Test and Diagnosis of Microprocessor Memory Arrays

using Functional Patterns

by
Ya-Chieh Lai

Submitted to the Department of Electrical Engineering
and Computer Science in Partial Fulfillment of the
Requirements for the Degrees of

Bachelor of Science in Electrical Science and Engineer-
ing and Master of Engineering in Electrical Engineering
and Computer Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 26, 1996

© 1996 Ya-Chieh Lai. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and dis-
tribute publicly paper and electronic copies of this thesis and to grant

others the right to do so.
Author .. e
Department of Electrical Engineering and Computer Science
- January 30, 1996
Certified DY .o e
Srinivas Devadas
0 ~isor

—

Accepted byooeveeerennne..
ler

Chairman, Department Committeé»pn Graduate Theses
WASBACHUSETTS INGTUIE
OF TECHNCOLOGY

JUN 111996 EN&

Test and Diagnosis of Microprocessor Memory Arrays using Functional
Patterns
by
Ya-Chieh Lai

Submitted to the
Department of Electrical Engineering and Computer Science

January 30, 1996

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Electrical Science and Engineering
and Master of Engineering in Electrical Engineering and Computer Science

Abstract

As the complexity of microprocessors continues to increase, so too does the importance of
test and diagnosis. The main goal of this thesis is a diagnostic decision-making procedure.
Before this can be done, a fault model must be defined. For every fault, its manifestation
or fault signature needs to be determined.

In this thesis we take the approach that if every fault can be shown to have a unique
fault signature, then it can be uniquely diagnosed. This fault signature is presented graphi-
cally as a failure bitmap. By applying a set of criteria to the failure bitmap, a diagnosis can
be made.

Thesis Supervisor: Srinivas Devadas
Title: Associate Professor, Research Lab for Electronics

Thesis Supervisor: Leendert Huisman
Title: Senior Engineer, IBM Microelectronics

Thesis Supervisor: Matthew Graf
Title: Microprocessor Development Manager, IBM Microelectronics

Acknowledgments

I would like to thank all the members of the IBM community from whom I have received
assistance. I am eternally grateful to Dr. Leendert Huisman for being my mentor during
the course of this thesis. He taught me all about memory testing and diagnosis and helped
me to understand and clarify much of the work herein. I would like to thank Matthew Graf
for helping me find this thesis topic just as I was beginning to lose hope of ever finding a
topic and for being willing to be my manager summer after summer. I would like to thank
Dean Adams for taking the time to explain to me many of the finer points of memory

design and testing.
I am grateful to Professor Srinivas Devadas for advising this thesis.

Foremost, I am grateful to my Mother and Father. I thank you for your love and sup-
port and for helping me to reach where I am today.
I want to give a special thanks to Erika Chuang for putting up with me and loving me

always.

Table of Contents

1 Introduction
2 The Fault Model
0 B (110 (0T 10 (ol o) o RO U
2.2 Faults in the Memory Cell AITaYcccccvevvcereveerrrererieereseeessnesseessnesessnseses
2.2.1 StUCK-at Fallf......c.eeeeiiieeeececeecree et eeeeesstneeeceenaeessssaesesnneeerasnnes

2.2.3 Coupling Faultccoviiiiiiie ettt
2.2.4 Non-DeterminisStiC FatltS.......oociivveveimeeereeiiiieceieesensensseeseesereseeseessseeans
2.2.5 Destructive Read Faull...........ooocoviemreeeeeiiiiiiieiireseeeeansecesseemmeseeesesseesnes

2.3 Faults in the Read/Write LOZIC......ccccceeireiiieriiiinicieniecrccc st
2.3.1 Bitline Precharge Faults..........ccccevemveeecieveinieseneeneeceere e
2.3.2 Bitline Faults........c.cocieriinriieeeieeeectesteceeeeneseestee e s seessneeesaesanessaesssaenns
2.3.3 Column Multiplexor Faults.........ccoeecevvvinnivinnincniicnniienceeeeeseeeeeneen
2.3.4 Data-in Faults.........cccceecvreirveerrierenrireereeseeesteeesneseessesesessnsssnssssssnans
2.3.5 Sense Amplifier Faults..........ccccoeeinimiiiicnenncirecenenencecrcrees e snee e
2.3.6 Data-out Faults..........ccccirieeiirerniniccciineniieeerenstestseeeeesesse s esseesnens

2.5 Faults that are not caughtccccevrverrrveennrnrcccecereree e

3 Test
3.1 INrOQUCHON. ...ttt ettt ste st ettt sae st s e se s e et esaetesaesaesnenesaannen
3.2 THe TESES..cuuciieciiectitereetent ettt et s s e s nesene et sna e st e sasnsssanas
3.2.1 Unique Address Ripple Word Test.....c..cccoeereerenenienerncnneneenenereeeeeens

3.2.2 Word Lines Stripe Test......cccceueeinirrieirereieceeieseectesieeseseeeeseeseesaessesens

3.2.3 Checkerboard Testcccureveeeenerrceenerenieeeeesenee ettt seeeene

3.3 IMPIEMENLALIONccoruiinriiiiriiiiieiici ettt e st sae et e e e s seeeneas
3.3.1 ObSErvability.......ccccovivvimniinirniiiririecte et

3.3.2 Tester IdIOSYNCIASIES......cccrvuereerreriesrreeerirtestreestestesssessaessessassaessassassens

3.3.3 Failure Bitmaps.........ccccceverimriininiinceiienenieceseesseeteenteseessaessesssssssssessenns

4 Diagnosis
4.1 INtTOAUCHION......ccerimiriiceiieeeetetete ettt e s st et e sr e b e s e s e ae s a et nes
4.2 Fault Detection and Manifestation: Memory Cell Array.........ccccccverrecerrenenene.
4.2.1 StuCK-at FaUILSccooovriiriiriiiiciceeeteerteee et

4.2.3 Coupling Faults..........cccccuveiiinincnincincniicteeesset s seesesnssessesseessesaesens
4.2.4 Non-DeterminiStiC FAULLS.......coveviieeeeeeeeeeeeeeccseeeeereeereesseesesesssesssssssssssssnnns
4.2.5 Destructive Read FAULLSeeeeiieieieiieseeecerrceeeeeeseenesessssssssssessssesessesss

4.3.1 Bitline Precharge Faults.......c..cccccvuinviinnniinniniiniiciieciccecnee, 59

4.3.2 Bithine Faults........c.coeeiiiiiireienceeeccrree ettt et esat e e 61
4.3.3 Column Multiplexor Faults..........cccceeeeiimimesrinineennenieneecencesieeenne 65
4.3.4 Data-in Faults.......ccccoreiireiiiiieiecetneeteecrenecseee ettt nane 70
4.3.5 Sense Amplifier Faults..........cccceeveevmnincrnnciiiiericcciccicinnececcienne 71
4.3.6 Data-out Faults..........cccoovverieierncreecetrcctecsecseente st 72

4.4 Fault Detection and Manifestation: Address Decoder...........ccoocevevvuivuevincnnnnne 74
4.4.1 Row Decoder Faults..........c.ccoeeeeeeeinurnircteseeiinncncnneccstnessresesesseassnes 76
4.4.2 Column Decoder Faultsc.ccoocceveiieirnneeniicietitnnercctriecneccse e 79
4.4.3 Wordline/Bitline Selector Faults.........ccccoccevvrvensirnnniinnicninncincnecnne. 82

5 Summary and Conclusions 87
5.1 DiagnostiC TTEE......ccevruiruiireriiiietinieiictntcre et se s s san e 87
5.2 Test OPtimiZation.......ccceeeueereiirernirineeeseiteertestesseestee st seseessasssstessnesssesssessenne 93
A Shortening Test Simulation Time and Reducing Tester Buffer Memory Require-
ments 95
A1 INOQUCHION.....viieeeiiecriee ettt ettt s e s st s e s s e snessnonsnses 95
A.2 Reducing the Simulation Timeccccoeceeviriciiricinencvricnsiriiccicciecnecnenas 95
A.2.1 Breaking up the Unique Address Ripple Word Test.......c..cccevevvvunncnnene 96
A.2.2 Breaking up the MEMOTYccccocrneeermiencenireecnreccsesiesssseessesienens 96
A.3 Reducing the Tester Buffer Memory Requirements.........c.ccocueevernececnecnnenee. 98
A.3.1 Enabling the Cacheccooirriiiinncniiniiciriitnrce s 99
A.3.2 Memory COMPIESSION.......cocccerrurecreerirnrrireraressinsssesssteesseessesessessesssesssnsssens 99

