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Abstract—

Tight-binding potential combined with a simulated an-
nealing method is used to study the generalized stacking
fault structure and energy of gold. The potential is chosen
to fit band structures and total energies from a set of first-
principles calculations (Phys. Rev. Bb54, 4519(1996)). It
is found that the relaxed stacking fault energy (SFE) and
anti-SFE are equal to 46 and 102 m.J/m?, respectively, and
in good agreement with the first principles calculations and
experiment. In addition, the potential predicts that the c/a
of hcp-like stacking fault structure in Au is slightly smaller
than the ideal one.

Keywords— Generalized stacking fault, Tight-binding po-
tential, Au.

I. INTRODUCTION

HE atomic-scale structure of generalized stacking fault

(GFS), just like grain boundaries, is considerable in-
terest to materials research. This is due to the fact that the
stacking fault impacts strongly the mechanical properties
of materials. For example, the stability of stacking faults
on the slip planes of a crystal is intimately connected to
the mobility of dislocations on these planes[l]. Likewise,
in low stacking fault energy metals many interfaces may
relax by emitting stacking faults so that extend the struc-
tural perturbation of these interfaces over several planes
normal to the interfaces[2]. Moreover, Martensitic trans-
formation in shape-memory alloys[3] is directly related to
stacking fault. Certainly, it is also well known that twin-
ing stress increases with increasing stacking fault energy
for the most of fcc metals[4]. etc. Based on these reasons,
the stacking faults of metals have been studied both exper-
imentally and theoretically, even for fcc mono-metals (see,
for examples, [1], [2], [4], 5], [6], [7], [8]).

On the other hand, a theoretical study for GSF may
be used to test the reliability of a theoretical model, espe-
cially for developing an atom potential model. In the recent
works Zimmerman et al used embedded-atom potentials to
calculate GFS energies of Al, Ni, and Cu, and found that
in the most cases the embedded-atom potentials underes-
timated SFE and anti-SFE[5]. At the same time Mehl et
al used a tight-binding (TB) potential to study the SFE
and anti-SFE of fcc metals Al, Cu, Rh, Pd, Ag, Ir, Au,
and Pb. They compared their results with full potential
linear-muffin orbital and embedded-atom potential calcu-
lations, as well as experiment, and found good agreement.
This is impressive, since their tight-binding potential only
fits to first-principles full-potential linearized augmented
plane-wave equations of state and band structures for cu-

bic systems. Comparable accuracy with embedded-atom
potentials can be achieved only by fitting to the stacking
fault energy[l]. But, regretly, in their calculations, the
atom relaxation was not considered, expect for the the case
of anti-SFE of Au and Ir. Also they did not present any
information about relaxed GSF structures. In fact, to our
knowledges, a detail picture about GFS structure consider-
ing atom-scale relaxation is lack. It is also surprising that
in the works of Zimmerman et al, there are not any infor-
mation about the relaxed GFS structures, too, although an
atom relaxation is included. Thus, in this work, as an ex-
ample, we study GFS structures of Au using TB potential
of Mehl and Papaconstantopoulos (MP)[9] combined with
a simulated annealing method[10]. We want to know how
GFS energy is affected when atom relaxation is considered,
and how the structure of the GFS changes due to the re-
laxation for the tight-binding potential. In the following,
a general theory and method about the TB potential are
presented firstly, then in the section 3, we give our calcu-
lated results and discussions about GSF, and finally, some
conclusions are drawn out.

