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ABSTRACT

A theoretical description of a flow composed of reacting monoatomic and diatomic
oxygen molecules in the neighborhood of a flat plate is performed. The recombination reaction
is assumed to take place at the surface of the plate only. The molecular flow is described by the
mean of species distribution functions which satisfy a sequence of coupled Boltzmann-Krook
equations. This kinetic model is completely determined by requiring it to admit the usual
collision invariants and to be compatible with the H theorem.

An asymptotic solution of this Boltzmann-Krook equation is constructed. The
distribution functions are expanded in power of the square root of the Knudsen number of the
problem assumed small. They are required to satisfy boundary conditions on the averaged
hydrodynamic quantities. The first component of the solution yields a contribution similar to
the solution of the Navier-Stokes equations with no-slip condition. The next components
satisfy a sequence of linear equations whose coefficients depend on the solution of the
Navier-Stokes equations. The boundary conditions associated with these higher order iterates
yield a slip proportional to the gradient normal to the surface of lower order quantities.
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Section I

INTRODUCTION

Given some of the current and future applications of the aerospace sciences (e.g. Space

Shuttle, Aerospace Plane, AOTV), a very active area of research in fluid mechanics today is

concerned with hypersonic flight. In particular, hypersonic aerodynamics involve high

temperatures, hence dissociation reactions and the appearance of several reacting chemical

species in the fluid, which greatly complicates the classical treatment. Moreover, the

interaction of such an high-temperature reacting gas with a surface is far from being well

understood. Consequently, the specification of boundary conditions for such flows is

somewhat arbitrary, especially in the case of a transition regime flow where one needs to

consider a slip-condition (see for example the treatment of Gokcen and MacCormack (1989)).

To understand the process going on at a surface, one needs to consider the microscopic motion

of molecules. The theoretical tool for such a study is the particle distribution function, whose

evolutions are described by the Boltzmann equation.

The problem of clarifying the relationship between the Boltzmann equation and the

equations of motion of a continuous gas has been extensively studied during the last decades

(see for instance Grad (1963) and Grad (1963, II) ). One of the major issues was that of

boundary conditions, to which Trilling (1964) made an important contribution. He considered

a simple boundary value problem: the motion of an infinite flat plate parallel to itself, when it

bounds a half-space filled with a monoatomic gas. In particular, he constructed an asymptotic

solution of the Boltzmann-Krook equation for this Rayleigh shear flow problem (By

Boltzmann-Krook equation we mean the simplified model of the Boltzmann equation proposed

by Bhatnagar et al (1954) and by Gross and Krook (1956)).

The purpose of this thesis is to investigate a simplified model of an hypersonic flow over



an infinite flat plate, by using, and eventually adapting, the theoretical approach developed by

Trilling (1964). Before proceeding any further, we need to set the basic hypotheses of the

problem we want to study.

We consider an infinite flat plate of temperature Tw(t) which occupies the plane y=O and

moves in its own plane in a direction parallel to the x axis at a velocity Uw(t). Initially the

upper-half space is filled with monoatomic oxygen, and the plate is impulsively set into motion

at tO-0. Far from the plate, the gas is at rest at a density p,, a temperature To and a pressure

p,,. The plate is assumed to be adiabatic; that means there is no heat transfer at the wall. We

want to investigate the molecular layer near the wall, after a period of time long enough for

intermolecular collisions to have smoothed out the specific initial conditions, and still take into

account the hypersonic nature of the flow.

Assuming that the wall is cold compared to the flow temperature, the recombination

reaction occurs mostly in a layer very close to the wall. In fact, we will consider that the

recombination process occurs only at the wall, and that the 02 molecules created at the surface

are reemitted diffusely, with full momentum and energy accommodation with the wall. Far

from the surface, in the outer layer of the flow, the 02 molecules are dissociated back into O

atoms, as a result of the many energetic collisions they encounter in the outer flow. However,

in the inner layer, we assume that this dissociation reaction does not occur. Therefore, we will

treat the flow of a two component non reacting mixture of O and 02, the recombination process

being taking into account through the specification of the boundary conditions only ( Fig. 1).

Furthermore, we assume that the Knudsen number of the flow is small compared to unity. In

other words, we will consider a continuum or near continuum flow.

In this investigation, we proceed as follows. Starting from the Boltzmann equation, we

derive the general form of the equation of motion of this mixture (Sec. II). Next, we replace

the Boltzmann equation by a simplified kinetic model (Sec. III). Then, we formally expand the

distribution functions, the equations of motion and the corresponding boundary conditions in

power of a small parameter E, related later to physical parameters of the problem (Sec. IV).

O. 02 y

uw, Tw 
x

Fig. 1. Recombination at the surface.



This allows us to construct an iterative solution of our kinetic equation (Sec. V) and the first
order and second order systems will be discussed thoroughly later (Sec VI).



Section II

EQUATIONS OF MOTION

In this section, we define the variables needed to study the motion of a mixture of gases

and derive the general form of the equations of motion of a non reacting mixture of gases.

These equations will be useful later as reference.

II.1 Boltzmann equation

To describe the behavior of a mixture of gases, we introduce different distribution

functions for the components of the mixture - fs(xs,_,t) - (in our case s=1 for O molecules and

s=2 for 02 molecules). Any change in the distribution function fs in the 6 dimension phase

space (x,) is due to collisions both with molecules of the same kind and with molecules of a

different kind. Assuming that the molecules possess only translational degrees of freedom, the

evolution of each distribution function fs in phase space is described by a Boltzmann equation

of the form

Df= Qsr, fr) , s = 1,2 (II.1)
r=1,2

The left-hand-side is the convective derivative in phase space
Dfs _ s s afs (11.2)
Dt at saxs ms * s

where Fs represents the external forces acting on molecules of the s-th kind, and ms is the mass

of a molecule of kind s. The right-hand-side is the sum of the collision integrals over various

components of the mixture, each of which taking account of collisions of molecules of the sth

kind with molecules of the rth kind



Qsr(fs'fr) = f(sfrfsfr)gsrbdbdedtr (11.3)

where gsr is the module of the relative velocity, b is the impact parameter and E the collision
angle ( for a detailed description of the theory, see Kogan (1969) ). Thus, the change in the
state of a mixture is described by a system of equations for the distribution functions fs, all the
functions fs appearing in each of the equations of the system (II. 1).

11.2 Hydrodynamic variables

Multiplying the distribution function fs by various quantities and integrating over the
whole velocity space yield the familiar hydrodynamic variables, depending on position and
time only. We need to define:

- the mass density of particles of kind s

PS = ffsdL (II.4)
9Ps

- the number density of particles of kind s

ns= Ps (11.5)
ms

- the mean velocity of particles of kind s

psVs = ,sfsdLs (11.6)
3
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- the mass density of the mixture

p =1ps  (11.7)
S

- the number density of the mixture

n = Xns (II.8)
S

- the mean velocity of the mixture

pv = ~ 5sV (11.9)
S

- the diffusion velocity of particles of kind s
Vs = vs - v (II.10)

- the peculiar velocity of particles of kind s
cs= - v (II. 11)

- the partial stress tensor of the sth component

asI



(Ps)ij =J ((cs)jfsdý (11.12)
3

- the stress tensor of the mixture

P.. = (Ps)U (II.13)
S

- the temperature of the sth component

-skT s = ~ cfsds (11.14)

3

- the temperature of the mixture

nkT = - skT s  (11.15)
S

- the scalar pressure, and accordingly the equation of state for a perfect gas

p = (Pxx + Pyy + Pzz )= nkT (11.16)
3

- the partial heat-flux of the sth component

qs= CsC2fsd-s (II.17)

3

- the heat-flux in the mixture

q = q s  (II.18)
S

Moreover, we introduce another species temperature, denoted Tss, and defined with respect to

the mean velocity of species s, instead of the mean velocity of the mixture as for Ts

SnskTss (~s) fsds (II.19)

3

It is then easy to show the relation, valid in the two-component case (Appendix A. 1):
2 2

T1 = T 1 + ( 2-V 1 (1.20)31 k P2

and the analog for species 2.

Remark: the components of the vectors x,.,v are respectively denoted by (x,y,z), ((,7, ),

(u,v,w), a bold character stands for a vector.

11.3 Macroscopic equations of motion

In a general problem of aerodynamics, we are not interested in a detailed description of

the distribution functions in the whole position-velocity phase space. What we need is a



macroscopic description of the flow involving the hydrodynamic quantities we have just

introduced. However, this macroscopic description is not independent of the microscopic one.

It is even closely related to it. The equations of motion, involving only the hydrodynamic

variables, are derived by taking moments of the Boltzmann equation.

Integrating equation (II.1) with respect to . yields

dfd = 0 (II.21)

The vanishing of the right-hand side is simply interpreted as the conservation of the total

number of molecules of kind s per unit volume, since we have not allowed chemical changes

to occur as a result of collisions.
If we multiply (II.1) by L and integrate with respect to ts, the right-hand side does not

disappear, because molecules of kind s may exchange momentum with molecules of a different

kind. However, if we sum up the species momentum equations over s, the right-hand side

vanishes because of the conservation of the total momentum. Thus we may write

SID- d., -0 (11.22)

Similarly, if we multiply (II.1) by .2s, integrate with respect to L and sum up over s, we
obtain

2 df =0 (11.23)

The sum of the right-hand-side vanishes because of the conservation of total energy. For a

mathematical proof of the vanishing of the right hand sides of (II. 21, 22, 23), see Hirschfelder

et al, page 460 (1954).

