
CONSTRUCTION OF A MACHINE VISION
SYSTEM FOR AUTONOMOUS

APPLICATIONS

by
Anthony Nicholas Lorusso

Submitted to the
Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements
for the Degree of

Master of Electrical Engineering
at the

Massachusetts Institute of Technology
May, 1996

(c) Anthonv Nieholas Loruss& 1996

Signature of Author
Depa -, puter Science

May 23, 1996

Certified by
sermnold Klaus Paul Horn

Thesis Supervisor

Certified b
David S. Kang

Project Supervisor

Accepted bŽ
F. R. Morganthaler

Chair, Department Commitfee on Graduate Students

OF "TECiHNLOGY

1 JUN 111996

LIBRARIES

CONSTRUCTION OF A MACHINE VISION
SYSTEM FOR AUTONOMOUS

APPLICATIONS

by
Anthony Nicholas Lorusso

Submitted to the Department of Electrical Engineering and
Computer Science on May 23, 1996 in partial fulfillment of the

requirements for the Degree of Master of Electrical Engineering.

Abstract

The Vision System is a completed prototype that generates
navigation and obstacle avoidance information for the autonomous
vehicle it is mounted upon. The navigational information consists
of translation in three axes and rotation around these same axes
constituting six degrees of freedom. The obstacle information is
contained in a depth map and is produced as a by-product of the
navigation generation algorithm. The coarse prototype generates
data that is accurate to within 15%. The design methodology and
construction of the prototype is carefully outlined. All of the
schematics and code are included within the thesis.

Assignment of Copyright to Draper Laboratory

This thesis was supported by The Charles Stark Draper
Laboratory, Inc. through the Intelligent Unmanned Vehicle Center
(IUVC). Publication of this thesis does not constitute approval by
The Charles Stark Draper Laboratory, Inc. of the findings or
conclusions contained herein. It is published for the exchange and
stimulation of ideas.

I hereby assign my copyright of this thesis to The
Draper Laboratory, Inc., Cambridge, Massachusetts.

Charles Stark

/ pnthýt Nicholas Lorusso

Permission is hereby granted by The Charles Stark Draper
Laboratory, Inc. to the Massachusetts Institute of Technology to
reproduce part and/or all of this thesis.

Acknowledgments

I would like to thank

Matthew Fredette, James Guilfoy, Berthold Horn, Anne Hunter,
William Kaliardos, David Kang, Dolores Lorusso, Grace Lorusso,
Donald Lorusso Sr., Stephen Lynn, Eric Malafeew, William Peake,
Ely Wilson.

Dedication

This thesis is dedicated to the people whom have made all of the
wonderful things in my life possible.

To my wife,

Dolores Marie Lorusso

my father in law,

Anthony George Sauca

and

Frank & Concetta Ternullo.

Table of Contents

Introduction 15

1 The Theory Behind the System 17

1.1 The Coordinate System 17
1.2 The Longuet Higgins and Pradzny Equations 18
1.3 The Pattern Matching Algorithm 24
1.4 Motion Parameter Calculation Algorithm 27
1.5 Updating the Depth Map 32
1.6 Chapter Summary 33

2 Prototype Vision System Architecture 37

2.1 Natural Image Processing Flow 37
2.2 Environment Imager 38
2.3 Image Storage Module 40
2.4 Preprocessing Module 42
2.5 Pattern Matching Module 43
2.6 Postprocessing Module 44
2.7 User Interface 45
2.8 The Prototype Vision System Architecture 46
2.9 Chapter Summary 47

3 The Prototype Vision System Hardware 49

3.1 The Prototype Hardware 50
3.2 CCD Camera 51
3.3 Auto Iris Lens 53
3.4 Frame Grabber with Memory 55
3.5 PC104 Computer 57
3.6 The Pattern Matching Module 59

3.6.1 The Motion Estimation Processor 60
3.6.2 Addressing and Decoding Logic 61
3.6.3 Latches and Drivers 64
3.6.4 Control Logic 65

3.7 Chapter Summary 66

4 The Prototype Vision System Software

4.1 The Overall System Process 69
4.2 Flow Field Generation 70

4.2.1 Frame Grabber Control 72
4.2.2 Patten Matching Module Control 75
4.2.3 Flow Field Calculation 79

4.3 Motion Calculation 79
4.3.1 Motion Calculation Functions 80

4.4 Chapter Summary 83

5 Calibration, Results, and Performance 85

5.1 System Calibration 85
5.1.1 Scale Factors 85
5.1.2 Determining the Virtual Pixels 87

5.2 Initial Results 90
5.2.1 Initial Results Analysis 91

5.3 Average Vector Elimination Filter 92
5.4 Final Results 93

5.4.1 Final Results Analysis 94
5.5 Speedup 94
5.6 Chapter Summary 97

6 Conclusion 101

Appendix A Schematic of the Pattern Matching Hardware 105

Appendix B Complete Listing of the C Source Code 107

References 143

INTRODUCTION

The Vision System described within this thesis has been designed specifically for

autonomous applications where an autonomous application is any system that can perform

a function without assistance. A few good examples of autonomous systems are security

robots, house alarms, or blind persons with seeing eye dogs -these particular examples

would all benefit from the system described here.

The system is tailored for stereo or monocular camera arrangements, low power

consumption, small packaging, and faster processing than any similar commercial Vision

System available today. The ultimate goal of this thesis is to describe the construction of a

complete vision that can be mounted on an autonomous vehicle. The prototype described

here will serve as a "proof of concept" system for the new ideas introduced within it; the

system can be considered as an iteration in a much larger process to produce a self

contained vision processing unit, perhaps even a single application specific integrated

circuit.

This thesis is the third in a series of documents produced by the Intelligent

Unmanned Vehicle Center (IUVC) of The Charles Stark Draper Laboratory in Cambridge

Massachusetts that focus on the topic of machine vision. The first document is "Using

Stereoscopic Images to Reconstruct a Three -Dimensional Map of Martian or Lunar

Terrain" by Brenda Krafft and Homer Pien. The second document is "A Motion Vision

System for a Martian Micro-Rover" by Stephen William Lynn. The IUVC project was

established in 1991 with the participation of undergraduate and graduate students from the

Massachusetts Institute of Technology and other universities local to Boston.

IUVC has given birth to many autonomous robots and vehicles since its

establishment. The first series of robots, the MITy's, were designed for Lunar and Mars

exploration. IUVC's most notable microrover, MITy2, has a cameo appearance in the

IMAX film "Destiny in Space." Currently IUVC is developing more sophisticated ground,

aerial, and water crafts.

"Construction of a Machine Vision System for Autonomous Applications," builds

very closely on IUVC's second vision system document, "A Motion Vision System for a

Martian Micro-Rover."

The purpose of this paper is to clearly explain the prototype Vision System so that

others, if desired, may be able to recreate it. Since, however, the paper will dwell heavily

upon the work that was actually implemented in the Vision System only a few alternate

solutions will be discussed.

As you will see, the Vision System described here is simple, novel, flexible,

expandable, and fast.

16

CHAPTER ONE
THE THEORY BEHIND THE SYSTEM

This chapter will provide all of the background theory necessary to understand

how the vision system works. The natural progression of the chapter is to build the

mathematical models and equations in the context that they will be used.

The chapter starts by defining the coordinate system that will be used, followed by

a derivation of the Longuet Higgins & Pradzny Equations. The rest of the chapter

describes the pattern matching and motion calculation algorithms in conjunction with their

supporting formulas. The supporting formulas include the Least Squares derivation for

calculating motion parameters , the optimized depth formula for updating the depth map.

The Coordinate System

P (OBJECT

OPTICAL A)

'ER OF
JECTION

Figure 1. 1 The Coordinate System

The coordinate system defined here is not nearly as complicated as it appears. The

origin is renamed the Center of Projection, since any ray of light coming from an object

passes through it. All points that are on objects seen by our system are generally labeled P.

Conversely all object points correspond to a unique image point on the Image Plane. An

image point is where the ray connecting an object point to the Center of Projection

intersects the Image Plane; these are denoted by a lower case script p. The Z-axis is called

the Optical Axis, and the distance along the Optical Axis between the Image Plane and the

Center of Projection is the Principal Distance. Any motion of our coordinate system, along

the axes is described by a translation vector t. The right handed angles of rotation along

each of the axes are A, for the X-axis, B, for the Y-axis, and C for the Optical Axis.

Derivation of the Longuet Higgins & Pradzny Equations

An easy way to picture the coordinates is as though the Charge Coupled Device

(CCD) Camera is permanently mounted at the Center of Projection, and that the Image

Plane is the camera's internal CCD sensor. (See Figure 1.2).

Y

OPTICAL 01
Z AXIS

CK AND
ITE CCD
IERA

'D ARRAY/
AGE

Figure 1.2 CCD Camera Placement

The Optical Axis goes through the center of the camera and points out of the camera lens;

this is the exact way that the coordinate system and camera will be used. Note that

throughout this chapter, lowercase x & y refer to coordinates on the Image Plane.

A camera cycle is simple; an image from the camera is stored, the camera is

moved, and a second image from the camera is also stored. The camera motion between

images can be described in translation and rotation vectors. It is a nice twist to note that if

the environment moved instead of the camera, it can still be described in the same way

with just a change of sign. The structures we will use to describe motions in our

coordinate system are,

The translation vector,

t=[U V w]

Equation 1.1 Translation Vector

where U, is translation in the X-axis, V is translation in the Y-axis, and W is translation in

the Optical, or Z-axis. The rotation vector,

r = [A B Cf

Equation 1.2 Rotation Vector

where A, is the rotation in radians around the X-axis, B is the rotation around the Y-axis,

and C is the rotation around the Optical, or Z-axis. It is importnat to note that in practice

we will expect these values to be small angular increments.

