
1

Yong Leong, Cheng
HPCES Programme, Singapore-MIT Alliance

Abstract- Automated Guided Vehicle (AGV) Container-
Job deployment is essentially a vehicle-dispatching
problem. In this problem, the impact of vehicle dispatching
polices on the ship makespan for discharging and/or loading
operations is analyzed. In particular, given a storage
location for each container to be discharged from the ship
and given the current location of each container to be
loaded onto the ship, the problem is to propose an efficient
deployment scheme to dispatch vehicles to containers so as
to minimize the makespan of the ship so as to increase the
throughput. The makespan of the ship refers to the time a
ship spends at the port for loading and unloading
operations. In this paper, we will compare the performance
of current deployment scheme used with the new proposed
deployment scheme, both with deadlock prediction &
avoidance algorithm done in previous study [1]. The
prediction & avoidance algorithm predicts and avoids
cyclic deadlock. The current deployment scheme, namely
pmds makes use of a greedy heuristics which dispatches the
available vehicle that will reach the quay with the minimum
amount of time the vehicle has to spend waiting for the
crane to discharge/load the container from/onto the ship.
The new deployment scheme, namely m c f aims to
formulate the problem as a minimum cost flow problem,
which will then be solved by network simplex code. The
two simulation models are implemented using discrete-
event simulation software, AutoMod, and the performances
of both deployment schemes are analyzed. The simulation
results show that the new deployment scheme will result in
a higher throughput and lower ship makespan than the
current deployment scheme.

I. INTRODUCTION

One of the world’s leading port operators, PSA Corporation
based in Singapore, is planning to automate its container
transportation within the container terminal by
implementing an Automated Guided Vehicle (AGV)
System (AGVS) in its new, highly automated container
terminal. Typical operational planning and control
problems in such system are: dispatching of AGVs to
containers in the terminal, routing of AGVs and controlling
traffic in the network of lanes and junctions. In this project,
we consider one aspect of the terminal operation, which is
to dispatch AGVs to containers in the terminal.

Each container corresponding to a ship is a job and there
are 2 types of job movements, discharging/unloading

(movement from quay to yard) and loading (movement
from yard to quay). We assume that we are given the crane
job sequence for each quay crane serving the ship. The
crane job sequence for each quay crane consists of the
following information.
• A sequence of jobs that will be discharged from/loaded

onto the ship,
• A set of potential storage locations in the yard area for

each container to be discharged from the ship and is
already determined.

The job’s pickup and drop off location is denoted as the
source location and destination location of the container to
be loaded onto and unloaded from the vehicle.

II. PROBLEM STATEMENT

The AGV dispatching problem is to deploy AGVs to serve
all the container jobs such that all the time constraints for
all jobs are met. This makes sure that an AGV has to reach
the quay crane before the time the container is to be
dropped off or picked up by the quay crane. If this
constraint is satisfied by the deployment scheme, the
terminal is operated at a throughput rate that is pre-
specified. However, the queuing of AGVs to queue at the
quayside is undesirable as it creates congestion at the
quayside, hence another objective of the deployment
scheme is to reduce the waiting time of the AGVs at the
quayside when they are waiting for the quay crane to pickup
or drop off containers onto it. Although an AGV can carry
either one or two containers at a time, only the performance
of a unit capacity AGV will be studied in the simulation.

An efficient way to solve a unit capacity vehicle-
dispatching problem is to first formulate the whole
deployment problem as a network flow problem. A network
simplex algorithm with an upper bound technique, which is
a specialized revised simplex algorithm, can solve the
problem efficiently by exploiting the structure of the
network flow problem. The linear algebra of the simplex
algorithm is replaced by simple network operations. Ahuja,
Magnanti, and Orlin [2] describe the (primal) network
simplex algorithm and gave pseudo-codes and
implementation details. An implementation of the primal
and dual network simplex algorithm is presented by Löbel
in [3].

III. CURRENT DEPLOYMENT SCHEME,
pmds

Simulation Study of a Semi-Dynamic AGV-
Container Unit Job Deployment Scheme

2

The general rule behind the deployment scheme is based on
a greedy heuristic that aims to dispatch vehicles to jobs
such that the time each vehicle spends waiting for the quay
crane to serve a job is minimized. For each quay crane, the
predetermined crane job sequence, consisting of n jobs may
consist of only unloading jobs (or “u” job) or only loading
jobs (or “l” job) or a combination of both unloading and
loading jobs (or “u/l” job). In the latter case, the job
sequence consists of two parts: the first part includes all the
“u” jobs followed by all the “l” jobs. For each “u” (“l”) job,
there is a predetermined drop-off (pickup) point in the yard,
which is the location of the job. All the jobs are arranged in
the order of First In First Out (FIFO) basis based on the
earliest appointed pickup/drop off time of the job at the
quayside.

