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ABSTRACT

An arsenite-oxidizing enrichment culture was isolated from the northern tip of the Halls
Brook Storage Area in suburban Boston in mineral medium and arsenite. The growth of
three generations of cultures was followed for 1-3 months by measurements of arsenite
oxidation and of absorbance. The bacteria grew optimally at pH lower than 9 and the final
culture generation was shown to incorporate radiolabelled bicarbonate. Over the same
period, direct counts yielded increases in culture density and the concentration of arsenite in
the cultures decreased. Thus, it was shown that the culture was chemoautotrophic: capable
of harvesting the energy released by the oxidation reaction for use in carbon fixation. The
cells were estimated to have a doubling time of 8 hours.

Thesis Supervisor:
Title:

Harold F. Hemond, Ph.D.
Professor of Civil and Environmental Engineering
Director of the Parsons Laboratory



A CKNO WLEDGMENTS

I would like my advisor, Professor Harry Hemond, for always making time in his hectic
schedule to patiently explain, to encourage, and to laugh at my jokes. I would also like to
thank Jenny Ayla "A-1 Big Sister" Jay for help with trace metals solutions, microscopy,
energetics calculations, great advice, vegan fuel, and late-night lab company (and probably
lots of other stuff I'm forgetting); Stephen Tay for letting me use his bench unannounced
and for helpful advice about culturing and maintaining my bugs; Dianne Ahmann for help
with microscopy, DAPI staining, and 14C calculations; Kent Bares for help with
microscopy (Can you tell by now how clueless I was about microscopy?); Hank Seemann
for his good-humored efforts to pin down Excalibur methodology; Dave Senn and Peter
Zeeb for not throwing me out on my butt when I put Joni Mitchell and Ani DiFranco on
"repeat" for days on end. Thanks to Tracy Adams for schlepping with me through endless
snowdrifts in soaking wet cotton socks and laughing the whole time. Thanks to Joel
Sindelar for Thursday night Jackie Chan and for his tape measuring prowess.

Triple Super Thanks to Lisa Moore for holding my hand through my '4C tests and for not
shooting me after I broke her Dispensette.

I'd also like to thank Rockin' Ravi Patil ( in the tin-foil "NASCAR" jacket) and Jack
"Uncle Yako" Holt: both kept my spirits up (Virtually, no less! Hurrah for the Internet!)
and my mind focused on the finish line.

Last, thanks to my family: To my parents for endless encouragement, for truly twisted
humor, and for having an 800 number so I never had to foot the phone bill; to my siblings
for keeping me on my toes; to my new family, Rasik, Kusum, Priti, and Jim for
enthusiasm and kindness; to Maggie, my dog for, well, for being my dog. Finally, I'd
like to thank Tushar Shah for being there (even if "there" is in Illinois), for having
confidence in me, and for always, always, keeping me laughing.



TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGMENTS

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

CHAPTER 1: INTRODUCTION

1.0 Introduction

1.1 Brief History of the Aberjona Watershed

1.2 Microbial Energetics

1.3 Previous Research on Arsenite- and Arsenate-Resistant Microorganisms

1.4 Motivations for Research

CHAPTER 2: METHODS

2.0 Description of the Site

2.1 Isolation of the Culture
2.1.1 Field Sampling
2.1.2 Enrichment Culture

2.2 Analytical Methods
2.2.1 Measurement of Arsenite Concentration in Cultures
2.2.2 Measurement of Cell Density

2.2.2.a Turbidity
2.2.2.b Direct Counts

2.2.3 Inorganic Carbon Uptake

20



CHAPTER 3: RESULTS

3.0 pH of the Medium 28

3.1 Growth Patterns of the Bacteria 37
3.1.1 Cultures #27-#31 37

3.1.1.a Arsenite Measurements 37
3.1.1.b Turbidity measurements 39

3.1.2 Cultures #42-#46 41
3.1.2.a Arsenite Measurements 41
3.1.2.b Turbidity Measurements 41

3.1.3 Cultures #1-#5 43
3.1.3.a Arsenite Measurements 43
3.1.3.b Turbidity Measurements 46

3.2 Confirmation of Chemoautotrophy 46
3.2.1 14C-Fixation 48
3.2.2 DAPI Staining and Cell Counting 49
3.2.3 Arsenite Concentration Measurements 49

3.3 Estimations of Growth Rate and Cell Size 51

CHAPTER 4: DISCUSSION 54

4.0 Implications of This Research 54

4.1 Suggestions for Future Research 54

APPENDIX A: INGREDIENTS OF MEDIA AND OTHER

CHEMICAL SOLUTIONS 56

A.1 Ingredients of Media 56

A.2 Ingredients of Media Additives 57

A.3 Ingredients of Solutions Used in Analysis 58

APPENDIX B: ARSENITE CONCETRATION DATA 59

B.1 Arsenite Concentrations for Cultures 27-31for Dates 6-34.[jpM] (February 1,1996=1) 59

B.2 Arsenite Concentrations for Cultures 42-46for Dates 39-101[ pM] 60

B.3 Arsenite Concentrations for Cultures 1-5for Dates 52-102 [pM] 61

APPENDIX C: TURBIDITY DATA 63

C.1 Turbidity Data for Cultures 27-31 for Dates 6-33 63

C.2 Turbidity Data for Cultures 42-46for Dates 39-101 63

28



C.3 Turbidity Data for Cultures 1-5for Dates 52-101

APPENDIX D: CARBON-FIXATION DATA

D.1 DAPI-Stained Cell Counts

D.2 Arsenite Concentrations During "C Experiment [ pM]

REFERENCES

66

67

68



LIST OF FIGURES

Figure 1. Map of the Aberjona Watershed (Aurilio et al.) 11
Figure 2. Map of the Halls Brook Storage Area (Aurilio et al.) 12
Figure 3. Concentration of Arsenite in pH4 Cultures 29
Figure 4. Concentration of Arsenite in pH5 Cultures 30
Figure 5. Concentration of Arsenite in pH6 Cultures 31
Figure 6. Concentration of Arsenite in pH7 Cultures 32
Figure 7. Concentration of Arsenite in pH8 Cultures 33
Figure 8. Concentration of Arsenite in pH9 Cultures 34
Figure 9. Concentration of Arsenite in pH10 Cultures 35
Figure 10. Average Concentration of Arsenite in Live Cultures in Media of pH 4, 5,

6, 7, 8, 9, 10 36
Figure 11. Concentration of Arsenite in Cultures 27-31 38
Figure 12. Turbidity of Cultures 27-31 40
Figure 13. Concentration of Arsenite in Cultures 42-46 42
Figure 14. Turbidity of Cultures 42-46 44
Figure 15. Concentration of Arsenite in Cultures 1-5 45
Figure 16. Turbidity of Cultures 1-5 47
Figure 17. Number of Cells/Milliliter in Culture 3 During 14-C Experiment 50
Figure 18. Concentration of Arsenite inCulture 3 During 14-C Experiment 52



LIST OF TABLES

Table 1. Thermodynamic Couplings: Maintenance Reactions of Chemoautotrophic
Bacteria 14

Table 2: Transfers of Cultures 23
Table 3. Incorporated 14-C in Spiked Cultures 48
Table 4. Concentration of Arsenite in Cultures 27-31 59
Table 5. Concentration of Arsenite in Cultures 42-46 61
Table 6. Concentration of Arsenite in-Cultures 1-5 62
Table 7. Turbidity of Cultures 27-31 63
Table 8. Turbidity of Cultures 42-46 64
Table 9. Turbidity of Cultures 1-5 65
Table 10. DAPI Cell Count for Culture 3 66
Table 11. Concentration of Arsenite in Culture 3 During 14-C Experiment 67



CHAPTER 1

INTRODUCTION

1.0 Introduction

Arsenic has gained infamy for its use as a murder weapon in arenas that vary from

"Arsenic and Old Lace" to chemical weapons of mass destruction. However, the element

and its compounds also have had many arguably beneficial uses. For instance, the very

qualities of arsenic that render it such an effective murder weapon also render it an

extremely effective pesticide. Arsenic also has important industrial applications. Potently-

toxic arsine (AsH) is used as a doping agent in electronics. Arsenic is also used in leather

tanning. Many arsenic compounds are also produced as a by-product of many industrial

operations. For example, because arsenic is a widespread component of gold and sulfur

ores, arsenic is often produced as a by-product of gold and sulfur mining operations, and

from the processing of the metal ores. For example, smelting produces arsenic, as does

the production of sulfuric acid. With the production and use of these hazardous chemicals

comes their release into the environment. The Aberjona watershed in suburban Boston

illustrates some effects of long-term aqueous arsenic release.