In Equation 1.2 each of the rotations may be represented by rotation matrices [1].

The matrices for the rotations are in bold or have a subscriptm.

For angle A, rotation in the Y-Z plane,

1 0 0

A, = 0 cos A sin A

0 - sin A cos A

Equation 1.3 Rotation Matrix for X-axis

For angle B, rotation in the X-Z plane,

cos B
Bm= 0

sin B

- sin B
0

cosB

Equation 1.4 Rotation Matrix for Y-axis

For angle C, rotation in the X-Y plane,

Cm

sin C

cosC
0

0
0

1i

Equation 1.5 Rotation Matrix for Z-axis

An object point in the scene being imaged is described by coordinates in X, Y, Z,

P = [X Y zf

Equation 1.6 Object Point Vector

Camera motion causes an object point to appear in a new location. The new

location is given by,

X X X

Y =CmmBmA[Y ->t¢ Y[

Equation 1.7

where R is the multiplication

multiplication the R matrix is,

= i RY -Vi=RYz

New Object Coordinate Equation

of equations 1.5, 1.4, and 1.3 respectively. After

20

R=

sinAsinBcosC+ cosAsinC -cosAsinBcosC+ sinAsin C

-sinAsinBsinC+ cosAcosC cosAsinBcosC+ sinAcosC

-sinAcosB cosAcosB

Equation 1.8 The Complete Rotation Matrix

The order of multiplication of the rotation matrices is very important. In an

attempt to backward calculate for C, B, and A the order of multiplication would have to

be known. The rotation matrices have another concern in addition to their order of

multiplication, the matrices have non-linear elements.

The ability to make the elements of the rotation matrices linear will allow them to

be solved for easier. The best way to do this is to use a Taylor expansion to simplify our

equations. Recall the Taylor expansion is,

(x - a)2f (x)= f (a)+ (x - a)f (a) + f "(a)+
2!

(x - a)3 (x - a)"f "'(a) +...+ f(")(a) +...
3! n!

Equation 1.9 Taylor Expansion [2]

We will choose our expansion point to be P=(A=O, B=O, C=O), and our second-

order terms are negligible. Thus, the Taylor expansion is,

dR . dR 1R?
R=I+ Am+ Bmn+ C n

Equation 1.10 Taylor Expansion of R Around P

where the partial derivatives are,

0 cosAsinBcosC-sinAsinC sinAsinBcosC+cosAsinC 1
°= 0 -cosAsinBsinC-sinAcosC -sinAsinBsinC+cosAcosC

L -cos AcosB -sinAcosB

-sinBcosC sinAcosBcosC -cosAcosBcos C
-= sinBsinC -sinAcosBsinC -cosAcoBsinC

cosB sin AsinB -cosAsinB

-cosBsin C -sinAsinBsinC+cos AcosC cosAsinBsinC+sinAcosC
-• -cosBcosC -sinAsinBcosC-cosAsinC cosAsinBcosC-sinAsinC

0 0 0
and the partial derivatives evaluated at P are conveniently,

A -

-1
01 1ii,oJO

and so our Taylor expansion to the first order is,

0 0
0 +

-A 0

-B [0
0 + -C
0 0

L -

Equation 1.11 Taylor Expansion to the First Order of R

Keep in mind that our coordinate system is perspective projection. To obtain

Image Plane coordinates, x & y, normalized by the camera lens focal length, f, we take our

world coordinates X & Y, and divide by the principal distance, which is Z:

x X

f z
y Y

f z

22

-1 0

R=I+ 0
0
0

01

ii -

Finally, we can express our Image Plane motion field in terms of the indicated

parameters. The motion field is made up of the motion of points in the Image Plane as the

camera is translated and rotated. The components of the motion vector for a point in the

Image plane are [3],

u X Zx= X,
f Z Z 2 '

v - Y Z
7 =y= Y
f Z Z2

Equations 1.12 Motion Field Equations

where the dotted quantities are functions of images and u is motion along the image plane

x-axis, and v is motion along the image plane y-axis. Equations 1.12 were derived by the

product rule of the normalized coordinate equations.

Now if we step back and examine the X, Y, Z world coordinates it is obvious that

we can represent their dotted quantities or changes with respect to images as a difference,

X X X X U
Y Y - Y =(R-I)Y -V

Z Z' Z Z W

Equation 1.13 Dotted World Coordinates

Now, plugging the Taylor approximation into Equations 1.12 and simplifying, we

get,

u CY - BZ - U

f Zz
v AZ -CX -V

f Z

X(BX - AY -W)
Z 2

Y(BX - AY-W)
Z 2

which simplify to the Longuet Higgins & Pradzny Equations,

23

u f xyA x yC
= + +1 B+ f

f Z f 2 j f

Equations 1. 14 Longuet Higgins & Pradzny Equations [4]

OED

The Longuet Higgins & Pradzny equations provide a practical and clear relation

between the components of the motion field in the Image Plane of a camera and the actual

motion of the surrounding environment.

The Pattern Matching Algorithm

The camera cycle compares two consecutive CCD images using the pattern

matching algorithm. The pattern matching algorithm produces the relative motion field

that can be used to determine camera motion or gather information about obstacles in the

environment, depending upon the need of the end user.

The information collected from the black and white CCD camera is stored in an

nxm matrix of 8 bit values, where n is the horizontal resolution of the Image Plane and m

is the vertical resolution of the Image Plane. The resolution of the Image Plane depends

upon the number of pixels in the CCD of the camera used to image the environment. Each

complete nxm matrix of the Image Plane is called a frame. Each 8-bit value, called a pixel,

is the brightness of a particular point in the Image Plane. The range of brightness values

varies between 0 and 255, with 0 being a black pixel and 255 being a white pixel.

Together, all the pixels make up an image of the surrounding environment. (See Figure

1.3).

A PIXEL IN
THE CCD
IMAGE PLANE.

OPTICAL/Z
AXIS

II!
.CD IMAGE PLANE/FRAME

Figure 1.3 The CCD Image Plane and Frame

The operation of the pattern matching algorithm is functionally straight forward.

The first frame is separated into data blocks nxn pixels in size. The second frame is

separated into search windows 2nx2n pixels in size. The frame to block parsing is done

such that there are the same number of data blocks and search windows. All of the data

blocks have their centers at the same positions as the centers of the search windows in

their respective frames. (See Figure 1.4).

FIRST AND
SECOND DATA
BLOCKS.

NOTE THAT
THE EDGE OF
THE FIRST
FRAME IS
UNUSED.

DATA BLOCK
POSITIONS IN
FIRST FRAME

FIRST FRAME

FIRST AND SECOND DATA
BLOCK POSITIONED IN
FIRST AND SECOND
SEARCH WINDOW

SECOND FRAME

Figure 1.4 First and Second Frames

The algorithm takes the first data block and finds its best match in the first search

window. The best match position is then an offset from the data blocks original position.

The offset is considered to be a measurement of the local motion field, where each of its

components, u & v are the components of motion in Equations 1.14, the Longuet Higgins

& Pradzny equations. Each offset will be called a flow vector.

25

I

1
I

-

F

The best match is determined by the smallest error. A data block is initially placed in the

upper left corner of its respective search window. The absolute value of the difference in

the pixel values between the data block and search window are then summed to give the

position error. The datablock is then moved to the right by one pixel and a new position

error is computed. This process continues until the data block has been positioned at every

possible location in its search window, See Figure 1.5. The data block location of the

smallest position error is the desired value. If two position errors have the smallest value

the second error computed is taken to be the best match. A description of the algorithm is,

n n n n
for(- n- i < -, - j < -):

2 2 2 2
n-1 n-1

PEi = - I ISWx+i,y+J - DBx,,I
y=O x=O

if (PEi, j, ME,,J)

then, ME = PEt=i,-= j.

Equation 1. 15 Pattern Matching Algorithm [5]

where PE is the position error, SW is the search window, DB is the data block, and ME is

the minimum position error. The subscripts refer to specific locations in the respective

data arrays. The value n is the width and height of a data block and, for hardware reasons

discussed later, the upper left pixel in the search window is given the coordinate (-n/2, -

n/2). I & J are the position of the best match.

It is important to note that this algorithm does not provide us with any information

about the quality of the match. Further, the algorithm only provides integer pixel

resolution.

26

I

I~
I

~~

1
SEARCH WINDOW

i
I

PATH OF
DATA RBLOCK

INSEARCH
WINDOW

SEARCH WINDOW

Figure 1.5 Movement of Data Block in Search Window

The position of the best match and its associated flow vector are calculated for

each data block and search window pair. After all of the flow vectors have been calculated

we have determined our complete motion field. It is important to note that the size of our

search window places an upper bound on the magnitude of each flow vector. Hence, the

amount of motion in a camera cycle is limited. It is also important to mention that we are

assuming that the patterns in the frame parsed into data blocks are approximately the same

patterns in the frame parsed into search windows; this is not a trivial assumption.

Motion Parameter Calculation Algorithm

The motion parameter calculation algorithm produces the final results of the vision

system; It computes the 6 motion parameters described in Equations 1.1 and 1.2, and a

depth map of the surrounding environment. The six motion parameters describe the net

:ii~~ ~~~ " ~j::~:j :::~:i :::~ :~:~:~t~-:-:-: ::::::

I

i
I DATA BLOCK

I

~2.- ttrsrsrt;;r+;;s;~;·;.·;
~-~-:-r:-~-~ ~F~

.°° ° °. . . .
.

.........

.........

