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Abstract

As the complexity of microprocessors continues to increase, so too does the importance of
test and diagnosis. The main goal of this thesis is a diagnostic decision-making procedure.
Before this can be done, a fault model must be defined. For every fault, its manifestation
or fault signature needs to be determined.

In this thesis we take the approach that if every fault can be shown to have a unique
fault signature, then it can be uniquely diagnosed. This fault signature is presented graphi-
cally as a failure bitmap. By applying a set of criteria to the failure bitmap, a diagnosis can
be made.
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Chapter 1

Introduction
Testing is the process of exercising a system and determining whether or not the system

behaves correctly. If the system misbehaves, diagnosis is the further study of the system to

determine the cause of the misbehavior. As the complexity of microprocessors continues

to increase, so too does the importance of test and diagnosis. Though test is a fairly well-

understood topic, there exists very little literature on diagnosis. During manufacturing, test

is the most important component; bad chips need to be identified and discarded. Diagnosis

becomes important when yield becomes low and it is necessary to pinpoint the defects or

family of defects that are bringing down the yield. The purpose of this thesis is to create a

methodology for the test and diagnosis of embedded memory arrays for one implementa-

tion of a microprocessor in the hope that conclusions reached here can be generalized to

different implementations and technologies. At the final step of this thesis, a complete

diagnostic decision-making process (a diagnostic tree) will be described.

This project involved the test and diagnosis of a number of small CMOS SRAM mem-

ory arrays (i.e., the translation look-aside buffer, segment look-aside buffer, etc.) embed-

ded into a modem microprocessor. There were a number of approaches that could have

been taken in this regard. Most of the larger memory arrays on the processor were tested

using built-in self-test (BIST), in which a finite state machine exists on-chip with the abil-

ity to test the arrays. However, the number and size of these smaller arrays did not warrant

the design time nor the chip space for BIST implementation. A second approach was to

use scan techniques, where every latch is connected serially into one or more scan chains

that can then be controlled and observed. However, the amount of time required for scan

in and out of the patterns necessary to test every memory array cell made the scan tech-



nique impractical. The approach for this project was to use functional patterns, whereby

the pins of the chip are driven with stimuli and then observed for responses while the chip

is operating in a functional mode (i.e., as it would normally operate, as versus in a test

mode). Essentially, the test algorithm is run on the chip in the form of a working program.

In general, functional patterns have their own shortcomings: "test pattern generation

and fault simulation require too much time, and the manufacturing test suite would exceed

the limits of parallel tester memory." [8]. However, these shortcomings are surmountable

for the case of memory array testing and diagnosis. Pattern generation is not as much of a

problem for memory array tests because memory is structurally very regular. The fault

simulation time is acceptable because of the smaller size of the arrays under consideration.

Finally, the limit on the tester memory is overcome by running these tests with the cache

enabled. In this way, the tests can be fetched into the cache and run from within the pro-

cessor without direction by the tester.

This thesis begins with a description of the specific faults that are to be targeted and

how these faults will be modelled. The second section is a description of the proposed test

algorithms designed to cover these faults. The third section is a description of the diagnos-

tic information available from these tests. The way the fault manifests itself is it's fault

signature. If every fault can be shown to have a unique fault signature, then a diagnosis

can be made based upon the fault signature. From the findings of this thesis, a diagnostic

decision making procedure will be presented in the conclusion section.



Chapter 2

The Fault Model

2.1 Introduction
"In order to develop any practically feasible test procedure, we should restrict ourselves to

a subset of faults that are most likely to occur. This practice is known as 'selecting a fault

model"' [1]. Even though all faults have some physical root cause, it is desired that these

physical faults be modelled as logical faults. For instance, one physical fault in a memory

cell is a short to ground.The logical equivalent of this fault might be that the cell is stuck at

0. There are two advantages to this layer of abstraction. First, methods to catch these logi-

cal faults can be valid across different physical implementations. Second, this abstraction

simplifies the problem tremendously. For instance, there could be any number of physical

reasons for a cell to be stuck at 0, but the idea of a cell stuck at 0 is cleaner and simplifies

the reasoning.

Address

Address Decoder

Memory Cell Array

Read/Write Logic

Data

Figure 2.1: Reduced functional model

Borrowing from Van de Goor's "Reduced Functional Ram Chip Model" most memory

arrays can be broken down into three parts: the address decoder, read/write logic, and

memory cell array (Figure 2.1) [2]. A generic memory array architecture, similar to one



described by Weste and Eshraghian [4], is shown in Figure 2.2. The row decoders, column

decoders, bitline selectors, and wordlines shown in Figure 2.2 form the address decoder.

The bitlines, sense amplifiers, bitline precharge logic, column multiplexor (mux), write

buffers, and data out lines form the read/write logic. The collection of individual memory

cells form the memory cell array.

wordlir es memory cells

bitline precharge

row decoders

column decoder

bitline select bit 0 bit 1 bit 2 bit 3

address bitlines

sense amp, write buffers,
column multiplexor

Figure 2.2: Memory array architecture

Van de Goor showed how faults in the read/write logic and address decoder can be

mapped back onto the memory cell array for the purposes of test. Even though this

"Reduced" model was originally developed for testing, it can also be used for diagnosis.

The memory arrays on this chip were not designed with the capability to test the three

parts of the memory array separately. Therefore, the memory array is essentially a black

box whereby the only diagnostic information available is the requested address and the

1 1 1 1 1 1 1
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result of a read/write on this requested address; this is equivalent to saying that the only

information available is the observation of the memory cell array. The job of diagnosis is

to take this information and work backwards to figure out whether the fault occurred

within the address decoder, memory cell array, or read/write logic and then specifically

what happened. Therefore, the "Reduced Functional Ram Chip Model" originally devel-

oped for testing, where all faults are modelled as faults in the memory cell array is also a

valid model for diagnosis, where all faults are observed as faults in the memory cell array.

If a fault, regardless of whether it is in the address decoder, memory cell array, or read/

write logic, does not manifest itself as a fault or a set of faults in the memory cell array, it

is not observable and hence not diagnosable.

This section begins by defining and describing the memory cell array faults. There will

be a description of the faults being targeted in the read/write logic and the address decoder

and how these faults are modelled as faults in the memory cell array. The logical faults

will be discussed as well as the physical faults from which these logical faults are

abstracted. The idea of scope will also be presented as well as its role in distinguishing

between faults in the memory cell array, read/write logic, and address decoder. Further-

more, the idea that logical faults in the read/write logic are pattern sensitive is introduced.

This means that a certain pattern of data in memory or pattern of accesses to memory sen-

sitizes the read/write logic to certain faults, helping to expose them.

2.2 Faults in the Memory Cell Array
The memory cell array is the model for the collection of memory cells to which data is

stored and from which data is retrieved. A typical memory cell from the memory cell array

is shown in Figure 2.3. Initially, the precharge logic will raise both the bitline and bitline

wires to VDD. On a read, if this memory cell is chosen (wordline is asserted), then either

the bitline wire will begin to discharge (to read a 0) or the bitline wire will begin to dis-



charge (to read a 1). This discharge is detected by a sense amplifier which determine the

value being read. On a write, if this memory cell is chosen (wordline is asserted), then

either the bitline will be forced low while the bitline wire is forced high (to write a 0) or

the bitline wire will be forced high while the bitline wire is forced low (to write a 1). Note

that reads and writes are both assumed to occur through one port only.

wordline VDD wordline

bitline

bitline

Figure 2.3: A typical CMOS SRAM cell

The five basic logical faults in the memory cell array are stuck-at faults, transition faults,

coupling faults, non-deterministic faults, and destructive read faults. Each will be

described in the following sections. Note that each of these logical faults may be caused

by a variety of physical faults. The examples given here are not exhaustive nor guaranteed

to be the most common. After the five basic logical faults have been introduced, another

type of fault, a pattern sensitive fault, will be introduced and discussed. This fault is not

considered one of the basic faults by this thesis. Finally, there will be a discussion of

linked versus unlinked faults.

2.2.1 Stuck-at Fault
A cell that exhibits a stuck-at fault is a cell that is logically fixed at either a 0 or a 1. This

cell cannot be written with another value and can only be read with one value. An example

of how this can physically occur is shown in Figure 2.4. In this example, the short to VDD

in "Cell A" causes the cell to be stuck in state 0. This is a stuck-at 0 fault.



wordline VDD wordline

bitline

node

fault

Figure 2.4: Example of stuck-at fault and transition fault

2.2.2 Transition Fault
A cell that exhibits a transition fault is unable to transition from a 0 to a 1 or from a 1

to a 0. An example of how this can physically occur is shown in "Cell A" in Figure 2.4. As

demonstrated by Dekker et al, "A defect in the poly silicon layer covering a diffusion

region may result in the creation of an extra pass transistor" [3]. This is the transistor, ql.

The result of this defect is that the cell cannot transition from a 0 to a 1, but can transition

from a 1 to a 0. Assume that node A begins with a value of VDD (the memory cell holds a

value of 1). At this point, transistor ql is on and data can pass freely into "Cell A" from

the bitline wire. A value of 1 can continue to be written to and read out of "Cell A". Sup-

pose the bitline wire then pulls low. This pulls node A to ground (the memory cell transi-

tions from a value of 1 to a value of 0). This turns off the transistor ql. In order for "Cell

A" to transition high again, a low value must be passed into the memory cell from the bit-

line wire; however, data can no longer enter through the bitline wire. Once "Cell A" has a

value of 0, a value of 0 can continue to be written to and read out of "Cell A", but a value

of 1 can be neither written to or read out of "Cell A".

2.2.3 Coupling Fault
The first two faults only involve one cell. Coupling faults are faults that involve two

cells. The source cell of a coupling fault will, during a transition from 0 to 1 or from 1 to 0,

bitline

node

t



change the state of a second, target, cell. There are three different kinds of coupling faults:

inversion coupling faults, idempotent coupling faults, and state-coupling faults. In an

inversion coupling fault, a 0 to 1 or a 1 to 0 transition in the source cell inverts the contents

of the target cell. In an idempotent coupling fault, a 0 to 1 or a 1 to 0 transition in the

source cells forces the contents of the target cell to a certain value, 0 or 1. In a state-cou-

pling fault, the state of one memory cell is directly linked to the state of another memory

cell; writing a value into the first memory cell will force the other memory cell to either

the same value or the inverse value.

wordline VDD wnrdline ,,nai,, VDD ,x',-alni.

bitline

bitline

CELL A vCUU!ýPfgCELL A ffdlt CELL B

Figure 2.5: Example of coupling fault

An example of how a coupling fault can occur is shown in Figure 2.5. The result of the

short between "Cell A" and "Cell B" is that when "Cell A" is written with a value of 0 (1),

"Cell B" goes to the opposite value 1 (0), and when "Cell B" is written with a value of 0

(1), Cell A goes to the opposite value 1 (0). There are actually four different faults present

in this example:

* a 1 to 0 transition in "Cell A" forces "Cell B" to a value of 1
* a 0 to 1 transition in "Cell A" forces "Cell B" to a value of 0
* a 1 to 0 transition in "Cell B" forces "Cell A" to a value of 1
* a 0 to 1 transition in "Cell B" forces "Cell A" to a value of 0

This is a special case of the state-coupling fault called a bilateral state-coupling fault. In

this case, writing a value into either memory cell will force the other memory cell to a cer-



tain value. In a regular, unilateral, state-coupling fault, writing a value into "Cell A" forces

a value into "Cell B", but writing a value into "Cell B" does not force a value into "Cell

A". A bilateral state-coupling fault can be thought of as two unilateral state-coupling

faults, one going from "Cell A" to "Cell B" and the other going from "Cell B" to "Cell A".

In order to make the terminology consistent, for the purpose of this paper, if cell X is

said to be coupled or unilaterally state-coupled to cell Y, then cell X is the cell that exhibits

the fault and cell Y is the trigger or source of the fault. Notice that in bilateral state-cou-

pling, the coupling fault goes in both directions, so there is no difference between saying

that cell X is bilaterally state-coupled to cell Y and saying that cell Y is bilaterally state-

coupled to cell X.

