating in the impedance Z,(w) is modeled by adding a voltage noise
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Figure 4-8: Thevenin equivalent circuit model indicating the distinction between 6lext(w)

and oImeas(w).

source 6 V. The differential impedance of the superlattice injector and the current noise

generated by the injector can also be modeled with an impedance and a voltage noise source

in series (or a current noise source in parallel) with that impedance. For the sake of economy

of notation it will be assumed that the impedance Z(w) represents not just an external

circuit impedance but the Thevenin equivalent impedance of the superlattice injectors,

device ohmic contacts, external circuit resistances, and device and circuit parasitics, and

the voltage noise source 6V represents the Thevenin equivalent of their individual noise

sources. Only the gain stages inside the QCL are not included within Z,(w) and they

are represented by the impedance Z(w). However, Z(w) will be loosely referred to as the

impedance of the QCL. The current noise generated by the gain stages can also be modeled

by adding a current noise source in parallel with Z(w), as shown in later sections.

Direct current modulation of the QCL can be achieved by adding an RF voltage source

in series with V, and this RF voltage source can also be represented by the voltage source

JV. From the context it will be clear whether 6V represents a RF signal source or a noise

source.
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Semiconductor lasers are frequently biased as shown in circuit B in Fig. 4-7. The laser

is biased with a current source in series with an ideal inductor, and it is also capacitively

coupled to a voltage source 6V, with a series impedances Za(w) and Zb(W). If at frequencies

of interest the inductor and the coupling capacitor are almost open and short, respectively,

then this circuit is also equivalent to circuit A. Therefore, in this Chapter only circuit A

will be considered. In circuit A, the current 6ext can be expressed as,

N

VE(w) - ZVi(w)

lext(W) =6Jext(w) WL j1 (4.69)
Zs(w)

It is important to note here that 6Iext(w) may not be the noise current which would be

measured in an experiment. For example, suppose that the QCL has a parasitic capacitance

C, in parallel with the actual device, as shown in Fig. 4-8. The QCL is driven with a series

resistor R, and a noise voltage source 6V 0(w) representing the thermal noise in the resistor

R,. Fig. 4-8 shows the distinction between the noise current 3Iext(w) defined in (4.69), and

the noise current 6  ~meas(w) that would be measured in an experiment. Notice that the

Thevenin equivalent impedance Z (w) is a parallel combination of the resistance R, and

the capacitance C,. Zs(w) and 6V8 (w) are,

ft0  8V 0 (w)
ZS(w) = ± ) V, (w) = + O (4.70)

(I + 1jw RoCo) (I + Jw RoCo)

and the relation between 6 1ext(w) and ismeas(,) is,

Hlext(W) = 6meas(W) 71)
(1 + jW Z(W)CO)

Choosing to define Z,(w) this way helps in formulating a noise model that is independent

of the specific nature of the device parasitics.
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4.6 Solution of the Coupled Equations: Modulation Response

and Noise

4.6.1 Current Modulation Response

In this section the response 6 Pout(W)/~ext(W) of QCLs to external sinusoidal current mod-

ulation 'et (w) is determined 1. The frequency dependence of the photon noise spectral

density of semiconductor lasers is directly related to the frequency dependence of the cur-

rent modulation response. It is therefore instructive to look at the modulation response

of QCLs. The modulation response can be found by solving (4.32)-(4.36), together with

(4.57) and (4.59), and setting all the noise sources equal to zero. The external circuit con-

straints expressed in (4.61) and (4.69) must also be enforced. Equations (4.32)-(4.34) for

each gain stage are coupled to the same set of equations for all the other gain stages through

Equations (4.35) and (4.61). Such a large system of coupled equations can be solved only

numerically. A numerical approach, although simple to implement, is not very instructive.

With the approximation that all gain stages have the same confinement factor I', a signifi-

cant portion of the work can be done analytically. This approach will be followed here. All

equations, unless stated otherwise, will be expressed in the frequency domain.

The relationship between the current density 6Jext(w), which flows in the external cir-

cuit, and the total potential drop 6V(w) across all the gain section can be obtained by using

(4.57) in (4.61), and summing over the index j,

Cinj 6V(w) N 6Jext(w) 3 1 Cinj 1 1
Tin e (1+ jw in) e + 7in Ck Tk (1 + jW Tin).

The following new symbols have been introduced in (4.72),

N N

6Nk(w) =3 2 rv((w) {where k = 1, 2, 3} and 6V(w) = E 6 Vi(w)
j=1 j=1

Using (4.57), (4.59) and (4.72) in (4.32)-(4.35), summing over the index j, and arranging

'It is assumed that P0,.(t) = Ps. + Real{6Pst (w) eiwt } and Ixt (t) = Iext + Real{ 6ext (w) e wt }
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the resulting equations in a matrix form gives,

Dii D 12 D 13  0 6N1(w) 0

0 D 2 2 D 23 D 24  6N 2 (w) _ N SJext(w) 0

D 31 D 3 2 D 33 D 3 4  6N 3 (w) + (1+ jTin) e 1

0 D 42 D 43 D 4 4  6SP(w) 0

The coefficients of the matrix D can be found from (4.32)-(4.35), and they are given in

Appendix C.4. The solution of (4.73) can be written as,

6Ni(w) D-w)

JN2(w) D-1(w) N MJext(w)23 (4.74)
6N3(w) D-1w) ( + jo Tin) e

6S(w) _ D- 1 (w)

The coefficients of the matrix D- 1 are given in Appendix C.5. (4.74) can be used in (4.72)

to calculate the total impedance Z(w) of all the gain stages,

Z(w) =N ' 1 + (1 Cifj + I D- 3(w) (4.75)
WL Cinj (1 + ijw in) [ i Tin Ck Tk (1 + jW Tin) W

Z(w = 0) is just the differential resistance Rd of the QCL given earlier in (4.63) and (4.65).

Finally, from (4.36) and (4.74), the current modulation response can be written as,

_ot_) hQ, N D-j(w)
=0 43 (4.76)

6Iext(W) e Tp (1 + jW Tin)

In QCLs that have been reported in the literature the photon lifetime rp is usually much

longer than any other relevant time constant of the laser. Therefore, it is expected that

the bandwidth of the modulation response in QCLs will be limited by the inverse photon

lifetime. Above threshold, an analytical approximation for the modulation response valid

for values of w smaller than 1/Tin, 1/Tt, and 17 21 can be found in the limit {w2 , T1} -> 00

(see Appendix C.5),

_______ h'Q 0  2R
6P"t (w) _ 0? o N WR (4.77)
&fext(W) e (wi -- w2 + jw?)
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where l7r is the radiative efficiency defined in (4.31), and the relaxation oscillation frequency

WR and the damping constant -y are,

1 (1 + T21)
2 __p Tst 731 (4.78)

R + 721 +T21 + Tn+ T21 2+Ti
T31 T 3 2  73 Tst \ T3 /

S T21 ) + 721 2+
Tst\ 31/ 731 T32 TpTst 73/

7 - - -(4.79)
+ 21 + 7 21 Tin T21 Tin

T31 T32 T3 Tst \ T3/.

In the above expressions, T st is the differential lifetime associated with stimulated and

spontaneous photon emission into the lasing mode, and is given by the relation,

1
=r ,v, a SP + ! (4.80)

Tst W L

(4.77) has the standard form used for semiconductor diode lasers (see Chapter 2 and [1]).

The damping constant y can be related to Wf,

wR + (4.81)

where,

K = Tp (4.82)

31 + +T21 2+Tin

T31 T32 TpTst T 3  (4.83)

+ T21 +721 Tin T21 Tin

731 T32 T3 Tst \ 73/

The K-factor describes the damping of the QCL modulation response at high photon den-

sities. -yo has a weak dependence on the photon density through T
st, and it approaches 1/Tr

at large photon densities.

If the condition WR < 7/ 2 is satisfied, then (4.77) describes a second order over-damped

system. For QCLs that have been reported in the literature, this condition holds true

above threshold. Using the values of device parameters from Table 4.1, WR and -y can be

calculated. If the output power of the laser is assumed to be around 150 mW, then from (4.6)

and (4.80) Tp and Tst are approximately 7 ps and 2.8 ps, respectively. The resulting value of
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y is more than three times larger than that of OR. The internal time constants in QCLs are

usually smaller than the photon lifetime Tp, and therefore the modulation response of QCLs

is over-damped. An over-damped modulation response implies the absence of relaxation

oscillations. In contrast, the current modulation response of semiconductor diode lasers is

under-damped, and becomes over-damped only at very large bias currents when Tst becomes

small [1].

For QCLs the 3 dB frequency, which is defined to be the frequency at which the square

modulus of the laser modulation response becomes one half of its value at zero frequency,

can be found from the simplified expression for the modulation response in (4.77),

3 dB- ( T 2 )+w2 _ (- W 2) (4.84)

As the photon density inside the laser cavity increases, the 3 dB frequency also increases

but it asymptotically approaches an upper limit W3 dB I max. This maximum attainable 3 dB

bandwidth can be calculated from (4.84), and comes out to be,

1
L03 dB I max - (4-85)

(4.85) confirms the intuition that a laser cannot be modulated much faster than the inverse

of the photon lifetime inside the laser cavity. As long as the photon lifetime Tp is much longer

than ri, Tt, and T21, the approximations made in deriving (4.77) are justified. Otherwise,

the exact expression given in (4.76) must be evaluated numerically. As shown in Chapter 2,

in diode lasers the value of W3 dB I max equals 2/lp. The difference of a factor of v/2 comes

from the fact that in diode lasers the modulation response is under-damped (see Chapter 2).

As in diode lasers, the photon lifetime imposes a fundamental limit on how fast QCLs

can be modulated. It is not uncommon to find predictions of THz modulation bandwidths

for QCLs in literature [67]. However, for all the QCLs reported in the literature so far, the

photon lifetime is the longest of all the time constants and it is the dominant factor that

would limit the modulation bandwidth of these QCLs to tens of GHz instead of THz. It

remains to be seen if QCL structures can be designed in which the photon lifetime is not

the bottleneck for the modulation bandwidth.

Fig. 4-9 shows the calculated modulation response of a QCL as a function of the fre-
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Figure 4-9: Absolute value squared of the direct current modulation response is plotted

as a function of the frequency for different bias currents. Modulation response shown in

the figure has been normalized w.r.t its value at zero frequency. For values of the QCL
parameters see Table 4.1.

quency for different values of the bias current. The values of the different parameters of the

QCL are taken from [16] and are given in Table 4.1. In the numerical calculations, values

of all the device time constants (except TFt) were assumed to be independent of the bias.

Fig. 4-9 shows that at low bias currents the 3 dB frequency increases with the bias current,

and at high bias currents the 3 dB frequency saturates to a value which is well approximated

by 1/(27rT) = 21 GHz. The analysis carried out in this paper does not take into account

device heating which may also be important in limiting the modulation bandwidth of QCLs

at large bias currents.

Fig. 4-10 shows the impedance Z(w) of the QCL plotted as a function of the frequency for

different bias currents. The peaks in the values of Z(w) are not due to relaxation oscillations

since, as already pointed out earlier, the modulation response of the QCL is over-damped.

The peaks are due to the fact that the smallest zero of Z(w) is at a frequency which is

smaller than the frequency of its smallest pole. Impedance measurements can therefore

provide valuable information about the time scales associated with electron dynamics in
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Figure 4-10: Absolute value of the impedance Z(w) is plotted as a function of the frequency
for different bias currents. The peaks in the values of Z(w) are not because of relaxation
oscillations, since the modulation response of the QCL is over-damped, but because the
smallest zero of Z(w) is smaller than its smallest pole. For values of the QCL parameters
see Table 4.1.

QCLs.

4.6.2 Current Noise and Photon Noise

In this section, the current noise in the external circuit and the photon noise in the output

power from QCLs is calculated. In the Langevin equation formalism noise is added through

the Langevin noise sources which were introduced in (4.32)-(4.36) and also in (4.57) and

(4.59). In addition, any noise originating in the external circuit and in the superlattice

injectors can also contribute to the current noise and the photon noise, and as already

explained earlier, this noise can be represented by the voltage source JV. Here, it is

assumed that 3V represents the thermal noise originating in the series impedance Z(W),

and its correlation function is,

(617s(w) 6Vi(w')) = 2KBT Real{Z,(w)} 27r 6(w - u') (4.86)
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By assuming the above correlation function for the noise source 6V, noise that is contributed

by the superlattice injectors is being ignored.

Including the Langevin noise sources, (4.73) can be written as,

D 12 D 13  0

D 22 D 23 D 24

D 3 2 D 3 3 D 3 4

D 4 2 D 4 3 D 44

oNi(w)

6N2(w)

6N3(w)

6Sw)

N 3Jext(w)

(+ jW in) e

The expressions for the noise sources F 1 , F2, F3 , and F4 are,

N N

F(w) = Fi =3 [f31(w) + fjl(w) - fout(w)
j=1

N

j=1

N

F3 (W)=E
j=1

N

j=1
[fin (w)

F4 (w)= F4 E[fis(w)- N
j=1 j=1

The solution of (4.87) can be written as,

6N1(w)

6N 2 (w)

6N3(w)

6S (w) 

Dp3
1(w)

D23 (w)

D331(

D3(LL))

6Jext(u) in (4.92) still needs to be determined. Using (4.57) in (4.61), summing over the

index j, and making use of (4.92) yields,

6V(,) = Z(,))_ [Xt(w)
T in Fin (W)

Cini (1 + Io Win)
3 4

- Y E
k=1 1=1

I C- j

Tin Ok
+ D( + in) ) k1(w) Fi(w) (4.93)

129

0

E

0

0

0

1

0

F1(w)

F2 (w)

F3(w)

F4 (w)

(4.87)

N

Fj
j=1

(4.88)

[f (w) - fjl(w) + fRN(L)I

JW Tin-

(1 +jw -n) f32(L)- f 1 (w) - f R N P)-

(4.89)

(4.90)

(4.91)

N
(1 +u LJ r )

6Jext (w)
e

+ (4.92)

j=1

YJ D- (LL) F, (w)

E4 D21 (Lw) F, (L)

ij D - (Lo) F1 (w)

E4 D -1(Li) F (Lo)
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Figure 4-11: Circuit model for the current fluctuations.

where Fin = zt 1 fjn. Substituting the value of WV(w) from (4.69) in (4.93), the final

expression for the current fluctuations &Iext(w) in the external circuit is obtained,

Iext(W) + e n Fin(W)
(Z(W) + Zs (Z)) (Z(W) + Zs(W)) Cin ( + jW in)

- +1FI D - (w ) F , ) (4 .9 4 )k=E =1 (Tin Ck rk ( I + j in) k1/

The fluctuation 6P,,t(w) in the output power can be obtained by substituting (4.94) in

(4.92), and using (4.36),

hQ, N D 1 ()
6pout(W) = 1 43 Slext P)e Tp (1+ jw -rjn)

h~o WL L
+ Q0  L e D- 1(w) F(w)1 + Fo(w) (4.95)

-I =1

4.7 Current Noise: Results and Discussion

4.7.1 Circuit Models for the Current Noise

A circuit model for the current fluctuations can be constructed by attaching a current noise

source 511 (w) in parallel with the jth gain stage, as shown in Fig. 4-11. But current noise

sources belonging to two different gain stages are not independent but are correlated. This
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Figure 4-12: A simplified circuit model for the current fluctuations.

is because electron densities in different gain stages interact with the same optical field.

A simpler approach, more relevant from the experimental point of view, will be followed

in this paper. Equation (4.94) for the current fluctuations in the external circuit can be

written as,
6 lxtW)= Vs(w) + Z(w)61ext (w) =W + Z() 6(w) (4.96)

(Z(w) + ZS(w)) (Z(w) + ZS(w))

Expression for 61(w) is,

I(W) = e Tin Fin GJ) 34 1 Cinj D j~)F~
Z(w) Cinj (1 + 3 in) (rin C T (1 + jL ) in k1

(4.97)

It follows that a circuit model for the current fluctuations can be constructed by attaching a

single current noise source 61(w) in parallel with all the gain stages of the QCL, as shown in

Fig. 4-12. (4.96) shows that the current noise 6I(w) is equal to the current noise 6 lext(w) in

the external circuit if 6V8 (w) and Z,(w) are both zero. This is also obvious from Fig. 4-12.

The characteristics of the noise source 61(w) are explored next.

4.7.2 Spectral Density and Fano Factor of the Current Noise

The spectral density KI(w) of the noise source 61(w) can be calculated from (4.97). Most

of the numerical results presented in this paper, unless stated otherwise, are for the QCL
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Figure 4-13: Spectral density Ki(w) of the current noise is plotted as a function of the
frequency. The noise spectral density has been normalized w.r.t. its value at zero frequency.
For values of the QCL parameters see Table 4.1.

described in Ref. [16]. The device parameters for this QCL are given in the Table 4.1. In

the numerical calculations, values of all the device time constants (except Tat) were assumed

to be independent of bias. The values of Xin and Xout were assumed to be unity (see the

discussion in section 4.5.2). Fig. 4-13 shows the frequency dependence of K(w) for different

values of the bias current. As expected, K 1 (w) rolls over near the 3 dB frequency (w3 dB) for

the laser modulation response. Fig. 4-15 shows the Fano Factor (see Appendix A.1) for the

low frequency fluctuations of the current noise source 31(w) as a function of the bias current.

Near the laser threshold, the current fluctuations are very large. Below threshold, the

photon number fluctuations inside the laser cavity are damped by the photon loss from the

cavity. Above threshold, the photon number fluctuations are damped by negative feedback

from the electron density in the lasing levels. Near the laser threshold, both these damping

mechanisms are small and therefore photon number fluctuations and, consequently, the

electron density fluctuations become large. Since, as discussed in detail below, the current

fluctuations are driven by the electron density fluctuations, the current noise is also large

near the laser threshold. Away from the laser threshold, the current noise is suppressed far
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Figure 4-14: Low frequency spectral density Ki(w = 0) of the current noise is plotted as a

function of the bias current. For values of the QCL parameters see Table 4.1.
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Figure 4-15: Fano Factor for the low frequency current fluctuations is
of the bias current. For values of the QCL parameters see Table 4.1.
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Figure 4-16: N times the Fano Factor for the low frequency current fluctuations is plotted
as a function of the bias current. For values of the QCL parameters see Table 4.1.

below the shot noise value.

For frequencies less than W3

expressions for the elements of

KI (O < W3 dB , lext < Ith)

K (w < L03 dB , lext > Ith)

dB, analytical expression for Kr(w) can be found using the

the matrix D- 1 given in Appendix C.5,

Ie (x2 + (01)2 + (01)2 (i + 2 + (O1 xo0 t)2)
N ( _0 4 ,__0

5 z

Iext (xz, + (03 + 02)2 + (01 Xout) 2 )
N (1 +03 +02 +01)2

(0ext 3Ith) (3 - 02 T1 2

+ 2ensp r7r N (1 T31)
N (1 +063 +062 + 01)2

(4.98)

Expressions for the parameters 03, 03, 02, 0' and 01 are given in Appendix C.3. The

expression for Ki(w) above threshold is valid provided,

NF'v, g - - 0 and SP > n"p (4.99)
TP WL

It is insightful to compare the expression for the current noise in (4.98) to the current noise

in interband semiconductor diode lasers. Using the model presented in Chapter 2, one gets
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for diode lasers (see Chapter 2 for details),

KI (w < W3 dB ,Iext < Ith) = Iext

KI (W < W3 dB ,Iext > Ith) =e ext e Ith(/0)
(1+06)

+ 2en, 77i (Iext - Ith) (4.100)± ~(1 + 0)2

where ri is the current injection efficiency, 0' is a number of the order of unity, and 0

is much less than unity (see Chapter 2). Comparing (4.98) and (4.100), it is seen that

below threshold and also much above threshold (when Trt -+ 0 and I > Ith) the current

noise approaches the shot noise value in diode lasers, whereas in QCLs the current noise

can be suppressed much below the shot noise value. The mechanisms responsible for the

suppression of the current noise in QCLs are discussed below.

Effect of Small Differential Impedance of a Single Gain Stage

The total differential impedance of all the gain stages in a N-stage QCL is larger than the

differential impedance of a single gain stage by a factor of N. This reduces the total noise

power of the current fluctuations by a factor of N, and therefore K1(w) has an explicit 1/N

dependence in (4.98).

Effect of Electronic Correlations

The expression for the current fluctuations 61(w) given in (4.97), for frequencies less than

w 3 dB, can also be written as,

6,pI~) N fi 3
N= N [ - 3 (1 0 + I-- 6n (w)l (4.101)
eWL n Ck Tk

The expression in (4.101), which is almost identical to that in (2.22) given in Chapter 2 for

semiconductor diode lasers, shows that fluctuations in the electron density in different levels

of the gain stage causes fluctuations in the current. The sign of the current fluctuations

is such as to restore the electron density to its average value, thus providing a negative

feedback. The physical mechanisms responsible for this negative feedback are discussed

below. On one hand these electronic correlations suppress the current noise associated with
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electron injection into the gain stage by providing negative feedback, and on the other

hand they are also responsible for generating current noise in response to electron density

fluctuations caused by noise sources internal to the gain stage. Various physical mechanisms

which contribute to these electronic correlations are described below:

1. Coulomb Correlations: If the electron density changes in any level of the gain stage

then the electrostatic potential energy of level 3 also changes because of coulomb

interactions. As a result, the energy level separation 6Ein2 - 6E3 also changes, and

consequently the total electron current from the injector into the gain stage also

changes. Usually QCLs are not biased in the negative differential regime and the

value of the conductance Gin, given in (4.48), is positive. Therefore, the change in

the current will be such as to restore the electron density in the levels of the gain

stage to its steady state value. Coulomb correlations provide negative feedback to

regulate electron density fluctuations. If a QCL is biased in the negative differential

regime, in which the coulomb correlations provide positive feedback (negative Gin),

the fluctuations may increase substantially and the linearized noise analysis presented

in this paper may not be applicable. In the model presented here, the effect of coulomb

correlations was introduced through the parameters Gin/Ck in (4.47).

2. Pauli's Exclusion and Backward Tunneling Current: If the electron density increases

in level 3 of the gain stage then this reduces the phase space available for additional

electrons to tunnel into level 3 from the injector due to Pauli's exclusion, and conse-

quently the forward tunneling current from the injector into level 3 decreases from its

average value. In addition, an increase in electron density in level 3 also increases the

backward tunneling current from level 3 into the injector and this also reduces the

net current from the injector into level 3 (recall from (4.37) that the net current is the

difference of the forward and backward tunneling currents). In model presented in

this Chapter, both these effects were introduced through the parameter t31 in (4.47).

The readers are reminded that later in (4.56) and (4.57), t3 and Gi,/C3 were ab-

sorbed in the definition of 73 , and Gi,/C2 and Gi,/Cs were relabeled as T- 1 and

T-1 respectively. Therefore, coulomb correlations, Pauli's exclusion and backward

tunneling current account for the presence of the terms nl (w)/rk in (4.101).
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3. Injector Electron Density Response: Here, the presence of the terms (Cinj /rin Ck) 3nk(w)

in (4.101) is explained. Recall that the current fluctuations 61(w) can be evaluated

by looking at the current fluctuations Jlext(W) in the external circuit when Zs(w) is

zero, and all external voltage sources are incrementally shorted, and the sum of the

fluctuations in voltage across all the gain stages (i.e. EN 1 SVj) is, therefore, also

zero. Under these conditions, the relationship between the fluctuations in the carrier

densities, expressed earlier in (4.44), becomes,

N N 3

E 6n (w) = - E " 6n3(L) (4.102)
j=1 j=1 k=1 C

(4.102) can be used to write (4.101) as,

N 6I(w) N I
=61) N nnJ() - 6ni(w)) + fj'1w) (4.103)

e WL T._ P) 7- +in(W

(4.103) shows that the current fluctuations are proportional to the total fluctuations in

the electron density in the injector states of all the stages. Since Ti_ 1V6(w) = 0, a

net increase in the electron density in different levels of all the gain stages must result

in a net decrease of the electron density in all the injector states, and consequently, the

current being injected into the gain stages must also decrease. This effect is captured

through the terms (Cinj/Tin Ck) 6nk(w) appearing in (4.101).

As a result of the electronic correlations described above, the current noise associated

with electron injection into the gain stages, which is described by the noise sources f.P),
is suppressed. Electron density fluctuations caused by sources internal to the gain stage

contribute more strongly towards the current fluctuations because of the same correlations.