1.1 Brief History of the Aberjona Watershed

From the early-to-mid 1900s, the northern Aberjona watershed (Fig. 1) was home

to several chemical manufacturers and leather processing companies. Unfortunately,

environmental protection was not yet a popular goal, and the chemical manufacturers,

notably those who produced sulfuric acid, released a great deal of arsenic into the area

surrounding their factories. The area, including land now known as the Industri-Plex

Superfund Site, is one of the largest hazardous waste sites in the country. The arsenic-

laden wastes slowly leached their poisons into the Aberjona River. (Durant et al.) Various

studies have followed arsenic as it traveled down the Aberjona River, ultimately arriving at

the Mystic Lakes. (Knox; Solo)

Not surprisingly, this increased arsenic load has fostered some interesting microbial

ecology. One previous study in the watershed drew sediment samples from the northern-

most tip of the Halls Brook Storage Area (HBSA), an artificial pond located directly

downstream from the Industri-Plex Site and directly upstream of the Aberjona River. (Fig.

2) The researchers isolated from these samples a bacterium able to harvest the energy

released by using arsenate (As(V)) as a terminal electron acceptor (Ahmann et al.) A

separate study demonstrated the existence of arsenate-reducing microorganisms in the

waters of the Upper Mystic Lake. (Spliethoff) A third study shows the existence of an

orpiment-producing bacterium isolated from the sediments of the Upper Mystic Lake.

(Newmann) One further possible ecological niche that had not been explored in the

Aberjona watershed is that of the arsenite-oxidizing bacterium.
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Figure 1. Map of the Aberjona Watershed (Aurilio et al.)
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Figure 2. Map of the Halls Brook Storage Area (Aurilio et al.)
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One particularly interesting study site is the northern edge of the HBSA. This

location has several important characteristics. First, with sediment arsenic concentrations

reaching 9800 mg/kg dry weight (Aurilio et al.), the area is highly enriched with arsenic.

Second, this corner of the pond is shallow and actively fed by groundwater, and thus is a

confluence of anoxic waters with oxic waters. In an oxic environment, arsenate is the

thermodynamically favorable form of arsenic, chiefly taking the form of H3AsO4

(pKaa=3.6, pKa2=7.26, pKa3=12.47) (Spliethoff). In anoxic environments, aqueous

arsenic favors its arsenite form, present as H3AsO 3. Thus, the unique environment of the

northern tip of the HBSA provides both the oxic environment which favors arsenite

oxidation, along with high concentrations of arsenite available for oxidation. These

conditions together create an ecological niche for a microorganism which is not only

resistant to arsenite but also actually capable of oxidizing the ion for energy consumption.

1.2 Microbial Energetics
It has been known for some time that the oxidation of arsenite yields enough

energy that a chemoautotrophic bacterium could theoretically exist. Energetics calculations

show that the reaction is more thermodynamically favorable with increasing pH.

PO2 = 0.21 atm; [HAsO 2] = [H2AsO4]; [HAsO2]=[HAsO 42-]; pH= 7; Temperature=298K

Reaction 1: 1/4 0 2(g) + H' + e- = 1/2 H20 peo = log K = 20.75
(Morel and Hering)

For pH<<7:
Reaction 2a: 1/2 H2AsO4 +3/2 HW + e- = 1/2 HAsO2 + H20 peo = log K = 5.63
(Tomilov and Chomutov)

For pH>>7:
Reaction 2b: 1/2 HAsO 4

2 + 2 H+ +e- = 1/2 HAsO2 + H20 peo = log K = 7.44
(Tomilov and Chomutov)

Reaction 1: [H ,01 2 = 1020.75

pO21/4[Hj [e-]
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-1/4 logPO2 + pH + pe,,O = peo = 20.75

pe,,o = 20.75 - pH + 1/4 logPO 2

Reaction 2a: nAqs 1ZH I =1 105.63
[H2AsO4-] H']/2fe-]

1/2 log([HASO 2]/[H2AsO4-]) + 3/2 pH + pe 2a =pe 2ao =5.63

pe 2a,, = 5.63 - 3/2 pH - 1/2 log([HAsOz]/[H 2AsO4-]) = -4.87

Reaction 2b: HAsO /2 rHL = 107.44
[HAsO42- 1 [H+i]2 t- 1

1/2 log([HAsO 2]/[HAsO 42-]) + 2 pH + pe2bwo =pe2bo =7.44

pe2b = 7.44 - 2 pH - 1/2 log([HAsO 2]/[HAsO 4
2 ]) = -6.56

AGw, ~= 2.3 R T (pe 2wo-pelwo) = 5.7 (pe2wo-pewo)
(Morel and Hering)
AG,,O ~= -105 kJ/mol for species favored under pH71

AGbw, ~= -115 kJ/mol for species favored over pH71

These values compared favorably to biogeochemical reactions known to fuel other

chemoautotrophic organisms.

Thermodynamic Coupling, pH7, T=298K AGw,. [kJ/mol]
1/6 NH4

÷ + 1/4 O,(g)=1/6 NO,- + 1/2 H' + 1/6 H,O -45 *
1/2 NO, + 1/4 0 2(g) = 1/2 NO, -38 *
1/8 HS(g) + 1/4 O0(g) = 1/8 SO4'- + 1/4 H÷  -98 *
Fe + + 1/4 02(g) + 5/2 11HO = Fe(OH)1(s) + 2 H+  -107
1/2 HAsO, + 1/4 02(g) + 1/2 H-0 = 1/2 H+ + 1/2 H,AsO 4  -105
1/2HAsO, + 1/4 O,(g) + 1/2 HO = H+ + 1/2 HAsO4

" -115

Table 1. Thermodynamic Couplings: Maintenance
Chemoautotrophic Bacteria (*Morel and Hering)

Reactions of

1 Note that these are approximate calculations. In order to precisely determine the DG values must also include
adjustments for the acid-base reaction separating the arsenate species H2AsO4 and HAsO4

2 . Furthermore, no data
could be found describing the electrochemistry of the pair HAsO2 and H3AsO 3; again, the data presented here should
only be taken as approximate values of the natural reaction.

14

= 13.6



1.3 Previous Research on Arsenite- and Arsenate-Resistant

Microorganisms

There is an eighty-year history of research on the resistance of bacteria to arsenic.

Generally, the literature detailing these projects can be broken into a few categories: studies

investigating the ability of a bacterium to oxidize arsenite (As(III)) to arsenate (As(V)),

studies investigating the ability of a bacterium to reduce arsenate to arsenite, and studies

describing a bacterium's particular mechanism for detoxification of arsenite and/or arsenate.

In 1918, Green isolated two novel arsenic-resistant bacteria from a cattle-dipping

tank. One bacterium, which he called Bacterium arsenoxydans , was a Gram-negative,

aerobic rod capable of oxidizing arsenite to arsenate. Presumably, this bacterium was at

least partly responsible for the widespread oxidation of arsenite in arsenical livestock-

dipping solutions. He called the other bacterium, also an aerobic Gram-negative rod,

Bacterium arsenreducens. (Green) The bacteria lines were lost, preventing further

research.

Several decades passed before researchers took an interest in Green's work.

Finally, in 1949, Turner published a small report listing several arsenite-oxidizers which

he'd isolated from a cattle dip. (Turner 1949) In 1953, Quastel demonstrated that

organisms present in soil are also capable of oxidizing arsenite. However, the organisms

responsible were not isolated: Quastel was chiefly interested in exploring the characteristics

of soil rather than the characteristics of microorganisms within the soil. (Quastel)

Next, in 1954, Turner published Part I of a four part series: an extensive and

detailed account of the organisms he mentioned in his 1949 work. All of the organisms

were Gram-negative rods, non-sporeforming, aerobic, heterotrophic, and motile. These

15



fifteen strains fell into five distinct categories of novel organisms: Pseudomonas

arsenoxydans-unus, Pseudomonas arsenoxydans-duo, Achromobacter arsenoxydans-tres,

Xanthomona arsenoxydans-quattor, and Pseudomonas arsenoxydans-quinque. (Turner,

1954) In Part II of the series, Turner and Legge further analyzed Pseudomonas

arsenoxydans-quinque, finding that it contained an induced enzyme system of arsenite

oxidation and that it grew optimally at pH 6.4 and at 400 C. Furthermore, because the

organism was capable of oxidizing arsenite anaerobically in the presence of a suitable

electron acceptor (e.g. phenol blue), researchers deduced that the system included an

arsenite dehydrogenase and cytochromes. Part III of the series expanded further upon the

base of P. arsenoxydans-quinque. Researchers isolated and described a soluble, cell-free

crude arsenite dehydrogenase. It was concluded that the dehydrogenase was not bound to

the cell wall or to large organelles due to the ease with which the enzyme was separated

from the crushed cells in low-speed centrifugation. Researchers also noted that there was

"no good evidence" that sulfhydryl groups were associated with the activity of the enzyme.