2.2.4 Non-Deterministic Faults
There are two types of non-deterministic faults. In the first case, the state of a memory

cell is completely non-deterministic. Stuck-open faults, referred to in some of the litera-

ture, fall under this category [2] [3]. This means that the contents of the memory cell can

not be predicted ahead of time. Any read of a cell exhibiting this fault may be entirely ran-

dom, may be always 0, or may always be 1. In the second case, the state of the memory is

partially non-deterministic. In this case, under certain circumstances the memory cell

behaves correctly and under other circumstances the memory cell becomes non-determin-

istic. For instance, writing a 1 into the memory cell will result in a 1 being read back out,

but writing a 0 into the memory cell will result in an unpredictable result being read back

out.



wordline VDD wordline

nistic fault

le

bitline

bitlin

CELL A CELL B

Figure 2.6: Examples of non-deterministic faults

An example of how a regular non-deterministic fault can manifest itself is shown in

"Cell A" of Figure 2.6. The two breaks in the wordline will isolate the memory cell, ren-

dering it inaccessible. The cell can be neither read from nor written to successfully. During

a normal read of a memory cell, the true and complement bitline wires are initially pre-

charged high. Then, the memory cell will pull down either the true or the complement

side. The sense amplifier is then able to determine whether the cell has a value of 0 or 1.

With an isolated cell, as in this example, neither the true nor the complement side will be

pulled low. The sense amplifier will be unable to decide whether the cell is at a 0 or a 1.

Sense amplifiers are generally designed without a preference for either a 0 or a 1 and

therefore the cell will be read with a non-deterministic value. Though the exact value can-

not be predicted, the actual value does depends on the final manufactured sense amplifier.

Once a sense amplifier is manufactured, it may, due to process inconsistencies, show a

preference for one value or another when presented with the same value from both the true

and complement wires. This may result in a non-deterministic fault appearing as a stuck-at

fault. This should be further qualified by noting that, depending on the noise in the system,

the sense amplifier may not always be stuck-at the same value. Generally, non-determinis-

tic faults rarely happen to one cell on its own. For instance, a broken wordline will affect

all the memory cells that lie along that broken wordline.



An example of a partially non-deterministic fault is shown in "Cell B" of Figure 2.6.

In this example, the true bitline has a break. However, the complement bitline is still oper-

ational, and the correct value can still be written into and read from that wire. The comple-

ment bitline can still be pulled low by the memory cell, so a read of 1 will work normally.

However, the true bitline cannot be pulled low, so a read of 0 will not work normally.

Again, this value cannot be predicted in advance. A read of 0 may result in a random

value, a 0 (in which case the fault is completely masked), or a 1 (in which case, the mem-

ory cell appears to be stuck-at 1). Partially non-deterministic faults also rarely happen to

only one cell. A break in a bitline will affect all memory cells that lie along that broken

bitline.

2.2.5 Destructive Read Fault
A cell that exhibits a destructive read fault will, during a read operation, change the

state of the cell being read. An example of how this happens is shown in Figure 2.7 [5].

Assuming the memory cell begins in state 0, a read of the memory cell should yield a

value of 0. On a read of a normal cell (Figure 2.7a), the two transistors, ql and q2, are on,

and node A is at some value below the threshold voltage, Vth (Figure 2.7b). This keeps

transistor q3 on and transistor q4 off, leaving the memory cell in state 0. There exists the

possibility that a defect can cause the resistance of transistor q2 to be greater than normal.

On a read of a defective memory cell, the two transistors, q 1 and q2, are again on, but

node A is now at some value greater than Vth (Figure 2.7c). This causes transistor q4 to

turn on. This pulls down node B enough to forces the memory cell to flip state. Another

read of this memory cell will yield an incorrect value of 1.



wordline 

wordi 
e

bitline

node

V L.JJ/L V IJLJ

Rother Rother

bitline node A node A R

e B Rq2 Rq2 + Rdefect

(a) Reading a 0 from memory cell (b) No defect: (c) With defect:
Vnode A < Vth Vnode A > Vth

Figure 2.7: Destructive read fault

2.2.6 Pattern Sensitive Faults
In the literature [1] [2], there exists another fault called a pattern sensitive fault. The

definition of a pattern sensitive fault is as follows: "The contents of a cell, or the ability to

change the contents, is influenced by the contents of all other cells in the memory" [2].

The idea is that some pattern of data in the memory (i.e., a checkerboard pattern) will

stress the array such that a certain cell is forced to an incorrect value. This paper argues

that pattern sensitive faults are not a basic fault; the pattern is a means of exposing the

fault, but the underlying fault lies elsewhere (in the read/write logic, for instance). For this

project, many of the patterns being used were used to expose faults in the read/write logic.

In reality, it is possible that a particular pattern of data around a cell (for example,

Figure 2.8) will cause only a single cell (the middle cell in Figure 2.8) to an incorrect

state, but this kind of linked fault is too complex to thoroughly test for and will not be con-

sidered in this thesis (see Section 2.2.7).

VDD1 I



Figure 2.8: Example of complex pattern sensitive fault

2.2.7 Linked versus Unlinked faults
An important simplification in this thesis is that not all linked faults are addressed. A

linked fault is a fault which influences the behavior of other faults. There are two types of

linked faults (Figure 2.9). The first is where more than one fault affects the same cell

(Figure 2.9a). The second is where one fault can propagate to cause another fault

(Figure 2.9b). Including linked faults greatly increases the complexity of detecting and

diagnosing for faults and will not be discussed. Including linked faults allows for the pos-

sibility that one fault can mask another and even detecting certain types of linked faults is

impossible using march tests [2]. March tests are tests composed of a finite series of oper-

ations performed on every memory cell in order. They will be discussed in more detail in

Chapter 3.

(a) Two faults affecting (b) Propagating
the same cell faults

Figure 2.9: Example of linked faults

One class of linked faults will be allowed. These are state-coupling faults. A descrip-

tion of state-coupled cells was given in section 2.2.3. The examples in Figure 2.9 all

involve three cells. State-coupling faults are linked faults involving only two cells. This is

t



a case where two faults exist who share the same source and target (Figure 2.10). Writing

both a 0 and a 1 to cell A forces a value into cell B.

writing a 1 in cell A forces
a write of 1 to cell B

cell A cell B

writing a 0 in cell A forces
a write of 0 to cell B

Figure 2.10: Unilateral state-coupling fault.

2.3 Faults in the Read/Write Logic
The read/write logic is the model for the bitlines, sense amplifiers, bitline precharge logic,

column mux, write buffers, and data out lines in the memory array (Figure 2.2). The job of

this logic is to write data into memory and to read data back out from memory. This sec-

tion describes the different faults that are being targeted in the read/write logic and how

they can be mapped onto faults in the memory cell array. The main idea is that while faults

in the memory cell array will be manifested as individual memory cell faults, faults in the

read/write logic will be manifested as a group of memory cell faults in a bit (i.e., a column

of faults, a partial column of faults, or a group of columns of faults). A fault in a memory

cell affects only that cell; a fault in the read/write logic will affect the group of memory

cells that are connected to the faulty logic.

A general diagram of the read/write logic with the faults under consideration is shown

in Figure 2.11 [5]. The numbered circles represent the faults. An important concept is that

of the scope of a fault. The scope of a fault is the set of memory cells that are influenced

by that fault. For instance, a fault on bitline 1 (as in #2 and #3 in Figure 2.11) will affect all

the memory cells that lie along that bitline; therefore, the scope of this bitline 1 fault is the

column of memory cells that lie along bitline 1. The scope of a sense amp fault are the two

columns of memory cells that lie along bitline 1 and bitline 2. In general, the positioning



of the sense amps, bitline precharge, column mux, and write buffer, as well as the level of

multiplexing that occurs (and therefore the scope of faults in the mentioned components)

varies upon implementation, but they are conceptually similar to the model presented

here. Though the individual memory cell faults that occur within the set of cells in the

scope of the fault is dependent on the implementation, the idea that these faults will occur

within a certain set of memory cells (the scope) is an important first step in diagnosis

because it begins to narrow down the set of possible faults. The section on testing will then

show how, by choosing the proper test patterns, the set of possible faults can be further

narrowed down.

bit n - 1
bit n

No bit n + 1tib -nL +

Figure 2.11: Faults in the read/write logic

As mentioned in an earlier section, pattern sensitive faults are better characterized as a

means of exposing faults in the read/write logic rather than as actual faults themselves.

Depending on the implementation of memory, faults in the read/write logic are complex
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and their behavior is not entirely understood. However, certain patterns of data in memory

or certain patterns of accesses to memory can expose the faults.

2.3.1 Bitline Precharge Faults
The bitline precharge logic is responsible for pulling up the bitlines before each mem-

ory read. The scope of the bitline precharge faults (#1) is one column of memory cells. A

fault in the bitline precharge logic (#1 in Figure 2.11) can manifest itself as a temporary

stuck-at fault in the memory cells in the scope of the bitline precharge [5]. These cells will

be stuck-at the value of the previous write. Figure 2.12 shows the values of the true and

complement wires during two consecutive memory access to two memory cells that share

the same precharge logic. With a working precharge, the complement wire is precharged

high after the write operation so that a successful read of a 0 can occur (Figure 2.12a).

Assuming that there is a faulty precharge on the complement wire, the complement wire is

not precharged correctly after the write operation, and an incorrect read of a 1 results

(Figure 2.12b). Notice how this pattern of memory accesses serve to expose the fault.

write 1 read 0 write 1 read 1 (instead of 0)
VDD to cell A from cell B to cell A from cell B

VDD o VDD
true -

complement -
GND working precharge GND

faulty precharge

(a) working precharge (b) faulty precharge

Figure 2.12: Bitline precharge fault on complement wire

2.3.2 Bitline Faults
The bitline is a wire that carries true and complement data to and from memory cells.

There are essentially three types of bitline faults. The first two are bitline faults that only

affects one bitline (#2 and #3 in Figure 2.11). This could be caused by a break in either the

true or complement wire of the bitline (#2 in Figure 2.11) or a short between the true and

complement wires of the bitline (#3 in Figure 2.11). The scope of this fault is the set of

memory cells that lie along this faulty bitline. The specific details of how these faults will



manifest themselves depend on the implementation to some extent, but the idea that faults

will manifest themselves within the scope of the faulty bitline is still useful.

For instance, with a bitline break in an implementation with the bitline precharge on

the same side as the column muxes, it is possible that the memory cells before the break

(i.e., closer to the sense amps) will still function properly. However, the cells after the

break are inaccessible and will all exhibit a partially non-deterministic fault

(Figure 2.13a). This figure demonstrates how a cell with a partially non-deterministic fault

can be successfully read from and written to from one side (complement), but not from the

other (true).

true complement true complement true complement true complement

elA1 I I celA celA 0 o cel0B
state state state I state

precharge logic, precharge logic, precharge logic, precharge logic,
column mux, column mux, column mux, column mux,
sense amps sense amps sense amps sense amps

(a) fault #2, (b) fault #4
partially non-deterministic fault coupling fault

Figure 2.13: Bitline faults

With the second type of bitline fault, a short across the true and complement wire of

the same bitline, both wires will always be at the same value. The memory cells will be

unable to decide what value is being written and the sense amplifier will be unable to

determine the value being read. Therefore, this is a non-deterministic fault.

The third type of bitline fault is a short across different bitlines (i.e., #4 in Figure 2.11,

a short between a complement wire of bitline 1 and the true wire of bitline 2). The scope of

this fault is set of cells along the two bitlines involved. This fault will manifest itself as

two columns that are coupled to each other. As demonstrated in Figure 2.13b, a write of a

1 to cell A will force cell B to a 0 and a write of a 0 to cell B will force cell A to a 1. This

pattern of data in the memory will cause the fault to be exposed. Note that the layout of the



memory may be different from that shown in Figure 2.13b. There may also be the case

where the short lies between a complement and a complement or between a true and a

true. The coupling faults need to be changed accordingly, but the scope of this fault is still

the same

2.3.3 Column Multiplexor Faults
The column multiplexor is responsible for selecting between bitlines (i.e., between bit-

line 1 and bitline 2 in Figure 2.11). An example of how the column multiplexor might be

designed and some of the possible faults is shown in Figure 2.14. In general, the scope of

a column multiplexor fault is the set of memory cells that lie along the bitlines which are

inputs to the faulty column multiplexor.

bitline
select

bitline
select

coll
multi

Figure 2.14: Column multiplexor faults

One type of fault that might occur is if one of the pass-gates is stuck open (#1 in

Figure 2.14). In this case, data going down the true side of bitline 1 will never go through

the pass-gate. The complement side will still work, so this will cause a partially non-deter-

ministic fault all along bitline 1.