• mET* '**" _

.. P

/
DATA BLOCK
IN SEARCH
WINDOW

...~~ ~°°o--· t -~~ ~'~
• ,..° °- -· -- "

°.oo-·o

movement of the camera in a camera cycle. The depth map contains the estimated

distances from the camera to large objects in the first frame of the camera cycle; a depth

estimate is computed for each data block. Therefore, the resolution of the depth map is

dependent on the size of the data block; the depth map can be thought of as the low pass

filtered environment. The depth map suppresses all of the sharp detail and contrast an

image can provide.

The motion algorithm simultaneously solves for the motion parameters and depth

map; in a sense, they are by products of one another. The algorithm is an iterative process

that assumes the correct motion parameters have been achieved when the depth map

values converge. The motion algorithm is,

Figure 1.6 Motion Calculation Flow Chart

The first step in Figure 1.6 is to obtain the flow vector information from the

pattern matching algorithm. A flow vector is formally defined as,

x',y' Matched Data Block
Position

x,y Original Data Block Postion

Figure 1.7 Flow Vector

and we can relate each flow vector to Equations 1.14, the Longuet Higgins & Pradzny

equations by,

u=x=x'-x, v=y=y'-y

Equations 1.16 Flow Vector Components

where the focal length has been set to one for convenience. The Longuet Higgins and

Pradzny equations relate the motion field in the Image Plane to the actual motion of a

camera in our coordinate system, Figure 1.1. Since the pattern matching algorithm

provides us with a means of determining the motion field in the Image Plane, it is sensible

that we can solve for the six parameters of camera motion, U, V, W, A, B, C. We will

define a vector m, that contains all of the motion parameters,

m=[U V W A B C]

Equation 1.17 Motion Parameter Vector

The motion parameter vector allows us to rewrite Equations 1.14, the Longuet Higgins &

Pradzny equations, for each flow vector as,

O0 xy - (x2 Y m

S~y (y +1) -xy -x L

Equation 1.18 Matrix Form of Longuet Higgins and Pradzny

The matrix for all the flow vectors is calledA. A is a 2nxm matrix of the form,

-1

Z 1

0

-1

Zn

0

0 xi

-1 y_

Z, Z,

0 x1

In

Xlyl

(y2 +1)

x,y,n

(y(+ 1)

-(x2 + 1)

-x1 y,

-(x + 1)

-x,y,

Y1

- x1

Yn

- xn

m = Am

Equation 1.19 Matrix of the Flow Vectors

Equation 1.19 is equal to the motion field derived from the pattern matching. Thus, an

easy way of writing all the flow vectors in terms of the Longuet Higgins and Pradzny

equations and setting them equal to the derived motion field is,

Am = [u,

Am=b

V, U2 V2 un T = b,

Equation 1.20 Flow Vectors Set Equal to the Motion Field

where b contains the components of the motion field derived from the pattern matching

algorithm.

We still, however, need to find the best way to solve for m. If estimated values

were chosen for m and A, an error could be defined between the b matrix containing the

components of the motion field derived from pattern matching and the b matrix calculated

from the estimated values of m & A. Since we have two parameters that the error could be

optimized along, it is best to minimize the sum squared error. The sum squared error for a

single flow vector is,

SSE =(U-u) 2 +(U + v)2
Equation 1.21 Sum Squared Error for a Single Flow Vector

where u & v caret are derived from the Longuet Higgins and Pradzny equations. The error

could be optimized to either the x-component, u, or the y-component, v. The total error

for all the flow vector components in theb matrix would be

TSSE = (2 n, - un) +" (n - V.)
n

Equation 1.22 Total Sum Squared Error for All Flow Vectors

which can be also written, in matrix form, as,

IIAm- b11 2 = 0

where, Ix 12-= x2 +X X+...+x2

Equations 1.23 Matrix Form of Total Sum Squared Error

The equation Am=b is overdetermined as long as we use more than six flow vectors. The

beauty of the matrix form is that it can be shown to have the Least Squares solution form.

m = (ATA)-1A'b

Equation 1.24 Least Squares Motion Estimation Equation [6]

Thus, we can solve for our motion given an estimated depth map.

Scale Factors

It is important to understand what the computed motion parameters and depth map

mean. The rotations will always be in units of radians and the translations and depths will

always be in the units of the principal distance, which are meters. The translations and

depth values, however, will require scale factors to make them accurate. The easiest

explanation for scaling is to observe that if the external world were twice as large and our

velocity through the world were twice as fast all of our equations would generate the same

flow field and depth map [7]. Unfortunately, determining the scale factor requires some

knowledge of the environment external to the Vision System. Also, the scale factor can be

applied in two separate ways, either to the relative depth map or to the translation values

themselves. Applying the scale factor to the translations requires measuring one of the

parameters on axis and dividing by the estimated value to get the scale factor and then

multiplying the other translations by it. Applying the scale factor to the depth map requires

measuring the depth to a particular point in a scene and dividing it by the estimated depth

value at that point to get the scale factor; this scale factor would then multiply all of the

other depth values. Once we have either a corrected depth map or motion parameter

vector we can calculate to get the correct motion parameter vector or depth map

respectively.

Updating the Depth Map

Initially, we assumed the values of our depth map were constant; this allowed the

first calculation of the motion parameters using Equation 1.24. A constant depth map,

however, is not representative of a typical environment. To obtain more precise motion

information a more accurate depth map may be needed. Hence, local correction of the

depth map using the latest motion parameters could be done by isolating our unscaled

depth Z, in terms of the six motion parameters and position. The equation for Z can be

derived by optimizing the sum squared error between the motion field calculated by

Equations 1.14, the Longuet Higgins and Pradzny equations, and the motion field

computed from the pattern Matching. It is reassuring to note that this is the same sum

squared error equation, Equation 1.21, that was used to derive the equation for the global

motion parameters, Equation 1.24. The sum squared error with the full Longuet Higgins

and Pradzny equations inserted and the focal length set equal to one for simplicity are,

SSE = U +xW)+xyA - (x2 +2 IB+yC - uJ +

((-V+yW) +(y2+1)A-xyB-xC_-v

to obtain a local minima we take the partial derivative with respect to Z, and set it equal to

zero,

32

dSSE (-U +xW)2dSSE (- Z 2+ (xyA -_(X2+1)B + yC - ux-(-U +xW)) +
dZ z

(- V+ yW))_- Z 22+ + 1)A -xyB - xC - v-(V + yW)) = 0

which, after some careful manipulation becomes our local depth Z,

(-U + xW)Y +(-V + yW) 2

(u-(xyA-(x2 + 1)B+yC))(-U+xW)+(V - ((Y2 +1)A-xyB-xC))(-V +yW)

Equation 1.25 Update Depth Map Equation [8]

Now, we use Equation 1.25, to update the depth map, where each flow vector has

a single depth value. Heel has shown sufficient convergence of the depth map within ten

iterations [9]. We will use convergence of the depth map as a measure of the reliability of

the motion parameters calculated using it. It is only necessary to complete a full

convergence cycle for the first computation of the motion estimates. The converged depth

map can be used as the a priori depth map for the next motion estimate instead of a

constant value. In most instances, this will decrease the number of iterations it takes the

depth map to converge.

Chapter Summary

This chapter derived all of the pertinent Machine Vision equations necessary to

understand this Vision System.

The chapter opened with a description of the coordinate system and data

structures used within the chapter. The coordinate system is comprised of two

components, the three dimensional world coordinate axes, and the two dimensional Image

Plane. The world coordinate axes are labeled X, Y, Z, and the rotations are respectively,

A, B, C. The Image Plane coordinates are x, y. An object point, P, is in world coordinates

33

and described by Equation 1.6. An Image Point, p, is the contact location on the Image

Plane of a ray that connects the Center of Projection, previously known as the origin of

the world coordinate axes, and an object point. The Image Plane is actually the CCD of

the camera used to view the environment. Any translation and rotation in the world

coordinates is described as three dimensional vectors t & r, which are Equations 1.1 and

Equations 1.2 respectively.

Immediately following the definitions of the coordinate system came the derivation

of the Longuet Higgins and Pradzny equations, Equations 1.14. The Longuet Higgins and

Pradzny equations provide a way of directly relating, within a scale factor, the motion field

in the Image Plane to the six parameters of motion in world coordinates, where the motion

field is a set flow vectors detailing how objects in the Image Plane move. A flow vector

has two components, u & v which are change in x & y respectively.

Pattern Matching is used to measure the motion field between two consecutive

frames. The frames are broken into manageable pieces that the pattern matching is

performed on. Each small piece of the first frame is found in a corresponding larger piece

of the second frame by finding the location of minimum error, called a best match. The

size of the pieces that each frame is broken into determine the maximum value that a flow

vector can be. The number of pieces that the frames are broken into determines the

resolution of the Vision System. The Pattern Matching Algorithm is defined in Equation

1.15.

Following the pattern matching is the derivation of the equation that calculates the

six motion. parameters, Equation 1.24. The equation takes two sets of numbers and

computes the Least Squares values of the six motion parameters. The first set of numbers

is a matrix A, calculated from the depth, Z, and the x, y positions of each flow vector. The

second set of numbers is a matrix b, which contains all of the flow vector components

determined from pattern matching. The six motion parameters U, V, W, A, B, C, are each

elements of matrixm.

34

The cycle to calculate the six motion parameters is an iterative algorithm that

assumes that the motion parameters are correct, to within a scale factor, when the depth

map converges. The cycle takes a depth map, assumed constant only on the first cycle, and

is delineated in Figure 1.6.

The chapter concludes with the derivation of the equation used to update the depth

map, Equation 1.25. The equation performs local depth calculation using the six global

motion parameters in matrixm, and the original positions of each flow vector.

The chapter not only describes all of the major theory implemented within this

Vision System, but provides a brief introduction into the field of Machine Vision; the field

of vision has many more facets than those presented here.