(Legge and Turner) Last, in Part IV, Legge investigated the properties of the bacterial

cytochromes. The cytochromes were associated with the insoluble fraction of the ground

and centrifuged cells. No evidence was found to support the existence of a carrier between

the arsenite dehydrogenase and the oxidase, with the electron-transport chain consisting of

arsenite(arsenite dehydrogenase) -> oxidase -> 02. (Legge)

In 1976, noting the study by Quastel, Osborne and Ehrlich isolated an arsenite-

oxidizing strain of Alcaligenes from soil. The bacterium most closely resembled A.

faecalis, though the match was uncertain. The organism was peritrichously flagellated,

non-sporeforming, Gram-negative, aerobic, heterotrophic, and rod-shaped. It acquired its

arsenite-oxidizing enzyme system by growth-dependent induction. In contrast to P.

arsenoxydans-quinque, the arsenite-oxidizing enzyme system of the Alcaligenes strain

16



appeared to use sulfhydryl groups and cytochrome C. The researchers proposed the

following electron-transport chain: arsenite (oxioreductase) -> cytochrome C ->

cytochrome oxidase -> 02.

Only months later, in a similar though independent study, Phillips and Taylor

reported isolation of Alcaligenes faecalis from raw sewage. The researchers found that

when cultures were reared with no arsenite, no additional growth occurred with the

addition and oxidation of arsenite. They also determined that Green's B. arsenoxydans

and Turner's and Legge's Achromobacter arsenoxydans-tres were actually strains of A.

faecalis. (Phillips and Taylor)

In 1978, Ehrlich published a review of the literature covering arsenic-related

bacteria. He noted that the electron-transport chain of A. faecalis "suggests that the

organism may be able to derive energy from the process." He described a study done by

Welch, a student of Ehrlich, in which starved induced A. faecalis had higher survival rates

with the addition of arsenite to the medium than without. This provided evidence, though

certainly inconclusive, that A. faecalis may be able to derive maintenance energy from the

oxidation of arsenite. (Ehrlich, 1978, Welch as cited by Ehrlich)

Next, in 1981, Abdrashitova, Mynbaeva, and Ilyaletdinov described two additional

types of heterotrophic bacteria capable of oxidizing arsenite to arsenate. Pseudomonas

putida and Alcaligenes eutrophus were isolated from gold-arsenic deposits.

(Abdrashitova et al.) In the same year, Ilyaletdinov and Abdrashitova reported the exciting

discovery of a novel bacterium which was not only capable of arsenite oxidation, but also

capable of harvesting the energy released by the chemical reaction. The microorganism

was also isolated from the mine waters of a gold-arsenic deposit. It was a Gram-negative,

non-sporeforming rod with one flagellum; the bacterium lived fully autotrophically. The

17



researchers named the bacterium Pseudomonas arsenitoxidans. (Ilyaletdinov and

Abdrashitova)

The next few years involved the fields of genetics and molecular biology more

directly with the phenomena of arsenite- and arsenate-resistance among bacteria. Silver and

Keach demonstrated the energy- and temperature-dependence of the arsenate efflux of both

E. coli and Staphylococcus aureus which contained arsenic-resistance plasmids. (Silver

and Keach) Next, Chen, Mobley, and Rosen investigated the arsenic-resistance plasmid

R773. They showed that there were two separate regions for arsenite resistance and

arsenate resistance.(Chen et al.) Then Rosen, Chen, SanFrancisco, and Gangola

sequenced R773 and proposed that the plasmid encodes an arsenite pump and also encodes

a modifier to allow arsenate as a pump substrate. (Rosen et al.) Dabbs and Sole then

isolated a Rhodococcus erythropolis plasmid for arsenite- and arsenate-resistance. (Dabbs

and Sole) Dey, Dou, and Rosen then showed that the R773 pump worked in vitro.(Dey et

al.)

In 1986, Abdrashitova, Abdullina, and Ilyaletdinov showed that in Pseudomonas

putida and Alcaligenes eutrophus, arsenite initiated cell lipid peroxidation, forming

hydroperoxides of unsaturated fatty acids and the oxidation of arsenite to arsenate.

Further, the researchers demonstrated that the bacteria actually over-synthesized

unsaturated fatty acid lipids to accommodate the arsenite. (Abdrashitova et al., 1986) In

1990, Collinet and Morin demonstrated that Thiobacillus ferrooxidans and Thiobacillus

thiooxidans were both capable of oxidizing arsenopyrite. The researchers studied the

tolerances of the bacteria to various concentrations of arsenite and arsenate. (Collinet and

Morin) In 1994, Ahmann, Roberts, Krumholz, and Morel detailed a novel organism,

tentatively dubbed "MIT13," which used arsenate as an electron acceptor and was able to

18



harvest the energy from the reaction. This arsenate reducing organism was vibrio-shaped,

motile, and anaerobic.(Ahmann et al.)

1.4 Motivations for Research

This report details the isolation and characterization of an arsenite-oxidizing

community of bacteria that was isolated from the northern edge of the HBSA. The role of

this bacterium is interesting from a bioremediation standpoint. Arsenic(III) is chiefly

present in waters as a neutral compound, whereas arsenic(V) is present as a charged

compound. Charged species of arsenic will more preferentially adsorb to ferric

oxyhydroxides than their neutral counterparts. This sorption renders them less

environmentally mobile, allowing for their containment and perhaps treatment. Harnessing

this biotechnology could be particularly important to people who enjoy the Mystic Lakes

every summer through swimming on the public beaches, boating, and fishing. Were this

bacterium cultivated at certain strategic points in the watershed, it might prevent much of

the arsenic from reaching the Mystic Lakes, thus limiting human exposure to arsenic.

19



CHAPTER 2

METHODS

2.0 Description of the Site
The Halls Brook Storage Area is an anthropogenic pond located directly south of

the Industri-Plex Superfund Site. It was dug to accommodate storm drainage from the

Halls Brook. The northern edge of the pond is spring-fed with arsenite-laden groundwater.

The sediment of "Arsenic Springs" is noteworthy due to its bright orange color, a result of

the high concentrations of oxidized iron. The land surrounding the HBSA is marshy. The

wildlife is varied. On separate field trips, a fox, a turtle, a woodpecker, and many types of

waterfowl were seen on or around the pond.

2.1 Isolation of the Culture

2.1.1 Field Sampling
The field samples were drawn with acid washed polypropylene Nalgene bottles.

The sample sites were selected from areas of the northern edge of the pond which were

visibly spring-fed. Three times, the bottles were filled with spring water and shaken; then

a sample was taken. The bottles were filled three-quarters with sample and taken directly to

the laboratory where they were refrigerated tightly-lidded. Initially, the samples were often

turbid orange due to suspended sediment. After a day, the refrigerated samples were clear

with the orange sediment settled to the bottom.

20



2.1.2 Enrichment Culture
Because it was unclear whether the HBSA arsenite oxidizers would be

chemoautotrophic or heterotrophic, the isolation techniques were modeled after previous

work isolating the less unusual bacterial types: heterotrophic arsenite oxidizers. All

cultures in this study were kept in the dark on a bench top shaker table set at 150 rpm. The

temperature varied from 170C to 25 OC within the laboratory. All cultures were maintained

in triplicate with a killed control and an uninoculated control. Cultures were maintained in

acid-washed, autoclaved 125 mL polypropylene Nalgene bottles, with caps loosely

screwed on. The pipettes used in transferring and in analysis were acid washed and

autoclaved.

A field sample was gathered August 22,1995. On August 24, 1995, an enrichment

culture of WE medium was inoculated 1:9 with this HBSA sample. WE medium was an

adaptation of that used to isolate the arsenite-oxidizing bacterium Alcaligenes faecalis.