Another type of fault is if a pass-gate is always stuck-closed (#2 in Figure 2.14). In this

case, regardless of which bitline has been selected, data will always pass through from the

bitline 1 complement wire. There are two possible faults. The first fault is that bitline 1 is

state-coupled to bitline 2. All writes to bitline 2 will force a write to bitline 1. The second



fault is a partially non-deterministic fault in bitline 2. During a read of bitline 2, the faulty

pass-gate in bitline 1 (#2) will pass the value of the bitline 1 complement wire to the com-

plement out wire. When the bitline 1 complement wire is trying to pass conflicting data

from the bitline 2 complement wire, a fault can occur. The result is non-deterministic.

2.3.4 Data-in Faults
The write buffer is the component responsible for passing write data to the memory

cells. If the data-in logic has a fault (#6 in Figure 2.11), the scope of this fault is every cell

whose data is written by this logic (i.e., all the memory cells that lie along bitlines 1 and 2

in Figure 2.11). Therefore, a fault that exists in the data-in logic will cause all the memory

cells along bitlines 1 and 2 to experience the same faults. For instance, if the write buffer

is stuck-at 0, all memory cells in this bit will be stuck-at 0.

2.3.5 Sense Amplifier Faults
Faults #7, #8, and #9 in Figure 2.11 are all considered sense amplifier faults. Either the

inputs to the sense amplifier (#7, #8) or the sense amplifier itself (#9) has a fault. The

sense amplifier takes a true and complement wire and decides whether the memory cell

being read is a 0 or a 1. The scope of sense amplifier faults is the set of all memory cells

which are read with that sense amplifier. This is a fault that will cause all the memory cells

in this bit to experience the same fault; if the sense amplifier has a stuck-at 0 fault, all

memory cells will exhibit a stuck-at 0 fault. The sense amplifier is sensitive to the noise of

neighboring sense amps. A fault may occur due to this noise. This fault may be manifested

if all sense amps are trying to read the same value, all is for example.

2.3.6 Data-out Faults
There are two types of data-out faults. In the first case, the data-out logic exhibits a

stuck-at fault. This fault manifests itself as a bit whose cells are all stuck-at 1 or stuck at 0.

The scope of this fault is the set of memory cells in the bit.



The second type of data-out fault is a short between two output wires (#10 in

Figure 2.11). The scope of this fault is the set of all memory cells whose value are read

through those two wires. In Figure 2.11, the scope is set of memory cells along bitline 1

and bitline 2 for both bit n and bit n-1. This fault is only manifested if bit n and bit n-1 are

different values. In this case, one of the values will be coupled to the other. If they are both

Is or both Os, the fault will be masked.

2.4 Faults in the Address Decoder
The address decoder is the model for the row decoder, wordlines, bitlines, and column

decoder (Figure 2.2). The address decoder is responsible for translating the lower order

bits of the address into a particular choice of a wordline (row decoder) and for translating

the higher order bits of the address into a particular choice of a bitline (column decoder).

In this fashion, for any bit of data, a unique memory cell is accessed for each address.

Faults in the address decoder all involve incorrect mapping of addresses to memory cells.

As demonstrated by van de Goor, there are four basic types of logical address decoder

faults [2] (Figure 2.15).

address X cell X address X cell X address X cell X address X cell X

address Y cell Y address Y cell Y address Y cell Y

(a) fault A (b) fault B (c) fault C (d) fault D

Figure 2.15: Logical address decoder faults

However, real address decoder faults generally affect all memory cells along a particular

wordline or bitline. Therefore, the "cell X (Y)" labels in Figure 2.15 can be replaced with

"wordline X (Y)" for row decoder faults and "bitline X (Y)" for column decoder faults. In

reality, this is how the faults happen; an incorrect wordline or bitline is selected, or the

correct wordline or bitline is selected, but for the wrong address. This will cause all the



cells along these wordlines or bitlines to appear faulty. An example of how each of these

faults might physically occur in a row decoder is shown in Figure 2.16. The design of this

row decoder is one of the simplest decoders presented by Weste and Eshraghian[4]. Note

that there are a variety of possible decoder designs. This further illustrates why it is easier

to use a logical fault model rather than a physical fault model.

Fault B:

address = 2 e-j wordline[2]

address = 0 •* wordline[0]

Fault C:

J

I

address[l] address[0]

Fault A:

address = 3 t-- F-- wordline[3]

wordline[3]

wordline[2]

wordline[1]

wordline[0]
VDD

Figure 2.16: Physical address decoder faults

In general, the address decoder logic is shared across many and sometimes all bits. To

recap, the scope of memory cell array faults can be either one cell or a pair of cells. The

scope of read/write logic faults can be a set of memory cells from the group of cells that lie

within one bit. The scope of address decoder faults, because the address decoder is shared

among different bits, can be from the set of all memory cells (Figure 2.17). This is not to

say that the faults will exist everywhere: an address decoder fault might result in a row of

33

address = 3 wordline[3]

address = 2 wordline[2]

address = 1 - wordline[l]

address =0 - wordline[0]

1

O

Fault C: I
'F

3el

I



faults across all bits or it might result in a column of faults that exist in the first column of

every bit.

I hit 0 I hit I - I hit n I

Figure 2.17: Range of possible scopes of different faults

2.4.1 Row Decoder Faults
The row decoder is responsible for selecting a mapping of addresses to a particular

wordline. A row decoder fault results in an incorrect wordline being activated or the cor-

rect wordline is not activated. The scope of faults will be the set of memory cells along the

faulty wordline(s).

Fault A (Figure 2.15a) results in a row of memory cells (by which I mean the set of

memory cells that lie along one wordline) which all exhibit non-deterministic faults. The

cells along wordline X are completely inaccessible.

Fault B (Figure 2.15b), though a different fault, is indistinguishable from fault A. In

Fault B, address X is inaccessible and thus non-deterministic. Therefore, even though the

cells along wordline X are coupled to the cells along wordline Y, this coupling fault is

masked because of the non-deterministic fault. Similarly, reads from address Y will not

show a problem because the cells along wordline X and along wordline Y will always be

at the same value.

Fault C (Figure 2.15c) results in bilateral state-coupling between the cells along word-

line X and along wordline Y. All accesses to address X and to address Y activate the same

wordline. A write of a value in address X will appear in a read of address Y and vice versa.

Fault D (Figure 2.15d) results in two faults. In one row of faults, the cells accessed by

address X all exhibit a unilateral coupling fault with the cells accessed by address Y. All

I



writes to cells accessed by address Y will force a value to cells accessed by address X. The

row of cells accessed by address Y are more difficult to test. In the event that cell Y and

cell X have identical values, no errors will be detected. However, in the case that cell X

and cell Y have different values, the sense amplifier will be unable to decide the result of a

read of address Y. This is equivalent to a non-deterministic fault, though only when the

data in cell X and cell Y are different.

2.4.2 Column Decoder Faults
The column decoder is responsible for selecting a mapping of addresses to a particular

choice of a bitline. Therefore the scope of column decoder faults is the columns of mem-

ory cells which are influenced by that choice of bitline. Note that this is different from the

column mux faults in the read/write logic. While the column mux faults only influences

one particular bitline (e.g. bitline 1 of bit 5), column decoder faults influence a bitline over

all bits (e.g. bitline 1 across bits 1 through n). Note that these faults are just like the row

decoder faults, except that instead of a row of faults, there are columns of faults.

Fault A results in a certain column of memory cells (by which I mean the set of mem-

ory cells that lie along one bitline) across many bits which are inaccessible and thus

exhibit non-deterministic faults. As an example, the scope of fault A might be that bitline

1 is non-deterministic for all bits.

For the same reason as that mentioned in section Figure 2.4.1, fault B is indistinguish-

able from fault A. The scope is one column of non-deterministic faults across all bits.

Fault C results in bilateral state-coupling between the cells along bitline X and along

bitline Y. The scope is thus two columns of faults across all bits.

Fault D results in two faults. The cells along bitline X, across all bits, will exhibit a

unilateral-lateral state-coupling fault with the cells along bitline Y. Testing the column of

cells along bitline Y is further complicated because in the event that cell Y and cell X have



identical values, no errors will be detected. However, in the case that cell X and cell Y

have different data, the sense amplifier will be unable to decide the result of a read of

address Y. This is equivalent to a non-deterministic fault, but only when the data in cell X

and cell Y are different. The scope is two columns of faults across all bits.

2.4.3 Wordline Faults
The wordline is the wire that connects the row decoder to the pass-gates of the mem-

ory cells. The faults being targeted are wordline breaks and wordline stuck-at faults.

In the case of wordline breaks, all the rows of memory cells beyond the break away

from the row decoder will be inaccessible and thus non-deterministic. The memory cells

before the break and closer to the row decoder will still function normally. Unlike a regu-

lar row decoder fault, the wordline fault only occurs over some subset of all the memory

cells that lie along that wordline.

Assuming that the logic is active high, when a wordline is stuck-at 0, that particular

wordline is never active. This is equivalent to fault A in the decoder logic (see

Figure 2.16). A wordline that is stuck-at 1 is always active. This is a special case of fault

D. If a wordline X is stuck-at 1, then regardless of what other wordline should be

accessed, wordline X will also be active. This is demonstrated in Figure 2.18. In the case

the logic is active low, the same reasoning leads to a correspondence between wordline

stuck-at 1 faults and fault A. Similarly, wordline stuck-at 0 faults correspond to the special

case of fault D shown in Figure 2.18.



wordline V

wordline W

wordline X

wordline Y

wordline Z

Figure 2.18: Wordline stuck-at 1

2.4.4 Bitline Select Faults
The bitline select wire is the wire that connects the column decoders to the column

multiplexors. The targeted faults in the bitline select wire are bitline select breaks and bit-

line select stuck-at faults.

In the case of a bitline select break, the column multiplexors before the break will

behave correctly, but the column multiplexors after the break will be stuck open and thus

non-deterministic. Again, unlike a regular column decoder fault, the bitline select fault

only occurs over some subset of the memory cells that lie in the bits away from the col-

umn decoders and on the other side of the break.

The description of the bitline select breaks is exactly identical to that of the wordline

breaks. Assuming that the logic is active high, when a bitline select is stuck-at 0, that par-

ticular bitline select is never active. This is equivalent to fault A in the decoder logic (see

Figure 2.16). On the other hand, a bitline select that is stuck-at 1 is always active. This is a

special case of fault D. If a bitline select X is stuck-at 1, then regardless of what other bit-

line select should be accessed, bitline select X will also be active. This is demonstrated in

Figure 2.18. In the case the logic is active low, the same reasoning leads to a correspon-



dence between bitline select stuck-at 1 faults and fault A. Similarly, bitline select stuck-at

0 faults correspond to the special case of fault D shown in Figure 2.18.

address

address

address

address

address

bitline selector V

bitline selector W

bitline selector X

bitline selector Y

bitline selector Z

Figure 2.19: Bitline select stuck-at

2.5 Faults that are not caught
There are some faults that are not considered in this fault model. They may not be

caught and their diagnosis will not be described. A major group of faults that are not

caught are dynamic faults. These faults are time dependent and, though they will show up

as functional faults, they cannot be described properly under the fault model outlined in

this chapter because these faults do not take timing into account [7]. Examples of these

types of faults are recovery faults, retention faults, and imbalance faults [7].

A second type of fault that is not caught is a coupling fault between the same address

of different bits. In the memories considered in this study, on a read of an address X, an

entire word of many bits is read out simultaneously. On a write of an address X, an entire

word of many bits is written in simultaneously. The bits accessed by address X are

accessed simultaneously; therefore, if coupling faults exist between these bits, then they

may not be detectable. The bits may not be accessed at the same exact time and there is no

way of guaranteeing that the source cell for the coupling fault will be accessed before the

target cell. One cannot selectively decide which bit to access first.



Chapter 3

Test

3.1 Introduction
Testing is the process of exercising and evaluating a system to determine whether its

behavior is correct. The goal is to determine whether the final manufactured chip behaves

according to its design. There are two main forces driving the design of test algorithms.