35

CHAPTER TWO
PROTOTYPE VISION SYSTEM ARCHITECTURE

Chapter two presents the system architecture used in the prototype vision system

developed for this thesis. The prototype serves as a proof of concept.

The chapter starts by outlining the natural way to perform image processing as

described within this thesis. Each functional block of the natural image processing flow is

considered and the important design issues are defined. The chapter concludes by

presenting the architecture used in the prototype proof of concept system developed for

this thesis.

The Natural Image Processing Flow

LIGHT

ENVIRONMENT IMAGE IMAGE PATTERN MATCHING
IMAGER STORAGE DISTRIBUTION MODULE

MOTION USER
ESTIMATION INTERFACE OUTPUT

Figure 2. 1 Natural Image Processing Block Diagram [10]

The implementation of the theory developed in this thesis has a natural progression

which can easily be represented as a block diagram, see Figure 2.1. The functional blocks

are the Environment Imager, Image Storage, Image Distribution, Pattern Matching,

Motion Estimation, and a User Interface. The following sections describe each of the

functional components and their primary design concerns.

37

The Environment Imager

I If.I Ir I
L-UI

ONTROL
CTRONICS

AUTO IRIS ANALOG SIGNAL
ENVIRONMENT LENS CCD OUTPUTLENS OUTPUTARRAY

CCD CAMERA

Figure 2.2 The Environment Imager

The environment imaging module is used to convert reflected light from the

surroundings into usable information, see Figure 2.2. There are many techniques used to

image an environment, however, the most common manner is to use a charge coupled

device (CCD) camera.

A CCD camera uses a grid of photoelectric sensors that separate charge, and thus

create a voltage across them when exposed to certain frequencies of light. CCD arrays are

typically made from silicon and thus have the typical spectral responsivity for a silicon

detector. Each photoelectric element in a CCD array is called a pixel. The camera uses a

lens that focuses the environment being imaged onto the CCD. A CCD controller then

shifts the voltages from the CCD elements out. In order to make a CCD camera applicable

to the current video standards, the digital data shifted out of the CCD is converted into

one of the standard analog formats. Some of the analog formats are NTSC, CCIR/PAL.

The number of pixels in the CCD array gives the resolution of the camera; it is usually best

to get a camera with a large number of pixels (i.e. high resolution.)

CCD arrays come in many different styles depending upon the application. One

type of CCD array is for color cameras. A color camera has three separate analog signals;

one for each of the colors red, green, blue. Although color CCD cameras can also be used

38

with this system, a black and white camera makes more practical sense since we are not

trying to identify any objects or edges using colors, but by contrast. In a pattern matching

system, a color camera requires three times as much processing as that of a black and

white camera. We want to identify where different objects are and how they move. In a

black and white camera colors are seen as shades of gray; this is advantageous when we

make the constant pattern assumption since all of the contrast information is contained in

each captured image.

The CCD array in a camera can also have pixels that are different shapes. Arrays

can be purchased with hexagonal, circular, and square pixels. An array with circular pixels

does not use all of the available light to generate its image data. CCD's with hexagonal

pixels have a complicated geometry that must be considered when the data is processed.

Therefore, the array with square pixels is the best possible choice for our application.

The CCD, however, is not our only concern about using a CCD camera as the

environment imager. The amount of light that impinges on the CCD and contrast control

are of equal importance.

The camera should have the ability to control the total amount of light that is

focused on the CCD by opening and closing an iris; this feature is called auto iris. The

auto iris controls the amount of light that enters a camera so that the full dynamic range of

the CCD array can be used; it keeps the CCD from being under illuminated, or from being

saturated by over illumination.

The last important feature of the environment imager is that the overall image

contrast, gamma, should be able to be controlled. Many CCD cameras that are available

allow the user to control gamma; this is especially important because Machine Vision may

require higher contrast than the human eye finds comfortable.

The Image Storage Module

ANALOG
SIGNAL
FROM
CAMERA

PARALLEL
DIGITAL FRAME

DATA

SYSTEM INFORMATION

Figure 2.4 Block Diagram of the Image Storage Module

The frame storage module is used to convert the environment imaging signal into

digital frame data and place it in a storage medium, see Figure 2.4. In our case, since we

will be using a CCD camera to image the environment, it must convert an analog signal

into digital pixel data that can be stored easily. The standard terminology for a device that

converts camera output into pixel data is a "Frame Grabber."

As discussed in the Environment Imaging section, there are different video signal

standards for the output of a CCD camera. Most often a Frame Grabber is designed to

accept more than one video signal standard; a typical Frame Grabber will automatically

adjust to the standard of the video signal connected to it.

Another important feature of some Frame Grabbers is the ability to store the pixel

data it has created. The storage media can be of any type; some of the different types of

media available are compact disc (CD), tape, hard disk, and non-volatile/ volatile Random

Access Memory (RAM). The type of storage media dictates where the preprocessing

module will have to look for the digital image information. The key factors in choosing the

storage media are the amount of collected data, which is determined by the conversion

rate of the Frame Grabber, and the ability to process the image data.

The conversion rate of a Frame Grabber, the speed that it can convert new analog

signal data into digital pixel data, is called the "frame rate." The units of a frame rate are

frames per second, which is the same units as the output of a CCD camera. The typical

frame rate output for a CCD camera is 30 frames per second; this is actually

predetermined by the video standard being used. It has been determined that at 30 frames

per second the human eye cannot detect the discreet change between any pair of frames.

The Frame Grabber frame rate is directly proportional to the number of pixels it

generates from each video frame produced by the camera; the more pixels it produces

from a video frame the higher the resolution of the converted image. The number of digital

pixels that a Frame Grabber produces can be more or less than the number of CCD pixels

in the camera used to create the analog video signal. A frame grabber that produces the

same number of digitized pixels as the number of CCD pixels in the camera is sometimes

referred to as a matched system.

The last important characteristic of a Frame Grabber is the amount of power it

consumes. A typical Frame Grabber consumes about 3 to 4 Watts.

In our application for autonomous systems we need a Frame Storage Module that

has a high frame rate with storage capabilities. The frame rate should be as high as

possible and the memory needs to be RAM, which will allow the fastest access to it. The

power consumption of the Frame Grabber needs to be as low as possible. Today, there are

commercially available Frame Grabbers that can act as the complete Frame Storage

Module.

The Preprocessing Module

PREPROCESSER

PARALLEL DIGITAL:
FRAME DATA

PARSED FRAME
DATA FOR PMM

I
SYSTEM INFORMATION

Figure 2.5 Block Diagram of the Preprocessing Module

The preprocessing module is used as a pixel distribution system. It removes the

digital frame data stored by the Frame Storage Module and performs any filtering,

converting, and parsing necessary to make the data suitable for the Pattern Matching

Module, see Figure 2.5.

The processing system does not have to be very complex; it must have a

substantial amount of memory and be fast enough to keep up with the Frame Storage

Module. The amount of memory must be sufficient to hold all of the pixel data for two

complete frames and all of the associated buffers. All of the pixel data extracted by the

Preprocessor is in single bytes, thus any filtering and converting will not involve floating

point computations (or floating point processor.) The last function of the Preprocessor is

parsing. The digital frame data will be broken up into smaller blocks that the Pattern

Matching Module (PMM) will process. The Preprocessor must be able to easily send data

to the PMM and keep track of its status in order to make the most efficient use of the

Preprocessor to PMM pipeline.

In our application there are many suitable microprocessors and hardware that

could easily serve as the Preprocessor. The most important feature is it's memory access

and data transfer speeds.

MEMORY PROCESSOR

The Pattern Matching Module

PATTERN MATCHING MODULE

PARSED FRAME
DATA FOR PMM

SFLOW
VECTOR(S)

I
SYSTEM INFORMATION

Figure 2.6 Block Diagram of the Pattern Matching Module

The Pattern Matching Module (PMM) finds a data block from one frame in a

search window from another frame, see Figure 2.6. The algorithm used to find the new

location of the data block is given in Equation 1.15. If the size of the data block is kept

relatively small the algorithm does not need any floating point processing support.

The PMM needs to be able to calculate the algorithm fast enough to keep up with

the ability of the Preprocessor and Frame Storage Module. The shear number of

calculations necessary in the algorithm and the frequency that the algorithm must be used

tell us that a dedicated piece of hardware must be used as the PMM, and it must be very

fast.

The PMM would be loaded with a search window and a data block; it could

compute the best match location without any extra support. This is a key point, viewing

the PMM as a black box allows us to use many PMM's in various configurations.

Obviously, an important ability of the PMM is to combine more than one PMM in parallel.

All of these issues apply to our application. We want a fast stand alone PMM with

the ability to be easily integrated into a parallel system.

43

BUFFERS ALGORITHM
PROCESSER

The Postprocessing Module

POSTPROCESSER

FLOW
VECTOR(S)

DEPTH MAP
AND MOTION

PARAMETERS
FOR USER
INTERFACE

SYSTEM INFORMATION

Figure 2.7 Block Diagram of the Postprocessing Module

The Postprocessing Module will collect all of the data from the PMM(s) and

compute the six motion parameters, see Figure 2.7.

The motion parameter calculation, Equation 1.24, involve a large number of

calculations; it will need floating point ability as well as the ability to handle large matrix

manipulations. The Postprocessor, like the Preprocessor, must be constantly aware of the

PMM(s) state in order to make good use of the PMM to Postprocessing gate. Equally

important, the Postprocessor must have an efficient way to receive data from the PMM(s).

The PMM calculations and the Postprocessing form the largest computational

bottlenecks for the Vision System.

In our application the Postprocessor is very similar to the Preprocessor, except

that it must be able to process large mathematical computations quickly, and does not

require as much data memory.