Equations (11.21), (II.22) and (11.23) represent respectively the species density, the total

momentum and the total energy conservation equations. By replacing the hydrodynamic

variables by their definition, taking into account the spatial variation along the y axis only, and

assuming no external forces ( according to the terms of our problem), we derive the equations

of motion of a continuous gas mixture (the derivation of the energy equation is detailed in
appendix A.2)

- conservation of mass of species s (s=1,2)
+P ~ - 0 (II.24.a)

it ay
- conservation of total momentum along the x axis

p + au + -= 0 (II.24.b)



- conservation of total momentum along the y axis

p t+ vy)+ " 0 (II.24.c)

- conservation of total energy

-n aT + +P + P -kTa (II.24.d)

S t ay ) ay xYay YYay 2 ay

Now, we are left with a system of 5 equations for the 5 main unknowns of the problem: pl,

P2, u, v, T, and 5 additional unknowns v1, v2, Pxy, Pyy, qy. Of course, this system is not

closed. The Boltzmann equation can not be replaced by a closed set of partial differential

equations. To obtain a closed set of equations, we need to relate the additional unknowns to the

main hydrodynamic quantities. One way to obtain these so called constitutive relations is to

look for an asymptotic solution of the Boltzmann equation. This is the purpose of the theory of

Chapman and Enskog. However, in practice one uses a slightly simplified version of the

theory. In the next paragraph we review these usual constitutive relations, which one could

establish by using a phenomenological approach.

II.4 The Navier-Stokes equations

The constitutive relations commonly adopted, as found in Anderson (1989, Ch 16), are

presented below:

- Fick's law of diffusion

psVs= -pDs( C s I.25)pV 5 y=-pD5  (11.25)

where Cs is the concentration of species s: Cs = ns /n, and Ds is the diffusion coefficient (In

our case where only two species are present, D 1 and D2 are equal: D1 = D2 = D)

- Law of viscosity

Pxy = -L (II.26.a)ay

Pyy = p - - (II.26.b)

- Law of conduction

qy= - -_ I psVshs (11.27)

where hs is the specific enthalpy per unite mass. Assuming no chemical reaction in the flow

and particles with no internal degree of freedom, hsis given by



hs = 5kT (11.28)
2ms

Combining (II.25),(II.27) and (11.28), we get

qy = a- 2T  D . (11.29)

Putting these expressions into the equations of motion (II.24.a) through (II.24.d) yields

the following equations, which will be referred to as the Navier-Stokes equations

a(sv) - r•Y _p , (II.30.a)
5t ay ay ay

p at y+= 4 (II.30.b)

P + v +P 4 a2
pat y a=vw 3 V (II.30.c)2al a 2 ,

3 T aTG1 2T3ny a -+ y jI T
7 t ay 2

u. 4 v+I P- -3

(II.30.d)
z oy S - )

Furthermore, it is interesting for reference purposes to give the corresponding
boundary-layer equations. In order for us to define independent and dependent dimensionless

variables, we need to introduce an arbitrary length reference L and a small parameter e. The

small parameter e is used to stretch the quantities along the y direction, as required by the
theory of matched asymptotic expansions (see Van Dyke, Ch V, 1964). The dimensionless
variables are

Y y tc 2n.kT)
y (with c= 11.31)EL L P (II.31)

-P - T u v xy - Pyy _ y
P. T- cm=, v c=O P - P Y q 3M- pZci Ep..co

Then, we will obtain up to the first order the following system of equations by expanding the

system (11.30) in power of E and by identifying e as the inverse of the square root of the
Reynolds number (in order to retain the viscous terms in the boundary-layer, as exposed by
Van Dyke, Ch VII, 1964)

aPs a) j
+ •a(Psv)  Pa C s  (II.32.a)

•t +y Pr ay y )ay



8u Ou 2

P at "y = (II.32.b)

S=0 => nT = 1 (II.32.c)
Ty

5Yv B •  2 T 5Le[ T n .+ n2R 2 )T =0
4  y Pr y2  2Pry y) =0 (II.32.d)y Pray2 2Pray Lay

where the bars have been omitted but all quantities are dimensionless. R1 is defined as

R * (11.33)
1 2n.ml

and R2 is defined similarly. The Prandtl, Lewis and Reynolds numbers are defined as
2n)c< p.D2n k p-Lc- 1Pr • , Le = , Re (11.34)

Remark : In this process, the length reference L is a formal parameter. As a matter of fact,

since the plate is infinite, there is no physical length reference. However, once the formal

development has been performed, L may be replaced by a length obtained from a combination

of other variables. In particular, it may be replaced by c.t. This choice gives for E

F= c (11.35)

and yields the variable rl
1/2

Ti = = y t)t (11.36)

which leads to a self-similar solution valid in the boundary-layer.



Section III

KINETIC MODEL

The object of this section is to replace the Boltzmann equation by a simpler model

equation, which will be better adapted to our particular problem. We will introduce the general

form of the kinetic model and the parameters upon which it will depend (Sec. III.1). Then, we
will specify these parameters by requiring that the kinetic model be compatible both with the
physical assumptions of our problem and with the main properties of the true Boltzmann
equation (Sec. 111.2.). Finally, we will make a few remarks on this model equation

(Sec.III.3.).

III.1 General form of the model

As pointed out in Sec.II., as soon as we are interested in the microscopic motion of the

molecules of the mixture, we are led to consider species distribution functions, whose
evolutions are described by the Boltzmann equation (II. 1). However, the Boltzmann collision
integrals (11.3), which appear on the right-hand side, make the system of equations (II.1)
particularly intractable. It is, therefore, not surprising that alternative expressions have been
proposed for these collision terms. The idea behind any kinetic model is to replace the true
collision integral Qs(fs,fr) by a simpler operator Jsr(fs), which retains the main qualitative and

averaged properties of the true operator, but whose manipulation is easier. The most widely
used kinetic model is that of Bhatnagar et al (1954), later extended to the case of gas mixtures
by Gross and Krook (1956), and which turns out to be particularly appropriate when one
needs to perform power expansions of the distribution functions.

Following these authors and the presentation of Burgers (1969, Ch 6), we postulate that



the distribution function fs satisfies a Boltzmann-like-equation in the form
fs + fS = -fs: - + ~' Isr (s = 1,2) (III.1)

r=1,2 r=1,2

- sr = 1/ vsr represents a characteristic time for collisions between species s and r, vsr
being the corresponding collision frequency. A priori, these parameters can depend on time,
position and velocity. The total average collision frequency for species s is given by

Vs Vsr  (III.2)
r=1,2

- The first sum, - fs Vs , on the right-hand side of (III.1), represents the number of

particles of type s which are thrown out of the group fsdts per second as a result of collisions.

In the true Boltzmann model, it replaces the term

-fs ffrg,b dbdSedr (111.3)
r=1,2 5

- The second sum represents the number of s particles which are restored to the group

fsdts as a result of collisions. We introduce the auxiliary distribution function Ysr in order to

represent the average distribution of the velocity components of a particle of kind s when it

comes out of a collision with a particle of kind r. The form chosen for the functions Psr is a

Maxwellian distribution
3/2

psr P2= Ps kTs
21

xp m (s-Vsr)
e 2kTsr

111.2 Determination of the parameters of the model

The parameters introduced in the model are the four collision times tsr, the four

temperatures Tsr and the four velocities Vsr.
Concerning the square term ss,, it is reasonable to assume that, as a result of like

collisions, particles of kind s are re-emitted with a Maxwellian distribution centered about the

species velocity vs and temperature Tss defined in (11.6) and (II.14). In other words, Pss is the

local maxwellian distribution for species s
ms 3/2 2

ss = Ps kTss  exp - 2 s-Vs) (111.5)

and any moments of Yss and fs, of order less or equal than 2, are equal.

Next, we need to make some assumptions about the characteristic collision times tsr.
First of all, we assume them to be constant parameters. Then, let us look at a layer very close

to the wall, whose thickness is less than the mean free path of either O or 02 molecules. In this

(11.4)
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Fig. 2. 0 and 02 free trajectories near the wall.

layer, neither O nor 02 molecules encounter any collision. Moreover, due to our basic
assumption of total recombination of the O molecules at the wall, in this layer, all the O

molecules have a velocity directed towards the wall, because they all "vanish" at the wall,
whereas all the 02 molecules have their velocity directed away from the wall, since they all are

created at the wall (see figure 2). Now, let us consider a slightly thicker layer than the previous
one, whose thickness is of the order of a few mean-free paths of either O or 02. A few

collisions occur in this layer, but a collision between unlike molecules is much more probable

than a collision between like molecules. On the average, an 02 molecule leaves the wall with a

velocity directed along the positive y axis. Similarly an average O molecule reaches the wall

with a velocity directed along the negative y axis. Thus, if we follow an average 02 molecule,

it may collide with an O molecule coming in the opposite direction. It may also encounter

another 02 molecule, but this implied that the latter has previously collided with an O molecule

and hence, reversed the sign of the y component of its velocity. Therefore, the probability of a

collision between like molecules is at least of one order of magnitude smaller than the
probability of a collision between unlike molecules (see figure 3).

Consistently with this physical discussion, since the characteristic collision times are

inversely proportional to the probabilities of collision, we make the assumption that the

characteristic time for collisions between like molecules is much longer than the one between
unlike molecules:

0 02.02 02 02
121 2

Fig. 3. 0-02 collisions and 02-02 collisions near the wall.
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Tr << ss (with s=1,2, and sr )

Lastly, since O and 02 molecules play in a way a symmetric role, both tll and T22, and T12 and

C21, are of the same order of magnitude. This leads us to make another simpler assumption

that 11= t22 and that ,12=' 2 1. Finally, we are left with

'12'21 << T1 1= T22  (111.6)

The remaining unspecified parameters of our model are the velocities v12 , v 21 and the

temperatures T12, T2 1 appearing in the cross distribution functions P 12 , "21. To determine

them, we require that the model reproduce some of the properties of the true collision operator.