In the greedy heuristic, the first k jobs are assigned, each to
a single AGV. The next job is assigned to the AGV such
that the AGV will reach the location at a time that will
minimize the AGV waiting time for the crane to
unload/load the “u”/“l” job to the vehicle. Specifically,
when assigning a “u” job, the AGV that has the closest
arrival time at the quayside to the appointed pickup time of
the job will be dispatched to this job. Similarly, when
assigning a “l” job, the AGV that has the closest arrival
time at the quayside to the appointed drop off time of the
job will be dispatched to this job. Normally for “l” job, the
AGV that can reach the job source at the yardside at the
earliest time is dispatched since it needs to travel a longer
distance from current position to the yardside and to the
quayside compared to a “u” job. The deployment scheme
focuses on deployment of one job at a time.

Design of the deployment scheme, pmds
Before actual deployment, the planning of the job
deployment time is done such that the 1st 4 jobs per crane
will be assigned an initial appointed pickup/drop off time.
The fifth job per crane will be assigned when the service of
the 1st job at the quay has actually been completed. The
assignment of the sixth job will depend on the completion
of the 2nd job and so on. The planning period is effectively 4
jobs ahead. For the 1st 4 jobs, the appointed pick/drop off
time of the ith job will be
Appointed time = ship discharge time + (i-1) * time window

For the next subsequent jobs after the 1st four, the appointed
pickup/drop off time of the jth job will be
Appointed time = (j-4)th actual pickup/drop off time + 4*
time window

Thus, for each crane, there are only 4 jobs at each time that
are assigned an appointed pickup/drop off time.

Before calculating the expected waiting time, the status of
the AGVs must be determined. AGVs can be in the
following 4 states, “retrieving”, “delivering”, “going to
park” and “idle or parked” status. Only AGVs that are
neither in the state of “retrieving” the next load nor being
assigned to the next load are deployed in the current

deployment scheme, pmds. The waiting time for job Li, for
the remaining 3 states of the AGV is calculated as follows:
If the job Li is a “u” job,

1. If the AGV is “delivering” the current job, Lj,
Distance traveled by AGV, Dist = distance(AGV
current position, L j destination) + distance(Lj

destination, Li source)
Waiting time for Li = Li appointed pickup time –
(Dist/Average Velocity + crane average operating rate
for Lj)

2. If the AGV is “going to park”, going towards its assigned
park location,

Distance traveled by AGV, Dist = distance(AGV
current position, AGV destination) +
distance(AGV destination, Li source)
Waiting time for Li = Li appointed pickup time –
Dist/Average Velocity

3. If the AGV is “idle”,
Distance traveled by AGV, Dist = distance(AGV
current position, Li source)
Waiting time for Li = Li appointed pickup time –
Dist/Average Velocity

If the job Li is a “l” job, the value of “Dist” will be
increased by another distance(Li source, Li destination).
Moreover, the waiting time will be decremented by another
yard crane average operating rate for Li.

The whole deployment scheme can be visualized in Figure
1.

Figure 1:A visualization of the deployment scheme, pmds

The determination of the average velocity of each AGV is
important since it is the only parameter that will affect the
time information. The average velocity will be determined
based on the historical statistical data information.

IV. PROPOSED DEPLOYMENT SCHEME,
mcf

The proposed deployment scheme can be formulated as a
minimum cost flow problem (mcf) and solved with the
network simplex algorithm. The network simplex code is

For job Lj

Deployable Vehicle list

Select vehicle with
minimum waiting
time

• AGV 0

• AGV 1

• …

Vehicle list

• Job Lj • AGV m

Assigned

• AGV k

• AGV m

• …

3

written in ‘C++’ language and is easily available on the
Web [3].

The containers to be served and the AGVs to be deployed
can be formulated as nodes in the network. Assume in this
problem, there are m number of AGVs and n number of
containers or jobs. Altogether, there are a total of m+2n+1
nodes. The m AGV nodes can be regarded as source nodes
and there is 1 sink node. Each container node will be split
into 1 container node and 1 virtual container node (or
container’ node) giving 2n container nodes as the
transshipment nodes. The reason for splitting each container
node into two is to ensure a flow through the node, i.e. a
vehicle must pickup the container. This will be explained in
the following.