The first is a desire to keep the tests as short as possible. As memories continue to increase

in size, so too does the time it takes to conduct the test. Furthermore, there is a fixed

amount of memory that the test machinery has; the more memory each test takes up, the

less memory is available for other tests. The second major force is a desire to maintain or

increase test coverage. Traditionally, there have been a number of industry test algorithms

which were not based on a fault model [6]. These traditional tests are generally longer than

the newer algorithms being developed. However, there is always the possibility that

changing the test algorithm may decrease the test coverage unless the test algorithm has

been empirically tested and it's fault coverage compared with that of the traditional tests.

There may be a trade-off between the test's length and the test's ability to catch all faults.

For the purpose of this project, three test algorithms were chosen: unique address rip-

ple word test, word line stripe test, and checkerboard test. As a project that was performed

in an industrial setting, this project uses algorithms that have evolved from the traditional

tests. In academia, papers listing a number of more efficient tests have been proposed (for

instance, in [2] [3] [4]), but they do not catch some of the faults targeted in this project.

For instance, none test for a destructive read fault. Part of the goal of this thesis is to use

these existing tests and decide how they can be used or modified for diagnosis of memory

arrays.



The chapter begins by describing the three test algorithms. This is followed by a dis-

cussion on the implementation of these algorithms and the issues that arise when they are

used for diagnosis.

3.2 The Tests
The test algorithms that have been chosen for this project are the following three march

tests: unique address ripple word test, word line stripe test, and checkerboard test. The

diagnostic capabilities of these tests will be discussed in the following chapter. This sec-

tion begins with an overview of march tests and an example of the type of memory that

these tests might be performed on.

Every march test is composed of march elements. Each march element is composed of

a series of operations that are done to every memory cell before proceeding to the next

operation [6]. These operations can be a combination of reading a 0 (rO), reading a 1 (rl),

writing a 0 (wO), or writing a 1 (w 1l). Each march element can proceed in a forward direc-

tion through all the cells (I) or in the opposite reverse direction (4). Note that the exact

order of the addresses is not important, so long as the order of the cells going in the for-

ward direction is exactly opposite of the cells going in the reverse direction.

Four bits from a sample memory is given in Figure 3.1. This memory is the example

that will be used for discussions in this thesis. The memory shown is for a cache which is

two way associative. Furthermore, each way is separated into low and high addresses.

Low addresses run from 0 (bottom) to 7 (top) while high addresses run from 8 (bottom) to

15 (top). The individual memory cells are labelled with their respective addresses. The

highest order bit of the address is used to select between the low and high addresses. The

lower order three bits are used to select one of the eight rows.



Ideally, a march test would proceed through each of the individual addresses, one bit at

a time. Practically, however, the same address in every bit is accessed simultaneously.

Memory is generally designed to retrieve a complete word from an address y (for exam-

ple, a word at way B address 13 corresponds to the shaded boxes in the Figure 3.1), and

therefore retrieves all bits simultaneously.

way A iway B
-
0S)

15
14

13
12
11

10
9
8

7 15 7
6 14 6
5 5
4 12 4
3 11 3
2 10 2
191
080

Bit n+1I

way A iway B

1517 15 7
14 6 14 6

13 5 5
12 4 12 4
11 3 11 3
10 2 10 2
9 1 91
8 Bit 8n+2

Bit n+2

Figure 3.1: Example of memory

As mentioned earlier, it is not important that march tests follow the numerical order of

the addresses, just that march elements that go forward (1) proceed in the opposite order

from march elements that go backwards (4). For this project, a march element that goes

forward (1) starts at the lower left comer of each bit, address 8 of way A high, works up

the way A high column to address 15, then jumps to address 0 of way A low and works up

the way A low column to address 7. The test then proceeds in a similar manner up the way

B high column and finally up the way B low column. The last memory cell addressed

going forward (1) is the top cell in way B low, address 7. A march element going in the

backwards (4) direction goes in the reverse order, starting from the top cell of way B low

(address 7), working down the way B low column, down the way B high column, down

the way A low column, and finally down the way A high column. The last memory cell

addressed going backwards (U) is the bottom cell of way A high (address 8).
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3.2.1 Unique Address Ripple Word Test
The unique address ripple word test's algorithm is presented below. Each of the num-

bered steps correspond to a march element. For example, in step 3, this tests proceeds in a

forward (ý1) direction through each address. All the cells at each address (remembering

that the same address of every bit is accessed simultaneously) is read (with a value of 1

expected), written with a 0, read again (with a value of 0 expected), and finally written

with another 0. Once these four operations have finished, the test proceeds to the next

address (in f order).

1. fwo
2. fr0wlrlwl
3. r rlwOrOw0
4. frO
5. 4wl
6. I&riwOrOw0
7. irOwlrlwl
8. Jrl

3.2.2 Word Lines Stripe Test
The word line stripe test's algorithm writes rows of Os and is to consecutive addresses.

Data will be written into the memory array such that we end up with the pattern shown in

Figure 3.2.
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Figure 3.2: Result of word line stripe test

This data is then read and the opposite pattern (where in Figure 3.2, the Os are replaced

with is and the is replaced with Os) is written into memory. In the last step, this new data



is read out. For the given memory implementation, this march test is shown below:

1. lwO (even addresses) and w 1 (odd addresses)
2. lrO (even addresses) and rl (odd addresses)
3. w 1 (even addresses) and wO (odd addresses)
4. nrl (even addresses) and rO (odd addresses)

3.2.3 Checkerboard Test
The checkerboard test writes a physical checkerboard pattern of Os and is into mem-

ory (see Figure 3.3).

way A

10

01110
01
10 0
01

way B

100o

0-1-01
0

0 1
Bit n-1

way A way B

01

0.1
10
01
1001

01
,10
01f
100 1
10
01

Bit n

0**

Figure 3.3: Result of checkerboard test

This pattern is read twice and then the opposite pattern (where in Figure 3.3, the Os are

replaced with is and the 1s replaced with Os) is written into memory. In the last step, this

new pattern is also read out twice. For the given memory implementation, this march test

is shown below:

1. lwO (write Os to even high and odd low addresses) and w (write is to even low and
odd high addresses)

2. %rOrO (read Os twice from even high and odd low addresses) and rlrl (read Is twice
from even low/odd high addresses)

3. w 1 (write is to even high and odd low addresses) and wO (write Os to even low and
odd high addresses)

4. ýrrlI (read is twice from even high and odd low addresses) and rOrO (read Os twice
from even low and odd high addresses)

Note that this algorithm will vary depending on the implementation. The goal is to

write a "physical" checkerboard pattern into memory. The algorithm shown above is not

identical for all memory implementations. For this memory implementation, reading



address 0 in Figure 3.3 yields a word that is all Os. If there is only one way and only eight

addresses in memory (all in the same column), reading address 0 could yield a word that is

010101.... An example of this type of memory is shown in Figure 3.4.

1 0 1 01010
0101

10100101101+

Figure 3.4: Result of checkerboard under alternative memory implementation

3.3 Implementation
The test algorithms were implemented as assembly programs. As mentioned earlier, there

is a desire to keep the tests short so that the tests take up less tester buffer memory. This

project involved the test and diagnosis of memory arrays embedded in a microprocessor.

One way of shortening the tests was to take advantage of the microprocessor's functional-

ity: these tests were run with the cache enabled. This way, the test program can be fetched

into the instruction cache and the test run from within the processor rather than with con-

tinuous explicit direction by the tester (see Appendix A for data on efforts to shorten the

tests on this project).

March tests can be used, not just to catch faults, but to also diagnose faults. This is

accomplished by examining the fault signature of a fault due to the march tests: How does

the march test fail due to a given fault? Fault signatures will be described in more detail in

the next chapter. In order for the tests to support diagnosis, they have to be written to sat-

isfy some requirements. First, there are requirements that must be met for the results of the

tests to be observable. Secondly, there are requirements that must be met in order to satisfy



the tester equipment. The results of this test can then be used to generate a failure bitmap.

A failure bitmap is a graphical representation of the memory with all the faults marked.

3.3.1 Observability
Diagnosis cannot occur unless the results of the tests are observable; the test must gen-

erate a complete picture of what is happening internally. As the test marches through the

addresses writing and reading data, the results of each read must be put on the pins of the

chip where it can be monitored off-chip. Furthermore, tests written for diagnosis cannot

merely halt once an incorrect value is read from memory. These tests need to continue to

run in order to present a complete picture of what is happening in the memory. Lastly, the

tests have to provide a unique label for each read in order to identify what address has

been read and what step of the test is being performed. Note that one way of doing this is

to know which clock cycle corresponds to which address of which step of the test. How-

ever, this is complex. An easier solution is to present this information to the output pins of

the chip as a tag along with the results of the read.

In this project, every read of a memory cell was presented to the output pins as a write

to main memory. No comparison is ever done; regardless of whether the program is read-

ing a 0 or a 1 from a memory cell, the output is presented to the bus without any decision-

making on the part of the program as to whether the value read is correct or incorrect. The

memory cell being read and the step number were encoded in the address of this write to

main memory. This information will therefore appear off-chip as a memory request that

the tester can monitor. For instance, for the two way, 16 address memory in Figure 3.1,

this information can be encoded as shown in Figure 3.5. Bits 8:6 provide information

about which step of the test is being performed. Bit 5 is the read number (the first or sec-



ond read of the step given by bits 8:6). Bit 4 is the way. Bits 3:0 correspond to the address

(from 0 to 15).

8 7 6 5 4 3 2 1 0

step number address
read

number
way

Figure 3.5: Information encoding

3.3.2 Tester Idiosyncrasies
Most general purpose testers have certain idiosyncrasies. Testers only know what data

to apply on the pins of the chip and what data they should expect off the pins of the chip.

The exact timing and voltages of this data can be very tightly controlled. However, the

tester is not intelligent in the sense that it cannot adjust the data it applies to the chip based

on the data it receives from the chip. To generate tester patterns, the test (a program) is

simulated on a "good" model of the chip. The bus traces from this simulation are used by

the tester as the signals it applies to and as the signals it expects from the chip. Therefore,

if the program branches to X on the "good" model, but, due to a fault in the chip, the pro-

gram branches to Y on the chip being tested, the tester will continue to supply signals to

the chip as if a branch to X occurred because that is what happened on the "good" model.

A problem is detected when the tester notices that the chip's outputs mismatches with the

"good" model outputs. This is adequate for go/no go testing where on the first unsuccess-

fully branch on the chip, the tester will report a mismatch and stop. However, for diagno-

sis, further information is needed from the rest of the memory array in order to build a

complete failure bitmap of the memory.

These tests were written so that regardless of the number of fails, the code does the

same thing. This is guaranteed if the code is branch-free. As noted, no comparisons are



done in the tests. The values are merely read out of the memory array and placed on the

bus.

3.3.3 Failure Bitmaps
Once the test algorithm has been performed on a memory array, it is useful to generate a

failure bitmap. A failure bitmap is a graphical depiction of the memory array (for instance,

as in Figure 3.1) with the faults shown right on the array. The next chapter will show how

the different faults appear (their fault signatures). By matching the generated failure bit-

map with the fault signatures of the known faults, a diagnosis can be made.

The failure bitmap can be generated if the result of the test is observable. In this

project, a tag was associated with each memory read (Figure 3.5). In this way, every mem-

ory read can be associated with an address and bit in the memory array. Furthermore, the

tag provides information about the step number of the test being performed. Knowing the

locations and step numbers of the test for each fault gives enough information to generate

a diagnosis. A diagnostic tree of the decision making steps will be given in Chapter 5.





Chapter 4

Diagnosis

4.1 Introduction
The goal of diagnosis is to discover the reason behind a system misbehavior: where did

the fault occur and why? As a first step, this thesis outlined the possible faults that were

being considered in the fault model (see Chapter 2). Next, it introduced the tests that were

being used (see Chapter 3). This chapter provides a description of what tests catch the

faults and how these faults manifest themselves in these tests. Fault manifestation is that

fault's fault signature. The two components of a fault signature are the locations in the test

where the fault manifests itself (e.g. reading the wrong value in the first read of step 2) and

the locations in memory where the fault manifests itself (e.g. all cells of way A of bit 3). If

different faults can be shown to have different fault signatures (i.e., manifest themselves

differently), then knowing each fault's fault signature is all that is required to diagnose that

fault. Once these fault signatures have been understood and cataloged, a decision making

procedure can be created to make a diagnosis based upon the fault signature. This decision

making procedure is called a diagnostic tree and will be described in the Conclusion. This

thesis assumes that faults occur singly. The case where multiple faults occur in the same

memory array adds extra complexity to both test and diagnosis and will not be considered

here.

