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ABSTRACT

A development has been made of assumed stress hybrid
elements for laminated composite plate analysis based on a
mixed form of Hellinger-Reissner principle which is a
function of three displacement components and three
transverse stresses. The elements satisfy the stress
continuity along the laminar boundaries and the traction
free condition at the top and bottom surfaces of the
laminates. Two families of elements are constructed. One
is to assume the displacement field to be continuous
function through the laminated thickness and the other is
to be piecewise continuous function. A criterion for
suppressing the kinematic deformation modes of the present
elements has been established. The performances of these
elements are verified by a large number of illustrative
examples. The present mixed form hybrid stress elements
have shown to be much more computationally efficient than
the conventional hybrid stress elements.

The present mixed form element is also applied in
conjunction with the global-local finite element method for
the analyses of laminates with straight or curvilinear free
edges and accurate results are obtained. Furthermore,
various stress smoothing schemes for isotropic solids as
well as laminated structures are also investigated using
conventional hybrid stress elements. Such schemes are not
as effective as the use of the present mixed form element.
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CHAPTER ONE

INTRODUCTION

During the past two decades, advanced composite materials

are being used increasingly in many engineering and civilian

applications, ranging from fuselage of an aeroplane to the frame

of a tennis racket. The fibre-reinforced composite possess two

desirable features: one is their high stiffness-to-weight ratio,

and the other is their anisotropic material property that can be

tailored through variation of the fibre orientation and stacking

sequence--a feature which gives the designer an added degree of

flexibility.

In the analysis of laminated plates, studies [1,2]

indicated that the transverse shear effect on the behavior of

the plate is more pronounced that in isotropic plates due to the

very large ratios of elastic modulus to shear modulus (e.g., of

the order of 25 to 40, instead of 2.6 for typical isotropic

materials). Due to the neglect of transverse shear strains in

the analysis, the deflections are underpredicted and the natural

frequencies and buckling loads are overpredicted.

On the other hand, experimental observations [3,4] on

composite structures subjected to compressive loading and



foreign object impact also revealed some distinct failure modes

which are unexpected in metallic material. A thorough knowledge

of these mechanisms is necessary not only to avoid catastrophic

failures, but also to create efficient and durable structures.

Failures in these materials often begin as matrix microcraking

and delamination. These modes of damage are essentially three-

dimensional in nature, and interlaminar stresses are primarily

response for them. Steep stress gradients are encountered in

the vicinities of free edge, ply termination, zone of

delamination, hole and in the regions subjected to impact loads.

Efficient analytical and numerical methods are necessary not

only for the precise estimation of these interlaminar stresses,

but also for identifying the factors that affect directly the

failure process.

Considerable attention has been given to the development

various first and higher order shear deformation theories for

homogeneous and laminated composite plates [5-22] that account

for the effects of transverse shear and normal strains and the

warping of cross section. However, many plate theories are

required to introduce shear correction factors to account for

the incorrect transverse shear stress assumptions across the

thickness. While analytical methods are usually restricted to

problems with simple geometries, loads, boundary conditions and

cross ply laminates. The numerical method, namely finite

element formulation, is a practical alternative way in dealing

with complicated problems , for example, problems with irregular



geometries, general loadings, complex boundary conditions and

anisotropy.

Considerable literature has been devoted to the finite

element analysis of laminated composite plates [23-45].

However, it is noticed that limitations still exist such as most

of the examples limited to 3 to 4 layers. Therefore, the first

objective of this research is to find improved finite element

methods to eliminate those limitations.

The second objective of this research is to determine the

interlaminar stresses in the region where steep stress gradients

are encountered. Study will put emphasis on the free edge

problem even though a voluminous amount of results have already

been reported in this problem [46-75]. However, the present

investigation does not attempt to formulate a special element

such as element including stress singularity or to develop a new

approach, but rather to utilize the global-local modeling

technique based on the proposed finite element methods to

examine the computational efficiency and accuracy.

Based on these two objectives, two types of element are

needed to be constructed. The first one designated as type I is

based on the so-called 'effective' modulus plate theory in which

the displacement approximations are assumed to be continuous

functions across the entire laminate thickness as shown in

Figure 1.1(a). The second one designated as type II is based on



the so-called 'effective' stiffness plate theory in which the

displacement approximations are assumed to be linear or higher

order function of z within each layer. Therefore, the assumed

displacement field is piecewise linear or higher order function

through the laminate thickness as shown in Figure 1.1(b).

The assumed stress finite element model is adopted for the

present formulation because of its convenience in maintaining

the continuity of transverse stresses along the laminar

interfaces and in incorporating the traction free condition at

the top and bottom surfaces of the laminate. The exact

transverse shear behavior can be represented, hence it is not

necessary to introduce any shear correction factors.

An alternative approach for maintaining stress continuity

along the inter-element boundaries is the application of a

stress 'smoothing' and iteration scheme in the post processing

step of the finite element analysis [76]. Therefore, one focus

in this study is to investigate various smoothing techniques for

maintaining the continuity of interlaminar stresses along the

interfaces of laminated composite plates.

An outline of the remainder of the thesis is as follows:

Chapter 2 provides a review of theories of homogeneous and

laminated plates, finite element formulations for various

laminated plate problems. A summary of different methods that



displacements u, v and w
ious function through
cection of thickness)

interlayer
boundaries

(a) type I element

displacements u, v and w
Lse linear through
:ection of thickness)

interlayer
boundaries

(b) type II element

Continuity of displacement function for elementFigure 1.1



have been used to solve a specific free edge problem is also

included.

Chapter 3 presents the derivation of a new mixed form of

Hellinger-Reissner principle and the formulation of the new

mixed form hybrid stress elements. The later sections provide a

guideline for selecting assumed stress field and assessments of

the new elements.

Chapter 4 contains the study of the stress 'smoothing' and

iteration techniques in the application of laminated plate

problems using conventional hybrid stress elements. Assessments

for these techniques are also included.

Chapter 5 presents the effectiveness of the global-local

modeling technique in studying free edge problems with straight

and curvilinear boundaries. A study of the effect of matrix

thin layer is also provided.

Chapter 6 summarizes the conclusions drawn from this study

and the suggestions for future research.

All the numerical calculations in this study are carried

over on a Macintosh SE personal computer.



CHAPTER TWO

REVIEW OF LAMINATED PLATE THEORIES,

FINITE ELEMENTS AND STRAIGHT FREE EDGE PROBLEMS

Before going into detailed discussions of the formulation

of the new mixed form hybrid stress laminated plate element and

the results of numerical studies, a review of the first and high

order shear deformation theories for homogeneous and laminated

plates, various finite element formulations for laminated plate

problems and their limitations are presented in this chapter.

Another objective here is also to briefly review the many

important ideas and publications which have addressed the free

edge problems of laminates subjected to uniform tension or

extension and to assess its current state and solution.

2.1 First Order Shear Deformation Plate Theory

The classical laminated plate theory by Reissner and

Stavsky [5], for which the normals to the midsurface before

deformation are assumed to remain straight and normal to the

plane after deformation and the transverse shear deformation

effect is ignored, is inadequate for the analysis of thick

laminated plates.



Refined theory for homogeneous plates due to Reissner [6]

and Mindlin [7] is improvements of the classical plate theory by

including the effect of transverse shear deformation. It is

based on the assumption that the normals to the midplane before

deformation remain straight but no longer remain normal to the

midplane after deformation. Its kinematic assumptions are of the

form

u = u 0 + Z Nx

v = v 0 + z Ny (2.1)

w = W 0

where

z = the coordinate normal to the midplane

and uo, v 0 , Vx, Ny and wo are dependent on the

inplane coordinates x and y and time t

Reissner assumed a consistent forms for the stress

distributions across the thickness and employed a variational

theorem to determine both the equations of equilibrium and the

stress-strain relations. Without introducing corresponding

stress distribution assumptions, Mindlin directly obtained the

governing equations from the corresponding three-dimensional

equations by appropriate integrations with respect to z, in

conjunction with the displacement assumptions of Eq. (2.1). In

Mindlin's derivation, it was necessary to introduce a shear



correction factor to account for the incorrect uniform shear

stress assumptions across the thickness.

Yang, Norris and Stavsky [8] extended the Reissner-Mindlin

theory based on the same kinematic assumptions of Eq. (2.1) to

laminated plates for studying the propagation of harmonic waves

in a two-layer of two isotropic materials. Following Mindlin's

derivation procedure, the governing equations were obtained but

arbitrary correction factors to the transverse shear stiffness

are required.

Although the Yang-Norris-Stavsky (YNS) theory is adequate

for predicting the overall responses such as transverse

deflections, natural frequencies and buckling loadings (first

few modes) of laminated composite plates, they do not adequately

predict responses relating to interlaminar stresses in the edge

zone or near a delamination in composites. These can be

addressed only by the higher order theories which account for

transverse shear deformation, transverse normal strain and

warping of cross section.

2.2 Hiah Order Plate Theory

If we consider that the classical theory is merely a

special case of the shear deformation theory such that the

transverse shear deformation is small and can be neglected, Eq.



(2.1) applies to both the classical plate theory as well as the

Reissner-Mindlin theory. Thus, they are of the same order of

approximation considering the terms in Eq. (2.1) as the first

terms in a power series expressions in the normal coordinate z.

There have been many theories proposed which are of higher

order than those based on Eq. (2.1). A brief review of some of

the theories are presented. It should be noted that the term

"high order theory" refers to the level of truncation of terms

in a power series expansion for displacement assumptions, rather

than to the order of the final system of differential equations.

Essenburg [9] derived the next higher order one-dimensional

homogeneous plate theory based on the following displacement

assumptions,

u = u0 + z Nx

v = v0 + z Ny (2.2)

w = w0 + z fz + z2 z

where

Nz and ýz are dependent on the inplane

coordinates x and y and time t

This includes the effect of transverse shear and normal strains

but does not allow warping of cross section. Based on the

stress distribution assumptions across the thickness,



corresponding to Eq. (2.2) the governing equations can be

obtained. Essenburg has demonstrated the advantage to use the

theory based on Eq. (2.2) over lower order theories in the

context of contact problems.

Whitney and Sun [10] developed a similar level shear

deformation theory for laminated plates. The assumed

displacements are extended to include the first order of the

transverse normal strain and the warping of cross section and

are of the form

u = uo + z Vx + z2 x

v = v 0 + z Ny + z2y (2.3)

w = wo + Z Xz

The governing equations are derived from the Hamilton principle

and shear correction factors of the same type as employed by

Mindlin were used. The theory has been used to study one-

dimensional wave propagation problem for laminated plates and to

compare to exact solutions obtained from dynamic elasticity

theory. The theory yields improved results for extensional

motions.

Nelson and Lorch [11] has presented a theory of next higher

order for modeling laminated plates and is based on the

following assumed displacements



2
U0 + z Nx + Z ýx

v = v 0 + z Iy + z 2y (2.4)

w = w0 + z Urz + z Cz

It includes all higher order effects of the transverse shear and

normal strains and the warping of cross section. The Hamilton

principle is again used to formulate the displacement equations

of motion with appropriate boundary and initial conditions.

Like previous theory, shear correction factors must be

introduced. The theory is capable to accurately model the

static and dynamic behavior of laminated orthotropic plates.

A high order theory for homogeneous plates involving the

lower order correction for the effect of out-of-plane

deformation to Eq. (2.1) was given by Reissner [12]. The

displacements are in the form

u = z rx + z 3x

v = z Vy + z 3y (2.5)

2
w = w0 + Z z

which the inplane deformation along the midplane is neglected.

Reissner has shown that for the bending of a plate with a



circular hole this theory gives very accurate results compared

to the elasticity solution.

Lo, Christensen and Wu [13,14] have extended Reissner

theory by including both inplane and out-of-plane effects to

investigate homogeneous and laminated composite plates. The

theory is based on

u = u 0 + Z Nx + Z 2X + z 3x

2  3 (2.6)
v = v 0 + z N + z + z (2.6)

w = w0 + z Nz + z2 z

The governing equations were derived with the help of the

principle of stationary potential energy. Assessment has been

made for a simply supported thick isotropic and laminated plates

subjected to cylindrical bending.

Since 1980, a new class of high order theories began to

appear in the literature. The inplane displacements u and v are

assumed to be the same order as that given in Eq. (2.6) but the

transverse displacement w is assumed to be constant through the

thickness. Thus, the effect of normal strain is neglected. The

main feature of these theories is that the number of dependent

unknowns can be successfully reduced to the same number as the

first order shear deformation theory. They are achieved by

satisfying the condition of zero transverse shear stresses on



the top and bottom surfaces of the laminate, and consequently,

there is no need to use any shear correction factors. The

displacements are reduced to the form

4 z 2

u = u + z [x- (-) (+ax)0 Wx 3 h Wx a

v = v + z [- - (-) ( +~) ] (2.7)0 y 3 h Dy
w = W

where

h is the total thickness of the laminate

The theory which involves the displacement assumptions of

Eq. (2.7) was first presented by Levinson [15] for isotropic

plates. To assess the validity of the theory, torsion of a

rectangular plate was studied and compared to Reissner's results

[6]. Murthy [16] extended the theory to laminated plates.

Instead of directly using Eq. (2.7), he used "average"

displacements u, v and w and "average" rotations of a line

normal to middle surface Ox and Py as unknowns. He has shown

that the present theory is more accurate than other first order

shear deformation theory.

Their derivations involve a displacement approach like that

in Mindlin theory and its straight forward extensions. The

constitutive equations which relate the forces and moments to

displacements and rotations are obtained by integration through



the thickness. But the equations are derived by using the

equilibrium equations of the first order shear deformation

theory instead of through the variational principle. These

equations which are derived from the principle of virtual

displacement based on the displacement assumptions of Eq. (2.1)

are variational inconsistent with their displacement

assumptions. The correct forms of differential equations and

boundary conditions based on this displacement field have been

derived by Reddy [17].

Based on the same displacement assumptions, Reddy [17] has

presented a geometrically nonlinear theory by simply introducing

the von Karmain (nonlinear) strains instead of the linear

strains. He derived the equilibrium equations by applying the

Hamilton Principle. He has shown that the linear version of his

theory is more accurate to predict the deflections, stresses and

frequencies when compared to the Reissner-Mindlin first-order

theory. Reddy [18] also presented a linear high order theory of

laminated composite plates based on the displacement assumptions

of Eq. (2.7).

Bhimaraddi and Stevens [19] has employed another set of

displacement assumption similar to those of Eq. (2.7). They are

2

u=u +z (1 4-z •- aw
3h



v 0 +z (1i - z ) (2.8)
3 h2  Y

W = w 0

The assumed displacement field of classical plate theory can be

obtained as a special case from Eq. (2.8) but not from Eq.

(2.7). They also employed the Hamilton principle to derive the

equations of motion. The superiority of the theory has been

demonstrated by comparing the results obtained by Reissner-

Mindlin plate theory in the context of free vibration analysis

of isotropic and laminated plates.

The next higher order theory is to extend the previous

theory by including the normal strain effect. Krishna Murty and

Vellaichamy [20] presented a theory for symmetric laminated

plates and loading are assumed to be applied at the top and

bottom surfaces of the plates. The displacement assumptions are

of the forms

u=u0 + z 4z - z
0 2 x ax3h

v = v + z (1 4z (2.9)
3 h

2

w=w 0 + h (1 )-0 2 z
h



The governing equations and boundary conditions were derived

with the help of the principle of virtual displacement. The

theory provided good estimates of the deflections, and the

inplane stresses.

The prominent common feature of the theories discussed in

the previous paragraphs is to assume each displacement component

as smooth continuous function across the entire plate thickness.

For laminated plates, they are the so-called 'effective' modulus

theories in replacing the composite by a homogeneous anisotropic

material.

All the first order and some high order shear deformation

theories for laminated plates require an arbitrary correction

factor to the transverse shear stiffness. The determination of

the shear correction factors is still a controversy among

authors. For example, the usual procedure for determining the

correction factor in a dynamic problem is to match specific

frequencies from the approximate theory to frequencies obtained

from dynamic elasticity. For the general case of a laminate

this procedure becomes very tedious as the value of the factor

will depend on the stacking sequence and the number of the

plies. The high order theories with the traction free condition

enforced on the top and bottom surfaces of the laminate resolve

this difficulty.

However, the assumption of smooth continuous displacements



across the entire thickness will lead to discontinuous

transverse shears at the interlaminar surfaces. Although the

transverse shear and normal strains and the warping of cross-

section are included in many high order theories, they are

adequate for predicting the global responses but still

inadequate for predicting the interlaminar stresses because they

cannot satisfy the equilibrium of each layer, especially around

the free edge region.

Another class of high order laminated plate theories is the

so-called 'effective' stiffness theory and is based upon the

assumption that the displacement field is linear functions of z

within each layer.

Sun and Whitney [21] and Srinivas [22] presented a theory

based on this kind of assumptions. The displacement field in

the kth layer is assumed to be of the form

k k + k k
u = u 0  x

vk = k + k (2.10)

k k
w = wo = W0

where
k = local thickness-coordinate of layer k

k k k k ku0, v0, w0, Ix and 0y are nodal displacements

at the midplane of layer k



The continuity conditions of displacement and transverse stress

at the laminar interfaces are satisfied. The equations of

motion were derived again by applying the Hamilton principle and

Srinivas also provided a procedure for obtaining the general

solution in the form of hyperbolic-trigonometric series. Sun

and Whitney assessed the theory by studying the wave propagation

problems and compared the results with the exact three-

dimensional elasticity solutions. Srinivs assessed the theory

by studying free vibrations and flexure of simply supported

rectangular laminates and compared with the exact solutions.

The 'effective' stiffness theories yield more detailed

informations about the laminate than the 'effective' modulus

theories. However, they still cannot satisfy the layer

equilibrium around the free edge in order to predict the

interlaminar stresses accurately because the theories are lack

of equations to enforce the boundary conditions and the

transverse normal strain is also ignored. On the other hand,

the theories become intractable as the number of layers becomes

large.

2.3 Laminated Plate Finite Elements

In the last decade, there has been considerable effort

directed toward the development of shear-flexible, multilayered



anisotropic plate elements based on the first or high order

plate theories. The objective of this section is to review the

formulations of those multilayer plate elements appeared in the

literature. This type of elements is classified into two

groups, type I element and type II element.

2.3.1 Type I Laminated Plate Elements

Based on the different methodologies used in the

formulation, the type I multilayer plate elements can be further

divided into displacement model, mixed model and hybrid stress

or strain model.

2.3.1.1 Displacement Model

Pryor and Barker [23] constructed a conventional

displacement finite element based on the YNS theory [8] to

analyze thick laminated composite plates. The element is a 4-

node rectangular element and has 7 degrees of freedom (three

displacements, two total rotations and two shear rotations) per

node. The transverse stresses in each lamina are obtained by

utilizing the local equilibrium equations rather than by

directly estimating from the displacement solution through the

use of the strain-displacement and stress-strain relations.



The procedure is as follows

1) Use the displacement solutions to deduce the inplane

stresses x,, Gy and txy.

2) Insert these inplane stress solutions into the following

equilibrium equations for layer i

ti = ( Gi + T ) (2.11)
Xz,z X,X xy,y

i ( i i+
yz,z y,y xy,x

3) Solve for the transverse stresses txz and Tyz by

integration.

The integration is done by assuming that there are no shear

stresses at the top and bottom surfaces of the laminate and the

transverse stresses are continuous between layer boundaries.

Several simply supported square two- to four-layer cross ply

laminated plates subjected to sinusoidal loading or cylindrical

bending were tested. The transverse stresses are in reasonable

agreement with the elasticity solutions if no severe warping of

cross section occurs.

Noor and Mathers [24] studied two aspects of the finite

element analysis of symmetrical laminated composite plates. The

first is to exploit the symmetries exhibited by anisotropic

plates for various loadings and boundary conditions. A simple



procedure was outlined and saving in cost of computations can be

resulted by considering the symmetries.

The second aspect is to study the effects of anisotropy and

shear deformation on the accuracy and convergence of five

quadrilateral shear-flexible finite elements based on the YNS

theory [8]. They are two serendipity-type elements with

quadratic and cubic interpolation functions, two Lagrangian

elements with bi-quadratic and bi-cubic functions, and one

Hermitian element. All elements satisfy continuity requirements

of the type Co and have both displacements and displacement

derivatives as nodal parameters. Numerical studies on global

responses of the plates have shown that the accuracy and

convergence of the first three elements are strongly dependent

on both the transverse shear flexibility and degree of

anisotropy of the plate. On the other hand, the higher order

elements, bi-cubic and Hermitian, are less sensitive to

variations in these effects.

By eliminating the two shear rotation degrees of freedom at

each node of Pryor and Barker's element [23], Panda and

Natarajan [25] developed an 8-node quadrilateral CO laminated

plate element with five degrees of freedom (three displacements

and two rotations) per node. The element is also based on YNS

theory but no shear correction factor is used. Several simply

supported laminated plates under sinusoidal loading or

cylindrical loading were tested. Compared to the elasticity



solutions, the element gives good predicting in the maximum

deflection and inplane stresses for thin plate. However, the

accuracy of the solutions begin to deteriorate when the span-to-

thickness ratio is lower than 10.

Reddy [26] developed an 8-node quadrilateral CO element

also based on the YNS theory for laminated composite plates.

The element contains five degrees of freedom (three

displacements and two rotations) per node. Instead of directly

utilizing the YNS theory, Reddy employed a penalty function

formulation. For a thin plate limit, the normals to the

midplane before deformation remain straight and normal to the

midplane after deformation implies that

aw aw
x = a and y= - y (2.12)

The problem of finding the solution (u, v, w) to the thin plate

equations can be viewed as one of finding (u, v, w, Nx, Vy)

subject to the constraint equations of Eq. (2.12). Reddy showed

that this can be achieved by using a penalty function to the

equations governing the thin plate theory that resembles the YNS

theory. Assessment of the element has been made for the bending

and free vibration analysis of rectangular laminated plates with

various loadings and boundary conditions. Results in

deflections, inplane stresses and natural frequencies are in



good agreement with the exact solutions for thin plates and in

reasonable results for thick plates.

A higher order shear-flexible triangular element for

laminated plates based on the YNS theory was formulated by

Lakshminarayana and Murthy [27]. The element has three nodes

located at its vertices and 15 degrees of freedom per node. The

three displacements and two rotations along with their first

derivatives are selected as the nodal parameters. In order to

approximate the displacement field by complete cubic

polynomials, centroidal values of three displacements and two

rotations are used during evaluation of element matrices but are

eliminated by static condensation.

Numerical assessments include many geometries, loading

conditions, support conditions, laminated configurations,

regions of stress concentration and singularity. The results

has shown that element has accurate prediction in displacements

and stress resultants. His study also indicates that the

elements which do not include the effect of transverse shear

deformation may be highly inaccurate in the analysis of

laminated composite plates.