(Welch as quoted by Ehrlich, 1978) After five days, the culture had almost completely

oxidized the arsenite. On September 6, #10-950824 was transferred, 1:9, to new medium.

Six subsequent transfers into WE medium occurred: September 21, October 3, October 15,

October 21, November 2, and last, November 12. On November 20, this final culture

(#1-951112) was frozen in 30% autoclaved glycerol at -40 C.

At this point, an attempt was made to isolate a chemoautotrophic arsenite-oxidizing

bacterium from this culture. A modified version of the chemically-defined medium was

used by Abdrashitova, Mynbaeva, and Ilyaletdinov. (1981) On January 5, 1996, this

medium was used to transfer culture #1-951112 1:9. The cultures failed to dramatically

increase their turbidity.
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On January 12, culture #7-960105 was transferred 1:9 into a second modification

of The AMI medium. This was identical to the first except that it replaced the vitamin

supplements with 0.4g/L yeast extract. The cultures thrived. On January 29, culture #32-

960112 was transferred 1:500 into the same type of medium. After the culture became

turbid and oxidized most of the arsenite, the culture (960129) was frozen in 30%

autoclaved glycerol at -40C.

Next came a third modification to the medium. On February 6, instead of using

yeast extract, vitamin supplements 1 and 2 were again used along with two trace metals

mixtures. Furthermore, the pH was adjusted to 7, rather than to 5.5, with sterile 2N

NaOH. Culture 960129 was added to this medium, 1:100, giving cultures #27-#31-

960206. The cultures became more turbid and also oxidized arsenite.

On March 10, #28-960206 was transferred 1:100 to a fourth modified version of

the AMI medium, this time buffered with MOPS at pH=7. This generation was called #42-

#46-960310. The final transfer was into a fifth and final modification of the medium; the

only change was an increase in arsenite concentration to 10-2M. Culture #44-960310 was

used as an inoculum 1:100. This last generation, #1-#5-960323, was the fourteenth

generation of cultures from the initial field sample of August 22, 1995, and the third

generation in an entirely autotrophic medium. A summary of these transfers appears in

table.
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Culture Name Medium Type Inoculum: Source Inoculum
Medium

10-950824 WE: 10-M As(m), yeast extract, 1:9 HBSA sample
ammonium citrate, pH5.5 950822

22/23-950906 WE: 10"M As(m), yeast extract, 1:9 10-950824
ammonium citrate, pH5.5

4/5-950921 WE: 10'M As(m), yeast extract, 1:9 22/23-950906
ammonium citrate, pH5.5

30/31-951003 WE: 10'M As(I), yeast extract, 1:9 4/5-950921
ammonium citrate, pH5.5

2-951015 WE: 10'M As(Bll), yeast extract, 1:9 30/31-951003
ammonium citrate, pH5.5

28-951021 WE: 10-M As(m), yeast extract, 1:9 2-951015
ammonium citrate, pH5.5

27-951102 WE: 10'M As(m), yeast extract, 1:9 28-951021
ammonium citrate, pH5.5

1-951112 WE: 10-'M As(m), yeast extract, 1:9 27-951102
ammonium citrate, pH5.5

7-960105 PT: 10'M As(III), vits, pH5.5 1:9 1-951112

32-960112 PT: 107M As(III), yeast extract, 1:9 7-960105
pH5.5

960129 PT: 10'M As(III), yeast extract, 1:500 32-960112
pH5.5

28-960206 PT: 10'M As(lII), vits, pH7, 1:100 960129
(27-31) metals
44-960310 PT: 10'M As(III), vits, pH7 1:100 28-960206
(42-46) MOPS, metals
3-960323 PT: 107M As(HII), vits, pH7 1:100 44-960310
(1-5) MOPS, metals

Table 2: Transfers of Cultures

2.2 Analytical Methods

2.2.1 Measurement of Arsenite Concentration in Cultures
The concentration of arsenite was measured with a continuous-flow hydride

generator system constructed by PSAnalytical, LTD. A peristaltic pump drew equal parts

Tris buffer solution and sodium borohydride solution to a reaction vessel, each at

approximately 3mL/min. The reaction mixture was purged with steadily-flowing argon

(300mUmin) and hydrogen (0. 1mL/min) gases.
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During background measurements, distilled deionized water was pumped

(approximately 8mLmin) into the reaction vessel in lieu of a sample. During arsenite

measurements, diluted aliquots of the cultures were pumped (approximately 8mUmin)

from acid washed sample cups into the reaction vessel. Due to the Tris buffer solution, the

reaction mixture was maintained at a neutral pH, thus allowing the sodium borohydride to

reduce only the arsenite to arsine gas, while maintaining the arsenate in solution. The

newly-produced arsine was swept with the argon-hydrogen mixture to an air-hydrogen

flame. The flame atomized the arsine gas, and the change in the flame's atomic

fluorescence was directly proportional to the amount of arsenite in the initial sample.

Due to the high concentration of arsenite in the cultures, the samples required large

dilutions prior to analysis. The analysis setup continued giving linear calibration curves

from concentrations ranging from nm of arsenite to 20mM of arsenite. Thus, micromolar

concentrations were chosen as the target dilution: the least dilution required to maintain a

place on the linear portion of the calibration curve. The cultures with 103M arsenite were

diluted 1:1000 for analysis, whereas the cultures with 102M arsenite were diluted

1:10,000. Every ten measurements, a calibration curve was taken. The six standards that

constructed this curve ranged from 182nM arsenite to 2275nM arsenite. These standards

were actually tertiary standards: further dilutions of a secondary standard that was a 1:1000

dilution of the 102M sodium arsenite stock standard.

2.2.2 Measurement of Cell Density

2.2.2.a Turbidity
In order to measure how well the cells were growing, measurements of the density

of the cultures were made. These measurements were taken on a Beckman

Spectrophotometer DU 640 at a wavelength of 600nm. Aliquots of 1mL of culture were
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compared to a baseline measurement of the absorbance of an aliquot of lmL of deionized

distilled water. Immediately prior to measurement, samples were slightly stirred; excessive

mixing created bubbles which artificially raised the absorbance of the sample.

2.2.2.b Direct Counts
Later, when it became clear that turbidity was no longer an accurate measure of cell

density, DAPI staining and fluorescence microscopy were used to achieve direct counts of

the cells. Depending upon the cell density of the culture, 0.01mL-0.95mL aliquots of the

culture were killed and preserved with 50mL formalin. These aliquots were maintained in

the refrigerator for approximately 1 week prior to counting. Immediately prior to counting,

10mL of DAPI mixture was added in total darkness to the fixed culture. After the labeling

had continued for ten minutes, the culture was filtered onto a black 0.2mm polycarbonate

filter and counted under a 100W mercury arc lamp on a Zeiss microscope. The number of

grid-fields counted depended upon the number of cells within the average grid. For each

fixed sample, approximately 800 total cells were counted, though for some samples

significantly more cells were counted.

2.2.3 Inorganic Carbon Uptake
The 14C experiment was conducted as follows: A culture was spiked with

radiolabeled bicarbonate and incubated for some fixed length of time. After incubation, the

pH of the culture was lowered to encourage the degassing of all unincorporated 14CO2.

Any remaining radioactivity was associated with inorganic carbon that had been "fixed"

into organic carbon: biomass. The amount of radioactivity was therefore directly

proportional to the amount of increase in biomass. After the degassing, Fisher Scientific

ScintiSafe Plus 50% liquid scintillation cocktail was added to allow counting of

disintegrations per minute (dpm). Scintillation cocktail luminesces when in contact with

25



14C. Thus, the amount of incorporated radioactivity was measured by a scintillation

counter, which measured the luminescence of the scintillation cocktail/culture mixture.

Three separate trials were run to determine the correct amount of radioactivity to add

to each sample, the appropriate incubation time, and also the correct length of degassing

time. First, on May 9, lmL of culture #3-960323 was incubated with .OlmCi and lmL

was incubated with 0.1mCi. After twelve hours dark incubation on a shaker table at

150rpm, 100mL 2NHCl were added to each scintillation vial, along with 8mL Fisher

Scientific Scinti-Safe Plus 50%. This mixture was incubated, loosely capped, in the dark

at 150rpm, for two hours. After this incubation, there was no significant difference in

measured counts or in dpm measurements between the two vials.