List of Figures

Figure 2.1: Reduced functional model.............ccoocoririrniiiiiieniererereecteecneeaes 15
Figure 2.2: Memory array architeCturecocccvvirrenniciininescincnnecieniesecesessssecssessnes 16
Figure 2.3: A typical CMOS SRAM cell.........oomiiriririiiiriicicicnciceccceeeenennene 18
Figure 2.4: Example of stuck-at fault and transition fault............c.cccovvvinrininnnncaen. 19
Figure 2.5: Example of coupling fault...........ccccoeeeiviniiiiiniinnniniinccirecneeniccneneee 20
Figure 2.6: Examples of non-deterministic faults..........ccoceevevververvieercnsenneeneseece e 22
Figure 2.7: Destructive read faultc.ccooooiiiniiinciectectee et 24
Figure 2.8: Example of complex pattern sensitive faultcocceveeenicnnnnnnniennnnene 25
Figure 2.9: Example of linked faults........cccoocneiiniimnieececreee 25
Figure 2.10: Unilateral state-coupling fault.cc.ccoeeeririenniinenrnincereceeneeeeeneaes 26
Figure 2.11: Faults in the read/Write 10ZIC.......cceerivirvirieriierercrerereeeee e 27
Figure 2.12: Bitline precharge fault on complement Wire.........c.ccceeecveevveireeerccvencneeens 28
Figure 2.13: Bitline faultsccoccviiviniiiiiiiccinnteecctneitcrcece e 29
Figure 2.14: Column multipleXor faultsccocceeveeeriiiniiniiiniencneeneeneeecseeeeenene 30
Figure 2.15: Logical address decoder faultsocceceeiiccinennenrcncnniecciinecseccenee. 32
Figure 2.16: Physical address decoder faults...........ccceveeeiriecincenninccnnenneccenenereennens 33
Figure 2.17: Range of possible scopes of different faults............. e bens 34
Figure 2.18: Wordline StUCK-at 1c.ccccomiiiniiiiieiiiiincciiecrteiec e 37
Figure 2.19: Bitline select StUCK-atcc.eeceverierrersiiceriectrcrcctecereeee s 38
Figure 3.1: Example of MemOrycccocuiiiiiiiiicciiiinicitciccnteccnsteceest e 41
Figure 3.2: Result of word line Stripe test.........cceccreeriereeieeeeereeeerercesnesce e 42
Figure 3.3: Result of checkerboard testcoceviiiininiininniiicnnicecteccneceeee. 43
Figure 3.4: Result of checkerboard under alternative memory implementation 44
Figure 3.5: Information encoding......... ettt s et e et e s b st et et e e sae s aaesaaens 46
Figure 4.1: List Of FAULLS.......ccccceiriiiiincriicirticreeececeraceee et et s e esaaseseesseessneenanens 50
Figure 4.2: Stuck-at fault detection and manifestationccecceecueereeeseerseensneesseneneene 51
Figure 4.3: Transition fault detection and manifestation..........cccccovvuercrveecnverrneecernne. 53
Figure 4.4: Fault signatures of idempotent faultsc.ccoocevrvencnvnenennnennneeniecennnns 56
Figure 4.5: Fault signatures of inversion faultsccocceceveeverneeiinncnnnnenceceneeeeee. 57
Figure 4.6: Fault signatures of state-coupling faults.........c..ccccecerververerenireesenserneesennene 57
Figure 4.7: Fault Signatures of destructive read faultsccccccceceeevievnnnvvennnncecennene. 59
Figure 4.8: Bitline precharge fault: manifestation in the test..........ccceccevveeeveerreeceenneen. 60
Figure 4.9: Bitline precharge fault: manifestation in memory........c.cccceeevveeverrernennenee. 61
Figure 4.10: Break in true wire of bitlinecccccooueeeinueerenvieseecieeeeneeeeeeeeesreneanens 62
Figure 4.11: Fault signatures of break in bitline wire..........ccccccevveeevuenvenvnncccrnnnneenneen. 63
Figure 4.12: Fault signature of true to complement short within one bitline 64
Figure 4.13: True to complement short in bitlinecccceeverveevercenenieececeeceeeee e 64
Figure 4.14: Fault signature of shorts across adjacent bitlines............cccceceevvrvercerrernnnen. 65
Figure 4.15: Pass-gate stuck open in column multipleXor.........ccccevereeeererrensenreesensennene 66
Figure 4.16: Fault signature of stuck open pass-gate in column multiplexor................ 67
Figure 4.17: Pass-gate stuck-closed in column multipleXorcccooeeurvceveneerenneccescnneae 67
Figure 4.18: Column multiplexor stuck-closed: first case.........ccecevverveevervnneiceensennnenne 69

Figure 4.19: Column multiplexor stuck-closed: second casececcevveeerverseercueraennne 69

Figure 4.20: Fault signature of pass-gate stuck-closed in column multiplexor.............. 70
Figure 4.21: Fault signature of data-in faultcc.ceeoerriiinciniinicininnciiiicneee 71
Figure 4.22: Fault signature of sense amplifier fault........c.cc.cocveevvericienccnnnninccncnan. 72
Figure 4.23: Data-out SHOTT........ccceereeeiirecniniiniteiscnssc sttt sss s s s 73
Figure 4.24: Fault signature of data-out short faultccccovevinincnninininecnninnenn. 74
Figure 4.25: Logical address decoder faultsc.cocoiueeceiinininnciiniicnnininineienenns 75
Figure 4.26: Addressing clarificationccccovceecnsinininnicininienctenenntrcecnenceecnes 75
Figure 4.27: Address decoder Wordlinescccoccoevereiiiinenmiicniiicicncienecieceen 76
Figure 4.28: Fault signature of row decoder faults A and B...........ccccoevrrrnnnnnnncnne 76
Figure 4.29: Fault signature of row decoder fault C............ccoccoevcriineninninnnnniiiecnnns 78
Figure 4.30: Fault signature of row decoder fault D...........ccccoooeviviniiniininnnnininncnnen 79
Figure 4.31: Address decoder bitline SElECtOrs.........ccevumiiiiirririiiniiiiniiniciccenennens 80
Figure 4.32: Fault signature of column decoder faults A and B..........c.c.ccevvvnrnnnnnnnne. 80
Figure 4.33: Fault signature of column decoder fault C..........c.cccooenvurcriirinnienncnne 81
Figure 4.34: Fault signature of column decoder fault D........c.ccoouvvvvvrninncrnnccnnnnenen. 82
Figure 4.35: Wordline/bitline selector stuck-at 1 fault..........ccooveniiiinininnnnnnnnnnne. 83
Figure 4.36: Fault signature of stuck-at 1 fault on wordline..........c.cccceceeerrerncnncerucnnnes 84
Figure 4.37: Fault signature of wordline break........cccecevveerviveninineninincnenenicennenne. 85
Figure 4.38: Fault signature of bitline selector breakcoooeeiiiininiiiininniiniinnenns 85
Figure 5.1: Diagnostic flowccccoeiiiiiiiciiimiiiiiciccincctntece e 87
Figure 5.2: Scope Of failurecccceeveeeeicmneeniencctei ettt scsssseas 89
Figure 5.3: Memory cell array faults ..ottt 90
Figure 5.4: Read/write logic faults..........cccovueiininiiiniininiiincicrccccenens 91
Figure 5.5: Address decoder faultscccoccerimniieniinniicineniincniciencne e 92

93

Figure 5.6: Extra test for data-out faults.......c...ccoceeconinieniniinncniecninncceciceee

10

List of Tables

Table 4.1: Catching coupling faults assuming source cell precedes target cell............. 54
Table 4.2: Catching coupling faults assuming target cell precedes source cell............. 54
Table A.1: Required lines in tester buffer used for 16 entry dual-ported memory array with
and without the Cache..........ccccviireriiiiniiiict et 99

Table A.2: Required lines in tester buffer used for 16 entry dual-ported memory array with
and WithOUt COMPIESSIONc..ceeuirruiiiiriiiieteetiieretecteee e eeesee e ssat e e rssnessanessessnnonns 100

Chapter 1

Introduction
Testing is the process of exercising a system and determining whether or not the system

behaves correctly. If the system misbehaves, diagnosis is the further study of the system to
determine the cause of the misbehavior. As the complexity of microprocessors continues
to increase, so too does the importance of test and diagnosis. Though test is a fairly well-
understood topic, there exists very little literature on diagnosis. During manufacturing, test
is the most important component; bad chips need to be identified and discarded. Diagnosis
becomes important when yield becomes low and it is necessary to pinpoint the defects or
family of defects that are bringing down the yield. The purpose of this thesis is to create a
methodology for the test and diagnosis of embedded memory arrays for one implementa-
tion of a microprocessor in the hope that conclusions reached here can be generalized to
different implementations and technologies. At the final step of this thesis, a complete
diagnostic decision-making process (a diagnostic tree) will be described.

This project involved the test and diagnosis of a number of small CMOS SRAM mem-
ory arrays (i.e., the translation look-aside buffer, segment look-aside buffer, etc.) embed-
ded into a modern microprocessor. There were a number of approaches that could have
been taken in this regard. Most of the larger memory arrays on the processor were tested
using built-in self-test (BIST), in which a finite state machine exists on-chip with the abil-
ity to test the arrays. However, the number and size of these smaller arrays did not warrant
the design time nor the chip space for BIST implementation. A second approach was to
use scan techniques, where every latch is connected serially into one or more scan chains
that can then be controlled and observed. However, the amount of time required for scan

in and out of the patterns necessary to test every memory array cell made the scan tech-

13

nique impractical. The approach for this project was to use functional patterns, whereby
the pins of the chip are driven with stimuli and then observed for responses while the chip
is operating in a functional mode (i.e., as it would normally operate, as versus in a test

mode). Essentially, the test algorithm is run on the chip in the form of a working program.

In general, functional patterns have their own shortcomings: “test pattern generation
and fault simulation require too much time, and the manufacturing test suite would exceed
the limits of parallel tester memory.” [8]. However, these shortcomings are surmountable
for the case of memory array testing and diagnosis. Pattern generation is not as much of a
problem for memory array tests because memory is structurally very regular. The fault
simulation time is acceptable because of the smaller size of the arrays under consideration.
Finally, the limit on the tester memory is overcome by running these tests with the cache
enabled. In this way, the tests can be fetched into the cache and run from within the pro-

cessor without direction by the tester.

This thesis begins with a description of the specific faults that are to be targeted and
how these faults will be modelled. The second section is a description of the proposed test
algorithms designed to cover these faults. The third section is a description of the diagnos-
tic information available from these tests. The way the fault manifests itself is it’s fault
signature. If every fault can be shown to have a unique fault signature, then a diagnosis
can be made based upon the fault signature. From the findings of this thesis, a diagnostic

decision making procedure will be presented in the conclusion section.

14

Chapter 2

The Fault Model

2.1 Introduction

“In order to develop any practically feasible test procedure, we should restrict ourselves to
a subset of faults that are most likely to occur. This practice is known as ‘selecting a fault
model’” [1]. Even though all faults have some physical root cause, it is desired that these
physical faults be modelled as logical faults. For instance, one physical fault in a memory
cell is a short to ground.The logical equivalent of this fault might be that the cell is stuck at
0. There are two advantages to this layer of abstraction. First, methods to catch these logi-
cal faults can be valid across different physical implementations. Second, this abstraction
simplifies the problem tremendously. For instance, there could be any number of physical
reasons for a cell to be stuck at 0, but the idea of a cell stuck at O is cleaner and simplifies

the reasoning.

Address

Address Decoder

Y

Memory Cell Array

it

Read/Write Logic

O

Data

Figure 2.1: Reduced functional model
Borrowing from Van de Goor’s “Reduced Functional Ram Chip Model” most memory

arrays can be broken down into three parts: the address decoder, read/write logic, and

memory cell array (Figure 2.1) [2]. A generic memory array architecture, similar to one

15

described by Weste and Eshraghian [4], is shown in Figure 2.2. The row decoders, column
decoders, bitline selectors, and wordlines shown in Figure 2.2 form the address decoder.
The bitlines, sense amplifiers, bitline precharge logic, column multiplexor (mux), write
buffers, and data out lines form the read/write logic. The collection of individual memory

cells form the memory cell array.

wordlines mem(/)ry cells

bitline precharge /
4

_p| rOow decoders

r vy

AR

| cOlumn decoder

Y

PRI T

bitline select bit 0 bit 1 bit 2 bit 3

bitlines
address (true and complement)

sense amp, write buffers,
column multiplexor

Figure 2.2: Memory array architecture
Van de Goor showed how faults in the read/write logic and address decoder can be

mapped back onto the memory cell array for the purposes of test. Even though this
“Reduced” model was originally developed for testing, it can also be used for diagnosis.
The memory arrays on this chip were not designed with the capability to test the three
parts of the memory array separately. Therefore, the memory array is essentially a black

box whereby the only diagnostic information available is the requested address and the

16

result of a read/write on this requested address; this is equivalent to saying that the only
information available is the observation of the memory cell array. The job of diagnosis is
to take this information and work backwards to figure out whether the fault occurred
within the address decoder, memory cell array, or read/write logic and then specifically
what happened. Therefore, the “Reduced Functional Ram Chip Model” originally devel-
oped for testing, where all faults are modelled as faults in the memory cell array is also a
valid model for diagnosis, where all faults are observed as faults in the memory cell array.
If a fault, regardless of whether it is in the address decoder, memory cell array, or read/
write logic, does not manifest itself as a fault or a set of faults in the memory cell array, it

is not observable and hence not diagnosable.