44

---- - - - -- I

The User Interface

DEPTH MAP
AND MOTION
PARAMETERS

SY

Figure 2.8 The Infinite Interface

The User Interface would receive the digital information generated about the

motion parameters and the obstacle depth map and present them to the system requiring

the results. In essence, this is the overall strength on this vision system, the interface can

have many different forms depending on the functional need.

The most common use for the system will be as a navigational aid to an

autonomous system. The autonomous system could be a sophisticated robotic platform or

possibly a blind person; in either case a visual interface is not necessary. The robotic

platform would merely like the digital data reflecting the motion parameters as well as the

depth map. A blind person, however, may require a tone in each ear indicating the relative

proximity to the nearest obstacles, and perhaps a supplementary voice for any additional

information.

A visual interface is much more challenging because of the way that this information can

be conveyed to a person viewing it. One useful way would be to generate a three

dimensional obstacle map in which a simulation of the system using the vision system

could be placed.

45

I

I

The Prototype Vision System Architecture

CCD CAMERA

E

Figure 2.9 The Prototype Vision System Architecture

After considering all of the possibilities involved in constructing a Vision System a

proof of concept system was constructed, see Figure 2.9.

It is a monocular vision system that has a single black and white CCD camera,

frame grabber, pattern matching module, and processor. The frame grabber and PMM are

at different address locations on the processor's bus; this simple architecture was used to

develop the basic hardware and software necessary for a completely functional vision

system.

The Vision System functions in the following way. The camera is operating

constantly, converting the environment into a video signal. The Frame Grabber, on

command from the processor, grabs two frames and stores them in memory. The

processor then removes, filters, and parses each frame into its own memory. The parsed

frames are fed through the PMM in datablock - search window pairs and the results are

stored into the processors memory. After all of the flow vectors have been stored the

processor runs the motion algorithm in Figure 1.6 to calculation the motion parameters

and the depth map. Once the depth map and motion parameters have been calculated they

can be used in any imaginable way.

In terms of the functional components listed in Figure 2.1, the PC104 processor

serves as the Preprocessing, Postprocessing, and User Interface Modules. It is a very

simple system that can be made quickly and robustly.

The ultimate strength in using this architecture for the prototype system is that all

of the pieces of the system can be simulated in software before they are constructed in

hardware; this is made easy because we have a centralized single processor system The

simulation flexibility also allows the developer to test alternate hardware architectures and

troubleshoot both the hardware and software more easily.

Chapter Summary

The chapter began by discussing the natural image processing flow of a general

Vision System. The functional components of the natural flow are the Environment

Imager, Image Storage Module, Preprocessor, Pattern Matching Module, Postprocessor,

and User Interface.

The Environment Imager is used to convert an optical image of the environment

into an analog signal. A typical environment imager is a black and white CCD camera. The

most important considerations in using a CCD camera for imaging are the shape of the

cells in the CCD array, the resolution of the CCD, the ability to control the amount of light

the enters the camera, and the ability to improve the image contrast.

The Image Storage Module is used to digitize the analog signal from the

Environment Imager and store the information. The design issues involved with Image

Storage Module are the type of storage medium, frame or conversion rate, and the

generated pixel resolution.

The Preprocessing Module retrieves, filters, and parses the pixel data created by

the Image Storage Module. The Preprocessor needs to have a significant amount of

memory and speed. It does not have to support floating point calculations.

47

The Pattern Matching Module is used to generate flow vectors that will make up

our motion field. It performs this function by finding a given pattern, called a datablock, in

a specific range, called a search window. The location of the datablock in the search

window is the flow vector. The primary concerns about the PMM are that it can process

quickly and act as a stand alone unit. The black box approach to the PMM will allow it to

be used in a parallel architecture.

The Postprocessing Module will calculate the motion parameters. The

Postprocessor needs to support floating point and matrix computations.

The User Interface is the most elegant part of the whole system. It can be tailored

for any application where there is a need for navigational information. One example as that

the User Interface could supply information to the navigational control system of an

autonomous vehicle.

The end of the chapter is a brief introduction to the prototype Vision System

constructed for this thesis. The prototype architecture is the simplest way to implement

this proof of concept Vision System. It is a monocular Vision System with a single

camera, Frame Grabber, Pattern Matching Module, and Processor. The single processor

performs the Preprocessing, Postprocessing, and User Interface functions. The camera, of

course, serves as the Environment Imager. The Frame Grabber, with internal memory,

performs the function of the Image Storage Module, and the Pattern Matching Module is

itself. The prototype architecture is easy to develop because every component can be

simulated in software before being built. The ability to accurately model each component

in software also helps troubleshoot the hardware being developed as well as test different

hardware architectures.

CHAPTER THREE
THE PROTOTYPE VISION SYSTEM HARDWARE

This chapter contains all of the specific details in the design and construction of the

prototype Vision System hardware described in chapters one and two. The system is

discussed in two parts, hardware and software; this chapter is dedicated to the hardware

development. Both the hardware and the software chapters adhere to the same

progression that was used in chapter two, where design decisions of each component are

presented sequentially. Figure 2.9 is included again as Figure 3.1 for reference. The intent

of this chapter is to provide enough information so that the reader will have a complete

understanding of the prototype system hardware.

It should be stressed that any single block in Figure 3.1 has to be designed, or

specified, in conjunction with all of the blocks that it interfaces with. The system design

issues will be individually addressed for each component.

CCD CAMERA

Figure 3.1 The Prototype Vision System Architecture

49

3.1 The Prototype Hardware

Figure 3.2 Conceptual Hardware Block Diagram

PC104
PATTERN

MATCHING
MODULE

-PC104 FRAME
GRABBER AND

COMPUTER

3.5 INCH FLOPPY
AND SCSI
HARDRIVE

Figure 3.3 The Prototype Vision System Hardware

3.2 CCD Camera

The CCD camera is used as the Environment Imager. The camera that was chosen

is a PULNiX TM7-CN. (See Figure 3.4) The TM7-CN can be used as a normal video

camera, but is tailored for machine vision systems.

Figure 3.4 Pulnix Black and White CCD Camera

Component Specifications and Features

e768 horizontal pixels by 494 vertical pixels
*Camera is for Black and White applications
*Rectangular CCD cells 8.4.tm horizontal by 9.8*tm vertical
*Camera provides Auto Iris feature for lens
'Camera has Gamma contrast control
*CCD is 0.5 inches square overall
*Very small package
*CCD is sensitive to 1 LUX

Design Reasoning

The reasoning for the selection of the camera is based around what we need from

our environment. Cameras are instantly divided into two camps -black and white,

sometimes called monochrome, and color. In reality, our machine vision system is only

observing the gross movements of the camera through its' surroundings; this motion can

be measured with a basic black & white camera. The computational overhead to process

color is exactly three times as much -this alone makes it prohibitive since we are aiming

for a fast stand alone vision processing system. The next issue is that of image resolution.

The number of horizontal and vertical pixels of the PULNiX TM7 is ample enough

for the proposed camera and Frame Grabber system; the Frame Grabber, which has not

been discussed in detail yet, has a lower resolution on its best setting and thus will not be

"creating" pixels from wholly interpolated data. This is a strange point. The issue is that

the camera creates an analog signal from its discreet number of CCD cells. The analog

signal produced by the camera from discreet data is intentionally, and even unintentionally

by loading, smeared to make it appear smooth. The Frame Grabber can produce any

number of pixels from the smeared video signal since it is analog. It makes sense,

however, that the Frame Grabber should not try to extract more pixels from the video

signal than were used to create it. In our system the resolution of the video camera is

sufficient and a more expensive camera would not yield better performance.

As was mentioned in Chapter Two, it is convenient to choose a black and white

camera with a simple pixel geometry, auto iris, and contrast control. The easiest pixel

geometry to work with is square pixels which for most applications is the best choice. The

TM7 does not have exactly square pixels even though it does contain a 0.5 inch square

CCD. The TM-7 has 768 horizontal pixels by 494 vertical pixels. The auto iris feature

controls the amount of light that hits the CCD. The camera's electronics measure the

overall pixel intensity and open and close the lens iris to make full use of the CCD's

dynamic range, down to 1 LUX. The last technical point is the ability to increase the

camera contrast; the TM7 does this through a Gamma control that increases or decreases

the contrast. Finally, the TM7 comes in a very small package that could be used for almost

any autonomous application.

52

3.3 Auto Iris Lens

The lens that was chosen is a Computar MCA0813APC.(See Figure 3.5)

Computar lenses are fairly popular for black and white camera applications. Often, they

are used on the surveillance cameras at Automatic Teller Machines (ATM).

Figure 3.5 Computar Auto Iris Lens

Component Specifications and Features

*Auto Iris for pixel light metering control
e8.5 millimeter focal (i.e. wide angle view lens)
eAdjustable video signal level
*Auto Close on power down

Design Reasoning

The reasoning here is very direct. The most important features are the Auto Iris

and focal length.

The Auto Iris feature gives the camera the ability to react to changing light

conditions the way the human eye does. Our pattern matching method depends upon

matching pixel brightness patterns. Since we expect to eventually use the system on a

robotic platform in environments with varying light conditions, we need to be able to

maintain, or slowly vary, the relative brightness of the pixels on our CCD. If our robotic

platform moved from a dark region to a bright area, in order to maintain the brightness of

the image we need to close or open the iris by varying amounts. Analogously, a human eye

will increase or reduce the size of its pupil depending upon whether it is receiving too

much or too little light; it does this by constricting and relaxing the human eye iris. The

Auto Iris in our lens provides our machine vision system with a similar feedback iris

control. The lens contains electronics that try to maintain the same average pixel

brightness as the ambient light of the environment changes. Without the Auto Iris feature

our system would be less stable since the data we would receive from the camera and

hence the frame grabbing module would be changing too quickly. We assume that we will

be grabbing and processing frames more frequently than the auto iris is changing. The

electronics used in the Auto Iris control also close the lens during a power loss.