Given a network G (N, A), where N is a set of nodes and A
is a set of arcs. The following needs to be defined before
forming the network.
• N = {NAGV ∪ NJOB ∪ NJOB’ ∪ NS}. The set of nodes, N

is split into 4 mutually exclusive set of nodes where
NAGV is the set of m number of AGV nodes; NJOB is the
set of n number of container nodes; NJOB’ is the set of n
number of virtual container nodes and NS is the set of
one sink node. The labeling of the nodes in each set is
given as follows:

o NAGV = {1,2, …, m}
o NJOB = {m+1, m+2, …, m+n}
o NJOB’ = {m+n+1, m+n+2, …, m+2n}. The

m+1 node in NJOB corresponds to m+n+1
node in NJOB’, and m+2 node corresponds
to m+n+2 node and so on.

o NS = {m+2n+1}
• A = {AJJ’ ∪ A\ AJJ’}. Similarly, the set of arcs, A is split

into 2 mutually exclusive set of arcs where AJJ’ is the
set of arcs flowing between container node, NJOB to its
corresponding container’ node, NJOB’ and A \ AJJ’ will
simply be the set of the remaining arcs that excludes
arcs in AJJ’.

o AJJ’ = {(i, j)∈A | i∈NJOB, k , j∈NJOB’, k , k =
1,2,…,n}. NJOB, k and NJOB’, k refers to the
kth element in the set of NJOB and NJOB’

respectively.

Alternatively, the problem can be formulated
mathematically as:
(N1) minimize ∑

∈Aji
ijij fc

),(

subject to

AGV
NNj
ij Nif

SJOB

∈∀=∑
∈

,1
U

(1)

S
NNj

ji Nimf
JOBAGV

∈∀−=∑
∈

,
'U

(2)

'
\),(),(

,1
' '

JOB
AAji Aij

jiij Niff
JJ JJ

∈∀=−∑ ∑
∈ ∈

(3)

JOB
Aji AAij

jiij Niff
JJ JJ

∈∀−=−∑ ∑
∈ ∈

,1
' '),(\),(

(4)

'),(,0 JJij Ajif ∈= (5)

'\),(,10 JJij AAjif ∈≤≤ (6)

In (N1) both equations (3) and (4) will ensure the container
i be picked up by the AGV where each container i is a sink
node and virtual container i’ is the source node. Take note
that the arc costs for arcs (i, j)∈AJJ’ and for arcs (i,
j)∈A\AJJ’, ∀i∈N\NS and ∀j∈NS are equal to zero since
container i and j belongs to the same container and for
vehicles to end at final destination after pickup respectively.

An example for both formulations is illustrated below.
Assume there are 2 AGVs to be deployed and 4 container
jobs to be served. Thus,
• NAGV = {1,2}
• NJOB = {3,4,5,6}
• NJOB’ = {7,8,9,10}
• NS = {11}
• AJJ’ = {(i,j)∈A | i∈NJOB, k, j∈NJOB’, k, k = 1,4}

The shaded nodes are the AGV nodes. An example of the
network based on the formulation in (N1) is illustrated in
Figure 2. The numbers in brackets indicate the lower and
upper capacity of the arc flows in AJJ.

Figure 2:Example of a network of 2 AGVs and 4 containers
using formulation (N1)

Based on the idea of the waiting time from the current
deployment scheme, pmds, each arc cost can be thought of
as the value of the time difference between the next job’s
appointed pickup/drop off time at the quayside to the
current job’s appointed time in the quayside plus some
travel time; or the time difference between the next job
appointed pickup/drop off time in the quayside to the
current AGV ready time plus some travel time. To
elaborate further, the calculation of the arc costs can be split
into 2 sections: arc cost between an AGV node and the next
job/container i node and arc cost between job i’ node and
the job j node.

1

2

3

4

7

8

5

6

9

10

11

(0,0)

(0,0)

(0,0)

(0,0)

0

0

c13

c14

c24

0

0

0

0

c26

c75

c
76
c85 -2

1

1

0

0

0

0

-1 1

-1 1 -1 1

-1 1

4

Arc cost of arcs flowing from AGV to container node

As mentioned, the job’s pickup location is denoted as the
source of the container to be loaded onto the AGV and the
job’s drop off location is denoted as the destination of the
container to be unloaded from the vehicle. In addition, the
time at which the vehicle is ready to be deployed is denoted
as the vehicle ready time. Given that the job’s source and
destination are known and the AGVs’ positions can be
monitored at all times, the vehicle ready time can be
calculated.

Each AGV can be in the following 4 states. Based on the
status of the vehicle and the information given above, each
vehicle’s ready time can be calculated as follows:
1. If the AGV is in the state of “retrieving” the next

job, Lj at current time,
AGV expected total distance travel, Dist =
distance(AGV current position, Lj source) +
distance(Lj source, Lj destination)
AGV ready time = current time + Dist/ Average
velocity + Crane operating time rate at Lj source +
Crane operating time rate at Lj destination

2. If the AGV is in the state of “delivering” the job,
Li it carries at current time,
AGV expected total distance travel, Dist =
distance(AGV current position, Li destination)
AGV ready time = current time + Dist/ Average
velocity + Crane operating time rate at Li

destination

3. If the AGV is in the state of “going to park” at
some location at current time,
AGV expected total distance travel, Dist =
distance(AGV current position, AGV destination)
AGV ready time = current time + Dist/Average
velocity

4. If the AGV is in the state of “idleness” or remain
at its current position at current time,
AGV ready time = current time

If the jobs Lj and Li are “u” jobs, the crane-operating rate at
the source is the quay crane-operating rate; otherwise the
crane-operating rate at the destination is the yard crane-
operating rate.