Instead of focussing on the prediction of the global

responses for the laminated plates, Engblom and Ochoa [28,29]

attempted to predict through-the-thickness stress distributions

by using the displacement model. They followed the idea

46



originally due to Pryor and Barker [23]. Inplane stresses are

first determined by utilizing the layer constitutive equations

and then the transverse stresses are determined by integrating

the first two equations of equilibrium in the transverse

direction.

Two quadrilateral high order displacement elements were

presented in Reference 28. The inplane displacement field is

described by Eq. (2.3) and the transverse displacement w is

constant through the thickness. The first one is an 8-node

element with 7 d.o.f. (three displacements, two rotations and

two high order terms for inplane displacements) per corner node

and 3 d.o.f. (transverse displacement and two rotation) per mid-

side node. The second one is a simplified version of the first

one where the mid-nodes are omitted. Because quadratic

variation of the transverse shear strains through the thickness

are used, no shear correction factor is required. An eight-node

quadrilateral element was presented in Reference 29. The three

displacements, two total rotations and two shear rotations are

chosen as nodal parameters at each corner node similar to

Pryor's element and one transverse displacement at each mid-side

node. Reasonable results in inplane and transverse stress

distributions are obtained if the laminates are in moderately

span-to-thickness ratio.

Pandya and Kant [30] presented a high order Co plate

element based on the assumed displacement field of Eq. (2.5) for



symmetrical laminates. It is a 9-node Lagrangian isoparametric

plate bending element with six d.o.f. (one transverse

displacement, two rotations, three higher order terms for

displacement) per node. The element is account for quadratic

and linear variations of the transverse shear strains and normal

strain, respectively. Therefore, no shear correction factor is

required and the element includes all six components of strain.

Symmetrical laminates with various loadings, boundary conditions

and laminated configurations has been tested. Results in

deflections and stresses are in good agreement with the exact

solutions.

2.3.1.2 Mixed Model

If the displacement-based finite element model is based on

the high order theory of Eq. (2.7) in which the assumed

displacement field satisfies the zero transverse shear stress

boundary conditions at the top and bottom surfaces of the

laminate, no shear correction factor is required but the

resulting formulation contains second order derivatives of the

transverse displacement in the total potential energy and

consequently the formulation requires the use of Cl continuous

shape functions. However, if in addition to the three

displacements and two rotations the moment resultants are also

used as variables, the resulting governing equations will not

include the second derivatives of the transverse displacement.



Therefore, the requirement of the inter-element displacement C'

continuity based on these mixed variables can be relaxed.

Putcha and Reddy [31] has developed two mixed shear

flexible CO plate elements with relaxed inter-element

displacement continuity based on the previous discussion for

geometrically linear and nonlinear analysis of laminated

composite plates. The elements are a 4-node linear and a 9-node

quadratic elements with eleven d.o.f. (three displacements, two

rotations, three moment resultants and two higher order moment

resultants) per node. They has evaluated the element by

studying the problems of bending of laminated rectangular plates

with different laminated configurations, loadings and edge

supports. It has demonstrated that the global responses

predicted by the element are in accuracy compared with other

available results.

Kwon and Akin [32] presented a mixed shear flexible element

based on the assumed displacement field of Eq. (2.2). Applying

the traction free conditions at the top and bottom surfaces of

the laminate to the assumed displacement field and using the

three moment resultants along with the three displacements, the

high order terms of transverse displacement and the two

rotations are eliminated. The element has 4-node with six

d.o.f. (three displacements and three moment resultants) per

node. Only the deflections for three simply supported

rectangular laminated plates subjected to sinusoidal loading



were presented. However, they has demonstrated the advantage

over other elements based on the YNS theory.

2.3.1.3 Hybrid Stress or Strain Model

Spilker and his colleagues [33] presented a four-node

quadrilateral hybrid stress element with five degrees of freedom

(three displacements and two rotations) per node. It is based

on a modified complementary energy principle. The choice of

assumed stress field is as follows. First, the inplane strains

Ex, Ey and Yxy for the entire laminate are expressed as

e = P p (2.13)

where

e = Ex y' xyX

P* = matrix of assumed polynomials

P = set of undetermined parameters

Then the inplane stresses (,, (y and ,xy for the ith layer are

related to the strains in the form

i i *
t Q= = Q P P (2.14)

p p

where

t= , Ifx' y ' xy T



Qi = reduced material property matrix of layer i

to a plane stress state

The remaining transverse stresses Txz, tyz and zY in the ith layer

are obtained by integrating the equations of equilibrium and

enforcing the stress continuity conditions. As a result, the

assumed stress field satisfies the equilibrium exactly.

Corresponding to the assumed displacement field, a linear

interpolation of the inplane strain in the interior of the

element is used. Assessments have been made for some simply

supported laminated plates under cylindrical bending. However,

though-the-thickness stress predictions are similar to those

obtained by displacement model with the help of integration of

local equilibrium equations.

Spilker and Jakobs [34] extended the previous 4-node hybrid

stress element to an 8-node quadrilateral element with the same

5 d.o.f. per node. A scheme which is to identify all the

similar terms in the integrations is used to reduce

computational effort. The reduction for thin plates is

accomplished by ignoring the contributions of the transverse

stresses to the complementary energy. Several simply supported

laminated plates subjected to cylindrical bending have been

tested to assess the accuracy of the element.

A nine-node hybrid strain element for laminated composite

plates and shells was developed by Haas and Lee [35]. Three



displacements and two rotations are chosen as nodal parameters

at each node. The element is a degenerate solid type of shell

element based on a modified Hellinger-Reissner principle with

independent inplane and transverse shear strains. The assumed

strain field is in terms of 24 undetermined strain parameters.

Based on the hybrid strain model, the element has eliminated the

shear locking phenomenon while modelling thin plates and shells.

Several simply supported rectangular laminated plates with

regular and distorted meshes have been study to assess the

accuracy of the element.

2.3.1.4 Limitations of Type I Laminated Plate Elements

There are several limitations for the type I laminated

plate elements. Many are related to those of the displacement-

based laminated plate theory. First, arbitrary shear correction

factors are needed to account for the assumption of uniform

transverse shear stress distributions if the element is based on

the YNS theory.

Second, elements based on the formulation other than the

hybrid stress model guarantee discontinuous transverse stresses

at the laminar interfaces.

Third, elements, in general, are adequate for predicting

the deflections, maximum inplane stresses and natural



frequencies but inadequate for predicting through-the-thickness

stress distributions. If no severe warping of cross section

occurs, reasonable results in through-the-thickness stress

distributions can be obtained by integrating the local

equilibrium equations for the displacement, mixed and hybrid

strain models. However, considerable amount of computational

effort is required if the number of layers becomes moderately

large.

Fourth, elements are incapable to model warping of the

cross section and most of the elements do not include the effect

of transverse normal strain. Therefore, they cannot be used to

model the region subjected to severe stress concentration, for

example, free edge and delamination zone.

Fifth, elements based on the high order displacement field

which satisfy the traction free condition at the top and bottom

surfaces of the laminate are required to use the moment

resultants as nodal parameters in order to relax the condition

of inter-element displacement continuity.

2.3.2 Type II Laminated Plate Elements

Two formulations have been used in deriving type II

laminated plate elements. There are displacement and hybrid

stress models.



2.3.2.1 Displacement Model

Mawnya and Davies [36] developed an 8-node quadratic

multilayer plate element which permits individual layer to

deform locally. The effects of transverse shear deformation are

included by allowing warping of cross section. Three

displacements of the midplane and two normal rotations of each

constitutant layer of the laminate are chosen as nodal

parameters at each node. However, it is equivalent to two

inplane nodal displacements at each interlayer boundary

including the top and bottom surfaces of the laminate as shown

in Fig. 2.1(b) and one transverse nodal displacement at the

midplane. Therefore, the number of degrees of freedom per node

is 2N + 3 where N is the number of layers of the laminate.

Results for simply supported laminates under sinusoidal

loading have demonstrated the convergence of global responses

with the element. However, the span-to-thickness ratio for

their numerical studies is not smaller than 20. Many type I

elements have been shown their good performance in predicting

the global responses for thin and moderately thick laminated

plates. Therefore, the use of type II element is not cost

effective if only the global responses are sought.

A 6-node shear flexible laminated plate triangular element



has been presented by Chaudhuri [37]. The displacement field is

assumed to be piecewise linear in inplane displacements u and v

and constant in transverse displacement w across the thickness

which is equivalent to Mawenya's element. Through-the-thickness

predictions of interlaminar shear stresses are calculated at the

centroid of the triangular surface which has been proved to be

the point of exceptional accuracy for the interlaminar shear

stresses. The Pryor and Baker's method which is based on the

integrations of equilibrium equations to predict the

interlaminar shear stresses is used. Using the type II

piecewise linear displacement-based element and the equilibrium

equation has shown that the accuracy results in through-the-

thickness interlaminar shear stress distribution can be obtained

for symmetrical laminates.

However, the transverse shear stresses, as computed by the

equilibrium method will not, in general, simultaneously vanish

at both the top and bottom surfaces of an unsymmetrical

laminated composite plates. The method needs to solve a

overdetermined system. Chaudhuri and Seide [38] refined the

equilibrium method by an approximate semi-analytical method.

They used the same 6-node shear flexible triangular element

with the same d.o.f. as before. Instead of directly applying

the equilibrium approach to predict the transverse shear

stresses at the centroid of the triangular surface, they adopt



the following approach. The transverse shear stress Tixz(z) of

layer i are assumed to be of the form

3

S(z) = N.(z) f. (2.15)
j=1

where

Nj(z) = one-dimensional quadratic shape functions

i if, j = 1,2,3 designate T (z) at the bottom, middle
th

and top surfaces of the i layer, respectively

Therefore, it requires 3N equations to solve for 3N

unknowns where N is the number of layers. The equations are

chosen by (i) forcing ×xz to be zero at the top and bottom

surfaces of the laminate (2 equations), (ii) satisfying

continuity condition at each interface (N-I equations), (iii)

identifying rxz as computed by directly estimating from the

displacement solution through the use of the strain-displacement

and stress-strain relations at the midplane of individual layer

(N equations), (iv) computing jump in txz at each interface

utilizing the first two equilibrium equations in terms of the

stresses (N-I equations). Following an identical procedure, a

similar expression for xiyz(z) can be obtained.

The refined method has been demonstrated to be superior to

the equilibrium method and the predicted transverse shear



stresses are in close agreement with the exact solution for a 3-

layer cross ply laminate under cylindrical bending.

Owen and Li [39,40] presented an 8-node quadrilateral

multilayer element with the same through-the-thickness

displacement assumptions as those displacement-based type II

elements. In order to reduce the computational effort in

solving the global system equations for thick laminate, a

substructure technique eliminating of internal degrees of

freedom after assembly is used. Assessments have been made by

using the element to study the static bending, vibration and

buckling problem of laminates with various thickness and modulus

ratio.

On the other hand, the maximum transverse shear stresses

are calculated by a so-called 'local' smoothing technique. The

transverse shear stresses are calculated at the 2x2x2 Gauss

points, where are known to be the optimum location for stress

sampling, by directly estimating from the constitutive

relations. Then the transverse shear stresses at the element

boundary are obtained by interpolating the Gauss point

solutions.

2.3.2.2 Hybrid Stress Model

A four-node general quadrilateral multilayer plate element



was developed by Mau, Tong and Pian [41]. The assumed through-

the-thickness displacement field is the same as those

assumptions in previous displacement-based type II elements in

which the inplane displacements u and v are assumed to be

piecewise linear and the transverse deflection w is assumed to

be constant across the layer thickness. The element is based on

a modified complementary energy principle in which the

interlayer stress compatibility conditions are enforced by

Lagrange multipliers. The assumed stress field within each

layer is related to a set of 20 stress parameters and satisfies

the equilibrium equations exactly. Accurate results in through-

the-thickness stress distributions have been obtained for thick

laminates subjected to sinusoidal loading or cylindrical

bending.

Spilker [42] presented a 2-node two-dimensional multilayer

plane strain element with high order through-the-thickness

distributions for both stress and displacement in individual

layer. The element is based on a modified complimentary energy

principle wherein the continuity of inter-element tractions and

the mechanical boundary conditions have been relaxed by using

the Lagrange multipliers. The assumed displacement field is

assumed to be linear between two node-lines and high order

through-the-thickness distributions within each layer by

allowing displacement u to be of order z3 and w to be of order

z2. After enforcing the displacement continuity between layers,



the total degrees of freedom for laminate having N laminae is

10N + 4.

Corresponding to the high order through-the-thickness

assumption of displacement field, the assumed stress field which

satisfies the equilibrium condition in each layer is in terms of

total 21 stress parameters. He begin by assuming the inplane

stress Qx to be of order z3 and y3 . The remaining stress

components are chosen via the equilibrium equations. Thus, the

transverse shear stress ×xz is of order z4 and y2 and the

transverse normal stress Gz is of order z5 and y. The

continuity condition at the lamina interfaces and traction free

condition at the top and bottom surfaces of the laminate reduce

the total number of stress parameters to 16N - 3. Because the

large computational effort is required to generate the element

stiffness matrix, numerical tests were restricted to problems of

cylindrical bending of 2 and 3 layers cross ply laminates.

However, the results in through-the-thickness distribution are

in close agreement with the exact solution for the span-to-

thickness ratio as small as 1.

An invariant eight-node hybrid stress element for

multilayer plate element was presented by Spilker in Reference

43. Through-the-thickness displacement field within individual

layer is assumed to be piecewise linear in the inplane

displacements u and v and constant in the transverse deflection

w across the layer thickness. In order to maintain the



invariant property of the element, the inplane stresses are

assumed to be complete cubic polynomial in x and y for both

bending (order z) and stretching (constant) within each layer.

The remaining three components of transverse stress are obtained

via the equilibrium equations. Finally, a total of 67 stress

parameters is used in each layer. However, after enforcing the

stress continuity and traction free conditions, the total number

of stress parameters for the element is 56N - 10 where N is the

number of layers.

The total degrees of freedom of the element is 16N + 24 and

the minimum number of stress parameters is 16N + 18. Therefore,

the total number of J's will be excessive large compared to the

minimum number of 0's when the number of layers is greater than

2. For example, if the number of layers is 2, the total number

of O's is 102 and the minimum number is 50. A three layers

cross ply laminates under cylindrical bending has been tested to

assess the performance of the element.

Liou and Sun [44] has presented an 8-node hybrid stress

multilayer plate element based on a modified complementary

energy principle. All the three components of displacement u, v

and w are assumed to vary linearly through the thickness of each

lamina. Therefore, the element can account for all six

components of strain. The assumed stress field which satisfies

the equilibrium condition within each layer is interpolated in

terms of stress polynomials with 55 0's. The element does not



have invariant property. On the other hand, the number of I's

is greatly reduced compared with the previous Spilker's element.

The total number of stress parameters for the element is (55-

14)N - 10 after enforcing the traction free and continuity

conditions of the stresses. Good accuracy and convergence are

observed in the numerical results of several cross ply laminates

subjected to sinusoidal loading or cylindrical bending.

Moriya [45] developed an 8-node shear flexible laminated

plate and shell element. The assumption displacement field is

the same as those in Liou and Sun's element. However, the

element is not based on any conventional modified complimentary

energy principle but rather based on a new form of mixed

Hellinger-Reissner principle [45,81-83] . This new mixed

principle is adopted in this study and will be re-derived in a

more concise and clearer manner in the next chapter. It is in

terms of all three components of displacement and three

components of transverse stress. Therefore, no assumed stress

field is required for inplane stresses. The total number of

stress parameters being used is greatly reduced, and

consequently, considerable computational effort has been saved.

Assumed transverse stresses within each layer are in terms

of 36 uncoupled stress parameters and applying the idea

originally due to Pian and Chen [84], the third equation of

equilibrium is enforced in an integral sense through the use of

three internal transverse displacement wX's. A simply supported



three layers cross ply laminate under sinusoidal loading with

various span-to-thickness ratio, a free edge problem of a four

layers symmetrical cross ply laminate and a two layers cross ply

laminated cylindrical shell subjected to two concentration

forces were tested to assess the performance of the element.

2.3.2.3 Limitations of Type II Laminated Plate Elements

Accurate results in the global and local responses of thick

laminates can be obtained by these elements. However, it is

obvious to see that any type II element is required extensive

computational effort deriving the element stiffness matrix and

solving the global equation because of large bandwidth of the

system when the number of layers becomes moderately large. Most

of the numerical tests on these elements in the literature are

limited to laminates having 3 to 4 layers and the highest order

element developed by Spilker [42] is formulated only for two-

dimensional analysis.

Elements based on the displacement model will lead to

discontinuous transverse stresses at the laminar interfaces.

Through-the-thickness stress distribution of transverse stresses

can be obtained by using the integration of the first two

equilibrium equations or the semi-analytic method suggested by

Chaudhuri and Seide [38]. On the other hand, considerable



amount of computational effort is required if the number of

layers becomes moderately large.

For hybrid stress element, no extensive computational

effort is required to compute the transverse stresses. However,

using the conventional hybrid stress approach, a large number of

stress parameters is used if the number of layers becomes large.

Because the computational effort in deriving the element

stiffness matrix is proportional to the number of stress

parameters being used, the effort increases rapidly as the

number of layers becomes moderately large.

2.4 Laminated Free Edge Problem

As mentioned earlier, catastrophic failures in laminated

composite plates often begin as delamination and matrix

microcracking. Interlaminar stresses are primarily response for

these failures and numerous attempts have been made to predict

the interlaminar stress distributions around the free edges.

The model which has widely been used in studying the problems is

a finite width laminate subjected to uniform axial strain.

Reviewed here, the majority of analytical and numerical studies

are based on modeling each layer as a homogeneous anisotropic

material. As a more realistic models, the interface is

characterized as a separate layer, but still maintain distinct

layer interfaces.



2.4.1 Finite Difference Method

An elasticity solution for a finite width laminate under a

uniform axial strain was first developed by Pipes and Pagano

[46]. By assuming that the stresses are not varying along the

axial direction, the resulting differential equations are

functions of two space variables instead of three. They

employed the finite difference method to solve the problem for a

symmetrical four layers laminate and reported a sharp rise in

all three interlaminar stresses near the free edge. It is

suggested that a stress singularity exists at the free edge.

On the other hand, Altus, Rotem and Shmueli [47] did not

employed this approximation and established the resulting

different equations in terms of all the three space variables u,

v and w. Then, they adopted the three-dimensional finite

difference scheme to study several four layer symmetrical angle

ply laminates. The results have shown that peeling stresses may

be a significant factor for delamination.

However, it has been indicated that the results obtained by

the finite difference scheme near the interlayer boundary and

the free edge may not be reliable. Therefore, the conclusions

drawn from these results are questionable. More in depth

discussions will be presented at the end of this section.



2.4.2 Finite Element Method

Rybicki [48] derived a three-dimensional equilibrium finite

element for the solutions of some finite width symmetrical cross

ply laminates under uniaxial strain. He first approximated the

assumed stress field within each layer which satisfies the

equilibrium equations by three sets of Maxwell stress function

with 648 unknown coefficients associated with each discrete

element. After satisfying the stress boundary and compatibility

conditions along the interlayer boundaries, the number of

unknown is reduced and they are determined by minimizing the

complementary energy. Similar results compared with Pagano and

Pipes [46] were obtained.

Wang and Crossman [49] studied the Pagano-Pipes quasi-

three-dimensional problem by utilizing constant strain,

triangular displacement-based finite elements. Numerical

results for five types of laminated configuration have been

reported and emphasis is placed on assessing the stress

singularity in the regions close to laminar interfaces and free

edge.

On the other hand, they [50] also proposed a finite element

substructuring scheme to study thick laminates composed of many

layers. The idea is to model the layers distant from the region

of interest by a single element having effective material



properties as 'effective' modulus plate theory, while the region

of interest is modeled by a dense population of elements which

are capable to capture the high stress gradients around the

region of interest, for example the free edge zone of laminates.

A special hybrid stress element which satisfies the

traction free edge condition exactly based on the high order

hybrid stress laminated plate element [42] was presented by

Spilker [51] to study the effect of traction free edge

condition. He employed the element to a 4-layer cross ply

laminated structure. Based on his study, the effect of

satisfying the traction-free-edge condition exactly on the

stresses is limited to a very narrow region near the free edge.

However, the element does not have good performance in

predicting stresses for the free edge problem because of its

poor assumed stress field. The conclusion is questionable.

Raju and Crews [52] studied the quasi-three-dimensional

free edge problem by applying large number of eight-node

isoparametric elements. Seven laminates belonging to a family

[0/(0-90)]s, 050:90 were considered. Three rectangular meshes

were used and the fine mesh had 1833 nodes and 576 elements

which is the finest mesh in finite element analysis has ever

reported in the literature for a two layers model. Near the

laminar interfaces and the free edge, the transverse normal

stress Oz is tensile for the cross ply laminates and compressive

for all other five laminates considered. The transverse shear



stress Gxz where x is the direction of prescribed strain is much

larger than the normal stress Oz for laminates except for the

cross ply laminates in which xz, is zero. Convergence studies

again indicate the existence of weak stress singularity at the

intersection of the interface and the free edge. A log-linear

curve fitting procedure has been used to evaluate the power of

the singularities. For the graphite/epoxy laminates of [8/(0-

90)]s 05:890 family, the power of the singularity in Coz is found

to be about 0.17 along the interface.

Although in reality the stress singularity does not exist,

to capture this weak stress singularity is still of great

interest. There exist two hybrid stress elements and one

displacement-based element in which the singular stress field is

included.

Wang and Yuan [53] presented a special hybrid stress

element which includes the stress singularity in the assumed

stress field and exactly satisfies the stress free edge

condition and the stress continuity condition along the

interlaminar boundaries. The element based on a modified hybrid

functional and eigenfunction solution of a pair of linear

governing partial differential equations derived from the theory

of anisotropic elasticity and Lekhnitskii's stress potentials

[54,55]. The singular hybrid element along with 8-node

isoparametric displacement-based elements was used. The results

for a [±45]s laminate confirmed the results obtained by Raju and



Crews [52] . The finite element mesh has 273 nodes and 78

elements and has reduced drastically compared with the one used

by Raju and Crews which does not include any singular element.

Independently, Lee, Rhiu and Wong [56] developed a singular

hybrid stress element along with conventional hybrid stress

elements to study the problem. The singular element is also

based on the same modified hybrid functional as in Wang and Yuan

[53] and. Lekhnitskii's stress potential solutions for the free

edge anisotropic elasticity problem. Numerical results

indicated fast convergence compared with the solutions obtained

by other finite element without embedded the stress singularity.

Yeh and Tadjbakhsh [57] developed a singular displacement

finite element based on a singularity transformation which was

original suggested by Yamada and Okumura [58]. First the

singular element is derived and then the order of stress

singularity is computed. It is interesting to note that for a

singular hybrid element, the order of stress singularity is

first computed before the singular element is derived. Good

agreement between the present results and the analytical

solutions was obtained.