Next, lmL of culture #1-960323 (a sister culture to #3-960323) was incubated with

0.1 mCi, and lmL of uninoculated medium was incubated with 0.1 mCi. However,

during this test, the cultures were allowed to degas for two hours prior to the addition of

scintillation fluid. Again, there was little difference between the two scintillation

measurements.

The third test used ImL of culture #3-960323 incubated with lmCi, and ImL of

uninoculated medium incubated with 1 mCi. Again, the cultures were allowed to degas for

two hours prior to the addition of scintillation fluid. This time, there was a significant

difference in incorporated radioactivity between the culture and the control. The two vials

were then allowed to degas for four additional hours, after which an additional scintillation

count was taken. It was found that this additional degassing time did indeed reduce the

background count, though admittedly only by a few percent. Thus, it was settled upon that

lmCi would be added to lmL of culture, incubation would last for twelve hours, and

degassing time would be four hours.
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On May 11 through May 12, four live lmL aliquots of culture #3-960323, two

autoclaved lmL aliquots of culture #3-960323, and two uninoculated ImL aliquots of

sterile medium were each spiked with 1 mCi of 14C-labeled sodium bicarbonate. Each

scintillation vial was tightly capped and placed in the dark on a shaker table at 150 rpm.

They were incubated for twelve hours. In addition were three non-radioactive vials: The

original live culture #3-960323, one autoclaved lmL aliquot of #3-960323 and one

uninoculated aliquot of #3-960323 were also incubated in the dark on a separate 150-rpm

shaker table. From these non-radioactive aliquots, samples were drawn several times

during the incubation period for DAPI staining and cell counts, as well as for arsenite

concentration analysis. After the twelve-hour incubation, 100mL of 2N HCl was

distributed to each of the radioactive samples to promote the degassing of radiolabeled CO 2.

The samples were loosely capped and again incubated on the shaker in the dark. After four

hours of degassing, 8mL of scintillation fluid, Fisher Scientific ScintiSafe 50%, were

added to each radiolabeled vial. The vials were capped tightly, shaken thoroughly, and

placed in a Beckman LS 6500 Multi-Purpose Scintillation Counter for five-minute counts.
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CHAPTER 3

RESULTS

3.0 pH of the Medium
As arsenite is oxidized to arsenate H' ions are released, decreasing the pH of a

system. Not surprisingly, energetics calculations showed that arsenite oxidation is favored

at high pH values. However, the pH of the northern tip of the HBSA was approximately

6. Yet, several different studies isolated arsenite-oxidizing bacteria in media that ranged

from 6.8 to 8.5, though the most common pH was 7. (Abdrashitova, Mynbaeva, and

Ilyaletdinov; Welch as quoted by Ehrlich, 1978; Phillips and Taylor, Osborne and

Ehrlich).

Thus, 103M As(Ill), MOPS-buffered media were prepared that varied in pH from 4

to 10, in an effort to find the optimum pH: the medium in which the bacteria oxidized the

arsenite the most quickly. Following the arsenite concentrations for several days showed

that the arsenite was oxidized equally quickly for the media ranging from pH4 to pH8, all

cultures oxidizing the arsenite to completion after four days. However, the bacteria in the

pH9 medium took five days to oxidize the arsenite to completion. The pH10 culture

achieved no significant oxidation, having oxidized approximately ten percent of the arsenite

after an entire week of incubation. (Fig. 3-10) These tests showed the unsuitability of the

highest pH media. Presumably, better temporal resolution in the data would have helped

distinguish the most favorable medium among the pH4 to pH8 media. However, according

to these data, the lower pH media appeared.
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Figure 4. Concentration of Arsenite in pH5 Cultures
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Figure 5. Concentration of Arsenite in pH6 Cultures
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Figure 6. Concentration of Arsenite in pH7 Cultures
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Figure 7. Concentration of Arsenite in pH8 Cultures
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Concentration of Arsenite in pH9 Cultures
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Figure 9. Concentration of Arsenite in pH10 Cultures
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Figure 10. Average Concentration of Arsenite in Live Cultures in Media of

pH 4, 5, 6, 7, 8, 9, 10
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equally favorable. Ilyaletdinov and Abdrashitova isolated the chemoautotrophic

Pseudomonas arsenitoxidans in a medium of pH7.5-pH8. Furthermore, energetics

calculations did favor higher pH media for arsenite oxidation. Balancing these

considerations with that of the natural pH of 6, a medium pH of 7 was settled upon.

3.1 Growth Patterns of the Bacteria
Next, the growth of the bacteria were analyzed. In particular, the three final

generations of cultures were scrutinized closely. Turbidity measurements and arsenite

concentration measurements were taken approximately once every two days.

3.1.1 Cultures #27-#31

3.1.1.a Arsenite Measurements
First, cultures #27-#31-960206 were followed for a period of approximately one

month. #27, #28, and #29 were all live cultures, whereas #30 was an autoclaved control

and #31 was an uninoculated control. After 9 days of incubation, each of the three live

cultures had oxidized 10-3M arsenite to completion, and the controls had not oxidized any

of their arsenite. After a second arsenite spike on day 16, however, the live cultures were

no longer able to oxidize their arsenite. However, by day 20, autoclaved control culture

#30 had oxidized a significant portion of the total arsenite in its medium. By day 29, the

live cultures had oxidized none of their second spike. In contrast, the autoclaved control

had oxidized to completion not only the initial arsenite in its medium, but also the second

spike. The uninoculated control had oxidized none of the arsenite in its medium. (Fig. 11)
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Figure 11. Concentration of Arsenite in Cultures 27-31
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This implied a few things. First, culture #30 had been accidentally inoculated.

Most likely, the source culture was #29, which was always pipetted immediately before

#30. Furthermore, the inoculation probably occurred on day 16, the date of the second

spike, because the same pipette was used to spike each culture. After this experiment, new

sterile pipettes were used for each spiking. The second thing these results suggested was

that the failure of cultures #27, #28, and #29 to oxidize the second spike was likely due to

pH factors, rather than to cell death. Culture #30 demonstrated that it was possible for the

cell strains to oxidize 2*10 3 M As(III) to completion given favorable circumstances.

Therefore, on day 31, the cultures were spiked with arsenite a third time. However, this

time they were also spiked with NaOH to pH7. After only three days, cultures #28, #29,

and #30 had oxidized to completion. Culture #27 failed to oxidize the arsenite, possibly

due to cell death; uninoculated control culture #31 failed to oxidize its arsenite as well.

3.1.1.b Turbidity measurements
The turbidity measurements at 600nm show similar patterns. By day 9, the

turbidity of the three live cultures had increased markedly. However, until the third spike,

the turbidity of these three cultures remained approximately constant, with a small rise

before the second spike of arsenite, and a slow decline after the second spike. Their

turbidity increased markedly after the third arsenite spike, which was accompanied by a

spike of NaOH to pH7. The turbidity of the no-inoculum control, #31, remained negligible

for the duration of the experiment. However, after day 23, the turbidity of the autoclaved

control, #30, shot up, becoming twice as turbid as the live cultures, #27, #28, and #29.

(Fig. 12)
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3.1.2 Cultures #42-#46

3.1.2.a Arsenite Measurements

The next generation of cultures (spiked by #28 of the previous generation) was

buffered at pH7 to avoid the problem of a drop in pH due to arsenite oxidation. Live

cultures #42-#44, autoclaved control culture #45, and uninoculated control culture #46

were inoculated and initially supplied with 103'M arsenite. Neither the autoclaved control,

#45, nor theuninoculated control, #46, displayed any oxidation of the arsenite throughout

the 60-day trial. On day 49, uninoculated control #46 was partially spilled; the culture was

completely depleted due to sampling by day 77. The live cultures depleted their initial 103M

arsenite spike after approximately 10 days. They were subsequently spiked with 10 3M

As(m) on day 51, then days 62, 71, and 79. After each spike, the live cultures oxidized to

completion after 1-3 days. Next, on day 84, the cultures were spiked with 102M arsenite,

along with a new supply of vitamins and trace metals. This new supply of arsenite was

oxidized to completion eight days later. One last spike was administered on day 100, this

time including 10-2M arsenite, MOPS buffer at pH7, vitamins, and trace metals. (Fig. 13)

3.1.2.b Turbidity Measurements
The turbidity measurements of cultures #42-#46 told a different story from what

might be expected given the arsenite concentration measurements. After the four 10'3M

arsenite spikes, the two control cultures remained at approximately zero. However, after

the first 10-2 M arsenite spike, the turbidity of the killed control culture, #45, began to

slowly rise, although remaining consistently less turbid than the live cultures, #42, #43,

and #44. The live cultures behaved somewhat as expected, displaying small turbidity

peaks, increasing turbidity by a factor of two, immediately after oxidizing the initial arsenite

in the medium, and then again after oxidizing the arsenite in the spike on day 52.
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However, after the 10-3M arsenite spike on day 62, the live cultures' turbidity

measurements began to be less predictable. By day 67, they had quickly shot up to three

times their previous turbidity, and then by day 70, sank to previous baseline turbidity

values. The live cultures exhibited similarly interesting behavior after the 10-3M arsenite

spike on day 71. Culture #42 shot up to four times its original turbidity by day 72, then

sank again to its baseline by day 73. Culture #43 remained at its baseline turbidity until day

76. By day 77, culture #43 was up to four times its baseline turbidity; then by day 80, it

returned to its baseline measurement. Culture #44 displayed the most dramatic behavior.