To see this in a more transparent fashion, it is best to write (4.101) in terms of all the noise

sources. Below threshold, (4.101) is,

N 6I(w) 1N
N L ( + 1, Z ,+ E [fin (w) + 01fout(w) + (O3 + O2') fl(w)e WL (1±+ +32 + 1

+2 + - ) + 2) fi( + (03( - f32 (w) (4.104)
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Above threshold I(w) is,

N 6I(w) 1 N

eWL (+03±02+01) E [f(CJw)+ Olfot(w) + (03+02) (fjl(w)+ flM(w))

Tst Tst F L_ ___ I)f~

+ (03 .2i- 02 Ts fyj (W) - (4.105)T21 731/ NJS~ LW)]~*1

Note that the strength of the electronic correlations depends on the values of the parameters

03, 0/, 02, 0/ and 01 (Appendix C.3). From (4.104) and (4.105), it is clear that larger

values of these parameters will result in stronger electronic correlations, larger suppression

of the current noise associated with electron injection into the gain stage, and also larger

contribution to the current noise from the noise sources internal to the gain stage. The

reader is encouraged to compare (4.104) and (4.105) with the corresponding expressions for

semiconductor diode lasers given in (2.52) and (2.53) in Chapter 2.

A quantitative measure of the role played by the electronic correlations in suppressing

the current noise can be obtained by multiplying the Fano Factor of the current noise

by N. It has been mentioned earlier that a factor of 1/N appears in (4.98) because the

total differential impedance of all the gain stages is larger than the differential impedance

of a single gain stage by a factor of N. Therefore, multiplying the current noise Fano

Factor by N removes this explicit 1/N dependence in the current noise, and the resulting

expression can only be less than unity because of electronic correlations. Fig. 4-16 shows the

current noise Fano Factor from Fig. 4-15 multiplied by N. Below threshold, and also much

above threshold, N times the current noise Fano Factor is less than 0.5. This implies that

electronic correlations are responsible for suppressing the current noise by a factor greater

than 2. Using (4.98), expression for the current noise Fano Factor F, can be written as,

(x +(60)2 + (01)2 (+2 + (01 x".t)2)

(I1+ 0, + 0'2 + 01)2(et<Ih
N x F, (w < W3 dB)

2+ (3 + 02)2 + (O1 Xout)2)
(X . ( I + 03 + 02 + 01 ) 2 l x 1 h

(4.106)

For semiconductor diode lasers, using (4.100), one gets,

F (w < W3 dB) = 1 ('ext < Ith and Iext > Ith) (4.107)
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At frequencies much higher than the inverse of the smallest time constant of the QCL

the current noise 61(w) is just the capacitive response to the various electronic transitions

which occur inside the gain stages. In the limit w -+ o, KI(w) is given by the expression,

K, (w --+ oc , I ext <~ I2a = e - 2 2u

e2 W L Cinj Cinj 2 Cinj Cinj 2+ - R31 -+ R21
N C3 C1 C2 C1

+ R 32 Cinj 0)21 (4.108)
(C3 C2

Above threshold an extra term,

e((2n', - 1)n. (Iext - Ith) Cinj Cini 2  (4.109)
N C C2 )

is added to the above equation to account for the stimulated transitions. Semiconductor

diode lasers on the other hand are charge neutral. Therefore, in the limit w -* 00, the

current noise in diode lasers is just the noise associated with carrier injection into the active

region (see Chapter 2),

K1 (w 00) = J e - ext (1 + 2 0') ('ext < Ith) (4.110)
elext (1+ 20) + 2e Ith (0' - 0) (Iext > Ith)

4.7.3 Scaling of the Current Noise with the Number of Cascade Stages

In QCLs, the spectral density KI(w) of the current noise obeys a simple scaling relation

with respect to the number of cascaded gain stages N, and this relation can be determined

from (4.97),

N 2K(w, Iext/Ith, N) = N' 2 K (U, Iext/Ith, N') (4.111)

According to the above Equation, the spectral density of the current noise, for a fixed value

of Iext/Ith (i.e. for a fixed value of the output power), scales as 1/N 2 . This scaling relation

for Kr(w) holds provided the transition rates Rik(nj, nk) and the material gain g(n3, n 2 )

are linear functions of the electron densities and the total mode confinement factor also

scales linearly with the number of cascade stages N.
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4.7.4 Spectral density of the Current Noise in the External Circuit

Equation (4.95) shows that the quantity which affects the photon noise is not the current

noise 61(w), but the current noise in the external circuit 3 lext(w). When Z,(w) 7 0 Q,

which is usually the case, then Ket(c) is not the same as K[(w). Expression for Ket(W)

can be obtained from (4.96),

Kv, (w) Z(w) 2
Ki. (x G) =+ Ki (w)

Z(W) + ZS (W)12 Z (W) + ZS (W)

_2K T Real{Z8 (w)} Z(w) 2
2+ Ki (w) (4.112)

IZ(w) + Zs(w)|2 Z(w) + Z8(w)

(4.112) shows that in the presence of a large impedance Zs(w), the current fluctuations in

the external circuit are suppressed. The total differential impedance of a QCL is usually

less than 1 Q. Therefore, for even a moderately large impedance Zs(w) the current noise

in the external circuit can be dominated by the thermal noise from the impedance Z,(W).

Experimental measurement of the current noise would therefore require a relatively sensitive

measurement scheme. High impedance suppression of the current noise in the external

circuit can influence the photon noise, as shown in the following section.

4.8 Photon Noise: Results and Discussion

4.8.1 Spectral Density and Fano Factor of the Photon Noise

The spectral density Kp(w) of the photon noise can be calculated from (4.95). The Fano

Factor for the low frequency fluctuations in the laser output power is plotted as a function

of the bias current in Fig. 4-17. The numerical results presented here are for the QCL

structure described in Ref. [16] (see Table 4.1). The Relative Intensity Noise (RIN) is

plotted in Fig. 4-18. In each Figure, the respective shot noise limit is also shown. It is

assumed that the light coming out from both the facets of the laser is collected before the

noise is evaluated. This is equivalent to assuming that the output coupling efficiency q0 ,

defined earlier in (4.7), is,

= (4.113)
(a, + ai)

In practice this can be achieved by HR/AR coating the laser facets so that that most of the

light comes out from only one facet of the laser. When the value of the external impedance
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Figure 4-17: Fano Factor for the (low frequency) photon noise is plotted as a function of
the bias current. For values of the QCL parameters see Table 4.1.

Ze is 0 Q, the photon noise remains above the shot noise limit. Even at high bias levels, no

amplitude squeezing is observed despite the fact that the current noise is suppressed much

below the shot noise value as shown earlier in Fig. 4-15. When Zs = 50 Q, and the current

noise in the circuit is further suppressed, a very small amount of squeezing is observed at

high bias levels (less than 0.4 dB at 'ext = 10 ITH)-

Fig. 4-20 shows the RIN as a function of the frequency for different values of the bias

current assuming Z,(w) = 0. The RIN also rolls over at the frequency w3 dB. Fig. 4-21 shows

that the Fano Factor of the photon noise as a function of the frequency. As in all other

lasers, at frequencies much higher than the inverse of the photon lifetime inside the cavity,

the RIN is dominated by the noise from photon partition at the output facet. Therefore,

Kr (w > 1/Tn) =hf)0 Pout (4.114)

In this paper careful attention has been given to modeling the current fluctuations in the

external circuit. The question arises if such detailed modeling of the current fluctuations is

necessary for calculating the photon noise. In (4.95), the current noise SIext(w) is included

141

4



-190

-100 -

-192

-120
-194

> -140 -196

U) Z=OQ ~
-198.

-160 , -18 - - - - Z, = 50 Q (at 300K)
----- . shot noise level

-200
1 2 3 4 5 6 7 8 9 10

-180 -

-200
0 1 2 3 4 5 6 7 8 9 10

lext / Ith

Figure 4-18: Low frequency Relative Intensity Noise (RIN) is plotted as a function of the
bias current. Very small amount of squeezing (less than 0.4 dB) is exhibited at high bias
levels even when the circuit current fluctuations are suppressed with a 50 Q impedance. For
values of the QCL parameters see Table 4.1.

in the first term on the right hand side. It should be noted here that the first and the

second term on the right hand side in (4.95) are correlated, and the spectral density of the

photon noise cannot be obtained by a simple addition of the spectral densities of these two

terms. In Fig. 4-22, the ratio of the low frequency spectral density of the photon noise

obtained by ignoring the term containing 3 lext(W) in (4.95) to the actual spectral density

of the photon noise is plotted as a function of the bias current for different values of the

impedance Z,. When the laser is biased a little above threshold, the fluctuations in the

current are large, and the error incurred by ignoring the term containing oIext(W) in (4.95)

is also large. Also, when Z, is much larger than the total differential impedance of the QCL,

the current fluctuations in the circuit are suppressed, and the term containing SIext(w) can

be ignored in (4.95).

Above threshold and for large Z(w), analytical expression can be obtained for the

spectral density of the low frequency photon noise using the expressions for the elements of
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Figure 4-19: Low frequency Spectral density Kp(w = 0) of the photon noise is plotted as a
function of the bias current. When Z, is large (50 Q) small amount of squeezing is seen at
high bias levels. For values of the QCL parameters see Table 4.1.

the matrix D- 1 in Appendix C.5,

T3 1 2 )2i 2-
KP (W < W 3 dB , lext > Ith) hQo Pout I - 2o + 21) nsp + - Tst

(T21 + T31 T3 I T32

+ (ro h Do)2 N WL [ 32 + r2 R 3 1 + (1 - q,)2 R21] (4.115)

(- 7 hQ0P0 ) 1 2~ ~ 3 2L [R32 T 4.]5
T31 2 (417

= QO Pout I - 770 + 277o nsp -+ - ts2
T3 21 + T31 31 T32

+ (7 h O)2 N a T+ (4.116)
e e I

q, in the above Equation is the radiative efficiency defined in (4.31). The constants OZ and

Sare,

Z = 77r (I - 71r) + 2 (1 - 3 T2) (4.117)
T231 + T3 2

77= r - 277r (I - r) T32 (4.118)
T3 I + 732

The above expression for Kp (w) is valid for frequencies smaller than w3 dB, and when

the laser is biased above threshold when the conditions given by (4.99) are satisfied. The

143



-1 Rn

Z =OQ

Z = 50 Q (at 300K)
1--185 ................ shot noise level

FA-190-

-195

QCL with improved 7
-200 1 1

1 2 3 4 5 6 7 8 9 10
'ext / 'th

Figure 4-20: Relative Intensity Noise (RIN) is plotted as a function of the frequency for
different bias currents (Z, = 0 Q). At high frequencies the RIN reaches the shot noise value.
For values of the QCL parameters see Table 4.1.

expression given in (4.116) is almost identical to the expression for Kp(w) for semiconductor

diode lasers (when the later are also biased with a high impedance current source). Using

the model presented in Chapter 2 one gets for diode lasers (see Chapter2 2 for details),

Kp (W < J3 dB , Iext > Ith) hQ Pout1 [io + 2rTI 8 ns (1 ±T 1+ Te 77

+ (TIO hQO)2 Th (1 - n ) Iet+ 7iIh(4.119)

77i in the above equation is the current injection efficiency into the quantum wells [1].

The contributions from the non-radiative electronic transitions to the photon noise in

QCLs and diode lasers are proportional to the terms inside the second square bracket in

(4.115) and (4.119), respectively. The contributions to the photon noise from the photon

loss from the laser cavity and from the radiative transitions in QCLs and diode lasers are

proportional to the terms inside the first square bracket in (4.115) and (4.119), respectively.

Two important differences emerge when (4.115) is compared with (4.119), and both these

differences make it harder to achieve photon number squeezing in QCLs compared to diode
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Figure 4-21: Fano Factor of the photon noise is plotted as a function of the frequency
(Z, = 0 Q). The photon noise at frequencies much higher than the inverse of the photon
lifetime in the cavity is dominated by the photon partition noise at the output facet. For
values of the QCL parameters see Table 4.1.

lasers. These differences are discussed in detail below.

Contribution of Non-Radiative Transitions to Photon Noise

The contribution to the photon noise from the non-radiative recombination in diode lasers

is constant above threshold and it has been expressed in terms of the threshold current in

(4.119). As shown earlier, in QCLs above threshold the electron densities in different energy

levels of a gain stage do not remain fixed at their threshold values. The electron densities

keep increasing when the bias current is increased beyond threshold. As a result, the

contribution of non-radiative electronic transitions to the photon noise also keeps increasing

with the bias current. Since only a fraction r of the electrons injected in level 3 of the

gain stage end up producing photons, a multiplicative factor 'r appears with the transition

rate R31 in (4.115). A fraction 1 - q, of the vacancies left by removing electrons from level

2 get filled by radiative transitions from level 3 to level 2, and therefore a factor (1 - 7r)2

appears with R21. All the electrons taken out of level 2 and injected into level 3 will end up

producing photons (since 1 - r + r 1) and, therefore, R 32 has no multiplicative factor
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Figure 4-22: Ratio of the low frequency photon noise spectral density obtained by ignoring
the term containing the current fluctuations in (4.95) to the actual spectral density is
plotted as a function of the bias current for different values of the impedance Z'. The
current fluctuations are suppressed when Z, is large and the error incurred in calculating
the spectral density is, therefore, small. For values of the QCL parameters see Table 4.1.

in (4.115).

The noise associated with the electron transitions from level 1 into the injector of the

next stage does not directly contribute to photon noise at low frequencies. These transitions

contribute to the current noise in the external circuit, which can in turn contribute to the

photon noise. But in (4.115), it is assumed that Z,(w) is large and the current fluctuations

are suppressed. Similarly, the noise associated with the electron transitions from the injector

into level 3 of the gain stage is also suppressed at low frequencies when Z (W) is large.

In diode lasers, since the current injection efficiency qi is less than unity, the partition

noise associated with carrier leakage from the SCH region contributes a term to the photon

noise which increases linearly with the bias current even beyond the laser threshold, as

shown in (4.119). Since qi is usually close to unity in well designed diode lasers [1], the

contribution of this term to the photon noise is small.
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Contributions of Photon Loss and Radiative Transitions to Photon Noise

The most important contribution to the photon noise from the photon loss from the laser

cavity and from the radiative transitions is given by the term proportional to T2t in (4.115)

and (4.119). Just above threshold, the photon density is small, and ret, which is inversely

proportional to the photon density, is large. Consequently, just above threshold the term

proportional to Tsj dominates all the other terms in (4.115) and (4.119). As the bias

current is increased, and the photon density becomes large, Tst becomes small. It is evident

from (4.115) and (4.119) that photon number squeezing can only be achieved if the ratio

(Tst/Tr) 2 , where Tnr is the total non-radiative lifetime for the carrier density interacting

with the photons, becomes smaller than unity. The appearance of this ratio is related to the

carrier density and the photon density dynamics in response to sudden radiative transition

events or photon loss events which temporarily move the carrier density and the photon

density away from their steady state values. In diode lasers Tr', given by,

1 = 1 1 - 7 Diode Lasers (4.120)
Tnr Tw Te

is around 0.5 ns to 1 us (see [1]). In QCLs, Tnr is the non-radiative lifetime of the difference

carrier density (n3 - n 2 ) that interacts with the photons, and is given by the expression,

1 T31 /1 1\
= 2 I + QCLs (4.121)

Tnr T21 + T31 \T31 T32

The factor of 2 in the above equation does not show up in (4.115) because the differential

stimulated emission lifetime of the difference carrier density is Tt/2, and the factor of 2

cancels out. In deriving the above Equation, the sum carrier density (n 3 + n 2 ), which

does not interact with the photons, was adiabatically eliminated from the rate equations.

In QCLs, the value of (2Tnr) is usually around a few picoseconds. In the QCL structure

described in Ref. [16], (2rnr) equals 1.5 ps (see Table 4.1). Therefore, for photon number

squeezing to be possible the value of Tst in QCLs must be a few hundred times less than

the value of rst is diode lasers (assuming both have equal values for 'q and nsp). For the

same photon density and the mode group velocity, the ratio of rTt in QCLs and diode lasers

depends on their respective differential gains (see (4.80) and (2.12)). For the QCL described
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Figure 4-23: Relative Intensity Noise (RIN) for the QCL with improved rq (= 0.84) is
shown. Only 1.2 dB of squeezing is seen at high bias levels and when Z, = 50 Q.

in Ref. [16],
l/T=t (QCL) a 15 (4.122)

1/Tt (Diode Lasers) dg/dN,

In the above Equation, the differential gain dg/dN. of diode lasers is assumed to be around

1.0-1.5 x10- 1 5 cm 2 [1]. Note that the ratio in (4.122) is independent of any geometrical

factors and depends only on the properties of the material gain of the lasers. The expression

above implies that the photon density in the active region of QCLs must be at least an order

of magnitude larger than the photon density in diode lasers to make squeezing possible. This

does not seem to be a formidable obstacle to achieving photon number squeezing in QCLs

since QCLs with output powers exceeding 1.0 Watt have been demonstrated [16]. However,

in QCLs, in contrast to diode lasers, it will be difficult to achieve squeezing with only a few

tens of milli-Watts of output power. In QCLs, since both Tr, and Tst depend on the spatial

overlap of the wavefunctions of the upper and lower lasing states, it may not be possible to

change the value of the ratio (Tst/Tnr) by engineering the wavefunction overlap.

The output coupling efficiency q, of QCLs that have been reported in the literature

is much smaller than those of typical diode lasers. But even if that were not the case,
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squeezing is expected to be less in QCLs than in diode lasers for the reasons discussed

above. The QCL, whose characteristics are shown in Fig. 4-17 and Fig. 4-18, has a 3 mm

long cavity, a waveguide loss of 11 cm-1, and an output coupling efficiency of only 28%.

Consider a QCL with a 500 pm long cavity, a waveguide loss of 5 cm-1, and an output

coupling efficiency of 84%, which is comparable to that of good diode lasers [1]. The values

of all the other parameters of this QCL are identical to those given in Table 4.1. Fig. 4-23

shows the relative intensity noise when this QCL is driven with a 50 Q resistor in series.

Only about 1.2 dB of squeezing is observed even at very large bias levels (Iext ~ 10 ITH)-

The Fano factors for the photon noise much above threshold (when Tst -+ 0 and Iext >

Ith) in QCLs and diode lasers can be calculated from (4.116) and (4.119),

1 - 1o 77r + 2 70 (1 'r) T31 T21 Q CLs
FF (w) 3dB , ext Ith) = { :r 721 + T31 ( 32

(w <q oi Diode Lasers

(4.123)

(4.123) gives the maximum photon number squeezing which is asymptotically achievable in

QCLs and in diode lasers at very large output power levels. In real devices, the squeezing

will be always less than that predicted in (4.123). In diode lasers, 7i and qo can be larger

than 0.9 and 0.85, respectively [1], and the photon noise in diode lasers can be maximally

suppressed more than 6 dB below the shot noise value. For the QCL whose parameters are

listed in Table 4.1, qr and qo have the values 0.66 and 0.28, respectively, and, consequently,

the maximum possible squeezing is only 0.6 dB. Even if the output coupling efficiency 7o of

this QCL is increased to 0.85, the maximum squeezing predicted by (4.123) is only 2.0 dB.

The maximum squeezing achievable in QCLs can be increased by decreasing the life-

time T21 of electrons in level 2 of the gain stage, and increasing the lifetimes T31 and T32

associated with the non-radiative electronic transitions out of level 3. This will reduce the

rate of increase of the electron density above threshold in levels 3 and 2 with the bias cur-

rent, increase the radiative efficiency 7r, and reduce the contribution of the non-radiative

electronic transitions to the photon noise.

4.8.2 Scaling of the Photon Noise with the Number of Cascade Stages

The spectral density of the photon noise in QCLs is a function of the output power (or

Iext/Ith), the circuit impedance Z,(w), and the number of cascaded stages N. In Chapter 3,
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it was shown that the effect of the positive correlations in photon emissions in different

cascade sections on the photon noise in semiconductor interband cascade lasers can be

expressed simply in terms of a scaled circuit impedance. A similar relation holds for QCLs

and can easily be derived from (4.95),

Kp (w, Iext /Ith, Zs (w), N) = KP(w, Iext /Ith, Zs (w) N'/N, N') (4.124)

The scaling relation for Kp(w) holds provided that the transition rates R(nj, nq) and the

material gain g(n 3 , n 2 ) are linear functions of electron densities and the total mode con-

finement factor also scales linearly with the number of cascaded stages N. In Ref. [62], it

is shown that the total mode confinement factor scales with the number of cascaded stages

according to the expression - erf(0.019N), which is almost linear in N for N < 40.

4.9 Conclusion

A model for noise and fluctuations in intersubband quantum cascade lasers has been pre-

sented. The current noise exhibited by QCLs is much below the shot noise value. Sup-

pression of the current noise in QCLs is largely due to the small differential resistance of

individual gain stages compared to the total differential resistance of all the cascaded gain

stages. In addition, electronic correlations also suppress the current noise. However, unlike

semiconductor diode lasers, current noise suppression does not lead to significant photon

number squeezing in QCLs. In QCLs the contribution to the photon noise coming from the

non-radiative electronic transitions keeps increasing with bias beyond the laser threshold,

and this reduces the amount of photon number squeezing achievable in QCLs compared to

semiconductor diode lasers. It has also been shown that photon noise in QCLs is squeezed

at photon densities much larger than those in diode lasers.

The current modulation response of QCLs has also been investigated. It has been found

that the direct current modulation response of many QCLs that have been reported in the

literature is over-damped since, in contrast to diode lasers, the photon lifetime inside the

optical cavity in QCLs is usually the longest time constant. The modulation bandwidth is

also limited by the inverse photon lifetime. At present, in the wavelength region of interest

only quantum well infrared photodetectors (QWIPs) have bandwidths wide enough that

they could be used to study the modulation response of QCLs. However, the current noise
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provides an alternate way of studying the high speed dynamics of QCLs, and as shown in

this paper, the modulation bandwidth of QCLs can be found by looking at the spectral

density of the current noise in the external circuit.

Although in this paper the emphasis has been on a specific multiple quantum well QCL

structure, the theoretical methods and techniques presented in this paper can be used to

study a variety of QCLs that have been reported in the literature.
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Chapter 5

Quantum Noise in Actively

Mode-Locked Semiconductor

Lasers

5.1 Introduction

Mode-locked lasers have important applications in electro-optic sampling, optical analog-to-

digital conversion, optical communication systems, and ultra-fast optical measurements [69].

Low noise performance of mode-locked lasers, especially reduced amplitude noise and timing

jitter, is critical to most of these applications. Semiconductor mode-locked lasers, by virtue

of their small size and high repetition rates, are potential candidates for replacing bulkier

solid state and fiber mode-locked lasers. Semiconductor mode-locked lasers have been used

to produce sub-picosecond optical pulses with repetition rates exceeding hundreds of giga-

hertz [30, 31]. Semiconductor mode-locked lasers must be able to produce short high power

pulses with reduced noise and timing jitter in order to compete with other mode-locked

lasers. Fig. 1-9 of Chapter 1 shows the requirements on the root mean square (RMS) tim-

ing jitter of optical pulses for optical A/D conversion [2, 32]. Less than 100 femtosecond

RMS jitter is required for an A/D converter with 8 bits of resolution at a sampling frequency

of 10 GHz, and less than 30 femtosecond of RMS jitter is required if the desired resolution

is 10 bits at 10 GHz.

Very few theoretical models have been reported in the literature that describe the noise
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in mode-locked semiconductor lasers. Models for the noise in mode-locked solid state and

fiber lasers have been developed by Haus et. al. [33, 34]. These models use the soliton

perturbation theory [70], and assume that the group velocity dispersion and the Kerr non-

linearity in the laser cavity balance each other so that the steady state optical pulse is

a soliton. Optical pulses in semiconductor mode-locked lasers are not solitons since the

non-resonant Kerr non-linearity in semiconductors is negligible compared to the resonant

non-linearities, such as dynamic gain saturation and dynamic self-phase modulation [36].

Also, in semiconductor mode-locked lasers the group velocity dispersion in the laser cavity

is generally not balanced by either the self-phase modulation or by active phase modulation,

and, consequently, the steady state optical pulses are almost always chirped [30, 31]. Theo-

retical models presented in the literature for the noise in semiconductor mode-locked lasers

have either used the soliton perturbation approach (which assumes unchirped pulses) [71],

or have completely ignored phase modulation and group velocity dispersion [35]. Soliton

perturbation theory, as presented in Refs. [33, 34, 71], treats active phase modulation only

perturbatively and a self-consistent solution is not known. Therefore, to the best of au-

thor's knowledge, a theoretical model that can describe the noise in chirped optical pulses

in mode-locked lasers has never been presented in the literature. Accounting for active

phase modulation in the theoretical model is important since active gain (or amplitude)

modulated mode-locked semiconductor lasers are also strongly phase modulated as a result

of the carrier density dependent refractive index in semiconductors [1].