The arc cost from the AGV node to the container/job node
is ready to be determined. There are 2 cases to this situation
1. If the next job, Lj is a “u” job,

Dist = distance(AGV final destination, Lj source)
Arc cost = Lj appointed pickup time at quay –
(AGV ready time + Dist/Average Velocity)

2. If the next job, Lj is a “l” job,
Dist = distance(AGV final destination, Lj source) +
distance(Lj source, Lj destination)

Arc cost = Lj appointed drop off time at quay –
(AGV ready time + Dist/Average Velocity + yard
crane average operating time rate for Lj).

The AGV final destination will be the expected
destination of the next or current job served if it is
in the state of “retrieving” or “delivering” at the
current time respectively; or the expected
destination of its park location or current position
if it is in the state of “going to park” or “idle” at
the current time respectively.

Arc cost of arcs flowing from container i’ to
container j node

The calculation of the arc costs from one container to
another container node is slightly than the former. Since a
job can be either a “u” or “l” job, there are 4 cases to this
situation.
1. If Li is a “u” job and Lj is a “l” job,

Dist = distance(Li source, Li destination) +
distance(Li destination, Lj source) + distance(Lj

source, Lj destination)
Arc cost = Lj appointed drop off time at quay – (Li

appointed pickup time + Dist/Average velocity +
yard crane average operating rate for Li and + yard
crane operating rate for Lj)

2. If Li is a “u” job and Lj is a “u” job,
Dist = distance(Li source, Li destination) +
distance(Li destination, Lj source)
Arc cost = Lj appointed pickup time at quay – (Li

appointed pickup time + Dist/Average velocity +
yard crane average operating rate for Li)

3. If Li is a “l” job and Lj is a “l” job,
Dist = distance(Li destination, L j source) +
distance(Lj source, Lj destination)
Arc cost = Lj appointed drop off time at quay – (Li

appointed drop off time + Dist/Average velocity +
yard crane average operating rate for Lj)

4. If Li is a “l” job and Lj is a “u” job,
Dist = distance(Li destination, Lj source)
Arc cost = Lj appointed drop off time at quay – (Li

appointed drop off time + Dist/Average velocity)

The distance traveled or the 4 cases are illustrated in Figure
3. It is possible that there is a negative arc cost value. For
negative arc cost value between the two nodes, it means
that the AGV that flows through this node is late for the job
appointed time in the quay or the AGV can serve job i but
will be late for the next job j. Thus, a large positive penalty
cost will be assigned for flow on this arc to allow some
lateness for the AGV to pickup the job to safeguard against
insufficient resources (AGVs).

5

Figure 3: Illustration of the calculation of the distance
traveled for the 4 cases

Design of the proposed deployment scheme model, mcf

All incoming and unassigned containers at different points
in time will be inserted into a queue based on the job
appointed time in the quayside on First-in First out basis
(FIFO) basis. We denote this queue as Q1. All the jobs in
Q1 and all AGVs will be formulated in the network based
on formulation in (N1). The jobs that are assigned to
vehicles generated by the network simplex solution will be
taken out of the queue, Q1.

However, it is not practical to assign all the jobs in Q1
based on the given solution because of the uncertainty of
the traffic conditions. Some late jobs could affect the rest of
the later jobs exponentially. Moreover, the solution might
not be optimal due to the change of the job status. Thus,
there will be some cut-off time where the simulation needs
to be halted temporarily and re-planning for the job
appointed pickup/drop off time needs to be done. The
change in the job status results in a semi-dynamicness of
the deployment scheme.

Before actual deployment, all jobs will be assigned with an
initial appointed pickup/drop off time. The time interval
between jobs will be a constant time interval dictated by the
length of time window. After re-planning, the rest of the
later un-deployed jobs will be assigned a new appointed
pickup/drop off time based on the same time window
interval from the 1st un-deployed job. The new appointed
time of the 1st un-deployed job will be determined by the
actual service time of the last job at the quayside with a
grace period of 4 minutes.

After every k number of jobs for all cranes have been
deployed, the re-planning of the appointed pickup/drop off
time and its mcf problem formulation will be done based on
the existing jobs in Q1. For every simulation halt, any new

incoming jobs will be appended after existing jobs in Q1.
The number k depends on when the re-planning should be
done based on historical traffic condition. Similar to the
pmds model, k is selected to be 4.