This section begins by defining and describing the memory cell array faults. There will
be a description of the faults being targeted in the read/write logic and the address decoder
and how these faults are modelled as faults in the memory cell array. The logical faults
will be discussed as well as the physical faults from which these logical faults are
abstracted. The idea of scope will also be presented as well as its role in distinguishing
between faults in the memory cell array, read/write logic, and address decoder. Further-
more, the idea that logical faults in the read/write logic are pattern sensitive is introduced.
This means that a certain pattern of data in memory or pattern of accesses to memory sen-

sitizes the read/write logic to certain faults, helping to expose them.

2.2 Faults in the Memory Cell Array

The memory cell array is the model for the collection of memory cells to which data is
stored and from which data is retrieved. A typical memory cell from the memory cell array
is shown in Figure 2.3. Initially, the precharge logic will raise both the bitline and bitline
wires to VDD. On a read, if this memory cell is chosen (wordline is asserted), then either

the bitline wire will begin to discharge (to read a 0) or the bitline wire will begin to dis-

17

charge (to read a 1). This discharge is detected by a sense amplifier which determine the
value being read. On a write, if this memory cell is chosen (wordline is asserted), then
either the bitline will be forced low while the bitline wire is forced high (to write a 0) or
the bitline wire will be forced high while the bitline wire is forced low (to write a 1). Note
that reads and writes are both assumed to occur through one port only.

wordline VDD wordline

qul

bitline 1

Mbitline

H

Figure 2.3: A typical CMOS SRAM cell
The five basic logical faults in the memory cell array are stuck-at faults, transition faults,

coupling faults, non-deterministic faults, and destructive read faults. Each will be
described in the following sections. Note that each of these logical faults may be caused
by a variety of physical faults. The examples given here are not exhaustive nor guaranteed
to be the most common. After the five basic logical faults have been introduced, another
type of fault, a pattern sensitive fault, will be introduced and discussed. This fault is not
considered one of the basic faults by this thesis. Finally, there will be a discussion of

linked versus unlinked faults.

2.2.1 Stuck-at Fault
A cell that exhibits a stuck-at fault is a cell that is logically fixed at either a O or a 1. This

cell cannot be written with another value and can only be read with one value. An example
of how this can physically occur is shown in Figure 2.4. In this example, the short to VDD

in “Cell A” causes the cell to be stuck in state 0. This is a stuck-at O fault.

18

wordline VDD wordline

stuck-at
l P It
bitline i1 ’ Jau
e ¢ —bitline
= '\ql

de A =
node CELL A \transition

Sault

Figure 2.4: Example of stuck-at fault and transition fault

2.2.2 Transition Fault
A cell that exhibits a transition fault is unable to transition fromaQOtoa l or froma 1l

to a 0. An example of how this can physically occur is shown in “Cell A” in Figure 2.4. As
demonstrated by Dekker et al, “A defect in the poly silicon layer covering a diffusion
region may result in the creation of an extra pass transistor” [3]. This is the transistor, q1.
The result of this defect is that the cell cannot transition from a O to a 1, but can transition
from a 1 to a 0. Assume that node A begins with a value of VDD (the memory cell holds a
value of 1). At this point, transistor q1 is on and data can pass freely into “Cell A” from
the bitline wire. A value of 1 can continue to be written to and read out of “Cell A”. Sup-
pose the bitline wire then pulls low. This pulls node A to ground (the memory cell transi-
tions from a value of 1 to a value of 0). This turns off the transistor q1. In order for “Cell
A” to transition high again, a low value must be passed into the memory cell from the bit-
Tine wire; however, data can no longer enter through the bitline wire. Once “Cell A” has a
value of 0, a value of 0 can continue to be written to and read out of “Cell A”, but a value

of 1 can be neither written to or read out of “Cell A”.

2.2.3 Coupling Fault
The first two faults only involve one cell. Coupling faults are faults that involve two

cells. The source cell of a coupling fault will, during a transition from O to 1 or from 1 to 0,

19

change the state of a second, target, cell. There are three different kinds of coupling faults:
inversion coupling faults, idempotent coupling faults, and state-coupling faults. In an
inversion coupling fault,a0to 1 or a 1 to O transition in the source cell inverts the contents
of the target cell. In an idempotent coupling fault, a 0 to 1 or a 1 to O transition in the
source cells forces the contents of the target cell to a certain value, O or 1. In a state-cou-
pling fault, the state of one memory cell is directly linked to the state of another memory
cell; writing a value into the first memory cell will force the other memory cell to either

the same value or the inverse value.

wordline VDD wordline wordline VDD wordline
. | 9 L 9 d
bitline -t bitline 11

-bitline

Figure 2.5: Example of coupling fault

An example of how a coupling fault can occur is shown in Figure 2.5. The result of the
short between “Cell A” and “Cell B” is that when “Cell A” is written with a value of 0 (1),
“Cell B” goes to the opposite value 1 (0), and when “Cell B” is written with a value of 0
(1), Cell A goes to the opposite value 1 (0). There are actually four different faults present
in this example:

* a 1 to O transition in “Cell A” forces “Cell B” to a value of 1
* a0 to 1 transition in “Cell A” forces “Cell B” to a value of 0
* a 1 to O transition in “Cell B” forces “Cell A” to a value of 1
¢ a 0 to 1 transition in “Cell B” forces “Cell A” to a value of 0
This is a special case of the state-coupling fault called a bilateral state-coupling fault. In

this case, writing a value into either memory cell will force the other memory cell to a cer-

20

tain value. In a regular, unilateral, state-coupling fault, writing a value into “Cell A” forces
a value into “Cell B”, but writing a value into “Cell B” does not force a value into “Cell
A”. A bilateral state-coupling fault can be thought of as two unilateral state-coupling

faults, one going from “Cell A” to “Cell B” and the other going from “Cell B” to “Cell A”.

In order to make the terminology consistent, for the purpose of this paper, if cell X is
said to be coupled or unilaterally state-coupled to cell Y, then cell X is the cell that exhibits
the fault and cell Y is the trigger or source of the fault. Notice that in bilateral state-cou-
pling, the coupling fault goes in both directions, so there is no difference between saying
that cell X is bilaterally state-coupled to cell Y and saying that cell Y is bilaterally state-

coupled to cell X.

2.2.4 Non-Deterministic Faults
There are two types of non-deterministic faults. In the first case, the state of a memory

cell is completely non-deterministic. Stuck-open faults, referred to in some of the litera-
ture, fall under this category [2] [3]. This means that the contents of the memory cell can
not be predicted ahead of time. Any read of a cell exhibiting this fault may be entirely ran-
dom, may be always 0, or may always be 1. In the second case, the state of the memory is
partially non-deterministic. In this case, under certain circumstances the memory cell
behaves correctly and under other circumstances the memory cell becomes non-determin-
istic. For instance, writing a 1 into the memory cell will result in a 1 being read back out,
but writing a 0 into the memory cell will result in an unpredictable result being read back

out.

21

partially non-deterministic fault
wordline VDD wordline wordline/ VDD wordline

SN lpql

bitline -1 bitline 144
T -bitline — L bitline
non-deterministic - L - L|
Jault 4
CELL A CELL B

Figure 2.6: Examples of non-deterministic faults
An example of how a regular non-deterministic fault can manifest itself is shown in

“Cell A” of Figure 2.6. The two breaks in the wordline will isolate the memory cell, ren-
dering it inaccessible. The cell can be neither read from nor written to successfully. During
a normal read of a memory cell, the true and complement bitline wires are initially pre-
charged high. Then, the memory cell will pull down either the true or the complement
side. The sense amplifier is then able to determine whether the cell has a value of 0 or 1.
With an isolated cell, as in this example, neither the true nor the complement side will be
pulled low. The sense amplifier will be unable to decide whether the cell is at aO or a 1.
Sense amplifiers are generally designed without a preference for either a O or a 1 and
therefore the cell will be read with a non-deterministic value. Though the exact value can-
not be predicted, the actual value does depends on the final manufactured sense amplifier.
Once a sense amplifier is manufactured, it may, due to process inconsistencies, show a
preference for one value or another when presented with the same value from both the true
and complement wires. This may result in a non-deterministic fault appearing as a stuck-at
fault. This should be further qualified by noting that, depending on the noise in the system,
the sense amplifier may not always be stuck-at the same value. Generally, non-determinis-
tic faults rarely happen to one cell on its own. For instance, a broken wordline will affect

all the memory cells that lie along that broken wordline.

22

An example of a partially non-deterministic fault is shown in “Cell B” of Figure 2.6.
In this example, the true bitline has a break. However, the complement bitline is still oper-
ational, and the correct value can still be written into and read from that wire. The comple-
ment bitline can still be pulled low by the memory cell, so a read of 1 will work normally.
However, the true bitline cannot be pulled low, so a read of O will not work normally.
Again, this value cannot be predicted in advance. A read of 0 may result in a random
value, a O (in which case the fault is completely masked), or a 1 (in which case, the mem-
ory cell appears to be stuck-at 1). Partially non-deterministic faults also rarely happen to
only one cell. A break in a bitline will affect all memory cells that lie along that broken

bitline.

2.2.5 Destructive Read Fault
A cell that exhibits a destructive read fault will, during a read operation, change the

state of the cell being read. An exar_nple of how this happens is shown in Figure 2.7 [5].
Assuming the memory cell begins in state 0, a read of the memory cell should yield a
value of 0. On a read of a normal cell (Figure 2.7a), the two transistors, q1 and g2, are on,
and node A is at some value below the threshold voltage, V, (Figure 2.7b). This keeps
transistor q3 on and transistor g4 off, leaving the memory cell in state 0. There exists the
possibility that a defect can cause the resistance of transistor g2 to be greater than normal.
On a read of a defective memory cell, the two transistors, q1 and g2, are again on, but
node A is now at some value greater than Vy, (Figure 2.7c). This causes transistor g4 to
turn on. This pulls down node B enough to forces the memory cell to flip state. Another

read of this memory cell will yield an incorrect value of 1.