Murthy and Chamis [59] abandoned the model used by many

investigators that laminate is characterized as combinations of

distinct material layers with distinct interfaces. They

considered the interface as a separate matrix thin layer, but



still maintaining distinct layer interfaces. They adopted

three-dimensional 20-node brick isoparametric elements to study

the interply layer effect on the free edge stress field of

symmetric angle ply laminates subjected to uniform tensile

stress. A total of 1365 and 224 brick elements were used to

model the primary structure and the free edge region,

respectively. The results have shown that the effect of

interply layer reduces the stress intensity at the free edge

significantly. The peel off stress Qz is not significant and

not likely to initiate edge delaminations in [±8]s angle ply

laminates. However, the interlaminar shear stress could become

substantial in the interply layer free edge region and may

initiate edge delaminations.

2.4.3 Perturbation And Series Solution Method

Tang [60] and Tang and Levy [61] developed a plane stress

boundary layer theory from the three-dimensional theory of

anisotropic elasticity. By expanding the stresses,

displacements, body forces, and surface tractions in power

series of the half-thickness of a layer in the equations of

equilibrium, compatibility and boundary conditions, a set of

system equations was obtained. They employed the zeroth order

approximation of the theory to study the unidirectional

extension of a finite width [±0] s laminates. Tang [62] has also



extended his boundary layer theory to analyze a laminated plate

with a circular cutout.

Hsu and Herakovich [63] matched the classical lamination

plate theory solution in the interior region to a boundary

region solution by a perturbation technique. They also employed

the zeroth order approximation of the theory to analyze the

unidirectional extension of a finite width [±O]s laminates.

Interlaminar stress distributions were obtained as a function of

the laminate thickness-to-width and compared to finite

difference results [46].

Bar-Yoseph and Avrashi [64,65] presented a variational

asymptotic formulation for the free edge problem. It is based

on the singular perturbation techniques. Instead of directly

finding variational approximations for the high order asymptotic

approximations, they employed the Hellinger-Reissner variational

principle and derived a modified hybrid stress element to

analyze the stress singularity at the free edge region. Results

indicate that the stress singularity is very closely

approximated by log r instead of r- .

On the other hand, they and their colleagues [66,67] have

extended the singularity perturbation techniques to analyze the

interlaminar stress distribution for laminated plates containing

a curvilinear hole and the effect of material non-linearity on

the interlaminar stress field.



Wang and Choi [54,55] developed a eigenfunction expansion

method to analyze the problem. The method is based on

Lekhnitskii's stress potentials and the theory of anisotropic

elasticity which lead to a pair of coupled governing partial

differential equations. The solution are obtained by solving

the homogeneous solution for the governing P.D.E.'s in terms of

eigenfunction series and applied a collocation technique at each

interlaminar surfaces to ensure the stress continuity. However,

the completeness of the eigenfunction solution is questioned by

some investigators [68].

2.4.4 Variational Method

Pagano [69] presented a high order theory in which all six

stress components are non-zero and displacement and traction

continuity conditions at laminar interfaces are satisfied. The

theory in which layer equilibrium conditions can be enforced is

derived form Hellinger-Reissner variational principle based on

assumed inplane stress functions linear in the z within each

layer and the transverse stresses evolved from equilibrium

consideration. The theory consists 13N field equations and 7N

edge conditions for each layer where N is the number of layers.

Results agree quite well with those of Wang and Crossman [49].

However, in the establishment of the layer equilibrium,

conditions of vanishing force and moment per unit length of



layer thickness are imposed rather than pointwise traction free

edge conditions. Hence the model approaches the classical

elasticity model only as the layer thickness approaches zero.

In order to have good predictions of interlaminar stresses,

it requires two to three sub-layers to model individual physical

laminae for the free-edge problem. Like other local models

which the number of variables depend on the number of layers, it

rapidly becomes intractable as the number of layers becomes

moderately large. However, Pagano and his colleague have

presented a global-local model to resolve this difficulty [70].

They divided the laminates into global and local regions. For

the global regions in which the interlaminar stresses are not

interested, they employed the conventional 'effective' modulus

plate theory. For the local regions in which the interlaminar

stresses are interested, they employed the high order plate

theory developed in Reference 69. The displacement and stress

continuity conditions along the boundaries between the two

regions are derived by a variational functional.

A extended Galerkin procedure was used by Wang and Dickson

[71] to study the problem. The method is to minimize the

potential energy for individual layer by analytical substituting

the admissible solutions of interlaminar stresses and

displacements in terms of Legendre polynomials and numerically

solving a resulting system of simultaneous algebraic equations.



Again, good agreement with Wang and Crossman [49] for cross ply

structure was shown.

Mandell [72] presented an approximated theory of

anisotropic laminates for studying the free edge problem. The

theory is based on the assumed stress field which is in terms of

exponential functions with a 'boundary-layer-thickness'

parameter. The assumed stress field satisfies equilibrium and

the traction free edge condition exactly and is decay to the far

field stresses predicted by the classical lamination theory.

The exponential parameter is then determined by applying the

principle of minimum complementary energy. He has used the

theory to study 4-layer balanced angle plies and cross ply

structures.

Kassapoglou and Lagace [73,74] also developed a simple and

efficient method to determine the interlaminar stresses in a

symmetric laminates under uniaxial loading and the method is

served as a primary design tool. Again, the assumed stress

field is in terms of exponential functions with two exponential

parameters. The force and moment equilibrium are satisfied in

an integral sense and the displacement and traction continuities

between interlayer boundaries are satisfied exactly. The

assumed stress field is also asymptotic to the interior

solutions obtained by the classical lamination plate theory and

the two exponential parameters are again determined by

minimizing the complementary energy.



2.4.5 Discussion

It is interesting to note that for the angle ply laminate,

[±45]s, the interlaminar normal stress distributions obtained by

various numerical methods disagree in both magnitude and sign.

A finite difference solution [46] and perturbation method [63]

predicted a tensile Oz very near the free edge along the

interface between the +450 and -450 plies, while the

displacement-based finite element methods [49,52] predicted a

compressive stress. The differences in magnitude of the peak

stress were expected but not the difference in sign.

The cause of the difference has been investigated by

Whitcomb, Raju and Goree [77] and they concluded that it was

attributed to the unsymmetrical stress tensor at the singular

point. The finite difference and perturbation solutions [46,63]

in the literature may have predicted an incorrect sign for the

stress Gz because of the assumption of a symmetric stress tensor

combined with stress boundary conditions at the singular point.

On the other hand, the displacement-based finite element

solution did not explicitly prescribe the traction free

condition at the interface corner. Instead it prescribed the

normal and tangential forces on each of the element sides that

lie along the free edge to be zero. Although symmetric stress

tensors are still used in the formulation, the displacement-



based finite element method showed accurate solutions everywhere

except in a region involving the two elements closest to the

stress singularity. Numerical solutions by the displacement-

based finite elements [78] have also indicated that it is better

to leave the natural (force) boundary conditions to nature in

some cases.

On the other hand, the special hybrid stress element [53]

which includes the stress singularity in the assumed stress

field and exactly satisfies the stress free edge condition and

the stress continuity condition along the interlaminar

boundaries does predict a compressive zF very near the free edge

along the interface between the +450 and -450 plies.

Nishioka and Atluri [75] developed a special-hole-element

to study the stress field of laminate structures with a circular

hole. The special element which includes the analytical

asymptotic solution for the stress field near a hole as well as

satisfying the traction free edge condition exactly along the

hole performs better than the conventional assumed displacement

elements. It is also found that the element satisfying the

traction boundary conditions on the surface of a crack exactly

along with some forms of analytical asymptotic solution in the

assumed stress field is essential for obtaining accurate stress

results [79,80].
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CHAPTER THREE

THE MIXED FORM HYBRID STRESS ELEMENT

In the conventional finite element formulation, mixed forms

of Hellinger-Reissner principle have been used to remove locking

difficulties by splitting the strain energy into two parts. For

example, strain energy is split into spherical and deviatoric

parts to avoid incompressibility locking, bending and transverse

shear parts for beams, plates and shells to avoid shear locking,

and bending and membrane strains for shells to avoid inextension

locking.

A family of mixed form hybrid stress elements for laminated

composite plate analysis based on a new mixed form of Hellinger-

Reissner principle is formulated. The new mixed principle is

based on the splitting of the strain energy into inplane and

transverse parts and on a variational functional which is a

function of all the components of displacement but only the

transverse components of stress. In this chapter, the mixed

variational principle is first introduced and the formulation of

the new element is followed. Because a successful hybrid

element does strongly depend on the assumed stresses, a section

will address the issues of selecting assumed stresses. A family



of two- and three-dimensional elements, numerical examples and a

summary are presented at the later sections.

3.1 Variational Principle

It has been well established that the variational method

[85], which involves the finding a stationary value among the

group of admissible functions of a finite number of variables,

provides a powerful and systematic tools for derivation of the

governing equation for the finite element methods. The hybrid

stress elements can be derived based on the Hellinger-Reissner

principle which has both element displacements and stresses as

variables. It is to note that the equilibrium equations are not

the prerequisite condition of the principle. However, if the

assumed stresses satisfy the equilibrium conditions exactly, the

complementary energy principle can be used and the stresses in

the element and displacements along the element boundary are the

variables [84,86,87]. When the Hellinger-Reissner principle is

used, the compatibility of displacement on the inter-element

boundaries can also be relaxed by using the Lagrange

multipliers.

The basic thoughts in the formulation of a mixed theorem

[45,81-83] are (1) that it is inconvenient to use approximations

for the inplane stresses Oxt, Gy and txy in the analysis of

laminated plates because of their discontinuity in the direction



of the plate thickness in general and (2) that it is more

important to make approximate assumptions concerning transverse

stresses Tyz, Tzx and Gz such that the stress-free condition at

the top and bottom surfaces and the stress continuity condition

along the laminar interfaces can be satisfied.

We begin with the original version of the Hellinger-

Reissner principle which involves all displacements and

stresses, in the form

1 _T T -

1R(U,YG)J [--2Ts +( (oDu)-F u]dV- T (u-u)dS
V Su

,T
STTu dS = stationary (3.1)
Sa

where

0 = column matrix of stresses

S = C-l = compliance matrix

D = differential operator matrix

u = column matrix of displacements

F = column matrix of body forces

T = column matrix of boundary tractions

V = volume of the continuum

Su = prescribed displacement boundary

S0 = prescribed traction boundary

and a matrix with a bar overhead is to indicate prescribed

quantity.



Since the body forces, and the prescribed tractions and

displacements do not affect the derivation of the element

stiffness matrices, they are ignored in the present development.

We begin by dividing the stresses a and stains £ into the

inplane and transverse parts, as

t

= (3.2.a)

e

= Du = (3.2.b)
e t

t = {fx, y xy T (3.2.C)

t •t yz, Z (x z T (3.2.d)

e = { x, yYx }T=D U (3.2.e)

et eyz' zx'zI = Dtu (3.2.f)

where
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0 0
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The stress-strain relation can be expressed as

Sp Spt tP
= T

et iS S t t
Pt II

(3.3)

Substituting Eqs. (3.2) and (3.3) into Eq. (3.1), we get

1 T T 1 T T T
CR (u,t , t t ) = [2-t t S PsPttt- - t t s t tt + t pe p+ ttet ] dVS2 p p p p pt 2 ttt p p

(3.4)

From the first half of Eq. (3.3), we can solve for tp in

terms of ep and t t

t = Ce + C tt
p pp pthere

where

C = S
p p

T
C =-CS = C tP

pt p pt tp

(3.5.a)

(3.5.b)

(3.5.c)

of Eq. (3.5.a) into Eq. (3.4), yields the

D
t

Substitution



following mixed variational functional for which involves

displacements and transverse stresses

1 T T 1 T T
S(U, t t ) = [-eC e +t C e -- t St +t et ]dV (3.6.a)
mR t v 2 P P P tp 2 t t t

= [P (e , tt + te t dV (3.6.b)

where

P(e ,t t ) = 'mixed strain energy density'

1 T T 1 T *
= -e C e +t Ce -- t S t t  (3.6.c)

2 PPP t tp p 2 ttt

* T
St = St - SptCpSpt (3.6.d)

with the constraint equations (3.2.e), (3.2.f) and (3.5.a). We

can see from Eqs. (3.6.c) and (3.5.a),

P (e ,t t )
t = (3.7)P De

The present mixed variation principle was first suggested

by Reissner in 1984 [81]. He started with the principle of

potential energy. With the help of Lagrange multipliers to

relax the transverse part of strain-displacement relation and

the introducing of a complementary function through a partial

Legendre transformation, Eq. (3.6.a) was obtained. In 1986, He

re-derived the same theorem by a more concise way [82]. He

began with Hellinger-Reissner principle and then introduced the



'semi-complementary energy density' to arrive the mix

variational theorem.

Independently, Moriya [45] arrived the same functional in

1986. He began with the Hu-Washizu principle and introduced the

constraint Eqs. (3.2.e), (3.2.f) and (3.5.a) into the principle

to eliminate the undesirable inplane stress terms. Huang [83]

re-derived the theorem by means of the weighted residual scheme

corresponding to some governing equations which are based on

displacements and transverse stresses.

It appears that the present derivation is the most concise

and clearest way to arrive the resulting mixed principle. We

can verify Eq. (3.6.b) by taking its variation with respect to

et, ep and tt that is,

T P p T T
87r= 8e, - + tt - + 8t e= + Se tt ]dV = 0 (3.8)
mR t at t

p t

Substituting Eqs. (3.2.e), (3.2.f), (3.5.a) and (3.7) into above

equation and applying integration by parts, Eq. (3.8) is reduced

to the form

S[_T T  T T a
2mR=J[ 6 (D t + Dtt t ) + tT(-- + e )]dV = 0 (3.9)

t



Thus, the resulting Euler equations are the constitutive

equations

(3.10.a)
t

which gives et and function of ep and tt, and the three

equilibrium equations

T T
Dt + Dtt = 0

pp tt
(3.10.b)

3.2 Element Stiffness Formulation

A new mixed form hybrid stress element based on the mixed

variational principle is derived in the present section. The

formulation of the conventional hybrid stress element is also

included for comparison because of their similarities. A

discussion on the advantage and efficiency and the method of

implementation will follow.

3.2.1 Derivation

We rewrite the Hellinger-Reissner principle, Eq. (3.1),

and the mixed variational principle, Eq. (3.6.a), into a

e
t --



modified form for finite element formulation and assume that the

prescribed boundary displacements are satisfied

R T + YS (Du) -F u]dV- T uds (3.11)
n n S

and

* 1 T T 1 T * -T
-= eCe + t C e -- t t Stt -F u]dVmR 2 p pp t tp 2

n n

,T
ST udS (3.12)
So

where

n = number of element

Vn = spatial domain of element n

The definition and notation of the matrices used below are

standard in most literature concerning conventional hybrid

stress element. A similar definition and notation are used for

the present mixed form element to make it easy to observe the

similarities between the two formulations.

In the conventional formulation all six stresses T are

approximated by a finite number of undetermined parameters f and

in the present mixed form formulation only three transverse

stresses tt are approximated. For a type I element, the stress

field is expressed as



(3.13.a)

for the conventional hybrid stress element and

tt = P 0 (3.13.b)

for the present mixed form hybrid stress element,

where

P = matrix of assumed polynomials

P = set of stress parameters

The displacements u which are the same for the two formulations

are approximated by interpolation functions in terms of nodal

displacements q.

u = N q (3.14)

where

N = matrix of shape functions

q = nodal displacements

Introducing Eqs. (3.13.a) and (3.14) into Eq. (3.11), the

functional is reduced to the form

R = -t H-p+ p T Gq-q Q (3.15.a)

where
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G = P (DN) dV = TP N dV
vn Vn  t

T
H = jP SP dV

Vn

T- T-Q = N FdV + N TdS
Vn S.

(3.15.b)

(3.15.c)

(3.15.d)

and introducing Eqs. (3.13.b) and (3.14) into Eq. (3.12), the

functional is reduced to

mR - 1 k q + P G q - q P - qQ ) (3.16.a)

where

T
k = (D N) C (DpN) dV

vn

G = P [Ctp (DpN) + (DtN)] dV
V n p

(3.16.b)

(3.16.c)

(3.16.d)
H pT *

S=V P St P dV
v

and Q is given by Eq. (3.15.d)

Applying the stationary condition to Eq. (3.15.a) or

(3.16.a) with respect to f, i.e. 0i/Jf = 0, we obtain

G q -H 0 = 0

and rewritten as



G q

Substituting Eq. (3.17) into Eq. (3.15.a) or (3.16.a) and

applying the stationary condition with respect to q, i.e. n/agq

= 0, we obtain

K q = Q (3.18.a)

where

K, q and Q are global matrices assembled from

element matrices

ST
k = G H (3.18.b)

for the conventional hybrid stress element and

T -1
k = k + G H GP (3.18.c)

for the present mixed form hybrid stress element

After solving Eq. (3.18.a), the stress calculations can be

carried out by using Eqs. (3.17) and (3.13.a) for the

conventional hybrid stress element or by using Eqs. (3.17),

(3.13.b) and (3.16.a) for the new mixed form hybrid stress

element.

For a type II sub-element, the stress field in the ith sub-

element is expressed in local stress parameters Pi

(3.17)



(3.19.a)i i = i

for the conventional hybrid stress element and

tti i
t =

(3.19.b)

for the present mixed form hybrid stress element

and the displacement field ui is also expressed in terms of

nodal displacements qi

i i i
u =N q (3.20)

Therefore, Eqs. (3.15.b) to (3.15.d) can be rewritten as

G = (Pi T (DNi) dV
N Vni

H = (P) S P dV
N Vni

0= x j
N Vni

i T-(N ) F dV + i T- dS
(N ) T dS -

for the conventional hybrid stress element and

(3.21 .a)

(3.21.b)

(3.21.c)
fSni



( iT i i+k = (D N ) C (D N ) dV (3.22.)N Vni

G =V (P ) [Ctp(DpN )+(DtN )] dV (3.22.b)
N Vni

H = (P) S Pi dV (3.22.c)
N Vni

for the present mixed form hybrid stress element,

where

N = number of sub-elements thru the laminate

which equals to the number of laminae or less

Finally, the element stiffness matrix can be obtained by either

Eq. (3.18.a) or Eq. (3.18.b).

Because the nodal displacement qi include parameters on the

laminar interfaces, continuity of the displacements across such

interfaces will be guaranteed after 'assembly' of the layers for

the sub-element. On the other hand, the stresses in the ith

sub-element are subdivided into the following form

p i p (3.23)

where

ti = stress parameters which are associated with

the top surface of the ith sub-element



ii = stress parameters which are associated only

within the ith sub-element

bpi = stress parameters which are associated with

the bottom surface of the ith sub-element

Enforcing the continuity of transverse shear and normal stresses

at the interlayer boundaries and the traction free condition at

the upper and lower surfaces of laminate can be done easily by

only relating the parameter Pi at the appropriate top and bottom

surfaces of that sub-element and setting some parameters to be

zero, respectively.

Looking at the two formulations, we can see that the

kinematic assumptions are identical. The matrices G and H are

very similar except that a smaller matrix P is used and an

elasticity matrix is inside the integral of matrix G for the new

mixed form model.

The obvious result separated the stresses into two parts is

that the element stiffness matrix k for the new mixed form

element is also divided. The first-half kP is related to the

inplane deformation energy and the expression is very similar to

a element based on the displacement model. The second-half GT

H-l G is related to the transverse and coupling between inplane

and transverse deformation energy. The formula is similar to

the conventional hybrid stress element.



Several advantages by using the new formulation are cited

as follows: First, the number of stress parameters f used is

less in comparison with the conventional element, and therefore

the dimensions of matrices G and H are smaller. Since the

computational effort is proportional to the dimensions of G and

H in the order of cubic, considerable computational effort will

be saved by reducing the number of I's.

Second, any element based on displacement model will

violate the continuity of interlaminar stresses along the

laminar interfaces. Any type I element and type II element with

appropriate stress assumptions based on the present mixed form

formulation will satisfy the continuity of interlaminar stress

condition along the interfaces.

Third, no extensive computational time is required to

calculate the transverse stresses in the present mixed form

model.

Fourth, the order of inplane stresses in the present mixed

form model is higher than the one in a displacement model with

the same order of degrees of freedom. It is because the

calculation of inplane stresses, Eq. (3.5.a), includes the

transverse stresses which are higher order in the new mixed form

model.



3.2.2 Implementation

Each layer in the laminate is assumed to be in a three-

dimensional stress state, so that the stress-strain relation for

a typical lamina i with reference to its material axes 1, 2 and

3 is shown in Figure 3.1 and can be rewritten as

S11 S12 S 3

S22 S2 3

S13 S 2 3 S33

0 0 0 S 0

0 0 0

0 0 0 0

0 Sss

0 S66

As in the case of a fiber reinforced composite, the material is

transversely isotropic about axis 1, the direction of the fiber.

The element Sij are given by

1
Sll 

E

1
S22 = S3 3 =

S12

0 0

0 0

0 0

1

82

83

Y23

Y31

1,2

02

03

I23

C3 1

(3.24)
v _ v



VLT
S = S =

12  S13 EL

1
S5 5 -- 66 GLGLT

V
S

23 ETE
T

1
S4 =
4G4

where

EL = longitudinal modulus

ET = transverse modulus

GLT = shear modulus for the LT plane

GZT = shear modulus for the ZT plane

VLT = Poisson's ration measuring strain in the

transverse direction under uniaxial normal stress

in the axis L

VZT = Poisson's ration measuring strain in the

transverse direction under uniaxial normal stress

in the axis Z

The stress-strain relation with respect to the plate axes

x, y and z is obtained by applying a coordinate transformation

law

S T iE = T. S T, G
1 1

-i i
= S

(3.26.a)

(3.26.b)

where

Ti = transformation matrix of layer i [88]

For this particular case of a fiber-reinforced composite,

(3.25)



let the direction 1 (parallel to the fiber direction L) make an

angle 8 with the x axis as shown in Figure 3.1 and direction 3

remain parallel to the z axis, then the transformation matrix

becomes

T. =
1

c2 2 0 0 0 -2cs

2 2 0 0 0 2cs

0 0 1 0 0 0

0 0 0 c s 0

0 0 0 -s c 0

cs -cs 0 0 0 c 2-s2

(3.27)

where

c = cos 0

s = sin 8

Eq. (3.26) defines the elasticity matrix for any particular

lamina i. It is obvious that the elasticity matrix is dependent

on fibre orientation and, in general, is different for each

lamina.

The integrals in Eqs. (3.15), (3.16), (3.21) and (3.22) are

evaluated by Gaussian quadrature numerical integration.

However, the elasticity matrix is different from layer to layer

and is not a continuous function of ý. For the integrations it

is necessary to split the integration limits through each layer.

Furthermore, the displacements and assumed stresses of type II



sub-element are in local sub-element natural coordinate ý, f and

Ci rather than global natural coordinate 4, 1 and C as shown in

Figure 3.2. Modifying the variable ý to ýi in any ith layer or

sub-element is needed before applying the Gaussian quadrature.