II. THEORY AND METHOD

In this work we use the tight-binding potential and com-
bine a simulated annealing method to relax the general-
ized stacking fault structure of gold. The tight-binding
potential originally is developed by Mehl and Papaconstan-
topoulos for transition and nobles metals[9]. This potential
model stems from density functional theory(DFT)[11]. In
the DFT theory, the total energy of a system of N atoms
can be written as

Eln(r)] = Z f(p = €)ei + Fln(r)] (1)

where the first term is the band structure energy. In
a self-consistent calculation the eigenvalues €; and charge
density n(r) are determined self-consistently via the Kohn-
Sham equations[11], u is the chemical potential, and the
sum is over all electronic states of the system, f(u — ¢€;)
is the Fermi function. The functional F[n(r)] contains the
remaining part of the DFT total energy: the ion-ion in-
teraction energy, the parts of the Hartree and Exchange-
Correlations not included in the eigenvalue sums, and cor-
rection for double counting in the eigenvalue sums. In
an earlier TB model the electronic band structure energy
was determined from a parameterized Hamaltonian, while
the remaining functional F[n(r)] was parameterized by the



other means, such as, a pair potential method. In the TB
model of Mehl and Papaconstantopoulos, they based on
the fact that the DFT allows an arbitrary shift in the po-
tential, and developed an alternative method of applying
tight-binding to Eq. (1). By a shift[9] they transformed
eq. (1) into the form of eq. (2):

Eln(r)] = Z f(u' = €)e; (2)

Thus, such a tight-binding method may solve the total
energy problem of eq. (2), instead of eq. (1), and does not
resort to an additional term.

Going a step further, Mehl and Papaconstantopoulos
solved the problem by the two-center slater-Koster formu-
lation[12] with a non-orthogonal basis. In this case, three
types of parameters: on-site parameters, Hamiltonian pa-
rameters and overlap parameters need to be calculated.
The on-site parameters represent the energy required to
place an electron in a specific orbital and depends a local
environment, Hamiltonian parameters represent the matrix
elements for electrons hopping from one site to another,
and overlap parameters describe the mixing between the
non-orthogonal orbitals on neighbor sites. The eigenvalues
€ can be determined once these parameters are evaluated
for a given structure. In the model, Mehl and Papaconstan-
topoulos gave on-site parameters, Hamiltonian parameters
and overlap parameters the following analytical forms.

The on-site parameters vary with local environment and
are defined as a Birch-like form
hia = az, + b0 + e,

2
s p; (3)

where i denotes the type of atom on site i, a expresses
s, p, d orbitals, and the local environment p is determined
by defining a pseudo-atomic density for each atom

pi = Zexp[—%Rij]Fc(Rij) (4)
i

In this expression A is a parameter which depends on
the atom types, R;; is the distance between atoms i and
j, Fe is an university cutoff function chosen to simplify the
calculations.

F.(R) = {1+exp[(R~Ro)/1]} ()

The two-center Slater-Koster hopping terms (Hermilto-
nian parameters) are simply plonomials times the cut-off
function.

Py(R) = (e, + f, R+ f, %) expl—g2 RIF.(R) (6)

where v indicates the type of interaction (e.g. sso, pdn,
etc.).

So does it, the overlap parameters are also assumed to
have the same functional form as eq(6).

Finally, in this method, the potential parameters (), Ry,
l,a,b,c, d, e, f, f,and g,) are determined by requiring that

the tight-binding method reproduce the first principles to-
tal energies and electronic band structures of fcc and bcc
as a function of volume for these metals[9]. This method
has been shown to give reliable structural behavior, elastic
constants, phonon frequencies, vacancy formation energies,
and surface energies for the fcc metals. In the present work,
we use the method to study the stacking fault of gold. The
potential parameters are the new set of potentials parame-
ters for Au and may be obtained from the World Wide Web
at http://cst-www.nrl.navy.mil/bind/. The Programs used
in this work is from the static version 111 of Mehl. This
program does not do calculations for atom relaxation. We
have revised it and added a simulated annealing code to
this program.