Following Cercignani (1988, ch II), the essential features of a collision operator Js(fs) are

i) to admit the collisions invariants: mass, total momentum and total energy. Therefore

it must satisfy the identities

Js(fs)dý = 0 (III.7.a)
3

sJs( f s) dt s = 0 (III.7.b)
s=1,2 392

2 Js s)dts = 0 (III.7.c)
s=1,2 3

ii) to satisfy the H theorem. Defining the quantity Hs for species s by

H In m s dSs (111.8)

3

and the total quantity H for the mixture by: H= H1+ H2 , where fs satisfies the kinetic model

equation (III.1), we require that the inequality

DH < 0 (111.9)
Dt

hold, the equality being satisfied if and only if the mixture is in an equilibrium state (i.e. fl and

f2 are maxwellian with the same parameters).
The condition (III.7.a) has already been taken into account by the form (111.5) imposed to

Yst. Plugging the expression (111.4) into the conditions (III.7.b),(III.7.c), and making use of

the results (III.5) and (111.6) yields the following identities (see appendix B. 1 for details)

PlV12 + P2V21 PlV+ P2v2 = pv (III.10)

3n 1k(T12T )+3n 2k(T21-T 2)+p (V22 v2)+p2(21v2 = 0 (III.11)

Furthermore, when the inequality (1II1.9) is written explicitly in terms of the unspecified

coefficients, it appears that sufficient conditions to satisfy the H theorem are (Appendix B.2)



nT + nT 2T 2 =T 2 1 = T 1 2 (111.12)

V12 = V21 = V - p (11.13)

This means that molecules of both species, after a collision with an unlike molecule, are
re-emitted with a maxwellian distribution centered about the velocity and the temperature of the
mixture.

Finally, the kinetic model we are going to use from now on shall be called a
"Boltzmann-Krook" equation after the main author of the initial articles, and is given by

af af -f 12-f
at 71 y -T ,f C12

af2 af2 _'21-f2 + 22 f2
at 2 ay T12 ;11

where all the parameters entering the various functions Ysr have been defined in (111.5),

(III.6), (111.12) and (111.13).

111.3 Remarks

i) The system of equations (111.14), though apparently simple in appearance, is still a set
of non-linear integro-differential equations. It couples the unknown distribution functions f,
and f2 by the intermediate of the parameters v and T appearing in both ' 12 and Y21 and which
are integrated quantities of both fl and f2 (recall the definitions (11.6), (11.9), (11.14) and

(11.15) ). However, although the mathematical structure of this model is still extremely
complicated, its manipulation is much easier than the original Boltzmann equation. Moreover,
it is better suited when one needs to perform power expansions of the unknowns, as we shall
see later on.

ii) The solution (III.12), (111.13) to the system (III.10),(III.11.) is of course not unique.

However it has the great advantage of satisfying the H theorem, as demonstrated in Appendix
B. 1. It might not be the only solution compatible with the H theorem, but it seems to be the
only one for which a demonstration is so easily possible. Furthermore it has the physical
meaning underlined above.

iii) Because this model has the same collision invariants as the true one, the derivation of
the macroscopic equations of motion (11.24) remains valid. Therefore, the hydrodynamic
quantities (II.4) through (II.18), defined with respect to the distribution functions fl and f2,
whose evolutions are described by the Boltzmann-Krook equation (III.14) instead of the true
Boltzmann equation (IL.1), will still satisfy the equations (11.24).



iv) The authors we have used as references (Bhatnagar et al (1954), Gross and Krook

(1956), Burgers (1969, Ch 6) ) present a slightly different form of the model. They introduce

additional parameters:
. sr (s,r = 1,2) (111.15)

sr "nr

which they assume, instead of tsr, to be constant. Moreover, they use the equality 012 = Y21,
instead of t 12 = t 21. Accordingly, the equations for v12, v21 and T12, T2 1 that they may

deduce from the conditions (III.7.b), (III.7.c) are different from our own (III.10), (III.11.)

Lastly, to determine the final expressions of these parameters, they consider relaxation rates

instead of the H theorem. Of course, there result a set of parameters of the model different from

our (III. 12, 13). Actually both solutions involve the same amount of arbitrary assumptions

and are separately self-consistent. Therefore, there is no contradiction between the two

models, simply each of them relies on a different physical assumption. Nevertheless, as

pointed out by Morse (1964), a demonstration of the H theorem for their solution is not

possible in general, whereas we are able to demonstrate it for our model.



Section IV

FORMAL EXPANSION AND BOUNDARY
CONDITIONS

In our defined model, we can seek an asymptotic solution of the Boltzmann-Krook

equation (1I. 14). For this purpose we introduce a small parameter e together with reference
values of the flow variables. This allows us to define dimensionless variables and to rewrite
the equations of motion (III.14), (11.24) in dimensionless form (Sec. IV.1). Next, e is related
to other small physical parameters of the problem (Sec. IV.2). Finally, in order for us to solve
the system (11.24), we need to specify boundary conditions at the wall. These boundary
conditions must account for the recombination process at the wall, as postulated in our
formulation of the problem. We specify averaged boundary conditions on the hydrodynamic
quantities, leaving aside the problem of specifying boundary conditions on the distribution
functions (Sec. IV.3).

IV.1 Dimensionless formulation

We consider a parameter e, small in a sense to be stated precisely later when we will
relate it to other parameters of the problem, an arbitrary length reference L, and the parameters
of the flow at rest far from the plate: T.., p.,, n.. We have already defined dimensionless
variables (Sec.II.). We rewrite them below

-= , t = (with c. = nT*
PEL L P- - (11.31)

P T - u v - Pxy - yy - qyP- T -,u- v - P Pq
P.' T. C, .- C.' xy ep Pc, qy Epc3

In addition, we introduce



- c3  - _ - tsrC*
TS = -ý-- f S ', • s =  ýtsr -- - L (IV .1)

and define R*. as n0.k / p.. The form of (11.31) and (IV. 1) emphasizes the fact that we are

seeking an asymptotic solution valid for large values of time. This means, according to the

general formulation exposed in section I, that we do not consider the problem of the so-called

initial-layer, which lasts a few mean-free times immediately after the plane has been set in

motion. Consequently, for our purpose, the characteristic time we have introduced - L / c,. -

is representative of the time-scale of the macroscopic changes in the flow. Furthermore, as

pointed out by Trilling (1964), the definition of y, v as well as Pxy and qy is selected by

analogy with the boundary-layer equations (11.32) and to provide a solution in which the

motion normal to the plate might play a role.

When all the dimensionless variables have been defined, we are able to work out

dimensionless equations. The Boltzmann-Krook equation (IV.14) becomes in dimensionless

variables

afl + f l - fl + 12 - fl (IV.2.a)
Yt E ay 11 IT12

af22 ~ 2 1 -f 2 + T'22 - f2 (IV.2.b)
at E ay 112 111

Likewise, the macroscopic equations of motion (11.24) become

aps aPsVs5t + ) 0 (IV.3.a)at ay)

p +V+ y + = 0 (IV.3.c)( v vv I aPyyEp at ay ay

3 +T + T +qy Lu av 3 xYnV + n2V2
43 at  ay T+ P v 3 Ta v 2V2) (IV.3.d)"--ay +ay xyy y ay 4ay

Again, we have dropped the bars but all the quantities appearing in these equations are

dimensionless, as defined above by (11.31) and (IV.1).

At this point, our strategy becomes clear. First, we will formally expand in power of P
the unknown distribution functions fl and f2

(o) (1) 2 (2)
fs = fs + cfs +e f +... (s=1, 2) (IV.4)

Then, when these expansions are put into the definitions (II.4) to (II. 18) of the hydrodynamic

variables, we obtain likewise expansions of these variables. For instance,
(0) (1) 2 (2)

P = s + Ps + Ps + ... (s=1,2)
TT ( 0o) ( 1) 2 T(2)T=T +T +2T + ... (IV.5)



and similar developments hold for all the integrated quantities of the distribution functions.
Lastly, the reference maxwellian distributions T11, z12, 2 21 and T22 can in turn be

expanded, since they depend on integrated quantities which have just been expanded in power
of

(o) (1) (2)
sr =  sr + Esr + 2 sr + ... (s, r = 1, 2) (IV.6)

Thus, by substituting these expansions into the Boltzmann-Krook equation (IV.2), we will be

left with a hierarchy of terms. Once this hierarchy is put into order, we will obtain a hierarchy
of equations. Solving each of these equations will provide us with a recursive solution of the
form

(n) 0(O) (1) 6(n1)
fs =  fs , --- s ) (IV.7)

At every step n, the solution fs(n) will depend on quantities of lower order and on
hydrodynamic quantities of order n. These hydrodynamic variables will satisfy the nth
component of the hierarchy of equations obtained by expanding the system (IV.3), together
with the nth component of the expansion of the appropriate boundary conditions.

We shall discuss this program, which is an extension of the approach of Trilling (1964),
in some details in the next sections. But beforehand, it is necessary to relate e to the physical
parameters of the model zll and ' 12, and to specify the boundary conditions of the problem.

IV.2 Determination of the expansion parameter

To begin with, let us consider carefully the mean-free path of each species. As
demonstrated by Vincenti and Kruger (1965,Ch.II.), the total collision frequency of a given
species is the summation extended over all the species in the mixture of the collision
frequencies with these species. Specified to our particular model, this statement has already
been worked out by equation (III.2), which we reproduce here

Vs = sr (III.2)
r=1,2

The mean-free path As of species s is simply defined by introducing a characteristic molecular
velocity, which we choose to be c., previously defined in Sec.II.4.