Note that the emphasis of this thesis is on diagnosis and not on test. Therefore, the

description of what tests catch the faults is not directed towards the most efficient tests, but

tests that allow for diagnosis. The fact that a test allows for the diagnosis of a certain fault

implies that the tests can catch the fault.



As a brief review, Figure 4.1 presents a list of the faults considered in the fault model

(from Chapter 2). Note that diagnosis assumes that these are the only faults that can exist.

The goal is to attribute a different fault signature to each fault. However, there is a danger

that an unlisted fault exists which manifests itself with the same fault signature as one of

the listed faults. For test, an unknown fault is not a problem so long as this fault can be

caught with the existing test. For diagnosis, an unknown fault is a problem because it may

potentially have the same fault signature as a known fault, causing an incorrect diagnosis.

Memory Cell Array Faults:
Stuck-at Faults
Transition Faults
Coupling Faults
Non-Deterministic Faults
Destructive Read Faults

Read/Write Logic Faults:
Bitline Precharge Faults
Bitline Faults
Column Multiplexor Faults
Data-in Faults
Sense Amplifier Faults
Data-out Faults

Address Decoder Faults:
Row Decoder Faults
Column Decoder Faults
Wordline/Bitline Selector Faults

Figure 4.1: List of Faults

4.2 Fault Detection and Manifestation: Memory Cell Array
There are five types of memory cell faults: stuck-at faults, transition faults, coupling

faults, non-deterministic faults, and destructive read faults. As mentioned in Chapter 2, the

scope of these types of fault is just a single cell: all these faults manifest themselves as sin-

gle cell fails.



4.2.1 Stuck-at Faults
Stuck-at faults are easy to catch. The tests only need to be written such that a value of

both 1 and 0 are written to and read from each cell. A unique address ripple word test is

adequate to test for all stuck-at faults. The circled reads in Figure 4.2a and Figure 4.2b are

where mismatches occur for these tests in the event of a stuck-at 0 and a stuck-at 1 fault

respectively. The scope of this fault is a single cell (see Figure 4.2c).

i. ftw O1 i 0
2. rrl 1 2.: r 1 w 1
3. O 3. "r0 0
4. 4. r
5. 5.
6. rl 0 w0 6.. vo
7. • r 1 7. 1 wl
8. rI 8.

(a) S-a-0: All attempts to read 1 will fail (b) S-a-l: All attempts to read 0 will fail

S0 0

way A
-c
0) 0.
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-c 0:

Bit n-i
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-c
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-c 3:
0

way B
-C
0)
-c

Bit n
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-C
0)
-c

0

way B
-C
0),
-c 0

Bit n+l

0 •

(c) fault manifestation: single cell fail

Figure 4.2: Stuck-at fault detection and manifestation

4.2.2 Transition Faults
In order to catch transition faults, each memory cell must undergo a transition high and

a transition low and be read after each transition. This fault is different from a stuck-at in

that the cell may, for example, start with a value of 1, transition to 0, and then stay stuck-at

0. A stuck-at 0 fault would always be 0. A cell with a transition fault can transition in one

direction but not the other, whereas a cell with a stuck-at fault cannot transition at all.



The problem with distinguishing transition faults from stuck-at faults is that the initial

state of the memory cell is not known with any certainty. For instance, if the cell has a

transition fault where it is unable to transition high but already starts in a 0 state, the fault

will appear identical to a stuck-at 0 fault.

Moreover, every march test first initializes every memory cell to a value (i.e., step 1 of

the unique address ripple word). A cell with a transition fault can transition in one direc-

tion but not in the other direction. The problem is that this first write may force the transi-

tion. Once a transition occurs, a transition fault cannot be distinguished from a stuck-at

fault. The unique address ripple word test will never be able to distinguish a stuck-at 0

fault from a transition fault where the cell is unable to transition high because it initially

forces all cells to a 0 state in step 1 (Figure 4.3a). The circled reads are reads where a mis-

match will occur. The ability to transition low may be masked by the first write. On the

other hand, a transition fault where the cell is unable to transition low may be caught, but

only if the initial state of the memory cell is 0 (Figure 4.3b). As pointed out in the previous

paragraph, if the memory cell starts in a state of 1, the original write would have been

unable to force the transition low and the first read would read a 1 instead of a 0 (this is

identical to the situation where the cell has a stuck-at 1 fault).



As with the stuck-at fault, this fault is manifested as a single cell fail (Figure 4.3c).

1. wO I. 0
2. 2w 3. rO 1 wi13. rl orO this may work

4. 4. rO if the initial state of t
5. 1 5. 1 memory cell is a O.
6. lrl  w0 6. r 0
7. w r1 7. rO 1w
8. r1 8.

(a) Unable to transition high (b) Unable to transition low

* 0 0

way A; way B

Bit n-1

way A way B

Bit n

way A: way B

Bit n+1

0 0 0

(c) fault manifestation: single cell fail

Figure 4.3: Transition fault detection and manifestation

4.2.3 Coupling Faults
As pointed out in Chapter 2, three types of coupling faults are being targeted: idempo-

tent coupling faults, inversion coupling faults, and state-coupling faults. Certain patterns

in the test can be used to expose these coupling faults. The source cell which causes the

fault can be triggered by writing a 1 or a 0. Furthermore, we want to trigger the fault in

both the case when we are expecting a 1 and when we are expecting a 0. In this way, all

coupling faults can be caught.

There are thus four different combinations of triggers and expected values. The initial

assumption is that the source cell precedes the target cell. Table 4.1 shows how a test can

be written such that the combinations of triggers and expected values can arise. The two

columns on the left show the combination of trigger and expected value. The columns on

he



the right show the two steps necessary to achieve this combination. As a reminder, r0Ow 1

means that the memory cells are accessed in the forward direction and that at each mem-

ory cell a value of 0 is read and a value of 1 is written before proceeding to the next mem-

ory cell. JJrOwl is identical to 'r0wl except that the memory cells are being accessed in a

reverse direction. If the target cell precedes the source cell, Table 4.2 shows how the tests

can be written to expose the four combinations of triggers and expected values.

trigger at expected value trigger fault
source at target (step n-1) (step n) (step n+1)

0 0 don't care 4Iw0 Jr0o

0 1 fwl MrlwO don't care

1 0 w0O frOwl don't care

1 1 don't care 4Jwl 4rl

Table 4.1: Catching coupling faults assuming source cell precedes target cell

trigger at expected trigger fault
source value at target (step n-1) (step n) (step n+1)

0 0 don't care fwO %r0

0 1 Jwl 1 irlwO don't care

1 0 4wO 4 rOwl don't care

1 1 don't care wl rl

Table 4.2: Catching coupling faults assuming target cell precedes source cell

The reason for bringing up how these different combinations of triggers and expected

values arise is that failures due to the three coupling faults can be thought of as failures in

some set of these combinations. As the simplest case, consider an idempotent fault where

writing a 1 in one cell forces a 0 in another cell. This fault can be caught with a test in

which there is a trigger of 1 at the source and the expected value of 1 at the target. Each of

the four types of idempotent faults have a corresponding test that will expose it:



1. writing a 1 in the source cell forces a 0 in the target cell:
* trigger of 1 in source, expect a 1 in target
2. writing a 1 in the source cell forces a 1 in the target cell:
* trigger of 1 in source, expect a 0 in target
3. writing a 0 in the source cell forces a 0 in the target cell:
* trigger of 0 in source, expect a 1 in target
4. writing a 0 in the source cell forces a 1 in the target cell:
* trigger of 0 in source, expect a 0 in target

A similar correspondence can be made for inversion faults. Consider the case where writ-

ing a 1 in one cell inverts the state of another cell. It is necessary to check that writing a 1

in the first cells flips the target cell both when a 1 is expected and when a 0 is expected. If

an incorrect value is read in both cases, then the cell exhibits an inversion fault. The two

types of inversion faults and the tests needed to expose them are shown below:

1. writing a 1 in the source cell inverts the target cell:
* trigger of 1 in source, expect a 1 in target
* trigger of 1 in source, expect a 0 in target
2. writing a 0 in the source cell inverts the target cell:
* trigger of 0 in source, expect a 1 in target
* trigger of 0 in source, expect a 0 in target

There are two types of state-coupling faults. In the first type, writing a value, x, in the

source cell will force a second, target, cell to this same value, x. In the second type, writ-

ing a value, x, in the source cell will force a second, target, cell to the opposite value, x. To

catch the first type of state-coupling fault, it is necessary to both write a 1 to the source cell

while expecting a 0 in the target cell and write a 0 to the source cell while expecting a 1.

An incorrect value should be read from the target cell in both cases for this type of state-

coupling fault. The two types of state-coupling faults and the tests needed to expose them

are shown on the following page:



1. writing x in the source cell forces x in the target cell:
* trigger of 1 in source, expect a 0 in target
* trigger of 0 in source, expect a 1 in target
2. writing x in the source cell forces x in the target cell:
* trigger of 1 in source, expect a 1 in target
* trigger of 0 in source, expect a 0 in target
The unique address ripple word test contains all the components in Table 4.1 and

Table 4.2. Therefore this test will be able to catch these three types of coupling faults both

when the target cell precedes and follows the source cell of the fault. Furthermore,

because these three types of coupling faults are caught with different combinations of trig-

gers and expected values, they can be uniquely diagnosed. Figure 4.4 shows the fault sig-

nature in the unique address ripple word test in the case of the four types of idempotent

faults. The circled reads are the reads in the test where a mismatch will occur if an idem-

potent fault exists.

1. 1. rwO i. wO 1. UwO
l 2r 2. wirwlrlwl 2. frOwl rlwl 2. f'rOwlrlwl

3. •twOrOwO 3. lrl OrOwO 3. 1rlwOrOwO 3. OrlwOrOwO
4. rO 4. 1O 4. frO 4. 1rO
5. Uw1 5. Uwl 5. twl 5. l 1
6. JrlwOrOwO 6. MrlwOrOwO 6. ,r4 wOrOwO 6. rl OrOwO
7. UrOwlrlwl 7. 4rOwl rlwl 7. rOlrlwl 7. wrlwl
8. 4rl 8. Url 8. 8. R

(a) writing a 1 in x (b) writing a 0 in x (c) writing a 0 in x (d) writing a 1 in x
forces a 1 to y forces a 0 to y forces a 1 to y forces a 0 to y

or or or or
writing a 0 in y writing a 1 in y writing a 1 in y writing a 0 in y
forces a 1 in x forces a 0 in x forces a 1 in x forces a 0 in x

Figure 4.4: Fault signatures of idempotent faults



Figure 4.5 shows the unique address ripple word test with symptoms of the inversion

faults. Again, the circled reads indicate where an incorrect value is read.

1. 1. I0 I. wO
2. r lrlwl 2. rO irlwl 2. I w1r1wl
3. rwOr0w0 3. f wOrOwO 3. •RPOrOwO
4. frO 4. rO 4. rlO
5. 45. 1 5. lwl
6. 1r Orw0 6. r OrOwO 6. " w0r0w0
7. wi rlewl 7. wMriwl 7. r0N1r1wl
8. 8 J.grl 8. 48.F

(a) writing a 1 in x (b) writing a 0 in y (c) writing a 0 in x
inverts y inverts x inverts y

or
writing a 1 in y
inverts x

Figure 4.5: Fault signatures of inversion faults

Finally, Figure 4.6 shows the unique address ripple word test exhibiting the fault signa-

tures of state-coupling faults. The circles indicate places in the test where an incorrect

value is read.

1. U 1. lwO
2. rlwl 2. rOwlrlwl
3. ri OrOwO 3. nrlwOrOwO
4. r 4. lrO
5. Jwl 5.41
6. JrlwOrOwO 6. Or0w 0

7. ,rOwl rlwl 7. r1wl
8. Jrl 8.