In this Chapter, a theoretical model for the noise in semiconductor mode-locked lasers

is presented that for the first time accounts for group velocity dispersion and phase mod-

ulation without relying on the soliton perturbation theory. It is shown here that a non-

zero pulse chirp significantly affects the noise in mode-locked semiconductor lasers. The

model presented here is linear, and non-linearities, such as dynamic gain saturation and

dynamic self-phase modulation, are ignored. In semiconductor mode-locked lasers, these

non-linearities become important only at large pulse energies, and at low pulse energies a

linear theory is adequate [36]. The model presented in this Chapter is fairly general and

can be used to model the noise in a wide variety of mode-locked lasers (not necessarily

semiconductor mode-locked lasers) with amplitude modulation, phase modulation, and/or

group velocity dispersion.
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5.2 Effect of Phase Modulation and/or Group Velocity Dis-

persion on the Pulse Noise

The noise in an optical pulse in a mode-locked laser can be determined by a perturbative

expansion in terms of the eigenmodes of the linear operator that describes the slow time

evolution of the pulse fluctuations [33, 34, 72]. In most mode-locked semiconductor lasers,

this operator is not Hermitian (i.e. not self-adjoint) or even normal (i.e. does not commute

with its adjoint). This operator can be non-Hermitian in the presence of a number of dif-

ferent factors, such as group velocity dispersion, active phase modulation, and/or dynamic

self-phase modulation. The eigenmodes of a non-normal operator are not mutually orthog-

onal [73]. It is well known that the non-orthogonality of the eigenmodes significantly affects

the noise in non-Hermitian and non-normal optical systems and, in most cases, generates

excess noise [74, 75, 76, 77]. In this Chapter, it is shown that the non-orthogonality of the

eigenmodes result in excess noise in the pulse photon number, phase, frequency, and timing

fluctuations. In this Chapter, quantum mechanical operators are constructed for the pulse

photon number, phase, timing, and frequency noise, and it is shown that as a result of the

non-orthogonality of the eigenmodes, these noise operators have significant contributions

from the noise in all the higher order eigenmodes. In the presence of active phase modu-

lation and/or dispersion, the magnitude of the frequency chirp of the steady state pulse is

a good measure of the degree of non-normality of the operator that governs the slow time

evolution of the pulse fluctuations, or the degree of non-orthogonality of the eigenmodes of

this operator. The excess noise in the pulse can be related to the chirp in the steady state

pulse. It is shown that when the magnitude of the pulse chirp exceeds a critical value (~

0.577), the perturbative expansion for the pulse noise diverges exponentially as more eigen-

modes are included in the expansion. A modified perturbative expansion is developed that

converges. The origin of the excess noise in linear systems with non-orthogonal eigenmodes

is explained in Appendix D.1, and readers are strongly encouraged to browse through this

Appendix before proceeding.
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5.3 Theoretical Model

5.3.1 Master Equation for Actively Mode-Locked Lasers

The model presented here uses the time domain perturbation theory for optical pulses

developed in Refs. [33, 34, 72]. The quantum field operator for the optical pulse inside

the laser cavity is assumed to be 0(t, T) exp(-j Qt), where 0(t, T) describes the slowly

varying envelope of the optical pulse and Q, is the pulse center frequency. The additional

time variable T describes the evolution of the pulse over time scales larger than the cavity

round trip time TR. The operator q(t, T) is normalized such that (ot (t, T) q(t, T)) equals

the photon number flux (units: number/sec). The angled brackets (.. .) stand for averaging

with respect to the quantum mechanical density operator which describes the state of the

optical pulse at time T. 0(t, T) obeys the quantum mechanical commutation relation [34],

[ (t, T), It(t', T) = 6(t - t') (5.1)

The master equation that describes the slow time evolution of the optical pulse inside the

laser cavity is [33, 34, 72],

=$tT _- 0 (tT)+ - G - (t, T)+ 0(t) (tT)
d T TR 2 TP

+ Fsp (t, T) + Fv (t, T) (5.2)

where the operator 0(t) is,

0(t) = (B - jD) 1 a2 + 2(Am + TM) [ COS (R t) - 1 (5.3)
2a t2 2 (M±P )[cswt 1

Here, G is the cavity gain (units: 1/sec). T, is the photon lifetime in the laser cavity. B

describes the effect of the finite gain bandwidth. D is the dispersion (units: sec). Am and

PM are the modulation depths for amplitude and phase modulation, respectively. WR is the

frequency of the active modulation and it is assumed to be equal to 27r/TR. v is a phase

shift accumulated by the pulse in one round trip. G, B and D are given by the expressions,

G= R Jdzg(z) (5.4)
TR
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1 d 2g(z)
2TR i OQ2

D = Jdz32 (z) (5.6)

where g(z) and 02 are the position dependent power gain (units: 1/cm) and dispersion

(units: sec 2/cm) in the cavity, and the integrals f dz are over one complete roundtrip in the

cavity. In semiconductor mode-locked lasers the phase modulation depth PM is related to

the amplitude modulation depth AM by the semiconductor a-parameter,

PM = -aAM (5.7)

The a-parameter relates the changes in the real part of the gain with carrier density to

the changes in the imaginary part of the gain (or the refractive index), and has values

typically between 3.0 and 5.0. Fsp(t, T) and Fv(t, T) in (5.2) are Langevin noise operators

which represent the noise in spontaneous emission and photon loss (or vacuum fluctuations),

respectively, and have the following correlation functions,

Fsl(t T) Fsp(t', T1)) nsp [G + 0(t) + Ot(t)] 6(t - t') J(T - T') (5.8)

(Fsp (t, T) FS'p s T)) (rip - 1) [G + 0(t) + 0t(t)] 6(t - t') 6(T - T') (5.9)

(F$ (t, T) Fv (t', T')) = J(t - t1) J(T - T') (5.10)

(Fy (t, T) Ft (t', T')) = (rth + 1) 6(t - t') 6(T - T') (5.11)

where nr, is the spontaneous emission factor that takes into account incomplete inversion

of the gain medium [1]. nth is the thermal occupation number for photons at the frequency

QO, and is close to zero since the photon energy hQo is usually much greater than the

thermal energy at room temperature. The noise operators obey the quantum mechanical

commutation relations,

[Psp(t, T), Fsp(t', TI)] - [G+ 0(t) + Ot(t)] 6(t - t') 6(T - T') (5.12)

[Fv(t, T '), F(t', T I) 6(t - t') 6(T - T') (5.13)[.Pv(t, ) FVTP
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Carrier number fluctuations in the gain medium will be included in the master equation

later in this Chapter. A linear quantum theory for optical pulses, such as the one presented

in this Chapter, gives almost the same results as the corresponding classical theory in which

the operator (t, T) is replaced by a classical field 0(t, T), and Ot (t, T) by 0*(t, T). In the

classical theory the noise sources acquire an unphysical character, e.g. the correlation func-

tion (F* (t, T) Fsp(t', T')) no longer equals (F8 p(t', T') F,*P(t, T)). To avoid this problem, a

fully quantum mechanical model is presented. It should be noted that the master equa-

tion (5.2) describes the pulse only over time scales longer than the cavity round trip time.

The master equation is valid provided the pulse does not change significantly as it travels

in the laser cavity.

5.3.2 Steady State Solution

The steady state solution of the master equation (5.2) is obtained by turning off the noise

sources and setting the right hand side of the master equation (5.2) equal to zero. The

solution is much simpler if the term [cos(OR(t) - 1] is approximated by -w t 2 /2 [72].

The eigenfunctions Ak(t) of the operator 0(t) are complex Hermite-Gaussians, and the

corresponding complex eigenvalues are Ak. It follows that,

0(t) Ak(t) = Ak Ak(t) (5.14)

where Ak = (2k + 1) A0 , and,

1 (A + jP) (B - D(5.15)
AO 2 2 2 5-5

The master equation (5.2) is valid only if JAol < 1/TR. In actively mode-locked semiconduc-

tor lasers, lAol is usually two or three orders of magnitude smaller than 1/TR [36, 78, 79, 80].

The approximation lAol < 1/TR will be used frequently in this Chapter. The eigenfunctions

Ak(t) are normalized such that f dt IAk(t)12 = 1. The steady state pulse is given by the

eigenfunction Ao(t) of the smallest (in magnitude) eigenvalue A0 , where,

Ao(t) = 1 exp 2 (1+ ) (5.16)
(V7- 7-)1/2 2 I
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The pulse chirp parameter # and the pulse width T are given by the relations,

tan-1 (3) = tan--(PM/AM) + tan1 (D/B) (5.17)

T2 - 1 2 B2+ D2) 1/2 (5.18)
\WR Am + P

In terms of the pulse width T the eigenvalue AO is,

(1 - j ) 2 (Am + JPM)AO - (1 + 2) 4 (5.19)

The expectation value of the field operator q(t, T) with respect to the quantum mechanical

state of the optical pulse is,

(5(t, T)) = V/n Ao(t) (5.20)

where no is the number of photons in the steady state pulse. For stable pulse operation the

real and imaginary parts of the eigenvalue AO must satisfy the equations,

1
G - - + 2Ao = 0 (5.21)

A, + =0 (5.22)
TR

The gain G is assumed to be a decreasing function of the number of photons no in the

optical pulse as a result of gain saturation. The details of the relationship between G and

no are not important for the purposes of this Chapter. However, it should be noted that

(5.21) fixes the number of photons in the steady state pulse. In semiconductor lasers, mode-

locking with pure phase modulation can be done by using an external modulator. When

pure phase modulation is used (i.e. when Am = 0), the pulse can be at the crest or trough

of the sinusoidal modulation signal where the phase modulation has opposite signs. Using

(5.15) with (5.21) and assuming PM > 0, it can be shown that when D < 0, the threshold

gain is lower if the pulse is at the crest, and when D > 0, the threshold gain is lower if the

pulse is at the trough.
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5.3.3 Non-orthogonal Eigenfunctions

The operator 0(t), in the presence of dispersion and/or phase modulation, is not Hermi-

tian (or not self-adjoint) and also not normal (i.e. it does not commute with its adjoint).

Consequently, the eigenfunctions of the adjoint operator Ot(t). The eigenfunctions of the

operator Ot(t) are complex conjugates of the corresponding eigenfunctions of the operator

0(t),
Ot(t) A* (t) = A* A* (t) (5.23)

The orthogonality relation is then fdt Aq(t) Ak(t) OC 6qk. The cross-product matrix Mkq is

defined as,

Mqk M*q= Jdt A*(t)Ak(t) (5.24)

If the eigenfunctions were orthogonal then Mkq would equal 6kq. In Appendix D.2, it is

shown that Mkq depends only on the pulse chirp 0. The larger the magnitude of 3, the

larger the magnitude of Mkq. Therefore, the degree of non-orthogonality of the eigenfunc-

tions increases with the increase in the magnitude of the pulse chirp. When 3 = 0, the

eigenfunctions are all orthogonal and Mkq = 5kq. Also, Mkq is non-zero only if Ak(t) and

Aq(t) have the same parity (i.e. if k and q are both even or both odd). Properties of the

complex Hermite-Gaussian functions, and expressions for the elements of the matrix Mkq,

are given in Appendix D.2. The eigenfunctions Ak(t) form a complete basis set and satisfy

the completeness relation,
Ak(t) Ak(t')Z= 6(t -t') (5.25)

k=O

5.4 Solution in the Presence of Noise

5.4.1 Eigenfunction Expansion

In the presence of noise, the field operator (t, T) can be written as a sum of a classical

field, which describes the steady state pulse, and a quantum operator which describes the

noise and also preserves the field commutation relations [34, 70],

(t, T) = fn0 Ao (t) + V/(t, T) (5.26)
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where,

(z(t, T)) = 0 (5.27)

[4kt, T), 4 t(t', T)] - t-t') (5.28)

The operator /(t, T) can be expanded in terms of the eigenfunctions of the operator O(t),

DO

(t, T) no Sk(T) Ak(t) (5.29)
k=O

where k(T) is a quantum mechanical annihilation operator. The operators ck(T) obey the

commutation relation,

[k(T), E(T) 1 Mqk (5.30)
no fdt A 2 (t) fdt Ak2 (t)

If the eigenfunctions were orthogonal, the terms inside the square bracket in (5.30) would

equal 6 kq. The operator t (T) creates a photon in the mode A*(t) and not in the mode

Ak(t). This can be shown as follows. The temporal wave-function of the photon created by

the operator t (T) can be obtained by looking at the probability amplitude when the state

is destroyed by '(t, T),

(t, T) - (T) 10) = [(t, T), ' (T) 0) (5.31)
kno fdt A* 2 (t) 0)

In many cases the quantities of interest are the pulse photon number, phase, timing, and

frequency fluctuations. If the eigenmode expansion for the operator 4(t, T) in (5.29) is

restricted to only the first two eigenfunctions, Ao(t) and A 1 (t), then one obtains [33, 34, 70],

(t, T) = - [ No + J J6 (T ) AO(t) - Jf(T) OAt - j 3Q(T) t Ao(t)

+ { terms containing higher order eigenfunctions } (5.32)

The operators 6Np(T), S(T), U (T), and AQ(T) describe the pulse photon number, phase,

timing, and frequency fluctuations, respectively, and are given as follows,

NpN(T) = no Eo(T) + h.c (5.33)
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60(T) = Fo(T) + h.c (5.34)

(5J(T)- T (1+3j1)1/2 -1(T) + h.c (5.35)
V/2 (I + 0 2 )1/4

(T) (1 ±02)1/4 F(T) + h.c (5.36)
/2 _r (1 + j/3)1/ 2

The operators 6Np(T), Ae(T), 6J(T), and Sn(T) describe only those perturbations that do

not distort the shape of the pulse. The non-zero commutation relations among the operators

6NS(T), 3A(T), 3J(T), and 3n(T), and the corresponding uncertainty relations, are given

below,

[ai-V(T), 3A(T)] j (i + 12 ( (T)) (302 (T)) ;> ( + 1 (5.37)

[3U(T), 3J(T) = (1+ )3/2 (3j 2 (T)) (3J2 (T)) > 1 (1+ 02)3 (5.38)
- 4 n2

If both (E1(T) F1 (T)) and (Et(T) Ft(T)) vanish then,

(6Q 2 (T)) = (&PT (1 +o2 (5.39)
T4

The expansion in (5.32) has been used in the literature [33, 34, 70]. The problem with the

expansion in (5.32) is that when the eigenfunctions are not orthogonal, the perturbations

given by the higher order eigenfunctions are no longer orthogonal to the perturbations de-

scribed by the first two eigenfunctions. Consequently, the operators for the pulse photon

number, phase, timing, and frequency fluctuations given in (5.33)-(5.36) are not valid, and

do not correspond to the quantities that are measured in experiments, when the eigenfunc-

tions are not orthogonal (see Section 5.9 for details). In the next Section, operators are

constructed that describe the pulse photon number, phase, timing, and frequency fluctua-

tions when the eigenfunctions of the operator 0(t) are not orthogonal.

5.4.2 Pulse Fluctuation Operators

The total number of photons in the pulse at time T is given by the operator,

Idt t(t, T )(t, T) (5.40)
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The operator ANp(T) for the fluctuations in the pulse photon number can be obtained by

using (5.26) in (5.40) and keeping only the terms first order in V/(t, T),

ANp(T) = Jdt A*(t)W(t, T) + h.c (5.41)

The operator AO(T) for the pulse phase fluctuations, which is also conjugate to ANp(T),

is,

Ab(T) = dt IA*(t) (t, T) + h.c (5.42)

The commutation relation between ANp(T) and A6(T) follow from the commutation re-

lation between 4(t, T) and 4t (t', T),

ANp(T), Ab(T) =(5.43)

The resulting uncertainty relation is,

(Ap(T)) (A E)(T)) > -(5.44)1

The operator for the pulse position in time is,

fdt t (t, T) t (t, T) (5.45)

It follows that the operator AJ(T) for the fluctuations in the pulse timing is,

Af(T ) = I dt t A*(t) (t,) + h.c (5.46)

The operator AQ(T) for the pulse frequency fluctuations, which is also conjugate to AJ(T),

is,

I I OAO*(t)AQ(T) = dt - A (t, T) + h.c (5.47)

The commutation relation between AQ(T) and AJ(T) is,

(5.48)
no
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and it implies the uncertainty relation,

(AQ 2 (T)) (A1 2 (T)) > (5.49)

An important relation can be derived between the mean square frequency and timing fluc-

tuations by comparing (5.46) and (5.47). If (/(t, T) '(t', T)) = (44(t, T) t (t', T)) = 0,

which is most often the case, then,

(AQ2 (T)) = (A (T)) (1+o2 (5.50)

It can be shown that other than the commutation relations given in (5.43) and (5.48), all

other commutators between AFp(T), A6(T), AJ(T), and AQ(T) vanish. Using the eigen-

function expansion for 4(t, T), the expressions for the pulse fluctuation operators become,

A Np(T) no Mok ck (T) + h.c (5.51)
k=O

1 00

AE(T) = Y Mok Fk(T) + h.c (5.52)
23k=O

S(1 + 001/
A J(T) = T (1 + 02)1/4 E Mik Ck(T) + h.c (5.53)

k-O

(1+33/4 00
AST = )2 EMl &k (T) + h.c (5.54)

j) kO

Equations (5.51)-(5.54) show that when the eigenfunctions Ak(t) are not orthogonal, the

noise in all the higher order eigenfunctions contributes to the pulse photon number, phase,

timing, and frequency fluctuations. If the eigenfunction expansions for the operators ANVp(T),

AE(T), AJ(T), and AQ(T), given in (5.51)-(5.54), are terminated after the second eigen-

function A 1 (t), then the operators 3Np(T), SE(T), 6J(T), and SQ(T), given in (5.33)-(5.36),

are obtained. In Section 5.9, it will be shown that the experimentally measured pulse fluc-

tuations correspond to the operators AVp(T), Ab(T), AJ(T), AQ(T) and not to 6Np(T),

3e(T), &J(T), 6Q(T). Note that only the even numbered eigenfunctions contribute to the

pulse photon number and phase noise, and only the odd numbered eigenfunctions contribute

to the pulse timing and frequency noise. In Appendix D.3, it is shown that the expansion

for the operator /(t, T), in terms of the operators ANp(T), AO(T), AJ(T), and AQ(T),
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can be written in a form similar to (5.32),

AN (T) AOT B) JT A 0(t) _.~(t, T ) =2 + ) A,(t) - A '(T) -o j)AQ(T)tAo(t)
( no OtI

+ { terms containing orthogonal perturbations } (5.55)

The difference between (5.55) and (5.32) is that the additional terms in (5.55) consist of

only perturbations that are orthogonal to those described by the operators AVp(T), Ab(T),

AJ(T), and AQ(T). In the next Section, the dynamical equations for the operators Ek(T)

are derived.

5.5 Noise Dynamics and Excess Noise

The dynamical equation for the operator Ek(T) can be found by substituting the eigenfunc-

tion expansion in (5.29) in the master equation (5.2), and using the eigenfunction A* (t) of

the adjoint operator Ot to project out the equation for Ek(T),

d kFk (fdt [FP (t, T) + V(t, T)1 Ak(t)
dT = (Ak -- )o) Ck(T) + fdA()(5.56)d T /-n~o f dt A 2(t)

= 2 k Ao Fk(T) + Pk(T) (5.57)

The commutation relations given in (5.12) and (5.13) for the noise sources, Fsp(t, T) and

Fv(t, T), preserve the commutation relations for the operators Fk(T) during time evolution.

The equation for the operator -o(T) is not damped. Carrier number fluctuations (or gain

fluctuations) must be included in the model to damp the fluctuations in Fo(T) and this will

be done later in this Chapter. For k $ 0, (5.57) can be integrated directly to yield,

k(T) = dT' exp [2 k Ao (T - T')] Fk(T') (5.58)

The expectation values for the operators &k(T) can be calculated using the expression above,

and for k, q 4 0 one obtains,

(Kk(T)) = (E (T)) = ( k(T)aq(T)) = (E (T) - (T)) = 0 (5.59)
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11I(nth -\ n, ) + (2k A* + 2q AO) nsp-
(- (T) &± (T)) = k ) Mkq (5.60)

- (2kA* + 2qAo) no f dt A*2(t) fdt Aq 2 (t)

11
- (nih + nop) + (2kX A + 2qAo) (nr, - 1)

{&q (T) &k (T )) = TP Mkq (5.61)-(2kA* + 2qAO) nL fdt A*2 (t) fdt Aq2 (t)

The terms in (5.60) and (5.61) proportional to (2kA* + 2qAo) in the numerator can be

ignored if JAoj < 1/Tp. Since Tp is usually of the order of TR, the condition lAol < 1/Tp is

also satisfied if JAol < 1/TR. Since the master equation (5.2) is valid only if JAol < 1/TR,

these terms will be ignored in this Chapter. If the eigenfunctions were orthogonal, the

terms inside the square bracket in (5.60) and (5.61) would equal 6kq and there would be no

correlation in the noise in different eigenfunctions. The expectation values (F(T) C (T)) and

(Et(T) Ek(T)) are proportional to the factor 1/If dt A2(t) 2 , which is the excess noise factor.

The excess noise factor appears as a result of the non-orthogonality of the eigenmodes and

would have been absent if the eigenfunctions Ak (t) were orthogonal. The excess noise factor

is similar to the Petermann's K-factor that describes the excess noise in optical amplifiers

and oscillators with non-orthogonal optical modes [74, 75, 76, 77]. Readers are referred

to Appendix D.1 for a general discussion of the excess noise in linear systems with non-

orthogonal eigenmodes. It needs to be emphasized here that the excess noise does not

disappear if, instead of the eigenfunction basis, any orthonormal basis, such as the one

introduced in Appendix D.3, is used to expand the operator /(t, T). The excess noise is

intimately tied to the non-normality of the operator O(t) itself, irrespective of the basis set

used to study noise. It can be shown that (see Appendix D.2),

I \ 1-+1- 2 2 (5.62)
|fdtA2(t)|2

where Pk(.) is the k-th Legendre polynomial, and Po(x) = 1 and Pi(x) = x. The excess

noise depends on the degree of non-orthogonality of the eigenfunctions (or on the degree of

non-normality of the operator 0(t)). The larger the magnitude of the pulse chirp, the more

non-orthogonal the eigenfunctions, and the larger the excess noise.

As stated earlier, the fluctuations associated with the even numbered eigenfunctions do

not contribute to the pulse timing and frequency fluctuations. Therefore, the discussion of

the dynamical equation for the operator F0 (T) is postponed, and proceed to study the pulse
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timing and frequency fluctuations in the next Section.

5.6 Timing and Frequency Fluctuations

In section 5.4.2, it was pointed out that the when the eigenfunctions are not orthogonal the

operators AJ(T) and AQ(T), and not af(T) and AQ(T), describe the timing and frequency

noise in an optical pulse. However, it is instructive to first look at 6J(T) and 3Q(T). The

mean square value of 6J(T) can be obtained using (5.60) and (5.61) with (5.35),

(o Jj(T)) (2 [K(1(T) 4F(T)) + (F'(T) F1(T))

__2 ~2ns, + (2nsp - 1) (2Ao - 2A*) Tp 1 1
2no (-2Ao - 2A*) Tp . fdt1A 2(t)

no) (1+32F5/2)
no 2 w ( Am + # Pm)

(5.63)

(5.64)

(5.65)

The mean square value

using (5.39),

of 6Q(T) can be obtained from the mean square value of 6J(T)

(3Q2 (T)) (6 2(T)) 1 +o2

(ri ThK(1A+027/2P

\ -no T pw W T ( Am + 0 PM)

(5.66)

(5.67)

The term 1/ fdt A 1
2 (t) 2= (1 + 02)3/2 in (5.64) is the excess noise factor and it can be

much greater than unity when the pulse chirp # is large. In Section 5.5, it was shown

that the noise in different eigenfunctions is correlated. AJ(T) and AQ(T) contain noise

contributions from all the odd numbered eigenfunctions. Therefore, one may expect that

the presence of these correlations would affect the mean square fluctuations (APJ(T)) and

(AQ2 (T)). Using (5.53), (5.60), and (5.61), (APJ(T)) becomes,

2 00

(A J 2 (T)) 2 E Mlk Mqi [(ck(T) 2 (T)) + (-E(T) Ck(T)) (5.68)
kq=O

T 2 M1, Mqk Mq1 [2np + (2n, - 1) (2kAo + 2qA) T5569)
2n o  (-2kAo - 2qA*) rp fdtA*2 (t) fdtA 2

('sP ) 72 Mlk Mlk M1 1 (5.70)

no } (-2kAo - 2qAO) fdt A* 2 (t) fdtAk2 (t)
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Figure 5-1: Mean square timing noise (APJ2(T)) calculated using (5.70), normalized to the

value of (6J 2 (T)) in (5.65), is plotted as a function of the number Nmax of eigenfunctions

used in the expansion. The perturbative expansion diverges exponentially when the pulse

chirp 1,31 becomes larger than 1/v3 0.577. The steps appear because only the odd

numbered eigenfunctions contribute to the timing noise.