SC- (IV.8)

s Vr
r=1,2

Because of our assumption (111.6) about the collision times, the mean-free paths of both O and

02 are equal



1 = 2 1= = c (IV.9)

+
t 11  t 12

Consistent with the assumption made in section 111.2., we neglect r11 compared to t12 , and we

are left with X= c.t 12 = X12 
= X21  (IV.10)

where X12 or X2 1 stand for the mean-free path for collisions between 0 molecules and 02
molecules. This quasi equality means that there are so few collisions between like molecules

that they don't affect the mean-free path.

Next, we recall that we are investigating a continuum or near-continuum regime flow. In

other words, we keep the Knudsen number of the flow small compared to unity

Kn = X / L << 1 (IV.11)

Taking into account (IV.10) yields

Kn = Kn12 = Kn2 1 = X12 / L << 1 (IV.12)

Furthermore, this assumption implies also that we may allow a slip velocity and a temperature

jump at the wall as long as they remain small compared to the velocity and the temperature of

the wall. This is possible only if the Knudsen layer near the wall is thin. This is equivalent to

saying that the dimensionless thickness of the Knudsen layer is small compared to unity, or

that the Knudsen layer is small compared to the boundary layer. This thickness is of the order

of magnitude of one mean-free path X, and the dimensionless thickness along the y axis is

therefore
- •_ 1 2C. 12 (IV.13)

EL- EL E

where the dimensionless quantities are defined according to (11.31) and (IV.1). Hence, our

assumptions and definitions lead us to the statement

2 << 1 and 2 << 1 (IV.14)

where we recall the inequality (111.6) established in section 111.2. In order to get systematic

expansions for our case, we select simply

=-2 and 1= e (IV.15)

We have also
t 12 C. _ 1 2T L - X - Kn - Kn (IV.16)

12 L L 12

which allows us to write

E=Knl2 = JiK (IV.17)

Eventually, the small parameter of our expansion turns out to be the square root of the

Knudsen number of the flow.



IV.3 Specification of the averaged boundary conditions

The ideal would be to specify boundary conditions on the distribution functions fl and f2

themselves, in order to determine them in a unequivocal way. However, this would require a

better knowledge of the mechanical and chemical interactions of the gas with the surface, which

is simply not available. Furthermore, as pointed out by Trilling (1964), one might view the
distribution functions more as convenient tools for the analysis of the problem than as actual

physical quantities. In this case, an unequivocal determination of the distribution functions is

not necessary and could appear somewhat artificial. As a velocity potential, the distribution
functions may retain a certain degree of indeterminacy, as long as this does not imply an
indeterminacy of the hydrodynamic quantities, which have a clear and measurable physical
meaning. Thus, we need only to specify boundary conditions on the hydrodynamic quantities,
which will be uniquely determined. In other words, we apply boundary conditions on

integrated quantities of the distribution functions; this is why we call them averaged boundary

conditions. Let us now determine these boundary conditions.
The simplest boundary condition is the one regarding v, the y component of the velocity.

Since there is no transfer of fluid through the wall, we have
v(0) = 0 (IV.18)

Developed in power of e, this identity yields the same condition for each order

v(o)(0) = v(O)= ... = v(n)(0) =... = 0 (IV.19)
Next, we define the boundary condition for u, the x component of the flow velocity.

Recalling the definition (11.9), we have
pu(0) = plu1(0) + P2U2(0) (IV.20)

Since the O molecules vanish at the wall, at the point y = 0 they are all incoming towards
the wall with a velocity acquired after their last collision, which occurred one mean-free path

away in average. Hence,
lUl(0) = plul(. 12) = pu =, pu (e) (IV.21)

1 1ý C ) lu

where we have used the results of the last paragraph (we have again omitted the bars, but all
the quantities are dimensionless).

For the 02 molecules, the situation is slightly more complicated. As a matter of fact,

incoming and outcoming 02 molecules coexist at the wall, although in different proportions.
Once they have left the wall, 02 molecules may collide with incoming O molecules and
therefore be reflected towards the wall. Let us call 0 the fraction of 02 molecules incoming
towards the wall. We have

P2U2(0) = Op2U2(O) + (1-0)p 2U2(0) (IV.22)



Like the incoming O molecules, the incoming 02 molecules have acquired their velocity after

their last collision, one mean-free path away in average. Hence, we can write the incoming

flux as

8p 2U2(0) = Op2u 2(2 ) = P 2u = p2U2(e) (IV.23)

On the other hand, the outcoming flux is assumed to be fully accommodated with the wall
(1 - )p2u 2(0) = (1 - )p2(0)u . (IV.24)

where uw is the velocity of the wall. In these conditions, we obtain for u after a simple

arrangement of terms

(p u)(0) (p u)() = (1-0)P 2(0)uW -(P 2u2)( (IV.25)

Lastly, we need to identify the formal parameter 0 with some physical parameter of the flow.

Once the 02 molecules are far from the surface, in the outer layer of the flow (which we do not

treat), they are dissociated back into O atoms, due to the high temperature T. of the external

flow. Consequently, there is a global balance between O and 02 populations, and the 02
molecules can be seen as a transitory species. For this reason, the proportion 0 of 02
molecules which are reflected back towards the wall is small compared to unity. More

precisely, we assume that this proportion is of the same order of magnitude as e, and we

impose, therefore, the following boundary condition on u

(p u)(0) - (p uXe) = (1-e)(p2(O)u - (P 2u2)()i (IV.26)

Any quantity appearing in this equation can be expanded in power of E, and any function

calculated at the value e can be developed in a Taylor series with respect to the value 0.

Therefore, the identity (IV.26) can be expressed as a power series of E, yielding a hierarchy of

boundary condition for each term u(n) of the expansion of u . We will explicitly develop it up

to the second order in a subsequent section.

To specify the boundary condition on the temperature T, we follow exactly the same

approach as for u. We write directly the condition on T

(nT)(0) - (nT)(E) = (1-en 2()Tw - 2T2)() (IV.27)

where Tw is the temperature of the wall. Likewise, the development of this equation yields a

succession of boundary conditions for T(0), T(1) ...

Lastly, we need to specify a boundary condition for the density of one of the species.

This condition is provided by the adiabatic hypothesis. At the wall, to take into account the

chemical reaction, we have to add to the heat-flux vector qy calculated from the distribution

functions the energy flux due to the recombination process. We denote by E (E>O) the energy

released by the formation of one molecule of 02. Then, in the notation of Anderson (1989,



Ch17), the specific heat of formation of 02 is

(Dhf)2 _ E (IV.28)
2 m2

and the corresponding contribution to the heat-flux vector is

(P 2v2)(0))(Dhf) =- E(n2v2)(0) = E(n1 1)(0) (IV.29)2 2
where we have used the boundary condition (IV.18). Therefore, we obtain the following
boundary condition

qy(O) + .(nlvI)(0) = 0 (IV.30)2
When written in dimensionless variables this identity retains the same form. Developing it in
power of e yields a sequence of conditions of the form

q(n)(0) + E-(nv) (n)0) = 0 (IV.31)
Yy 2

These equalities will provide us with a boundary condition for the O density; we will write it
explicitly for the two first orders systems in section VI.



Section V

CONSTRUCTION OF THE DISTRIBUTION
FUNCTIONS

Now, we will apply the strategy outlined in the previous section. The development of the
Boltzmann-Krook equations leads to an iterative construction of the solution (Sec V.1.). This
solution depends on parameters which satisfy a closed set of partial differential equations,
associated with the appropriate boundary conditions (Sec V.2.).

V.1 Recursive equations for the components of the distribution
functions

The results of previous sections prepare for the construction of the molecular distribution
functions f, and f2. We substitute in the Boltzmann-Krook equation the formal developments
(IV.4) and (IV.6) of the distribution functions f, and ,sr, and replace the characteristic times

1r 2 and r,1 by E2 and erespectively, as dictated by the choice of ordering relations (IV.15).
We obtain fr f, the following equation

af(0) a()l a (2) (0 1af(2)
e lt at at +... 1 1 1 2_ fat + +"ay ay ay

(0)_ ()(1) (1) ( (0) • (1) (1)'= e Y 1 1  + T . i +  IT (1212-f + +T ""

and a similar equation for f2. A particular solution of this equation is obtained by re
the terms of the same order in e. We get a power series in e on one side of the equat
on the other one. Equating every coefficient of the series with 0 leads to the i
sequence of equations for the components of fl

(V.1)

grouping
ion and 0
!ollowing



(o) (o)
f = T (V.2)

(1) (0) (0) (1) • 1  (V.3)
1 11 fl + '12 1 y

(2) (1) (1) (2) () f (0)

fI = 1 1 - f +'P2 1 1 t (V.4)
12 11 1 2 at

(n) (n-1) (n-1) afOf1 )  f( 2)

and a similar sequence for the components of f2. We write only the equation for the nth
component of f2

(n-1) (n-2)
(n) (n-1) (n-1) (n) f2  af 2 n-

f2 22 2 21 2 ay (V.6)

We note that the nth component fl(n) of the solution is explicitly given by (V.5) as a function of
components of order less than n on the one hand, and of the nth component of the reference
distribution T12 . Thus, an iterative construction of the solution is possible if we are able to
determine 'F 12(n) at each step of the process. This maxwellian distribution depends on
parameters which are integrated quantities of fl. In the next paragraph, we expose how these
free parameters can be determined in theory.