Due to lesser resources (AGVs) compared to the number of
jobs waiting to be serviced, it is possible that there is more
than one job assigned to an AGV. In order to prevent AGVs
serving more than one jobs at the same time, each AGV
will be given a “to-do” queue list. Thus, there is equal
number of “to-do” queues as the number of AGVs.
Similarly, the jobs for each “to-do” queues are based on
FIFO and the AGV will service the earliest assigned job.
Only jobs serviced by their respective AGVs will be
removed from the Q1 but the remaining jobs in each “to-
do” queues will still remain in the Q1 either waiting to be
serviced later or reformulated and solved by mcf code. For
each simulation halt, the existing jobs in the “to-do” list
will be emptied.

The design of the mcf model in AutoMod simulation model
needs to interface with the MCF solver (network simplex
solver) in order to solve the network and obtain the solution
to deploy the vehicles to the jobs. Due to the restriction of
the file handling process in Automod simulation, a C
function needs to do the input/output file interface. This
interface is shown in Figure 4.

Figure 4: Illustration of the C interface with the AutoMod
model for the mcf model

V . D E A D L O C K P R E D I C T I O N &
AVOIDANCE ALGORITHM

From Coffman, Elphick and Shoshani [4], the four
conditions that must be satisfied before a deadlock is
concluded are as follows:
• Mutual exclusion: 2 or more processes cannot use a

resource at a time
• No preemption: When a resource is being used, it is not

released until the process using it finishes with it.
• Hold and wait: A process that is holding at least one

resource and is waiting to acquire additional resources
that are currently being seized by other processes.

d2

QUAYSIDE

YARDSIDE

Case 1: Li "u" job, Lj "l" job

job Li source

job Li destination job Lj source

job Lj destination job Li source

job Li destination

job Lj source

Case 2: Li "u" job, Lj "u" job

d1 d3

Dist = d1 + d2 + d3

d1 d2

Dist = d1 + d2

job Lj source

job Lj destination

Case 3: Li "l" job, Lj "l" job

d2

Dist = d1 + d2

job Li destination

d1

QUAYSIDE

YARDSIDE

job Lj sourcejob Li destination

d1

Case 4: Li "l" job, Lj "u" job

Dist = d1

3. input
2. call up

1. call upAutomod
model

Input fileC func.
network formulation

C func.
MCF
solver

inputcall up

Output
file

generate

C func. trace the
arc flow

Output
file

generate

6

• Circular wait: A closed chain of processes in which
each process is waiting for a resource occupied by next
process in the chain

Thus, a deadlock will not occur if one of the conditions
does not hold. For AGVS, the 1st three conditions are
always true and only the last condition can be prevented.
The resources mentioned in the four conditions refer to
zones of the path and the processes refer to the AGVS.
“Mutual exclusion” is obvious since two vehicles cannot
occupy a zone at the same time. This is a condition required
by the control system to prevent two vehicles from
colliding with each other. “No preemption” is also obvious
because, the vehicle must be in any zone at a given time
and the movement of the vehicle into another zone satisfies
the condition. As for the “Hold and Wait” condition, it is
also satisfied in the case of the AGVS, as each vehicle has
to be in a zone at any one time and is waiting to move into
its next designated zone. The last condition, “Circular
Wait” is not always true in AGVS and this is where the
deadlock prediction can be used to detect whether a
deadlock is imminent.

Figure 5: A cyclic deadlock formed by the vehicles

Proposed Deadlock Prediction Strategy

Due to the unavailability of fast methods of predicting
deadlock in the literature, Wee and Moorthy[1] proposed a
proposed one-zone step deadlock prediction algorithm as
follows:
Its definition of the numbers in Figure 6 is listed as follows:
1. Extract the location (Lp) (or control points) of its

next zone of the selected vehicle (say Vi) that is
about to enter a new zone. For every sampling
time in the control system, i.e. 1.5 sec to 2 sec, a
check is done to see if a vehicle has moved to a
new zone or not. If it has, the vehicle is selected so
that a deadlock prediction for its next zone step is
done

2. Check whether this next zone (Lp) is occupied by
another vehicle

3. Extract the location (Lq) of Vi’s next 2 zone (i.e.
the “next next” zone)

4. Check whether any other vehicle occupies Lq

5. Extract next zone location (Lr) of the vehicle that
is occupying Lq and update Lq to the location Lr

6. Return “vehicle is waiting for the block to clear”
7. Return “vehicle is safe to proceed, deadlock is not

predicted”
8. Check whether Lp is equal to Lq

9. Return “vehicle is not safe to proceed, deadlock is
predicted”

Figure 6: Flowchart of the one-zone step deadlock
prediction algorithm

It is possible to extend this idea of one-zone step to the two-
zone step prediction to facilitate a better performance by
predicting the deadlock earlier. However, there is a
disadvantage of this form of prediction in the
implementation as mild approximations are done here.
These kinds of approximations come into effect because the
vehicles do not travel from one point to another in exactly
the theoretical time required. This difference between the
expected time and the actual time creates an error. This
error of prediction gets larger as more zone steps are
predicted in advance. Thus, it is sufficient to use one-zone
step prediction and implement the necessary deadlock
avoidance strategy.