This all can be achieved by the change of variable. It is

obtained from

2 2 i
d= i +i+1 + 2 (3 .28.a)

d d +1 (3.28.b)
d• 2 d

where

i= r coordinate of the top surface of

th
i layer or sub-element

i+1= r coordinate of the bottom surface

i layer

With this substitution,

or sub-element

the numerical integrations can be

carried out as usual.

3.3 Assumed Stress

Appropriately selecting the assumed stresses is the key to

achieve a satisfactory hybrid element. Within this content,

considerations will be focus on the plate elements. The first
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consideration is to choose the assumed stress field satisfying

the equilibrium condition. While selecting the stresses to

satisfying the equilibrium, three other considerations should be

taken into account. They are satisfying the invariant property,

suppressing the kinematic modes and avoiding the shear locking.

3.3.1 Eauilibrium Condition

As we mentioned before, if the hybrid stress element is

based on the Hellinger-Reissner principle, the equilibrium

equations are not the prerequisite condition of the principle.

The global equilibrium is enforced in an integral sense through

the variation of the functional, strictly speaking, the local

equilibrium on each element can be relaxed.

However, a hybrid/mixed element having a 'sufficiently'

large number of stress parameters and without constraint by

equilibrium equations will eventually lead to results identical

to those of displacement-based model, according to a limitation

principle due to Fraeijs de Veubeke [89,90]. Furthermore, study

[91] has shown that the hybrid stress element satisfying the

equilibrium equations will perform better than the one that it

does not.

Therefore, the assumed stress field should satisfy the

equilibrium equations exactly if the global Cartesian



coordinates are used or in an integral sense if the natural

coordinates are used in order to get better performance. Two

alternative approaches are available to achieve this. First,

the assumed stress field is initially approximated by a number

of uncoupled stress parameters P's while we directly apply the

equilibrium equations on the assumed stress field to enforce the

condition. In this process, the number of P's will be reduced

and they are no longer to be uncoupled [92].

The alternative approach is still first approximated the

assumed stress field by a number of uncoupled P's while we

indirectly enforce the equilibrium condition through the

application of constraint conditions with internal displacements

as Lagrange multipliers. The element, in general, will not

satisfy the equilibrium condition exactly but in an integral

sense. In this process, the number of P's will also be reduced

and they are also no longer to be uncoupled [93].

We will adopt the former method to enforce the equilibrium

condition. On the other hand, the introduction of equilibrium

and symmetry on the assumed stress field may add large number of

stress parameters to those initially chosen for suppressing the

zero-energy deformation modes. It is advisable to relax the

equilibrium conditions on some high order terms to keep the

number of stress parameters small [94].



3.3.2 Invariant Property

To retain the invariant property of the element has been

shown less sensitive to element distortion [93]. Two

alternative approaches are also available to achieve this.

First, a completeness in polynomial for stress expressions based

on the global Cartesian coordinates is used [92]. But for

certain elements the number of stress parameters will become

impractically high [95].

Invariant property can be always preserved if isoparametric

(natural element) coordinates are used. Thus, the alternative

approach is first approximated the tensor stress components Tij

which satisfy the equilibrium exactly in a regular shape element

based on the natural element coordinates i(1=5, 2~2-1, 43=). Then

the physical stress components (ij referring to the global

Cartesian coordinates x i (xl=x, x2=y, X3=z) are obtained by

applying the coordinate transformation law

m n

S0 (1 o~ i, j,m,n= 1,2 (3.29.a)

for inplane stress components, and
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m 3
13 (X _X m3ak ) x , i,m = 1,2 (3.29.b)aD 0 3 0

33= 33 (3.29.c)3 0

for transverse stress components, where

m

i( O = Jacobian of transformation at 1 ==2= 3=0

The Jacobian of transformation evaluated at the centroid of the

element is to satisfy the patch test for convergence [96].

Because of no inplane stresses be used in the new mixed form

model, Eqs. (3.29.b) and (3.29.c) can be simplified as follows:

i3 axm m3
W = ( m , i,m = 1,2 (3.30.a)

33 aX 3  33
a3 = o (3.30.b)

Because of the coordinate transformation, the assumed stress

field is no longer satisfied the equilibrium condition exactly

but in a weighted sense except for a rectangular shape element.

The latter approach is superior than the former one and is

adopted in this study.

The second approach by applying internal displacements to

enforce the equilibrium condition in section 3.3.1 can also
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preserve the invariance by approximating the assumed stress

field in terms of isoparametric coordinates. For a four-node

two-dimensional element, this approach and the one chosen in

this study can arrive the same assumed stress field with 5-P,

but a perturbation technique is required for this approach to

arrive the result [93].

3.3.3 Kinematic Deformation Modes

For an element to be reliable, all the spurious zero energy

(kinematic) modes must be suppressed. A necessary condition for

the resulting stiffness matrix to have sufficient rank for the

conventional hybrid stress element [97] is

m 2 n - r (3.31)

where

m = number of independent stress parameter P's

n = number of nodal displacement q's

r = number of rigid body modes

A necessary and sufficient condition for suppressing all

kinematic modes and convergence of the element is the so-called

'LBB (Ladyzhenskaya-Babuska-Brezzi)' conditions [98]. Pian and

Chen [94] suggested a systematic procedure for the choice of the

necessary assumed stresses for suppressing all kinematic modes.

It is by selecting the stress parameters in such a way that at
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least one P corresponds to each of the strain terms obtained

from the strain-displacement relationships.

If the element deformation energy due to the displacements

and all six components of assumed stress is Ud, then

2 Ud = ciTe dV (3.32)

The displacements u can also be in terms of n independent

deformation modes in the form

= Na NR] [R] (3.33)

where

a = deformation modes

R = rigid body modes

N = interpolation functions coresponding to a

NR = interpolation functions corresponding to R

Here, we use an 8-node brick element as an example

to illustrate the deformation modes. In 3D analysis, we have 3

d.o.f. per node and total 24 d.o.f. for the brick element. The

assumed displacements u can be expressed as
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SIu u.u 1

U = V = Ni ((,T,) Vi
i=l

w w.
I-

where

S1N i (1+ •iC) (1+ i)) (1+Cic)

(3.34 .a)

(3.34 .b)

and ui, v i and wi are nodal displacements at node i

Expanding the assumed displacements u into deformation modes a

and rigid body modes R, we get

u = a+ , + (a + a 4 ) + ( 5 + a 6 ) T + (a, +3 c ) T

v = a9+ai~ + (a + a12 ) 1 + (a3+ a14ý ) Ti + (a15+ a1) 4rj(3.35)

w = a 7 + a018 + (ag + a20  ( 22+ ) + (a23 + a24)ý

where

the a's are function of the nodal displacements ui,

v i and wi

ai, a9, a1 7 , (a5 -a 11) , (2-- 19) and (a10-a 21 ) are rigid

body modes and the rests are deformation modes

Then, the necessary and sufficient condition for absence of

kinematic modes is

Rank of Ga = n - r (3.36.a)

where
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T -
G = P (DN ) dV (3.36.b)

V

Because the computational effort in formulating the element

stiffness matrix is proportional to the dimension of matrices G

and H, it is advantage to keep the number of stress parameters

as small as possible. There also exist many examples indicating

that overuse of stress parameters will yield over-rigid element

and oscillations in resulting stress distribution. Therefore,

it is best to keep the number of stress parameters as close to

n-r as possible while simultaneously suppressing all kinematic

modes.

A new procedure similar to the steps suggested by Pian and

Chen [94] to choose the stress terms to suppress the kinematic

deformation modes for the new mixed form element is developed in

the present section.

We rewrite the element deformation energy into two parts

2 U= TdV = (te +t et ) dV (3.37)

By introducing Eq. (3.5.a) into Eq. (3.37) and applying the

strain-displacement relationships, Eqs. (3.2.e) and (3.2.f), the

element deformation energy due to displacements and transverse

assumed stresses becomes
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T T T
2Ud =v [eTCpe +t T C e +tte ] dV

d p p p t tp p t t

=2 (Udl + Ud2)

where

1 T 1 T
U = -- e C e dV = q K q

v, 2 p

= inplane deformation energy

U2 -1 V [ t C e + t t  
] dV = -- TGq

d2 2 t tp P t 2

= transverse deformation energy and energy coupling

between the inplane and transverse components

The element deformation modes a are divided into three

parts as

a

at

(3.39)

where

a• = deformation modes only related to inplane

strains ep

ac = deformation modes related to coupling

between inplane ep and transverse et strains

at= deformation modes only related to transverse

strains et
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We continues our previous example here. With Eqs. (3.2.b)

and (3.35), the strain field for an 8-node brick element of

dimension Ixlxl with the natural element coordinates 4, TI and ý

parallel to the global Cartesian coordinates x, y and z and the

edges can be written as

E Du = a 3 +a14  + (a 17 + a .S )7au
av

Y ay 1y 3 a14ý+ (0{15 + aX1

Bu avD= = a{s + a +(a• +aC) +a +a + + +)TYxy = • x + 05 6 78 8) 011 2 15 +16

8v aw
y z + y 10 12 + 14 + 16 +122 + (23 + 24)

Yzx = ' +x= 2 41 + 61 + X 9 20o + ( 23 + X )

aw
• z 1 =  c c 8 +  2 0 42 +  2• 1 1 + ( X2 4 40

(3.40)

Therefore, the three types of deformation modes and rigid body

modes are

i 3 7  13  ( 15  (a5 • 1 1)

c -- 4 0a6  a8  a12  a14 a16
(3.41)
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T
a [t  ( + 9) ( 1 0+ 2 1 ) 18 2 0  a22  aC2 3  (X24

R = I =[ 1  a9  a17  (a 5  a 11) 2c 19 10-( 21 )

Because there is no deformation energy in rigid body modes,

we only need to investigate the three types of distinguish

deformation mode, ai, a~ and at,together with three components

of assumed stresses for possible zero energy (kinematic)

deformations. Corresponding to a non-zero finite value for an

inplane deformation mode ai, the inplane strains ep will not be

zero but the transverse strains et will be zero. Because the

elasticity matrix Cp is positive definite and e, is not zero,

the inplane deformation energy Udl, Eq. (3.38.c), is non-zero.

The deformation energy Ud2, Eq. (3.38.d), may be zero under some

stress assumptions but the total deformation energy Ud is not

because of non-zero value of Udl.

Corresponding to a non-zero value for a coupling mode ac

both inplane ep and transverse et strains will be non-zero. The

deformation energy Udl has a non-zero value and Ud2 may be zero

but the total energy Ud is not zero because of Udl.

Corresponding to a non-zero value for a transverse mode at,

the inplane strains e, will be zero but the transverse strains

et will not. Then Udl is zero and also under some assumed
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stresses Ud2 may be zero too.

energy Ud is possible to be zero.

We can conclude that the only possible source for creating

zero energy (kinematic) deformation modes for the present mixed

form hybrid stress element under a certain combination of basic

modes a is the transverse modes at. Summarizing the arguments

for possible kinematic modes is listed in Table 3.1.

Table 3.1 Deformation energy with deformation modes

deformation mode
Eq. (3.39) X

inplane strain ep
Eq. (3.2.e)

transverse strain et
Eq. (3.2.f)

inplane deformation energy
Udl Eq. (3.38.c)

transverse deformation energy
Ud2 Eq. (3.38.d)

Total deformation energy
Ud Eq. (3.38.b)

0

= 0

0

0

0

0

= 0 may be = 0

# 0 S0

= 0

0

= 0

may be = 0

may be = 0
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For a plate element, we let

nj = number of nodes

nl = number of d.o.f. in displacements u and v per

node

n2 = number of d.o.f. in displacement w per node

rl = number of rigid body modes without the rigid body

mode of the inplane shear

r = number of rigid body modes

then

dimension of a i+ a• = (nj-l)*nl-(r-rl) (3.42.a)

dimension of at = nj*n2+nl-rl (3.42.b)

Therefore the necessary condition for the resulting

stiffness matrix to have sufficient rank to suppress the

kinematic modes for the present mixed form hybrid stress element

is

m 2 dimension of at = nj*n2+nl-rl (3.43)

where

m = number of independent stress parameter P's

For pure transverse deformation modes at, the deformation

energy, Eq. (3.38.a), becomes

2 Ud = f t t e dV = BTP T(D u) dV (3.44)d t v
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Rewriting Eqs. (3.33) and (3.39)

u = N Nc a

a1c

R

at

(3.45)

where

N = functions corresponding to i,a c and R

N = functions corresponding to ata

and substituting Eq. (3.45) into Eq. (3.44), we get

2 Ud =T P T (DN ) dV a t = Gat

where

G = P (DN ) dV
a t a

(3.46.a)

(3.46.b)

The matrix Ga is rank sufficient when there are no zero

columns and no columns of linearly dependency and the

deformation energy Ud will not be zero. Therefore, the

necessary and sufficient condition for absence of kinematic

deformation modes is

i11

into the following form



Rank of Ga = dimension of at = nj*n2+nl-rl

Continuing our previous example, we look at the 8-node

brick element as a 4-node plate element. It has two d.o.f. in w

and four d.o.f. in u and v per node. Therefore the minimum

number of P's is

m 2 nj x n2 + n1 - rl = 4 x 2 + 4 - 5 = 7

as it is the dimension

and (3.41), we obtain

of at in Eq. (3.41). From Eqs. (3.40)

Dt N t = 0
t a t o

0 0 0

1 0 0 fl1Jat

0 1 Ti 0

In order to satisfy Eq. (3.47), we select the stress

parameters in such a way that one 0 corresponds to each of the

strain terms in Eq. (3.48). Two possible assumed stress fields

which are satisfied the equilibrium and symmetry conditions are

presented in the following

112

(3.48)

(3.47)



10010 0
p = 0 1 0 I0 01 (3.49)

and

10000 0
p = 0 1 0 0 0 2 0 (3.50)

0 0 1 4 '1 0 41

Substitute Eq. (3.48) and Eq. (3.49) or (3.50) into Eq.

(3.47) and carry out the integration, we get

G

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

1
000-000

3

1
0 0 0 0 -- 0 0

3

2
0 0 0 0 0 -0

3

1

9

(3.51)

We can see that the rank of Ga is 7. Therefore, there will

be no kinematic deformation modes in the resulting element

stiffness matrix if either Eq. (3.49) or (3.50) is used.
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Huang [99] has constructed an 8-node solid element based on

the new formulation but he used 8-0 rather than 7-0. They are

in the form

1 0 0 0 0 -_ 0
p = 0 1 0 0 0 1 '9 0

0 0 1 4 71 0 0 47

Eq. (3.52) can be rewritten in the following uncoupled form

1 0 0 0

p = 0 1 0 0

0 0 1

If Eq. (3.52) is used,

not suppress any kinematic

0 0 0
0 0 o 1 o

71 0 0o

the 0p is redundant because it does

mode. But if Eq. (3.53) is used,

neither P6 nor 07 can be removed because of symmetry. However,

it appears that the 8-0 stress assumption of Eq. (3.53) is

better than Eq. (3.50) which involves an artificial constraint

for coupling o,, and a(yz-

3.3.4 Shear Locking

In a thin plate limit, a low order Co plate element by
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assumed displacement method performs excessive rigid in general.

It is because the element trends to satisfy the kirchhoff

hypothesis of Eq. (1.13) for a thin plate. However, in order to

satisfy this no shear stress state, the kinematic deformations

of the element are constrained by Eq. (1.13) and these

constraint equations often eliminate any possible deformation of

a low order element. Therefore, the element performs excessive

rigid for a thin plate analysis and it is the so-called 'shear

locking' phenomenon. 'Selective reduced integration' scheme has

been used to avoid this problem in displacement-based model

[100].

This over-stiffening phenomenon can be avoided by using

hybrid element with carefully chosen assumed stress terms. A

convenient way to examine this behavior is to use the method of

constraint counting as originally suggested by Malkus and Hughes

[101].

The constraint index (CI) is simply defined as [102]

CI = NK - NC (3.54)

where

NK = number of kinematic d.o.f. brought in by an

element when adding to an existing mesh

NC = number of independent kinematic constraint

equation of the element in a thin plate limit
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A favorable value for the index, i.e. CI 2 1, suggests that

the plate element is expected to be free from locking and CI • 0

indicates that failure will occur in a thin plate analysis. NK

is related to the degrees of freedom of the element and NC is

related to the number of stress terms used in transverse shears.

Using high order element and/or less number of stress parameters

in the transverse shear parts are the basic strategies to avoid

the locking.

For illustration, we use the previous 8-node brick element

as an example here. If Eq. (3.49) with a similar 8-0 pattern as

in Eq. (3.53) is used, NC = 6. For an 8-node brick element, NK

= 6 and therefore the resulting element will have shear locking

(CI = NK - NC = 6 - 6 = 0 : 1). However, if Eq. (3.53) is used,

NC = 4 and the resulting element will not have shear locking (CI

= NK - NC = 6 - 4 = 2 2 1).

On the other hand, the aim of the present mixed form hybird

stress element is to attempt to capture the existence of high

transverse stress gradients in such solutions as high

interlaminar stresses in the boundary layer around a free edge,

in a region under concentration lateral loading or in a thick

laminated plate. It is necessary to introduce large number of

stress parameters for the present analysis. Therefore the

constraint index examination will not be made here in this

study.
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3.4 Two-Dimensional Element

One type I element of a high order and three different

orders of type II element based on the new mixed form

formulation are constructed and will be tested at a later

section. No type I element based on the conventional approach

is constructed because of its poor performance in predicting the

local stress distributions [33,103]. A family of type II hybrid

elements based on the conventional model are also programed. A

comparison of the efficiencies and accuracies of the present

mixed form and conventional hybrid stress formulations is then

made.

A typical two-dimensional laminated plate element is shown

in Figure 3.3. It is a subparametric element in general and its

coordinates within the element are given by

2

x(() = li(5) xi (3.55.a)
i=l

z() = 12() z + 1~() ZN+ 1  (3.55.b)

where

xi = nodal x coordinate at node i

zl = z coordinate of the top surface of laminate
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ZN+1 = Z coordinate of the bottom surface of

laminate

N = number of layers or sub-elements
1

1 =- (1-) (3.55.c)

1
12() = - (21+ ) (3.55.d)

3.4.1 Element Displacement Assumption

The nodal parameters are the displacements u and w along

the global Cartesian coordinates x and z. The total number of

degrees of freedom in individual element or sub-element depends

on the order of displacement function in r.

3.4.1.1 Type I Element

In type I element, the u displacement distribution along

the thickness direction is assumed to be a cubic function in ý

across the whole laminate. It is interpolated in terms of the

nodal displacements u at the top, bottom, and 1/3 points of the

laminate as shown in Figure 3.4. The displacement w is assumed

to be quadratic and expressed in terms of nodal displacements at

the top, middle and bottom of the laminate. The displacement

distribution between two node-lines is assumed to be linear.
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This assumption of displacements u and w is analogous to

that of the high order plate theory by Lo, Christensen and Wu

[13,14]. The displacement w is assumed to be one order less in

C than the assumption of displacement w. It is consistent in

the sense that the transverse shear strains due to the inplane

displacements u and v are of the same order as those due to the

transverse displacement w.

The displacement interpolations are as follows:

2 4

u (44) = I l( f (C)
i=1 j=1

2 3

w (44) = l ) g (C)
i=1 j=1

Uij (3.56.a)

(3.56.b)

where
th

u.. = j nodal u displacement13 at node i

th
w.. = j nodal w displacement at node

1

S 16f,(S) = 1- (-l- + 9 ý +9 3)

1f2( ( ) = - ( 9 + 27 C - 9 2 - 27 3)2 16
1

f () = ( 9 - 27 - 9 2 + 27 3)3 16

1
f4(C) = 1-- ( - 1 + +929 3) (3.56.c-i)

1
g (r) = -2 (1+()
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(-1, 1)

node 1

(-1,-1I) (1,-1)

Figure 3.3 Two-dimensional laminated plate element

total 14 dof per element

U W11
11 11

13

U w
14 13

21 f21

22
w

22

U

U rW
24 23

Figure 3.4 Element degrees of freedom for a type I

two-dimensional element
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g2() = (1- 2)

1
3 2

and 11(C) and 12 () are given by Eqs. (3.55.c-d)

This form of high order displacement distribution is used

in the single-layer conventional hybrid stress thick plate

element [104] and in the displacement-based model of a

symmetrical laminated plate element [30].

3.4.1.2 Type II Element

The nodes and nodal displacements of three sub-elements of

different order are shown in Figure 3.5. The displacements are

again all assumed to be linear between two node-lines but with

different order of Ci. These elements are either based on the

conventional or the mixed form hybrid stress model.

The one shown in Figure 3.5(a) is of the lowest order and

designated as ity=l. The displacements u and w are assumed to

vary linearly through the thickness of sub-element and are

expressed in terms of the nodal displacements at the top and

bottom boundaries. They are written as

2 2

(3.57.a)
k=1 j=1
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2 2

w ( i) = i l (- i) kj (3.57.b)
k=l j=l

where

i th
U kj= j  nodal u displacement at node k

in sub-element i

i th
Wkj=j nodal w displacement at node k

in sub-element i

and 11(C) and 12(C) are given by Eqs. (3.55.c-d)

Many laminated plate elements which involve this kind of linear

displacement behavior in each sub-element have been developed

based on the displacement-based model [37-40] and on the

conventional hybrid stress model [41,43-45]. The effective

stiffness plate theory by Sun and Whitney [21] is also based on

this kind of linear displacement assumptions in each lamina.

The second element designated as ity=2 has displacement u

to be of order (Ci) 2 and expressed in terms of nodal

displacements u at the top, middle and bottom of the sub-element

(Figure 3.5.b) . The displacement w is assumed to be linear in

Ci and is expressed in terms of nodal displacements at the top

and bottom boundaries. They are described as

2 3

ui 'i) = I 1 1(g i) u (3.58)
k=1 j=1

and wi(4,ýi ) is given by Eq. (3.57.b)
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This displacement assumption was used by Whitney and Sun

[10] in the high order theory for the whole laminated plate.

The last element defined as ity=3 has the highest order of

displacement assumption (Figure 3.5.c). Its displacement u is

assumed to be of order (Ci)3 and w to be of order (Ci)2. They

are identical to the previous type I element and can be

expressed as

2 4

u ) = k  fj (i) ukj (3.59.a)
k=1 j=1

2 3

w i) ) g ( ) wikj (3.59.b)
k=l j=l

This form of high order displacement assumption is also been

used in a multilayer hybrid stress thick plate element based on

the conventional approach by Spilker [42].