The first non-zero term (k = q = 1) of the series in (5.70) equals (61J(T)) given in (5.64).

Fig. 5-1 shows the mean square timing noise (A 2 (T)) calculated using (5.70) as a function

of the number of eigenfunctions Nmax used in the expansion (i.e. when only terms with

k, q < Nmax are included in the summation in (5.70)). When the magnitude of the pulse

chirp # is larger than 1/v3 0.577, the series in (5.70) does not converge and diverges

exponentially. The perturbative expansion for the pulse frequency noise also diverges in

the same way. Later in this Chapter, it is shown that the perturbative expansions for the

pulse photon number noise and phase noise also diverge. The divergence of the perturbative

expansion is analyzed in detail in Appendix D.4, and it is shown that in general a series of

the form,

Fqk Mpk Mqk Mqp (5.71)
k,q=O fdtA*2 (t) fdt Ak2(t)

where Fqk (= F*q) decays only algebraically as k, q become large, diverges exponentially

when 111 > 1/v's. The divergence is not physical and can be removed by an appropriate
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resummation. In Appendix D.4, the following result is established,

I0 Vp ]k Mqp fA2 (t) 2 Nm.~. -1I -
k3 Fqk Mq m 2N Fqk Mp Mqk Mpq (5.72)

k,q=O f dt Aqt f dt Ak(t NmkO ~ > qk

The series on the right hand side in the above Equation converges for all values of the pulse

chirp /3 as Nmax becomes large. Using (5.70) and (5.72), one obtains,

72 Nmax -~1 -1M M-
(AJP>(T)) = 2 qkI 2n,

2rno (1+ 02)3/2 E (-2kAo - 2qA*)T, [

+ (2n, - 1) (2kAo + 2qA*) Tp (5.73)

ny T7 2 Nmaxl- M- 1 Mqk Mi 1

~ P ) - (5.74)
nrt0  P (1+ /32)3/2 (-2kAo - 2qA0)

The series above converges for all values of PM/AM and chirp 3 that satisfy (5.18) to a

value which may be approximated (with less than five percent error) by the expression,

(A J(T)) (>) (1 + /2)3/2 (5.75)
no 7W (Am+PM) (5.7

Fig. 5-2 shows (APJ(T)) calculated using (5.74) and normalized to the approximate expres-

sion given in (5.75) as a function of Nmax for PM/AM = 3.0. The expression in (5.75) can

be written as,

(A J (T)) ~ A (1 + 3m/2Am (5.76)

where oA, given by the expression,

2l = (5.77

2 (rno PjAM (5.77)

is the mean square timing noise in the absence of group velocity dispersion and phase

modulation. The factor,

(1 + 02)3/2

(l±/3M/AM)(5.78)( I + # PM/AM )

captures the effect of dispersion and phase modulation on the mean square timing jitter.

Pulse stability with respect to timing perturbations require that (1 + / PM/Am ) > 0. Using

(5.17), it can be shown that the stability condition is always satisfied for all values of D/B

and PM/AM. Fig. 5-3 shows (AJ(T)), normalized to o, plotted as a function of the ratio
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Figure 5-2: Mean square timing noise (APJ2(T)), calculated using (5.74) and normalized
to the expression given in Equation (5.75), is plotted as a function of the number Nmax
of eigenfunctions used in the perturbative expansion. The series in (5.74) converges for all
values of the pulse chirp.

D/B for different values of the ratio PM/AM. The corresponding values of the pulse chirp

are shown in Fig. 5-4. In the presence of dispersion and phase modulation, keeping AM

fixed, the mean square timing noise is minimized when,

PM (PM
4 = 9+ 8 M )Y- 3 (5.79)

In the presence of phase modulation, the minimum timing noise always occurs for a non-zero

value of the pulse chirp, as shown in Fig. 5-3 and Fig. 5-4. If pure phase modulation is used

(i.e. if AM = 0) then,

(A J (T)) ~u (1 +2)3/2 (5.80)

where o is, P1

2 o =pWRPM (5.81)up no 2 ~w PM

In this case, pulse stability with respect to timing perturbations requires that 3PM > 0

which, using (5.17), can be shown to be satisfied for all values of D/B. Fig. 5-5 shows

(AJ(T)), normalized to o, plotted as a function of the ratio D/B. The corresponding
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Figure 5-3: Mean square timing noise (APJ(T)), normalized to a (see Equation (5.77), is
plotted as a function of the ratio D/B for different values of the ratio PM/AM.
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values of the pulse chirp are shown in Fig. 5-6. In case of pure phase modulation, assuming

PM is fixed, the mean square timing noise is minimized when 02 - 1/2 (and /PM > 0).

(AQ 2 (T)) can be determined using the result in (5.50),

('Aj (T)) (JP(T)) ( 2

~(- (AM5/ M (5.82)
no pyr R A +0

Comparing (5.75) and (5.82) with (5.65) and (5.67), it is seen that (APJ2(T)) and (AQ2 (T))

are smaller by a factor (1+2) compared to (32(T)) and (3Q2 (T)), respectively. Since the

noise in different eigenfunctions is correlated, when contribution to the pulse timing and

frequency noise from all the eigenfunctions is taken into account, the excess noise factor is

reduced by a factor (1 + /32)

The external cavity semiconductor mode-locked laser, shown in Fig. 5-7, is considered

next for obtaining numerical results on the timing jitter. The lengths LG and LM of the

gain and the modulator sections are assumed to be 500 pm, and 100 pm, respectively. The

operating wavelength is 1.55 pm. The cavity round trip time TR is 0.1 ns, and corresponds

to a cavity roundtrip frequency of 10 GHz. The value of the gain bandwidth parameter

B is such that BTR = 2500 fs 2 [36], and this corresponds to an actual gain bandwidth of

approximately 2.0 THz. The spontaneous emission factor no, equals 2.0. The pulse energy

hQ0 n, is assumed to be 0.15 pJ, and the modulation strength AM is assumed to be O.1/p.

As explained earlier in this Chapter, PM equals -a Am in gain modulated semiconductor

mode-locked lasers. Fig. 5-8 shows the root mean square (RMS) timing jitter as a function

of the dispersion parameter DTR for different values of the a-parameter. Fig. 5-9 shows the

corresponding values of the pulse chirp. It can be seen that RMS timing jitter less than 50 fs

can be achieved in semiconductor mode-locked lasers at a repetition rate of 10 GHz. Lower

timing jitter can be achieved by increasing the pulse energy or by increasing the modulation

strength Am. The pulse energy in semiconductor mode-locked lasers is limited by dynamic

gain saturation to less than 0.15 pJ for conventional waveguide structures [36]. Higher pulse

energies may be obtained by designing waveguide structures with larger mode areas. Note

that for non-zero values of the a-parameter, the minimum values of the timing jitter are

obtained at non-zero values of the dispersion and the pulse chirp. The material dispersion

in the active region of semiconductor lasers is expected to be negative, with values ranging
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Figure 5-5: Mean square timing noise (APJ(T)), normalized to oP (see Equation (5.81), is

plotted as a function of the ratio D/B when pure phase modulation is used.
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Figure 5-7: An external cavity actively mode-locked semiconductor laser structure used in

the numerical simulations is shown. For the laser parameters, see text.
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Figure 5-8: The RMS timing jitter in an actively mode-locked semiconductor laser is plotted

as a function of the dispersion parameter DTR for different values of the a-parameter for the

laser structure shown in Fig. 5-7. The minimum jitter for non-zero values of a is obtained

at a non-zero value of the dispersion and the pulse chirp. The pulse energy is assumed to

be 0.15 pJ. The amplitude modulation strength Am is assumed to 0.1/rp.
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Figure 5-9: The pulse chirp 13 in an actively mode-locked semiconductor laser is plotted as
a function of the dispersion parameter DTR for different values of the a-parameter for the
laser structure shown in Fig. 5-7. The pulse energy is assumed to be 0.15 pJ. The amplitude
modulation strength Am is assumed to 0. 1/m*p

from -0.5 ps 2 /cm to -2.0 ps 2/cm [36]. On the other hand, the material dispersion in the

SCH regions (see Fig. 2-3 in Chapter 2), where the optical energy is below the material

bandgap, is positive and can have values from 0.1 ps 2 /cm to 1.0 ps 2 /cm [81, 82, 83]. The

net dispersion DTR for the laser in Fig. 5-7 can therefore be in the range -5000 fs2 to +5000

fs 2 depending upon the device geometry and the confinement factor of the transverse optical

mode in each region. The net cavity dispersion in a mode-locked semiconductor laser can

also be adjusted by an external dispersion compensator to achieve the dispersion required

for minimum timing jitter. The minimum timing jitter obtained this way can be less than

the worst case timing jitter by a factor between 2 and 3.

5.6.1 Spectral Densities of the Timing and Frequency Noise

The spectral densities Sj(w) and SAj(w) of the pulse noise operators 6(T) and AJ(T),

respectively, are defined as in Appendix D.5.1. Sj(w) can be determined by solving (5.57)
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in the frequency domain. This yields,

Fk(W)

k() w - 2kAO

The spectral density S3j(w) follows from (5.35) and (D.58),

S6 ( G (w) 4f) [ I, (w')) + ((w)2i(w'))1 + ( --+ -w)

T2  [2ns, -- (2n, - 1) (2Ao + 2A*) Tp] (w2 + I2Ao12)
2~ 02 no p (2 - 12Ao12) + 2 (-2Ao - 2A*) 2

(12 2 W2 + 12Ao 12 +/2
12\322 + L 2 (-2A - 2A*) 2 (1+02

I +o ) 2 S'6 ( G)

(5.83)

(5.84)

+ ) 3/2(5.85)

(5.86)

(5.87)

As a result of the coupling between the pulse timing and frequency noise, the frequency

dependence of the timing noise spectral density is that of a second order linear system

with the damping constant equal to (-2Ao - 2A*) and the square of the resonant frequency

equal to 12Ao 2. Note that (1+02)3/2 in the expression above is the excess noise factor.

The spectral density Szj(w) is defined to be equal to Saj(w) without the excess noise factor.

The spectral density S6Q(w) of the frequency noise AQ(T) equals (1 + 02) SsJ(w)/T 4 .

Using (5.53) and (D.58), the expression for the spectral density SAj(W) of the timing

noise AJ(T) becomes,

SA(W)
2 00 f- (r 1k(O dw'SMlk Mqi I (Ec(W) ')) + (Eto) C k(W)) + (w -+ -4.88)

4 k k ] q T q W 2

= _2__ f MAk Mqk Mqi [ 2np + (2nsp - 1) (2kAo + 2qA*)
n,,7 P kjqO ~fdt Aqt f dt Ak2 (t)

W 2 + kq 2Ao 2)

w2 - kq 2Aol2) 2 + w2 (-2kAo - 2qA*) 2

(nsp) T 2  0 Mlk Mqk Mq1
no J f dt A*2(t) fdtA 2 (t)

(W2 + kq |2Ao12)1

(w2 - kq 2A,1 + w2 (-2kA - 2qA%)2

TP ]

(5.89)

(5.90)
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The series expansion for SAj(w) above does not converge for the reasons described in the

previous Section. Below, the relation in (5.72) is used to obtain a convergent expansion for

2Nmaxil

SAT(W) =/M k MN7J1 [2n, + (2nr, - 1) (2kAo + 2qA*3) TrSA 1 2 norTp (1+ 02)321 M 'M,1q0

x (~~2 + kq l2AoI2
x 2 +k12,12(5.91)

(w2 - kq 12A, + L4w 2 (-2kAo - 2qA*) 2

/n, T2 Nmax- M--1 Mqk M- 1 W2 + kq 12 Ao 12
-o T(L21) (5.92)K TP (1 + /32)3/2 kqO(2 - kq 12Ao + w 2 (-2kAo - 2qA*) 2

Fig. 5-10 shows the timing noise spectral densities S j(w), S6j(w), and SAj(w), all normal-

ized to &j(w = 0), for 0 = 2.0 and PM/AM = 3.0. When only the first two eigenfunctions

are used in the perturbative expansion, the excess noise factor increases the low frequency

timing noise of the pulse by a factor (1 + 132)3/2 (see (5.87)). Since the noise in different

eigenfunctions is correlated, the inclusion of noise contributions from higher order eigen-

functions in SAj(w) reduces the low frequency noise and partially compensates the excess

noise. Numerical calculations show that SAj(w = 0) (1+02)5/8 S 6(p = 0). When

W > 2Aol, the series in (5.92) can be summed exactly,

SAj(w > 2Aol) = jp-) T 2 SJ(W) (5.93)
T)W2

The above Equation shows that when Lo > 2AoI, SAj(w) becomes equal to _Sj(LW) and

there is no excess noise. As explained in Appendix D.4, the excess noise results from the

non-Hermitian time evolution of the pulse noise, and therefore, at time scales much shorter

than 1/12AoI, or at frequencies much larger than j2Aol, the excess noise does not appear.

This is also shown in Fig.5-10. The spectral density SAQ(w) of the frequency noise AQ(T)

is simply (1 + 02) SAJ(W)/ 4.

5.7 Photon Number and Phase Fluctuations

In Section 5.5, it was mentioned that the dynamical equation for the operator cFo(T) is not

damped, and that carrier number fluctuations (or gain fluctuations) must be included in
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Figure 5-10: The timing noise spectral densities SZj (w), Sg (w), and SAj(w) are shown
for 3 2.0 and PM/AM = 3.0. The spectral densities in the Figure have been normalized
w.r.t. the value of Saj(w) at w = 0. The frequency w has been normalized to 12AoI.

the model to determine the pulse photon number and phase fluctuations. Carrier number

fluctuations must be incorporated in the model in a way that preserves all the commutation

relations. Carrier number fluctuations introduce an additional term,

1laG
I OG(1 - ja) AN(T) Vnr Ao(t) (5.94)2 ON

on the left hand side of the master equation (5.2). The a-parameter, as mentioned earlier,

relates the change in the imaginary part of the gain (or the refractive index) to the change

in the real part of the gain, and models the refractive index fluctuations which accompany

gain fluctuations [1]. Carrier number fluctuations affect only io(T),

d Fo(T) (1 - ja) -( f dt [P,(t, T) + P,(t, T)] Ao (t)
=A (T) + 2 (t) (5.95)d T 2 -Fst no V/-G__ f dt A0~

Here, Tst is the carrier stimulated emission lifetime,

1- =- no (5.96)
Tst ON
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When the non-radiative carrier recombination time Tnr is much smaller than the pulse

roundtrip time T, a condition true for most semiconductor mode-locked lasers, the equation

for the carrier number fluctuations AN(T) is,

d AN(T) 1 1 -

dT Tnr Tst)N(

- no k {[0 + (Ak- Ao) Ck(T) dt A*(t)Ak(t) + h.c

Ln { f dt Fsp(t T)Ak(t) d h.c
fdt A2(t) tA(t)Ak(t)+ c

k=0 k

+ Fpump(T) + Fnr(T) (5.97)

where Fnr (T) models the noise in non-radiative carrier recombination, and Fpump (T) models

the noise in the pump current. If the pumping process has shot noise then,

(Fpump(T) Fpump(T')) = Rpump 6(T - T') (5.98)

Rpump is the average rate at which carriers are pumped into the active region. The corre-

lation function of Fn,(T) is,

KFnr (T) Fnr (T')) Rnr 6(T - T') (5.99)

Rnr is the average carrier recombination rate. It can be shown that (5.95) and (5.97),

together with (5.57), preserve all the quantum mechanical commutation relations for the

operators k(T).

5.7.1 Photon Number Fluctuations

The spectral densities S6N, (w) and SAN (w) of the photon number fluctuations NpN(T) and

ANp(T), respectively, are defined as in Appendix D.5.1. Equations (5.95) and (5.97) are

easily solved in the frequency domain. The modulation response H(W) of the laser is defined

as [1],
2

H(w) = (5.100)
2 _2 + w 7
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where the laser relaxation oscillation frequency Wro and the modulation damping constant

y are,

L 2 = (5.101)ro T
st TP

- + 1 (5.102)
Tst Tnr

Equation (5.97) for the carrier number fluctuations is valid only if Wro and -y are much

smaller than 1/TR. The photon number noise spectral density S6Np(w) can be found by

retaining only the terms with k = 0 in (5.97). This preserves the equal time commutator

[Eo(T), aC (T)]. The expression for S6N, (W) is,

S6NP (Lw) 2

no IH(L)12 = (Rnr + Rpump)

+'p [(2nsp - 1) (2 + %2 t+ 2 stj 1 +/2 (5.103)

The first term is the contribution from the non-radiative carrier recombination noise and

the noise in the pump current. The second term is the noise contribution from spontaneous

emission and vacuum field fluctuations. The term 1 + /32 in the equation above is the

excess noise factor 1/1 fdt A02(t)12 . Just as in the case of the timing noise, the spectral

density £5N, (w) is defined to be equal to S5N, (w) but with the excess noise factor /1 + /2

stripped off,

nIN (w)2 o (nr + Rpump) + Tp [(2nsp ~ 1) (L2 T + (2 2 (5.104)
n0 |H(v)| n0

SANp(w) can be found by solving (5.57), (5.95), and (5.97),

SAN, (W) 12- (R nr + Rpump H(w))
no no

+ (2nsP - 1) MokMqkMqo Fqk(W)
E~= fdtA*2 (t) fdtAk 2(t)k,q=0 qdd k2

00 MOk Mqk MgO+ E GqW(W) (5.105)
k,q=O fd 2 (t) fdt Ak2

Fqk (w) and Gqk (w) are expressed in terms of the functions fk (w) and k (w) where,

fo (w) Tst H + - H (w) (5.106)
Tnr
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go(w)

fA(w)

Fqk (W)

T=St (jw + -y) H(w)

= - HkA

= -2k Ao + 1/rp )j .w- 2kAO f
H(w) + 1/T

jw-2kAoJ

k > 1

k > 1

T= [1 + (2kAo + 2qA*) rp] [f(W)f*(w) + (W -+ -w)1
T [fk wGO) q*(1) + (W W

Gqk(W) = L gk(w)g*(w) + (o -* -w)]

(5.107)

(5.108)

(5.109)

(5.110)

(5.111)

(5.112)

The two series in Equation (5.105) diverge if the magnitude of the pulse chirp is larger than

/
3 . These series can be replaced by convergent series using (5.72),

SAN(w) _ ( Rnr + Rpump ) H(w)12

no no

1) Nmax-

- ±+3 k,q=O

Nmax-1

/32 E+~ =

1

M-O Mqk M(-J1 Fk(WJ)

M-51 Mqk M-q1 G q(W) 51

The expansion for SAN,(w) in (5.113) converges for all values of the pulse chirp 0. The two

series in the expression for SANy(w) in (5.113) can be summed exactly when O w 0, and

one obtains,

SAN,(O = 0) T2= (Rnr + Rpump)
no

+P (2nTP - 1) 2 1+2± T~ K 2 n8P1 ) Tnr,

+
(1 ,t2 1 +) 1±2+ + 2_

1 + /32

When Lo > 4AoI, a simple analytical expression for SANP(w), analogous to (5.93), can be

obtained,

SAN( 4Ao 1 = Np (o)D (5.115)
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Table 5.1: Parameter Values of a Semiconductor Mode-locked Laser Used in Fig. 5-11

Parameter Value
Pulse photon number no 106

Pulse roundtrip time TR 0.2 ns

Pulse repetition rate 1/TR 5.0 GHz

Pulse width T 5.0 ps

Non-radiative recombination lifetime Tnr 1.0 ns

Stimulated emission lifetime Tst 1.2 ns

Laser relaxation oscillation frequency wro/27r 300 MHz

Damping frequency _2Ao/27r 1.8 MHz

Fig. 5-11 shows the spectral densities SAN, (w), S6Ny(w), and S6Np(w) for an actively mode-

locked semiconductor laser. The values of the laser parameters are given in Table 5.1. Rnr

and Rpump are both assumed to be zero. In semiconductor mode-locked lasers the values of

the relaxation oscillation frequency wro and the modulation damping constant -y are usually

much larger than the value of I2Aol (see Table 5.1). When only the first two eigenfunctions

are used in the perturbative expansion, the excess noise factor increases the low frequency

photon number noise of the pulse by a factor V/1 + _32 (see (5.103)). The inclusion of the

noise contribution from higher order eigenfunctions in SANy (w) reduces the low frequency

photon number noise and partially compensates the excess noise (see (5.114). At large

frequencies, when w > 14Aol, SAN,(L) equals S6N,(w), and the excess noise disappears.

5.7.2 Phase Fluctuations

The equation for the pulse phase fluctuations 6E(T) can be obtained from (5.95) using

(5.34),

d 60(T) a I fdt (Pp (t,T) + P,(t,T)) Ao(t)
=T - ) +A(t) - h.c (5.116)d T 2 Tet no 2j V/n-o f dt AO~t

The spectral density S6 E(w) can be found from (5.97) and (5.116),

2

S60 (w) = 2 (Rnr + Rpump) IH(w)12
4 no

+ + [L)2a21H(w) 2 + rT )] 1+2 (5.117)
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Figure 5-11: The photon number noise spectral densities SANp (w), SJNy (w), and S6Ny (w)
are shown for f = 2.0 and PM/AM = 3.0 for an actively mode-locked semiconductor laser.
The values of the laser parameters are given in Table 5.1. Rnr and Rpump are both assumed
to be zero. The spectral densities in the Figure have been normalized w.r.t. the value of

S6N, (w) at w = 0. The frequency w has been normalized to 14Ao |. The resonance peak is
due to the laser relaxation oscillations.

The factor V/1 +02 in the above equation is the excess noise factor 1/I fdt Ao2 (t)12 . The

spectral density Se(w) is defined as equal to S6 0E(w) but with the excess noise factor

removed,

2
S (P) = a2 P (Rnr + Rpump ) IH(w)12

4 n,

+ __ 1 + aI H(w)1 2  + 2) (5.118)

The spectral density SAe(w) of the phase noise AO(T) comes out to be,

2

SAe (w) = 2 -_ ()Rnr + Rpump ) IH(w)12
4 no

" (2nsp - 1)0 MOk Mqk JqO Uqk(W)
no E fdtA*2(t) fdt Ak 2(t)

+ z Vq(W) (5.119)
k ,q0 fdtA(t) fdt Ak2 (t)
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Uqk(w) and Vqk(w) are expressed in terms of the functions Uk (W) and vk(w) where,

a 2kA0 +1/rpN H 1~t' 1/wp
Uk(P) = + 2kAO '/7-jH(w) + I w 7 (5.120)

2 ( J - 2kAo )2j' Jw- 2kAO

Vk (W) = a 2A /PH(w) + I "FP (5.121)
2 J - 2kAO 2j jw -2kAO

Uqk (W) = [1 + (2kAo + 2qA*) Tp] uk(w)u*(w) + (w -* (5.122)

2
~ [u,(w)u*(w) + (w -> -w)] (5.123)

Vqk(W) = Vk(w)v*(w) + (P - -w) (5.124)

The two series in Equation (5.119) diverge if the magnitude of the pulse chirp is larger than

/c. As before, these series can be replaced by convergent series using (5.72),

2

SAE (w) = 2 - (Rr + Rpump) JH(w)1
2

4 no

(2r 8 - 1) Nmax -MI Mqk M 1 Uqk()
+ 27, 1 2=M-= g M=Uq~

no + 02 EMO

+ 1 Nmax l MqMo--1 Vqk(W) (5.125)
k,q=O

The expansion for SAe(w) in (5.125) converges for all values of the pulse chirp 1. Analytical

expressions for some simple cases can now be obtained. For frequencies much smaller than

14AoI and the laser relaxation oscillation frequency Wro, one obtains,

!!p)(1I+-a 2 ) 1±3

SAe () 0) = S6e (W ~~ 0) = 2 1 + (5.126)

Unlike pulse timing, frequency, and photon number fluctuations, pulse phase fluctuations at

small frequencies exhibit the full excess noise factor 1 + 132 even when the noise contribu-

tion from the higher order eigenfunctions is included. This is because the pulse phase noise

AE(T) at small frequencies is dominated by the phase noise contribution from the first

eigenfunction since the phase noise contribution from the first eigenfunction is not damped

and executes a random walk. This phase diffusion at large time scales can be expressed in
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Figure 5-12: The phase noise spectral densities SAe(w), &)e(w), and S6e (w) are shown
for 3 = 2.0, PM/AM = 3.0, and a = 3.0. The spectral densities in the Figure have been
normalized w.r.t. the value of S69(w) at w = 14Ao0 . The frequency w has been normalized
to 14Ao 1. The a parameter is assumed to be zero.

the time domain as follows,

[AE (T) - AO(T')] 2 ) = [60(T) - 6E(T') ]2 nop ( + a2 ) 1 + 32 IT - T'1

(5.127)

When w > 4AoI, a result similar to (5.93) and (5.115) is obtained,

SAE (w > 14Ao I) = So6(w) (5.128)

The excess noise is absent at large frequencies. Fig. 5-12 shows the phase noise spectral

densities SAE(w), _e(w), and S 6E(w), all normalized to Se(w = I4Ao1), for 3 = 2.0,

PM/AM = 3.0 and a = 3.0. The phase noise spectral density SAE(w) at small frequen-

cies shows the full excess noise factor 1+32. At frequencies larger than j4Aol, SAE(w)

approaches SZoE(w), and the excess noise disappears.
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5.8 Noise in the Pulses Outside the Laser Cavity

The master equation (5.2) describes the temporal evolution of a single pulse inside the laser

cavity as a function of the time variable T. In this section, the noise in the pulse inside the

cavity is related to the noise in the pulses coming out of the cavity. The pulses coming out

of the laser cavity are more appropriately described by labeling them with a discrete index.