III. GENERALIZED STACKING FAULT STRUCTURES AND
ENERGIES

As Mehl and Papaconstantopoulos did[9], we model the
< 112 > slip on a (111) slip plane of metal Au by con-
structing a supercell which consists of twenty close-packed
(111) planes of Au atoms. One Au atom in each plane is
part of the basis of the supercell. The primitive vectors of
the supercell take the form

- >
a; = iaoy + 5&02
1 . 1
az = jaod + 5007 (7)
ag = (4+ PaoZ + (44 2aof — (4 - Fao?

where aq is lattice constant, ¢ represents the stacking
fault variable, and represents a displacement of the atom in
the boundary plane along the fault vector f in the < 112 >
direction. When ¢ = 0 the periodic crystal is a perfect fcc
system ABC|ABC, where | denotes a “boundary plane”.
When ¢ = 1, the atoms at the interface are in an hcp or-
dering, that is, the stacking at the interface is ABC|BC' A
rather than ABC|ABC'. In this calculation we only con-
sider the relaxation of atom along the direction of < 111 >.
The atoms in the three atom layers that are the three near-
est to and over the boundary plane and the atoms in the
other three atom layers that are the other three nearest to
and below it are allowed to relax. We define the first inter-
layer spacing as the spacing between two atom layers that
are the nearest to the boundary plane, the second inter-
layer spacing as the spacing between the atom layer that is
the first nearest to the boundary plane and the atom layer
that is the second nearest to the boundary plane, and the
third interlayer spacing as the spacing between the atom
layer that is the second nearest to the boundary plane and
the atom layer that is the third nearest to the boundary
plane.

We set simplely the scheme for simulated annealing.
First, we set an initial temperature to 50 K to run the
program 1000 steps, and then the temperature drops to
zero and the program is run for another 1000 steps.

As in all band structure total energy methods, the cal-
culated total energy is determined by summing the eigen-



values over the first Brillouin zone of the lattice. We per-
form this calculation using a regular, uniformly space, and
symmetrized k-point mesh, including the origin. The tight-
binding methods is computational very efficient so to insure
convergence we have used a large number of k£ points, 4808
in the irreduible part of the Brillouin zone of Eq. (7). This
is equivalent to using a mesh of 1202 k points in the the ir-
reducible Brillouinm zone of fcc lattice. The total energy is
calculated by weighting the eigenvalues with a fermi distri-
bution at a temperature of 5 mRy and then extrapolating
to zero temperature. Our numerical results show in Fig. 1
and Fig.2., and the relaxed and unrelaxed SFE, anti-SFE,
together with the results from experiments and first prin-
ciples calculations are listed in Table 1.

Firstly, we see the unrelaxed and relaxed GSF curves for
gold in Fig. 1. The horizontal axis denotes displacement
variable ¢, and the vertical axis denotes energy per unit
area in units of mJ m~2. Either for relaxed one or for un-
laxed one, the both curves have a skewed sinusoidal shape,
as assumed by the early models of Frenkel[13], Macken-
zie[14], and later, by Rice[15]. It is interesting to note that
for the curves the unstability SFE (also calls it anti-SFE)
reaches at a displacement ¢/2. This corresponds to one-
half of the partial Burgers vector b,. This is a value which
one would expect from geometrical considerations. The
first principles calculations and embedded-atom potentials
also find such shape of GSF for Cu, Al, and Ni[5]. This is
in agreement with the present TB potential calculations.
From the figure we also note that there is a far more obvi-
ous relaxation at the site of the unstability SFE (¢ = 1/2)
than the site of SFE (¢ = 1). As well know, the formation
of a stacking fault depends on not only SFE but also anti-
SFE. The larger the anti-SFE is, the more difficult to form
a stacking fault is. Thus, in order to obtain an accuracy
anti-SFE, it is necessary to include an atom-scale relax-
ation. We list relaxed SFE (vsr), anti-SFE (v,s) for Au,
together with the results from the first principles calcula-
tions, as well as, experiments in table 1. The experimen-
tally determined value of v,y of Au is at the range of 10-60
mJ m2[8]. In the experiment, the precise determination
of SFE is some difficult and it depends on experimental
technique and has errors of unknown magnitude. By form-
ing weighted mean value, the SFE of Au is 50 mJ m~2[8].
The results from the first principles calculations is 50 mJ
m~2 or so[6], [7]. In our calculations the SFE is 46 mJ
m~2. Thus, the result using the TB potentials of MP is
in extreme agreement with the first principles calculations
and the experiments. In the calculations of MP, the unre-
laxed SFE and anti-SFE are 50 and 129 mJ m~2 for Au.
In our calculations the values are 50 and 127 mJ m~2, re-
spectively, and in good agreement with their calculations.
From the table and Fig. 1 we also see that the SFE is
reduced by 6% and the anti-SFE is reduced over 20% by
atom relaxation.