On day 71, the turbidity of #44 was at its baseline value. By day 73, the turbidity had

increased nine times. Then, falling just as quickly, by day 76, the turbidity of #44 fell back

to its baseline value.

The arsenite spike on day 79, then the arsenite/vitamins/trace-metals spikes on day

84 supplied small peaks in the three live cultures, bringing their turbidities to approximately

three times the baseline values. (Fig. 14)

3.1.3 Cultures #1-#5

3.1.3.a Arsenite Measurements
The arsenite measurements of cultures #1-#5 were relatively straightforward. The

live cultures, #1, #2, and #3, oxidized their original 10-2M arsenite in approximately 20

days. The next spike demanded 8 days for complete oxidation of the arsenite.. The third

spike required 5 days to be oxidized to completion. (Fig. 15)
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Figure 14. Turbidity of Cultures 42-46
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Figure 15. Concentration of Arsenite in Cultures 1-5
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3.1.3.b Turbidity Measurements
The turbidity measurements of cultures #1-#5 were as interesting as those for #42-

#46, though for separate reasons. First, the live cultures displayed only very slight

increases in turbidity following spikes and subsequent oxidation of arsenite. Second, the

controls both displayed consistent increases in turbidity, with values several times the

baseline values for the live cultures. Initially, it was thought that this signaled another

accidental inoculation of controls. However, microscopy evidence contradicted this theory.

Instead, it showed that while there were no cells in bottles #4 and #5, there was a great deal

of inorganic precipitate. Apparently, the high concentrations of arsenite reacted with one of

the other compounds in the medium, leading to the whitish precipitate. This precipitate was

not detected in the live cultures by turbidity measurements and by microscopy. Thus, it

was learned that turbidity was not an accurate measure of cell density when considering

cultures with concentrations of arsenite higher than 30mM. (Fig. 16)

3.2 Confirmation of Chemoautotrophy
The previous experiments confirmed that there were indeed microorganisms in

culture that were capable of oxidizing arsenite to arsenate. However, it was still unclear

why the cells performed this oxidation. The cells could have been heterotrophs, subsisting

on the dilute remnants of heterotrophic medium transferred from culture number 960129.

They might have been oxidizing the arsenite simply as a detoxifying mechanism.

In order to establish that the cells in culture were chemoautotrophic, several steps

were taken. First, photosynthetic organisms were prevented by keeping the cultures in

darkness. Second, heterotrophic organisms were excluded by adding no organic carbon to

the medium. Third, several transfers with small inocula were made, ensuring that the
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microorganisms that did survive were well-suited to these conditions. Fourth, the

concentration of arsenite was measured over time. Last, a 14C fixation experiment was

conducted to confirm that despite these precautions, the bacteria were still growing and

incorporating carbon.

There were three separate elements to the 14C fixation experiment. The bacteria had

to incorporate radiolabeled bicarbonate above background levels. Next, the bacteria had to

multiply over the same time that they incorporate the radiolabeled bicarbonate. Last, the

culture had to oxidize arsenite over this same time period.

3.2.1 14C-Fixation
The four live cultures spiked with radioactivity each displayed incorporation of

radioactivity that was significantly higher than the incorporation of the controls.

Culture Name "C dpm
#3 Live Culture Sample 1 2405.05
#3 Live Culture Sample 2 1408.5
#3 Live Culture Sample 3 937.21
#3 Live Culture Sample 4 2518.46
Average Value tbr #3 Live Samiples 1817 3

#3 Killed Sample 1 481.97
#3 Killed Sample 2 396.63

Uninoculated Medium Sample 1 414.13
Uninoculated Medium Sample 2 404.77

verage . aue for ninoculate 40945.....i.I:::::::::::·:·. :::u;·.u~u::......n... •.......... .......i : : :i

Table 3. Incorporated 14-C in Spiked Cultures

These data showed two important facts. First, neither of the controls incorporated

significantly more inorganic carbon than did the other. This was noteworthy because of the
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concern that the inorganic carbon might chemically diffuse into the cells rather than be

actively incorporated by the bacteria. However, the killed controls, which initially

contained equal amounts of cellular matter as did the live controls, did not incorporate any

more inorganic carbon than did the uninoculated controls. Because the radioactivity

incorporated only through diffusion was negligible, this set aside the concerns that it would

be impossible to track radioactivity that was incorporated simply through diffusion.

The second important result of these data showed that the live controls did indeed

incorporate much more carbon than did their killed and uninoculated counterparts. The

average dpm incorporated by live cultures was 4.3 times the average dpm incorporated by

the controls. This ratio of dpm values would presumably have increased had the cultures

had even more time to degas. This result confirmed that there was indeed carbon fixation

in the cultures.

3.2.2 DAPI Staining and Cell Counting

Next, the cells had to be shown to multiply during the period of demonstrated

carbon fixation. This would link the incorporated carbon directly to increased biomass.

Thus, at several points before and during the carbon-fixing experiment, aliquots of culture

#3 were taken and fixed. These samples were diluted and stained with DAPI. The results

of the counting were significant. The number of cells clearly increased. Over the period of

the carbon-fixing experiment, the number of cells increased by approximately 3 times.

Thus, the fixed radioactivity was correlated to the increased biomass. A plot of these data

follows. (Fig. 17)

3.2.3 Arsenite Concentration Measurements
The last requirement was that the live culture would oxidize arsenite over the course

of the experiment. At the same times that aliquots of culture #3 were fixed for DAPI
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Figure 17. Number of Cells/Milliliter in Culture 3 During 14-C Experiment
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counting, samples were taken to measure the arsenite concentration of the culture, of a

killed control of #3, and of an uninoculated control. The results for this test were perhaps

the least definitive of the three tests. Although the concentration of arsenite remained

constant for the uninoculated control, and the concentration of arsenite consistently fell for

the live culture, the results for the killed control were less certain. In particular, the arsenite

concentration of the autoclaved control appeared to decrease until the final measurement,

when it shot back up. It is possible that this behavior was due to post-autoclaving arsenic

chemistry. However, this remains a puzzling unresolved problem. (Fig. 18)

3.3 Estimations of Growth Rate and Cell Size
Thus, over twelve hours, the number of cells in culture increased from

approximately 2* 107 cells/mL to 6* 10' cells/mL: The cells underwent 1.25 doublings.

This yields a doubling time of approximately 8 hours.

Based on this number, the dpm added, and the dpm incorporated, a rough estimation of cell

size was found:

Total amount of inorganic carbon in system prior to 14-C spike:

[H2CO 3*]=10 8' mols

[HCO3 ]=10-7.3 mols

[C0 32-]=10 -1'0 6 mols

CO 2 in headspace= 106 .5 mols

Sum = 10-.6.4 mols inorganic C present in scintillation vial prior to '4C spike
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Figure 18. Concentration of Arsenite inCulture 3 During 14-C Experiment
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Total mols carbon added:

ImCi* (10 mg NaH'4CO 3/mCi)*(lg/106mg)*(lmol NaHCO/84g NaHCO 3)=

=10-6.9 mols added in 14C spike

Total mols inorganic carbon in system:

10-6.9 + 10-6.4 = 10'63 mols total

Total mols incorporated carbon over course of experiment (12 hours):

total mols incorporated= (total mols inorganic carbon in culture)*(dpm incorporated)
(dpm added to culture)

= 106 3mols* 1400dpm/(2.2* 106dpm)

=10-9'5 mols inorganic carbon incorporated into biomass.