23

wordline VDD wordline VDD VDD

3
bitline l; b- -q a l Rother Rother
a n_m qu qu
2 LLed™_ node A node A
node A | node B Re2 Ry2 + Ryefect
(a) Reading a 0 from memory cell (b) No defect: (c) With defect:
Vnode A< Vth Vnode A> Vth

Figure 2.7: Destructive read fault

2.2.6 Pattern Sensitive Faults
In the literature [1] [2], there exists another fault called a pattern sensitive fault. The

definition of a pattern sensitive fault is as follows: “The contents of a cell, or the ability to
change the contents, is influenced by the contents of all other cells in the memory” [2].
The idea is that some pattern of data in the memory (i.e., a checkerboard pattern) will
stress the array such that a certain cell is forced to an incorrect value. This paper argues
that pattern sensitive faults are not a basic fault; the pattern is a means of exposing the
fault, but the underlying fault lies elsewhere (in the read/write logic, for instance). For this
project, many of the patterns being used were used to expose faults in the read/write logic.
In reality, it is possible that a particular pattern of data around a cell (for example,
Figure 2.8) will cause only a single cell (the middle cell in Figure 2.8) to an incorrect
state, but this kind of linked fault is too complex to thoroughly test for and will not be con-

sidered in this thesis (see Section 2.2.7).

24

Figure 2.8: Example of complex pattern sensitive fault

2.2.7 Linked versus Unlinked faults
An important simplification in this thesis is that not all linked faults are addressed. A

linked fault is a fault which influences the behavior of other faults. There are two types of
linked faults (Figure 2.9). The first is where more than one fault affects the same cell
(Figure 2.9a). The second is where one fault can propagate to cause another fault
(Figure 2.9b). Including linked faults greatly increases the complexity of detecting and
diagnosing for faults and will not be discussed. Including linked faults allows for the pos-
sibility that one fault can mask another and even detecting certain types of linked faults is
impossible using march tests [2]. March tests are tests composed of a finite series of oper-

ations performed on every memory cell in order. They will be discussed in more detail in

56 8

(a) Two faults affecting (b) Propagating
the same cell faults

Chapter 3.

Figure 2.9: Example of linked faults
One class of linked faults will be allowed. These are state-coupling faults. A descrip-

tion of state-coupled cells was given in section 2.2.3. The examples in Figure 2.9 all

involve three cells. State-coupling faults are linked faults involving only two cells. This is

25

a case where two faults exist who share the same source and target (Figure 2.10). Writing

both a 0 and a 1 to cell A forces a value into cell B.

writing a 1 in cell A forces
awriteof 1tocell B

cell AQ cell B

writing a 0 in cell A forces
a write of 0 to cell B

Figure 2.10: Unilateral state-coupling fault.

2.3 Faults in the Read/Write Logic

The read/write logic is the model for the bitlines, sense amplifiers, bitline precharge logic,
column mux, write buffers, and data out lines in the memory array (Figure 2.2). The job of
this logic is to write data into memory and to read data back out from memory. This sec-
tion describes the different faults that are being targeted in the read/write logic and how
they can be mapped onto faults in the memory cell array. The main idea is that while faults
in the memory cell array will be manifested as individual memory cell faults, faults in the
read/write logic will be manifested as a group of memory cell faults in a bit (i.e., a column
of faults, a partial column of faults, or a group of columns of faults). A fault in a memory
cell affects only that cell; a fault in the read/write logic will affect the group of memory
cells that are connected to the faulty logic.

A general diagram of the read/write logic with the faults under consideration is shown
in Figure 2.11 [5]. The numbered circles represent the faults. An important concept is that
of the scope of a fault. The scope of a fault is the set of memory cells that are influenced
by that fault. For instance, a fault on bitline 1 (as in #2 and #3 in Figure 2.11) will affect all
the memory cells that lie along that bitline; therefore, the scope of this bitline 1 fault is the
column of memory cells that lie along bitline 1. The scope of a sense amp fault are the two

columns of memory cells that lie along bitline 1 and bitline 2. In general, the positioning

26

of the sense amps, bitline precharge, column mux, and write buffer, as well as the level of
multiplexing that occurs (and therefore the scope of faults in the mentioned components)
varies upon implementation, but they are conceptually similar to the model presented
here. Though the individual memory cell faults that occur within the set of cells in the
scope of the fault is dependent on the implementation, the idea that these faults will occur
within a certain set of memory cells (the scope) is an important first step in diagnosis
because it begins to narrow down the set of possible faults. The section on testing will then
show how, by choosing the proper test patterns, the set of possible faults can be further

narrowed down.

1 bitline
precharge
bitline/lvg bitline 2
D .
2 =
g £
1] B.
3 5
>
—
Write write [\
! 5
Data buffer oLk
P 4 D |2
ol
6 8 \:(—J E
9 sense
amp. 10
' —— -T-J-E,-» bitn- 1
4P bitn
- P bitn+1
_—— g bitn+2

Figure 2.11: Faults in the read/write logic
As mentioned in an earlier section, pattern sensitive faults are better characterized as a

means of exposing faults in the read/write logic rather than as actual faults themselves.

Depending on the implementation of memory, faults in the read/write logic are complex

27

and their behavior is not entirely understood. However, certain patterns of data in memory

or certain patterns of accesses to memory can expose the faults.

2.3.1 Bitline Precharge Faults
The bitline precharge logic is responsible for pulling up the bitlines before each mem-

ory read. The scope of the bitline precharge faults (#1) is one column of memory cells. A
fault in the bitline precharge logic (#1 in Figure 2.11) can manifest itself as a temporary
stuck-at fault in the memory cells in the scope of the bitline precharge [5]. These cells will
be stuck-at the value of the previous write. Figure 2.12 shows the values of the true and
complement wires during two consecutive memory access to two memory cells that share
the same precharge logic. With a working precharge, the complement wire is precharged
high after the write operation so that a successful read of a 0 can occur (Figure 2.12a).
Assuming that there is a faulty precharge on the complement wire, the complement wire is
not precharged correctly after the write operation, and an incorrect read of a 1 results

(Figure 2.12b). Notice how this pattern of memory accesses serve to expose the fault.

twritt:]lA & read I(I)B writt:llA rea(}r 1 (inst;:lag of 0)
O CEl om ce om
VDD m VDD to cel cel
truec s———
complement s _
GND working precharge GND
faulty precharge
(a) working precharge (b) faulty precharge

Figure 2.12: Bitline precharge fault on complement wire

2.3.2 Bitline Faults
The bitline is a wire that carries true and complement data to and from memory cells.

There are essentially three types of bitline faults. The first two are bitline faults that only
affects one bitline (#2 and #3 in Figure 2.11). This could be caused by a break in either the
true or complement wire of the bitline (#2 in Figure 2.11) or a short between the true and
complement wires of the bitline (#3 in Figure 2.11). The scope of this fault is the set of

memory cells that lie along this faulty bitline. The specific details of how these faults will

28

manifest themselves depend on the implementation to some extent, but the idea that faults
will manifest themselves within the scope of the faulty bitline is still useful.

For instance, with a bitline break in an implementation with the bitline precharge on
the same side as the column muxes, it is possible that the memory cells before the break
(i.e., closer to the sense amps) will still function properly. However, the cells after the
break are inaccessible and will all exhibit a partially non-deterministic fault
(Figure 2.13a). This figure demonstrates how a cell with a partially non-deterministic fault
can be successfully read from and written to from one side (complement), but not from the

other (true).

true complement true complement true complement true complement
cell A cell A cell A cell B

0 state 0 1 1 state 1 0 1 state 1 0 0 state 0]

1 1 1 0 1 0 0 1
precharge logic, precharge logic, precharge logic, precharge logic,
column mux, column mux, column mux, column mux,
sense amps sense amps sense amps sense amps

(a) fault #2, (b) fault #4
partially non-deterministic fault coupling fault

Figure 2.13: Bitline faults
With the second type of bitline fault, a short across the true and complement wire of

the same bitline, both wires will always be at the same value. The memory cells will be
unable to decide what value is being written and the sense amplifier will be unable to
determine the value being read. Therefore, this is a non-deterministic fault.

The third type of bitline fault is a short across different bitlines (i.e., #4 in Figure 2.11,
a short between a complement wire of bitline 1 and the true wire of bitline 2). The scope of
this fault is set of cells along the two bitlines involved. This fault will manifest itself as
two columns that are coupled to each other. As demonstrated in Figure 2.13b, a write of a
1 to cell A will force cell B to a 0 and a write of a O to cell B will force cell A to a 1. This

pattern of data in the memory will cause the fault to be exposed. Note that the layout of the

29

memory may be different from that shown in Figure 2.13b. There may also be the case
where the short lies between a complement and a complement or between a true and a
true. The coupling faults need to be changed accordingly, but the scope of this fault is still

the same

2.3.3 Column Multiplexor Faults
The column multiplexor is responsible for selecting between bitlines (i.e., between bit-

line 1 and bitline 2 in Figure 2.11). An example of how the column multiplexor might be
designed and some of the possible faults is shown in Figure 2.14. In general, the scope of
a column multiplexor fault is the set of memory cells that lie along the bitlines which are

inputs to the faulty column multiplexor.

2
1
bitline 1 bitline 1 bitline 2 bitline 2
true complement, true complement
1
\ '/.h\ ;’
. passh fpass /
bitline 1 ‘gite gate
select < —
- pass| |pass
bitline 2
ate ate
select g &
column
multiplexor
true complement

out out

Figure 2.14: Column multiplexor faults
One type of fault that might occur is if one of the pass-gates is stuck open (#1 in

Figure 2.14). In this case, data going down the true side of bitline 1 will never go through
the pass-gate. The complement side will still work, so this will cause a partially non-deter-

ministic fault all along bitline 1.

Another type of fault is if a pass-gate is always stuck-closed (#2 in Figure 2.14). In this
case, regardless of which bitline has been selected, data will always pass through from the
bitline 1 complement wire. There are two possible faults. The first fault is that bitline 1 is

state-coupled to bitline 2. All writes to bitline 2 will force a write to bitline 1. The second

30

fault is a partially non-deterministic fault in bitline 2. During a read of bitline 2, the faulty
pass-gate in bitline 1 (#2) will pass the value of the bitline 1 complement wire to the com-
plement out wire. When the bitline 1 complement wire is trying to pass conflicting data

from the bitline 2 complement wire, a fault can occur. The result is non-deterministic.