A brief review of the discrete time Fourier transforms and the associated noise spectral

densities is given in Appendix D.5.2. The field operator of the m-th pulse which comes

out of the laser at time T = mTR is assumed to be (t, m) and it obeys the commutation

relation,

[$(t, in), qt (t', Im)] = (t - t') (5.129)

The reflected vacuum fluctuations must be included to describe the noise in the pulses

coming out of the laser cavity [86]. The photon lifetime -T can be expressed in the form,

1 = 1 + 1 (5.130)
TP rpi TPO

Here, Tpo is the lifetime associated with photon loss from the output coupler and Ti is the

lifetime associated with photon loss due to all the other mechanisms. The noise operator

for the vacuum fluctuations Fv (t, T) in the master equation (5.2) can be written as,

Fv (t, T) = Fvj(t, T) + Fvo(t, T) (5.131)

Assuming nth = 0, the only non-zero correlations of the noise operators PVi(t, T) and

Fv0 (t, T) are as follows,

(Fvi(t, T) FSV'(t', T')) = 6(t - t') 6(T - T') (5.132)
Tpi

(Fvo(t, T) Fy0 (t', T')) = 5 6(t - t') 6(T - T') (5.133)

The relation between (t, m) and (t, T) is,

0(t, M) = VT (t, T = mTR) - TRTpo Fvo(t, T = mTR) (5.134)
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The second term on the right hand side represents the reflected vacuum fluctuations. The

delta function 6(T - T') in (5.133) implies that the noise added to the pulse in different

roundtrips is uncorrelated. Therefore, the correlation function in (5.133) for equal times

must be interpreted as,

(Kvo(t, T = mTR) Ft0(t', T' = mTR)) TR 6(t - t') (5.135)

(t, m) can also be expanded in terms of the functions Ak(t),

(t, m) = oAo(t) + r dk(m)Ak(t) (5.136)
k=O

where the average photon number in the output pulse n' equals (TR/Tpo)no. (5.129) and

(5.136) give the commutation relations for the operators dk(m),

1 fdtA*(t)Ak(t)
la() )()=(5.137)

['0 f dt A 2 (t) fdtAk 2(t)

Equations (5.134) and (5.136) give,

d'k(mn) =k(T =TmTR) - Tpo fdtFvo(tT = mTR) Ak(t) (5.138)
fdt Al (t)

It can be shown that the expression above satisfies the commutation relation for dk(m)

in (5.137). The operators for the noise in the output pulses can be expressed in terms

of dk(m) if the substitutions c'k(T) -- dk(m) and no -+ n' are made in (5.51)-(5.36). It

should be noted that the operators ANp(m), Ae(m), AJ(m), AQ(m) and 6Np^(m), 66(m),

3J(m), 3Q(m) for the noise in the output pulses are functions of the discrete index m, and

the corresponding noise spectral densities 4IANP(WTR), 4 AE(WTR), JAJ(WTR), AQ(WTR)

and 4)SNP(wTR), De(wTR), I3J(wTR), D6Q(WTR) are periodic functions of w with a period

27r/TR as shown in Appendix D.5.2.
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5.8.1 Timing and Frequency Fluctuations in the Output Pulses

The spectral

respectively,

densities D6jo(wTR) and <DAj(wTR) of the pulse timing noise 6J(m) and AJ (m),

can be determined using the methods described in Section 5.6, and one obtains,

<D6sJTR) =

bAJ(LWTR

S1 00- 27m
TR M==-00

+ 2 1 2)3/2 1 2R 2 7rm

2 no T TI:TRM=-00o T

T 2  3/ 2

2 n'0

)
1 ( 2__m

= E SAJ -
TR M=-0 TR)

T2 1 00 27rm
+- Y R W- -

2 no TR m=- _TRM=00

+ 2 n~, (5.140)

where the function R(w) is,

(2Ao + 2A/) (W2 + I2Ao 2)
R(w) = 2 ( )2

L02 - 12/\o 12 + L42 (-2/\o - 2A*)2
(5.141)

and S6J(w) and SAj(w) are given by the exact expressions in (5.85) and (5.91), respectively.

The last two terms on the right hand side in (5.139) and (5.140) are due to the reflected

vacuum fluctuations. The mean square value (3JP(m)) of the timing noise is,

flr/TR -2 ) + T 2 n + /2 3/2
(Tn()) = TR 27r (o~uTR) = (6J J(T)) + --- I - no) + ( 21 (5.142)

R-r/TR 2 2rio n0

and similarly,

(AJ 2 (m)) = (AiJ(T)) + 2 1 -o (5.143)
0 n'a no )

The reflected vacuum fluctuations make negligible contribution to the mean square tim-

ing noise in the output pulses when lAol < 1/Tp. The spectral densities <b4Q(WTR) and

<bAQ(wTR) and the mean square values (3Q2 (m)) and (AQ 2 (m)) of the pulse frequency

fluctuations are related to the pulse timing fluctuations by a constant factor (1 + 02) /T4
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(see (5.50).

5.8.2 Photon Number and Phase Fluctuations in the Output Pulses

The spectral density JD6Np(WTR) of the pulse photon number noise 3Np(m) can be deter-

mined using the methods described in Section 5.7, and one obtains,

(D6Np (WTR)

no TR

S6N (-27rm
So~y W -

nomnoM=-00

+ 1 +2 [I - 2 TStTp
TR M=-

H(w - 2 m

where S6Np (w) is given in (5.103). A simple expression can be obtained for the mean square

photon number fluctuations (6 (m)),

(J 1 2(in)) 7r/TR dw (6NP (WTR)
TR

/TR2 no

n'o (6N(T))
no) no

+ 1 +/ 2(1

(5.145)

(5.146)no)

The second term on the right hand side is due to the reflected vacuum fluctuations and

contains the excess noise factor '1+/32. The spectral density JDAN (wTR) of the pulse

photon number noise AN,(m) is,

no

no) y

SANp ( 27rm)

no

+ 1 -2 ()~ H W -
T n o m=oo

27rm)

TR )

where SANy (w) is given in (5.113). It follows from the expression above that the mean

square value (A,2(m)) of the photon number fluctuations is,

(AN2(n)) (2T

no no no (1 (5.148)

The second term on the right hand side, which is due to the reflected vacuum fluctuations,

does not have the excess noise factor.

The spectral densities D6e(wTR) and <bAe(wTR) of the pulse phase noise Ae(m) and
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AO(m), respectively, are,

1 ( 2rrm4D60(LTR) = E S69 W - 2r
(R M=-0 TR

+ 1+ /2[ _M _ E 27r( 2rr (5.149)
n' T To 0=- TR

AE(TR) -S1 0 SAE))27rm

TR M=-T TR

+ I - / 27r6 ( - (5.150)4' TR no 1=:o T R

where S6E(w) and SA9(w) are given by the exact expressions in (5.117) and (5.125), respec-

tively. The last terms on the right hand side in (5.149) and (5.150) are due to the reflected

vacuum fluctuations.

5.9 Pulse Fluctuation Operators and Noise Measurements

Earlier in this Chapter it was emphasized that when the eigenfunctions of the master equa-

tion (5.2) are not orthogonal, the operators ANp(T), AE(T), AJ(T), and AQ(T) and not

the operators 6N(T), Ae(T), 6J(T), and 3Q(T), describe the pulse photon number, phase,

timing, and frequency fluctuations, respectively. In this Section, we show how the pulse

noise operators relate to the measurements of the pulse noise.

5.9.1 Photo-Detector Current Noise Measurements

The most widely used technique for characterizing the photon number and timing fluctu-

ations of pulses from mode-locked lasers is measuring the spectral density of the photo-

detector current noise [78, 79, 80, 88]. In this section, it is shown that the photo-detector

current noise spectral density is directly related to the spectral densities 4 AN,(wTR) and

-I Aj(wTR) of the pulse photon number noise AN(m) and the timing noise AJ(m), respec-

tively, and not to the spectral densities 4D6Np(wTR) and Dj(wTR) of the noise operators

SNp(m) and &I(m), respectively. The operator for the photo-detector current is,

(t) = e 5 St(t - mTR, m)(t - mTR, m) (5.151)
M=-00
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where e is the electron charge, and 0(t, m) is the field operator for the m-th output pulse

from the laser. It is assumed for simplicity that the photo-detector has unit quantum

efficiency and an infinitely fast response. Both these assumption do not affect the arguments

presented here. (5.151) can be written as,

00

Y(t) = en, A (t - mTR) Ao(t - mTR)
m=-oo

+ e Y [A*(t - mTR>?(t - mTR ,m) + h.c (5.152)
mn=-oo

The second term in the above equation is the current noise Al(t). The spectral density

SAI(w) of the current noise is defined in terms of the symmetric time averaged correlation

function (see Appendix D.5.1),

1 T/2 00 1
SAI (w) = lim - dt dt' - (AI(t) AI(t + t')) + (AI(t + t') Af(t)) exp (-jw t')

T-oo T -T/2 1-0 2
(5.153)

After some algebra, (5.153) yields,

SAI(w) e {)AN,(wTR) - w2 n /2 jAJ(wTR)

+j ' [<DAJ AN, (wTR) - AJ AN, (-WTR)1} (5.154)

The spectral density 1 AJ AN, (wTR) is the discrete time Fourier transform of the symmetric

cross correlation function between AJ(m) and AN,(m). At small frequencies, SAI(w) is

proportional to the spectral density 'ANy (wTR) of the pulse photon number fluctuations.

Assuming no correlation between the pulse photon number noise and timing noise, the pulse

timing noise spectral density 4AJ(wTR) can be obtained by measuring the current noise

spectral density near a large harmonic of the pulse repetition frequency where the photon

number noise is negligible. The timing noise spectral density 4 AJ(JTR) can be obtained

more reliably by mixing the photo-detector current with a signal from the same RF oscillator

that provides the active modulation for the mode-locked laser. In this case, the timing noise

is measured relative to the timing (or phase) noise of the RF oscillator. By appropriately

adjusting the phase of the signal before mixing it with the photo-detector current, the

contribution from the pulse photon number fluctuations can be removed [78, 79, 80].
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Figure 5-13: Balanced homodyne setup for measuring pulse noise.

5.9.2 Balanced Homodyne Measurements

The noise in the pulse can be measured in principle by homodyning as shown in Fig. 5-13.

The scheme shown in Fig. 5-13 can only work in practice if the noise in the local oscillator

pulses is much less than the noise in the measured pulses, and if the phase of the local

oscillator pulses remains fixed relative to the phase of the pulses being measured. Pulses

with large amplitude and envelope B(t) are used as the local oscillator in Fig. 5-13. The

local oscillator pulse shape can be tailored to project the desired pulse noise operator. It

is assumed that the local oscillator pulses are perfect coherent states and can be treated

classically. The operator for the difference current ID(t) is,

ID(t) =e [B*(t - mTR)&(t - mTR, m) e 6 + B(t - mT>)1t(t - mTR, m) e 6

M=-00

(5.155)

Below, expressions for the low frequency (Iwi < 27r/TR) spectral density SID (W) of the

current ID(t) are given for different cases:

1. B(t) = 2-BAo(t) and 6= 0

e2 ( B)')N LT)+4e2 nBn'0 2,rm
SI0(w) 2 /R + 4 2  w - R (5.156)

SID G)) TR)
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2. B(t) = /nB tAo(t) and 6 = 0

e 2 jnn
SID (w) ~ " TR A(WTR) (5.157)

3. B(t) = n-B aAo(t)/Dt and 6 = r/2

e 2 nBn
SI (w) T ' FAQ(WTR)

TR
(5.158)

5.9.3 Pulse Phase Noise Measurements

Outside the laser cavity, the phase diffusion of the pulses on long time scales follows from

(5.127),

([AE(m) - AO(n)] 2 ) = ([6E(m) - JE(n)]2 ) ~ Do Im - n TR (5.159)

where the phase diffusion constant DE is,

D) (+ a 2 ) +/32
no 2T +

(5.160)

The linewidth of the optical cavity modes, as measured by an optical spectrum analyzer, is

directly related to the phase diffusion constant DE. The spectrum SOSA(Q) measured by

an optical spectrum analyzer is the Fourier transform of the field auto-correlation function,

SOSA(Q)
mn=-00 ds I[ (f (t - mTR, m) (t + s - nTR, n))-00 2L

+ (t+s- nTR,n)t(t -mTR,m))

x exp {-jQo [s + (m - n)TR]} exp (jQ s) (5.161)

where Qo is the center optical frequency of the pulse. After some algebra, the above Equation

yields,

2 sinh (D TR

[2 sinh

DeTR 2

4 ]

(5.162)

+ 2 [1 - cos (QTR)]
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~ Ao (Q - Q 0 ) 2  'De D9 27rm)2 (5.163)

m 
2  ( T /

The linewidth of the optical cavity modes is therefore equal to the diffusion constant DE.

Note that the full excess noise factor V1+ - 2 contributes to the linewidth of the cavity

modes.

5.10 Conclusion

In this Chapter, a theoretical model for the noise in actively mode-locked lasers with am-

plitude/phase modulation and group velocity dispersion was presented for the first time.

While the model presented in this paper has general applicability, it was used to model

the noise in semiconductor mode-locked lasers. It was shown that the RMS timing jitter in

semiconductor mode-locked can be controlled by a combination of group velocity dispersion

and phase modulation. Since phase modulation always accompanies amplitude modulation

in semiconductor mode-locked lasers as a result of the non-zero a-parameter, the minimum

value of the timing jitter can be controlled by adjusting the net cavity dispersion either by

a suitable waveguide design or by an external dispersion compensator. This minimum value

of the timing jitter can be less than the worst case timing jitter by a factor greater than 2.

It was also shown that semiconductor mode-locked lasers can have less than 50 fs timing

jitter at repetition rates of 10 GHz.
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Chapter 6

Noise and Correlations in

Harmonically Mode-Locked

Semiconductor Lasers

6.1 Introduction

In a fundamentally mode-locked laser the active modulation is applied at the cavity round

trip frequency, and only a single optical pulse propagates inside the laser cavity. In a

laser mode-locked at the N-th harmonic, the active modulation is applied at a frequency

N times the cavity round trip frequency, and N different optical pulses propagate inside

the laser cavity. The pulse repetition frequency is therefore N times the cavity round trip

frequency. Harmonically mode-locked lasers are attractive as sources of high repetition

rate optical pulses that can be used in electro-optic sampling, optical analog-to-digital

conversion, optical telecommunication systems, and ultra-fast optical measurements [2, 69,

79, 80, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101]. Passive harmonic mode-locking

can also be accomplished with suitable laser cavity designs [98, 99, 100, 101].

The noise characteristics of harmonically mode-locked lasers can be much different from

those of fundamentally mode-locked lasers. The noise in different pulses inside the laser

cavity in a harmonically mode-locked laser can be correlated. The nature and origin of

these noise correlations are explained in the next Section. In Chapter 5, it was shown that

the photon number noise and the timing noise spectral density functions of mode-locked
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lasers can be obtained experimentally from the photo-detector current noise spectral density

using Von Der Linde's technique [88]. The noise spectral density functions of fundamentally

mode-locked lasers have noise peaks at multiples of the pulse repetition frequency, and

therefore there is only one noise peak in a bandwidth equal to the pulse repetition frequency.

The noise spectral density functions of harmonically mode-locked lasers can have noise

peaks at multiples of the cavity round trip frequency in addition to the noise peaks at

multiples of the pulse repetition frequency [79, 90, 91, 96, 102, 103, 104]. Therefore, there

can be N different noise peaks in a bandwidth equal to the pulse repetition frequency.

The (N - 1) additional noise peaks have been called the supermode noise peaks in the

literature [79, 90, 91, 96, 102, 103, 104]. Each supermode consists of a set of cavity modes

separated from each other by the modulation frequency. Since the cavity mode spacing is N

times smaller than the modulation frequency, there are N different supermodes. In actively

harmonically mode-locked lasers, the phase of all the cavity modes belonging to the same

supermode are locked by the active modulation. It has been suggested in the literature that

the supermode noise peaks observed in the noise spectral density functions are related to

the beating between different supermodes [96, 102, 103, 104].

In this Chapter, a model for the noise in Harmonically mode-locked lasers is presented.

It is shown that the supermode noise peaks in the pulse noise spectral density functions

are directly related to the correlations in the noise in different pulses inside the laser cav-

ity. The nature of the correlations in the noise of different pulses inside the laser cavity

provides insight into the underlying physics. Noise in pulses in a mode-locked laser can

have contributions from several different sources, such as spontaneous emission, vacuum

fluctuations, gain fluctuations, and the RF oscillator noise (see Chapter 5). These indi-

vidual noise contributions can cause different types of noise correlations in the pulses in a

harmonically mode-locked laser. For example, the contribution to the pulse timing noise

from spontaneous emission and vacuum fluctuations is uncorrelated in different pulses, and

the contribution to the pulse timing noise from the phase noise of the RF oscillator is pos-

itively correlated in all the pulses since all the pulses in the cavity are driven by the same

active modulator. Gain competition in harmonically mode-locked semiconductor lasers can

cause negatively correlated photon number fluctuations in different pulses. In addition,

inter-cavity reflections that couple energy from one pulse to another can also cause the

noise in the pulses to become correlated. Studying the correlations in the noise of different
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pulses can therefore provide valuable information about the dynamics inside the laser. It

is also shown that the noise correlations among the pulses can be determined exactly from

the experimentally measured pulse noise spectral density functions. The information re-

garding these correlations resides in the distribution of the spectral weight among the N

different noise peaks (including the (N - 1) supermode noise peaks) which appear in the

noise spectral density functions in a bandwidth equal to the pulse repetition frequency.

6.2 Supermodes and Noise Correlations

In a fundamentally mode-locked laser, the pulse repetition rate equals 1/TR, where TR

is the cavity round trip time, and the cavity round trip frequency is WR = 27r/TR. In

a harmonically mode-locked laser, the pulse repetition rate is 1/TN = N/TR, and the

cavity round trip frequency is WN = NWR. This notation will be used throughout this

Chapter. The dominant sources of photon number and timing noise in mode-locked lasers

are spontaneous emission and vacuum fluctuations [33, 34]. The spontaneous emission noise,

as well as the vacuum fluctuation noise, that goes into different pulses in a harmonically

mode-locked laser are independent, and therefore the noise in different pulses is mostly

uncorrelated. Correlations in the noise in different pulses can arise in various ways, some

of which are described below:

1. Gain Dynamics: The gain recovery times in fiber and semiconductor mode-locked

lasers can be much longer than the pulse repetition times. Since all the pulses interact

with the same gain medium, the noise in different pulses can become correlated. Pulse

photon number fluctuations that are positively correlated in all the pulses are damped

effectively by the gain medium since the slow gain medium responds to the average

energy of the all the pulses. On the other hand, pulse photon number fluctuations

that are negatively correlated in the pulses, and do not affect the average power,

are not damped by the slow response of the gain medium. As a result, negatively

correlated pulse photon number fluctuations can grow causing instabilities and pulse

dropouts. Dynamic non-linearities, such as the Kerr effect in fiber lasers, can stabilize

harmonically mode-locked operation [92, 108, 109, 110]. When these dynamic non-

linearities are small, the pulse photon number fluctuations can become negatively

correlated. Numerical simulations of harmonically mode-locked semiconductor lasers
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in Ref. [111] indicate negatively correlated photon number fluctuations in the pulses

inside the laser cavity.

2. Optical Fabry-Perot Filters: Experimental results for harmonically mode-locked lasers

with optical Fabry-Perot filters placed inside the laser cavities have been reported

in Refs. [103, 112, 113]. If a high-Q Fabry-Perot filter with a free spectral range

equal to the pulse repetition frequency WN (= NWR) is placed inside a harmonically

mode-locked laser cavity then some fraction of the noise in each optical pulse will be

transferred to the subsequent pulse because of the Fabry-Perot cavity. As a result,

the noise in all the pulses in the laser cavity will become positively correlated. If

the free spectral range of the Fabry-Perot cavity is mWR, where m is some non-zero

integer less than N such that N is a multiple of m, then some fraction of the noise

in each pulse is injected into the m-th subsequent pulse. Consequently, the noise in

every m-th pulse inside the laser cavity will become positively correlated.

3. Composite Cavity Harmonically Mode-Locked Lasers: Recently, experimental results

have been reported for the noise spectral densities in composite cavity harmonically

mode-locked fiber lasers in Refs. [104, 107]. In these lasers, an all-fiber Mach-Zehnder

interferometer with unbalanced arms is inserted into the laser cavity. If the difference

in the time taken by the optical pulses to traverse the two arms of the interferometer

equals mTN, where m is some non-zero integer less than N such that N is a multiple

of m, then some fraction of the noise in each pulse is injected into the m-th subsequent

pulse, and therefore the noise in every m-th pulse will become positively correlated.

4. RF Oscillator Noise: In actively harmonically mode-locked lasers all the optical pulses

in the laser cavity are driven by the same active modulator. The amplitude and phase

noise in the RF oscillator is typically at low frequencies. Therefore, the noise in the

pulses coming from the amplitude and/or phase noise of the external RF oscillator is

expected to be positively correlated in all the pulses in the laser cavity. This case is

considered in greater detail later in the Chapter.

The list above is not meant to be exhaustive, but only intended to provide some concrete

examples.
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6.3 Noise Spectral Density Functions and Noise Correlations

In Chapter 5, it was shown that the noise in the pulse train coming out of a mode-locked

laser is characterized by the noise spectral density functions IDAAAB(wT), where {AA, AB}

stand for any one of the pulse noise fluctuations ANp, AE, A J, and Aw, and T is the pulse

repetition time. For convenience, it is assumed in this chapter that ANp, AE, A J, and Aw

are classical noise variables and not quantum mechanical operators. None of the arguments

of this Chapter are affected by this assumption. T equals TR and TN in fundamentally and

harmonically mode-locked lasers, respectively. The noise spectral density functions are the

discrete-time Fourier transforms of the noise correlation functions RAAAB(n) (for details

see Appendix D.5.2),

RAAAB(n) = (AA(n) AB(0)) (6.1)

(DAAAB(wT) = RAAAB [n] exp (-jw T n) (6.2)
n=-oo

The discrete index n is used as a label for the n-th optical pulse coming out of the mode-

locked laser. From the definition of the noise spectral density functions in (6.2), it is obvious

that the noise spectral density functions are periodic in frequency with a period equal to

the pulse repetition frequency 27r/T, i.e. 'IAAAB(wT + 27) = 4bAAAB(wT). If the noise

spectral density functions I AAAB(wT) are known, the noise correlation functions can be

found by the inverse Fourier transform [1051,

RAAAB[n] = T I 4)AAAB(wT) exp (jwTn) (6.3)
J-r/T 27

It follows from the Equation above that the mean square values, (AA 2 ), are given as,

(AA 2 ) = RAAXA( = T <J b AAAA(WT) (6.4)
-f/T 27

Note that the full integration bandwidth in (6.4) equals the pulse repetition frequency

2/T. Below, the noise correlation functions and the noise spectral density functions of

fundamentally and harmonically mode-locked lasers are discussed in detail.
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Figure 6-1: The timing noise correlation function RAjAj(n) (normalized to the RMS timing
jitter) is plotted for the output pulses from a fundamentally mode-locked laser. TR is
assumed to be 1 nsec. -yTR is 0.017r. The RMS timing jitter is assumed to be 100 fs.