(a) writing a value in x (b) writing a value in y
forces y to the same forces x to the same
value value

Figure 4.6: Fault signatures of state-coupling faults

As with the other memory cell array faults, coupling faults all manifest themselves as

single cell fails (see Figure 4.3c). The main idea of Figure 4.4 through Figure 4.6 is that

each of the three coupling faults (idempotent, inversion, state-coupling) have different

fault signatures. This allows them to be distinguished from each other and thus diagnosed.



4.2.4 Non-Deterministic Faults
Non-deterministic faults are difficult to catch and even more difficult to diagnose.

Depending on how the memory is designed and on the small variations that arise during

manufacturing, the result of a memory cell that has a non-deterministic fault can vary.

This is a result of the fact that an inaccessible memory cell (the usual cause of a non-deter-

ministic fault) will not drive the sense amplifier with a value. Stated another way, the

sense amplifier will be given the same value on both inputs. In this project, the sense

amplifiers were designed without a preferred state. If the memory is manufactured per-

fectly, then the result of a non-deterministic memory cell will be random. On the other

hand, if the sense amplifier has a preference, a non-deterministic fault may appear as a

stuck-at 1 or a stuck-at 0. To qualify this even more, this preference may change depend-

ing on how much noise exists in the system.

Different memory implementations yield different manifestations of non-deterministic

faults. Therefore, to properly understand the diagnosis of this fault (and even whether this

fault can be uniquely diagnosed) for a particular chip requires an understanding of the

design and implementation of that particular chip's memory. The fault signature of this

fault is unknown and needs to be determined with experimental data from the actual

implementation of the memory being tested.

The same is true of partially non-deterministic faults. As its name implies, only in cer-

tain circumstances (i.e., only when reading O's) does a memory cell with a partially non-

deterministic fault become non-deterministic. In other circumstances, the proper value is

read from the memory cell.

4.2.5 Destructive Read Faults
The way to catch a destructive read fault is to read the same value twice from the same

cell. The first read triggers the fault, and the second read catches the fault. A double read

of both a 0 and a 1 needs to exist somewhere in the test. For instance, the unique address



ripple word could be modified such that it can catch this fault (Figure 4.7). Depending on

the type of destructive read fault, either the second read of a 0 or the second read of a 1

will fail (the circled parts of Figure 4.7). This is also a single cell fail (see Figure 4.3c).

Currently, the unique address ripple word test does not have the double read. However,

this double read occurs in the checkerboard test.

i. UwO 1. iwO
2. frOwlrlwl 2. frOwlirlwl
3. trl ,OrOwO 3. frlwOrOwO
4. • r ) 4. MrOrO
5. U 5. lwl
6. JrlwOrOwO 6. IrlwOrOwO
7. JrOwl rl wl 7. 4rOlw rlwl
8. 4r0rl 8. Jr

Figure 4.7: Fault Signatures of destructive read faults

4.3 Fault Detection and Manifestation: Read/Write Logic
There are six types of read/write logic faults: bitline precharge faults, bitline faults, col-

umn multiplexor faults, data-in faults, sense amplifier faults, and data-out faults. The

scope of this type of fault is the set of cells or subset of cells from within a single bit or

two adjacent bits. The model for the read/write logic was presented in Chapter 2 (see Fig-

ure 2.9). Note that this model showed the read/write logic for only one way of the two-

way associative memory that is being used as an example. A separate read/write logic

mechanism is being assumed for each way.

4.3.1 Bitline Precharge Faults
The bitline precharge fault was described in the fault model section in Figure 2.10. A

very clear way of exposing this fault is to write some value x, then read the opposite value

x from a cell that uses the same precharge logic. This is demonstrated in Figure 4.8. Note

that cell A and cell B share the same precharge logic. The first command (the write to cell

A) forces the true and complement wires in one direction. To write a 0, as shown in

Figure 4.8a, the true wire is at GND while the complement wire is at VDD. The second



command (the read of cell B) expects the true and complement wires to be in the other

direction. In Figure 4.8a, to read a 1 out of cell B, the true wire should be at VDD while

the complement wire is at GND. However, the precharge logic is not working properly

and a value of 0 is read instead.

This pattern of commands (writing x followed by reading x) exists in the unique

address ripple word test and is the reason for the second write in steps 2, 3, 6, and 7.

Figure 4.8a and Figure 4.8b shows how this fault manifests itself in this test. The circled

reads are the reads that will fail.

true -
complement -

write 0 read 0 (instead of 1) write 1 read I (instead of 0)
to cell A from cell B to cell A from cell B

VDD - VDD

GND GND
faulty precharge faulty precharge

1. liwO 1. IO
2. wl rlwl 2.0 1 rl wl
3. Or0wO 3. 1rrwiwOrOwO
4. rT rO 4. irOrO
5. - 5. 4wl
6. 41vOrOw0 6. J rO•lwr0w0
7. 1idlwlrlwl 7. 1 rlwl
8. 40rl 8. 4ei 1

(a) faulty true (b) faulty complement
precharge precharge

Figure 4.8: Bitline precharge fault: manifestation in the test

Note that the reads fail because a write in the preceding cell (cell A) forces the true and

complement wires in the opposite direction than is required for the read of cell B. The first

circled rl in step 3 (Figure 4.8a) fails for a certain memory cell B because of the second

wO in step 3 of the previous memory cell A; the fault is triggered by a preceding memory

cell. Figure 4.9 demonstrates how this faults shows up in memory. This fault is manifested



in memory as a column of memory cells which exhibits the faults shown in Figure 4.8.

However, the fact that the fault is triggered by a write to the preceding memory cell means

that the end points of the shaded column in Figure 4.9 behave a little differently. For

example, if there was a faulty true precharge on this column (Figure 4.8a), most of the col-

umn will fail to read a 1 in step 3 and step 6. Assuming that tests going in the forward

direction start from the bottom of the column and work up the column, the cell at the bot-

tom of the column will only fail on step 6 (i.e., when the test is going backwards), while

the cell at the top of the column will only fail on step 3 (i.e., when the test is going for-

wards). An analogous situation exists for a faulty complement precharge logic.

0*S

way A

cD
0

way D

0) 0

Bit n-1

way A way B

0

Bit n

170)-c 0

vvCy L

-C

0

Bit n+1

Figure 4.9: Bitline precharge fault: manifestation in memory

4.3.2 Bitline Faults
There are three types of bitline faults: breaks in one bitline, shorts across the true and

complement wires of the same bitline, and shorts between wires on different bitlines. Each

of these types of bitline faults has a slightly different fault signature.

The first type of fault is a break in the true or complement wire of one bitline.

Figure 4.10 shows a break in the true wire. Assuming all the logic lies on the bottom part

of the picture, the memory cells below the break and closer to the logic will still work

properly. However, the memory cells beyond the break will be inaccessible and partially
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non-deterministic. The complement wire still works correctly, so a value of 1 can still be

written to these cells (the complement wire can pass a 0 into the memory cell on a write of

1) and read from these cells (the memory cell can still pull down the complement wire on

a read of 1). However, attempts to write or read a 0 will fail. Reading such a cell yields a

non-deterministic result.

true complement

Figure 4.10: Break in true wire of bitline

Figure 4.11 shows the fault signature of this type of fault in memory. For the bitline with

the break, the memory cells below the break work normally. The cells above the break will

exhibit either the fault in Figure 4.11a or Figure 4.11b depending on whether there is a

break in the true of the complement wire. Note that the reads that have been marked with

X's are non-deterministic. Any test that can catch partially non-deterministic faults can

catch this type of fault.
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Figure 4.11: Fault signatures of break in bitline wire

The second type of bitline fault is a true to complement short within one bitline. The

result of this fault is that both wires are at the same value; the sense amplifier does not

know what value to return. This results in a column of memory cells that exhibit non-

deterministic faults (Figure 4.12). These memory cells share the same sense amplifier so

there is a high probability that all the memory cells will fail in a similar fashion. Any test

that can catch non-deterministic faults can catch this type of fault.
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Figure 4.12: Fault signature of true to complement short within one bitline

The final type of bitline fault is a short across the wires of two adjacent bitlines. This

can be a true to true, true to complement, complement to complement, or complement to

true short. An example of this type of fault is shown in Figure 4.13. In this example, writ-

ing a 1 to a cell in bitline 0 forces the complement0 wire to 0. The short forces the truel 1

wire to 0. The result is that an adjacent cell in bitline 1 ends up forced to a state of 0. The

arrows in Figure 4.13 indicate the idempotent faults that result from this fault. The arrows

from left to right are idempotent faults where writing a 1 into A (or B) force a 0 into C (or

D). The arrows from right to left are idempotent faults where writing a 0 in C (or D) force

a 1 into A (or B).

Figure 4.13: True to complement short in bitline



In this example, every cell in bitline 0 has an idempotent fault with an adjacent cell in bit-

line 1 and vice versa. The fault signature of a short across adjacent bitlines is shown in

Figure 4.14. The manifestation of idempotent faults in the unique address ripple word test

is shown in Figure 4.4. Any test that can catch all idempotent faults will be able to catch

cross bitline shorts.
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-C .: .-
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Bit n+1

column of idempotent
faults

Figure 4.14: Fault signature of shorts across adjacent bitlines

4.3.3 Column Multiplexor Faults
The chapter on the fault model described two types of column multiplexor faults. In

the first, a pass-gate for either the true or complement wire is stuck open. In the second, a

pass-gate is stuck closed. Both types result in different fault signatures.
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A stuck open pass-gate in the column multiplexor is equivalent to a bitline break right

next to the pass-gate (Figure 4.15).

bitline x bitline x bitline y bitline y
true complement true complement

bitline x
select

bitline y
select

colur
mul

Figure 4.15: Pass-gate stuck open in column multiplexor

This fault manifests itself exactly as the bitline break did, except that now the entire col-

umn is affected (Figure 4.16). As with the bitline break, one of the wires, either the true or

complement, becomes inaccessible. One of the wires will still be able to pass a value so,

for example, if the pass-gate for the true wire is stuck open, the complement wire would

still be able to pass a 0, which means that a value of 1 can still be read. A read of a 0 where

the true wire is expected to pass a 0 is, however, non-deterministic (these are the X's in

Figure 4.16a). Every cell in the column shares the same column multiplexor, so every cell

should fail in the same way.
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Figure 4.16: Fault signature of stuck open pass-gate in column multiplexor

The second type of column multiplexor fault arises when a pass-gate for either the true

or complement wire of a bitline is stuck-closed (i.e, the pass-gate acts as a short-circuit).

This is shown in Figure 4.17.
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Figure 4.17: Pass-gate stuck-closed in column multiplexor

Bitline x, which contains the faulty pass-gate will exhibit an idempotent coupling fault.
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Writing a 1 to a cell along bitline y (in which case the true out is high and the complement

out is low) will force an adjacent cell along bitline x to 1 (the bitline x complement is

driven low). If the fault existed in the pass-gate for the true wire, then writing a 0 to cell

along bitline y would force a 0 to an adjacent cell along bitline x.

The behavior of bitline y is more uncertain and is implementation dependent. The

short circuit in bitline x's complement wire means that a value from bitline x can corrupt

the value being read from bitline y. However, this is only a problem when adjacent cells in

bitline x and bitline y are at different values. When two adjacent cells in bitline x and y are

at the same value, reading the value from the cell in bitline y will not be a problem. There

are two possible cases where corruption of the read from bitline y can happen.

In the first case, a 1 is coming from the bitline y complement wire (when a value of 0

is read from bitline y) while the bitline x complement wire is trying to pull down to 0

(Figure 4.18). The transistor trying to pull the bitline x complement wire down to zero has

a greater load than the transistor trying to pull the bitline y true wire down to zero. There-

fore, the bitline y true wire will still fall a little faster than the bitline x wire. Depending on

how sensitive the sense amplifier is, the correct value of 0 may still be read from bitline y.