Now let us see the atom-scale structure about general-
ized stacking fault. Fig. 2 shows the changes of atom
layer spacings by the atom-scale relaxation. From the fig-
ure we can see that the first interlayer spacing have the

largest change and contracts within the whole range of ¢
considered while the third interlayer spacing expands. The
second interlayer expands firstly and then contracts. At
the site of anti-SFE (¢ = 1/2) there is the largest relax-
ation. In addition, we find that the first interlayer spacing
has far larger relaxation than the other two interlayer spac-
ings. Perhaps, these results are a possible clue that in the
gold the interface does not trend to cleave because in this
simulation the atoms in the interfaces trend inter-joint. In
the site of SF (¢ = 1) the interface structure is a hep-like,
we calculate its ¢/a. We obtain that this value is 1.628.
It is close to the ideal value 1.633 very much although it
is tiny smaller than the ideal value. These results are also
some interesting to further test the accuracy of the poten-
tial model when a more accuracy calculation, such as, the
first principles calculations, is performed.

IV. CONCLUSIONS

We use TB potential of MP to study the generalized
stacking fault. The potential predicts the properties of gen-
eralized fault very well. Firstly, the stacking fault energy
is calculated to be equal to 46 mJ m~2 and in very good
agreement with the experiment value (50 mJ m~2) and the
first principles calculations (45 mJ m~2, 59 mJ m~2). The
skewed sinusoidal shape of the generalized stacking energy
with the displacement variable ¢ is identical to the theo-
retical predictions of Frenckle, Mackle and Rice. The site
of anti-SFE is also predicted to be the same as the ideal
value (1/2 of the partial Burgers Vector) from geometrical
considerations. Also, the potential predicts that the first
interlayer spacing contracts for the all ¢ considered while
the third interlayer spacing expands. The second interlayer
spacing firstly expands and then contracts with the varia-
tion of ¢ from 0 to 1. The first interlayer spacing has far
larger relaxation than the other two interlayer spacings.
Perhaps, these are a possible clue that in the gold the in-
terface does not trend to cleave because in this simulation
the atoms in the interfaces trend inter-joint. In the cal-
culations we find that there are the largest relaxation in
the site of anti-SFE. Finally, the potential predicts that
the ¢/a of the stacking fault structure is slightly smaller
than the ideal value: 1.633. In addition, the results about
relaxed GSF structures may be also used to further test
the accuracy of the potential model when a more accuracy
calculation is available.
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Table 1: Stacking fault energy (SFE) and anti-SFE for
Au. The two rows of data are given, the first one is for
unrelaxed ones, the second one for the relaxed.

Energy (mJ m—2) This work Exp. the first principles = MP
anti — SFE 127 129¢
102
SFE 50 59b 45¢ 50%
46 504
@ Ref. [1]
b Ref. [6]
¢ Ref. [7]
4 Ref. [8]

Figure captions:

Fig. 1. Generalized stacking fault energy as a function of param-
eter ¢ in Eq. (7) for metal Au. The circle line for the calculations
without relaxation and the square line for the calculations with re-
laxation.

Fig. 2. The changes of interlayer spacings (in the unit of au%)
as a function of parameter ¢ in Eq. (7) for metal Au. The circle
line for the change of the first interlayer spacing, the square line for
the change of the second interlayer spacing, and the diamond line
for the change of the third interlayer spacing. Negative values are
contractions in interlayer spacings.
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