Proposed Deadlock Avoidance Strategy
Normally, there are two ways to resolve deadlock:
detection-resolution and prediction-avoidance. The
prediction-avoidance strategy is used since this strategy will
minimize the number of formation of deadlocks.

The two strategies used in the avoidance measure consist
of:
• Wait and Proceed
As the name suggests, if a vehicle predicts a deadlock in its
route, it will stop and wait at the same location until at least
one vehicle is cleared from the deadlock prediction region
• Rerouting
Due to the time constraints, a semi-dynamic routing
strategy instead of dynamic routing strategy is proposed. To
facilitate deadlock prediction and avoidance, a set of static
route for each AGV is ascertained before moving to the
destination. The routes are stored in a table and when an
AGV requests for its next location, the next zone or

Zone1

Zone2

Zone3

Zone4

1

2

No

3

4

5

8

6

7

9

Yes

No

Yes

Yes

No

Occupied?

Occupied?

Equal?

7

location is returned for the particular requesting AGV.
Thus, every AGV will follow its ascertained route from the
stored information at one control point or location at a time.

The semi-dynamic rerouting strategy comes to play, and
routes need to be recalculated when one of the conditions
holds:
• The AGV reaches the destination and picks up a new

job and is ready to move to the job’s destination.
• The AGV reaches the destination and drops off a job

and is ready to move to the next job’s pickup location.
• The deadlock prediction algorithm predicts the

formation of a deadlock in the next location or a new
zone and requests for a new route for the AGV.

It is not necessary for the routing strategy to be dynamic
since it is costly and moreover, the deadlock formation is
not very frequent. The route is calculated using the
Dijkstra’s algorithm to find the shortest path tree (SPT).
The general outline of the Dijkstra’s algorithm and the
implementation are explained in detail by Ahuja, Magnanti
and Orlin [2] and Gallo [5]. The performance of the shortest
path algorithms is dependent on the network and there are a
lot of variants of the shortest path algorithms specific to the
underlying network.

To further enhance the prevention-avoidance measure, a
one-zone step deadlock resolution strategy is also
implemented. It is still possible for deadlocks to form due
to the uncertainty of traffic especially from the loading and
unloading effects. Thus, deadlock resolution is
implemented at the quay and yard side where loading and
unloading occurs. The resolution algorithm will assign a
virtual intermediate control point to the AGV when
deadlock occurs at the quay or yard side. After completion
of the loading/unloading process, this AGV is prepared to
move on to its new destination. If it encounters a cyclic
deadlock meaning there is a cyclic request of their next
control points by other AGVS, this particular AGV will
reroute to this virtual location that will break the cyclic
request. Otherwise, this AGV will follow the pre-assigned
shortest route.

VI. RESULTS & DISCUSSION

The layout of the four berths used in the simulation of the
two models, pmds & mcf is shown in Figure 7. A scenario
showing the AGVs waiting to pick up or drop off container
jobs on the berth side and container storage area in the yard
side can be shown in Figure 8

Figure 7: Layout of the four berths in the simulation model

Figure 8:Scenarios showing AGVs picking/dropping jobs in
the berth and yard areas

Specifications of the two models
Both models use the same specifications and are as follows:
• Each vehicle is assumed to be able to ferry only a unit

load from quay to yard side or vice versa at any point
in time.

• The service time interval is deterministic and the re-
assignment of the service time will be done mentioned
previously.

• A berth is randomly assigned to an incoming ship. If
the berths are full, the next incoming ship will wait in
the queue until the previous ship has completed
discharging/unloading.

• The arrival of the ship is assumed to follow an
exponential distribution of mean 60 minutes. This
means the arrival rate for each ship follows an
exponential distribution where 63% of the time the
arrival rate is less than 60 minutes and 37% of the time
the arrival rate is more than 60 minutes.

• Each container storage yard is made up of 9 clusters.
• Each cluster is made up of 3 control points.
• At any one time, a single cluster can only be used by a

quay crane for either discharging or loading process. It
is possible to move the quay cranes but the movement
is not simulated here.

• 4 quay cranes are assigned per vessel.
• The distribution of workload of each quay crane is as

follows:
• 1st quay crane: 18%
• 2nd quay crane: 25%
• 3rd quay crane: 27%
• 4th quay crane: 30%

• The time taken for a quay crane to load and unload a
container follows a triangular distribution of (1.375,
1.708, 2.113) minutes.