V.2 Determination of the free parameters

Assuming that the solution has been constructed up to the order n-1, fl(n) and f2(n) can be
calculated through the use of equations (V.5) and (V.6). However, as have been noticed, these
equations involve the components of order n of the reference maxwellian distributions P12 and

T21 . These components will introduce 5 free quantities, namely the nth components of the 5
parameters upon which F12 and T21 depend: pt(n), p2 (n), u(n), v(n), T(n). Thus, at this
point, fl(n) and f2(n) are of the form

(n  , (D (n) (n) (n) (n) (n)I
fs =o P2 ,u ,v ,T (V.7)

To determine these parameters, we expand the system of equations (IV.3) and get a sequence
of systems of order 0, 1, ..., n. pl(n), p2(n), u(n), v(n), T(n) are the main unknowns of the

system of order n, in which the quantities of order less than n, already determined in the
previous steps of the process, appear as forcing terms. Moreover, still present in this system
are the additional hydrodynamic quantities of order n: vl(n), v2(n), pxy(n), pyy(n), qy(n). But

now, we dispose of a simple and systematic way to relate these quantities to the main



unknowns. Since fl(n) and f2(n) are of the form given by (V.7), if we simply apply the

definitions of these hydrodynamic quantities (recall (II.6), (11.12), (II.13), (11.17) and (II.18)),
and perform the required integrations, we will find expressions of the form

(n) (n) (n) (n) (n) (n) (n)v1 = P, 'P2 'U ,v T (V.8)

and similar form for v2(n), P(n)n), pyy(n), qy(n). By this process, we eliminate the additional

unknowns of the system and are left with a closed set of equations for the main unknowns

pl(n), p2(n), u(n), v(n), T(n). This system yields an unambiguous solution once the appropriate

boundary conditions are specified. The proper boundary conditions for this system are found

by expanding the equations (IV.18), (IV.26), (IV.27) and (IV.30) (obtained in IV.3.) and by
writing the corresponding equations of order n. The solution of this well-posed problem will
provide us with the expressions of pl(n), p2(n), u(n), v(n), T(n) as functions of the variables
y and t. By replacing these functions in the expression (V.7), one finally obtains the definitive

forms of fl (n) and f2(n). Then, one is ready to repeat the whole process at the order n+1.

Therefore, this iterated construction provides us with an asymptotic solution of our

Boltzmann-Krook equation.
In this investigation, we have to keep in mind that we perform an inner expansion of the

problem. The physical assumptions made in section III, and the solution outlined above, are

valid only in the inner layer, whose thickness is of the order e. To get a solution valid in the
whole flow field, one has to consider the outer layer of the flow, where an outer expansion

must be performed. Then, one has to match the outer expansion with the inner one. The

theory of matched asymptotic expansions requires, in particular, that the outer limit of the inner

expansion coincide with the inner limit of the outer expansion (see Van Dyke, 1964).

Therefore, the outer boundary conditions for our problem are provided by the inner boundary
conditions of the outer layer, which we do not treat in this report. However, because of the

assumption that the diatomic oxygen is dissociated back into oxygen atoms in the outer flow,

we can consider that the outer limit of the 02 density in the inner layer is equal to zero.



Section VI

FIRST AND SECOND ORDER SYSTEMS

In this section, we will work out the explicit form of the first and second order
components of the solution, as well as the corresponding system of equations for the
hydrodynamic quantities.

VI.1 First order system

The dimensionless expression of the maxwellian distribution Y12 isF 21

•P12 1  2RvJ (VI1)
(27R 1T) L 2R1Tj

We recall the definition (1.33) of R1

R * (1.33)
1 2mnn.

and note the relation between nl and pi
n1 = 2Rip1  (VI.2)

Of course, the other reference distributions Y11, TY21, T 22 have similar dimensionless forms
and relations similar to (I1.33) and (VI.2) hold for species 2.

By expanding up to the first order the dimensionless distribution P 12, we obtain the form
of the first iterate of the solution r

(0)o(o) (o) P )
f(0) (0) P exp -

f 1 = 12 ( - T / 2 e x pT -

I(VI.3)

L71 ) 4



and a similar expression for the first component of f2. To achieve the determination of f1(0),
we have to write explicitly the system of equations for the first-order hydrodynamic quantities

Pi(0), P2(0), u(0), v(0), T(0). As explained in the previous section, we need to eliminate the
additional unknowns by expressing them as functions of the main unknowns of the problem.
However, before expanding in power of e these additional unknowns, we have to rewrite their
definitions in dimensionless variables. The dimensionless forms of the definitions (11.6,12,17)
are

Psus = f4sfdts (VI.4)

PsVs = ltlsfsds (VI.5)
3

(Ps)xy =  (ýs-U (11 s'-•v)fsd.L (VI.6)

3

91(P 5) = f(Ti -ev) 2sd (VI.7)

(qs)= (TI s-Ev (s-u)2+ (TI s-ev) 2+ }fsd s  (VI.8)
3

91

In this form, one is able to perform expansions of these variables. The first order quantities are
given by

(0)
(P lu 4() = fdt 1  (VI.9)

3
91

(1 ) (VI. 10))

(PI) = fu pf dt 1  (VI.11)

913
(o)
1  = JT2if d. 1  (VI.12)

3



(o) 2
y 2fTll 1u 1 1VI.13

- fi d-u(0l) + (VI.}13)

3

The first and the fourth of the latter quantities are immediately calculable, whereas the other
require that the component fl(l) be calculated beforehand. A straightforward integration yields

(o) (0) (o)u1 = u( = u (VI.14)
(o) (o)

1 (0) n)T(o) 2 1 (0) T (0) (VI.15)

and hence, with the definition (II. 13) of the stress tensor of the mixture
(o) 1 (0) (0)PYY = T (VI.16)

With these results, we can determine the various temperatures up to the first order. A simple
manipulation (see Appendix C. 1) leads to the equality of all of the first order components of
the different temperatures defined in II. 2.

(o) (0) (o) (0) T(O)
T11 =T 1 =T =T2  =T (VI.17)

Moreover, the first and second order expansions of the y momentum equation (IV. 3.c) are
(0) (1)
YY - 0 , - 0 (VI.18)

ay ay
namely, the pressure is constant up to the second order. Using equation (VI. 16), we are led to

(0) n() T ) = 1 (VI.19)S2
Equations (VI. 14) and (VI. 16) allows us also to write for the square maxwellian distributions

(o) (o) (o)
(0) = T(02) = fl (VI.20)

(o) (0) (o0)
P22 =21 =f (VI.21)22 21 2

so that equation (V.3) defining f(l) becomes finally

f(1) (1) f1 )

f = a12 T 1 (VI.22)

and after some manipulations, one is led to



(1) ( I) T
I W2_ Il+

where

~,}O) ( , ()
' 1  WIw V rT0

ay ) (o) y

With the expression of fl ( l), we can perform

obtain (Appendix C. 2)

(o) (o) (o) (o) a (n=T)P V = P v - 2ay

(n) I.

(q1) =_ 5 •I (,o) R T(o) I I
4 4ayL" 1 )J

as well as the analog equations for species 2. Summing up

heat-flux vector over the two species gives the mixture quantities

(o) 1 au(o)
xy 2' y

the remaining integrations (VI. 10, 11, 13) and

(VI.26)

(VI.27)

(VI.28)

the partial stress tensor and

(VI.29)

(VI.30)q(O) 5 a.1T2)

Y 4 dy
where

Moreover, using equation (VI. 26),
the diffusion velocities vanishes

fi = n1 R + n2R2  (VI.31)

we can check that the sum of the first order components of

(o) (0)

( V, + p 2V 2) =-- (nT) =0 (VI.32)
2yEventually, the additional unknowns are expressed in terms of the main unknowns of the

Eventually, the additional unknowns are expressed in terms of the main unknowns of the

(VI.23)

(VI.24)

(VI.25)

W22

/-

R1'0)

,8*

(o) (o)(o)n1 t n u(0)
(Pxy 2 ay



problem. Thus, by collecting the terms independent of E in the development of system (IV. 3)

where the additional unknowns have been replaced by the identities (VI. 14, 15, 26, 29, 30),
one can write the first order system c

(0)anl +1
at

(0)
an2

at

(VI.33a)

(VI.33b)

n(o) T(o) = 1 (VI.33c)
(0) au(0) (0) au(0) 1 a2 (0)

p + v -au u = 0 (VI.33d)
( at ay ) 2 ay2

5 (0)s (0)a 2 j5 2i (o)R +n2(0)R2 T ( 0)

S.av __ 1 = 0 (VI.33e)4" ay 2( ay 4" ay 2

(More details of the first order energy equation (VI. 33e) will be discussed in Appendix C. 3).

This first order system is subject to the following boundary conditions, obtained by collecting

the first order terms in the expansion of the averaged boundary conditions (IV. 18, 26, 27, 30)

and substituting the equation (VI. 30) in (IV. 30) (see Appendix C. 4)

u(O)(0) = u, (VI.34a)

v(o)(0) 0 (VI.34b)

ST( ) (0) = T,. (VI.34c)

S5(R 1-R2) (0)
1Yý(4

(0) 5 arT(o)l
n = -V - 2 0- )y=O (VI.34d)

yr=0

This system is similar to the Navier-Stokes system, and particularly to the boundary-layer

equations (11.32). Moreover, the appropriate boundary condition for this first order system is

the non-slip condition in velocity and temperature.

VI.2 Second order system

The approach used to determine the second order components f1(1), f2
( 1) of the

distribution functions is similar to the one used for the first order system, although it requires

far lengthier calculations. The successive steps of the process reproduce the ones we have just
followed.