2.3.4 Data-in Faults
The write buffer is the component responsible for passing write data to the memory

cells. If the data-in logic has a fault (#6 in Figure 2.11), the scope of this fault is every cell
whose data is written by this logic (i.e., all the memory cells that lie along bitlines 1 and 2
in Figure 2.11). Therefore, a fault that exists in the data-in logic will cause all the memory
cells along bitlines 1 and 2 to experience the same faults. For instance, if the write buffer

is stuck-at 0, all memory cells in this bit will be stuck-at 0.

2.3.5 Sense Amplifier Faults
Faults #7, #8, and #9 in Figure 2.11 are all considered sense amplifier faults. Either the

inputs to the sense amplifier (#7, #8) or the sense amplifier itself (#9) has a fault. The
sense amplifier takes a true and complement wire and decides whether the memory cell
being read is a 0 or a 1. The scope of sense amplifier faults is the set of all memory cells
which are read with that sense amplifier. This is a fault that will cause all the memory cells
in this bit to experience the same fault; if the sense amplifier has a stuck-at O fault, all
memory cells will exhibit a stuck-at O fault. The sense amplifier is sensitive to the noise of
neighboring sense amps. A fault may occur due to this noise. This fault may be manifested

if all sense amps are trying to read the same value, all 1s for example.

2.3.6 Data-out Faults
There are two types of data-out faults. In the first case, the data-out logic exhibits a

stuck-at fault. This fault manifests itself as a bit whose cells are all stuck-at 1 or stuck at 0.

The scope of this fault is the set of memory cells in the bit.

31

The second type of data-out fault is a short between two output wires (#10 in
Figure 2.11). The scope of this fault is the set of all memory cells whose value are read
through those two wires. In Figure 2.11, the scope is set of memory cells along bitline 1
and bitline 2 for both bit n and bit n-1. This fault is only manifested if bit n and bit n-1 are
different values. In this case, one of the values will be coupled to the other. If they are both

1s or both Os, the fault will be masked.

2.4 Faults in the Address Decoder

The address decoder is the model for the row decoder, wordlines, bitlines, and column
decoder (Figure 2.2). The address decoder is responsible for translating the lower order
bits of the address into a particular choice of a wordline (row decoder) and for translating
the higher order bits of the address into a particular choice of a bitline (column decoder).
In this fashion, for any bit of data, a unique memory cell is accessed for each address.
Faults in the address decoder all involve incorrect mapping of addresses to memory cells.
As demonstrated by van de Goor, there are four basic types of logical address decoder

faults [2] (Figure 2.15).

address X cell X address X cell X address X cell X address X cell X
address Y cell Y address Y cell Y address Y cell Y
(a) fault A (b) fault B - (c) fault C (d) fault D

Figure 2.15: Logical address decoder faults
However, real address decoder faults generally affect all memory cells along a particular

wordline or bitline. Therefore, the “cell X (Y)” labels in Figure 2.15 can be replaced with
“wordline X (Y)” for row decoder faults and “bitline X (Y)” for column decoder faults. In
reality, this is how the faults happen; an incorrect wordline or bitline is selected, or the

correct wordline or bitline is selected, but for the wrong address. This will cause all the

32

cells along these wordlines or bitlines to appear faulty. An example of how each of these
faults might physically occur in a row decoder is shown in Figure 2.16. The design of this
row decoder is one of the simplest decoders presented by Weste and Eshraghian[4]. Note
that there are a variety of possible decoder designs. This further illustrates why it is easier

to use a logical fault model rather than a physical fault model.

Fault B: Fault A:
address = 2 e—]| wordline[2]
: address = 3 &—| |—e wordline[3]
address =0 wordline[0] \ /
D—\‘— wordline[3]
Fault C:
address =3 e—pp»o wordline[3] D— wordline[2]
address =2 wordline[2]
).._ wordline[1]}
address = 1 |-e wordline[1]
address = 0 }-e wordline[0] » wordline[0]
\ VDD
Fault D:
f o]
-

address[1] address[0]

-

address =0 Z wordline[0]
address = 1 o wordline[1]

Figure 2.16: Physical address decoder faults

In general, the address decoder logic is shared across many and sometimes all bits. To
recap, the scope of memory cell array faults can be either one cell or a pair of cells. The
scope of read/write logic faults can be a set of memory cells from the group of cells that lie
within one bit. The scope of address decoder faults, because the address decoder is shared
among different bits, can be from the set of all memory cells (Figure 2.17). This is not to

say that the faults will exist everywhere: an address decoder fault might result in a row of

33

faults across all bits or it might result in a column of faults that exist in the first column of

every bit.

| bitO | bit1 | --- | bitn |
57 8
||

memory cell array faults
y y N

read/write logic faults.
address decoder faults

Figure 2.17: Range of possible scopes of different faults

2.4.1 Row Decoder Faults
The row decoder is responsible for selecting a mapping of addresses to a particular

wordline. A row decoder fault results in an incorrect wordline being activated or the cor-
rect wordline is not activated. The scope of faults will be the set of memory cells along the
faulty wordline(s).

Fault A (Figure 2.15a) results in a row of memory cells (by which I mean the set of
memory cells that lie along one wordline) which all exhibit non-deterministic faults. The
cells along wordline X are completely inaccessible.

Fault B (Figure 2.15b), though a different fault, is indistinguishable from fault A. In
Fault B, address X is inaccessible and thus non-deterministic. Therefore, even though the
cells along wordline X are coupled to the cells along wordline Y, this coupling fault is
masked because of the non-deterministic fault. Similarly, reads from address Y will not
show a problem because the cells along wordline X and along wordline Y will always be
at the same value.

Fault C (Figure 2.15c) results in bilateral state-coupling between the cells along word-
line X and along wordline Y. All accesses to address X and to address Y activate the same

wordline. A write of a value in address X will appear in a read of address Y and vice versa.

Fault D (Figure 2.15d) results in two faults. In one row of faults, the cells accessed by

address X all exhibit a unilateral coupling fault with the cells accessed by address Y. All

34

writes to cells accessed by address Y will force a value to cells accessed by address X. The
row of cells accessed by address Y are more difficult to test. In the event that cell Y and
cell X have identical values, no errors will be detected. However, in the case that cell X
and cell Y have different values, the sense amplifier will be unable to decide the result of a
read of address Y. This is equivalent to a non-deterministic fault, though only when the

data in cell X and cell Y are different.

2.4.2 Column Decoder Faults
The column decoder is responsible for selecting a mapping of addresses to a particular

choice of a bitline. Therefore the scope of column decoder faults is the columns of mem-
ory cells which are influenced by that choice of bitline. Note that this is different from the
column mux faults in the read/write logic. While the column mux faults only influences
one particular bitline (e.g. bitline 1 of bit 5), column decoder faults influence a bitline over
all bits (e.g. bitline 1 across bits 1 through n). Note that these faults are just like the row
decoder faults, except that instead of a row of faults, there are columns of faults.

Fault A results in a certain column of memory cells (by which I mean the set of mem-
ory cells that lie along one bitline) across many bits which are inaccessible and thus
exhibit non-deterministic faults. As an example, the scope of fault A might be that bitline
1 is non-deterministic for all bits.

For the same reason as that mentioned in section Figure 2.4.1, fault B is indistinguish-
able from fault A. The scope is one column of non-deterministic faults across all bits.

Fault C results inAbilateral state-coupling between the cells along bitline X and along

bitline Y. The scope is thus two columns of faults across all bits.

Fault D results in two faults. The cells along bitline X, across all bits, will exhibit a
unilateral-lateral state-coupling fault with the cells along bitline Y. Testing the column of

cells along bitline Y is further complicated because in the event that cell Y and cell X have

35

identical values, no errors will be detected. However, in the case that cell X and cell Y
have different data, the sense amplifier will be unable to decide the result of a read of
address Y. This is equivalent to a non-deterministic fault, but only when the data in cell X

and cell Y are different. The scope is two columns of faults across all bits.

2.4.3 Wordline Faults
The wordline is the wire that connects the row decoder to the pass-gates of the mem-

ory cells. The faults being targeted are wordline breaks and wordline stuck-at faults.

In the case of wordline breaks, all the rows of memory cells beyond the break away
from the row decoder will be inaccessible and thus non-deterministic. The memory cells
before the break and closer to the row decoder will still function normally. Unlike a regu-
lar row decoder fault, the wordline fault only occurs over some subset of all the memory

cells that lie along that wordline.

Assuming that the logic is active high, when a wordline is stuck-at O, that particular
wordline is never active. This is equivalent to fault A in the decoder logic (see
Figure 2.16). A wordline that is stuck-at 1 is always active. This is a special case of fault
D. If a wordline X is stuck-at 1, then regardless of what other wordline should be
accessed, wordline X will also be active. This is demonstrated in Figure 2.18. In the case
the logic is active low, the same reasoning leads to a correspondence between wordline
stuck-at 1 faults and fault A. Similarly, wordline stuck-at O faults correspond to the special

case of fault D shown in Figure 2.18.

36

address V wordline V
address Wi wordline W
address X @————#»>@ wordline X
address Y wordline Y
address Z wordline Z

Figure 2.18: Wordline stuck-at 1

2.4.4 Bitline Select Faults
The bitline select wire is the wire that connects the column decoders to the column

multiplexors. The targeted faults in the bitline select wire are bitline select breaks and bit-
line select stuck-at faults.

In the case of a bitline select break, the column multiplexors before the break will
behave correctly, but the column multiplexors after the break will be stuck open and thus
non-deterministic. Again, unlike a fcgular column decoder fault, the bitline select fault
only occurs over some subset of the memory cells that lie in the bits away from the col-

umn decoders and on the other side of the break.

The description of the bitline select breaks is exactly identical to that of the wordline
breaks. Assuming that the logic is active high, when a bitline select is stuck-at 0, that par-
ticular bitline select is never active. This is equivalent to fault A in the decoder logic (see
Figure 2.16). On the other hand, a bitline select that is stuck-at 1 is always active. This is a
special case of fault D. If a bitline select X is stuck-at 1, then regardless of what other bit-
line select should be accessed, bitline select X will also be active. This is demonstrated in

Figure 2.18. In the case the logic is active low, the same reasoning leads to a correspon-

37

dence between bitline select stuck-at 1 faults and fault A. Similarly, bitline select stuck-at

0 faults correspond to the special case of fault D shown in Figure 2.18.

address V bitline selector V
address Wi bitline selector W
address X @——»>@ bitline selector X
address Y bitline selector Y
address Z bitline selector Z

Figure 2.19: Bitline select stuck-at

2.5 Faults that are not caught

There are some faults that are not considered in this fault model. They may not be
caught and their diagnosis will not be described. A major group of faults that are not
caught are dynamic faults. These faults are time dependent and, though they will show up
as functional faults, they cannot be described properly under the fault model outlined in
this chapter because these faults do not take timing into account [7]. Examples of these
types of faults are recovery faults, retention faults, and imbalance faults [7].