3.4.2 Stress Field Assumption

As previous discussion, the assumed stresses are first

approximated in terms of natural coordinates and then

transformed into the physical coordinates by applying the

coordinate transformation law, Eq. (3.29) or (3.30) . Because
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total 8 dof per sub-element

i i

i i

12 12

i i

21 21

i i

22 22

(a) element degrees of freedom for ity=1 sub-element

total 10 dof per sub-element

i i

12

i i
U1 3 W1 2

i i

2 1  2 2 1

22

i3
u 23 W 22

layer i

(b) element degrees of freedom for ity=2 sub-element

r total 14 dof per sub-elementi i
u ,w

11 11

u
12

u
13

i i
u ,w

14 13

i i
u ,w

21 21

u
22

u
23
i i

u ,W
24 23

(C) element degrees of freedom for ity=3 sub-element

Figure 3.5 Element degrees of freedom for type II

two-dimensional sublayer element
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only the two-dimensional rectangular elements are constructed in

this study, the assumed stress field is satisfied the

equilibrium equations exactly. All kinematic deformation modes

are also suppressed.

3.4.2.1 Tvye I Element

There are three d.o.f. in displacement w and four d.o.f. in

displacement u per node-line. With two node-lines in a element,

the minimum number of stress parameters m given by Eq. (3.43) is

2 x 3 + 4 - 3 = 7. The two transverse stresses in the present

model are assumed as follows

d1t d 1 2

d4 2 d4t

d2  d24

0 ds5

d2 2

2 ds 4

d3  d33

0 d6

p=[P 0 0 PI P5 P6 P7 8 9 ]

= (1 - r2)

= (1 - C2)

= C2 (1 - C2)

= (3 - 3C - 2) /3

= (4 - 22 + 1) /4

= (3O5 - 5C3 - 2)/15

d3 
42

2 d 6

(3.60.a)

(3.60.b)

(3.60. c-h)
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Following the procedure in section 3.3.3 for examining the

8-node brick element, one can show that with the first seven

P's, the resulting Ga is rank sufficient. Therefore, there will

be no kinematic modes in the resulting element stiffness matrix

if at least the first seven stress parameters are used.

The physical stresses in the global Cartesian coordinates

xZ -- (y13 - al -13

xz = (33 = C 1  C33

where

al = (x 2 - X1)/2

c1 = (ZN+1 - zj)/2

and they also satisfy the traction free condition

Txz = 0 at the top surface

Txz = z =0 at the bottom surface

3.4.2.2 Type II Element

We begin by assuming the transverse shear stress T13 to be

of order (Ci)3 and 42. The remaining stress components are

chosen to satisfy the equilibrium equations. Thus, it is
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suggested that the transverse normal stress T33 be of order (Ci)4

and 4 and the inplane normal stress T11 be of order (ýi)2 and ý3

and a total of 17 stress parameters are used.

In order to enforce the stress continuity and traction free

conditions easily, the stress field is rewritten into the form

of Eq. (3.23) and can be expressed as

1

2

1

2

S1 S2 S 3

2 i 1 1

30 0 -3s 3
4

0 0 0 00

3 2

3-s 34
43

4 s 5

S134

s 6

12 2

0 s84

2s 4 2s 5S 2s 6

S23 2

2s,54

iPB i P i

0 0 s59 S9

(3. 63.a)

(3. 63 .b)iT
17 j

where

s, ( i) = (1 + i)/2

S 2 i) = (1 - i) /2

S3( ij) = (1 - ij2)

S13( i) = Sl( i) - 0.75 x s3( i)

S23(Ci) = S2(Ci) - 0.75 x s3(Ci)
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s 4 ( i)

ss (Ci)

s8 (ji)

slo (i)

si (Ci)

S12 (i)

(3.63.c-p)

For the conventional hybrid stress element, all three stresses

are required and for the new mixed form hybrid stress element,

only the two transverse stresses are needed.

The minimum number of stress parameters m depends on how

many and which kinds of sub-element are used through the

thickness direction. It can be determined with the help of Eq.

(3.31) or (3.42) after the element layup is decided. Eq.

(3.36) or (3.47) should be satisfied in any combination of

stress parameters to ensure the reliability of the new super-

element. In general, the minimum of stress parameters m cannot

be achieved if other considerations are met such as the symmetry

condition of the assumed stress field.

The physical stress components in Cartesian

be obtained by applying Eqs. (3.29) or (3.30).

coordinate transformation is required, because

coordinates can

One additional

the local sub-
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Ci (1 - Ci2)

= (1 - Ci2)2/4

= (1 + 3Ui)

= (1 - 3Ci)
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element natural coordinates are used. It can be achieved by the

change of variable which is given by Eqs. (3.28).

3.4.3 Numerical Examples

To assess the accuracy of the present mixed form hybrid

stress element and compare the computational effort and

performance with the conventional hybrid stress element,

cylindrical bending of a semi-infinite strip has been chosen.

The same problem with a two-layer laminate is also studied by

the three different orders of type II element based on the new

mixed form model. One additional test on the type II ity=3

elements based on the conventional and new mixed form

formulations for the free-edge problem will be presented in the

later chapter.

The following labels are used for the elements used in the

present comparisons:

Hybrid(con) = present mixed form type I hybrid stress

element with 7 I's

Hybrid(disc) = present mixed form type II ity=l hybrid

stress element as sub-element

Hybrid(old) = conventional type II ity=1 hybrid stress

element as sub-element
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Hybrid(ity=1) = present mixed form type II ity=1 hybrid

stress element as sub-element for a two-

layer laminate

Hybrid(ity=2) = present mixed form type II ity=2 hybrid

stress element as sub-element for a two-

layer laminate

Hybrid(ity=3) = present mixed form type II ity=3 hybrid

stress element as sub-element for a two-

layer laminate

3.4.3.1 Cylindrical Bending of a Simply Supported Long Strip

The laminated plate considered herein consists of layers of

unidirectional fibrous composite material. The laminate is

infinite long in the y direction and simply supported along the

two edges. Sinusoidally distributed transverse loading

q 0sin(Ex/L) with q0o=l is applied at the top surface of the

laminate as shown in Figure 3.6(a). Because of the nature of

the problem, the plate is modeled as a plane strain problem in

the x-z plane. Finite element analysis is carried out over the

left half plane which is subdivided into 10 equal elements as

shown in Figure 3.6(b).

Three different thick laminate configurations are

considered:
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eI %- I4 / r- /T %

(a) plane of analysis (side view)

6
E = 25x10 psi

L

6
E = 10 psi

T

6
G = 0.5x10 psi

LT

6
GZT= 0.2x10 psi

V =V ZT= 0.25
LT ZT

all
w=C

L/2

equal subdivisions

(b) finite element mesh and property definition

Figure 3.6 Problem description and finite element model

for a semi-infinite cross-ply lmainated plate

subjected to cylindrical bending (L/H=4)
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(1) a twenty-layer cross ply laminate [90 /0]10T with layers

of equal thickness.

(2) a two-layer cross ply laminate [90 /0]T with layers of

equal thickness.

(3) a three-layer cross ply laminate [0/ 9 0/01T with layers

of equal thickness.

The angle is measured with respect to the x-axis (i.e. 0

degree implies fibers are parallel to the axis x) . The

elasticity solutions for this plane-strain problem have been

determined using the method given by Pagano [105]. The results

based on classical lamination plate theory (CPT), which is

independent of the span-to-thickness ratio, are also presented

in Case 2 and 3.

In all the problems, the material properties for each

lamina are shown in Figure 3.6(b) and span-to-thickness ratio

(L/H) is four. The numerical results are presented in terms of

normalized values which are defined as

ox = G (L/2,z/H)/qo

oz = Z(L/2,z/H)/qo
(3.64)

tz = TXz (0, z/H) /q0

-ET
u = u (0, z/H)

H q

132



Because of the large number of laminae in case 1, it is

computationally inefficient to use any type II element.

Therefore, only the Hybrid(con) element is tested. The results

for twenty-layer, H/L=4, are in excellent agreement with the

elasticity solutions for inplane displacement u, inplane normal

stress ox and transverse normal stress (; as shown in Figures

3.7(a,b,d) . The transverse shear txz appears to be of less

accuracy compared with the other stress components (Figure

3.7.c). However, the maximum values in all those stresses and

displacement are in very good agreement with elasticity

solutions.

For case 2 and 3, each layer is modeled by one sub-element.

The numbers of stress parameters used for each layer are the

first eleven O's of Eq. (3.63.a) for Hybrid(old) element and the

first nine non-zero O's in the last two rows for Hybrid(disc)

element. After enforcing the traction free condition at the top

and bottom surfaces of the laminate and stress continuity at the

interlayer boundaries, the actual numbers of stress parameters

being used for the two-layer and three-layer models are listed

in the following table
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Elasticity
........ o.... Hybrid (con)

-2 -1 0 1 2
inplane displacement at x=O

(a) inplane displacement u (0, z/H)

Elasticity
........ -..... Hybrid (con)

-20 -10 0 10 20 30
inplane normal stress at x=L/2

(b) inplane normal stress (x (L/2, z/H)

Figure 3.7 Solutions for a 20-layer [90/0]10T laminate at
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0.5 1.0 1.5
transverse shear stress at x=O

Elasticity
........ ...... Hybrid (con)

2.0

(c) transverse shear stress Txz (0,z/H)

0.2 0.4 0.6

Elasticity
........ ....... Hybrid (con)

0.8 1.0 1.2
transverse normal stress at x=L/2

(d) transverse normal stress oz (L/2,z/H)

Figure 3.7 Solutions for a 20-layer [90/0]10T laminate at L/H=4
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Table 3.2 Number of P's used in the 2D model

Element type Case 2 Case 3

Hybrid(disc) 8 (6)* 13 (9)

Hybrid(old) 12 (9) 19 (13)

* the number in the parenthesis is the minimum number

of O's needed to suppress the kinematic modes

Results obtained for case 2 and 3 are shown in Figures 3.8

and 3.9, respectively. It is seen that there is no significant

cross section warping in case 2 and the CPT solutions are in

good agreement with the elasticity solutions for case 2. This

is not so in case 3.

Results obtained by the Hybrid(disc) and Hybrid(old)

elements are indistinguishable for both cases. The inplane

displacement u, inplane normal stress ox and transverse normal

stress oz are all in very good agreement with the elasticity

solutions. The transverse shear tz is in reasonable agreement,

although in both cases the interlaminar shear stresses are

slightly underestimated at the interfaces of the laminates. The

inplane displacement u, given in Figure 3.9(a), indicates the

severe cross-sectional warping for case 3.
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Results obtained by the Hybrid(con) element are also

presented in Figures 3.8 and 3.9 for both cases. Because of the

smoothness of the stress assumptions, the transverse shear

stress at the laminate interfaces are slightly overestimated.

For constructing one element stiffness matrix, the

Hybrid(disc) element requires approximately twenty-five percent

less computational effort than the Hybrid(old) element for the

two-layer model and approximately thirty-five percent less for

the three-layer model. On the other hand, the construction of

the Hybrid(disc) element requires approximately the same effort

as that of the Hybrid(con) element for the three-layer model and

approximately twenty-five percent less for the two-layer model.

We can see that the new mixed form hybrid stress element is

computationally efficient compared with the conventional hybrid

stress element and the type I element for the new mixed form

model becomes very efficient when the number of layer is larger

than three.

3.4.3.2 Cylindrical Bending of a Two-layer Laminate

In order to compare the performances of the three different

orders of type II element based on the new mixed form model, the

elements, denoted as Hybrid(ity=1), Hybrid(ity=2) and

Hybrid(ity=3) elements, are used to re-examine the case 2 of the
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Elasticity
.......... ........ Hybrid (con)

.... a.... Hybrid (disc)
- - A- - Hybrid (old)

CPT

-4 -2 0 2
inplane displacement at x=O

(a) inplane displacement u (0,z/H)

-20 -10 0 10
inplane normal stress at x=L/2

20

(b) inplane normal stress ox

Figure 3.8

Elasticity
......... ....... Hybrid (con)

S----a--- Hybrid (disc)

- - a - Hybrid (old)

CPT

30

(L/2, z/H)

Solutions for a 2-layer [90 /0]T laminate at L/H=4
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Elasticity
......... ....... Hybrid (con)

-. -- a--- Hybrid (disc)
- - -- Hybrid (old)

CPT

0 1 2 3
transverse shear stress at x=O

(c) transverse shear stress T (0, z/H)xz

Elasticity
......... ........ Hybrid (con)

---- a---. Hybrid (disc)
-- -- Hybrid (old)

-.-.- CPT

0.2 0.4 0.6 0.8 1.0 1.2
transverse normal stress at x=LU2

(d) transverse normal stress (z (L/2,z/H)

Solutions for a 2-layer [90 /0]T laminate at L/H=4
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-1.0 -0.5 0.0 0.5
inplane displacement at x=0O

(a) inplane displacement

-20 -10 0 10
inplane normal stress at x=L/2

20 30

(b) inplane normal stress Ox (L/2, z/H)

Figure 3.9 Solutions for a 3-layer [0/ 90 /0]T laminate at L/H=4

140

0.500

0.167

-0.167

-0.500

----a---

Elasticity

Hybrid (con)

Hybrid (disc)

Hybrid (old)
CPT

-1.5 1.0 1.5

(0,z/H)

U.5UU

0.167

-0.167

-0.500
-30

-----

----m----

-- A--

Elasticity

Hybrid (con)

Hybrid (disc)

Hybrid (old)
CPT

,,,,



0.5 1.0 1.5
transverse shear stress at x=0

(c) transverse

Elasticity
......... ....... Hybrid (con)
---- a--- Hybrid (disc)
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previous example. A five-element mesh is adopted rather than a

ten-element mesh as previously used.

Each layer is modeled by one sub-element. The numbers of

stress parameters used for each layer are the first nine non-

zero P's in the last two rows of Eq. (3.63.a) for Hybrid(ity=1)

element and first twelve non-zero P's for Hybrid(ity=2) element.

For Hybrid(ity=3) element, it is the all fourteen non-zero P's

in the last two rows of Eq. (3.63.a) and one additional term in

order to suppress the kinematic modes. It is

I 33 1 1 0 i]

After enforcing the stress continuity and traction free

conditions, the actual numbers of stress parameters used are 8,

11 and 17 for Hybrid(ity=1), Hybrid(ity=2) and Hybrid(ity=3)

elements for a two-layer model, respectively. They are

summarized in the Table 3.3.

In order to determine the optimal stress pattern, one

additional Hybrid(ity=l) element with a larger number of P's is

studied. In this element combination, the first eleven non-zero

P's in the last two rows of Eq. (3.63.a) for each layer and a

total of 13 P's are used for the two-layer model.
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Table 3.3 Number of O's used in the 2D two-layer model

Element (ity=l) (ity=2) (ity=3)

Number of I's
for each layer 9 12 15

Actual number of P's
for the two-layer model 8 11 17

Minimum number of P's to
suppress the kinematic modes 6 8 14

Results obtained for all cases are shown in Figure 3.10.

They are presented in normalized quantities which are given by

Eqs. (3.64). For all cases, the inplane normal stress ox

results are indistinguishable and in very good agreement with

the elasticity solution. All the results for the transverse

normal stress ,z are in very good agreement with the exact

solutions for the lower lamina region and in reasonable

agreement for the upper region (Figure 3.10-c).

Results in the transverse shear stress txz are very

different from one another. The Hybrid(ity=3) element result is

superior to those obtained by the others and in excellent

agreement with the elasticity solution as predicted. The

Hybrid(ity=2) element result is similar to the one obtained by

the Hybrid(con) element with ten-element mesh (Figures 3.8-c and

3.10-c) but it is not better than the one obtained by the lower
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order Hybrid(ity=l) element. As we mentioned before,

oscillation of stress results may occur if overuse of stress

parameters. It is clear that this happens while we are only

increasing the number of P's but without increasing the d.o.f.

of Hybrid(ity=l) element.

The computational effort compared with the Hybrid(ity=l)

element mesh, for the Hybrid(ity=3) element case requires 120%

more than that for the Hybrid(ity=1) case and the Hybrid(ity=2)

element case requires thirty percent more.

-20 -10 0 10
in-plane normal stress at x=U2

(a) inplane normal stress

Elasticity
........ ...... ity=1 (8)

..--- ity=1 (13)

--- *--' ity=2 (11)
........ a ...... ity=3 (17)

20 30

(x (L/2,z/H)

Figure 3.10 Solutions for a 2-layer [90/0]T laminate at L/H=4

with three different orders of type II element
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Figure 3.10

(c) transverse normal stress Yz (L/2,z/H)

Solutions for a 2-layer [90/0]T laminate at L/H=4

with three different orders of type II element
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3.5 Three-Dimensional Element

Using in essence the same procedures as in two-dimensional

element, the three-dimensional hybrid stress element based on

the new mixed form model can be constructed. No three-

dimensional hybrid stress element based on the conventional

approach is formulated in this study.

A typical three-dimensional four-node laminated plate

element is shown in Figure 3.11. As the 2D element, the element

is also a subparametric element. Its coordinates can be

expressed as

4

x((,T) = N1 (,11) xi (3.65.a)

4

y(,71) = N 1 (,1)v Yi

where

1
Ni. ) 4= -( 1+ ) (+ 1)

and z( ) is given by Eq. (3.55.b)

3.5.1 Element Displacement Assumption

The order of ý in displacement assumption for all three-
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dimensional elements is exactly the same as that of those two-

dimensional elements.

3.5.1.1 Type I Element

The displacement u is assumed to be

displacement w is assumed to be of order r2.

behavior assumed in the x-y plane is bi-linear

The displacement can be written as

u (4 'I,)

w( ,1,n )

4 4

= N1( T) fj(()
i=1 j=1

4 4

i-=1 j=1

i=1 j=l

Uij

V.iJ-J

of order C3 and

The displacement

(3.66.a)

(3. 66.b)

(3.66.c)Wij

where
th

uij = j nodal u displacement at node i

V,ii

Wij = j
2.

nodal v displacement at node i

nodal w displacement at node i

fj and gj are given by Eqs. (3.56.c-i)

and Ni is given by Eq. (3.65.c)
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z
1

z
N+ 1

Figure 3.11 Three-dimensional laminated plate element

4- t- 1 44 Al A 9

Ukl Vk 1 k1

Uk2 IVk2

Uk3 IVk3

U Vk4 W
k4 k4 k3

Figure 3.12 Element degrees of freedom for a type I

three-dimensional element
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3.5.1.2 Type II Element

From the last numerical example in two-dimensional study,

we have found that the second element (ity=2) preforms poorly in

predicting the transverse shear stress compared with other two

elements. Therefore, only two different orders of 3D element

are actually constructed and tested. They are shown in Figure

3.13. The displacement assumed in the x-y plane is bi-linear as

the type I element.

The first element is assumed to be linear through the

thickness of sub-element in displacements u, v and w. The

displacement is expressed as

ui

v

w

4 2

k=1 j=l

4 2

= X N k
k=1 j=1

4 2

k=1 j=1

i
lj (-i) Ukj

ij

i

J

where

i th
ukj= J nodal u displacement at node k

in sub-element i
i th

vkj = j nodal v displacement at node k

in sub-element i
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i th
Wkj= j nodal w displacement at node k

in sub-element i

and lj and Ni are given by Eqs. (3.55.c-d) and

(3.65.c), respectively

It is shown in Figure 3.13(a) and defined as ity=1.

A higher order element with displacements u and v to be of

order (Ci)3 and displacement w to be of order (Ci)2 as two-

dimensional element. The displacement is in the form

4 4

k=l j=1

4 4

= Nk N 4,1)
k=1 j=1

4 3

k=1 j=1

f.) ufj (i) UVj

j ( i) kj

j i kj

Because of the extensive computational effort required in

3D analysis, no element based on this high-order displacement

assumptions has ever been constructed and tested in the

literature.
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total 24 dof per sub-element

i i i

kl1 k1 kl

Ui i ki
k2 vk2 k2

(a) Element degrees of freedom for ity=1 sub-element

total 44 dof per sub-element

i i i

i i
U ,V
Uk2 k2

i i
Uk3 

k k3

k4 k4 k 3

(b) Element of freedom for ity=3 sub-element

Figure 3.13 Element degrees of freedom for type II

three-dimensional sublayer element
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3.5.2 Stress Field Assumption

The assumed stresses are very similar to all those used in

two-dimensional analysis except that they satisfy the

equilibrium equations only in an integral sense. In general,

more than the minimum number of stress parameters m is used.

3.5.2.1 Type I Element

There are three d.o.f. in displacement w and four d.o.f. in

displacements u and

element, the minimum

- 5 = 15. The three

I 23

I31=

T33

0 d14

d,

0 0

v per node. With four node-lines in a

number of stress parameters m is 4 x 3 + 8

transverse stresses are assumed in the form

0 dT1

0 d0T1

0 0

0 d2

d 4

0 d24

0 d2

0 0

0 d211

0 d2T'

0 0

0 d2A

d5 d 5

0 d33 0 d T1

0 d3 0 d31n

0 d 112

0 d41 1

0 0 0 0 d44

0 d 2

d41] 2d41 2d 4

0 (3.69)

P =[* P*2 03 ............ * 19 1220]
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where

di(ý) in Eqs. (3.60)

A total of twenty stress parameters are used. There are

five pairs of stress parameter suppressing the same deformation

mode. They are (03,04) , (s 5 ,l 6 ), r (09, 010 ), (0•11, 12) and (015, 16) .

For maintaining symmetry of the assumed stress field, both terms

in each pair must be taken simultaneously. Therefore, five more

stress parameter than the minimum number of O's are used. The

last four stress parameters in Eq. (3.69) are added purely for

the purpose to suppress the kinematic modes.

It is noted that the traction free condition at the top and

bottom surfaces of the laminate are satisfied.

3.5.2.2 Type II Element

Based on Eq. (3.63), the assumed stresses can easily be

extended into three-dimensional stress field. Many high order

terms are added in order to suppress the kinematic modes for the

high order element (ity=3) but in order to keep the number of

P's small, globally, the equilibrium equations are relaxed in

some of these terms. a total of forty stress parameters are

used. The actual number of O's being used depends on the

element layup in the direction of thickness. They are in the

form
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s2 Sl S3 s 3Tl 0

S3ý

0 0 0 0 0
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3 11

3
-- s85

3
~-s3T

S3~

0 0 s131 s23

s 13 S234 0 0 s 3 4T1 s 2 3ý'T S13
2

S 4 55 S 6 S 7 S 6 S7 s61

0 S 13471 S2 3
1T1 S131 2 S23T12

s71l 2s 6

0 0 0 0

0 0 0 0 0 0

2s7t s 6 S74

0 0 s  s s,8 0

s8 s8T1 0 0 s 8

2s 6 2s,71 s,4 s4T S5

s81 0 0 0

0 0 0 s

0 0 0 0 s9 s9 s9

pif pi 3i

s9g1 0 0

39 133]• T

where

si (i) in Eqs. (3.64)

It is seen that the six high order terms 027 to P30r o 37 and
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P38 in above equation do not satisfy the equilibrium. They are

needed to suppress all kinematic modes.

3.5.3 Numerical Examples

Three examples have been chosen to validate the accuracy of

the present elements. The first two are a simply supported

plate under sinusoidal loading and the third one is a laminated

plate under cylindrical bending. One additional test on the

type II ity=3 element based on the new mixed form formulation

for the free-edge problem will be presented in the later

chapter.