However, it is also possible that the sense amplifier will be unable to properly read the

value (i.e., this may be non-deterministic).
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Figure 4.18: Column multiplexor stuck-closed: first case

In the second case, a 0 is coming from the bitline y complement wire (when a value of

1 is being read from bitline y) while the bitline x complement wire is trying to pass a 1

(Figure 4.18). The bitline y complement is still trying to pull down the wire, but it has a

greater load than normal because it is shorted to the bitline x complement. Though it

should be possible for the sense amplifier to properly distinguish a value of 1, this is not

guaranteed, and depends on the sensitivity of the sense amplifier. Again, this may be non-

deterministic.
bitline x bitline x bitline y bitline y

true complement true complement

Figure 4.19: Column multiplexor stuck-closed: second case

In summary, the case of a column multiplexor pass-gate stuck-closed results in one

column of cells which exhibit idempotent coupling faults. This is the column whose pass-



gate possesses the fault. Depending on the implementation, the other column may exhibit

a partially non-deterministic fault or it may exhibit no fault at all. (Figure 4.20). Any test

which can detect idempotent coupling faults should be able to catch this type of fault.
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Figure 4.20: Fault signature of pass-gate stuck-closed in column multiplexor

4.3.4 Data-in Faults
Assuming that each way has its own read/write logic, a data-in fault in the read/write

logic of way A of bit n will cause faults in all memory cells for way A of bit n. If there is a

stuck-at 0 fault in the data-in logic, there will be a stuck-at 0 fault in all the memory cells.

A similar reasoning applies to stuck-at 1 faults. In the case that the data-in logic is stuck

open (and hence non-deterministic), all memory cells will be stuck-at their respective ini-

tial states. Any test that can catch stuck-at faults will catch data-in faults. The fault signa-

ture of this fault is shown in Figure 4.21. Note that the fault signature of this kind of fault

will be slightly different depending on the memory implementation. This figure shows a

two way associative memory where the fault only appears in way A. In the case that this

memory only has one way, the fault would be apparent in all memory cells in that bit.



Also, in this example, each way had its own read/write logic. If the data-in logic was

shared across ways, then the fault would appear in both ways of this bit.

way A way B way A way B ay A:way B

stuck-at
faults

000

Bit n-1 I Bit n Bit n+l I

Figure 4.21: Fault signature of data-in fault

4.3.5 Sense Amplifier Faults
Unfortunately, sense amplifier faults may appear identical to data-in faults. If the sense

amplifier of way A of bit n is stuck-at 0, then all the memory cells in way A of bit n will be

stuck-at 0 (as was the case for a data-in fault). Similarly, if the sense amplifier is stuck-at

1, then all memory cells will be stuck-at 1 (Figure 4.22). A sense amplifier that is stuck

open (non-deterministic) will cause an unknown fault, but one that is repeated in all mem-

ory cells. How this type of fault ultimately manifests itself depends on the circuitry con-

nected to the sense amplifier. Tests that can detect stuck-at faults will be able to detect

when the sense amplifier has a stuck-at fault.
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Figure 4.22: Fault signature of sense amplifier fault

The reasoning here must be qualified in the same fashion as for the data-in logic. The

fault will affect only the memory cells that use this sense amplifier. If there is only one

way, then all memory cells in this bit will be affected (rather than just in way A). If the

sense amplifier is shared across ways, then memory cells in both ways of this bit will be

affected.

Sense amplifiers are designed to catch small variations between its two inputs. These

tight design parameters make them more susceptible to noise. Therefore, tests need to

exist which will stress the sense amplifiers in different ways. One such test is the word line

stripe test. In this test, a word, every bit of which is 1, is read out of memory so that every

sense amplifier is reading a 1. Next, another word, every bit of which is 0, is read out of

memory so that every sense amplifier is reading a 0. The next word is again an all Is and

so on. This pattern is repeated a number of times. This oscillation between reading all Is

and all Os can cause noise in the system which can disrupt the sense amplifier [5].

4.3.6 Data-out Faults
The first type of data out fault, data-out stuck-at faults, are also indistinguishable from

sense-amplifier stuck-at faults (Figure 4.22). If the data-out is stuck-at 1, then this fault



will manifest itself as a bit whose memory cells are all stuck-at 1. If the data-out is stuck-

at 0, then this fault will manifest itself as a bit whose memory cells are all stuck-at 0.

The second type of data-out fault being considered here is the case where a data-out

wire is short circuited to an adjoining data-out wire. This type of fault is shown in

Figure 4.23.
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-- -~ m bit n-1
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Figure 4.23: Data-out short

In this case, the best way to expose this fault is to make sure that different values are being

read from consecutive bits. Depending on the memory implementation, the checkerboard

test may satisfy this requirement. The main idea is that the word being read from the mem-

ory cell must be such that if bit n is a 1, bit n-1 and bit n+l must be a 0. For the implemen-

tation shown in Figure 3.4, the checkerboard test does satisfy this requirement. However,

for the implementation in Figure 3.3, the checkerboard test does not satisfy this require-

ment. If bit n is a 1, so too is bit n-1 and bit n+1.

For the current memory implementation, there needs to be an extra data-out fault test

of four additional memory operations to test for data-out shorts. The first operation is a

write into any address of a word, 010101... This number then needs to be read out of the

selected address. The opposite word (101010...) then needs to be written to and read from

memory. Note that unlike the march tests, these operations do not need to be repeated for

all addresses because this is a test of the read/write logic only. Performing these operations

on the rest of the memory cells adds no new information that the other tests do not already

provide.



How this fault manifests itself depends on what logic comes after. In this figure, if bit n

was trying to drive a value of 1 and bit n+1 was trying to drive a value of 0, then both

wires would end up in a half-voltage state. Though the exact nature of how the individual

memory cells fail is unknown, they will all fail in the same fashion. The memory cells

who are affected by this fault are shown in Figure 4.24. If this memory only had one way,

then all memory cells in bits n and n+1 would have been affected, rather than just in way

A.
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way A :way B

Bit n+2

Figure 4.24: Fault signature of data-out short fault

4.4 Fault Detection and Manifestation: Address Decoder
Chapter 2 described three types of address decoder faults: row decoder faults, column

decoder faults, and wordline/bitline selector faults. Each of these faults have their own

fault signatures. As mentioned in Chapter 2, both the row decoder and column decoder

faults can be further classified into four types of possible addressing faults (these are

shown again in Figure 4.25).
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(a) fault A (b) fault B (c) fault C (d) fault D

Figure 4.25: Logical address decoder faults

Note that although the diagram seems to indicate an address X that activates wordline X

(or bitline selector X), in reality there are a set of address which all activate wordline X (or

bitline selector X). "address X" is merely a convenient shorthand for all addresses that

access wordline X (or bitline selector X). For instance, in Figure 4.26, if the cells that are

shaded are accessed by wordline X, then the set of cells "address X" which activate word-

line X are cells 2 and 10 for all bits and for both way A and way B.
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Figure 4.26: Addressing clarification

This section will show how each of these four addressing faults manifest themselves for

the row decoder and column decoder and how they can be caught. This will be followed

by a section describing how wordline/bitline selector faults manifest themselves and how

they can be caught.
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4.4.1 Row Decoder Faults
As described in 2.4.1, the result of faults A and B is that a row of memory cells will

become inaccessible (therefore non-deterministic). Any attempt to write to or read from an

any address X that is supposed to activates wordline X will fail; the wordline X that

should have been active never fires (Figure 4.27). All addresses for all memory cells that

should have been accessed with this wordline wire are never accessed. The result is that

these two faults manifest themselves as shown in Figure 4.28. Any test that can catch non-

deterministic faults can catch these faults.
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Figure 4.27: Address decoder wordlines
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Figure 4.28: Fault signature of row decoder faults A and B
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A row decoder with fault C is different. Referring back to Figure 4.27, while in fault A

and B there exists a certain address X for which none of the wordline wires fire, in fault C

there exists a certain address Y for which an incorrect wordline is fired. Two addresses end

up activating the same wordline. Writes to addresses that are accessed by wordline X show

up on reads from addresses that are accessed by wordline Y and vice versa; addresses

accessed by wordline X appear to be state-coupled to addresses accessed by wordline Y

and vice versa. The signature that results from performing a unique address ripple word

test on a memory with this type of fault is shown in Figure 4.29. In bit n way B, address 2

is bilaterally state-coupled to address 5 while address 10 is bilaterally state-coupled to

address 13. This is true in all ways of all bits all along wordline X and wordline Y. The

parts of the test that are circled in Figure 4.29 are the reads from memory where an incor-

rect value is read. Note that these failures are the signatures for the state-coupling faults

shown in Figure 4.6. Any test that can catch state-coupling faults can catch this fault.
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Figure 4.29: Fault signature of row decoder fault C

In fault D, wordline X is activated by both address X and address Y. Like fault C, this

results in a state-coupling fault: the cells accessed by address X will have a state-coupling

fault. However, accessing address Y activates wordline Y as well as wordline X. The

result is that when cell X and cell Y are at different values, the cells that are accessed by

address Y are partially non-deterministic. An attempt to read cell Y at this point will also

read cell X. This is another case where the sense-amplifier will have identical values on

both inputs. Figure 4.30 shows the fault signature for fault D in the row decoder under a

unique address ripple word test. In way A of bit n+l, addresses 2 and 10 have state-cou-

pling faults while addresses 5 and 13 have partially non-deterministic faults. This fault is

replicated across both ways of all bits. The circled parts of the test indicate the locations

where an incorrect value is read out. This is an example of a state-coupling fault. The

I



crossed out parts of the test indicate the locations where a non-deterministic value may be

read. A test that can catch state-coupling faults and non-deterministic faults can catch this

fault.
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Figure 4.30: Fault signature of row decoder fault D

4.4.2 Column Decoder Faults
As with the row decoder, faults A and B in the column decoder appear to be identical.

In both faults A and B, there will exist a bitline selector X (Figure 4.31) which will never

become active. Thus, the set of addresses that are accessed by these bitline selectors will

never be accessed for reads or writes. All reads to these cells are non-deterministic. The

fault signature for these two types of faults is shown in Figure 4.32. Any test that can catch

non-deterministic faults can catch this fault. This fault is repeated across all bits and for all

AL



addresses that are accessed by this bitline, both in way A and way B (assuming they share

the same address decoder).

address bitline selectors

Figure 4.31: Address decoder bitline selectors

bitline X
non-deterministic

Figure 4.32: Fault signature of column decoder faults A and B

Referring to Figure 4.31, the result of fault C is that one of the bitline selectors will fire

at the wrong time; two addresses will end up causing the same bitline selector to fire.

Thus, writing to an address that is accessed by bitline X will appear to change the results

of reading a memory cell from an address that is accessed by bitline Y, and vice versa.

Using the unique address ripple word test, this fault manifests itself as the state-coupling

fault shown in Figure 4.33. In this example, in way A of bit n-1, address 0 and 8 are bilat-

erally state-coupled (as are 1 and 9, 2 and 10, etc.). These faults are replicated across both

ways of all bits. Note the circle indicates the locations where an incorrect value is read.
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The faults shown are the same as the state-coupling faults shown in Figure 4.6. This fault

repeats itself across all bits and for all addresses that are accessed by bitline X and bitline

Y. Any test that can catch state-coupling faults can catch this fault.
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Figure 4.33: Fault signature of column decoder fault C

In fault D, bitline selector X is accessed, correctly, by address X. However, another

address Y will also access bitline selector X. Referring to Figure 4.31, in the column

decoder an incorrect bitline selector will fire for address Y. An attempt to read a value

from address X will yield a value that is dependent not just on what was written to address

X but what was written to address Y. Therefore, all addresses that access bitline selector X

will exhibit a state-coupling fault with corresponding addresses that access bitline selector

Y. This is similar to fault C. However, in fault D, an access of address Y does not just acti-

vate the faulty bitline selector X, but also activates bitline selector Y. If the two cells being

read have the same value, the correct value will be read out of address Y. However, if the

two cells read are at different values, the sense amplifier will be trying to read contradict-

ing data from the two cells. A non-deterministic result is read. The fault signature for fault



D is shown in Figure 4.34. In this example, in way A of bit n, address 0 (and 1 and 2, etc.)

has a non-deterministic fault. Address 8 (and 9 and 10, etc.) has a state-coupling fault.

These faults are replicated across both ways of all bits. Any test that can catch state-cou-

pling faults and non-deterministic faults can catch this fault.
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Figure 4.34: Fault signature of column decoder fault D

4.4.3 Wordline/Bitline Selector Faults
There are two types of faults for both the wordline and for the bitline selector. The first

type of fault is a stuck-at fault (e.g., the wordline may be stuck-at 1 or stuck-at 0). The sec-

ond type of fault is a break in the wordline or bitline selector.