A second type of fault that is not caught is a coupling fault between the same address
of different bits. In the memories considered in this study, on a read of an address X, an
entire word of many bits is read out simultaneously. On a write of an address X, an entire
word of many bits is written in simultaneously. The bits accessed by address X are
accessed simultaneously; therefore, if coupling faults exist between these bits, then they
may not be detectable. The bits may not be accessed at the same exact time and there is no
way of guaranteeing that the source cell for the coupling fault will be accessed before the

target cell. One cannot selectively decide which bit to access first.

38

Chapter 3

Test

3.1 Introduction

Testing is the process of exercising and evaluating a system to determine whether its
behavior is correct. The goal is to determine whether the final manufactured chip behaves
according to its design. There are two main forces driving the design of test algorithms.
The first is a desire to keep the tests as short as possible. As memories continue to increase
in size, so too does the time it takes to conduct the test. Furthermore, there is a fixed
amount of memory that the test machinery has; the more memory each test takes up, the
less memory is available for other tests. The second major force is a desire to maintain or
increase test coverage. Traditionally, there have been a number of industry test algorithms
which were not based on a fault model [6]. These traditional tests are generally longer than
the newer algorithms being developed. However, there is always the possibility that
changing the test algorithm may decrease the test coverage unless the test algorithm has
been empirically tested and it’s fault coverage compared with that of the traditional tests.
There may be a trade-off between the test’s length and the test’s ability to catch all faults.
For the purpose of this project, three test algorithms were chosen: unique address rip-
ple word test, word line stripe test, and checkerboard test. As a project that was performed
in an industrial setting, this project uses algorithms that have evolved from the traditional
tests. In academia, papers listing a number of more efficient tests have been proposed (for
instance, in [2] [3] [4]), but they do not catch some of the faults targeted in this project.
For instance, none test for a destructive read fault. Part of the goal of this thesis is to use
these existing tests and decide how they can be used or modified for diagnosis of memory

arrays.

39

The chapter begins by describing the three test algorithms. This is followed by a dis-
cussion on the implementation of these algorithms and the issues that arise when they are

used for diagnosis.

3.2 The Tests

The test algorithms that have been chosen for this project are the following three march
tests: unique address ripple word test, word line stripe test, and checkerboard test. The
diagnostic capabilities of these tests will be discussed in the following chapter. This sec-
tion begins with an overview of march tests and an example of the type of memory that

these tests might be performed on.

Every march test is composed of march elements. Each march element is composed of
a series of operations that are done to every memory cell before proceeding to the next
operation [6]. These operations can be a combination of reading a O (r0), reading a 1 (rl),
writing a 0 (w0), or writing a 1 (wl). Each march element can proceed in a forward direc-
tion through all the cells (M or in the opposite reverse direction (J). Note that the exact
order of the addresses is not important, so long as the order of the cells going in the for-
ward direction is exactly opposite of the cells going in the reverse direction.

Four bits from a sample memory is given in Figure 3.1. This memory is the example
that will be used for discussions in this thesis. The memory shown is for a cache which is
two way associative. Furthermore, each way is separated into low and high addresses.
Low addresses run from 0 (bottom) to 7 (top) while high addresses run from 8 (bottom) to
15 (top). The individual memory cells are labelled with their respective addresses. The
highest order bit of the address is used to select between the low and high addresses. The

lower order three bits are used to select one of the eight rows.

40

Ideally, a march test would proceed through each of the individual addresses, one bit at
a time. Practically, however, the same address in every bit is accessed simultaneously.
Memory is generally designed to retrieve a complete word from an address y (for exam-
ple, a word at way B address 13 corresponds to the shaded boxes in the Figure 3.1), and

therefore retrieves all bits simultaneously.

wayAéwayB wayAgwayB wayAiwayB wayAgwayB
15{ 7 7 415| 7 (15| 7 15| 7 (157 J15| 7 |15|7
14| 6 614 614|614/ 6|14|6 J14| 6 |14|6
13| 5 SH13| S8l S 13| 5 S13|5 5
...124 40121 4(12|14 Q12| 4 (12|4 12| 4 4 T
113|113 411 3 (11| 3 11| 3 |11|{3 J11|3 3
10 2 |10 2 §10{ 2 |10| 2 §10(2 |10| 2 10| 2 2
91 19|19 1|9[19(1]|9]|1}9]1 1
8(0|18|08(0|18|08(0|8|08(0|8|0
Bit n-1 Bitn Bit n+1 Bit n+2

Figure 3.1: Example of memory

As mentioned earlier, it is not important that march tests follow the numerical order of
the addresses, just that march elements that go forward (1) proceed in the opposite order
from march elements that go backwards ({}). For this project, a march element that goes
forward (T) starts at the lower left corner of each bit, address 8 of way A high, works up
the way A high column to address 15, then jumps to address O of way A low and works up
the way A low column to address 7. The test then proceeds in a similar manner up the way
B high column and finally up the way B low column. The last memory cell addressed
going forward (T) is the top cell in way B low, address 7. A march element going in the
backwards ({) direction goes in the reverse order, starting from the top cell of way B low
(address 7), working down the way B low column, down the way B high column, down
the way A low column, and finally down the way A high column. The last memory cell

addressed going backwards ({) is the bottom cell of way A high (address 8).

41

3.2.1 Unique Address Ripple Word Test
The unique address ripple word test’s algorithm is presented below. Each of the num-

bered steps correspond to a march element. For example, in step 3, this tests proceeds in a
forward (1) direction through each address. All the cells at each address (remembering
that the same address of every bit is accessed simultaneously) is read (with a value of 1
expected), written with a 0, read again (with a value of O expected), and finally written

with another 0. Once these four operations have finished, the test proceeds to the next
address (in) order).

1. Two0

2. Trowl1riwl
3. Tr1wOrOw0
4. Tr0

5. dwl

6. lr1wOrow0
7. lrowlriwl
8. Ur1

3.2.2 Word Lines Stripe Test
The word line stripe test’s algorithm writes rows of Os and 1s to consecutive addresses.

Data will be written into the memory array such that we end up with the pattern shown in

Figure 3.2.

s
-2

O O = O} = | O | low

H
-~

-
o|—|o|—|o|=|c|=|iw >
B |o|—|o|—|o|—=|o|~|high §

O O'—‘OHO-—‘iéw__?__
e a i

o~ o =o|—[Oi—iw w

o|—|o|=|o|=|l=]high

[]

o|—|o|=]|o|—|oi|high §
Ojr=| O =1 O} =] O i high

-1 & Bit

o)
=
=}

Figure 3.2: Result of word line stripe test
This data is then read and the opposite pattern (where in Figure 3.2, the Os are replaced

with 1s and the 1s replaced with 0s) is written into memory. In the last step, this new data

42

is read out. For the given memory implementation, this march test is shown below:

1. TwO (even addresses) and w1 (odd addresses)
2. Tr0 (even addresses) and r1 (odd addresses)
3. Tw1 (even addresses) and w0 (odd addresses)
4. fir1 (even addresses) and r0 (odd addresses)

3.2.3 Checkerboard Test
The checkerboard test writes a physical checkerboard pattern of Os and 1s into mem-

ory (see Figure 3.3).
wayAéwayB wayAéwayB'
55 5iz|5i5i5i3
11joi1{of1]/0l1]0
0/1/0/130}{11011
110/1/0§1]0/1]0
.o 0101'0101 e
ll o/1/of1]o]1]0
o/1/0/1§0]1/0]1
{11o0/1/0§1{0/1]0
0i1:0 1|O 1;0i1
Bit n-1 Bitn

Figure 3.3: Result of checkerboard test
This pattern is read twice and then the opposite pattern (where in Figure 3.3, the Os are

replaced with 1s and the 1s replaced with Os) is written into memory. In the last step, this

new pattern is also read out twice. For the given memory implementation, this march test
is shown below:

1. 'woO (write Os to even high and odd low addresses) and w1 (write 1s to even low and
odd high addresses)

2. Tr0r0 (read Os twice from even high and odd low addresses) and rlrl (read 1s twice
from even low/odd high addresses)

3. Tw1 (write 1s to even high and odd low addresses) and w0 (write Os to even low and
odd high addresses)

4. irirl (read 1s twice from even high and odd low addresses) and rOrQ (read Os twice
from even low and odd high addresses)

Note that this algorithm will vary depending on the implementation. The goal is to

write a “physical” checkerboard pattern into memory. The algorithm shown above is not

identical for all memory implementations. For this memory implementation, reading

43

address 0 in Figure 3.3 yields a word that is all Os. If there is only one way and only eight
addresses in memory (all in the same column), reading address O could yield a word that is

010101.... An example of this type of memory is shown in Figure 3.4.

_____ Q
» e ‘ 01 * e
1§oj 110
0§ 11041
1Jof 1o
of 1§ 0} 1
— — i
)&t
A& a s

Figure 3.4: Result of checkerboard under alternative memory implementation

3.3 Implementation

The test algorithms were implemented as assembly programs. As mentioned earlier, there
is a desire to keep the tests short so that the tests take up less tester buffer memory. This
project involved the test and diagnosis of memory arrays embedded in a microprocessor.
One way of shortening the tests was to take advantage of the microprocessor’s functional-
ity: these tests were run with the cache enabled. This way, the test program can be fetched
into the instruction cache and the test run from within the processor rather than with con-
tinuous explicit direction by the tester (see Appendix A for data on efforts to shorten the
tests on this project).

March tests can be used, not just to catch faults, but to also diagnose faults. This is
accomplished by examining the fault signature of a fault due to the march tests: How does
the march test fail due to a given fault? Fault signatures will be described in more detail in
the next chapter. In order for the tests to support diagnosis, they have to be written to sat-
isfy some requirements. First, there are requirements that must be met for the results of the

tests to be observable. Secondly, there are requirements that must be met in order to satisfy

44

the tester equipment. The results of this test can then be used to generate a failure bitmap.

A failure bitmap is a graphical representation of the memory with all the faults marked.