The focal length is the next most important characteristic. In order to properly

implement the equations of chapter one we need to know our focal length exactly since we

use it to normalize our CCD x & y locations. The ability to normalize, however, is not the

only importance of the focal length. The focal length is indicative of the angular view of

the lens -the smaller the focal length the larger the angular view. In a machine vision

application it is important to have a very wide angle lens -the more information and

motion you can capture with your lens/camera combination the better. On the other hand,

the more we increase the angular view of the lens the more distorted and non-linear the

image appears at its edges. Our approach depends upon as much linearity as possible, so

the lens we chose has a 62 degree angle of view.

The adjustable video level merely makes the whole video image seem brighter or

darker. In our system, as long as we have a fair amount of contrast and don't allow the

video level to wash out the image details it is unimportant. The only constraint is that it

must remain constant during the operation of the system; this idea follows the same

bearing as the need for Auto Iris. We would not want to have significant changes in the

quality and contrast of our images between iterations of our algorithm.

3.4 Frame Grabber With Memory

The Frame Grabber, see figure 3.6, is used as the complete Image Storage

Module. It converts two analog frames into digital pixel data and stores them into RAM.

Many of the characteristics of the Frame Grabber must match those of the CCD camera.

The Frame Grabber that was chosen was a ImageNation CX104 with overlay RAM.

Figure 3.6 ImageNation Frame Grabber

Component Specifications and Features

*8 bit pixel resolution
*Utilizes a Black and White video camera
*Accepts CCIR/PAL and NTSC video formats
*High and Low resolution modes
oInternal RAM for image storage
oOverlay RAM for external data buffer and display
oSeparate camera monitor output
oPlugs into a PC 104 computer bus
oComplete C library with some source code

Design Reasoning

55

The Frame Grabber must be designed for black and white, or monochrome, video.

The Frame Grabber should be of a lower resolution than the camera. The CX104 has two

resolution modes, high and low resolution. In high resolution the CX104 generates a

frame of 512 horizontal pixels by 486 vertical pixels, and in low resolution it generates a

frame of 256 horizontal pixels by 243 vertical pixels. Every pixel the CX104 creates is an

8 bit, or byte, value; this allows each pixel to be 256 shades of gray. The height and width

of these actual pixels generated by the Frame Grabber depend upon the combination of the

camera/Frame Grabber; this is because the camera creates a smeared signal of its pixels

from a wide angle lens at about 30 frames/second and the Frame Grabber interprets the

signal with its own sampling clock. The translation of the real world coordinates onto the

"virtual" pixels created by our system is discussed in camera/Frame Grabber calibration

section. The analytical deduction of the width of the virtual pixels would be quite

challenging, since it would be difficult to make accurate measurements. As long as we use

the maximum resolution of the Frame Grabber in conjunction with the camera, the virtual

height of the pixel is known to be its real height; however, in this application the frame

grabber is used in its low resolution mode which combines vertical lines of video data as

well as consecutive horizontal pixels, therefore, we also have to compute a "virutal" pixel

height as well.

Another important aspect of the CX104 is its local memory and the way that it can

be accessed. The CX104 is capable of storing four low resolution images or a single high

resolution image. It has a complete C library, including source code, that allows one to

perform operations on the images, display data supplied by the user, as well as access its

memory. In the prototype system the Grabber is used as a buffer where the images are

temporarily stored before being parsed into digestible pieces for the Pattern Matching

Module by the PC104 computer. The existence of the C library, which contains image data

exchanging functions, assures us that we will be able to quickly integrate the Frame

Grabber into the system.

The CX104 is a PC104 form factor device. The PC104 form factor, as was

mentioned in Chapter 2, is a compact computer standard. It is the best choice for variable

56

applications because of its small size and manageable power requirements. Each card of a

PC104 computer is 16 square inches (4 inches on a side) and has a bus architecture that is

very similar to ISA. The computer cards stack on top of one another with each card

performing a specific function. Thus, the Frame Grabber is a single addressable card on

the main computer bus and, of course, has its own interrupt. The PC104 bus is used as the

data transfer medium for all digital operations internal to the Vision System.

3.5 The PC104 Computer

The PC104 computer will serve as the Preprocessor, Postprocessor, and User

Interface. The Preprocessing function filters and parses the digital frame data supplied by

the Frame Grabber. The Postprocessor function collects and stores all of the Pattern

Matching Results, which is the motion field, and calculates both the six motion parameters

and the depth map. The User Interface function is tailored to the host system which is

using the Vision System; it supplies the host system with whatever information it wants

and in whatever form it needs it. The PC104 computer that was chosen for the prototype

system was a Megatel 386 with 10Mb of DRAM.

Component Specifications and Features

*PC104 form factor
*10 Mb of DRAM
*Capable of accepting a Math Coprocessor
*On board Ethernet
*On board VGA driving hardware
*Supports floppy and SCSI hard drives
*2Mb of FLASH solid state disc
e386 processor that runs at 25Mhz
eHas standard IBM addressing techniques
eSupports DOS, Windows, Borland C

Design Reasoning

Building on the previous components, the main computer is a PC104 form factor

device. Despite the small size of a PC104 device, the Megatel computer offered a lot of

convenient features that make it attractive for prototype development. All of the features

listed above exist on a single PC104 surface mount PCB. The most important features are

the large amount of available DRAM, the VGA driver, the floppy and hard drive supports,

and the 2Mb of solid state disc.

The DRAM ensures that we will have fast memory access and enough memory to

both store digital frame data, the associated buffers, and the matrices necessary for motion

calculation. The VGA driving ability makes this computer ideal as a User Interface; the

VGA driver can be used to help develop the system and as an additional capability of the

completed prototype. The need for drive support is very straightforward, we need a way

to store large amounts of information and development software. The most odd feature of

the whole computer is the solid state disc; this disc will be used as the boot drive and for

storing all of the compiled vision software. After the prototype is complete the hard and

floppy drives can be permanently removed so that the Vision System can act as a stand

alone or embedded unit.

Typically, PC104 products lag behind conventional products by about one to two

years. At the time of the work done on this thesis was started only a 25Mhz computer was

available with all of the above features. 25Mhz, however, is fast enough for prototyping

purposes. Many of the other on board features, like the on board Ethernet, were not used.

Support Devices

*Maxtor 256Mb SCSI hard drive
*Samsung 3.5 floppy drive
*IBM VGA monitor

3.6 The Pattern Matching Module

Figure 3.7 The Prototype Pattern Matching Module
The Pattern Matching Module (PMM), see figure 3.7, is the last piece of hardware

that will be discussed within this thesis; it is truly the heart of the work accomplished. The
PMM is used to find a piece of one image in a second image resulting in a flow vector.
After all of the comparisons between two frames have been performed, the flow vectors
are assumed to be a measure of the flow field. The PMM performs the bulk of the
mathematical computations that are necessary to generate the motion flow field. The
PMM that we need in our architecture and framework did not exist- it had to be designed
and built.

Design Considerations

The overall need for the prototype system is clear -proof of concept. Our

prototype will be the first cut at a functional Pattern Matching Module that can easily be

adapted to more sophisticated systems. Therefore, we need a simple design that is

reasonably fast and both easy to develop, construct and understand. Simplicity, of course,

is never easy to achieve. We can, however, minimize our overhead. The following

precepts were decided upon for the PMM:

*Use a standard C compiler.

*Develop hardware around existing C functions.

*Develop addressable hardware that plugs onto the computer bus.

ePlan for expandability where possible.

eUse as many "off the shelf" components as possible.

On the issue of software development we can facilitate programming by mandating

that our hardware should conform to existing functions in a standard C compiler and avoid

programming any drivers lower than these. Further, we can obtain a minimum level of

expandability by making our hardware addressable since we could then have more than

one PMM, as indicated in figure 3.2. The use of "off the shelf' components is merely a

pragmatic issue.

3.6.1 The Motion Estimation Processor

The center of attention in figure 3.7 is the large square 68 pin chip in a Plastic

Leaded Chip Carrier (PLCC) that is the LSI Logic L64720 Motion Estimation Processor

(MEP). Stephen Lynn, in his thesis entitled "A Motion Vision System for a Martian

Micro-Rover" suggests the use of the LSI L64720 MEP to create a motion flow field; this

is such a good idea that it is what we attempt to do here! The L64720 MEP was originally

designed for the High Definition Television (HDTV) market and is hardwired to run the

algorithm described by equation 1.15; this is the method by which we create a each flow

vector in our flow field. The MEP has an array of 32 processors and can run at speeds up

60

to 40Mhz. It can process video data in real time, that is at 30 frames per second. It is the

heart of the PMM and utilizing it substantially reduces the complexity of the pattern

matching hardware. The selection of the MEP means that the rest of the hardware design

is in the glue logic that makes it pluggable onto the computer bus.

3.6.2 Addressing and Decoding Logic

PC104 ADDRESS AND
DATA BUS

Figure 3.8 Functional Block Diagram of PMM

The addressing and decoding logic in figure 3.8 is used to allow a system to be

connected onto a bus. The logic will watch the addresses that the computer is requesting

service with and when the logic's address is present it enables the correct hardware to

function. The enabled hardware may then either write or read a byte to or from the bus, or

perform a specific function. It should be noted that there is a full schematic of the PMM in

Appendix A.