3.5.3.1 Bending of a Square Laminated Plate

We consider here a bi-directional laminated square plate.

The laminate configuration is a three-layer cross ply laminate

[0/ 90/0]T with layers of equal thickness. The angle is measured

with respect to the axis x (i.e. 0 degree implies fibers are

parallel to the axis x). The material properties are the same

as those in the two-dimensional examples. The laminate is

simply supported along all its edges and sinusoidally

distributed transverse loading q0cos(Xx/L)cos(7y/L) with q0=l is

applied at the top surface of the laminate as shown in Figure

3.14. The span-to-thickness ratio is four as before. Because
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of symmetries along the axes x and y, the finite element

analysis is carried out over a quarter of the plate which is

subdivided into 4 equal elements on each side.

Each layer is modeled by a present mixed form type II ity=l

hybrid stress element. The number of stress parameters used for

each layer is twenty-two. They are the 31 to 018, and 027 to P30

in Eq. (3.70) . After enforcing the stress continuity and

traction free conditions, the number of stress parameters for

the three-layer model is reduced to thirty-three. The minimum

number of I's required to suppress the kinematic modes is

nineteen. For maintaining symmetry of the assumed stress field,

the actual number of I's being used is quite large compared with

the minimum number of P's.

The results are compared with the elasticity solutions by

Pagano [106], classical lamination plate theory [106] and

conventional hybrid stress element by Mau, Tong and Pian [41].

The numerical results are presented in terms of normalized

values which are given by Eq. (3.64).

Results obtained by the present element and Mau's element

are very similar to each other (Figure 3.15). Their behaviors

are also analogy to 2D three-layer example. They are in good

agreement with the elasticity solutions and the transverse shear

stress ~xz is trend to underestimate at the interlayer

boundaries. The CPT results are in poor agreement with the
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6
E = 25x10 psi

L
6

E = 10 psi
T q (x, y)=cos (Ix/L) cos (Oy/L)

GT = 0.5x10 psi

I-L

Figure 3.14 A simply supported square laminated plate

under sinusoidal loading
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(b) inplane normal stress ox (L/2,z/H)

Solutions for a simply supported square plate of
3-layer [0/ 9 0/0]T laminate at L/H=4
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-transverse shear-xz at point B
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(c) transverse shear stress T (0, z/H)xz

Figure 3.15 Solutions for a simply supported square plate of

3-layer [0/ 90/0]T laminate at L/H=4
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elasticity solutions as the 2D analysi- because of its incapable

to predict the cross-section warping.

3.5.3.2 Bending of a Square Sandwich Plate

We consider here a simply supported square sandwich plate

under the distributed loading considered in the preceding

example and the span-to-thickness ratio is four as shown in

Figure 3.14. The material of the face sheets is the same as

that in the preceding example and the core material is

transversely isotropic with respect to z. The material

properties are shown in Figure 3.16. The thickness of each face

sheet is H/10.

The finite element mesh and the type of element are both

the same as those used in the preceding example. The following

quantities are normalized with respect to q0. Selected results

of the analysis are presented in Table 3.4.

The maximum inplane stresses obtained by the present mixed

form hybrid stress element are in reasonable agreement with the

elasticity solutions and the maximum transverse shear stresses

are in good agreement. Once again, the CPT solutions are poor

at the interface boundaries because of its incapability to

capture the cross-section warping.
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Property of face sheet
6

E = 25x10 psi
L

6
E = 10 psi

T
6

G = 0.5x10 psi
LT

6
G ZT= 0.2x10 psi

V LT= VZT = 0.25

Figure 3.16 Di

a

H/10

LXIY
Rib0

Property of core material
6

E = E = 0.04x10 psi
x y

6
E = 0.5x10 psi

z
6

G = G = 0.06x10 psi
xz yz

G = 0.016x10 6psi

V =V =V
zx zy

= 0.25

mension and property definition for

sandwich plate (L/H=4)
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Maximum stresses in square sandwich plate

Solution
Technique aY(0,,I±H/2) a(0,0,±+.4H) Y (0,0,±H/2)y

Elasticity

Present

Finite Element

CPT

Solution
Technique z (L/2, 0, 0) Tyz(0,L/2,0)yz

Elasticity

Present

CPT

3.5.3.3 Distortion Study

-0.956

-0.929

-1.296

-0.429

-0.417

-0.118

The case chosen for the distortion study is a three-

dimensional model of the previous 2D examples, a simply

supported long strip under cylindrical bending as shown in
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24.896

-24.192

20.377

-21.384

±17.552

-3.728

3.136

-0.870

1.613

±14.048

4.152

-4.053

3.418

-3.659

±0. 869

Table 3.4



Figure 3.17. The laminate is a three-layer cross ply [0/ 90/0]T

with layers of equal thickness. To demonstrate the effect of

element distortion, a 4x4 mesh of the same elements for the

three-layer model of the previous two examples is used. Figure

3.18 defines the distortion parameter a. Full triangularization

occurs for a=3.

The displacement w along the axis y at the top and bottom

surfaces versus distortion is shown in Figure 3.19(a). The

maximum inplane normal stress x, along the axis y at the top

surface and the maximum transverse shear stress ,xz along the

simply supported edge at z=H/4 versus distortion are shown in

Figures 3.19(a-b). The results indicate a severe deterioration

in inplane normal stress when the element becomes a triangular

element. However, the rest of the results shows relatively

small deterioration in comparison with the solution obtained by

the undistorted finite element mesh.

3.6 Summary

Overall, the previous two- and three-dimensional examples

demonstrate the computational efficiency of the present mixed

form hybrid stress elements. The type II ity=3 element has the

best accuracy within its family. Type II element should be used

whenever the laminate is less than four layers. On the other
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Boundary Conditions:
All u=0 along side ABDC
All v=0 along side ABFE

and CDIG
All w=0 along side EFIG

6
E = 25x10 psi

6
E = 10 psi

G = 0.5x106 psi
LT

G = 0.2x10 psi
ZT

V =-V - 0_25
ZT

4

L2I FL/2

Figure 3.17 Problem description for a semi-infinite

three-layer cross-ply laminated plate

subjected to cylindrical bending (L/H=4)
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(L/4+a) /2

(L/4+a) /2

(L/4-a)/2

(L/4-a)/2

Figure 3.18 Finite element mesh for distortion study

of a rectangular plate under cylindrical

bending (L=12)
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-- point A
- - point B

-- o-- point C

-- point D

1 2 3

distortion parameter a

(a) transverse displacement w(L/2,y,±H/2)

Figure 3.19 Solutions for distortion study of a laminate

under cylindrical bending
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- Point A

•*--*-*-- Point C

distortion parameter a

(b) inplane normal stress (x (0,y,H/2)

e-- Point E

-- Point G

1 2 3

distortion parameter a

(c) transverse shear stress xz (L/2,y,H/4)xz

Figure 3.19 Solutions for distortion study of a laminate

under cylindrical bending
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hand, to avoid oscillation of stress results the number of

stress parameters should be kept as minimum as possible and

simultaneously suppressing all the kinematic modes.
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CHAPTER FOUR

SMOOTHING OF STRESS AND STRAIN FIELDS

The solution of an elasticity problem given by the

displacement-based, assumed stress and assumed strain

formulations all provide discontinuous stress and strain fields

along the inter-element boundaries.

On the other hand, the mixed model in which the stresses or

strains and the displacements are used as primary variables with

irreducible forms provides the solution with continuous

displacement and stress or strain fields for homogeneous mediums

and often demonstrated better accuracy than other formulations

when applied to a similar element mesh. However, the increased

number of unknowns entering the. computation has in general made

its application in practice not cost effective and particularly

the equation system containing a zero diagonal term has also

made the equation not well conditioned and difficult to solve

numerically.

A number of techniques has been used to deal with such

discontinuous fields, for example, nodal mean values, Gaussian

point values, extrapolations and iteration technique. The most

effective of these is based on a combination of stress or strain
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'smoothing' and iteration techniques. Application of certain

smoothing procedures and iteration scheme for maintaining the

continuity of interlaminar stresses along the interfaces of

laminated composite plates is to be investigated here.

Oden and Reddy [107] used a 'conjugate' approximations of

stresses in the displacement formulation to arrive a smooth

stress field in regions in which high stress gradients are

experienced. Some improvement in accuracy of the stresses is

obtained.

Hinton and Campbell [108] employed the least square method

for discontinuous stress field smoothing in the displacement

formulation. The least squares smoothing procedure may be

carried out globally over the whole of the finite element domain

or locally over each individual element. They have demonstrated

the advantages of using the least square smoothing procedure on

some two-dimensional and plate problems.

Loubignac, Cantin and Touzot [109,110] presented an

iterative algorithm based on an initial stress field for

building a continuous stress and displacement solution.

Starting from the solution of a classical displacement finite

element analysis and using simple nodal mean value to obtain the

smoothed stress field, however, the smoothed stress field does

not satisfy the original equilibrium condition. They proposed

an iteration scheme to obtain a continuous stress field which
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also satisfies the principle of virtual work. A number of

examples has shown the efficiency of the method.

Stein and Ahmad [111] proposed an equilibrium method for

stress smoothing calculation using the displacement model.

After the nodal displacements are calculated, the nodal stress

values are then determined by the principle of virtual work with

the assumptions of some forms of stress distributions and

corresponding virtual displacements at element boundaries.

However, in general, the equation system is nonquadratic and

Gauss's transformation procedure is needed to produce a

symmetric, positive definite band matrix. Various examples of

plane stress, plate bending and shell problems have shown better

accuracy of stresses in comparison with conventional methods.

Chen [112] studied the use of the Hellinger-Reissner

principle as a smoothing tool with an iteration scheme cited in

References 109 and 110 for constructing a continuous stress

field in the assumed stress model. However, the results have

shown divergence instead of convergence for plane stress

problems. On the other hand, the use of the nodal mean stress

value or the weighted-by-volume nodal mean stress with the

iteration scheme based on initial stresses for restoring the

equilibrium in the smoothed stress field has shown some

promising results.

Zienkiewicz, Li and Nakazawa [76] presented a 'consistent'
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stress and strain smoothing procedures along with the

'Loubignac-Cantin' equilibrium iteration technique. They have

shown that the stress or strain smoothing combined with the

iteration scheme corresponds precisely to the solution of mixed

model. The procedure promises to add considerable accuracy to

F.E.M. results by some additional effort.

An application of the mixed model to study the interlaminar

stresses near curved boundaries of laminate composite plates has

been presented by Hwang and Sun [113]. They used the three

inplane strains and three transverse stresses as primary

variables while solving the system equations by an iteration

scheme which is similar to the 'Loubignac-Cantin' equilibrium

iteration scheme.

Certain stress and strain smoothing procedures along with

the equilibrium iteration algorithm will be discussed in the

following section. Assessments for these techniques in an

elastic body with isotropic and orthotropic materials will

followed. A study of their applications in the laminated

composite plates and a discussion are presented at the end of

this chapter.

4.1 Stress Smoothing Procedures and Iteration Technique

The use of a 'consistent' and a 'lumping' stress smoothing
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schemes cited in Reference 76 for the displacement formulation

and their extensions to the conventional hybrid stress

formulation are described as follows:

The problem is solved first by either the conventional

displacement or hybrid stress finite element method and the

nodal displacements q are obtained by

K q = Q (4.1.a)

where

K, q and Q are global matrices assembled from

element matrices

k = f
V

T
B C B dV (4. 1.b)

Vn = spatial domain of element n

B = DN = strain matrix (4.1.c)

for the assumed displacement element and

T -1
k = G H (4.1.d)

for the conventional hybrid stress element

and C, D, N, G, H and Q are given in Eqs.

(3.1), (3.2), (3.14) and (3.15)

Second, the stresses Gr are computed by
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0 = CB q

for the assumed displacement element and

S=P P (4.2.b)

for the conventional hybrid stress element, where

G q (4.2.c)

Third, a stress field o* is interpolated in terms of nodal

stresses p,

* = N p (4.3)

where

N = the same shape functions used for the

displacement field

Thus, a* will be continuous over the entire domain. Then, the

nodal stress parameters p are determined by the condition that

the integral of the difference between o and a* when weighted by

the shape functions N is zero, i.e.

IfV
n Vn

T *
N (C- a ) dV = O (4.4)

where

n is the total number of elements

Substituting Eq. (4.3) into above equation, we obtain
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p = M N G dV (4.5.a)
n Vn

where

M = N N dV (4.5.b)
n Vn

The matrix M has the same form as a classical consistent

mass matrix. The computation of Eq. (4.5.a) is done separately

for each component of stresses.

To avoid inverting the consistent matrix, a simple

iteration method can be used to obtain the nodal stress

parameters p by rewriting Eq. (4.5.a) into the following form

p= ML No dV - ( M - M ) pi- (4.6)
n Vn

where

ML has the same form as a classical lump mass

matrix

i is the number of iterations

This converges reasonably fast. The alternative approach is to

replace the consistent matrix M by the lump matrix ML. Both

approaches are cited in Reference 76.
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However, for consistency, Eq. (4.5.a) should be replaced by

the following equation if the lump matrix ML is used,

P = M= (4.7)
i=1 j=1

where

i
(mL)j = lump value at node j in element i

i
. = value of a at node j in element i

n = total number of elements

nj = total number of nodes in element i

and it was not done in Reference 76. When the lumped values of

a high order element, for example an 8-node two-dimensional

element, are not explicit, nodal mean value can be used to

resolve this difficulty. On the other hand, the computational

effort of this operation is trivial compared with that using the

consistent matrix.

However, the computed smoothed stress field Y* does not

satisfy the original equilibrium condition and it is desirable

that the following equation

fB dV = Q (4.8)
n Vn
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Loubignac and his colleagues [109,110]

proposed the following iteration scheme for restoring the

equilibrium condition. The algorithm is as follows:

First, assuming that the structure is subjected to

inbalance forces based on the difference between the smoothed

stress field 0* and Q, therefore, the displacement increments

Aq for restoring the equilibrium are obtained by

Aqi = K ( Q - I
n Vn

T *
B dV )

where

i = the number of iterations (-1,0,1,2....)

-1 = 0 for starting value

Then, the nodal displacements q and stresses 0 are updated

by the following equations

qgi+1= qi + Aqi

.i+i = C B qi+l

(4.10.a)

(4.10.b)

for the assumed displacement element and

-1
Gi+1 = P ( H G qi+) (4.10.c)

for the conventional hybrid stress element, where

q-1 = 0 for starting value
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Again, one can apply certain stress smoothing procedure to

re-compute the continuous stress field (* if convergence is not

reached.

The criterion of convergence adopted in this study is that

if the following equation is satisfied, we assume that the

convergence is reached.

nd

(qi,0)
i= k 4.

2=k (4.11)
nd

(Aqi, 
2

i=l

where

qi,o = nodal displacement qi at the Oth iteration

Aqi,j = nodal displacement increment Aqi at the

jth iteration

nd = total number of degrees of freedom

k is an arbitrary coefficient

The original stress smoothing scheme can no longer be

applied to laminated structures because of the discontinuity of

the inplane stresses ox, (•y and ,,xy in the direction of the plate

thickness. However, because of the continuity of the inplane

strains Ex, Ey and Exy, the stress smoothing for the inplane

stresses can be replaced by the corresponding inplane strains.

Therefore, in the problems of laminated structures the smoothing
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scheme is again divided into inplane and transverse parts. For

the inplane portion, it is to smooth the strains ep and for the

transverse portion, it is to smooth the stresses tt. The

stresses tt and the strains ep are given in Eqs. 3.3(d) and

3.3(e).

The smoothing and iteration procedures are replaced by the

following steps:

After the nodal displacements q are solved by either the

conventional assumed displacement or hybrid stress method, the

inplane strains ep and the transverse stresses tt are computed

by

ep : E = (DN) q, and t t : 0 = C (DN) q (4.12.a)

for the assumed displacement element and

tt : ( = P P, and ep : C = S ( (4.12.b)

for the conventional hybrid stress element

where

C, S, D, N, P and P are given in Eqs. (3.1), (3.2),

(3.14), (3.13) and (3.14)

Once again, the continuous strain field ep* and stress

field tt* are in terms of nodal strains b and nodal stresses p,

respectively,

ep= N b, and tt* = N p (4.13)
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Then, the nodal strain parameters b and the nodal stress

parameters p are determined by the similar condition of Eq.

(4.4), i.e.,

(4.14 .a)<N (e - e) dV = 0
n Vn

and

T
N (t t - t ) dV = 0

n Vn

(4.14.b)

Substituting Eq. (4.13) into above two equations, we obtain

b = M N e dV
n V

and

p=M V
n Vn

T
N tt dV

where

M is given in Eq. (4.5.b)

and the computation of Eqs. (4.15.a) and (4.15.b) is done

separately for each component of inplane strains and transverse

stresses.

If the lump matrix ML is used, the above equations are

replaced by the following equations,
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(4.16.a)b = ML  (mL)  (e )
i=1 j=1

and

-M [ (mn)( J (it) JP = M t
i=1 j=1

(4.16.b)

where

i
(mL) j = lump value at node j in element i

i
(e) = value of e at node j in element ipj ]p

(t) j = value of t t at node j in element i

n = total number of elements

nj = total number of nodes in element i

The displacement increments Aq for restoring the

equilibrium are then obtained by

Aqi= K (1 pI { {(D N) [C (ep) +Cptti ] + (DtN) (tt i}dV)
n n

(4.17)
where

i = the number of iterations (-1,0,1,2.....)

(ep)- = (tt)-1 = 0 for starting value

C, and Cpt are given in Eq. (3.5)
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4.2 Numerical Examples

In the following, the three different stress smoothing

procedures described in the previous section based on the

conventional assumed displacement and hybrid stress models along

with the iteration for restoring the original equilibrium are

studied. After the best scheme is determined, it will be

applied to laminated composite plates and the results are

compared with those obtained by the high order laminated plate

element will be made.

In this study, only the two-dimensional 4-node 5-0 and the

three-dimensional 8-node 18-0 elements for the conventional

hybrid stress model [93,114] and the two-dimensional 4-node and

three-dimensional 8-node isoparametric elements for the assumed

displacement model are used.

The first four examples are plane stress problems with

isotropic materials. Then, two three-dimensional problems, one

with isotropic and one with anisotropic material, will follow.

The last example is a two-layer cross ply unsymmetrical laminate

subjected to cylindrical bending.

Some of the labels for the elements used in the present

comparisons are listed in the following:
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Hybrid (c) = conventional hybrid stress element with

consistent stress smoothing scheme

Hybrid (1) = conventional hybrid stress element with

lumped stress smoothing scheme

Displacement (c) = assumed displacement element with

consistent stress smoothing scheme

Displacement (1) = assumed displacement element with lumped

stress smoothing scheme

* the number in the parenthesis is the number of

equilibrium iteration steps used

4.2.1 Plane Isotropic Cantilever Beam under End Tip Loading

The first problem defined in Figure 4.1(a) is taken from

Reference 76. A cantilever beam is represented by ten 4-node

isoparametric elements. Convergence studies on the tip

displacement and the stretching stress Yx at point B are shown

in Figure 4.2. The shear locking phenomenon is relieved by all

three stress smoothing procedures with a few equilibrium

iteration steps. In this example, no analysis is carried out by

the hybrid stress model because the present type of locking

phenomenon does not exist in the hybrid model.

The results obtained by the ones with consistent and lumped

stress smoothing schemes are very similar to each other in the

aspect of accuracy. They are labelled as 'Consistent' and
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E = 1.x 107 psi

V = 0.0

End Load

10

LUILLLLw

(a) geometry and finite element mesh

E = 1.x 107 psi

V = 0.3

End Load

(b) geometry and finite element mesh for study

of distortion of element geometry

Isotropic cantilever beam under end tip loadingFigure 4.1
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'Lumped', respectively. However, the one with lumped stress is

more computationally efficient than the one with consistent

stress. Although the one with consistent stress smoothing

scheme and solving it iteratively with 3 iteration steps of Eq.

(4.6) labeled as 'Consist.(3-iter)' shows convergence, it seems

that it may not be reliable when only a few equilibrium

iteration steps is used except that large number of iteration

steps of Eq. (4.6) is applied. Based on this example, the one

with lumped stress is clearly a better choice in the aspects of

efficiency.

The second example is a distortion study of element

geometry on a cantilever beam as shown in Figure 4.1(b). The

beam is modeled by two distorted elements. Both conventional

displacement and hybrid stress models have been used.

Convergence studies on the tip displacement and the stretching

stress ox at point B are shown in Figure 4.3. For the hybrid

stress model, the deterioration caused by the distortion of

element geometry is diminishing with equilibrium iteration by

both consistent and lumped stress smoothing schemes. On the

other hand, the exact solutions is recovering very slowly if the

displacement model is used. Although the smoothing procedure

with consistent stress is slightly better than the one with

lumped stress, the smoothing procedure with lumped stress is

still a better choice from the cost consideration.
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---- Consistent
........ - ....... Consist. (3-iter)
-- *-- Lumped

0 2 4 6

iteration number

(a) tip displacement

-- Consistent
......... " ....... Consist.(3-iter)
-- *-- Lumped

2 4 6

iteration number

(b) inplane stress o(x at point B

Figure 4.2 Convergence study of cantilever beam under end

tip load with 10 assumed displacement elements

and different smoothing schemes
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-- Hybrid (c)
......... ...... Hybrid (I)

-- Displacement (c)
........ ...... Displacement (I)

0 2 4 6 8

iteration number

(a) tip displacement

;dU

0

-20

-40

-60

-80

-100
0

Figure 4.3

--- Hybrid (c)
........ ...... Hybrid (I)

- -- Displacement (c)
........ ...... Displacement (I)

2 4 6 8

iteration number

(b) inplane stress Ox at point B

Convergence study of distortion of element

geometry for cantilever beam under end tip

loading
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4.2.2 Finite Width Strip with a Circular Hole under Pure

Tension

A finite width strip with a circular hole subjected to pure

tension and the finite element model for one quarter of the

structure are presented in Figure 4.4. Convergence study on the

stress concentration factor at point A is shown in Figure 4.5.

Reference value of the factor is 4.32p where p is the applied

tensile force [115]. By applying the stress smoothing

procedure, improved results again are obtained. However, they

do not converge to the reference value.

On the other hand, in this example the one with lumped

stress smoothing scheme leads to better results than the one

with consistent stress scheme. Because almost no variation is

allowed in the x direction of stress ,x in the 4-node 5-P hybrid

stress element at point A, the 'averaging' effect over the span

of the element in the x direction always makes the results of

the stress concentration factor less accurate than the one

obtained by the assumed displacement model. On the other hand,

the difference between the two models is diminishing when the

stress smoothing and equilibrium iteration procedures are used.

4.2.3 Elastic Elliptic Membrane under Outward Pressure

This elliptic membrane problem is defined in Figure 4.6 and
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is taken from Reference 116. Two finite element meshes, a 2x6

mesh and a 4x6 mesh, are used as shown in Figure 4.7.