The expression of the second order distribution f (it) has been already given in (VI. 23).
The free parameters to be determined to complete the description of fill) and f2(1) are pl(),
p2(), u(1), v(1), T(1). These quantities satisfy the second order system obtained by collecting
the terms of order e in the expansion of the hydrodynamic equations (IV. 3). Before writing
this system, one has to eliminate the second order additional unknowns. Expanding the
dimensionless definitions (VI. 4) trough (VI. 8) of these variables and collecting the terms of
order e yield the following identifications

(1)
(P lu=) 4(i)d (VI.35)

y 3

(1)W(0 (i) (i)

=iif, d. 1  (VI.38)

3 3
9e 91

(- -uf([1) (0) 1 (0) () 2 21 )d (VI.39)

As above, the first and the fourth of these quantities are immediately calculable, whereas the
other three involve the third order component f1(2), which will be explicited below. An

integration of the former quantities yields

1 = u = u • (VI.40)

(P) W 1 (niT) (P2) = 1n 2T) (VI.41)
Y 2 YY 2

Hence, we obtain the mixture stress-tensor



P • (nT) T = n 1 ,n(o ) (VI.42)

As in the previous case, one may calculate the second order components of the various

temperatures defined in 1.2. and find all of them to be equal (Appendix D. 1)

1  11 =T 2 =T 22  (VI.43)
Furthermore, recalling the form (VI. 18) of the y momentum equation, one gets the equalities

(VI.44)n+ -0 , PY = 0
(0) T(0)

(since the perturbed values at y = oo are equal to 0).
- To proceed further and express the three remaining additional unknowns in terms of the

main unknowns, we need to calculate moments of the third order component f1(2). This

component is obtained by direct substitution of the formula (V. 4). After some manipulation,
nnp is lpft with

W ý--] T(2)- ( W2 3 p(1)15,+2-.- + 5W. PI
2' 8)T(0) 12J p(0) 2 2Wi

)TP1 I

t, 12i 1 aT(o)+ 1 2 -+
S2j) (o) at+

I r -J

1-u(0) (o) I p(o) +o2 1 (0)
1,_ o, 1 1 T

RT I I p ' '

WT1 ) / (1) 1Tu(O) I 1u (1) (o) 1p (o) W_2 1I 1 1  1+ 1,_ •+
(o) + 2) (o) + (o) (0o) a y ) (0o)

SP T RT I PIT
L I- (i)

~P1
'ay 1  (0)

I PI
L

ay

(VI.45)

where W1
2 and W2

2 have been given above, and W3
2 is given by

fL2)1 _
1

(2)
p1
(0)

p1

+

+
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( (1))2 1(0)o2 _ ) (_(O) u(2) + (1)

3 (0) (VI.46)
2RT(

With the expression of fl(2), we are able to perform various integrations involved in (VI. 36,
37, 39), and we obtain after cumbersome algebraic calculations (Appendix D. 2)

(1 ) (1)  (1)

(P Iv(I) (p IV) - a(nT) (VI.47)
2a y

(Pl)() (o) (1)-v(O)v () 1 (n T)() au(o) ( 2a (1) (0o) '(0) +xy 1 1 2 ay 2Dyu 1 T
o1 (o) (o) ao)

+ T ay (VI.48)

W 1) (0)
(ql) 5aRn.2 5 (0) (0) T( 0,

L R[ nT ) + RilnlT ay (VI.49)

Analog expressions hold for the corresponding quantities of species 2. By summing up over

both species the partial stress-tensor and heat-flux vector, we obtain the mixture variables

(1) au(1)  •u(0)Pxy + 2 (VI.50)
2Y 2ay 2ay

qy 4 4 (VI.51)

where we have made use of the equations (VI.19) and (VI. 44). Moreover, using equation

(VI. 47), we may verify that the sum of the second order components of the diffusion

velocities vanish, as for the first order components
1() (nT)1

(p V, + p2V2) 1 a T) 0 (VI.52)
2 ay

Having determined all the constitutive relations for the quantities of second order, we can write

the system of equations satisfied by the second order components of the main unknowns:

p1(1), p2 (1) , v(1), T(1). This system is obtained by collecting the terms of order E in the
development of the system (IV.3)

In) a(ni nv) = (niR T) (IV.53a)
at ay ay2

an () (1) a2 n RT\iWn2 ++ (n2v) = (n 2 2 ) (VI.53b)
at ay ay2

(1)  (1)
n T - 0 (VI.53c)
n(o) T(o)



P( 1) v( +v o)Wau(1) 1 a2u(1) ) -()(1) Bu( 0)

p at ay 2 y

5(1) (o) ( 1) 5 a2  (1) ( 0) 2

4 ay ay ay 4 ay2( 2( ay

(VI.53d)

(VI.53e)

(some details about the derivation of the second order energy equation (VI. 53e) are given in
Appendix D. 3). This system is subject to the following set of boundary conditions, obtained
by expanding up to second order the conditions (IV. 18, 26, 27, 30) (see Appendix D. 4 for
details)

U(1) O - (o) (o)1
0u = -'<•, p O (VI.54a)
V( ) (0) = 0y )=P2
v(1) 1(0) (VI.54b)

W( O) 1 a( ) T(O)
T (0 )  (0) =y 1 (VI.54c)

2

R R T(o)2+ -R T n y=- E (o)R -R 2 T( 1)+2i(o)T( 1)T
T=O aJy=o

+ (o)T(o) yT( )=o (VI.54d)
4 a~y y=o

The second order system has the same structure as the first order system. It involves additional
terms, but the higher order derivatives of the main unknowns are the same as for the first order
system. Therefore, it has the same network of characteristics, which depend only on the
derivative terms, and refines the Navier-Stokes solution by accounting for a small slip, in a
similar way as for the single species case investigated by Trilling (1964). Furthermore, the
system (VI. 53) is a sequence of linear equations, which is apparent' if one developed them, as
it is done in Appendix D.5. The properties of the second order system are retained by the
systems of higher order: they remain linear, with the same coefficients for the higher order
derivatives. Moreover, derivatives of higher order than the Navier-Stokes terms may appear in
these systems. However, they are derivatives of quantities of a lower index, namely quantities
which have already been determined in a previous step of the construction. Thus, they do not
alter the order of the system, but act as forcing terms. Accordingly, there is no need for
additional boundary conditions.



SECTION VII

SUMMARY AND CONCLUSION

This thesis presents a construction of an asymptotic solution of the Boltzmann-Krook
equation for a reacting mixture of gases flowing over a flat plate. The chemical process is
limited to wall recombination reactions. Physical assumptions related to our problem and
physical consistency lead us to a particular choice for the coefficients upon which the

Boltzmann-Krook equation depends. The boundary conditions associated with this kinetic

model equation are not specified directly on the distribution functions themselves, but rather on

averaged quantities of the distribution functions, namely on the hydrodynamic variables.
The equations of motion and the boundary conditions are expanded in powers of the

square root of the Knudsen number of the flow, leading to an iterative construction of the

solution. The macroscopic equations of motion obtained from the first component of the

solution constructed by this method are similar to what we have called the Navier-Stokes

equations for a gas mixture, with no-slip boundary conditions. The second component of the

solution yields linear macroscopic equations of motion whose coefficients are the same as those
of the Navier-Stokes system, together with slip boundary conditions. The features of the

second order iterate are conserved by the succeeding iterates: they will all lead to a system of

linear partial differential equations whose coefficients remain the first order coefficients; the

inhomogeneous forcing terms only are different from one iterate to another. Moreover, the
higher order derivatives which may appear in the subsequent systems involve only lower order

terms already determined in previous steps of the iteration process. Therefore, they do not alter
the structure of the system, but are part of the forcing terms mentioned above.

The conclusions reached for this Boltzmann-Krook equation are very much similar to
those obtained by Trilling (1964) for the single species problem. In particular, a proper



ordering of the terms for the mixture problem, as well as for the single species problem, shows
that the increase in the order of the continuum equations in the course of an iterative
construction is fictitious. Therefore, it would be interesting to check if this conclusion is valid

for our Boltzmann-Krook model equation only, or if it is a property associated with the true
Boltzmann equation. Because of the similarity of both problems, it is very probable that the
positive answer given to this last question by Trilling, applies also to our case.