• The time taken for a bridge crane to load and unload a
container follows a triangular distribution of (1.593,
2.172, 2.728) minutes

• The crane average operating rate is taken to be the
average of the 3 given values of the triangular
distribution illustrated above.

• The average speed of the vehicles for each scenario is
determined by the lower statistical mean of the
historical data of previous runs of the two models.

AGVs picking/dropping load in the berth side

AGVs picking/dropping load in the yard side

8

The results are illustrated as follows:

Comparison of effects of the number of AGVs

In this simulation, the comparison of the effect of the
number of AGVs on the throughput of the two models is
made. The simulation was run with 40, 60, 80 AGVs over a
period of 4 days. The inter-service time or time window is
fixed at 2 minutes. The total number of boxes in the four
berths in a period of 4 days for the two models is shown in
Graph 1.

The makespan of the ship refers to the time a ship spends at
the port performing loading and unloading operations. The
throughput of a ship, measured in number of boxes per hour
is defined as
Throughput = no. of boxes serviced per ship/ship makespan
time

The ship mean makespan in hours for both models are
shown in Graph 2. The average throughput in number of
boxes per hour for both models is shown in Graph 3. The
mean makespan and mean throughput values are calculated
by taking the mean of all the ships’ throughput for all four
berths.

40 AGVs
60 AGVs

80 AGVs

PMDS

MCF

7.43

5.91 6.05

7.79

6.21 6.37

0
1
2
3
4
5
6
7
8

makespan
in hours

Graph 2: Ship average makespan

40 AGVs
60 AGVs

80 AGVs

PMDS

MCF

58.7981

72.6599
71.1835

53.3461

66.2966

64.6772

50

55

60

65

70

75

Graph 3: Average throughput

Boxes per hour

From the results above, the throughputs of the ships in the
mcf model are 9-10% higher than that of the pmds model. In
both models, there is a very slight 2 % drop in throughput
for 80 AGVs compared to the case of 60 AGVs. The
throughput seems to increase as the number of AGVs
increase. Interestingly, the throughput seems to remain at a
constant rate and drop as the number of AGVs increases to
large numbers. This is most probably because congestion
effects start to become significant when the number of
AGVs increases to a large number while the space of the
layout of the four berths remains the same. The result
shows that the optimal number of AGVs per crane per berth
is in the range of 4-5 AGVs.

Throughput is one of the means to measure the efficiency of
port operations. However, other factors that could affect the
cost of operation should not be neglected. Examples are the
length of time the AGV has to spend waiting for the quay
crane (i.e. AGV is early for the appointed service time) or
the length of time the AGV is late for the appointed service
time.

Theoretically, the selected AGV for each job is expected to
arrive before the job service time. However, due to the
uncertainty of the actual traffic conditions and
comparatively lesser number of resources (AGVs) to jobs,
most AGVs will not arrive exactly on time i.e. at the job’s
appointed service time. There will be some deviations from
the appointed service time. The effects on the length of
mean waiting time for the case where the AGV is early for
the appointed service time and the length of mean late time
for the case where AGV is later than the appointed service
time are investigated. The number of AGVs and their mean
time deviations in minutes for the two models are shown in
Graph 4. The improvement of the time deviations of the mcf
model compared to the pmds model is shown in Graph 5

40 AGVs
60 AGVs

80 AGVs

PMDS

MCF

18,793

21,471

22,825

17,769

20,499

21,797

17000

18000

19000

20000

21000

22000

23000

Graph 1: Total number of boxes serviced

9

40
AGVs

60
AGVs

80
AGVs

Early time - PMDS

Early time - MCF

Late time - PMDS
Late time - MCF

4.52
4.03

4.77

6.59

4.85
5.75

2.99

2.08
1.85

3.61

2.29 2.24

0

1

2

3

4

5

6

7

Graph 4:Mean Time deviations from
appointed service time

minutes

40 AGVs
60 AGVs

80 AGVs

Dev. Early

Dev. Late

31.40%

16.96% 16.95%17.07%

9.26%

17.23%

0.00%
5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

Graph 5:Improvement of mean time deviations
of MCF model

There is some improvement of the mean time deviation of
the mcf model compared to pmds model. This is logical
because the greedy heuristics do not make efficient use of
the resources (i.e. AGVs) compared to the minimum cost
flow model. For both models, the lengths of the mean
waiting time and late time decrease as the number of AGVs
increases as there are more resources catering to the jobs.
The number of AGVs late for the jobs is much more than
the number that are early for jobs because the inter-service
time is too short to factor in the time-travel, the quay and
yard operating rate and possible congestion effects. It is
noted in the simulation that the AGVs are early for jobs
initially but are late for jobs as more jobs are generated.

Effect of the variation of time window

The simulation was run with 80 AGVs over a period of 4
days. The inter-service time or time window was varied
from 1.8 to 2 and 2.5 minutes. Similarly, the total number
of boxes, the ship mean makespan and the mean throughput
in each berth for the two models are shown in Graph 6, 7
and 8.