Convergence studies on the stress concentration at point C for

mesh #1 and mesh #2 are presented in Figures 4.8(a) and 4.8(b),

respectively. Equation 4.11 has been used as an indicator for

terminating the iteration and the coefficient k is chosen to be

100. In this example, the one with consistent stress smoothing

scheme is convergence faster than the one with ML. However, for

the displacement model, the latter yields better results than

the former. On the other hand, for the conventional hybrid

stress model, the tendency is the reverse.

Results of the radial stress along side CD obtained by mesh

#2 are given in Figures 4.8(c,d) . Figure 4.8(c) is solutions

without any stress smoothing scheme. Clearly the analysis based

on the hybrid stress model is closer to the reference value

cited in Reference 116 than the analysis based on the

displacement model. The results obtained by the two stress

smoothing schemes are shown in Figure 4.8(d). The number in the

parenthesis is the number of equilibrium iteration steps being

used.

Based on the four two dimensional examples, it is decided

that the lumped stress smoothing scheme with the equilibrium

iteration procedure is the more suitable algorithm and will be

employed in the rest of this study.
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E = 1.x 107 psi

V = 0.3

P

X

Figure 4.4 Circular hole in a finite width strip

---- Hybrid (c)
........ ....... Hybrid (I)

- - Displacement (c)
........ ....... Displacement (I)

0 1 2 3 4 5 6 7

iteration number

Figure 4.5 Stress concentration results for a finite width

strip with a circular hole problem
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3
E = 210x10 MPa

) = 0.3

All dimensions is metres and thickness = 0.1

Figure 4.6 Elastic elliptic membrane under outward pressure

191

1.7

1

L

3 9

1.25



(a) mesh #1 (2x6)

(b) mesh #2 (4x6)

Figure 4.7 Finite element model for elliptic membrane
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--- Displacement (1)
--- '*--- Displacement (c)

-- Hybrid (I)
--- "--- Hybrid (c)

0 1 2 3 4

iteration number

(a) tangential stress (o at point C for mesh #1

- Displacement (I)
-**---- Displacement (c)

-- Hybrid (I)
-**"•-- Hybrid (c)

0 1 2 3 4

iteration number
(b) tangential stress oe at point C for mesh #2

Figure 4.8 Solutions of elliptic membrane under outward
pressure
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..... •..- Hybrid

Ref. value

2.25 2.50 2.75 3.00 3.25

(c) radial stress ar along side CD for mesh #2
without iteration

2.25 2.50 2.75 3.00

-- 0----

-U+--

Displacement(I-3)

Displacement(c-2)

Hybrid(I-3)

Hybrid(c-1)
Ref. value

3.25

(d) radial stress Or along side CD for mesh #2
with iteration

Figure 4.8 Solutions of elliptic membrane under outward

pressure
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4.2.4 Distortion Study of Solid Isotropic Cantilever Beam

under Pure Bending

To study the effectiveness of the stress smoothing for 3D

solid elements with geometric distortion, the problem of bending

of cantilever beam is selected. The geometry and elastic

properties are shown in Figure 4.9. The tip displacement error

versus the number of equilibrium iteration steps are plotted in

Figure 4.10(a). The results and convergence rate are similar to

those obtained in the two-dimensional distortion study (Figure

4.3). Also presented are comparisons of the resulting

stretching stress Yx, obtained with and without any equilibrium

iteration procedures, along sides AC and BD which are located at

the top surface of the beam. Comparison of the conventional

hybrid stress model is shown in Figure 4.9(a) and comparison of

the assumed displacement model, in Figure 4.9(b).

4.2.5 Anisotropic Solid Cantilever Beam under Pure Bending

MacNeal and Harder proposed a set of problems to test

accuracy of finite element programs [117]. The test problems do

take into account many parameters which affect accuracy, for

example loading, element geometry, problem geometry and material

properties. However, in the parameter of material properties,

only the use of nearly incompressible material is examined.
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E = 1.x 107 psi
V = 0.3

L 5 .1i 5

Figure 4.9 Distortion study of

under pure bending

solid cantilever beam

-a--o- Hybrid
----*.- Displacement

1 2 3 4 5 6 7 8 9

iteration number

Figure 4.10

(a) tip displacment error

Solutions of solid cantilever beam under pure

bending - study of effect of distortion of

element geometry
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element geometry
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Anisotropic material properties also plays an important role on

element accuracy which have not be studied.

In this section, a primary examination of the effect of the

anisotropy on the conventional assumed displacement and hybrid

stress models is presented first and the study of the stress

smoothing procedure in the application of anisotropic material

properties will follow.

The problem is an anisotropic cantilever beam subjected to

pure bending. The geometry and material properties are shown in

Figure 4.11(a). Two displacement variables located at the

central axis of the beam shown in Figure 4.11(b) are selected as

parameters to indicate the performance of the finite element

models. They are the central deflection we at the free end and

the angle of twisting per unit of length Oc. The elasticity

solutions in Reference 88 of the problem are based on the well-

known principle of Saint-Venant. It states that the restriction

to warping at the fixed end is highly localized and will not

affect the elasticity solutions which describe the behavior of

the beam away from the support.

The error of deflection we versus the ply angle is

presented in Figure 4.12(a). Similar to the isotropic material,

when the assumed displacement model is used, the deflection we

of the beam is constrained by the shear locking effect and the
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fiber direction
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(a) geometry of the solid beam

'Ti
(b) displacement definition

Figure 4.11 Anisotropic solid cantilever beam under

pure bending
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structure becomes very rigid. On the other hand, the deflection

w, is only slightly affected in the hybrid stress model.

The degree of the shear locking is a function of the ratio

of shear modulus in the xz plane to the longitudinal modulus in

the x direction (S55/S 11) as plotted in Figure 4.12(c) when the

structural parameters and loading are kept unchanged. We can

see that the ratio of S55/S11 becomes smaller when the ply angle

is increasing from the 00 and is stabilized when the ply angle

reaches 300. When the two elastic moduli are closer to each

other, more strain energy plunges into the shear strain portion

compared to the bending portion. Therefore, the structure

becomes more rigid when the ply angle increases and the

deterioration is stabilized when the ply angle reaches 300.

The error of twisting angle O8 versus the ply angle is

plotted in Figure 4.12(b). If the material is isotropic, the

twisting angle will be zero. Therefore, one may use this

twisting angle as a parameter to justify the sensitivity of the

element with respect to the anisotropy. Once again, the element

based on the hybrid stress model is not sensitive to the

anisotropic material properties and the element based on the

assumed displacement model is. In order to maintain the same

order of magnitude in the deflection and the twisting angle at

the free end, the error of 0, is normalized by multiplying a

factor, IS11/S161*(span of the beam).
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When the structural parameters and loading are kept

unchanged, the twist angle is only a function of the coupling

elastic modulus S16. The ratio of S16 to S11 is plotted in Figure

4.12(c). When the ratio of S16/S 11 is large, more twisting of

the beam compared to the deflection occur. At the same time,

more error occur in the assume displacement element.

In this example, we have demonstrated that the hybrid

stress model is less sensitive to anisotropic material

properties than the assumed displacement model. Now, we

continue a study of the effect of stress smoothing and iteration

procedures improve the accuracy of the analysis. We choose the

structure with ply angle equal to 150 in this example.

Convergence studies on the deflection wc and twisting angle ec

are shown in Figure 4.13(a) and 4.13(b), respectively.

Since the errors of the results obtained by the hybrid

stress model are small, the improvements by the stress smoothing

and iteration schemes are insignificant. On the other hand, the

errors of the results obtained by the assumed displacement model

do improve significantly when the smoothing procedure is used.

Within ten iteration steps, the error of deflection we reduces

four times from the beginning 46% error and the error of

twisting almost disappears from the beginning 37% error. Once

again, the results demonstrate that the exact solutions are not

guaranteed by applying the iteration procedure.
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(a) central axis displacement wc at the free end
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(b) normalized angle of twisting per unit of length 8O

Figure 4.12 Solutions of anisotropic solid beam under
pure bending - study of effect of anisotropic
material properties
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0 15 30 45 60 75
ply angle(deg)

(c) ratio of elastic properties

Figure 4.12 Solutions of anisotropic solid beam under
pure bending - study of effect of anisotropic
material properties
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Figure 4.13 Convergence study of anisotropic cantilever

beam under pure bending with ply angle = 150
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4.2.6 Two-laver Cross Ply Laminate under Cylindrical Bendina

Application of the smoothing and iteration schemes for

maintaining the continuity of inplane strain and transverse

stress conditions along the interlaminar boundaries is studied

here. A two-layer cross ply laminate subjected to cylindrical

bending which has been studied previously is used. The geometry

of the problem, the material properties of the laminate and the

finite element model are shown in Figure 3.6. However, only 5

finite element mesh is used instead of 10. The results obtained

by the new mixed form type II ity=3 hybrid stress sub-element

are chosen as reference solutions while compared to iterative

results. Each layer is modeled by one sub-element as

previously.

In order to compare the accuracy and the efficiency with

similar orders of degrees of freedom through the thickness

direction of the layer and the span of the laminate, each layer

is modeled by three 4-node 5-0 hybrid stress elements in the

direction of the thickness and five elements in the direction of

the span as shown in Figure 4.14.

As the previous chapter, the numerical results are

presented in terms of normalized values which are defined in Eq.

(3.64) and the ones obtained by the new mixed form type II ity=3

hybrid stress sub-element are labelled as 'Hybrid (ity=3) '.

Results obtained by the conventional hybrid stress model without
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any iteration scheme are labelled as 'Hybrid (w/o)' and the ones

with lumped inplane strain and transverse stress smoothing

scheme and three equilibrium iteration steps are labelled as

'Hybrid (w) '. The computational efforts of the one with the

mixed form elements and the one with iteration scheme are almost

the same as each other. On the other hand, the computational

effort of the one without any iteration step is about one half

of those of the two other methods.

The results of the inplane stress o, shown in Figure

4.15(a) do not indicate any significant differences between the

three methods and the elasticity solution. However, the results

of the two transverse stresses xz,, and oz obtained by the mixed

form high order hybrid stress plate element show better accuracy

than those obtained by the conventional hybrid stress elements

with and without any iteration scheme as shown in Figure 4.15(b)

and 4.15(c). Although the model with iteration scheme trends to

recover the shapes of interlaminar stress distributions of the

elasticity solutions and the traction free conditions at the top

and bottom surfaces of the laminate, its accuracy is limited by

the assumption of linear smoothed stress field tt* within each

element.

The results show that for computing the interlaminar stress

distributions through the thickness of the laminates the

previous mixed form of high order hybrid stress laminated plate

element is a better choice.
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Finite element mesh for a 2-layer [90/0]T

laminate at L/H=4 under cylindrical bending

with partial stress and strain smoothing

schemes

0

Elasticity
- - -- Hybrid (ity=3)

--- a--- Hybrid (W/o)

--- ,.--- Hybrid (W)

-10 0 10 20 30

inplane normal stress at x=O
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with partial stress and strain smoothing schemes
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4.3 Summary and Discussion

The application of the smoothing and iteration procedure

based on the conventional hybrid stress model for maintaining

continuity along the inter-element boundaries of the laminates

does not appear to have better accuracy than the one with the

mixed form of high order hybrid stress laminated plate elements

under the same computational effort.

The results have demonstrated that the shear locking

phenomenon, the deterioration caused by the element distortion

and the effect of anisotropic material properties can always be

relieved at least partially if not completely by the stress

smoothing and equilibrium iteration procedures. The consistent

stress smoothing scheme does not appear to be superior to the

lumped stress smoothing scheme. Furthermore, the lumped scheme

is more computationally efficient than the consistent one.

Therefore, the lumped smoothing scheme should be used rather

than the consistent scheme. On the other hand, they do not

guarantee that the results will converge to the exact solutions.

Loubignac and his colleges [109,110] suggested that the use

of actual boundary stresses instead of nodal stress parameters p

obtained by smoothing at nodal points located on the boundary of

the structure will speed up the convergence. They have used a

thick cylinder loaded with a uniform pressure as an example to
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support their statement. However, enforcing the actual traction

free boundary condition along the circular arc in the previous

example of a strip with a circular hole, the results are

deteriorated rather than improved. It is because the inbalance

forces in Eq. (4.9) along the boundaries which are based on the

difference between the smoothed stress field a* and Q trend to

recover the actual boundary force conditions. If the actual

boundary stresses instead of the computed nodal stress

parameters p are used, the forces which trend to recover the

actual boundary conditions disappear and the results may be

deteriorated rather than improved.

On the other hand, in problems of plasticity and geometry

nonlinear analysis, the present algorithm will be highly

efficient because the iterations can be done simultaneously with

those required by the non-linearity.
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CHAPTER FIVE

GLOBAL AND LOCAL FINITE ELEMENT METHOD

Finite element analysis of a structure with a crack or cut-

out requires large number of elements in the regions of steep

stress distribution if conventional assumed displacement or

hybrid stress elements are used, and thus, consequently, a great

amount of computational effort. To reduce the effort, one can

use elements that satisfy exactly the traction boundary

condition on the surface of a crack or a cut-out with some forms

of analytical asymptotic solution in the assumed stress field as

cited at the end of chapter two. However, elements based on the

new mixed formulation are impossible to impose any traction

boundary condition on the inplane stresses because the assumed

stress field in the new mixed form does not include any inplane

stresses.

Alternatively, one can use some forms of 'global-local'

technique [50,70,118-120] to reduce the cost of computation.

For example, in the application of finite element analysis,

Wang and Crossman [50] proposed a 'sub-structuring' technique

and in the application of laminated plate theory, Pagano and

Soni [70] suggested a 'global-local' laminate model to study the
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edge problems of laminates. Both schemes have been reviewed in

chapter two and will not be repeated here.

Luckings, Hoa and Sankar [120] employed a scheme that is

similar to 'sub-structuring' technique [50] to analyze laminates

with circular holes. The solutions were obtained in three

steps. The first step is a global analysis in the Whole

structure using a coarse mesh. The second step is a analyslis of

a smaller local region with refined finite element meshes Using

the global displacement solutions as boundary conditions for the

local region. The third step is to apply the local analysis one

more time with further smaller region and refined iesh.

Satisfied accuracy in the region of interest near the hole was

achieved. The three-step scheme is designated as multi-step

global-local finite element method in this study.

Sun and Mao [118] suggested a scheme that is similar to

multi-step global-local finite element method [120] in the

analysis of a structure with the application of parallel

computations. The computing scheme consists of two steps of

computation. The first step is a global displacement analysis

which is the same as the global analysis of the multi-step

global-local finite element method. The second step isi the

stress analysis of some smaller local regions which are the

regions of interest with refined finite element meshes. The

computations of the local regions are performed simultaneously

on different processors in the computer to save the
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computational effort. They have demonstrated the advantages of

using the 'global-local' scheme in the stress analysis of a

thick laminated beam and a center-crack panel.

Dong [119] presented another kind of global-local finite

element method to reduce the number of degrees of freedom. The

scheme is to simultaneously utilize the conventional finite

element method which has the capability in modeling complicated

geometry and inhomogeneous materials with the classical

Rayleigh-Ritz approximations which involve far less computation

than the finite element method for achieving a comparable level

of accuracy in a simply-shaped domain. Structures are divided

into some subregions which are modeled by either the finite

element method or the Rayleigh-Ritz approximation. The

continuity of displacements between dissimilar subregions is

enforced by means of constraint equations and the governing

equations of motion are derived based on the Hamilton principle.

The advantage of this approach has been demonstrated in a

fracture mechanics problem and problems involving a far field.

The computational efficiency and accuracy of the

application of the multi-step global-local modeling technique

with the conventional and mixed form hybrid stress laminated

plate elements to laminated plate problems will be examined

here. The problems which have been selected in this study are

the stress analysis of laminates with straight or curvilinear

free edges.
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5.1 Multi-Step Global-Local Finite Element Method

As cited in Reference 120, the multi-step global-local

finite element method consists of at least two step/s of

computation. The first step is the global analysis of the whole

structure. A coarse mesh is used in most of the structure and a

slightly finer mesh is employed in the local region which

includes the region of interest and its surrounding area as

shown in Figure 5.1(a) where the shaded area is considered as

the region of interest. The second step is local stress field

analysis with a much more refined mesh in the local region with

the global displacement solutions as prescribed displacement

boundary conditions along the interfaces between the global and

local regions as shown in Figure 5.1(b). Additional local

analyses can be performed if higher accuracy in the regiQn of

interest is sought.

As suggested by Sun and Mao [118] and illustrated in Figure

5.1, in order to minimize errors in the global solutions

propagated into the local analysis, the local region should be

at least one element away from the region of interest as shown

by the region CDFE.

After the mesh in the local region is refined, additional

nodal degrees of freedom are introduced. The prescribed
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displacements at the refined nodes, for example along the edges

CD and DF in Figure 5.1(b), are obtained by employing the shape

function of the original finite element used in the global

analysis. Therefore, for the local analysis, the displacements

at nodes between two original global nodes are completely

determined by interpolation.

Displacement boundary conditions rather than stress

conditions are used along the edges between the global and local

regions because numerical studies have indicated that the

displacement field converges more rapidly than the stress field

in the finite element analysis.

On the other hand, if displacement and traction boundaries

of the original structure are also part of the boundaries of the

local region, for example edges CE and EF in Figure 5.1(b), then

the actual boundary conditions should be used in the local

analysis rather than the solutions obtained by the global study.

5.2 The Straight Free Edge Problem

To assess the accuracy and effectiveness of the multi-step

global-local finite element method with the conventional and

mixed form hybrid stress laminated plate elements to laminated

plate problem, the straight free edge problem of a composite

laminate subjected to uniform inplane strain is chosen as the
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(a) global finite element mesh

Boundary conditions of local analysis:

Sides CE and EF --
E di l~? trd~? fr bhrr drr·~r~

conditions from the original

structure

Sides CD and DF --

precribed displacement boundary

F conditions derived from the

global solutions

(b) local finite element mesh

Figure 5.1 Multi-step global-local finite element method
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first example (Figure 5.2). Results for this kind of problems

have been presented by a number of investigators [46-57, 59-61,

63-65, and 67-74] and have been reviewed in chapter two. The

majority of analytical and numerical studies are based on

modeling each layer as a homogeneous anisotropic material. A

more realistic approach from the micromechanics veiwpoint is to

provide a thin matrix interply at the interlaminar boundaries.

The effect of the presence of the matrix thin layer will also be

investigated here in the local analysis. The material

properties for each lamina and the matrix thin layer which is

assumed to be isotropic are also shown in Figure 5.2.

5.2.1 Global Analysis

The laminate to be analyzed is a four layer symmetric

cross-ply structure [0/90]s with layers of equal thickness and

shown in Figure 5.3(a). Because of the symmetry about the y and

z axes, it is only necessary to consider one quadrant of an

x=constant plane. A global finite element analysis is carried

out over the upper right quadrant and the mesh is shown in

Figure 5.3(b). Along the z-axis, the displacement v is zero on

the z axis and along the y-axis, the displacement w is zerol

Two studies have been made. One is employedi the

conventional hybrid stress plate element and the other employed

the present mixed form hybrid stress plate element. Each layer
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laminate material properties:

6
EL = 20.0x10 psi

6
ET = 2. 1x10 psi

6
GLT = GZT = 0.85x10 psi

matrix material properties:

6
E = 0.5x10 psi

v= 0.35

VLT = ZT 0.21
LTZT

hVL fiber direction

ei

Figure 5.2 Configuration of laminate subjected to uniform
inplane strain E,
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(a) plane view of a four-layer laminate

Boundary conditions:
All v = 0 along edge AB
All w = 0 along edge BD

b=8h

local region
id-aw

Tractiqn-
free edge

D

3 equal
elements

5 equal
elements

equal
elements elements

(b) two-layer finite element model

Figure 5.3 Geometry and finite element model of a

[0/90], laminate for the global study
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is modeled by one 2D type II ity=3 hybrid stress sub-element

(Figure 3.5.c). The number of stress parameters P used for each

layer is fourteen in the last two rows of Eq. (3.63.a) and one

additional term in order to suppress the kinematic modes for the

mixed form 2D type II ity=3 hybrid stress sub-element. It is

= 2 2

I33 0 15

For the conventional 2D type II ity=3 sub-element, it is the all

seventeen 0's in the equation of (3.63.a) and two additional

terms for suppressing the kinematic modes. They are

r- 2 ý3
2 ý1 (2 ý - 1) T 1 r

(1- C) 0

0 0

1

Ii

1(5.2)

It should be noted that the hybrid stress field in Eq. (3.63) is

in terms of x and z coordinates and the stress field in the

present study is in terms of y and z coordinates.

After enforcing the stress continuity and traction free

conditions, the actual numbers of stress parameters used are 17

and 25 for the mixed form and conventional 2D hybrid stress sub-
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elements, respectively for a two-layer model.

summarized in the following table

Table 5.1

They are

Number of 0's used in the 2D type II ity=3

sub-element for a two-layer model

Element

Number of i's
for each layer

Actual number of i's
for the two-layer model

Minimum number of P's to
suppress the kinematic modes

rm 

nven 
onal

A fine mesh

order to evaluate

stress element.

freedom are used.

can be used.

has been used near the free edge region in

the accuracy of the present mixed form hybrid

A total of 16 elements and 204 degrees of

For actual global analysis, a coarser mesh

The results are compared with the assumed displacement.

finite element solutions by Wang and Crossman [49], conventional

hybrid stress element by Spilker [51] and singular hybrid stress

element by Lee, Rhiu and Wong [56]. Wang and Crossman [49] used

392 constant strain triangular elements and a total of 452

degrees of freedom in their study. Spilker [51] used 30 2D high
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order hybrid stress laminated plate elements which have the same

d.o.f. as the present 2D type II ity=3 element but with

different assumed stress field. A total of 527 degrees of

freedom is used to model one half of the structure instead of

one quadrant of it. Lee and his colleagues [56] used a special

singular hybrid stress element at the free edge region and

conventional 4-node 7-4 hybrid stress elements in the rest of

the structure. A total of 318 degrees of freedom has been used

in their model.

The following labels are used for the elements used in the

present comparisons:

Hybrid (n-17) = mixed form two-layer 2D type II ity=3

hybrid stress element with 17 I's

Hybrid (n-13) = mixed form two-layer 2D type II ity=3

hybrid stress element with 13 I's used near

the region of free edge and element with 17

I's used in the rest of the structure

Hybrid (o-25) = conventional two-layer 2D type II ity=3

hybrid stress element with 25 P's

Displ. (Wang) = constant strain triangle assumed

displacement element

Hybrid (Spilker) = conventional three-layer 2D high order

hybrid stress laminated plate element

with 40 I's
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Hybrid (Lee) = conventional 4-node 7-0 hybrid stress

element with a special singular element

Elements with 17 and 25 0's do not contain any kinematic

deformation mode and element with 13 O's contains two.