Lastly, it would be worthwhile to investigate the behavior of the solution when one
specifies the boundary conditions on the distribution functions themselves. This would lead to

the introduction a molecular sublayer whose thickness would be of order e2, and to the

construction of a solution in this layer.
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APPENDIX A

EQUATIONS OF MOTION

A.1 Relation between Ts and Tss

Starting from the definition (II.14) of T1, we have

kT= kiV1

3

-3 nkT = kT +f (l-V)(Vl-v)

2

2
v1 -VI) fldIl

2

(A.1)

(A.2)

= 2-n kT1= -n kT11 + Ip(Vl-V)

and,

P 1 1 -P2V 2  P2 (V-V2)
Vl-V = v =

By substituting this last result into (A.3), we will have (11.20) given in section 11.2.
mlP2,

p2( V2-V1)
T1 = Tll + 23kp2

A.2 Derivation of the energy equation

The contribution of species 1 on the left-hand side of equation (II.23) is

(A.3)

(A.4)

(I1.20)

)2
dPS = "iýdý=_ ý_V+

t-



+ It(f1dAl.·r fi
ý9t

The first term is the time derivative of
A,, A

1 Id. = (C1+V)fd4 = + v.1clfrd.2Jfl '~ t~lt = 2-j \/~~ ~ + V.j[ClifUidt
plv+2

Adding the contribution of species 2 yields

3 2 2
The second term of (A.5) is the y derivative of

(A.6)

(A.7)

= 1 (c1)+v2f ~2 +2c .v+v2)fldl =1*+ 1t

=1J(cl)c2

3
9t

+2v.(Cl)yC1 +v2(C l ) + VC2 +2vv.c 1YI y 1 .1

By summing the similar contribution of species 2 and using the definitions of the various
hydrodynamics quantities introduced in II.2., we obtain

S+ +vP +nkTv (A.9)2
qy + uPxy + vPyy + 3nkTv + pv- (A.9)

Thus, the energy e uation is

•lnkT + Pv+ qY + uPxy + vPyy +
at(2 2) ay

1nkTv + pv = 02 2)

Next, we need to rearrange this equation in order to find the final expression (II.24.d). The
terms involving d

atI

3 I •+v "  3kT _• 1 ns Vs (A.11)
2 -) 2 ay s=1,2

where we have used the species conservation equation (II.24.a).Among the remaining terms
are

2( t y ) =

21-2 fld-

3
9t

+VV2fld (A.8)

(A.10)

(A.5)

A

- w

r

v



because of the overall mass conservati

S-(u2+V2 +
Tt

f F ,(U2+V2)
2 ýat

+ v aDy

on, and

V U 2+V2) Px PYY
Y. ) u ay ay

2 2 + au av
J -at ayj-pVat a

·I =Y)I (A.13)

where we have used the momentum conservation equations (II.24.b) and (II.24.c). The non
zero remaining terms are

S au
XYay

Sav+P
Yuay

Adding (A. 11) and (A. 14) yields the final form (II.24.d) of the energy equation

3 j +vaT aq ay " sVs
4 ) . ay Yay YYay 2 ay

(A.14)

(II.24.d)



APPENDIX B

KINETIC MODEL

B.1 Conditions imposed by the collision invariants

The term of the first species in the condition (III. 7.b) corresponding to the momentum

conservation, is

3

11 f1)+12 12 ifl( = 1 I-lVl),Tp (P 1V12P1V =

S 1 (V12-V1)
12

Adding the similar contribution due to the second species yields for (III. 7.b)

(V12-V1) + 2V212) = 0
12 1

Once we have taken into account of the assumption on the collision times (III.6 ), we have this
condition

(B.2)

Plgl2 + P2V21 = pv (III.10)

Similarly, the term of the first species in the condition (III. 7.c) corresponding to the
energy conservation is- 2 1iI(2f Lc1 1) 1(qI 12-fl) .d.1 2

1I J

(B.1)



F I+ d Ir 1 1
V2 v2 d l - f 1-v  "[, + dl

1t 12) 1- + 122 v 12 1-V1J - .+2v. )1-+vd
12 13 3

)
3 3.1n k(T12 -T) P _V21 _v2 Vl 1

Z12L2 1 Z~ ' (B.3)

The left term under the first of the integrals above vanishes because fl and TI1 have the same
moments up to the order 2. Adding the equivalent contribution of species 2 in condition (III.
7.c), leads to the constraint (III. 11) of 111.2.

3n k(T12-Tl)+3n 2k(T 21 2/+p 2 2 -V =0 (III.11)
1 22 )--2 ` 21

B.2 H Theorem

In this section, any distribution function represents the number of molecules per unite
volume in phase space, instead of the mass per unite volume, as in any other part of this thesis.
Thus, the quantity H1 is given by

H1 = fflIn fi dSl (B.4)

3

and the convective derivative of H1 is

DH1 fD 1 + ln f) d = 1 • 1 + 12-f n f (B.5)1 Df( +11 1) 1(1+ln fl) dtl (B.5)
t Df 11 121

The first part of this expression is

1 I fl) + 11
$11f

f I 1 I
-f1)ln ifn 1 ll ddlY )

Among the three terms appearing under the integral (B.6), the first one

one is always negative, and the third one can be developed as

m I (.-v I 211

1 In nl,2tk T 2kT1
L_1 11 ) _

(B.6)

vanishes. The second

-f1) d l (B.7)

where the form (111.5) of I1 has been written explicitly. Since fl and '11 have the same



moments up to second order, the integral (B.7) vanishes also. Thus, the only term remaining
in (B.6) is the second one, and it is a negative term.

Let us now come back to the integral (B.5) and investigate the second term of the
integrand. As for the first term, we can rewrite it as

1 (1 12-f1) + (I! 12-f1)In I + (F 12-f) In ldx (B.8)1 1+ 12f1 21 12d (B.8)

3

As for (B.6), the first term under the integral vanishes, the second is negative, and the third is
developed as

"12

/21 I
- 12 (t -V 12 ( 12-f ) dJ, (B.9)

3

In this last integral, the first part vanishes whereas the second one may be rewritten as
r 2

- kT 1 3n kT12-3nlkT1 - p1(V- 12) - 2p,(v-v1 2)(Vl-V)i  (3.10)
2kT 12L

The same analysis can be done for the quantity H2 of species 2. As for species 1, this
would yield two negative terms and the following complementary term similar to (B. 10)

F 2 1
2 3n 2kT21 - 3n2kT2 - 2(-v 2 1 ) - 2p2 (V-V2 1)(V 2 V) I 0(.11)2kT21'IT2 1L 2

The two characteristic times t 12 and ' 21 have been assumed equal (see III .2). Therefore, it is
clear from the form of (B. 10) and (B.11) that the conditions

12 = 21 and T12 = T21 (B.12)

are sufficient to satisfy the H theorem. As a matter of fact, (B.12) together with condition
(III.10) imply

v12 = V21 = v (B.13)
which, in turn, combined with (III. 11), yields

T = T21 = T (B.14)

Then the sum of (B.10) and (B.11) comes

3 (T-T )+ 2 ) = 0 (B.15)
2T rl2 ,  n1

In these conditions, we are left with

DH DH DH2 1 ( ) n d+ 12fl) In fl dDt Dt Dt 'I11) 12

9e 9e



+ 1 (2-f)Inf 2  dt2 + ( 22 f2) In d 2  (B.16)
21i 21) T22 \ 22)

3 3

Each of the terms appearing in the sum (B.16) is obviously negative. Thus, we have the
inequality (III. 9)

D 0 (111.9)
Dt

Moreover, the equality in (III. 9) holds if and only if each one of the four terms in the sum
(B.16) is equal to 0. This implies

f1 = 1 , f, = T12' 2 =  21' f2 = 'F22 (B.17)

and consequently,
vl = v2 = v and T1 =T 2 =T (B.18)

Thus, the equality in (III. 9) holds if and only if the mixture is in an equilibrium state. We
have, therefore, demonstrated that the condition (B.12) implies the H theorem.



APPENDIX C

FIRST ORDER SYSTEM

C.1 Moments of f1 (o)

The first order component fl(o) is the maxwellian distribution function given by (VI. 3).
We give below the general form of the moment of fl(o)

n+p+q

( q (o) _ ( of (0)12 n-11, 2•. q-1
T1 1 OCl f, dl = p, ,2RT 2, )y 2! (C.1)

with
n-1 In-3 it 1n-~l =4 and 12 y 2 .2ad 2

if each of the exponents n, p, q is even. Otherwise, if one of the exponent n, p, q is odd, the

moment vanishes

f u(4 o) q (o)d = 0
3

The calculations of u1(0) and Pyy(O) are straight applications of this formula.

Moreover, let us derive the equation (VI. 17) for the first order components of the

various temperatures. The dimensionless form of the definition (II. 14) of the species
temperature is



3nsTs = -u)2 +1 s-Ev)2+] fsds (C.2)
3

By expanding u, v, f and collecting the terms independent of e, we obtain the first order
component of the temperature

3 (o)T(o) = 1 (22 ( o) d (o)R (o) 3 (o) (o)
2 '1

L  1 1 lJ 1 1'i 1 T

where the rule (C.1) and the relation (VI. 2) have been used. A similar relation can be derived
for species 2. Thus, we obtain the equality

(o) (0) (o)
T1 =T 2 =T (C.4)

Next, we need to calculate the first order component of the species temperature Tss. For this
purpose, we only need to replace u(o) by u1(0 ) in the equation (C.3). But u1(

0) = u(O).
Therefore, T11(0) = TI(0), and a similar equality holds for species 2. We finally get

(o) (o) (o) (0) (o)
T1 = T11 =T 2 =T 22 = T (VI.17)

C.2 Moments of fl ( 1)

The second order component of the reference distribution 'P 12 is obtained by performing
a power expansion of all the parameters appearing in the dimensionless form (VI. 1) and
collecting the terms of order e. After sie calculations, this yield1

S12 1 (o) ' 2 ) + IW2  (C.5)

L T J
On the other hand, the y derivative of the maxwellian distribution fl(0) is easy to calculate

and is given by

afo) (o 1 1 D T(o) 1() ulyI •y

(ay (0 y a ()' iy (C.6)

Substituting (C.5) and (C.6) in the equation (VI. 22) defining fl(1), yields the expression (VI.
23) of fs(l). As far as the velocity space is concerned, fl(l) is the product of a polynomial in

the velocity variables by the maxwellian distribution f1(O). Thus, any moment of fl(1) can be
decomposed in moments of fl(o), which are calculated by the mean of the rule (C.1).
However, an alternative and slightly simpler way of calculating the moments of fl(1l) is



available. Let h be a function of the position and velocity variables xl, yl, z1, 41, il, Cl. One
may easily prove the identity

l hfd d 1 = 2 h'P 2 d( - 1 hf1 d + fTlay d (C.7)
3 3 3 3

Thus, one do not need any more the explicit form (C.6). The formula (C.7) turns out to be
more adaptable for the actual calculations of the various hydrodynamic quantities. In
particular, when applied to the quantities (VI. 10, 11, 13), it leads to the expressions (VI. 26,
27, 28) of the first order components of the species y velocity, stress-tensor and heat-flux
vector .