For our design we will not be using custom software, but rather the C functions

outportb and inportb. These two functions place an address on the bus, and then read or

write a byte -they are based upon the standard International Business Machine (IBM)

Personal Computer (PC) Input/Output cycle in figure 3.9. The byte being read or written

follows the I/O address, and it is latched on the rising edge of the /IOR or /IOW.

QMnnmnnl

AO- A15

DO - D7

/ IOW or / IOR

All Times In Nanoseconds

Figure 3.9 IBM PC I/O Cycles

First, since we are intending to use canned logic, like our MEP, we should decide

upon a logic family. TTL families are traditionally a good choice for prototyping because

they can take a few bench top mistakes before they become damaged. The choice for this

prototype is the fastest and yet lowest power of the TTL families -LSTTL, which stands

for Low power Schottky Transistor Transistor Logic. After a few calculations from figure

3.9 it is obvious that these devices have small enough latencies that we should not have

any problems.

62

CCD CAMERA CONTROL HANDSHAKING

E

Figure 3.10 Original Prototype Concept

One of the original concepts for the vision system was a variation of figure 3.1,

where we had two PC104 386 computers instead of one, see figure 3.10. Each processor

would have a dedicated function.

The first processor would act as a data bucket. The frame Grabber would dump

raw pixel data into the data bucket and the first processor in conjunction with the second

processor would feed it through the Pattern Matching Module until the second processor

got a full flow field. Once the second processor got a full flow field it would calculate and

return the user interface. The original concept is present in the way the actual

addressing/decoding hardware is implemented -there are two sets of addressing/ decoding

hardware that were originally for the two separate computer buses of figure 3.10. The

adaptability from a second bus is observable in figure 3.8 because we have two 74LS688's,

U1 and U6, and two 74LS541 's, U12 and U13, used as status registers.

The easiest way to do the addressing logic is by using 74LS688's which are eight

bit magnitude comparators, Ul and U6 on figure 3.8. These comparators have sixteen

inputs, which are two eight bit ports, and one output. We can place eight bits of our PMM

address, A10-A3, on one of the eight bit ports using a Dual row In Line (DIP) switch and

let the other port snoop the eight address lines, A10-A3, of the bus. When the two ports

have identical bytes the comparator outputs a low. The lower three address lines, A2-AO

63

are left for our decoding logic. In essence, the address A10-AO, with the first three bits set

to zero is a base address. In our current system of figure 3.8 we have a base address for

each 74LS688.

The simplest way to do decoding is by using 74LS 138's. The 138 is a three to eight

line decoder, U2 and U7 on figure 3.8. These decoders have three input pins, three enables

and eight active low outputs. The three inputs are connected to the three lowest address

lines AO, Al, A2. This is so that we can decode the base address and the seven sequential

addresses after it. The sequential addresses that the 74LS138's decode are used for

latching our data bytes and asserting some control signals. Each 138 has to have three

separate enables signals asserted before it will decode. One of the three enable lines is

constantly enabled and another is fed directly from one of the 74LS688's. The last line is

fed into either /IOW or /IOR at any given time; this ensures that the circuit only decodes

addresses when it is reading or writing. Another important use for the /IOW and /IOR

comes during latching.

3.6.3 Latches and Drivers

The latches and drivers in are used to access read from and write to the eight bit

data bus. We use 74LS374's for latches and 74LS541's as line drivers in figure 3.8. Both

of these devices are tri-state logic suitable for bus connections. A tri-state component can

supply a high, a low, and appear as a nearly open circuit. It is important to use tri-state

devices in this application because they have a high current fan out and yet do not impose

a significant strain on other bus circuits. Again, as with the addressing and decoding logic

some of the circuitry of the final layout is intended for the full two processor

implementation of figure 3.10.

The 74LS374's, U3, U4, U5, Ull1, serve as our port registers for the MEP. One is

used for each eight bit port of the MEP of which there are four. Three of the four ports on

the MEP are used as data inputs for its internal search and data window buffers. The last

port is where the output flow vector byte is taken. U3 and U4 are for search window data,

U5 is for the data block bytes, and Ul 11 captures the output flow vector; this terminology

is defined at the end of chapter one.

The three 74LS541's that are used are for placing status bytes on the PC104

computer data bus and for disabling and enabling the MEP run time clock. The first driver,

U13, is used to indicate when the MEP has finished calculating a flow vector, the second,

U12, indicates when the external logic has latched the correct byte from the MEP output

stream. The last driver, U15, is used to disable and enable a 25Mhz system clock for the

fast operation of the MEP; this is not a typical nor recommended practice. In this

application great care was taken to insure that the circuit would not receive any

interference from the 25Mhz clock. The MEP is meant to be used as a completely

embedded device with it's own supporting memory. In order to develop this system in a

timely fashion, the memory system of the PC104 computer has been used; it is therefore

necessary to disable the actual MEP clock in order to load it's memory over the computer

bus -which is infinitely slow. The line driver "switch" is merely a convenience for this

prototype, not a practical solution.

3.6.4 Control Logic

As one might imagine control logic is everything else in figure 3.8. The control

logic is composed of a 74LS04, 74LS74, 74LS86 74LS161A, and two 74LS109's. The

74LS109 is a dual J-K flip flop. The 74LS04 is a bank of six inverters. The 74LS74 is a

dual D latch. The 74LS86 is a quad EX OR. The 74LS 161 is an asynchronously resettable

counter. The function of every device in and of itself does not tell the whole story. Here

we are trying to understand the operation of each part. In chapter four we will look at the

control software the whole Pattern Matching Module will come into focus.

The two 74LS109's are U16 and U17. The first J-K flip flop, U16, is used for

clocking the data block and search window bytes into the MEP and for providing the

signal for the MEP to start computing. The second J-K flip flop, U17, is used for enabling

the run time 25Mhz clock to the MEP after it has been loaded and the signal to start has

been initiated. All of these signals could be handled by an embedded programmable device

65

to increase the performance. Presently, each control function is given an address on the

bus and are asserted by an function call in the software.

The 74LS04, of course, just inverts signals and is not of a great functional

importance here. Likewise, the 74LS86 is just four EX OR gates and is used to keep

certain signals from overlapping one another. For instance, the /IOR and /IOW that enable

the 3 to 8 line decoder U2 are fed through one of the EX OR's to make sure that it is

enabled only on exactly a read or exactly a write.

The 74LS74 provides a key control function. It receives the finish signal (FSH)

from the MEP, sets the status byte of the U13 driver and activates the 74LS 161A counter.

The counter then counts the bytes that come out of the MEP and tells the latch, Ul 1,

when to capture the second byte of the output stream, which is the flow vector. The

output stream of the MEP contains extra information about the positional errors after

equation 1.15, the pattern matching algorithm, is executed. The byte capture function is

important if we want to make any use of the 25Mhz clock, and hence the use of the MEP.

This is because the computer cannot be made aware quickly enough that the MEP has

finished calculating to grab the second byte of the MEP's automatic output stream.

3.7 Chapter Summary

The chapter started with a discussion of the conceptual hardware in figure 3.2. The

conceptual hardware is implemented in figure 3.3. This vision system concept is a stand

alone unit with all the elements and convenience of a normal desk top computer in a

compact form. It is a bus based system that has the ability to be expanded, upgraded, and

incorporated into a larger system. It uses all commercial components and the architecture

of figure 3.1.

The first component from figure 3.2 discussed is the CCD camera. Today, there is

nearly a different camera for every application. It is important to know exactly what kind

of information is needed from the camera since it is usually the only sensor in a vision

system. We chose the Pulnix TM7-CN which is a black and white camera with gamma

66

control, auto iris feedback control, and moderate CCD resolution. There is no need for a

color camera in this application -it is too much information! Since we are performing

pattern matching a black & white video signal carries all of the essential characteristics of

the environment. The gamma control makes the images from the camera more crisp -it is a

feature specifically for machine vision. Auto iris control gives the camera and lens

combination the ability to compensate for varying lighting conditions independently. The

number of pixels of the CCD is a system issue. There are very few Frame Grabbers for in

the PC104 form factor. The camera resolution has to be larger than that of the Frame

Grabber to have strong confidence in the images we grab, unless we have a matched

system. The TM7-CN has nearly twice the resolution of the Frame Grabber.

The camera lens is as important as the camera, together they form our vision

sensor. An attractive property of a vision system is the amount of data that can be grabbed

in an instant. We want to grab as much data as possible without distortion around the

image edges. A typical choice for such systems is a 60 degree viewing angle, which

corresponds to a 8.5mm focal length. The lens should, of course, have supporting

electronics and servomechanisms for auto iris light metering.

The Frame Grabber is completely prescribed by system parameters. Following our

reasonable view about the camera, it should be a black & white grabber with a lower

resolution than the camera. It should be in the PC104 form factor, have a complete C

library for programming and internal image storage. The C library makes the unit useful to

our already chosen programming language. The internal storage is necessary for any bus

based system to operate efficiently.

The PC104 computer is the most interchangeable part of the system. As these

computers get better we can always "plug" in a newer one later. Regardless of the exact

manufacturer it is necessary to have a computer a large amount of RAM, at least 8Mb,

and monitor and drive support.

The Pattern Matching Module is the largest part of the prototype design. The

PMM stands as a proof of concept PC104 card. The PMM plugs right onto our computer

67

bus, and has its own address. If an application required more than one PMM they could

merely be stacked as in figure 3.2. The PMM did not require any low level coding and was

completely functional with existing C functions. For efficient design and implementation

the PMM was completely designed from off the shelf components.

The most important feature of all of the prototype system hardware is that it

works!