6.4 Fundamentally Mode-Locked Lasers

In a fundamentally mode-locked laser, as shown in Chapter 5, the noise spectral density

functions <DAAAB(cTR) have identical noise peaks at multiples of the pulse repetition fre-

quency WR (for details see Chapter 5). The width of the noise peaks depends on how fast

the noise correlation function RAAAB(n) decays with InI. As an example, the pulse timing

noise in an actively mode-locked semiconductor laser is discussed below in detail. In order

to keep the analysis simple, it is assumed that group velocity dispersion and active phase

modulation are both absent. Th effect of dispersion and phase modulation on the timing

noise in fundamentally mode-locked lasers is discussed in detail in Chapter 5. In the next

Section, the example discussed below will be modified for harmonically mode-locked lasers.

A finite difference equation for the pulse timing noise AJ(n) at any location inside the

cavity can be derived from the model discussed in Chapter 5(also see Appendix E.1 for

details),

AJ(n + 1) - AJ(n) = -yTR AJ(n) + F(n) (6.5)

The above Equation expresses the fact that the pulse timing noise decreases after every
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Figure 6-2: The timing noise spectral density TRaAJAj(wTR) (note the multiplication with
TR to conform to the units used in the literature) is plotted for a fundamentally mode-locked
laser on a linear frequency scale and on a log frequency scale. The timing noise spectral

density shown corresponds to the timing noise correlation function in Fig. 6-1. The cavity

round trip time TR is 1.0 nsec. -yTR equals 0.017r. The RMS timing jitter is assumed to be

100 fs. The spectral density has identical noise peaks at multiples of the pulse repetition

frequency WR .
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pass through the active modulator. It is assumed that -yTR < 1 and the pulse timing

noise does not change significantly in one round trip. In (6.5), the pulse timing noise has

been modeled by a discrete-time finite difference equation instead of a continuous-time

differential equation as in Chapter 5. It will become clear in the sections that follow that

finite difference equations are much more appropriate for describing the correlations in the

noise in different pulses inside the laser cavity in harmonically mode-locked lasers. F(n) in

(6.5) represents the contribution from spontaneous emission and vacuum fluctuations added

to the pulse timing noise in each round trip. F(n) has the correlation function,

(F(n) F(m)) = D n,m (6.6)

Expressions for D and -y are given in Appendix E.1. The timing noise correlation function

RAjAj(n) for the output pulses can be obtained directly from (6.5) and (6.6), and after a

little algebra one obtains,

D
RAiAi(n) -yTR (1 - YTR)

D
~~ e-' I since yTR < 1 (6.7)

The mean square timing jitter is,

D
(AJ 2) = RAiAi(0) = (6.8)

The correlation function RAJAJ(n) is shown in Fig. 6-1 for TR = 1.0 nsec, 7TR = 0.017r, and

sqrt(AJ 2 ) - 100 fs. The timing noise spectral density can be obtained from the correlation

function using the Fourier transform relation in (6.2),

AJAJ(UTR) = (AJ 2) 2-yTR

1 + (1 + -yTR) 2 - 2 (1 - yTR) cos (wTR) (6.9)

(A J 2) 00 2-
TR 2 +2 since -yTR < 1 (6.10)

n 0 (w - flJR)

As expected, the timing noise spectral density has identical noise peaks centered at multiples

of the pulse repetition frequency Wft. The timing noise spectral density is shown in Fig. 6-2

for the correlation function shown in Fig. 6-1, and the values of the parameters are assumed
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to be the same as those in Fig. 6-1.

6.5 Harmonically Mode-locked Lasers: Uncorrelated Noise

In this section, it is shown that the supermode noise peaks appear in the noise spectral

density functions of harmonically mode-locked lasers when the noise in different pulses

inside the laser cavity is uncorrelated. The correlations in the noise in the pulses coming

out of the laser cavity at time scales shorter than the cavity round trip time are directly

related to the noise correlations in the pulses in the laser cavity. If the noise in the pulses

inside the laser cavity is uncorrelated, the correlation function RAAAB(n) for the noise

in the output pulses is zero unless the index n is some multiple of the harmonic number

N. This is because every N-th output pulse is generated by the same pulse inside the laser

cavity after one complete round trip. This observation, without any additional assumptions,

leads directly to the supermode noise peaks in the pulse noise spectral density functions, as

shown below. From (6.2), the noise spectral density is,

00

<bAAAB(WTR) 1: RAAAB (n) exp (-jw TN n)
n=-oo

00

= RAAAB(Nk) exp (-jw TR k) (6.11)
k=-oo

Recall that the noise spectral density functions are by definition periodic in frequency with

a period equal to the pulse repetition frequency (which is WN in the present case). However,

(6.11) shows that when the noise is uncorrelated in the pulses inside the laser cavity, the

noise spectral density functions <IAAAB(wTR) are periodic in frequency with a period equal

to the cavity round trip frequency WR. This implies that if the noise spectral density

functions have noise peaks located at integral multiples of the pulse repetition frequency

WN, then between any two such noise peaks there must be (N - 1) identical noise peaks

located at integral multiples of the cavity round trip frequency WR. These additional noise

peaks are the supermode noise peaks. Below, this is demonstrated explicitly for the timing

noise in a harmonically mode-locked laser.

The finite difference equation for the pulse timing noise in a semiconductor laser mode-

locked at the N-th harmonic with uncorrelated timing noise in different pulses inside the
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Figure 6-3: The timing noise correlation function RAjAj(n) (normalized to the RMS timing
jitter) is plotted for the output pulses from a laser mode-locked at the tenth harmonic
(N = 10) when the timing noise in different pulses inside the laser cavity is completely
uncorrelated. The timing noise in every tenth pulse in the output is correlated. TR is
assumed to be 1 nsec. 7TR is assumed to be 0.017r. The RMS timing jitter is assumed to
be 100 fs.

laser cavity is (see Appendix E.1 for details),

AJ(n + N) - AJ(n) = -- NTR AJ(n) + FN(n) (6.12)

Note that AJ(n+N) appears on the left hand side of the above Equation. This is because in

a harmonically mode-locked laser the n-th pulse at any location in the laser cavity becomes

the (n + N)-th pulse at the same location after it goes through one complete round trip.

In essence, (6.12) is a compact way of writing N separate finite difference equations for

the timing noise in N different pulses inside the laser cavity. When N = 1, (6.12) reduces

to (6.5) for fundamentally mode-locked lasers. The noise source FN(n) has the correlation

function,

(FN (n) FN(m)) = DN n,m (6.13)

Expressions for DN and -YN are given in Appendix E. 1. It is assumed that 7YNTR < 1 and

the pulse timing noise does not change significantly in one round trip. The timing noise
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Figure 6-4: The pulse timing noise spectral density TN(JAJAj (WTN) (note the multiplication

with TN to conform to the units used in the literature) is plotted for a laser mode-locked

at the tenth harmonic (N = 10) on linear and log frequency scales. The timing noise

spectral density shown in the Figure corresponds to the timing noise correlation function

in Fig. 6-3. TR is 1.0 nsec. TN is 0.1 nsec. -NTR is assumed to be 0.017r. The RMS

timing jitter is assumed to be 100 fs. The timing noise in different pulses inside the laser

cavity is assumed to be completely uncorrelated and, consequently, the periodicity of the

noise spectral density is reduced from the pulse repetition frequency (10 GHz) to the cavity

round trip frequency (1 GHz). Supermode noise peaks appear at multiples of the cavity

round trip frequency. All the noise peaks are identical.
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correlation function RAjAj(n) for the output pulses follows directly from (6.12) and (6.13),

DN (1 - 7NTN)I DN eYNTNInI if n is an integral multiple of N
RAiJA(n) 2 YNTR 2 -YNTR

0 otherwise

(6.14)

The mean square timing jitter (AJ 2 ) is,

(AJ2) = RAJAJ(O) = DN (615)
2 N TR

The timing noise correlation function in (6.14) is shown in Fig. 6-3 for a laser mode-locked at

the tenth harmonic (N = 10). In Fig. 6-3, TR = 1.0 nsec, 7yTR = 0.017r, and (AJ 2 ) = 100

fs. The timing noise in the output pulses at time scales shorter than the cavity round

trip time TR is uncorrelated. This is because the timing noise in different pulses in the

laser cavity is uncorrelated. The timing noise spectral density can be obtained from the

correlation function in (6.14) by using the Fourier transform relation in (6.2),

<DAJAJ(WTN 
2  2 -yNTR

1 + (1 -- YNTR) 2 - 2 (1 - -NTR) cos (uTR) (6.16)

(AJ 2 ) 0 _ 27_ N
T 2 + 2 since -YNTR < 1 (6.17)NTN n_0 (w - nWR) - 'N

The above equation shows that the timing noise spectral density has identical noise peaks

at multiples of the cavity round trip frequency WR. The noise peaks other than the ones

at multiples of the pulse repetition frequency WN are the supermode noise peaks. The

supermode noise peaks in the timing noise spectral density are a direct consequence of the

timing noise being uncorrelated in different pulses inside the laser cavity. The timing noise

spectral density function in (6.17) is plotted in Fig. 6-4 for a laser mode-locked at the tenth

harmonic (N = 10). The values assumed for the parameters are the same as the ones used

in generating Fig. 6-3.

Characterization of the Pulse Noise and Integration Bandwidth for the Mean

Square Fluctuations

When the noise in different pulses in the laser cavity is uncorrelated, the pulse noise spectral

density functions are periodic in frequency with a period equal to wR, and the mean square
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values for the fluctuations can be obtained by integrating 4 ?AAAA(WTN) over a bandwidth

equal to WR instead of the full bandwidth WN,

lwN12d(AA 2 ) TN [ dAAAA(WTN) (6.18)
-WN2 2w

NTN WR/ d 4FAAAA(WTN) (6.19)
WR/2 2w

(6.20)

The integration bandwidth can therefore be reduced to the cavity round trip frequency WR

provided the result is multiplied by a factor of N.

As discussed in Chapter 5, the noise in optical pulses from mode-locked lasers can be

characterized by measuring the spectral density of the photo-detector current noise. In

Chapter 5, it is shown that the photo-detector current noise spectral density SAIAI(w) is

related to the pulse noise spectral densities J ANPANp(WTN) an 4AjAj(wTN) as follows,

SAI'A(W) 4{ANyANp (WTN) + 2 n/ AJaJ(WTN)

+j 0' [(DAJ ANp (WTN) - "DAJAN, (-WTN)I1 (6.21)

The mean square value for the pulse photon number fluctuations can be determined from

the experimentally measured photo-detector current noise spectral density SAIAI(w) by

integrating over a bandwidth equal to WN near w = 0 where the contribution from the pulse

timing fluctuations is expected to be small,

(AN2) [measured] N2 dw SAIAI(w)

n'/2 JWN12 27 12

= wR/2 dW SAIAI(W) (6.23)

where I is the average photo-detector current and equals en'/TN. Assuming that the pulse

photon number fluctuations make small contributions to SAIAi(w) near a large harmonic

number m of the pulse repetition frequency, the mean square value for the pulse timing

fluctuations can be determined as follows,

(A J 2 ) [ measured] N dw SAIAI())
(m-1/2)WN 2w (wI) 2
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mwN-1wR12 dw) SAIAIw) (.5=N 12(6.25)
JmWN-WR12 2w (I)

The supermode noise peaks have been largely ignored in the literature. To the best of

the author's knowledge, all the experimental results presented in the literature for the

mean square photon number and timing noise of pulses in harmonically mode-locked lasers

have left out the contribution to the mean square fluctuations from the supermode noise

peaks [79, 90, 91, 93, 94, 97]. When the noise is uncorrelated in different pulses inside the

laser cavity, (6.23) and (6.25) show that ignoring the contribution from the supermode noise

peaks gives mean square fluctuations that are less than the correct values by a factor of N.

The procedure for determining the mean square pulse fluctuations by integrating only over

a bandwidth equal to the cavity round trip frequency WR and multiplying the result by N

is justified only if all the noise peaks are identical. The noise peaks are not identical when

the noise in different pulses in the laser cavity is correlated.

6.6 Harmonically Mode-Locked Lasers: Correlated Noise

In the previous section, it was shown that the noise spectral density functions can have N

noise peaks in a bandwidth equal to the pulse repetition frequency WN. When the noise in

different pulses in the cavity is uncorrelated, all the N noise peaks are identical and have

the same spectral weight. Here, it is shown that the spectral weights of the different noise

peaks are modified when the noise in different pulses is correlated. As mentioned earlier,

the noise correlation function RAAAB(n) for the output pulses at time scales shorter than

the cavity round trip time (i.e. for Inj < N) is a good measure of the noise correlation in

pulses inside the laser cavity. For Inj < N, RAAAB(n) given by (6.3) can be approximated

as,

RAAB(n) TN 1 d AAAB(LuTN) exp ( wTN n) (6.26)
-WN/2 2-

N-1 (P±-)WR dL
~ =Z exp j2r -n) TN 2 AAAB(WTN)
p.O (p-)wR 2

N-i

RAAAB[01 E WAPAB exp j27r n
p=0

=RAAAB 0] CAAAB (r) (6.27)
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where W'AAB is the spectral weight of the p-th noise peak,

P(p+ )WR dw DAAAB (WTN)

-A iAp- w 2 (6.28)

&0 (DAA B(W TN )
JWN/2 27

and,

ft(~ N-i1

CAAAB(n) = RAAAB(n) = N WAA exp j27r n) for Inj < N (6.29)
RTAAAB [01 P=O N /

In deriving (6.27), it is assumed that the complex exponential function in (6.26) is slowly

varying with frequency and can be set equal to its value at the center frequency of each noise

peak. This approximation is valid for small values of the index n provided the width of each

noise peak is much smaller than the separation WR of the noise peaks. For most fiber and

semiconductor mode-locked lasers this approximation is well justified [79, 80, 90, 91, 93, 94,

97]. The function CAAAB (n) defined above describes the correlations in the noise in different

pulses inside the laser cavity. CAAAB(n) satisfies the relations -1 < CAAAB(n) < 1 and

CAAAB[n + N] = CAAB(n). The value of CAAAB(n) gives the correlation, on a scale

from -1 to 1, in the noise of any two pulses in the cavity that are separated by (n - 1)

other pulses. Since the pulse noise spectral densities can be determined experimentally

by measuring the spectral density of the photo-detector current noise, the correlations in

the noise in different pulses inside the laser cavity can be determined using the result in

(6.29). The result in (6.29) shows that CAAAB(n) is equal to the Fourier transform of the

spectral weight of all the N noise peaks in 1
?AAAB(w) in a bandwidth equal to the pulse

repetition frequency WN. The following results can be obtained from this Fourier transform

relationship :

e Noise peaks in the spectral density near multiples of WN will have larger spectral

weight if the noise in all the pulses in the laser cavity is positively correlated. As

a special case, suppose that the spectral weights of all the supermode noise peaks

in (AAAB(wTN) are negligible, and only the noise peaks at multiples of the pulse

repetition frequency LUN have all the spectral weight. It follows from (6.29) that

CAAAB(n) = 1 for all values of the index n, and the noise is completely positively

correlated in all the pulses in the laser cavity.
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" Noise peaks in the spectral density near odd multiples of WN/2 will have larger spec-

tral weight if the noise in the neighboring pulses inside the laser cavity is negatively

correlated. For example, suppose that N is even and the supermode noise peaks at

odd multiples of WN/2 have all the spectral weight. In this case, CAAAB(n) (-1)n

and the noise is completely negatively correlated in the neighboring pulses.

" If all the noise peaks in the spectral density have the same spectral weight, then

CAAAB(n) = 1 for n = 0, and CAAAB(n) = 0 for 1 < Ini < N, and the noise is

uncorrelated in different pulses inside the laser cavity. This case was also discussed in

the last section.

In Ref. [104], experimental results were reported recently for the pulse noise spectral den-

sities of composite cavity harmonically mode-locked fiber lasers. In these lasers, a fraction

of each pulse can be injected into the m-th subsequent pulse by an all-fiber Mach-Zehnder

interferometer with unbalanced arms placed inside the laser cavity. This is expected to

positively correlate the noise in every m-th pulse in the cavity. The noise in any two pulses

that are not separated by (m - 1) other pulses is expected to remain uncorrelated. When

the spectral weights of the noise peaks given in Fig.7 in Ref. [104] for different values of

m are used in (6.29), the resulting correlation functions CAAAB(n) confirm these expected

noise correlations.

In the last Section, a model for the timing noise in harmonically mode-locked semi-

conductor laser was presented for the case when the timing noise in the pulses inside the

laser cavity was uncorrelated. In this Section, the contribution to the pulse timing noise

from the phase noise in the RF oscillator is included. It is shown that since the noise

contribution from the RF oscillator is completely positively correlated in all the pulses in-

side the laser cavity, this noise contribution shows up in the timing noise spectral density

only in the noise peaks located at multiples of the pulse repetition frequency QN and not

in the supermode noise peaks. On the other hand, the contribution to the timing noise

from spontaneous emission and vacuum fluctuations is uncorrelated in different pulses in-

side the laser cavity and shows up equally in all the noise peaks (including the supermode

noise peaks). The electrical signal from the RF oscillator is assumed to be proportional to

cos [4N(t - AT(t))], where AT(t) is the timing noise in the RF oscillator. AT(t) is assumed
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to have the correlation function,

(AT(t) AT(t')) = RFe '' (6.30)

which implies that the mean square timing noise of the RF oscillator equals a2F, and the

bandwidth of the RF oscillator noise equals r,/27r Hz. Typically, the phase noise in RF

oscillators is mostly at low frequencies [80], and therefore r, < QR and the contribution to

the pulse timing noise from the phase noise of the RF oscillator is expected to be positively

correlated in all the pulses inside the laser cavity. The discrete-time noise variable AT(n)

is defined as equal to AT(t = nTN).

In order to study the correlations in the noise in different pulses, the noise in all the

pulses must be included in the model. The finite difference equations for the timing noise

introduced earlier are most suitable for this purpose, and allow the noise in all the pulses

to be taken into account in a relatively straightforward way. In the presence of phase noise

in the oscillator, the finite difference equation for the pulse timing noise become,

AJ(n + N) - AJ(n) = -- YNTR AJ(n) + YNTR AT(n) + FN[nl (6.31)

The above equation is identical to (6.12) except for the term with AT(n). The form of

this new term follows from the fact that the pulse cannot be affected by the modulator if

AT(n) equals AJ(n). It is difficult to solve (6.31) directly but it can easily be solved in

the frequency domain using the discrete-time Fourier transform [105], and one obtains the

following expression for the pulse timing noise spectral density,

<DAJAJ(WTN) =TR 2  1 -DN

11+ (1 - 7NR2 - 2 (1 ~ 7NTR) cos (wTRl

72T2 (I - e2rTN

+ 0RF [1 + e-2TN - 2e-TN cos (wTN)]

1 0 27N 1 ( DN

TN ___ (w - nwR) 2 +12 N -NTR

2 O
+N 2-RF 2 2 (6.33)

2 _ ( - PwN) + /-
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The first term in the square brackets in (6.33) represents the timing noise contribution

from spontaneous emission and vacuum fluctuations, and it is identical to the expression

given earlier in (6.17). Since the timing noise from spontaneous emission and vacuum

fluctuations is uncorrelated in different pulses inside the cavity, its contribution to the timing

noise spectral density results in identical noise peaks at multiples of the cavity round trip

frequency WR. The second term in the square brackets in (6.33) is the noise contribution

from the phase noise of the RF oscillator. The noise contribution from the oscillator results

in noise peaks at multiples of the pulse repetition frequency WN. Since it has been assumed

that i' < WR, the phase noise from the RF oscillator does not contribute to the supermode

noise peaks. From the discussion above, it follows that the noise contribution from the

RF oscillator is completely positively correlated in the pulses inside the laser cavity. This

conclusion can be easily tested experimentally by comparing the supermode noise peaks

in the timing noise spectral density to the noise peaks at multiples of the pulse repetition

frequency. If K < 7 N, (6.33) gives the expected result for the mean square timing jitter

upon integration,

(AJ2 DN R F (6-34)

The first term on the right hand side of the above equation is the mean square timing

noise contribution from spontaneous emission and vacuum fluctuations. Fig. 6-5 shows the

timing noise spectral density for a laser mode-locked at the tenth harmonic (N = 10). The

parameter values used in generating these Figures are as follows: TR = 1.0 nsec, TN = 0.1

nsec, ?NTR = 0.017, KTR = 27r10- 5 , and cTRF = 50 fs. The RMS contribution to the timing

noise from spontaneous emission and vacuum fluctuations is assumed to be 100 fs. Fig. 6-5

shows that the contribution to the timing noise from the phase noise of the RF oscillator

does not appear in the supermode noise peaks.

The spectral weights W1JAJ, defined in (6.28), of the noise peaks can be determined for

all the N noise peaks in a bandwidth WN for the spectral density given in (6.33). Assuming

as before that r < 7N, one obtains,

( DN 2

N 2NTR)+ I RF

A J 2 if p = 0 i.e. for the noise peaks at multiples of wN (6.35)

N A R if 1 < p < (N - 1) i.e. for all the supermode noise peaks
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Figure 6-5: The pulse timing noise spectral density TN AJAJ(WTN) (solid line) is plotted

for a laser mode-locked at the tenth harmonic (N = 10) in the presence of timing (or phase)

noise in the RF oscillator (dashed line) on linear and log frequency scales. TR is 1.0 nsec.

TN is 0.1 nsec. 'YNTR and rTR are assumed to be 0.017 and 27r10- 5 , respectively. The RMS

timing jitter in the RF oscillator is assumed to be 50 fs. The RMS timing jitter contribution

from spontaneous emission and vacuum fluctuations is assumed to be 100 fs. The increased

noise in the noise peak at w = 0 is due to the phase noise of the RF oscillator. The Figure

shows that the noise contribution form the RF oscillator does not appear in any of the

supermode noise peaks. All the supermode noise peaks are identical.
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Figure 6-6: The timing noise correlation function RAjAj(n) (normalized to the RMS timing jitter)
for the output pulses is shown for a laser mode-locked at the tenth harmonic (N = 10) in the
presence of phase noise from the RF oscillator. The correlation function corresponds to the timing
noise spectral density shown in Fig. 6-5. The timing noise in all the pulses inside the laser cavity is
positively correlated, and therefore the timing noise in the output pulses is correlated at time scales
shorter than the cavity round trip time.

The correlation function CAjAj(n), defined in (6.29), for the timing noise in different pulses

inside the laser cavity can be obtained from the spectral weights of the noise peaks given

above, and one gets,

1 if n = 0
CAjAj(n) = .2 (6.36)( URF if 1 < InI < (N - 1)

(AJ 2 )

This implies that the correlation in the timing noise in different pulses inside the laser cavity

is C'F2 AJ 2 ). The timing noise correlation function RAJAJ(n) for the output pulses can be

obtained from the spectral density in (6.33) by using the inverse Fourier transform relation

in (6.3). Fig. 6-6 shows the correlation function RAjAj(n), calculated numerically, that

corresponds to the noise spectral density shown in Fig. 6-5. The correlation function shows

that the timing noise is positively correlated in the output pulses at time scales shorter

than the cavity round trip time TR. The degree of positive correlation is given by the ratio

0F/KA 2 ) which for the values used in Fig. 6-6 equals 502/ 1002 + 502 = 0.2.
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Characterization of the Pulse Noise and Integration Bandwidth for the Mean

Square Fluctuations

Since the pulse noise spectral density functions IADAAB(wTN) are not periodic in frequency

with a period equal to QR when the noise in the pulses inside the laser cavity is correlated,

the mean square value of the fluctuations can only be determined if the noise spectral density

functions <?AAA(wTN) are integrated over the full bandwidth equal to WN. It follows that

the mean square values of the pulse energy and the timing fluctuations can be determined

from the experimentally measured photo-detector current noise spectral density SAII(w)

using (6.22) and (6.24). It should be noted that (6.23) and (6.25) do not hold when the

noise in different pulses in the laser cavity is correlated.