Total mols carbon/cell:

=(10-95smols carbon)I(4* 10' cells) = 10' 7mols carbon/cell

=1015.'9 g carbon/cell

= 10.-5"6 g/cell

This result shows the cells to be impressively small. When the cells were examined

at 100X, the cells, short rods, were noted to be approximately lmm long and 0.4mm wide.

The cells were therefore small, even by bacterial standards. According to Brock and

Madigan, the dry mass of cells varies from 10-15g to 10-"g. Assuming that carbon

comprises 50% of the dry mass of the cell, the size of these chemoautotrophs falls at the tail

of the distribution of cell sizes.
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CHAPTER 4

DISCUSSION

4.0 Implications of This Research
The isolation of this chemoautotrophic culture sheds some light on the

biogeochemistry of the Aberjona watershed. It has now been demonstrated that not only

are native microorganisms capable of and responsible for arsedate reduction (Ahmann,

Spliethoff), but also of and for the reverse reaction: arsenite oxidation. This research

explains one more geomicrobial transformation in arsenic's complicated aquatic chemistry.

4.1 Suggestions for Future Research
There are many logical extensions of this research. First and foremost, the

chemoautotrophic bacterium responsible for arsenite oxidation should be isolated from the

mixed culture. This may prove to be a difficult task, but it is an important one, and will

allow even more interesting issues to be tackled. For instance, the isolated microbe may be

identified by the host of stains and varying media that are used to phylogenetically peg

bacteria. Next, the bacterium may be positively identified with 16SRNA sequencing. It

would be interesting to compare the 16SRNA sequence of this bacterium to that of

Pseudomonas arsenitoxidans, isolated by Ilyaletdinov and Abdrashitova. It is not unlikely

that this microbe is a novel organism, and comparing it to the only isolated

chemoautotrophic arsenite oxidizer ever isolated would confirm or deny this hypothesis.

Next, the enzyme systems responsible for the bacterium's arsenite oxidation can be
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identified and studied. Last, and most significantly from an environmental engineering

standpoint, a field test of the bioremediation possibilities of this bacterium can be carried

out. If the arsenite flowing through the groundwater into the HBSA can be successfully

contained and harvested within the northern edge of the HBSA, this tiny bacterium may

find its way into many bioremediation efforts across the country, and indeed, throughout

the world.
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APPENDIX A

INGREDIENTS OF MEDIA

AND OTHER CHEMICAL

SOLUTIONS

A.1 Ingredients of Media
WE medium contains 0.9 L deionized distilled water, 5g ammonium citrate, 5g asparagine,

0.4g yeast extract, 8g K2HPO4, 0.5g MgSO 4, 0.05g MnC12, a trace of FeSO4, NaOH/HC1

to pH=5.5; the mixture was autoclaved, then 100mL of sterile 10-2 M sodium arsenite

standard was added.

Modified AMI medium contains 0.9L deionized distilled water, lg(NH4) 2SO 4, 0.5g

KH 2PO 4, 0.05g KC1, 0.05g MnCl 2, 0.1g Ca(NO3)2, 0.5g MgSO 4, 10mL vitamin

supplement 1, 2mL vitamin supplement 2, and NaOH to pH=5.5; mixture was autoclaved,

then 100 mL 10-2 M sodium arsenite standard was added.

The fourth version of AMI medium contained: 900mL deionized distilled water,

0.5g KH 2PO 4, 0.05g KC1, 0.05g MnCl 2, 0.1g Ca(NO3)2, 0.5g MgSO4; the mixture was

autoclaved, then 10mL vitamin supplement 1, 2 mL vitamin supplement 2, 1mL of SL10,

1mL selenite-tungstate, 10.5mL MOPS standard, and 100mL 102M sodium arsenite

standard were added.
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A.2 Ingredients of Media Additives
The arsenite standard solution was made as follows: A balance was tared to an acid

washed, autoclaved IL polypropylene bottle. The bottle was filled with distilled deionized

water and autoclaved. The sterile water was then brought to 1000g with a sterile pipette.

Next, approximately 200mL of the water were removed to a second sterile bottle. 0.01

mols of sodium arsenite were weighed out to four decimal places and dissolved in the

200mL. Last, this solution was filter-sterilized and added to the waiting 800mL of

sterilized distilled deionized water.

Trace Metal Mixture 1, SL10, contains:1000mL distilled, deionized water, 8.5mL

HC1, 2.1g FeSO 4*7H20, 100mg MnC12*4H20, 190mg CoC12*6H20, 144mg

ZnSO 4*7H20, 6mg H3BO 3, 24mg NiC12*6H 20, 2mg CuC12*2H20, and 36mg

Na2MoO4*2H20; mixture is autoclaved.

Trace Metal Mixture 2, selenite-tungstate mixture, contains: 1000mL distilled,

deionized water, 0.5g NaOH, 6mg Na2SeO3*5H 2
O , 8mg Na2WO 4*2H 20; mixture is

autoclaved.

Vitamin Supplement 1 contained: 1000 mL distilled, deionized water, 0.025g

pyridoxal hydrochloride, 0.1g thiamine, 0.1g calcium pantothenate, 0.1g riboflavin, 0.1g

niacin, 0.05g p-aminobenzoate, 0.2g pyrodoxine hydrochloride, 200mg vitamin B12.

Solution was stored at -20 0 C.

Vitamin Supplement 2 contained: 200mL distilled, deionized water, 25mg folic

acid, 500mg biotin. Solution was stored at -200C.

MOPS is 3-[N-Morpholino] propane-sulfonic acid. A sterile standard was made:

20g MOPS/100ml deionized distilled water. This standard was adjusted to pH=7 with

concentrated HCL. The solution was autoclaved and the standard was added directly to the

autoclaved medium, 10.5 mL/L.
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A.3 Ingredients of Solutions Used in Analysis
Tris buffer solution contains 58g Tris buffer, 36 mL HC1, and deionized distilled

water to 1L.

Sodium borohydride solution contains 1000mL deionized distilled water, 9.6g

sodium borohydride, and 2.4mL 2N NaOH.

Formalin contains 63% deionized distilled water, 37% formaldehyde.
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APPENDIX B

ARSENITE

CONCETRA TION DATA

B.1 Arsenite Concentrations for Cultures 27-31 for Dates 6-

(February 1,1996=1)

0 6 7 8 9 15 16
27 805.7 892.4 816.2 79.9 -66.2 603.3
28 843.6 1063.5 712.2 129.3 -10.2 565.9
29 1043.1 935.4 667.4 107.2 -64.2 560.2
30 870.5 982.1 940.2 929.1 1009.8 1062.3
31 870.5 852.4 774.6 896.8 991.8 1056.6

17 18 19 20 22 29 31
733.3 705.1 619.3 548.6 608.7 703.1 1058.7
746.1 794.1 664.9 612.6 590.1 644.5 1161.1
655.3 787.6 594.3 433.9 645.1 671.1 1393.9
1363.4 1674.8 1441.2 1115.3 755.8 no datum 1296.4
1282.9 1644.8 1402.5 1310.2 1335 1267.0 1385.6

32 33 34
1371.2 1332.8 1420.1
1156 -49.4 27.2
1246 167.7 21
379.4 -48 0
1577.5 1776.4 1596

Table 4. Concentration of Arsenite in Cultures 27-31
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B.2 Arsenite Concentrations for Cultures 42-46 for Dates 39-

1O1[gM]

0 39 40 41 43 44 45
42 817 805 708 8 26 -28
43 755 831 771 2 34 -87
44 813 847 865 8 26 -74
45 943 900 1007 867 888 1091
46 959 893 1014 859 880 867

46 47 51 52 55 56 57
-23 -4 602 -588 -198 -275 -256
-25 -4 995 -960 -179 -260 -257
-20 16 1058 -960 -198 -275 -244
882 863 1577 127 1668 1733 1621
791 962 2325 160 2220 2052 2044

59 61 62 63 64 65 67
41 -20 890 36 -6 53 26
33 -12 914 45 6 71 21
47 -20 679 44 3 53 30
1716 1849 2440 3427 3053 1954 2380
2614 2271 2945 3820 3661 2925 3655

69 71 72 73 75 77 79
34 774 22 39 60 22 -15
22 826 -1 60 67 31 -6
34 867 25 49 60 26 -15
2574 3189 2638 2644 3073 2871 3175
4277 2679 3789 4711 2882 5690 no sample