The numerical results which are presented in Figure 4.5(a-

f) are in terms of normalized values which are defined as

-- v
V = --

Ehx (5.3)

- - - (TGy' rZ' yTZ)

(ay' f z' yz )  6
- x10 psi

Results obtained by the Hybrid (n-17) and Hybrid (0-25)

elements are indistinguishable in all Figures 5.4(a-f) . In

Figure 5.4(a), the results of inplane displacement v along the

top surface of the laminate z=2h obtained by the Hybrid (n-17),

Hybrid (o-25) and Hybrid (n-13) are in very good agreement with

the Wang and Crossman's solutions.

The distribution of oy along the ply interface z=h is shown

in Figure 4.5(b). Results obtained by the Hybrid (Lee), Hybrid

(n-17) and Hybrid (o-25) indicate that the absolute value of (y

are all increasing when approaching the free edge region.
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However, results obtained by Hybrid (n-17) and (o-25) do not

satisfy the traction free conditions exactly.

The transverse normal stress (z distributions along the

interface z=h and the midplane z=0 obtained by the first five

models are presented in Figures 4.5(c) and 4.5(d), respectively.

They are all in very good agreement with each other.

Figure 5.4(e) shows the distribution of transverse shear

stress ryz along the laminar interfaces obtained by the six

models. A closer look of these results near the free edge is

presented in Figure 4.5(f). It attains maximum value very near

the free edge. Results by all the hybrid stress elements drop

to zero or close to zero at the free edge. On the other hand,

solutions obtained by the displacement model do not. Spilker's

element performs the worst among all the six models. As

expected, the Lee et.al's solution has the highest stress value

near the free edge because their element does contain the

singular stress field. On the other hand, the one with 13 P's

obtains a slightly better results than the one with 17 I's.

The computational effort required for the Hybrid (n-17)

element is 44% less than that by the Hybrid (o-25) element and

the effort by the Hybrid (n-13) element is fifty percent less.

This again demonstrates the computational efficiency of the

present mixed form hybrid stress element over the conventional

hybrid stress element.
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(a) normalized 7 distributions along the top

interface z=2h
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........-...- Hybrid (n-17)
.............. Hybrid (n-17)

-- -- Hybrid (o-25)

- -- - Hybrid (o-25)

0.20 0.40 0.60 0.80 1.00

(b) normalized

z=h in the

y/b

•y distributions along

0 and 90 plies

the ply interface

Figure 5.4 Solutions of stress distribution for a [0/90]s

laminate - global study
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Figure 5.4 Solutions of stress distribution for a [0/90]s

laminate - global study
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(e) normalized Tzy distributions along the ply

interface z=h
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(f) normalized Tzy distributions along the ply

interface z=h around the free edge region

Figure 5.4 Solutions of stress distribution for a [0/901s

laminate - global study
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5.2.2 Local Analysis

Two finite element meshes have been adopted and are shown

in Figure 5.5. In mesh A, only the conventional 2D 4-node 5-0

hybrid stress element is used. In mesh B, the new mixed form

high order 2D type II ity=3 hybrid stress sub-element with total

17 O's for a two-layer model is used in the region adjacent to

the laminar interface in order to enforce the stress continuity

along the interface and conventional 4-node 5-0 hybrid stress

element in the rest of the local region. A total of 278 degrees

of freedom in mesh A and 256 in mesh B are used. The

computational time required for Mesh A is 12% less than that for

Mesh B.

A study is made of the effect of the presence of a matrix

thin layer between two anisotropic lamina. For Mesh A, the thin

layer is modeled by a conventional 4-node 5-0 element and for

Mesh B, it is modeled by a special mixed form 2D type II ity=l

sub-element in which the transverse stresses oz and Tyz are not

allowed any variation in the direction of laminate thickness.

The thickness of the matrix thin layer is taken as 4% of the

thickness of the lamina and the total thickness of the laminate

is kept unchanged. In general, the thickness of the matrix thin

layer is a function of fiber volume fraction and fiber diameter.
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Numerical results are again presented in normalized form

defined in Eq. (5.3) and shown in Figures 5.6(a-f). Through-

the-thickness stress distributions of Oz are compared with the

results obtained by Raju and Crews [52]. For a study of the

same problem but with slightly different geometry, Raju and

Crews used 576 8-node 2D isoparametric elements with a total of

3666 degrees of freedom. Results of stress distributions along

the ply interface z=h are also compared with the solutions

obtained by Lee, Rhiu and Wong [56].

The following labels are used for the elements used in the

present comparison:

Mesh A (w/o) = conventional 4-node 5-0 hybrid stress

Mesh A (w) =

Mesh B (w/o)

Mesh B (w) =

element in mesh A and without the matrix

thin layer

conventional 4-node 5-0 hybrid stress element

in mesh A and with the matrix thin layer

= mixed form 2D type II ity=3 hybrid stress

sub-element with 17 0's and conventional 4-

node 5-P hybrid stress element in mesh B and

without the matrix thin layer

mixed form 2D type II ity=3 hybrid stress sub-

element with 17 O's and conventional 4-node 5-

P hybrid stress element in mesh B and with the

matrix thin layer
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Displacement = 8-node 2D isoparametric element with a total

of 3688 d.o.f. and without the matrix thin

layer

Hybrid (Lee) = conventional 4-node 7-0 hybrid stress

element with a special singular element

and without the matrix thin layer

Figure 5.6(a) presents through-the-thickness stress

distributions of zY for a laminate without thin layer of matrix

material obtained by Mesh A and Mesh B. The results are in good

agreement with those obtained by Raju and Crews. However, the

one obtained by mesh B shows better agreement than the one

obtained by mesh A. The total degree of freedom used in the

global and local analyses in mesh B is 460 d.o.f. compared with

3688 d.o.f. in one global analysis used by Raju and Crews. It

clearly shows that the computational effort can be reduced

significantly by the use of global-local finite element method.

The one with the matrix layer is shown in Figure 5.6(b) and the

value of zY at the interface drops slightly.

Results of the transverse normal stress Oz, the shear

stress Tyz, the inplane normal stresses cy in the 00 and 900 plies

along the interlayer boundary are presented in Figures 5.6(C-f),

respectively. The ones with the thin layer of matrix material

are plotted at the location of the interface between the lamina

and the matrix interply. Results all indicate that the one with
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the matrix layer trends to decrease its values compared with the

one without the matrix thin layer.

The results of (,z obtained by Mesh A and Mesh B are in good

agreement with each other as shown in Figure 5.6(c). However,

because an elastic singularity is expected at the free edge, the

resulting values right at the free edge is dependent

significantly on the element size used near the edge.

Therefore, higher value in Mesh A is observed because a smaller

size of the element is used. In Figure 5.6(d), results obtained

by Mesh B of the transverse shear Tyz are in better agreement

with the Hybrid(Lee) solutions than the one with Mesh A.

Results of the inplane normal stress (y are shown in

Figures 5.6(e) and 5.6(f). For the stresses in the 00 ply, the

one obtained by Mesh B is in better agreement with the

Hybrid(Lee) solutions than the one obtained by Mesh A. On the

other hand, for the case of the 900 ply the one obtained by Mesh

A is better.
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at the free edge y=b with and without matrix thin layer

Figure 5.6 Solutions of stress distribution for a [0/90],

laminate - local study
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Figure 5.6 Solutions of stress distribution for a [0/90]s

laminate - local study
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Figure 5.6 Solutions of stress distribution for a [0/901],

laminate - local study
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5.3 The Curvilinear Free Edge Problem

The second example chosen to validate the accuracy and

computational efficiency of the global-local finite element

method to laminated plate problem is a cross ply composite

laminate with a circular cut-out. It is subjected to uniform

inplane stress Co and is illustrated in Figure 5.7.

Results for this kind of problems have been presented by a

number of investigators [62,66,75,120,122]. Tang [62] used a

boundary layer theory formulated in cylindrical coordinates to

analyze the problem. Bar-Yoseph and Avrashi [66] used a method

based on a variational perturbation and hybrid stress finite

element method. Nishioka and Atluri [75] presented a special

traction free hybrid stress element to deal with the problem.

Instead of development any special element or approximate

technique, Luckings, Hoa and Sankar [120] and Raju and Crews

[122] used the 20-node isoparametric element with a very fine

mesh to study the problem.

The laminate consists of four-layer cross ply [0/90], with

layers of equal thickness and the loading is imposed as uniform

pressures oY applied to the surfaces at x = ±L. The angle is

measured with respect to the axis x (i.e. 0 degree implies

fibers are parallel to the axis x). Because of the symmetry

along the planes xy, yz and zx, the analysis is carried out over
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Figure 5.7 Configuration of laminate with a circular hole

subjected to uniform inplane stress (o, in the

x direction
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one eighth of the structure. The displacements u, v and w are

zero on the planes yz, zx and xy, respectively.

Each layer is modeled by a mixed form 3D type II ity=3

hybrid stress sub-element as shown in Figure 3.13 (b). The

number of stress parameters f used in Eq. (3.70) for each layer

is forty. After enforcing the stress continuity and traction

free conditions, the number of stress parameters for the two-

layer model is reduced to forty-four. The minimum number of i's

required to suppress the kinematic modes is twenty-nine. Once

again, for maintaining symmetry of the assumed stress field, the

actual number of P's being used is quite large compared with the

minimum number of I's.

Two laminates with two different hole radius to laminate

thickness ratios R/t are considered. The one with R/t equal to

1 is designated as case 1 and the other with R/t equal to 5 is

designated as case 2. For the global analysis, 48 elements are

used for each cases as shown in Figure 5.8(a) . The element is

constructed by two mixed form 3D type II ity=3 hybrid stress

sub-elements and a total of 1197 d.o.f. is used.

This analysis is conducted by three steps. The first local

region which is designated as local region #1 has an outer

radius equal to 2.15R and the finite element mesh is shown in

Figure 5.8(b). It has 60 elements and a total of 1482 d.o.f.

For case 1, the smallest size of the element in r direction is
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0.4h where h is the laminar thickness. However, for case 2, the

smallest size of the element is 2h.

Similar to the problem involving a straight edge which is

traction free, the present problem also has stress singularity

along the inner boundary which is stress free. Thus, the

accuracy of the stresses at the free edge is dependent on the

element size used near the edge. Therefore, for case 2, a

subsequent local region designated as local region #2 is used as

shown in Figure 5.8(b) which has an outer radius of 1.25R. The

finite element mesh used in the local region #2 has a similar

mesh as the one used in the local region #1. They have the same

numbers of elements and d.o.f. On the other hand, the smallest

size of the element in r direction in the present finite element

mesh is 0.4h which is the same size as the one for case 1 used

in the local region #1.

The results are compared with the assumed displacement

finite element solutions obtained by Lucking, Hoa and Sankar

[120]. As mentioned before, they used the 20-node 3D

isoparametric element with the same global-local finite element

scheme that is adopted in the present study. The numbers of

elements used in the global and the two subsequent local region

analyses are 220, 200 and 180 and the total numbers of d.o.f.

are 4149, 3507 and 3129, respectively.
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i R-1.15R

local region #1

(a) model for global study

Figure 5.8 Finite element model of a [0/90], laminate

with a circular hole
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Figure 5.8 Finite element model of a [0/90], laminate

with a circular hole
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Because the in-core memory of the computer used in this

study is limited to only 1Mb, the present calculation is

performed in single precision rather than double precision which

has been used in the all previous calculations. The numerical

results which are shown in Figures 5.9(a-n) are presented in

terms of normalized values which are defined as

.( Z' z rZ' O rz)

( TZ o f ,TZez T rz) = (5.4)

where

o0 is the far field tensile stress

The following labels are used for the elements used in the

present comparisons:

Hybrid-i = mixed form two-layer 3D type II ity=3 hybrid

stress element with the local region #1

Hybrid-2 = mixed form two-layer 3D type II ity=3 hybrid

stress element with the local region #2

Displacement = 20-node 3D isoparametric element with the

global-local finite element method used by

Lucking, Hoa and Sankar.

CLT = using classical lamination theory to determine the

far field stresses in the individual lamina of an

infinite laminate and the 2D solutions from Reference

122 for holes in anisotropic plates.

* the number in the parenthesis is the ply angle
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The results of the hoop stress distributions (o around the

hole boundary at the center of each plies obtained by the

Hybrid-i element for the cases 1 and 2 are shown in Figures

5.9(a) and 5.9(b), respectively. They are in good agreement

with the solutions by the Displacement element. It shows that

the hoop stresses (eo are not sensitive to the R/t ratio.

Through-the-thickness distributions of (T at 0 equal to 00, 450

and 900 are compared with the CLT solutions as shown in Figures

5.9(c) and 5.9(d).

The results of the largest of the three interlaminar

stresses tez are plotted in Figures 5.9(e) and 5.9(f) for the

cases 1 and 2, respectively. The results obtained by the

Hybrid-i for case 1 and the Hybrid-2 for case 2 are in very good

agreement with the solutions by the Displacement elements. The

results indicate that the magnitude of te, increases with R/t and

its maximum's position slightly shifts. Also, results obtained

for case 2 by the Hybrid-i element clearly show that the

accuracy of the stresses at the free edge is significantly

affected by the element size used near the edge.

Figures 5.9(g) and 5.9(h) and Figure 5.9(i) and 5.9(j) show

the interlaminar normal stress oz around the hole boundary at

the interface and at the midplane, respectively. Once again,

the results obtained by the Hybrid-i for case 1 and Hybrid-2 for
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case 2 are in reasonable agreement with the solutions by the

Displacement elements.

Through-the-thickness distributions of Toz and Oz at 0=450

and r/R=l are plotted in Figure 5.9(k) and 5.9(1) for cases 1

and 2, respectively. They have the same shapes as the one

obtained by Raju and Crews [122]. However, they obtained a much

higher value at the interface because the element size as small

as h/500 was used in their study.

The distributions of interlaminar shear stresses tez and trz

along r direction at the ply interface and 0=450 are plotted in

Figures 5.9(m) and 5.9(n) for cases 1 and 2, respectively. For

the case 1, the results obtained by the Hybrid-i are in

excellent agreement with the solutions obtained by the

Displacement element.

5.4 Summary and Discussion

The two numerical examples has clearly demonstrated the

computational efficiency and accuracy achieved by the multi-step

global-local finite element method. Once again, they also show

that the present mixed form 2D and 3D hybrid stress sub-elements

have a desirable performance and are more computationally

efficient than the conventional hybrid stress elements.
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Figure 5.9 Solutions of stress distribution for a [0/90],
laminate with a hole
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The study also indicates that the interlaminar stresses at

the interlaminar boundary near the free edge decreases if the

interlaminar boundary is modeled by a very thin matrix rich

layer.

The study of a 4-layer cross ply laminate with a hole

clearly indicates that the magnitude of the interlaminar

stresses TEz and z, at the hole boundary is dependent on the mesh

refinement because of the existence of stress singularity at the

free edge. The optimum size of the element in r direction used

adjacent to the free edge is about four-tenths of the layer

thickness at least in the two cases considered here.

The accuracy of the stress analysis of the region of

interest may be very sensitive to the size of the local region.

If it is the case, a reasonable fine mesh in the global analysis

and more transition region between the region of interest and

the boundary of the local region should be used. On the other

hand, it is not recommended to use too many consecutive local

analyses because the errors propagated into each analysis may

become very large in the final analysis.

In the application of the global-local finite element

method to the laminated structures which contain many layers,

the mixed form type I hybrid stress element should be used in

the global analysis instead of the type II element that has been
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used in this study as shown in Figure 5.10(a) because of its

computational efficiency. On the other hand, in order to avoid

the errors that limited the warping of the cross section of each

layer near the region of interest because continuous functions

through the laminate thickness are used in the assumed

displacement field of the type I element, a through-the-

thickness local region is recommended. For example, in Figure

5.10(b) region ADHE should be used as local region instead of

region BCGF. In order to maintain the computational efficiency

of the model, the mixed form type I hybrid stress element should

be used in the region of local model that at least one layer

away from the region of interest, for example regions ABFE and

CDHG in Figure 5.10(b) . On the other hand, in the region of

interest and its neighboring area, mixed form type II element

should be used.
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Figure 5.10 Suggestion of global and local finite element

models for laminates having many layers
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CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

A development has been made of two families, type I and

type II, of mixed form hybrid stress elements for laminated

composite plate analysis based on a mixed form of Hellinger-

Reissner principle which is a function of three displacement

components and three transverse stresses. The performances of

these elements are verified by a large number of illustrative

examples. Furthermore, the computational efficiency and

accuracy of these elements along with the multi-step global-

local finite element method for the laminated plate problems and

various stress smoothing schemes for isotropic solids as well as

laminated structures using the conventional hybrid stress model

are also investigated.

The following conclusions are drawn from the present

investigation:

1. The accuracy of the conventional hybrid stress

element is less sensitive to the effect of
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anisotropic material properties than that of the

assumed displacement element.

2. For the case of laminate having large number of

layers, the family of the mixed form type I hybrid

stress laminated plate elements is the most

computationally efficient element in predicting the

interlaminar stresses compared to other laminated

plate finite elements in the global analysis.

3. The mixed form type II hybrid stress laminated plate

elements are much more computationally efficient

than the type II hybrid stress laminated plate

elements with all six components of stress and in

some cases, the saving can be up to 45%.

4. The present mixed form hybrid stress elements along

with the multi-step global-local finite element

method is a very cost effective scheme in predicting

the interlaminar stress distributions around the

free edge regions of laminates.

5. The stress smoothing and equilibrium iteration

schemes promise to add considerable accuracy to the

existent finite element results by a relative small

additional expenditure. However, they are not as

computationally efficient as the present mixed form

hybrid stress elements in application to laminated

plates.
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6.2 Suaaestion for Future Work

The following subjects are recommended for future work:

1. The two families of mixed form hybrid stress

laminated plate elements should be extended to

laminated shell and sandwich plate structures.

2. Development of low order mixed form type I laminated

plate hybrid stress elements with free of shear

locking phenomenon in a thin plate limit and its

extension to nonlinear analysis should be performed.

3. Examples in studying the effect of anisotropic

material properties on the accuracy of various

finite element model should be extended.

4. A study of an investigation of the effectiveness

should be made of the multi-step global-local method

for laminates having a large number of layers.
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APPENDIX

FORMULATION FOR UNIFORM INPLANE STRAIN

OF CROSS PLY LAMINATES

Formulation of cross ply laminates subjected to prescribed

uniform inplane strain Ex is presented here and shown in Figure

5.2. As a result of the symmetry of the structures, the

material property matrix of the laminates S is reduced to the

form of Eq. (3.24) and the analysis is reduced to the plane yz

as shown in Figure 5.3(b). The displacements u in the x, y and

z directions are assumed to be in the form

x8

u = v(y,z)

w (y, z)

(A.1)

As a result of the form of

strains and stresses vanish,

Yxz = Yxy = 0 and

The inplane normal stress ox

Eq. (A.1), the following shear

(XZ = -xy = 0 (A.2)

is also eliminated by requiring

that the corresponding inplane strain calculated from the

stresses be equal to the prescribed value Ex. Therefore
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( = (Cx - S12(y - S 13z)/Sx x 12 y 13 z 11 (A.3)

Substitution of Eqs. (A.1) to (A.3) into the following

Hellinger-Reissner principle which involves all displacements

and stresses in the form

R1 T TKR (U' () =v [-- 2GSG + G (Du) ] dV = stationaryv, 2 (A.4)

where

a, S, D and u are given in Eq. (3.1)

we obtain

IR (u,R ) =
R Af

1 ~T S~ T . •-T
[-- +S + (Du) I dA - G2 xA

where
-~ T
u = {v,w}

I= {Y' ,z z}
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S11

0

S12 13

Si'

ay0

a

az

a a
az ay

S2S
0 (S23 S12 13)

S 11

0S44

2

0 (S33 1 3

S 11

A = area of the continuum in the plane yz

We begin by dividing the

inplane and transverse parts, as

P
t

eP
S= Du = a

et
tP I {Y Y I

t = { Tyz }

e = {Ey}=DpueP Y P••

et Y (yz z ) = Dt U

stresses and strains into the

(A. 6.a)

(A. 6.b)

(A.6.c)

(A. 6.d)

(A. 6.e)

(A.6.f)

where
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D= 0+ o

D =

0-
az

Furthermore, the stress-strain relation can be expressed as

ep S Sp teP P Pt P
= ~ t ] + E

t Spt St t + x

S12

S11

0

S13

11

(A.7)

Substituting Eqs. (A.6) and (A.7) into Eq. (A.5), we get

~ ~ ~ . •1~T~ ~ ~ ~ T +T
R 2 P P p ptt t2 t Pt P

0

~T r- ~S12 T.ltt etdA - x 12 + t S13 } dA (A.8)tA S 1 t 11

From the first half of Eq. (A.7), we can solve for ,t in

terms of ep, tt and ex
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S -- - . S-12
t = Ce + Ct E -- C

p p p pt t x S
11

where

C =S
P

C = -CS = C
pt p pt tp

Substitution of Eq. (A.9) into Eq. (A.8) yields the following

mixed variational functional for an uniform inplane strain Ex

~1 T~ ~ +T jT 1~* T
I (u,t ) = -[ e C +t C -- tt +te IdAmR t 2 p pp t tpp-- t S t t d

A

(A.10)

0
- T 12 -T S 12 -T Sj- {e C +t [- C t+ S 3 dA

11 11 111

where

t t pt p pt

with the constraint equations (A.6.e), (A.6.f) and (A.9).

Once again, we rewrite the mixed variational principle into

a modified form for the finite element formulation

* •n I T~ ~ T ~1 - T 1 ~ T ~ -T
eCe + ttC te -- t St +tet]dA

mR An2 P PP t p 2 t t
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,T- - 12-T 12- t S13 ] }dA )
xA P S p t S Ct S d

11

where

n = number of element

An = spatial domain of element n

The displacement and stress fields are expressed as

u =N q (A.12 a)

t t = P I (A.12,b)

where

N = matrix of shape functions

q = nodal displacements

P = matrix of assumed polynomials

= set of stress parameters

Introducing Eq. (A.12) into Eq. (A.11), the functional is

reduced to the form

* 1 q  G q 1• t-
=,. 22qkq+ Gq--f3Hf3-f1f-qfj (A.13)

where

k = (DpN) C (DpN) dA

T ~
G =f P [Ctp (D N) + DN ] dAJ tP p t

278

(A.11)



J T~H= P S P dAAn

f =e E S12T +  ] dA
t An S CPt S13 dAAn ISil Sl

S12 T ~f = 8 -- N C dA
P An S P

Applying the stationary condition to Eq. (A.13) with

respect to 0, i.e. t/af = 0, we obtain

Gq- H -ft =0

and rewritten as
-1

S= (G q - ft) (A.14)

Substituting Eq. (A.14) into Eq. (A.13) and applying the

stationary condition with respect to q, i.e. aiE/Dq = 0, we

obtain

K q = Q (A.15)

where

K, q and Q are global matrices assembled from

element matrices
S - T -1
J k +G H

P

T -1
Q=f +GH f

- p
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