6.7 Conclusion

The noise in different pulses inside the laser cavity in harmonically mode-locked lasers is in

general correlated, and these noise correlations were shown to be related to the distribution

of the spectral weight among the supermode noise peaks in the pulse noise spectral density

functions. Models for the timing noise in harmonically mode-locked semiconductor lasers

were presented that demonstrated the relationship between the supermode noise peaks and

the correlations in the noise of different pulses. Methods to determine the noise correlations

from the photo-detector current noise spectral density were also presented. Most experi-

mental results on the noise in harmonically mode-locked lasers that have appeared in the

literature have ignored the rich information content in the supermode noise peaks. The

analysis presented in this Chapter clearly shows the importance of the supermode noise

peaks in understanding the noise dynamics in harmonically mode-locked lasers.
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Chapter 7

Conclusions

Theoretical models for the noise and dynamics in different types of semiconductor lasers

were presented in this thesis. The main focus was on semiconductor cascade lasers and

semiconductor mode-locked lasers. Although noise processes and dynamics in continuous

wave and mode-locked semiconductor lasers are of entirely different character, Langevin

rate equations were used to model the noise in both types of lasers. In Chapter 4 and

Appendix C.1, it was shown that the current noise in electron transport by sequential

tunneling in multiple quantum well structures can also be described by Langevin equations.

The Langevin equation formalism is the simplest way to analyze fluctuations in systems

whose dynamical equations can be linearized around a stable operating point and this was

true for all the systems considered in this thesis. The wide range of applicability of the

Langevin equation formalism makes it a powerful tool to analyze fluctuations in physical

systems.

In this thesis, theoretical models for the current noise and the photon noise in semi-

conductor cascade lasers were developed and experimentally verified. The modeling of the

photon noise in semiconductor cascade lasers required detailed modeling of the current noise

in semiconductor lasers. A theory for the current noise in conventional interband semicon-

ductor lasers was developed in Chapter 2. It was shown that the modulation bandwidth

of semiconductor lasers can be determined in a non-optical way by measuring their current

noise spectral density. The theory for the current noise and photon noise in semiconductor

interband cascade lasers was developed in Chapter 3. In cascade lasers, photon emission

events in different gain sections were found to be positively correlated. A theory was devel-
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oped for the photon noise correlations in multiple cavity cascade lasers and parallel laser

arrays, and the experimental results were found to agree well with the theoretical models.

The positive correlations in photon emission in cascade lasers result in increased noise in the

laser output power. It was shown that in all different types of semiconductor cascade lasers

the increased photon noise can be expressed in terms of a scaled external circuit impedance.

In Chapter 4, a model for the current noise and the photon noise in intersubband quantum

cascade lasers was presented. As in interband cascade lasers, the scaling of the photon noise

with the number of cascade sections in quantum cascade lasers can be expressed in terms of

a scaled external circuit impedance. Small electron non-radiative lifetime compared to the

differential stimulated emission lifetime, and the fact that the contribution to the photon

noise from the non-radiative electronic transitions keeps increasing beyond laser threshold,

make photon number squeezing difficult, if not impossible, to achieve in quantum cascade

lasers.

The results of the work on the photon noise in cascade lasers presented in this thesis show

that in both interband and intersubband cascade lasers the increase in the photon noise due

to the positive correlations in photon emission in different gain sections is not large enough

to overwhelm the improvement in the noise figure of an RF optical link obtained as a result

of the increase in the laser differential quantum efficiency. Recall from Chapter 1 that the

noise figure NF of an RF optical link is given by the expression,

NF = 10 logo 1 + ) (7.1)
GNj

where the link gain G is proportional to the square of the laser differential quantum effi-

ciency. In a link employing a cascade laser, the link gain is proportional to the square of

the number N of cascade sections. The noise Na added by the link contains contribution

from the laser noise and the link loss. In Chapter 3 and Chapter 4, it was shown that the

increase in the laser noise with the number of cascade sections is negligibly small when the

circuit impedance Z, is much larger than the impedance of the cascade laser, i.e. when

Z, > NZ, where Z is the impedance of a single cascade section. In this case, the added

noise Na is expected to be dominated by the link loss, and the link noise figure is expected

to increase with the number of cascade sections.

The current noise and the photon noise in semiconductor cascade lasers has so far not
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been measured experimentally. An important addition to the work presented in this thesis

would be the measurement of the noise in different types of cascade lasers and the verification

of the scaling relations for the current noise and the photon noise described in Chapter 3

and Chapter 4.

The theory for the noise in semiconductor mode-locked lasers was presented in Chap-

ter 5. In contrast to the previous work in this field, the theoretical model presented in

this thesis was fully quantum mechanical and took into account group velocity dispersion,

active phase/amplitude modulation, and pulse chirp in a self-consistent way for the first

time. It was shown that in the presence of group velocity dispersion and/or active phase

modulation the pulse is chirped and has excess noise. The excess noise is related to the

degree of non-normality of the pulse roundtrip operator that describes the time evolution

of the pulse fluctuations. The contribution of the work presented in this thesis to the field

is significant since in most semiconductor mode-locked lasers the roundtrip operator is not

normal, and the pulse is highly chirped, because of group velocity dispersion and active

phase modulation that accompanies active amplitude modulation as result of the carrier

density dependent refractive index (i.e. non-zero a-parameter) in semiconductors. The

pulse amplitude, phase, timing, and frequency fluctuations were described by constructing

quantum mechanical operators. It was shown that when the roundtrip operator is not nor-

mal the pulse fluctuation operators contain noise contributions from all the higher order

eigenfunctions of the roundtrip operator. The results obtained from the theoretical model

developed showed that the pulse noise is significantly affected by the magnitude of the pulse

chirp. Design schemes to achieve less than 50 fs RMS timing jitter in semiconductor mode-

locked lasers were also presented. It was shown that in the presence of phase modulation

the minimum timing jitter is obtained for a non-zero value of the group velocity dispersion

and the pulse chirp.

The theoretical model developed in this work ignored dynamic non-linearities, such as

dynamic gain/loss saturation and dynamic self-phase modulation. The main problem in

modeling noise in the presence of non-linearities is that the higher order eigenfunctions for

the linearized roundtrip operator are not readily available and are also difficult to compute

numerically. Approximate results for the pulse timing noise in the presence of dynamic

gain/loss saturation but ignoring group velocity dispersion, active phase modulation, and

dynamic self-phase modulation were presented in Appendix E. More theoretical work is
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required to take into account the non-normal character of the linearized roundtrip operator

in the presence of dynamic non-linearities. Although the calculated values of the pulse tim-

ing noise in semiconductor mode-locked lasers agree well with the experimental results that

have been reported in the literature, the exact relationship which follows from the theoret-

ical model between the pulse timing noise and the cavity dispersion, the phase modulation

strength, and the pulse chirp remains to be verified experimentally. Experimental work

geared in this direction can also form the basis for future work.

In Chapter 6, the noise in harmonically mode-locked semiconductor lasers was discussed.

The supermode noise peaks experimentally observed in the photo-detector current noise

spectral density were related to the correlations in the noise in different pulses inside the

laser cavity. It was shown that the correlations in the noise of different pulses inside the laser

cavity can provide valuable information about the dynamics and the inter-pulse interactions

inside the laser cavity. Although many results presented in Chapter 6 agree well with

the experimental results obtained in the literature, a full understanding of the inter-pulse

interactions and noise correlations in harmonically mode-locked lasers is still lacking and

the field remains wide open for future explorations, both theoretical and experimental.

218



Appendix A

Appendix: Chapter 2

A.1 Noise Spectral Densities and Fano Factors

The noise spectral densities KI(w) and Kp(w) for the current noise and the photon noise,

respectively, can be computed as follows,

Ki (w) J _ 2r (WeIxt(w) 6SIext(L - L')) (A.1)

Kp(w) J _ ' PutG(w) out P( - W')) (A.2)

Since all the Langevin noise sources are delta correlated in time domain, they will also be

delta correlated in frequency domain, and therefore the fluctuations 6 1 ext and 3P0ot in the

current and the output power, respectively, will be also be delta correlated in time and

frequency domains.

The Fano Factors FI(w) and Fp(w) for the current noise and the intensity noise, respec-

tively, are defined as the ratios of the actual noise spectral densities to the noise spectral

densities of shot noise, and are given by the relations,

F, (w) = K 7(w) and Fp(w) - Kp (A.3)
q I hQO Pout

The Relative Intensity Noise (RIN) is defined as,

RIN = 10 log 10 [p (w) (A.4)
out
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A.2 Elements of the Matrix D

Above the laser threshold, the non-zero elements of the matrix D in (2.26) are given below,

1 1
Dii = + - + -

TC i

D 1 2 = --
Te

D21=

1 1
D22 = j + +

Te Tnr
+±

1

D23=
Tp

1
Tst

D33 = jW

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

A.3 Elements of the Matrix D-1

Above the laser threshold, and for frequencies less than the inverse of the carrier capture

time c, the elements of the matrix D~ 1 are given below,

jw 2+ j2 T3WR ( 1 +
Tst

Tnr

D 12  jW T= i72H(w)
R Te

D13 = (st -- rj H(w)
Te

D21 = - W 'q Hs)

D22 = W H(w)
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+ T ) - i j H(w) (A.14)

(A.15)

(A.16)

(A.17)

(A.18)

D11 = -Tc



D23 = rst H(w) (A.19)

D 31 = r, gi H(w) (A.20)

D32 = ep H(w) (A.21)

D33 = W 3 + 1- + - + 2 l w (A.22)
Tnr Tst Te .W 2WR

where the current injection efficiency qi, the modulation response function H(w), and the

relaxation oscillation frequency WR are given in (2.5), (2.35), and (2.36), respectively.

A.4 Fabrication of Polyimide Planarized InGaAsP/InP Ridge-

Waveguide Lasers

A.4.1 Etch Mask Deposition

1. Coat HMDS (either in an HMDS oven or by spin coating).

2. Spin coat AZ5214 image reversal photoresist at 6000 rpm for 40 seconds.

3. Softbake for 30 minutes at 90 'C in a convection oven.

4. Expose using KS2 MA4 aligner for 25 seconds.

5. Bake on a hot plate at 120 'C for 60 seconds.

6. Flood expose using KS2 MA4 aligner for 180 seconds.

7. Develop for 60 seconds using AZ 422 MIF developer; rinse in DI water for 20 seconds.

8. Descum using 02 RIE at flow rate of 15 sccm and 10 mTorr chamber pressure for 30

seconds.

9. Etch with BOE (or HF) for 10 seconds; rinse in DI water for 30 seconds.

10. E-beam evaporate 2000 A of Titanium.

11. Liftoff using Acetone; rinse in DI water.
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A.4.2 Dry Etching InP/InGaAs/InGaAsP

1. RIE etch InP (or InGaAs or InGaAsP) using a mixture of H 2 :CH 4 :0 2 with flow rates

in the ratio of 20:20:2.5 secm, 400 DC bias (90-120 Watts RF power), and 5 mTorr

chamber pressure. Etch rate is approximately 500 A/min. Additional details can be

found in Ref. [55].

A.4.3 Polyimide Coating and Planarization

1. Deposit 800 A to 1200 A thick layer of Si0 2.

2. Spin coat Dupont polyimide adhesion promoter VM652 at 4000 rpm for 40 seconds.

3. Bake on a hot plate at 120 'C for 2 minutes.

4. Spin coat Dupont polyimide P12560 at 6000 rpm for 60 seconds. Multiple coatings

may be required to achieve planarization. After each coating bake for 30 minutes at

170 'C in a convection oven.

5. If a coating gets contaminated, or deformed, strip coating using hot NMP, bake on

hot plate 120 'C for 2 minutes, and then coat again.

6. Cure the polyimide by heating in a Nitrogen oven at 380 'C for 20 to 30 minutes.

The temperature in the oven must be increased at a rate below 5 'C/min to avoid

building stresses in the polyimide film.

7. RIE etch the polyimide using a mixture of 0 2 :CF 4 with flow rates in the ratio of

15:2 sccm, and 10 mTorr chamber pressure. Determine when planarization has been

achieved by examining the sample under a microscope periodically while etching.

When nearing completion turn off CF 4 which etches SiO 2.

8. Remove the SiO 2 layer by etching with BOE (or HF) for 15 seconds; rinse in DI water

for 30 seconds.

A.4.4 Making Ohmic Contacts

1. Do photolithography on top of the polyimide film using AZ5214 image reversal pho-

toresist as explained in Section A.4.1 above. Do not use HMDS when doing pho-

tolithography on a polyimide film.
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2. Descum using 02 RIE at flow rate of 15 sccm and 10 mTorr chamber pressure for 20

seconds.

3. Etch with BOE (or HF) for 10 seconds; rinse in DI water for 30 seconds.

4. E-beam evaporate 50:150:2000 A of Ti:Pt:Au to make the top p-side ohmic contact.

5. Lap the back side of the sample to reduce the sample thickness to 100 pm.

6. Etch the back side with BOE (or HF) for 10 seconds; rinse in DI water for 30 seconds.

7. E-beam evaporate 50:100:500:900:300:2000 A of Ni:Au:Ge:Au:Ni:Au to make the back

side ohmic contact.

8. RTA (Rapid Thermal Anneal) the sample in Nitrogen at 380 0 for 30 seconds.
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Appendix B

Appendix: Chapter 3

B.1 Elements of the Matrix D for a Split Waveguide Laser

Above the laser threshold, the non-zero elements of the matrix D in (3.40) are given below,

1 1
D1 = jw + - + - (B.1)

Tc Ti

D12=
Te

D 13 = 0

D21 = - 1

1 1

D22 = o+ - + - + -
Te Tnr Tst

D23 = 1

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

D32 =
Tst

D3jW
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Appendix C

Appendix: Chapter 4

C.1 Langevin Equations and Current Noise in Electron Trans-

port by Sequential Tunneling in Resonant Tunneling

Diodes

In this Section, it is shown that classical Langevin rate equations can be used to describe

the noise in electron transport by sequential tunneling in double barrier resonant tunneling

diodes (RTDs). In Refs. [26, 27, 28] it is shown via fully quantum mechanical and clasical

master equation approaches that the current noise spectral density in RTDs is given by the

formulas,

KI(W < FL, FR) = elet L R 2 (M)
(WL + FR)

and

Ki(w > FL, FR) = elext L R 2.
(CL + CR)2

where FL and FR are the electron escape rates from the well into the left and right leads,

respectively (see Fig. C-1), and CL and CR are the capacitances of the left and the right

barriers, respectively. (C.1) and (C.2) can be derived using Langevin rate equations. The

Langevin equation for the fluctuation 6N in the carrier number in the quantum well is,

d6N _ 
3 1 L JIR (C.3)

dt e e
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Figure C-1: Current noise model for a double barrier resonant tunneling diode.

where the currents 6IL and 6IR through the left and the right barriers, respectively, are as

follows,

=GRL -6NFL+FL A)
e e

=I GR V + 6NF + FR (C.-5)
e e

Here, FL and FR are the Langevin noise sources that describes the noise in electron tunneling

in the left and the right barriers, respectively, and have the following correlations at small

temperatures,

(FL(t) FL(t')) (FR(t) FR(t') ) 6(t - t') (C.6)
e

The potential drops 3 VL and 5VR across the left and the right barriers, respectively, are,

SVL 6 - e(
(CL + CR) (CL ± CR)

3 V= CL e3N
6V ( CL =V + ± (C.8)

(CL +CR) (CL + R)
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The current 61 ext in the external circuit is,

d 3VLIext = IL + CL dt

The constraint imposed by the external circuit is,

3VS - 6V
ext = Z

The above set of equations can be solved to give

61ext = V +
ZS(w) + Z(w)

Z(w)

ZS(w) + Z(w)

where 61(w) is given as,

F(w) _ FL j

e

+ Fr + FR ji

± + 'L R

and Z(w) is the impedance of the RTD and is given by the expression,

.) 2 CLCR

C
CLCR __

C +GL C2
± CR

+GRC2I C + F$RC CL
N RR C

Lw + R'L R

(C.13)
The following definitions have been introduced above,

F/ = FL +

F'/ = FR + GCR C C

C = CL +CR

(C.14)

(C.15)

(C.16)

(C.11) shows that a circuit model for the current noise in a RTD can be constructed as

shown in Fig.C-1 where a current noise source 61(w) is attached in parallel with the RTD.

The spectral density of the current noise 31(w) follows from (C.12),

KI (w) = eext

W2 CC + 1 / 2 + r 2

(CL + CR)2  L R
w 2 + (F' 2
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(C.10)

(C. 11)

Z -I ) -

(C.12)

(C.17)
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It can be seen that (C.17) reduces to (C.1) and (C.2) when w < V', F' and when w >

'L) F'R respectively. The only difference is that in the low frequency limit (C.1) contains FL

and FR and not r' and F' . This is because the method used here accounts for the potential

fluctuations accompanying the charge density fluctuations inside the RTD whereas (C.1)

ignores them.

C.2 Correlations Among the Langevin Noise Sources in QCLs

= (R 3 ,2 +R2-+3)6jq(tt')

R 32(n', n1) 6jq 6(t - t')

= (R 3 ,1 + R13) jq 6 (t - t')

~R31(n3, nj) jq 6(t- t')

= (R 2-1 + R 1- 2) 
3jq 6(t - t')

R 2 1(n', nj) 6jq 5(t - t')

(2np - 1)Sp + WL 6 jq 6

(2ns, - 1)Sp + WL Qjq 6(t

(npISp + -sP j6(

(C.18)

(C.19)

(C.20)

t1) (C.21)

- t')

-t)

(C.22)

(C.23)

(C.24)

(C.25)

(C.26)
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W~~ Lj vg gi N(ni n )

WL (f~s (t) fjRs (tl)) = i vg g (n i ,n )

WL (A~S(t)fA N W) ri vgg(in

WL FL(t) FL(t')) - t')

(FO(t) FO(t')) = 7o (hvi) 2 WL Sp6 (t - t')
TP

(Fo(t) FL(t')) = 7o hv 6(t - t')
7-p

WL (f'2W f5q2 W) )

WL (fl I(t) fji,(t'))

WL (f~lI(t) flq,(t'))



C.3 Differential Resistance of a QCL

The expression in Equations (4.65) and (4.63) for the differential resistance Rd of a QCL

can be put in the form,

Rd= {
N

WL
N

WL

Tin (I + 0 +02+ 01)
in

cm (1+03 +02+01)

(I < Ith)

(I > Ith)

(C.27)

The dimensionless parameters 03, 0', 02, 0', and 01 that have been used in the above

Equation are as follows,

1 Cinj

\Tin C3

02 = ( Cinj
\Tin C2

1)
T31T21

(T21 + T31)

T31T21

(721 + T31)

1 -

( in CI

C.4 Elements of Matrix D

The non-zero elements of the matrix D are,

0,' 1 Cin
3 Tn C3

0'2/ 1 Cinj
' Tin C2

1 )
T3 /

732 731

(T32 + 731)

1 N
+ - /T1

(C.28)

(C.29)

(C.30)

1
Dii= jW + -

Tout

D 22 = jU +
T21

D23 = -1
T32

1

T21

+ ±Fv oa (Sp + n)
W L

- Fvg a (Sp + n)
W L

- 1Fv 9 a (Sp +

'7 2 731
+ Fvg a (Sp +
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1
D13 = -3

T31

D24 = -D 3 4  ~N Fvgg(n3 ,n 2 )

D31 jWTn

-TI (I + jW Ti.)

(C.31)

(C.32)

(C.33)

(C.34)

(C.35)

(C.36)

(C.37)

D32 jWTn

T2 (I + JW Tin)

D33= j + -___

73 (1 + jW Tin)

+1_) T31I 21

T2) (T32 + T31)



ris 
)D 4 2 = -D43 = F1v a (S, + (C.38)

(C.39)
1

D44 = jw + - - N F1vg g(n3, n2)
Tp

C.5 Important Elements of Matrix D-1

Above threshold, elements of the matrix D- 1 in the limit {T2, T1} -+ oc are given below.

In addition, it is also assumed that wTin < 1. If the later condition does not hold then the

expressions given below can be corrected by replacing T3 by T3 (1 + jw rn).
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where H(w) is,
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For small values of w for which the cubic term in w in the denominator may be neglected,

H(w) becomes,
W2
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The above approximation will be valid if w is much less than 1/Ti,, 1/T21, and 1/T't. In

this approximation wR and y are,
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Appendix D

Appendix: Chapter 5

D.1 Excess Noise in Linear Systems with Non-orthogonal

Eigenvectors

The origin of the excess noise in systems with non-orthogonal eigenvectors can be explained

with the help of a simple example. Consider a stable linear system defined in R 2 in which the

state vector V(T), in the presence of a noise source F(T), obeys the differential equation,

dV(T) -M. V(T) + F(T) (D.1)
d T

The matrix M is not Hermitian, and has two non-orthogonal eigenvectors el and e 2 , with

corresponding real eigenvalues -A 1 and -A 2 , respectively. The eigenvectors are shown in

Fig. D-la. The angle between the eigenvectors is 012. The noise source F(T) is assumed to

have the correlation function,

( F(T ) F(T') ) = r 1 0 6(T - TI) (D.2)
0 1

The eigenvectors are not orthogonal but they form a biorthogonal set with the eigenvectors

d, and d 2 of the adjoint linear system. In the present case, d, and d 2 equal U.e 2 and 9.e 2 ,

respectively, where the matrix o- is,

0 -1
(D.3)

1 0
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The vectors d, and d 2 have the property that di.e 2 = d 2 .ei = 0. In the presence of noise,

V(T) can be expanded in terms of the eigenvectors as follows,

V(T) = ci(T)ei + c2(T)e2  (D.4)

The differential equation for the coefficients Ck(T), where k = 1, 2, can be obtained by using

the eigenvectors of the adjoint system,

d Ck(T) AkCk(T) + dk.F(T) (D.5)
d T dk.ek

The above equation can be directly integrated to yield,

T
J dT' exp [-Ak (T - T')] dk.F(T')

k(T dk-e (D.6)

The ensemble averages ( ck (T) Cq (T) ), where k = q = 1, 2, follow from the noise correlation

given in (D.2) above,

(Ck(T) q(T)) = ( dk.dq - _()k-q ( 7 cos(Okq) (D.7)
Ak± Aq,) (dk.ek) (dq.eq) Ak + Aq sin 2 (012)

where Okq is the angle between ek and eq. The excess noise is described by the multiplicative

factor (1/di.ei) 2 = (1/d 2.e 2 )2 = 1/ sin 2 (012 ) and it is a measure of the degree of non-

orthogonality of the eigenvectors. If the eigenvectors were orthogonal, 012 would equal 7r/2,

and there would be no excess noise. Also, (D.7) shows that the noise in different eigenvectors

is correlated. If the eigenvectors were orthogonal, such correlations would not exist. The

smaller the angle 012 between the eigenvectors, the larger the excess noise and the larger

the correlations in the noise in different eigenvectors. Looking at the noise dynamics at

different time scales provides a clearer picture of the excess noise. Suppose the system (not

driven by F(T) anymore) is kicked by a noise source N at time T = 0. For T > 0, the state

V(T) of the system is ci(T)ei + c 2 (T)e 2 , where,

di.N
ci(T) = exp (-A iT) (D.8)

di.ei
d2.N

c2(T) = exp (-A 2T) (D.9)
d2.e2
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Figure D-1: (a) The two non-orthogonal eigenvectors el and e 2 are depicted. (b) At time
T = 0, the state V(T) of the system is N and there is no excess noise, but the noise in the
two eigenvectors is correlated. (c) As time progresses, the noise in eigenvector e 2 decays
faster than the noise in eigenvector el, and excess noise appears.

At time T = 0+, the noise in the system is just N and there is no excess noise (see Fig. D-

1)b. As time progresses, the noise in the eigenvector e2 , which has the larger (in magnitude)

eigenvalue, decays faster than the noise in el. For times longer than 1/A,, the state of the

system may be approximated as ci(T)ei (see Fig. D-1c). The coefficient ci(T), as shown

in (D.8), has the excess noise factor. Therefore, the excess noise, which was absent at short

times, appears at time scales longer than the smallest (in magnitude) eigenvalue of the

system. At short times, even though the noise in the individual eigenvectors is amplified

by the excess noise factor, the noise in different eigenvectors is correlated and as a result

of these correlations there is no net excess noise. The excess noise, therefore, results from
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the non-Hermitian time evolution of the system. The simple example presented here can be

generalized to linear systems defined in higher dimensional complex Hilbert spaces without

affecting the essential results.