C.3 Derivation of the first-order energy equation

The species continuity and global momentum equations are obtained by direct elimination
of the additional unknowns by the mean of relations (VI. 14, 15, 26, 27). However, in order
to derive the energy equation (VI. 33.e), we need to perform some additional manipulations.
We start from the species continuity equation

ano) ()n(0 ) a_2 (O)R T(o) ov(0)
-+v - y 1 -nI  (C.8)at ay ay2 1 1 ay

Adding to (C.8) the analog equation for the second species and replacing n(0) by 1/ T(O) yields
the equation

(0)aT(o) +v(o)(o) (o) a2  (0) (0) av(0)(
n+ v ) : -T I T + (C.9)at + y y2 y

After substitution of (C.9), the left-hand side of the first order energy equation becomes

3 (o) a (o)) 5av(o) jjau(o) 2 5 a2  T)(0)
-T T _ ' IT) (C.10)4 a2ay" 4 ay 2 ay ) 4 ay2

On the other hand, the diffusion velocity of species 1 may be written

n( = -( 0) R T)( (C.11)1 ay(C.11)

so that the right-hand side of the energy equation becomes

T (O) 2 (3IT)(o )  (C.12)
4 ay2

and cancels the first term of the left-hand-side (C.10). Hence, we are left with the energy
equation (VI. 33e) for the first order quantities.



C.4 Boundary conditions for the first-order system

Expanding (IV. 26) up to the first order yields

(pu)(o)(0) - (pu)(o)= p(0)u, - (P2U2) (0) (0) (C.13)

Since u2(0) = u(0), we get the condition

u(O)(0) = uw (VI.34a)
The condition (VI.34b) for v(o)(0) is immediately obtained from (IV. 18), and the

temperature boundary condition (VI. 34c) is derived from (IV. 27) exactly as the condition
(VI.34a) is obtained above from (IV. 26).

Lastly, the boundary condition specifying the proportion of each species at the surface is
obtained by working out the condition (IV. 30). On the one hand, the velocity term is

(nVx)()(0)= _ n(o)R T(o) (C.14)=-~a •• 1 1 )y=O(C.14)

on the other hand, the heat-flux vector ? the surface is

qyo)(0) =- (R1-R2 (o ()+R2 (o)y (C.15)4ay 1 T ) +R2T Jy=o

Then, combining (C.14) and (C.15) leads to (VI. 34d).

C.5 Developed form of the equations

We give below the explicit form of the system (VI. 33), in order to have a reference for
the second order system. The momentum equations are given explicitly by (VI. 33c) and
(VI.33d), while the species continuity and the energy equations become

an(0) (0) an(0) ov(0) (0) D2 n(0)  (0) n (°0) (0) a2T(0)1 Co (0) 1v - + n1+n1 ( +) n R1 T'2 + +n (C.16)at ay a n y a a2 y y ' y2

5 av(o)
4 ay 2

+4T - (O ) " ( 0)  (0) (0) "T'(0)
+ 4T ()+ 2h T

ay ay ay

(C.17)



APPENDIX D

SECOND ORDER SYSTEM

D.1 Moments of fl(1)

As pointed out in VI.2., the integrated quantities (plul)(1) and (P1)yy(1) involve the

component fi(l) only. Therefore, they are calculated by applying the rule (C.7) given above.

Moreover, as for the first order system in C.1., let us derive the equation (VI. 43) between the

second order components of the various temperatures. Developing (C.2) up to the second

order yields

3(n T = I u(o) 22 2 1 r(o) (o) d0 (D.1)

3 3

The second integral involves only odd moments of fl(o) and vanishes, whereas calculating the

second one leads to
(1) (W)

3(n 1T ) .(nT) (D.2)

A similar identity holds for species 2, and we may write
(1) (1) (1)

Ti = T = T (D.3)

The other species temperature T1 (1) is defined by an identity similar to (D.1), but u(1) and v(O)

are replaced by ul(l) and v1(0). Therefore, the second integral vanishes, as for T1(1), and the

first one has the same value since ul(l) = u(1). Hence, T1 (10) = T1(1), and a similar equality
holds for species 2, so that we finally get

T(1) (I)' (1) (V1) (1)
1 =1 Tl T2 =T 22 = (V1.43)



D.2 Moments of fl(2)

The three remaining quantities, namely (plvl)(1), (P1)xy(1) and (ql)y(1), involve the third
order component f1(2) of the distribution function. This component is obtained by direct
substitution of the various quantities entering equation (V. 4). We do not intend to describe in
details the derivation of the identity (VI. 45), but will simply identify the various terms entering
it.

By expanding up to the order E2 the parameters upon which the reference maxwellian
distribution T12 depends, we are able to identify the third order component of '12

(2) (2) (2) W4  2 (1) [W2 . I
12 1 - P W23 + ( + [  1 [3 T V(1)

=(0) (0) 1 2)2 2 1 8 T(0) + 1 2 (0) 2) 2 ()
TI12 P31  T J T

(1)

2 (0) 2 2 3(D.4)
P1

Next, the second order component of j I has the same form as 'j(1?,

I i( ) , 1 _<( pI T (D.5)

The only difference is the term v1(0) in place of v(o). Replacing v1(0) by its expression (VI.26)
and subtracting fl(l), yield the differerice

(1) (1) (0 fT 1 a(W•
IF,1 - f f 2) T ( ay

en, t e tme erva ve o g s

af() (0) 1 - 1 2) T(o) +

Sat 1 o0) * t T t +( at

(D.6)

(D.7)

Finally, the four last terms in the expression (VI.45) of fl( 2) correspond to the y
derivative of f1(l).

As already noticed for f1(1), fl( 2) is a polynomial in the velocity variables, multiplied by
the maxwellian distribution f1(0). Therefore, any moment of fl(2) can be calculated by applying
the rule (C.1). However, a simpler rule of calculation similar to (C.7) can be given. Recalling
(VI. 22), one gets

hT 
h 

i 
d i 

f f (o) i



(1) (1) 2 (0)
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11~y 11 ay I y2

so that one can easily establish the following rule, h being a function defined in the position

velocity phase space,

(f2) = (2) (1) (- ( d - (o)2 r2 2 hh(0)d)fhf1 )d~l = J~ 12 +TPl- f i 2J hfx df I + 2  l-JLT f dtid1

3 3 3

_2a2h _o) . r (0) r h~ o T (i) r Ci)
_- J 2  d afd - hf1 d + •_•.f d( - J 1hT 12 dt +J 11 22 dk (D.9)

For actual calculations, dealing with this rule turns out to be more convenient than with the full

explicit identity (VI. 45). It provides us with the expressions (VI. 47, 48, 49) of the
components of second order of the species y velocity, stress-tensor and heat-flux vector.

D.3 Second order energy equation

As for the first order system, the species continuity and momentum equations for the

second order system are easily derived by simple substitution of the relations (VI. 40, 41, 47,

48). The derivation of the energy equation is less simple and requires a few more

manipulations.

3 (O) (1) (0) (1)au(o)4qy xy+ -- +D. 10)

(D.IO)

From the y momentum equations (VI. 19) and (VI.44), we have

T = - n(i(,T W) (D.11)

_)Ti) W____ (W)Yran1i)
aT (o) aT) ( an( (0)•n_ )+ v T at -- +v aat ay I ) t ay j

Then, combining both species continuity equations yields
)n W an W 2 W 1avV(0) a o(0) (1)

n() +vO)Bn L(2T)1) - nn (D.13)
at by ay2  - y v y(D.)

Substituting (D.13) into (D.12) and (D.12) into (D.10), together with the relations (VI. 19, 29,

(D.12)
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from which we deduce

u (0) 1 a(pu)) (VI.54a)
(o)(0) ay y=O

P2

As well as for the first order system, the condition (VI. 54b) for v(O)(0) is immediately
obtained from (IV. 18), and the temperature second order boundary condition (VI. 54c) is
derived by expanding (IV. 27) exactly as the condition (VI. 54a) is obtained above by
expanding (IV. 26).

Finally, the second order velocity term of the condition (IV. 30) is
(1) (0) - n(1)T(o)+n()T(1) (D.21)

2 2 laynl T 1 =O

whereas the second order component of the heat-flux vector at the surface is given by
S1 (o)

(W(()..0 . 5 T2 (1)- +2nT0 1(1) = 0 I(R 1 T(OP) +2(o) T(o) T T (D.22)Y -4 yl' T ) n y

so that combining the last two equations gives the boundary condition (VI. 54d).

D.5 Developed form of the equations

As for the first order system in C.5., we write, as below, the explicit form of the species
continuity and energy equations (VI. 53a) and (VI. 53e)

an ) (() an ) ( o) 2 (n) n(1) (0) a ) an () (1) ()2
n + v + n v RT +2  - +2 1 +n 2

at ay i 2y ay ay ay ay 1 2

() -() (1) an(o) +(a2C(0) W) 2 (0)
=- n-  + v 1  +R +T ay (D.23)
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+ 2(0) T() 2T(1) 0) (0) a(1)
+ 2 T +

ay2  ay ay J

+(1)T(o0) a2T 0) T(0) ( 1) 2 (0)

ay2 ay2

0T) 2

ay

(D.24)

The linear structure of the second order system appears clearly in these equations, as well as



the fact that the coefficients of the higher order terms (put on the left-hand side) are those of the
first order system (see C.5.).