1.8 mins
2 mins

2.5 mins

PMDS

MCF

22618 22825

21762

21,333
21,797

20,726

19500

20000

20500

21000

21500

22000

22500

23000

Time window

Graph 6: Total number of boxes serviced

1.8 mins
2 mins

2.5 mins

PMDS

MCF

6.58

6.05
6.20

6.89

6.37
6.53

5.6

5.8

6

6.2

6.4

6.6

6.8

7

Time window

Graph 7: Average ship makespan

hours

1.8 mins
2 mins

2.5 mins

PMDS

MCF

70.19
71.18

70.20

63.26
64.68

63.56

60

62

64

66

68

70

72

Time window

Graph 8: Mean throughput

boxes per hour

The performance of the throughput for mcf model is still 9-
10% better than that of the pmds model. For both models,
the throughput will increase when the time window varies
from 2.5 minutes to 2 minutes and decrease when the time
window varies from 2 minutes to 1.8 minutes. Both models
use the job-based approach, so jobs tend to be late. If the
time window is too tight (e.g. 1.8 minutes), there might be

10

more AGVs that are late for the job. On the other hand, if
the time window is more relaxed (e.g. 2.5 minutes), the
number of AGVs that are late is less. The time window
must factor in some allowance for traveling time and the
crane-operating rate.

Discussions and Conclusions

Clearly, the performance in terms of throughput and time
deviations for the mcf model seems to be better than that of
the pmds model. The main reason for the inferior
performance of the greedy approach used in the pmds
model is its “myopic” nature. It assigns vehicles to jobs
without considering other jobs that need to be completed in
future. It only looks one job ahead for each crane at a time.
The min cost flow algorithm in the mcf model on the other
hand considers all jobs and tries to seek an optimum
solution for assigning vehicles to job.

In practice, however, the greedy algorithm is an appealing
solution procedure due to its simplicity and flexibility. The
implementation of the algorithm does not take up too much
of the computational process time and there is no file
input/output involved. The minimum cost flow algorithm in
the mcf model requires a lot of file input/output, which is
time-consuming. This problem is worsened by the poor file
input/output interface provided in AutoMod version 9.0.
Hence, the process time of network formulation is heavily
penalized. However, an improved file-handling interface
will most likely be provided in later versions of AutoMod.
The solving time, on the other hand is very fast. The
number of nodes in the model we have solved is in the
range of O(102) and the number of arcs is in the range of
O(104).

We have also found from results presented in this paper that
the recommended number of deployable AGVs for each
crane appears in the range of four to five. The results also
show that a time interval of two minutes is a suitable length
of time to use for the time window between jobs.

For future research, it will be useful to investigate whether
the routing of the vehicles could be further improved since
efficiency of the port operations rests heavily on both
deployment and routing strategies. In the pmds model, only
four jobs are assigned appointed service times at any one
time. This number of four was selected experimentally from
the observation of traffic conditions during simulation. The
number four may not be optimal and the optimal number of
jobs to have appointed service times is an area for
investigation. In general we want to maximize the number
of jobs that are assigned, subjected to the constraint that
uncertainty in traffic conditions may render assignments of
large number of jobs at any one time impractical. The
assignment of many jobs at one time may lead to
exponential accumulation of late time for jobs when a
vehicle is late for a job. Similarly for the mcf model, we
want to find the optimal number of jobs k to dispatch each
time the network model is solved.
.

VII. REFERENCES

1. H. G Wee, R. Moorthy (2000), Deadlock Prediction
And Avoidance in an AGV System. SMA Thesis.

2. Ravindra K. Ahuja, Thomas L. Magnanti, James B.
Orlin (1993). Network Flows: Theory, Algorithms and
Applications. Prentice Hall.

3. Andreas Löbel (2000). MCF-A network simplex
implementation ver. 1.2.

URL:http://www.zib.de/Optimization/Software/Mcf/index.
html

4. E.G Coffman, M.J Elphick, and A. Shoshani (1971).
System deadlocks. ACM Computing Surveys, 3(2), pp.
67-78.

5. Goirgio Gallo, Stefano Pallottino (1988). Shortest Path
Algorithms. Annals of Operations Research. J.C.
Baltzer Scientific Publishing Company.

6. David Simchi-Levi (1999). Project Summary Report on
AGV deployment Scheme. Northwestern University,
waiting to be submitted in IEEE Transactions

6. Jerry Banks, John S. Carson. II, Barry L. Nelson,
David M. Nicol (2001). Discrete-Event System
Simulation, 3rd Edition, Prentice Hall1

7. AutoSimulations (1999). AutoMod V 9.0 Reference
Manual Volume 1 & 2.