80 80.5 81 84 85 86 87
885 288 158 11409 10934 9530 10564
1019 272 158 9426 753 9182 10931
796 178 171 10133 10934 10200 12484
3195 2940 4522 11409 16870 16711 18634
no sample no sample no sample no samplel e no sple no sample no sample

60



92 95 98 99 100 101
2976 774 197 -770 10159 7240
153 696 283 -628 985 8428
1184 767 197 -770 10313 6986
18144 12666 15699 16468 25323 25779
no samplele no samle no sample no sample no sample no sample

Table 5. Concentration of Arsenite in Cultures 42-46

B.3 Arsenite Concentrations for Cultures 1-5 for Dates 52-102

[gM]

0 52 55 56 57 59 61
1 6281 12144 10472 7698 10793 12909
2 5409 10749 7630 9937 11465 11210
3 6708 12144 8010 8075 9413 8460
4 6893 11959 12661 10067 15566 13556
5 5799 11808 9560 7294 9153 14932

62 63 64 65 67 79 71
7454 9064 7045 6935 5273 4091 1224
8476 10085 11269 7634 4597 2757 307
6481 5876 3909 0987 0317 0213 124
11276 15247 15209 10973 14642 11934 10658
11637 13164 15077 10507 12293 12378 9449

72 73 75 77 79 80 80.5
13254 12321 8692 7294 3311 13865 12920
11300 10845 7097 4341 428 10925 10750
9186 9283 4685 937 -154 11961 8887
28949 25395 20112 24822 19060 23870 23870
3569 28292 20690 25069 19681 26387 20830

81 84 85 86 87 92 95
17548 9437 7611 9530 5062 153 696
11858 4565 1906 655 232 146 739
11300 2686 840 544 239 153 696
36786 28229 28079 28138 31528 33700 31297
34669 24401 23233 28159 30360 29504 23753
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98 99 100 101 102
283 -770 11266 9947 7605
197 -628 9940 8865 9666
291 -770 11413 9571 7877
32391 31400 39439 35780 41048
30781 28411 38318 56693 38682
iable o.

Concentration 

of Arseni 

5
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APPENDIX C

TURBIDITY DATA

C.1 Turbidity Data for Cultures 27-31 for Dates 6-33

0 6 8 9 17 18 19
27 -.0012 -.0074 .3267 .4076 .3557 .3553
28 .0120 -.0212 .3333 .4187 .4082 .3541
29 .0017 .0143 .3285 .4540 .4232 .4074
30 -.0029 .0050 -.0350 .0109 .0104 .0088
31 0 -.0605 -.0806 .0537 .0386 .0444

20 22 32 33
.3352 .2891 .3237 .5320
.4137 .4119 .2328 .4598
.4529 .4834 .2341 .5274
.0048 .0053 .8583 .8143
.0359 .0331 .0192 .0282

Table 7. Turbidity of Cultures 27-31

C.2 Turbidity Data for Cultures 42-46 for Dates 39-101

0 39 40 41 42 43 44
42 .0047 .0032 .0013 .0207 .0223 .0225
43 .0049 .0030 .0031 .0031 .0178 .0151
44 .0034 .0033 .0026 .0026 .0249 .0213
45 .0088 .0051 .0037 .0037 .0033 .0027
46 0 .0013 .0005 .0005 .0006 .0007

45 46 47 51 52 54 55
.0219 .0234 .0228 .0162 .0123 .0141 .0147
.0219 .0122 .0122 .0133 .0123 .0106 .0126
.0205 .0181 .0205 .0138 .0144 .0119 .0198
.0036 .0024 .0016 .0037 .0032 .0026 .0062
.0008 .0002 -.0003 .0110 .0009 .0005 .0069
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56 57 59 62 63 64 65
.0105 .0121 .0149 .0138 .0119 .0119 .0192
.0062 .0115 .0051 .0108 .0099 .0097 .0376
.0073 .0074 .0144 .0129 .0119 .0117 .0113
0 .0001 .0037 .0046 .0038 .0022 .0006
0 0 .0024 .0037 .0064 .0018 .0013

67 69 71 72 73 75 77
.0410 .0116 .0661 .0077 .0073 .0115 .0140
.0183 .0085 .0103 .0057 .0057 .0097 .0426
.0525 .0107 .0099 .0905 .1879 .0112 .0115
.0069 .0012 .0023 .0053 0 .0057 .0062
.0046 .0030 .0042 .0009 .0004 no sample no sample

79 80 81 84 85 86 87
.0149 .0097 .0093 .0193 .0198 .0213 .0242
.0095 .0079 .0084 .0176 .0190 .0213 .0309
.0108 .0123 .0106 .0240 .0264 .0268 .0315
.0159 .0031 .0076 .0093 .0091 .0105 .0111
no sample no sample no sample no sample no sample no sample no sample

79 80 81 84 85 86 87
.0149 .0097 .0093 .0193 .0198 .0213 .0242
.0095 .0079 .0084 .0176 .0190 .0213 .0309
.0108 .0123 .0106 .0240 .0264 .0268 .0315
.0159 .0031 .0076 .0093 .0091 .0105 .0111
no sample no sample no sample no sample no sample no sample no sample

89 92 95 98 99 100 101
.0188 .0150 .0153 .0152 .0136 .0235 .0180
.0162 .0119 .0169 .0173 .0163 .0186 .0209
.0215 .0160 .0158 .0188 .0190 .0338 .0249
.0143 .0144 .0151 .0175 .0174 .0204 .0292
no sample no sample no sample no sample no sample no sample no sample

Table 8. Turbidity of Cultures 42-46
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C.3 Turbidity Data for Cultures 1-5 for Dates 52-101

0 52 54 55 56 57 59
1 .0119 .009 .0123 .0072 .0048 .0078
2 .0107 .0092 .0009 .0054 .0120 .008
3 .0104 .0072 .0081 .0015 .027 .0171
4 .0225 .0192 .0162 .0234 .0286 .0218
5 .0125 .0085 .0068 .0204 .0158 .0096

62 63 64 65 67 69 71
.0186 .0068 .0058 .0065 .0079 .0051 .0089
.0326 .0386 .0243 .0289 .0262 .0044 .01
.0372 .0103 .0063 .0007 .025 .0041 .0093
.0309 .0335 .0273 .0294 .0453 .0310 .0419
.0227 .0228 .0186 .014 .0274 .0229 .0574

72 73 75 77 79 80 81
.0136 .0077 .0042 .0058 .0042 .0053 .0069
.0125 .0097 .0080 .0114 .1 .0082 .0051
.0122 .0112 .0080 .0074 .0079 .0081 .0067
.0494 .0394 .0483 .0437 .0475 .0455 .0412
.0459 .0445 .0604 .0495 .0455 .0547 .0611

84 85 86 87 89 92 95
.0035 .0026 .0045 .0056 .0035 .0037 .0076
.0097 .0055 .0060 .0055 .0051 .0058 .0074
.0075 .0063 .0069 .0063 .0048 .0069 .0079
.0454 .0423 .0454 .0438 .0401 .0473 .0764
.0667 .0482 .0669 .0626 .0609 .0736 .0816

98 99 100 101
.0084 .0269 .0101 .0111
.0102 .0272 .0126 .0140
.0104 .0109 .0109 .0112
.0494 .1665 .0460 .0495
.0806 .0803 .0684 .0655

Table 9. Turbidity of Cultures 1-5
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APPENDIX D

CARBON-FIXATION

D.1 DAPI-Stained Cell Counts

Table 10.

DATA

DAPI Cell Count for Culture 3

66

Culture number Date Average # mL on Filter [15400
Cells/Frame frames/filter]*

[cells/frame]/
[mL on filter]
=Cells/mL

#3-960323 92.65 41 .095 6.6* 106

#3-960323 95.85 459 .95 7.4*106

#3-960323 98.81 164 .095 2.7* 107

#3-960323 101.06 185 .095 3.0* 107

#3-960323 101.79 173 .095 2.8* 107

#3-960323 101.99 112 .1 1.7*107

#3-960323 102.16 306 .1 4.7*107

#3-960323 102.32 42 .01 6.5*107

#3-960323 102.48 35 .01 5.4*107



D.2 Arsenite Concentrations During '4C Experiment [WM]

101.99 102.16 102.32 102.48

culture #3 9540 8823 8740 7877

autoclaved 9250 8140 7934 10102
culture #3

uninoculated 10350 9595 10310 10134
medium

Table 11. Concentration of Arsenite in Culture 3 During 14-C Experiment
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