3.3.1 Observability
Diagnosis cannot occur unless the results of the tests are observable; the test must gen-

erate a complete picture of what is happening internally. As the test marches through the
addresses writing and reading data, the results of each read must be put on the pins of the
chip where it can be monitored off-chip. Furthermore, tests written for diagnosis cannot
merely halt once an incorrect value is read from memory. These tests need to continue to
run in order to present a complete picture of what is happening in the memory. Lastly, the
tests have to provide a unique label for each read in order to identify what address has
been read and what step of the test is being performed. Note that one way of doing this is
to know which clock cycle corresponds to which address of which step of the test. How-
ever, this is complex. An easier solution is to present this information to the output pins of

the chip as a tag along with the results of the read.

In this project, every read of a memory cell was presented to the output pins as a write
to main memory. No comparison is ever done; regardless of whether the program is read-
ing a0 or a 1 from a memory cell, the output is presented to the bus without any decision-
making on the part of the program as to whether the value read is correct or incorrect. The
memory cell being read and the step number were encoded in the address of this write to
main memory. This information will therefore appear off-chip as a memory request that
the tester can monitor. For instance, for the two way, 16 address memory in Figure 3.1,
this information can be encoded as shown in Figure 3.5. Bits 8:6 provide information

about which step of the test is being performed. Bit 5 is the read number (the first or sec-

45

ond read of the step given by bits 8:6). Bit 4 is the way. Bits 3:0 correspond to the address

(from O to 15).

W _/\/_/
step number address

read
number

way

Figure 3.5: Information encoding
3.3.2 Tester Idiosyncrasies
Most general purpose testers have certain idiosyncrasies. Testers only know what data

to apply on the pins of the chip and what data they should expect off the pins of the chip.
The exact timing and voltages of this data can be very tightly controlled. However, the
tester is not intelligent in the sense that it cannot adjust the data it applies to the chip based
on the data it receives from the chip. To generate tester patterns, the test (a program) is
simulated on a “good” model of the chip. The bus traces from this simulation are used by
the tester as the signals it applies to and as the signals it expects from the chip. Therefore,
if the program branches to X on the “good” model, but, due to a fault in the chip, the pro-
gram branches to Y on the chip being tested, the tester will continue to supply signals to
the chip as if a branch to X occurred because that is what happened on the “good” model.
A problem is detected when the tester notices that the chip’s outputs mismatches with the
“good” model outputs. This is adequate for go/no go testing where on the first unsuccess-
fully branch on the chip, the tester will report a mismatch and stop. However, for diagno-
sis, further information is needed from the rest of the memory array in order to build a

complete failure bitmap of the memory.

These tests were written so that regardless of the number of fails, the code does the

same thing. This is guaranteed if the code is branch-free. As noted, no comparisons are

46

done in the tests. The values are merely read out of the memory array and placed on the

bus.

3.3.3 Failure Bitmaps
Once the test algorithm has been performed on a memory array, it is useful to generate a

failure bitmap. A failure bitmap is a graphical depiction of the memory array (for instance,
as in Figure 3.1) with the faults shown right on the array. The next chapter will show how
the different faults appear (their fault signatures). By matching the generated failure bit-

map with the fault signatures of the known faults, a diagnosis can be made.

The failure bitmap can be generated if the result of the test is observable. In this
project, a tag was associated with each memory read (Figure 3.5). In this way, every mem-
ory read can be-associated with an address and bit in the memory array. Furthermore, the
tag provides information about the step number of the test being performed. Knowing the
locations and step numbers of the test for each fault gives enough information to generate

a diagnosis. A diagnostic tree of the decision making steps will be given in Chapter 5.

47

48

Chapter 4

Diagnosis
4.1 Introduction
The goal of diagnosis is to discover the reason behind a system misbehavior: where did
the fault occur and why? As a first step, this thesis outlined the possible faults that were
being considered in the fault model (see Chapter 2). Next, it introduced the tests that were
being used (see Chapter 3). This chapter provides a description of what tests catch the
faults and how these faults manifest themselves in these tests. Fault manifestation is that
fault’s fault signature. The two components of a fault signature are the locations in the test
where the fault manifests itself (e.g. reading the wrong value in the first read of step 2) and
the locations in memory where the fault manifests itself (e.g. all cells of way A of bit 3). If
different faults can be shown to have different fault signatures (i.e., manifest themselves
differently), then knowing each fault’s fault signature is all that is required to diagnose that
fault. Once these fault signatures have been understood and cataloged, a decision making
procedure can be created to make a diagnosis based upon the fault signature. This decision
making procedure is called a diagnostic tree and will be described in the Conclusion. This
thesis assumes that faults occur singly. The case where multiple faults occur in the same
memory array adds extra complexity to both test and diagnosis and will not be considered
here.

Note that the emphasis of this thesis is on diagnosis and not on test. Therefore, the
description of what tests catch the faults is not directed towards the most efficient tests, but
tests that allow for diagnosis. The fact that a test allows for the diagnosis of a certain fault

implies that the tests can catch the fault.

49

As a brief review, Figure 4.1 presents a list of the faults considered in the fault model
(from Chapter 2). Note that diagnosis assumes that these are the only faults that can exist.
The goal is to attribute a different fault signature to each fault. However, there is a danger
that an unlisted fault exists which manifests itself with the same fault signature as one of
the listed faults. For test, an unknown fault is not a problem so long as this fault can be
caught with the existing test. For diagnosis, an unknown fault is a problem because it may

potentially have the same fault signature as a known fault, causing an incorrect diagnosis.

Memory Cell Array Faults:
Stuck-at Faults
Transition Faults
Coupling Faults
Non-Deterministic Faults
Destructive Read Faults

Read/Write Logic Faults:
Bitline Precharge Faults
Bitline Faults
Column Multiplexor Faults
Data-in Faults
Sense Amplifier Faults
Data-out Faults

Address Decoder Faults:
Row Decoder Faults
Column Decoder Faults
Wordline/Bitline Selector Faults

Figure 4.1: List of Faults

4.2 Fault Detection and Manifestation: Memory Cell Array

There are five types of memory cell faults: stuck-at faults, transition faults, coupling
faults, non-deterministic faults, and destructive read faults. As mentioned in Chapter 2, the
scope of these types of fault is just a single cell: all these faults manifest themselves as sin-

gle cell fails.

50

4.2.1 Stuck-at Faults
Stuck-at faults are easy to catch. The tests only need to be written such that a value of

both 1 and O are written to and read from each cell. A unique address ripple word test is
adequate to test for all stuck-at faults. The circled reads in Figure 4.2a and Figure 4.2b are
where mismatches occur for these tests in the event of a stuck-at 0 and a stuck-at 1 fault

respectively. The scope of this fault is a single cell (see Figure 4.2c).

1. Two

210 w@m
3. @NOF wO
4. ¥

5. dwi

6. 4riwO0rQwO
7. Lo @«/1
8.

(a) S-a-0: All attempts to read 1 will fail (b) S-a-1: All attempts to read 0 will fail

FER RN i G [k

wayAfwayB wayAfwayB wayAfwayB

e oy e o N
5.2 5. 50:2:5:35:3:5:3
2:5:2:3)12:5:2:5)12:2:2:58

Bit n-1 Bitn Bit n+1

(c) fault manifestation: single cell fail

Figure 4.2: Stuck-at fault detection and manifestation
4.2.2 Transition Faults
In order to catch transition faults, each memory cell must undergo a transition high and

a transition low and be read after each transition. This fault is different from a stuck-at in
that the cell may, for example, start with a value of 1, transition to 0, and then stay stuck-at
0. A stuck-at O fault would always be 0. A cell with a transition fault can transition in one

direction but not the other, whereas a cell with a stuck-at fault cannot transition at all.

51

The problem with distinguishing transition faults from stuck-at faults is that the initial
state of the memory cell is not known with any certainty. For instance, if the cell has a
transition fault where it is unable to transition high but already starts in a O state, the fault

will appear identical to a stuck-at O fault.

Moreover, every march test first initializes every memory cell to a value (i.e., step 1 of
the unique address ripple word). A cell with a transition fault can transition in one direc-
tion but not in the other direction. The problem is that this first write may force the transi-
tion. Once a transition occurs, a transition fault cannot be distinguished from a stuck-at
fault. The unique address ripple word test will never be able to distinguish a stuck-at 0
fault from a transition fault where the cell is unable to transition high because it initially
forces all cells to a O state in step 1 (Figure 4.3a). The circled reads are reads where a mis-
match will occur. The ability to transition low may be masked by the first write. On the
other hand, a transition fault where the cell is unable to transition low may be caught, but
only if the initial state of the memory cell is O (Figure 4.3b). As pointed out in the previous
paragraph, if the memory cell starts in a state of 1, the original write would have been
unable to force the transition low and the first read would read a 1 instead of a O (this is

identical to the situation where the cell has a stuck-at 1 fault).

52

As with the stuck-at fault, this fault is manifested as a single cell fail (Figure 4.3c).

this may work
if the initial state of the

(a) Unable to transition high (b) Unable to transition low

wayAEwayB wayAswayB wayAEwayB

s e e b e, §
12:5:215:2:6:2|5:2:5:2
5:2:82:5:2:8)2:8:2:3

high

Bit n-1 Bitn Bit n+1

(c) fault manifestation: single cell fail

Figure 4.3: Transition fault detection and manifestation

4.2.3 Coupling Faults
As pointed out in Chapter 2, three types of coupling faults are being targeted: idempo-

tent coupling faults, inversion coupling faults, and state-coupling faults. Certain patterns
in the test can be used to expose these coupling faults. The source cell which causes the
fault can be triggered by writing a 1 or a 0. Furthermore, we want to trigger the fault in
both the case when we are expecting a 1 and when we are expecting a 0. In this way, all
coupling faults can be caught.