In the case that either the wordline or bitline selector is stuck-at 0, that particular wire

is never activated. This is identical to fault A in the address decoders. Therefore the fault

signature for a wordline stuck-at 0 fault is the same as shown in Figure 4.28. Similarly, the

fault signature for a bitline selector stuck-at 0 fault is the same as shown in Figure 4.32.

In the case that either the wordline or bitline selector is stuck-at 1, that particular wire

is always active. This is equivalent to a special case of fault D (see Figure 4.35). Regard-



less of what other wordline (or bitline selector) is supposed to be active, the wordline (or

bitline selector) with the stuck-at fault (in this case X) will always be active.
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Figure 4.35: Wordline/bitline selector stuck-at 1 fault

Assuming that the fault is a wordline stuck-at fault (the case of the bitline selector is

entirely analogous), the faulty wordline will be affected by all writes to the memory, both

to addresses before and after it. Therefore, the cells along wordline X will exhibit the

symptoms of both state-coupling faults from a previous cell (Figure 4.6a) and state-cou-

pling faults from a following cell (Figure 4.6b). Accessing the cells along the other word-

lines will also access cells along wordline X. The result will be non-deterministic should

the cell's value be different from the value of a corresponding cell in wordline X. The fault

signature for this fault is shown in Figure 4.36 for a unique address ripple word test. The

circled reads are reads where an incorrect value is read. The crossed reads are reads where

the result is non-deterministic. Note that if wordline X was either the top-most or bottom-

most wordline, it would exhibit a state-coupling fault from one direction only. Any test

that can catch non-deterministic faults and state-coupling faults will catch this fault.
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Figure 4.36: Fault signature of stuck-at 1 fault on wordline

The fault signature for a wordline and bitline break is fairly straightforward. All mem-

ory cells for all bits beyond the break and away from the decoder will be effectively stuck

open (non-deterministic). They will never be accessed. Therefore the fault signature for

the wordline break will appear as it does in Figure 4.37. Cells before the break can be

accessed normally. Cells beyond the break are non-deterministic.
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Figure 4.37: Fault signature of wordline break

An analogous situation holds for the bitline selector breaks. For addresses beyond the

break that use the bitline selector with the fault, no cell will be accessed. Addresses before

the break will function normally. This is illustrated in Figure 4.38.
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Figure 4.38: Fault signature of bitline selector break
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Chapter 5

Summary and Conclusions
The objective of this thesis is a methodology for memory array diagnosis. Initially, a fault

model was described (Chapter 2). The tests being used to catch these faults was then pre-

sented (Chapter 3). Finally, the way the faults manifested themselves in the tests (each

faults' fault signature) was described (Chapter 4). Now that these fault signatures have

been introduced, the complete diagnostic flow can be shown (see Figure 5.1).

generate diagnostictest run on tester generatefailure fa diagnosti
pattern tester output bitmap bitmap tree

Figure 5.1: Diagnostic flow

First, the test patterns need to be generated. These patterns are applied by the tester to the

chip being tested. The resulting tester output is then analyzed to generate a failure bitmap.

By applying the criteria given by the diagnostic tree to the failure bitmap, a final diagnosis

can be made. The most important result of this study was the creation of this diagnostic

decision-making process or the diagnostic tree. Furthermore, examining tests and the

faults they catch from the point of view of diagnosis forces a more detailed look at the spe-

cific faults encountered and therefore a better understanding of what tests are unnecessary

or how the tests can be optimized.

5.1 Diagnostic Tree
The information about Diagnosis contained in Chapter 4 can be condensed into a diagnos-

tic tree (see Figure 5.2 for base of tree). This is a decision making guide that allows a diag-

nosis to be made based upon a given failure bitmap. The following four figures show how

a failure bitmap can be interpreted to make a diagnosis. Initially, the memory is tested with



the unique address ripple word test. This version of the unique address ripple word test

contains the double read necessary to catch destructive read faults (see Section 4.2.5).

Figure 5.2 shows how the failure bitmaps resulting from this test can be sorted depending

on the scope of the fault. Faults in the memory cell array, read/write logic, and address

decoder all have different scopes and Figure 5.2 gives the appropriate next figure to look

at depending on the scope of the faults in the failure bitmap. The fault signatures for mem-

ory cell array faults are shown in Figure 5.3. The fault signatures for read/write logic

faults are shown in Figure 5.4. Finally, the fault signatures for address decoder faults are

shown in Figure 5.5.
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Figure 5.4: Read/write logic faults
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Figure 5.6: Extra test for data-out faults

If there are no faults in the unique address ripple word test, then the word line stripe

test is applied to test for sense amplifier sensitivities to noise (see Section 4.3.5). If this

test is also successful, the additional data-out fault test described in Section 4.3.6 is used

to test for data-out short faults. This is the test whereby consecutive bits are written with

different values and then read out of memory. If a fault manifests itself as shown in

Figure 5.6, then a data-out fault exists. Otherwise, no known fault exists. Using this diag-

nostic tree, a diagnosis can be made from the failure bitmap.

5.2 Test Optimization
The study of memory array diagnosis leads to a better understanding of the faults encoun-

tered in memory arrays. This knowledge can be applied to discard or optimize memory



tests. Of the original three tests presented, the unique address ripple word test can be used

to catch most faults. The remaining faults do not need to be caught with full march tests

like the checkerboard or word line stripe tests.

For the given implementation of memory, the checkerboard test did not catch any

additional faults once the double read was also included in the unique address ripple word

test. This checkerboard test can be discarded.

The word line stripe test was only used to catch sense amplifier noise sensitivity faults

(described in Section 4.3.5). This is significant because the word line stripe test did not

need to march through every address. To test the sense amplifier, all that is required is that

a value of all is and all Os is read out one after the other, for some k number of times.

Thus, instead of a march test of order n (where n is the number of addresses), this tests can

be of order k (a constant).

The last fault, the data-out fault, can be caught with the data-out fault test described in

Section 4.3.6. This was another test where the addresses used were irrelevant; a full march

test would merely be a waste of tester time and memory. This test only required that a few

words be written to and read from memory; each of these words must have alternating bits

at different values. Again, this is also a test of order k.



Appendix A

Shortening Test Simulation Time and Reducing Tester
Buffer Memory Requirements

A.1 Introduction
The tests described in this thesis are functional tests. They run on the microprocessor as

assembly programs. Most of these tests are march tests and their length is dependent on

the number of memory cells that the test must march through. These tests can become con-

siderably large and the amount of time required to simulate and run these tests as well as

the amount of tester buffer memory required to store these tests can be enormous. The

amount of time required to simulate these tests is important because all the assembly pro-

grams need to be simulated in order to generate the patterns that the tester applies to the

processor. The amount of time required to run these tests is important because during man-

ufacturing the test patterns need to be applied to every processor and so any decrease in

test run time increases the throughput for the manufacture of the processors. The amount

of tester buffer required is important because there is only a limited amount of tester buffer

memory available in the test equipment and buying extra memory is either costly or not

possible. Shortening the run time of these tests involves optimizing the tests themselves,

which is discussed in Section 5.2. This appendix deals with shortening the tester simula-

tion time and reducing tester buffer memory requirements, given a particular set of tests.

A.2 Reducing the Simulation Time
Two strategies to reduce the simulation time were considered. The first was to split the

unique address ripple word test (the longest of the three tests) into four parts. The second

was to pretend that the memory was broken into parts and simulate the tests on the sepa-

rate parts. In this way, though the total simulation time may be unchanged or longer, each



of these parts is independent; therefore, many parts can be simulated in parallel.

A.2.1 Breaking up the Unique Address Ripple Word Test
One method of shortening the amount of simulation time was to break up the longest

test, the unique address ripple word test. The test can be easily broken into four parts with-

out loss of diagnosis as shown in Figure A. 1. Notice how in part 2 and part 4, steps 2b and

6b have been added, respectively. These two extra steps are necessary to continue to trig-

ger all the appropriate coupling faults.
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Figure A.1: Breaking up the unique address ripple word test

All four parts need to be run in order to do diagnosis. Their results can be put together to

generate a complete failure bitmap and diagnosis can be done as before. Notice again that

only the simulation time for each part has been shortened. The amount of tester buffer

memory required and the total simulation and run time of all four parts has been increased

due to the two extra steps, 2b and 6b.

A.2.2 Breaking up the Memory
A second method of shortening the amount of simulation time was to divide the mem-

ory and simulate the tests on each piece separately (each piece being a certain set of



addresses). However, the memory cannot be broken up haphazardly, because both test and

diagnosis will be affected. There are three rules, enumerated below.

The memory cannot be broken into pieces as shown in Figure A.2a. In this case, the

test is run separately on the top half and the bottom half. The problem is that not all cou-

pling faults will be caught. For example, in Figure A.2a, a coupling fault between memory

cell X and memory cell Y will never be caught. The source that triggers the fault and the

target of the fault are in different parts. Assuming that coupling faults only occur between

adjacent memory cells (otherwise, breaking memory into pieces will not work at all), the

first rule is that adjoining pieces must overlap; the memory cells at the boundary between

any two pieces must be a part of both pieces. This is illustrated in Figure A.2b, in which

case the darker row is tested as part of both the top piece (part 1) and the bottom piece

(part 2). Coupling faults between memory cell X in Figure A.2b and memory cells both

above and below it will be caught.
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00
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Figure A.2: Preserving coupling faults

The second rule is that regardless of how many smaller pieces the memory is broken

into, there needs to be a piece where all the wordlines are accessed in order to test for row

decoder faults. For instance, in addition to the two pieces shown in Figure A.2b, there



needs to be a third piece as shown in Figure A.3 where every one of the wordlines is

accessed.
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Figure A.3: Catching row decoder faults

An analogous rule is that a piece must exist where all the bitline selectors are accessed

so that column decoder faults can be caught. Fortunately, this is already true in

Figure A.2b. In general, there needs to be a piece as shown in Figure A.4 where every one

of the bitline selectors is accessed.
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Figure A.4: Catching column decoder faults

As with breaking up the unique address ripple word test, breaking up memory only

decreases the simulation time. It increases both the run time and the required tester buffer

memory because of the redundant testing of certain memory cells (i.e., the overlapped

memory cells, or testing the same memory cells to account for row decoder or column

decoder faults).

A.3 Reducing the Tester Buffer Memory Requirements
Two strategies were pursued to reduce the tester buffer memory requirements. The first

was to turn on the microprocessor's instruction cache during these tests. The second was

to compress the data in the tester memory.



A.3.1 Enabling the Cache
The assembly code for the memory array tests is not very long. These tests are written

as iterative loops that increment or decrement through memory. Part of the reason for the

huge tester memory requirements is that the tester is constantly feeding the processor with

the next instruction. With the cache disabled, the tester needs to continuously supply the

next instruction to the processor. The looping nature of the code means that the same

instruction will be repeatedly supplied by the tester for each iteration of the loop. With the

cache enabled, only the first iteration of the loop needs to be supplied to the processor

where it can be cached. An example of the savings that enabling the cache provides is

shown in Table A. 1.

test type cache disabled cache enabled

checker-board 34,656 17,251

unique address ripple 107,345 56,242
word

word line stripe 22,696 11,492

TOTAL 164,697 84,985

Table A.1: Required lines in tester buffer used for 16 entry dual-ported memory
array with and without the cache

Note that this method only provides savings in the amount of tester buffer memory

required. It does not affect the amount of time it takes for the tests to run or to simulate.

A.3.2 Memory Compression
Once cached, the tester is often idle, supplying the same information to the processor

every clock cycle; turning on the cache allows the processor to do a lot of work without

needing information from the bus. Instead of having the tester supply the same exact infor-

mation each clock cycle, this information can be compressed into one line along with a

repeat value that tells the tester how many times to repeat it. This compression is the sec-



ond method of addressing the tester buffer memory requirements. The further savings

from compressing the tester memory is shown in Table A.2.

test type just cached cached & compressed

checker-board 17,251 2,140

unique address ripple 56,242 4,025
word

word line stripe 11,492 1,150

TOTAL 84,985 7,315

Table A.2: Required lines in tester buffer used for 16 entry dual-ported memory
array with and without compression

As with enabling the cache, the savings here are only in terms of the amount of required

tester buffer memory. The time required to run and simulate remain the same.
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