D.2 Properties of Complex Hermite-Gaussians

The complex Hermite-Gaussians Ak(t) are defined as,

Ak(t) = Bk Hk 1 + j,3 exp K (1 + 13) (D.10)

where Bk is a normalization constant and Hk(.) is the k-th Hermite polynomial [87]. If

Ak(t) is normalized such that fdtlAk(t)12 = 1, then Bk is,

1= 2 kk ifir TPk 1±132 (D.11)

where Pk(.) is the k-th Legendre polynomial [87]. The following integrals have been used

in this paper,

/dt A(t)=
2/2

(1 -1+B2 P( 1+ 32)

P 2 (,1+,32)
- I -- 2

(D.12)

Mqk = M*q =

/Pq( 1+02) Pk( 1+32)

g-k

Here, P,/1 (.) is the associated Legendre function with the following properties,
2

q!Pg-k (*)
2

P (.)
2

Pko(.) = Pk(.)
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D.3 Expansion in an Orthogonal Basis

The perturbation theory for the pulse noise in an actively mode-locked lasers can also be

done in an orthogonal basis. One such basis is given by the following set of functions,

Sk (M = Dk Hk(-) exp -- 2 (1 +1j3) (D. 16)

where Dk is a normalization constant and Hk(.) is the k-th Hermite polynomial [87]. If

Sk(t) is normalized such that fdtlSk(t) 12 = 1, then Dk is,

D1 = 2k k!Iv'-r 
(D.17)

k

The functions Sk(T) form an orthonormal set, i.e. fdt Sq*(t)Sk(t)dt = 6 qk. The operator

?/(t, T) can be expanded in this orthonormal basis set,

V)(t, T) = VI96_ )7 (T)it (D. 18)
k=O

where dA (T) is a quantum mechanical annihilation operator. The operators k (T) obey the

commutation relation,

[,Yk(T ), d (T ) = k (D. 19)

The problem with expanding (t, T) in the orthonormal basis Sk(t) is that the functions

Sk(t) are not eigenfunctions of the operator 0(t) in the master equation (5.2). Consequently,

the dynamical equations for the operators dk(T) obtained by subsituting the orthonormal

expansion in the master equation (5.2) results in off-diagonal terms (compare to the simple

diagonal dynamical equations for the operators 'k(T) in (5.57) obtained via the eigenfunc-

tion expansion). Nevertheless, convergent results can be obtained numerically for the pulse

noise without a minimum-error type of expansion (see Appendix D.4 for the minimum-error

expansion). Here, the orthonormal expansion is used to prove the result stated in (5.55).

Using the orthonormal expansion, the operators for the pulse photon number, phase, timing,

and frequency fluctuations become,

ANp(T) = no do(T) + h.c (D.20)
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Ab(T) =d do(T) + h.c (D.21)
2j

AJ(T) T Wi(T) + h.c (D.22)
v12

AU(T) = j (1 + ) di(T) + h.c (D.23)

Note that only the first two functions, So(t) and Si(t), contribute to the pulse photon

number, phase, timing, and frequency fluctuations. Also, So(t) and Si(t) are proportional

to the first two eigenfunctions, Ao(t)) and A 1 (t), respectively. The expansion in (D.18) can

be written in a more suggestive form,

ANp(T) + T Ao (t)
0 (t, T) 0 [ 2no + (T ) Ao(t) - A(T ) t A _ (T) t Ao(t)

00

+ Vn Z k (T) Sk (t) (D.24)
k=2

which is the same as (5.55). The terms in the summation in (D.24) consist of perturba-

tions orthogonal to ANp(T), Ab(T), AJ(T), and AU(T) since these terms contain noise

contributions from only the functions Sk(T) with k > 2.

D.4 Divergence of the Conventional Perturbative Expansion

and the Minimum Error Expansion

The divergence of the perturbative expansion given in (5.70) is best illustrated by studying

the noise in a coherent state optical pulse. The pulse in a mode-locked laser is not expected

to be a coherent state pulse, but in case of a coherent state pulse exact answers for the

mean square pulse fluctuations can be obtained without doing an eigenfunction expansion.

Later in this Appendix, a technique to obtain a convergent series expansion for the mean

square pulse fluctuations in a mode-locked laser will be presented, and the coherent state

case will serve as a check to demonstrate that our technique gives correct answers.

A coherent state pulse is given by the action of the displacement operator on the vacuum

state [851,

exp [ vri- dt Ao(t) t(t) - h.cl 0) (D.25)

The expectation values of the various operators for a coherent state pulse are given be-
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low. The time variable T has been suppressed since the operators are assumed to be time

independent.

(7 (t)) =n 0_oAo(t) ((t)) = 0 (D.26)

(,f (t) p(t')) = 0 (4 (t) pt(t')) = 6(t - t') (D.27)

The mean square photon number, phase, timing, and frequency fluctuations can be calcu-

lated directly using the operator expectation values given above with the relations given in

(5.41), (5.42), (5.46), and (5.47), respectively,

(AN() = no 4 1 (D.28)

(A J) = (Ab 2 ) = (1+,2) (D.29)
2 no 2 T2 no

If (t) for a coherent state pulse is expanded in terms of the complex Hermite-Gaussians,

as in (5.29), then the following expectation values are obtained,

&Sk) = ( lt ( q = (Ek Eq) = (it Etl) =0 (D.30)

1 fdt A*(t)Ak(t)
(ck ; qt) = t) * (D.31)

no f dt Ak2t f dt A*2 M

The mean square pulse fluctuations can also be calculated using the expectation values given

in (D.30) and (D.31) with the relations given in (5.51)-(5.54). The resulting series can be

summed exactly using the completeness relation for the eigenfunctions given in (5.25). For

example, for the mean square timing noise of a coherent state pulse one obtains,

(A7) = 2 00
(AMkMqMql 1 (D.32)2n k lk fdtA 2 (t) fdt A*2(t)

T 2 00fdt A* (t) Ak (t)dk A*(t)Ak(t) dtfA*(t)A(t) (D.33)
2no L dt Ak2 (t) f d A* 2(t)

(D.34)
2 no

The series in (D.32) is similar to the one in (5.70) and does not converge. Fig. D-2 shows

the results obtained for the mean square timing fluctuations (A]J) (normalized to the exact

value T 2 /2no) when only Nmax eigenfunctions are included in the perturbative expansion
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(i.e. only terms with k, q < Nmax are included in the summation in (D.32)). When the

pulse chirp 1131 is small, the series in (D.32) converges. When 101 is large, the series does not

converge, and diverges exponentially as more eigenfunctions are included in the perturbative

expansion. The largest terms in the series are the diagonal (k = q) terms. From the

properties of the eigenfunctions Ak(t) given in Appendix D.2, the ratio of two successive

diagonal terms can be calculated,

Ifdt A*(t)Ak+2(t) 2  lfdtA (t) 2  32 2
lim ~ k -02 (101 + r, + #2(D.35)

k If fdt A~ 2 ( I fdt A*(t)Ak (t)I/

The perturbative expansion diverges when 1/1 > 03 , where the critical value /, is determined

by setting / (131 + 1+ /32) equal to unity. This yields /, = 1/v' ~ 0.577. This critical

value was found in reference [84] in the general context of series expansions using complex

Hermite-Gaussians. Numerical calculations confirm the value of 1/V/3 for 0,. Since (AJ2)

for a coherent state pulse is not infinite, it follows that when Nmax becomes infinitely large,

the off-diagonal (k z q) terms in the series in (D.32) suppress the divergence coming from

the diagonal (k = q) terms. The physical significance of this result is that when 131 ;> /3, the

noise in different eigenfunctions is highly correlated, and these noise correlations suppress

the divergence provided an infinite number of eigenfunctions are included in the perturbative

expansion. Similar conclusions can be drawn for the mean square frequency fluctuations

in a coherent state pulse. (AJ 2 (T)) for a pulse in an actively mode-locked laser is given

by the series in (5.70). In contrast to the series in (D.32), completeness relation for the

eigenfunctions cannot be used to sum the series in (5.70). In general, a series of the type,

Fqk Mpk Mqk Mqp (D.36)
k,q=O F dq A 2 (t) fdt Ak 2(t)

where Fqk (= F*q) decays only algebraically as k, q become large, will diverge exponentially

when 1/1 > 0,. Below, a technique to obtain convergent expansions for series of the type

(D.36) is presented.

D.4.1 Minimum-Error Series Expansion

In reference [84], it was shown that an arbitrary complex function f(t) can be expressed in

a convergent series of the form E_-ax-1 akAk(t) by choosing the values of the coefficients
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Figure D-2: Mean square timing noise (APJ) for a coherent state optical pulse calculated

using (D.32), normalized to the exact result T
2 /2%i, is plotted as a function of the number

of eigenfunctions Nmax used in the perturbative expansion. The perturbative expansion

diverges when the pulse chirp 1,1 becomes larger than #, = 1/V/. The steps appear

because only the odd numbered eigenfunctions contribute to the timing noise.

ak such that the mean square error,

Nmax-l 2

]dt f(t) - E akAk(t) (D.37)
k=O

is minimized. The expansion obtained this way was shown to have much better convergence

properties than the one in which ak is obtained by projecting the function f(t) onto the

basis vectors Ak(t),
f dtAk (t)f (t)

ak = fdA()(D.38)akf dt A2~

Here, the minimum error expansion is used to obtain a convergent series from the divergent

series in (D.36). A new operator AQ,(T) is defined as follows,

I. 00

AQp(T) = ]dtA*(t)P(tT) + h.c = Mpkck(T) + h.c (D.39)
k=0
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A series of the form (D.36) is generated when the mean square value of the operator AQp(T)

is evaluated and if one assumes that (compare with (5.60), (5.61) and (D.31)),

(nk(T) (T))+±(I(T) Ek(T))= Fk - Mqk (D.40)q (T) + C~qfdt A*2(t) fdtk A2 (t)

The field operator 0(t, T) can also be expanded using the eigenfunctions of the adjoint

operator Ot(t),

V)(t, T) = i Sbk (T) A* (t) (D.41)
k=O

In terms of the operators k(T), the expression for AQp(T) is simply,

AQp(T) = bp(T) dt A2 (t) + h.c (D.42)

We assume that the field 0(t, T) is known exactly in terms of the operators Ek(T). The

operators k (T) need to be expressed in terms of the field 0-(t, T) when the summation in

(D.41) is restricted to only Nmax eigenfunctions. If the value of Nma is finite, the resulting

solution can only be approximate, and this approximation will be considered good if the

solution converges as Nmax becomes large. For a given Nmax, the optimal k(T) is chosen

to minimize the mean square error,

/Nmax -1I Nm '.x - IA t) ( .3

dt it(t, T) - no (T) AkM) (t, T) - n o bk(T) (D.43)fi L
k=0 k=O

which gives,

Nmax -1

nk() E dtAt)A dAq(t )(tT) (D.44)
k=O

Nmax- 1

Mkq & (T) = Sq(T) ]dt A(t) (D.45)
k=O

Inverting the matrix relation in the above Equation gives the desired result,

Nmax-1l

k(T) M- 1 Eq(T) ]dt A(t) (D.46)
q=O
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Therefore, the expectation value (bk(T) b4(T)) becomes,

Kbk(T) Rt(T)) = Nax*

Nmax

E
pr=0

Using (D.39), (D.40), (D.42), and (D.47), one obtains,

(KAQ (T)) : Mpk Mqp (k (T) FIq (T)) + (K (T) Ek (T))]
kq=O

00

kq=O

= dt A (t)
2

Thus, one obtains the important relation,

00 k Mpk Mqk Mqp 2t

kOFkfdtA*2(t) fdtAk()

2

lrn dt A2 (t)
Nm,-ax-400 J p

Nmax -

E Fqk Mp' Mqk Mp-g (D.52)
kq=O

Below, it is shown that the series on the right hand side of the above equation converges.

Using (D.32) and (D.52), the mean square timing noise for a coherent state pulse is,

(AJ2)
2 00

2n M k MqkMq fdtAk 2 (t) fdtA*2 (t)

2 2 Nmaxl
lim T dt A(t) 2

Nmax*00 2 o k,q=

lim T Mf
Nmax*00 2 no (1 + /32)3/2

M-11 Mqk MI

(D.53)

(D.54)

(D.55)

Fig. D-3 shows the mean square timing fluctuations of a coherent state pulse calculated using

(D.55), normalized to the exact value T 2 /2no, as a function of Nmax. As Nmax becomes

large, Mf 1- rapidly converges to (1 + 32)3/2, and (AJ) converges to T 2/2no.
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Mpk Mqk Mqp
Fqk f dtA*2 (t) fdt Ak 2(t)

[K(p(T) {(T)) + (14 (T) bp(T))

2
- mlim dt A (t)
Nm ax--"-00 J

(D.48)

(D.49)

(D.50)

(D.51)
Nmax -I

I:
k,q=O

Fqk Mp-' Mqk M-

M-| dt A 2(t) (Fp (T ) Fr (T )) d A t M-

.1
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Figure D-3: Mean square timing noise (APJ) of a coherent state optical pulse calculated

using (D.55), normalized to the exact result r2 /2n,, is plotted as a function of the number

of eigenfunctions Nmax used in the expansion. The result converges for all values of the

pulse chirp. The steps appear because only the odd numbered eigenfunctions contribute to

the timing noise.
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D.5 Fourier Transforms and Noise Spectral Densities

The properties of the continuous time and discrete time Fourier transforms and the corre-

sponding noise spectral densities are briefly reviewed here.

D.5.1 Continuous Time Fourier Transform and Noise Spectral Densities

The Fourier transform of a zero mean noise operator W(T) is defined as,

W(w) Jdt W(T) exp (-jw T) (D.56)

The inverse Fourier transform is,

W(T) J W(w) exp (jw T) (D.57)
_ 27

The spectral density Sw(w) of W(T) is defined as the Fourier transforms of the symmetric

correlation function,

Swds [(W(T) W(T + s)) + (W(T + s) W(T))] exp (-jw s) (D.58)

It is assumed in the definition above that the correlation function is stationary and, there-

fore, independent of the time variable T. It follows from the definition of Sw(w) that the

mean square value (W 2 (T)) of the fluctuations is,

(W 2 (T)) = d Sw (W) (D.59)

D.5.2 Discrete Time Fourier Transforms and Noise Spectral Densities

The discrete time Fourier transform W(wTR) of a zero mean noise operator W(m), which

is a function of the discrete index m, is defined as,

00

W(wTR) = W(m) exp (-jTR m) (D.60)
m=-oo
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W(wTR) is periodic in w with a period 27/TR. The inverse Fourier transform is,

7r/TR dw
W(m) = TR W(wT) exp (jw TR m)

-Ir/TR2Tr
(D.61)

The spectral density 'T W(WTR) of W(m) is defined as the discrete time Fourier transform

of the symmetric correlation function,

w (LTR) = [(WV(n) W(n + m)) + (W(n + m) W(n)) exp (-jw TR m)
m=-o

It is assumed in the definition above that the correlation function is stationary and, there-

fore, independent of n. The spectral density 'TW(wTR) is periodic in w with a period

27r/TR. It follows from the definition of J w(wTR) that the mean square value (W 2 (M)) of

the fluctuations is,

(W 2 (m)) = TR

If W(m) equals W(T =

7rlTRdo -w (wTR)
]-r/TR -2

(D.63)

mTR) then the following relationships hold,

W(wTR) =

4w(wTR) =

TRM=0

TR

(D.64)

(D.65)
27rm

TR
Sw W

In addition, if W(T) varies significantly only over time scales much larger than TR than for

Hw < 27/TR,

W(WTR) = 1 W(j)
TR

w (wTR) =
1

TRSaw

(D.66)

(D.67)

and,

(W 2 (m)) = TR
I,71/TR dw

-71TRdo 4w (WTR) =
-,/TR 27r

r/TR dw SW (- 2

-"IT 22(T ))
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Appendix E

Appendix: Chapter 6

E.1 Finite Difference Equations for Pulse Timing Noise in

Fundamentally and Harmonically Mode-Locked Semi-

conductor Lasers

In Chapter 6, models for the pulse timing noise in the absence of dispersion and active phase

modulation were presented for fundamentally and harmonically mode-locked semiconductor

lasers. In this Appendix, the derivation of the discrete-time finite difference equations for

the pulse timing noise in (6.5) and (6.12) are explained in more detail. The models discussed

below are simple since increasing the complexity of the model does not affect the nature of

the conclusions in Chapter 6. It is assumed that there is no dispersion in the cavity, and

active phase modulation is also assumed to be absent. However, in contrast to the model

presented in Chapter 5, dynamic gain and/or loss saturation is included. The time domain

pulse perturbation theory presented in Chapter 5 for actively mode-locked semiconductor

lasers is used here. The master equation that describes the slow time evolution of the

amplitude 0(t, T) of a pulse in an actively mode-locked semiconductor laser in the absence

of dispersion and active phase modulation is,

&q$(t, T ) frv B D2 4$(t, T )lr
t, T) T2 t + [G(t) + gm(t) - L(t)] (tT) (E.1)

+ Fsp(t, T) + Fv(t, T) (E.2)
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where the time variable T describes the pulse evolution over time scales longer than the

cavity round trip time TR. v is the phase shift acquired by the pulse in one round trip.

G(t) is the gain. Because of dynamic gain saturation in semiconductor lasers [36], G(t) is

assumed to be a function of the time-dependent pulse intensity. For simplicity, dynamic self-

phase modulation that accompanies dynamic gain saturation in semiconductor lasers is also

ignored [36]. L(t) is the loss and is also assumed to be a function of the time-dependent pulse

intensity because of dynamic loss saturation (i.e. slow saturable absorption). gm(t) describes

the time dependent gain because of the active modulation. gm(t) equals AM [cOS (WNt) - 11,

where WN is the modulation frequency. B describes the effect of the finite gain bandwidth

(or filter bandwidth). Fop(t, T) and F,(t, T) represent the noise sources for spontaneous

emission and vacuum fluctuations, respectively, and their correlation functions are given in

Chapter 5.

Fundamentally Mode-locked Lasers

For a fundamentally mode-locked laser (N = 1), the modulation frequency WN equals the

cavity round trip frequency WR. The steady state pulse is obtained by solving the non-linear

master equation in the absence of noise. It is assumed that the steady state pulse amplitude

is rni/T A(t/T), where no is the number of photons in the pulse, and T is the pulse width.

A(t/T) is real and is normalized such that f_ dxA 2 (x) - 1. In the presence of noise,

0(t, T) may be expanded as,

0(t, T) TL-A + [ ANp(T) A( +jAe(T) A
T f 2n, T t

- AJ(T) - jAQ(T) (t - to)A - (E.3)
dt (1).

where ANp(T), AE(T), AJ(T), and AQ(T) are the pulse amplitude, phase, timing, and

frequency fluctuations, respectively. The temporal position to of the steady state pulse

is defined by the Equation, f_ dt (t - to)A 2 (t/T) = 0. In the presence of dynamic gain

and/or loss saturation, the pulse position to does not coincide with the peak gain in the

active modulator [36]. The expansion in (E.3) ignores the fluctuations that distort the

pulse shape. The equation for the pulse amplitude (phase) fluctuations can be obtained

by substituting the expansion in (E.3) in the master equation, and projecting out the

pulse amplitude (phase) fluctuations by multiplying both sides of the resulting equation by
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A(t/T), integrating, and keeping the real (imaginary) part. The pulse timing (frequency)

fluctuations can be projected out by multiplying both sides by dA(t/w)/dt, integrating, and

keeping the real (imaginary) part. This yields,

dAJ(T) -yAJ(T) + F(T) (E.4)
dT

where -y is given by the expression,

00 dgm (t) dA(t/T)

dt d A(t/)t
00_o dt dt

2 0dt dA(t/T) dA(t/T)
_ 0 dt dt

A F dx xA(x)A'(x)
2 2 -oo (E.5)

2 T dxA'(x)A'(x)

= m AW 2 T2 1 (E.6)2 2 dx A'(x)A'(x)

(E.6) follows from (E.5) since the integral f dx xA(x)A'(x) equals -1/2 for any arbitrary

pulse shape. If the pulse shape is approximately gaussian, the expression in the curly brack-

ets in (E.6) equals unity. The correlation function for the noise source F(T) is approximately

given by the expression,

(F(T)F(T')) = T [(2nr, - 1) (G) + (L)] 0 1 6(T - T') (E.7)
2no 2 Jdx A'(x)A'(x)

where (G) is the total average gain in the steady state, (L) is the total average loss, and

no, is the spontaneous emission factor which takes into account the incomplete inversion of

the gain medium [1]. In the steady state, since the gain (G) equals the loss (L), (E.7) can

be simplified,

(F(T )F(T')) - (L) T 2  } 6(T - T') (E.8)
!nSP 2 f 0dx A'(x)A'(x)
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Assuming that -yTR < 1, (E.4) can be discretized,

AJ(n + 1) - AJ(n) = -7yTR AJ(n) + F(n) (E.9)

The discrete-time noise variable AJ(n) is the timing noise in the pulse after the n-th round

trip. The noise source F(n) represents the total timing noise added to the pulse in one

round trip,

F(n) = dT F(T) (E.10)

and has the correlation function,

(F(n) F(m)) = D Jn,m (E.11)

where D equals,

D = (np) (L) TR 7-2 (E. 12)
np/ 2 Fdx A'(x) A'(x )

The expression for the mean square timing Jitter in a fundamentally mode-locked laser was

given in (6.8),
D

(AJ 2 ) = (zAj 2 (n)) - (E.13)

Using the values of 7 and D given above, one obtains,

(AJ 2) = (s-P) (L) 12 (E.14)
nP AMwR

Note that the loss (L) can be related to the photon lifetime Tp in the laser cavity, (L)

1/Tp. The analysis for the timing noise presented here assumed dynamic gain and/or loss

saturation. The mean square timing jitter is found to be independent of the pulse shape

and the pulse width. This is not true for the timing noise spectral density which depends

on the pulse shape and the pulse width through -y (see (6.10) and (E.6)). The model for

the pulse timing noise presented here is not applicable when the pulse is chirped and its

amplitude is described by a complex function. The pulse can acquire a chirp in the presence

of dispersion, active phase modulation, or dynamic self-phase modulation.
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Harmonically Mode-locked Lasers

A laser mode-locked at the N-th harmonic has N pulses propagating inside the laser cavity.

Some additional assumptions are required before the model presented above for fundamen-

tally mode-locked lasers can be used for harmonically mode-locked lasers. In the noiseless

steady state, all the pulses are assumed to be identical. Any departure from this steady

state is considered noise. The steady state is assumed to be stable in the sense that the

pulse energy and timing fluctuations are damped and do not become very large (this im-

plies no pulse dropouts). The pulse fluctuations are assumed to be stationary. In the steady

state, each pulse is assumed to obey the noiseless master equation. The steady state am-

plitude of each pulse is assumed to be i/no/TNB(t/TN), where TN is the pulse width, and

no is the number of photons in each pulse. B(t/TN) is real and is normalized such that

f_ ,odx B 2 (x) = 1.

If the timing fluctuations in different pulses are assumed to evolve completely inde-

pendently, finite difference equation for the timing noise in each pulse can be obtained in

the same as for fundamentally mode-locked lasers. It should be pointed out here that the

photon number fluctuations in different pulses cannot be assumed to evolve independently

since all the pulses interact with the same gain (and loss) medium whose recovery time

can be much longer than the pulse repetition time. For the timing fluctuations, assuming

independent evolution, the N separate finite difference equations for the timing noise in N

different pulses can be written in the compact form shown below,

AJ(n + N) - AJ(n) = -- NTR AJ(n) + FN(n) (E.15)

where -YN is,

AM 2 2 1 (E. 16)
{2 Jdx B'(x)B'(x)

The noise source FN(n) represents the total timing noise added to each pulse in one round

trip, and has the correlation function,

(FN(n) FN(m)) = DN n,m (E.17)
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where DN is,

DN = (n"p ( L) TR T2 (00 (E.18
Do 2 DJ dx B'(x)B'(x)

The expression for the mean square timing Jitter in a harmonically mode-locked laser was

given in (6.15),

(AJ 2) 2(n) DN (E.19)
27NTR

Using the values for -YN and DN given above, one obtains,

(AJ 2) sp (L) 2 (E.20)
\p AM4N

The loss (L) is related to the photon lifetime Tp in the laser cavity, (L) = 1/Tp. As in the

fundamentally mode-locked case, the mean square timing jitter is found to be independent

of the pulse shape and the pulse width, but the timing noise spectral density depends

on both the pulse width and the pulse shape through 7YN (see (6.17) and (E.16)). When a

fundamentally mode-locked laser is harmonically mode-locked by increasing the modulation

frequency from WR to WN, (E.14) and (E.20) show that the mean square timing jitter

decreases as long as the pulse energy, the modulation strength, and the cavity round trip

loss do not change. Also, the pulse shape and the pulse width may or may not change

depending upon whether the dominant pulse shaping mechanism is dynamic gain and/or

loss saturation or active modulation.
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