There are thus four different combinations of triggers and expected values. The initial
assumption is that the source cell precedes the target cell. Table 4.1 shows how a test can
be written such that the combinations of triggers and expected values can arise. The two

columns on the left show the combination of trigger and expected value. The columns on

53

the right show the two steps necessary to achieve this combination. As a reminder, TrOw1
means that the memory cells are accessed in the forward direction and that at each mem-
ory cell a value of 0 is read and a value of 1 is written before proceeding to the next mem-
ory cell. YrOw1 is identical to TTrOw1 except that the memory cells are being accessed in a

reverse direction. If the target cell precedes the source cell, Table 4.2 shows how the tests

can be written to expose the four combinations of triggers and expected values.

trigger at | expected value | trigger fault
source at target (step n-1) (stepn) (step n+1)
0 0 i don’t care Iwo Ur0
0 1 fTwi Mriw0 don’t care
1 0 wo frow1 don’t care
1 1 ldon’t care Uwi Un
Table 4.1: Catching coupling faults assuming source cell precedes target cell
trigger at expected trigger fault
source value at target (stepn-1) (step n) (step n+1)
0 0 don’t care fTwo 0
0 1 wi Ur1wo don’t care
1 0 wo Urowi don’t care
1 don’t care fwi fr1

Table 4.2: Catching coupling faults assuming target cell precedes source cell

The reason for bringing up how these different combinations of triggers and expected
values arise is that failures due to the three coupling faults can be thought of as failures in
some set of these combinations. As the simplest case, consider an idempotent fault where
writing a 1 in one cell forces a 0 in another cell. This fault can be caught with a test in
which there is a trigger of 1 at the source and the expected value of 1 at the target. Each of

the four types of idempotent faults have a corresponding test that will expose it:

54

1. writing a 1 in the source cell forces a O in the target cell:
» trigger of 1 in source, expect a 1 in target
2. writing a 1 in the source cell forces a 1 in the target cell:
* trigger of 1 in source, expect a 0 in target
3. writing a 0 in the source cell forces a O in the target cell:
» trigger of 0 in source, expect a 1 in target
4. writing a 0 in the source cell forces a 1 in the target cell:
« trigger of 0 in source, expect a 0 in target
A similar correspondence can be made for inversion faults. Consider the case where writ-

ing a 1 in one cell inverts the state of another cell. It is necessary to check that writing a 1
in the first cells flips the target cell both when a 1 is expected and when a 0 is expected. If
an incorrect value is read in both cases, then the cell exhibits an inversion fault. The two

types of inversion faults and the tests needed to expose them are shown below:

1. writing a 1 in the source cell inverts the target cell:
» trigger of 1 in source, expect a 1 in target
e trigger of 1 in source, expect a 0 in target
2. writing a 0 in the source cell inverts the target cell:
» trigger of 0 in source, expect a 1 in target
» trigger of 0 in source, expect a 0 in target
There are two types of state-coupling faults. In the first type, writing a value, x, in the

source cell will force a second, target, cell to this same value, x. In the second type, writ-
ing a value, X, in the source cell will force a second, target, cell to the opposite value, x. To
catch the first type of state-coupling fault, it is necessary to both write a 1 to the source cell
while expecting a 0 in the target cell and write a 0 to the source cell while expecting a 1.
An incorrect value should be read from the target cell in both cases for this type of state-
coupling fault. The two types of state-coupling faults and the tests needed to expose them

are shown on the following page:

55

1. writing x in the source cell forces x in the target cell:

» trigger of 1 in source, expect a 0 in target

» trigger of 0 in source, expect a 1 in target

2. writing x in the source cell forces X in the target cell:

» trigger of 1 in source, expect a 1 in target

« trigger of 0 in source, expect a 0 in target

The unique address ripple word test contains all the components in Table 4.1 and

Table 4.2. Therefore this test will be able to catch these three types of coupling faults both
when the target cell precedes and follows the source cell of the fault. Furthermore,
because these three types of coupling faults are caught with different combinations of trig-
gers and expected values, they can be uniquely diagnosed. Figure 4.4 shows the fault sig-
nature in the unique address ripple word test in the case of the four types of idempotent

faults. The circled reads are the reads in the test where a mismatch will occur if an idem-

potent fault exists.
1. Tw 1. ftwo 1. Two 1. Two
2. @ 1riwi 2. Trow1riw1 2. Trow1riwi 2. Trow1riwi
3. Tr{wOorowo 3. Orow0 3. TriwOrowo 3. Triworowo
. 1{r0) 4, 4.0 4. fr
5. {wi 5. w1 5. w1
6. {riworowo 6. {riworowo 6. Uriworowo
7. rowiriwi 7. browiriwi 7. 1 riwi
8. Ur1 8. lr1 8.

(a) writingalinx (b)writingaOinx (c) writingaOinx (d)writingalinx

forcesaltoy forcesaOtoy forcesaltoy forcesaOtoy
or or or or

writingaOiny writinga l iny writinga liny writingaOiny

forcesa 1inx forces a 0 in x forces a 1 in x forces a0 in x

Figure 4.4: Fault signatures of idempotent faults

56

Figure 4.5 shows the unique address ripple word test with symptoms of the inversion

faults. Again, the circled reads indicate where an incorrect value is read.

1. TwoO 1. TwO 1. Two

2. frowiriwi 2. frowirtwt 2. Trowiriwi
3. TFworowo 3. Ti{worowo 3. @wmwo
4.1r0 4.1r0 4,

5. 4wt 5. L1 5. w1

6. Orowo0 6. {riworowo 6. riworowo
7. UrQwiriwi 7. Srowiriwi 7. @MHM
8. 4 8. Ur1 8.

(a) writinga linx (b) writingaQOiny (c) writing a0 in x
inverts y inverts x inverts y
or
writinga liny
inverts x
Figure 4.5: Fault signatures of inversion faults

Finally, Figure 4.6 shows the unique address ripple word test exhibiting the fault signa-
tures of state-coupling faults. The circles indicate places in the test where an incorrect

value is read.

1. TwoO 1. wo
2 1riwi 2. Trow1riwi
3. Orow0 3. TriwOrowo
4. 1ir 4.1Mr0
5. dwi 5. w1
6. Ulriworowo 6. 0rOow0
7. brow1riwi 7. 1riwi
8. r1 8.
(a) writing a value in x (b) writing a value in y

forces y to the same forces x to the same
value value

Figure 4.6: Fault signatures of state-coupling faults
As with the other memory cell array faults, coupling faults all manifest themselves as

single cell fails (see Figure 4.3c). The main idea of Figure 4.4 through Figure 4.6 is that
each of the three coupling faults (idempotent, inversion, state-coupling) have different

fault signatures. This allows them to be distinguished from each other and thus diagnosed.

57

4.2.4 Non-Deterministic Faults
Non-deterministic faults are difficult to catch and even more difficult to diagnose.

Depending on how the memory is designed and on the small variations that arise during
manufacturing, the result of a memory cell that has a non-deterministic fault can vary.
This is a result of the fact that an inaccessible memory cell (the usual cause of a non-deter-
ministic fault) will not drive the sense amplifier with a value. Stated another way, the
sense amplifier will be given the same value on both inputs. In this project, the sense
amplifiers were designed without a preferred state. If the memory is manufactured per-
fectly, then the result of a non-deterministic memory cell will be random. On the other
hand, if the sense amplifier has a preference, a non-deterministic fault may appear as a
stuck-at 1 or a stuck-at 0. To qualify this even more, this preference may change depend-
ing on how much noise exists in the system.

Different memory implementations yield different manifestations of non-deterministic
faults. Therefore, to properly understand the diagnosis of this fault (and even whether this
fault can be uniquely diagnosed) for a particular chip requires an understanding of the
design and implementation of that particular chip’s memory. The fault signature of this
fault is unknown and needs to be determined with experimental data from the actual
implementation of the memory being tested.

The same is true of partially non-deterministic faults. As its name implies, only in cer-
tain circumstances (i.e., only when reading 0’s) does a memory cell with a partially non-
deterministic fault become non-deterministic. In other circumstances, the proper value is

read from the memory cell.

4.2.5 Destructive Read Faults
The way to catch a destructive read fault is to read the same value twice from the same

cell. The first read triggers the fault, and the second read catches the fault. A double read

of both a 0 and a 1 needs to exist somewhere in the test. For instance, the unique address

58

ripple word could be modified such that it can catch this fault (Figure 4.7). Depending on
the type of destructive read fault, either the second read of a O or the second read of a 1
will fail (the circled parts of Figure 4.7). This is also a single cell fail (see Figure 4.3c).
Currently, the unique address ripple word test does not have the double read. However,

this double read occurs in the checkerboard test.

1. Two 1. Two

2. frow1riwi 2. frowiriwi
3. TriwOrowo 3. TriwOrowo0
4. ﬂr 4. ror0

5. 0w 5. 4wt

6. Iriw0rowo 6. {riworowo

7. brow1riwi 7. browd riwt
8. Urirt 8. Ur@

Figure 4.7: Fault Signatures of destructive read faults

4.3 Fault Detection and Manifestation: Read/Write Logic

There are six types of read/write logic faults: bitline precharge faults, bitline faults, col-
umn multiplexor faults, data-in faults, sense amplifier faults, and data-out faults. The
scope of this type of fault is the set of cells or subset of cells from within a single bit or
two adjacent bits. The model for the read/write logic was presented in Chapter 2 (see Fig-
ure 2.9). Note that this model showed the read/write logic for only one way of the two-
way associative memory that is being used as an example. A separate read/write logic

mechanism is being assumed for each way.

4.3.1 Bitline Precharge Faults
The bitline precharge fault was described in the fault model section in Figure 2.10. A

very clear way of exposing this fault is to write some value x, then read the opposite value
x from a cell that uses the same precharge logic. This is demonstrated in Figure 4.8. Note
that cell A and cell B share the same precharge logic. The first command (the write to cell
A) forces the true and complement wires in one direction. To write a 0, as shown in

Figure 4.8a, the true wire is at GND while the complement wire is at VDD. The second

59

command (the read of cell B) expects the true and complement wires to be in the other
direction. In Figure 4.8a, to read a 1 out of cell B, the true wire should be at VDD while
the complement wire is at GND. However, the precharge logic is not working properly

and a value of 0 is read instead.

This pattern of commands (writing x followed by reading x) exists in the unique
address ripple word test and is the reason for the second write in steps 2, 3, 6, and 7.
Figure 4.8a and Figure 4.8b shows how this fault manifests itself in this test. The circled

reads are the reads that will fail.

true we——
complement s

writtla](fA reat}r 0 (instﬁag of 1) twrit?]lA readﬁ:’ (insmle]ag of 0)
VDD to ce! ‘om ce. VDD O Cel m Cc!
GND GND
faulty precharge faulty precharge
1. f'wo 1. Two
2. Trow1riw1 2. ﬂ@1r1w1
3. 0rowo0 3. irtworowo
4. rOro 4. firoro
5. dwi 5. w1
6. Orowo0 6. 4r1wOrowo
7. Drow1riwi 7. @ 1riw1
8. Urir 8. Urim
(a) faulty true (b) faulty complement
precharge precharge

Figure 4.8: Bitline precharge fault: manifestation in the test
Note that the reads fail because a write in the preceding cell (cell A) forces the true and

complement wires in the opposite direction than is required for the read of cell B. The first
circled rl in step 3 (Figure 4.8a) fail<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>