68

CHAPTER FOUR
THE PROTOTYPE VISION SYSTEM SOFTWARE

Software is a way of representing a process. This chapter will discuss all of the

underlying processes that were implemented in software for controlling the Pattern

Matching Module in figure 3.7, creating a flow field, and calculating motion. The chapter

is organized as a spiral of abstractions. We quickly revisit the general Vision System

abstraction and then focus on the processes and function calls in our specific

implementation. The intent of the chapter is to supply enough of the fundamental

components so that the reader can completely understand the main control loop,

FTST13LA.CPP. Although this chapter will not contain all of the details used in the

software, it will provide enough understanding so that the interested reader can unravel

the rest of the code in Appendix B.

The language we will use to describe the processes is C. All of the code was

developed using the Borland C++ 4.51 environment. The choice of the Borland C++

environment was not arbitrary; it is important to develop code using a framework with

excellent debugging and compiling features; this can substantially reduce development

time.

The Overall System Process

Figure 4.1 Two Step System Process

The overall system process is indicated in figure 4.1;it is a simple two step process.

The first step is to generate a flow field and the second step is the iterative calculation of

the motion and depth map. We would like to be able to perform this two step process as

69

quickly as possible. Generating the flow field uses both hardware and software while

calculating motion and depth is strictly software.

It is important to note that the terms "flow field" and "motion field" are used

interchangeably because in our model it is assumed that they are equivalent. A flow field is

a two dimensional representation of motion and will be discussed further in the following

section.

The general algorithms and abstractions for calculation of motion and the depth

map have already been discussed in great detail in chapter one. Here, we will discuss the

actual code used in determining the motion.

Flow Field Generation

Figure 4.2 A Typical Flow Field Showing Motion Straight Forward

The flow field model is very simple. A typical flow field is show in figure 4.2. Each

arrow, called a flow vector (see figure 1.7), in a typical flow field represents the

displacement in that part of the frame due to a motion; every flow vector is generated

70

using the pattern matching algorithm in chapter one. The motion that created figure 4.2 is

straight ahead -as if you were moving directly into the page. Straight forward motion is

measured along the Z world coordinate axis or optical axis in figure 1.1. Another example

of an actual flow field is the center image in figure 4.3. It is taken for granted that all flow

fields, regardless of how they are generated, describe a certain motion for a specific

duration of time. The flow fields in both Figure 4.2 and Figure 4.3 were both displayed

using a graphical interface developed by Ely Wilson. The different levels of shading in

both Figure 4.2 and Figure 4.3 represent the relative depth of the different portions of the

screen; the brighter a block is the closer it is to the camera.

.... *

4' 4' *.4............."4.......................' 9....jii~iiiiiii~ii~lii~iiiiiii~ijii~iii.........~i...........iit~~iiii~ii~ii~~iii~ii~~ii..............itf.....·:~*:~~2fi:~ jj:~: ~ ~ i~~:
·:.·;·.·:·;. C·.;;

................''..··..· ·.

-~ _·......·:·:~::..

First Frame Flow Field (of 210 flow vectors) Second Frame (3 inches closer)

Figure 4.3 Actual Flow Field and Frames

A flow field is created by comparing two camera frames using the pattern matching

algorithm of equation 1.15. In figure 4.3 the flow field, like in figure 4.2 was generated by

straight ahead motion. The two frames used to create the flow field, the first and second

frames, are only slightly different; the second frame is closer by three inches than the first

frame. Hence the flow field indicates 3 inches of forward motion.

-- · -- · · · - - -- --

Figure 4.4 Simplified Subprocesses of Flow Field Generation

Figure 4.4 shows two simple expansions of our original flow generation step in

figure 4.1. The first expansion delineates the natural boundaries for calculating the flow

field that are evident from the discussion of figure 4.3. The natural expansion, however, is

still too abstract to directly connect it to our prototype vision system. The second

expansion begins to relate the flow generation process to the Vision System resources.

Examining figure 4.4, the first resource that is used generating the flow field is the Frame

Grabber.

4.2.1 Frame Grabber Control

The Frame Grabber, as was discussed in chapter 3, has a complete C library which

makes control of it very simple. Once the Frame Grabber is addressed and plugged onto

the computer bus the library can be used. All of the C functions utilized are either directly

from the C library or made from functions within it.

The C function used to initialize the Frame Grabber is,

init.grabber();

Initgrabber() searches the bus for the Fame Grabber, enables it, prepares the

necessary structures, sets the image resolution to be used and the location in the Frame

Grabber memory where it will store pixel data.

The C function used to capture an image and hold it in the Frame Grabber memory

is,

72

grab();

Grab() [11] digitizes and stores the black and white image being displayed on the

Video Monitor, see figure 3.2, into memory; this is the "grab" step indicated in the third

expansion of figure 4.4. The number of 8 bit pixels and the memory location where they

will be stored was specified by init_grabber().

After grab() the frame data still resides in the Frame grabber memory. We need

two functions to move the frames from the Frame Grabber into the computer memory;

these are the two steps labeled "store" in figure 4.4. After the first frame is moved into the

computer memory, see figure 4.3, it is split into data blocks and is sometimes referred to

as the data frame. Likewise, when the second frame is moved into the computer it is

broken into overlapping search windows and is often referred to as the search frame. The

C function that we use to remove and store the data frame is,

store_data_frame(unsigned char** searchframe);

Store_data_frame(unsigned char** data_frame) removes the first frame from the

Frame Grabber and stores it into a special structure called the data_frame.

PC104 ADDRESS AND
DATA BUS

Figure 4.5 Functional Block Diagram of PMM

The C function that we use to remove and store the search frame is,

storesearch_frame(unsigned char** data_frame);

Store_search_frame(unsigned char** search_frame) removes the second frame

from the Frame Grabber and stores it into a special structure called the search_frame.

Complete control of the Frame Grabber is gained through these four functions. A

detailed listing of each is provided in Appendix B.

4.2.2 Pattern Matching Module Control

The Pattern Matching Module (PMM), figure 4.5, is initialized and used in two

function calls. The first function call is only needed once to initialize the PMM hardware

after power up to put the hardware in a known state. The second function, which is called

repeatedly, parses the data_frame and search_frame and produces the flow field which is

stored into another special structure hardware_vector_array. The hardware_vectorarray

is simply an array of 210 characters where each character represents a flow vector. Each

flow vector is a byte, eight bits, where the upper four bits are the x component, u, and the

lower four bits are the y component, v; this allows each flow vector component to be

positive or negative seven pixels. The function that initializes the PMM is,

initialize_LSIO;

Initialize_LSI puts the PMM in a known state by resetting it's control and output

logic, and latching in the hardwired Motion Estimation Processor (MEP) control registers.

The function that produces the hardware_vector_array is,

generate flowfield(unsigned char** search_frame,
unsigned char** data_frame,
unsigned char*
hardware_vector_array);

Generate_flowfield(above parameters) loads the PMM with both a search

window and a data block , waits for the PMM to compute the flow vector, stores the

vector into hardware_vector_array, checks to see if it has collected 210 vectors, and then

loads the PMM again or returns the flow field; this process is indicated in the last step of

the third expansion of figure 4.4.

ECLK

MEP CLOCK 25 Mhz

WEN

Figure 4.6 Relative Waveforms for MEP Initialization

The initialize_LSI() function is designed to reset the control and output logic and

latch the control register of LSI L64720 MEP. The control latch configures the MEP for

75

application specific variables such as data block and search window size. As explained in

section 3.6.2 most control functions have their own address. In order to assert an

addressed control function all we have to do is merely access the appropriate address

using outportb(correct address, don't care) or inportb(correct address); if we use

outportb(correct address, don't care) it does not matter what we send as data since only

decoding the correct address causes the desired action. The hardware, figure 4.5, is

designed to automatically reset when a flow vector is read from it, therefore, all

initialize_LSI() has to do to reset the control and output hardware is inportb(RDVECT)

(note that RDVECT is REST1 in the schematic of Appendix A and in the code of

Appendix B) and discard the inportb(RDVECT) result. Most control functions are

asserted in the same way as RDVECT. To initialize the MEP we assert ECLK, which

connects the 25Mhz clock to the MEP, assert WEN, which tells the MEP to latch the

hardwired control registers on the next clock edge, and then turn off the system clock by

unasserting ECLK; the relative waveforms for this operation are given in figure 4.6. The

PMM is now ready for use by generate flow_field(params).

The generate_flow_field(params) function is one of the largest functions used in

the Vision System. Essentially, the generate flow field(params) function is the reason for

the conception and design of the PMM hardware in figure 4.5. In the rest of this section

we will discuss how this function interfaces and controls the PMM hardware of figure 4.5

after initialization. Please note that figure 4.5 is the same as figure 3.8; it is repeated here

for convenience.

It has already been mentioned that the PMM hardware internally stores a data

block and search window that it processes to generate a single flow vector. The PMM

process is repeated two hundred and ten times to generate the flow field; this is the

Calculate Flow block of Figure 4.4. Since calculating the flow field is a key process it

would be useful for understanding the thesis work to describe how the PMM is loaded and

run for a single flow vector computation within the function generate flow_field(params).

Figure 4.7 Single Flow Vector Computation

Generate_flow_field(params), besides parsing the data and search frames, makes

repetitive calls to the functions full_compare db_to_sw(params) and

halftcompare dbtosw(params). Full_comparedbtosw(params) and

half_compare dbtosw(params) handle all of the interfacing with the PMM during flow

field generation using the sequence of operations outlined in figure 4.7. The interface is

quite simple using the PMM hardware which was intentionally designed to rely upon

external software. The process for creating a single flow vector is depicted in figure 4.7;

this detailed sequence could easily be performed by an embedded Finite State Machine

(FSM) microcontroller or PROM as discussed in chapter 3 instead of using software.

The flow vector computation starts by asserting RDVECT which resets the control

and output circuitry; this was discussed in the initialize_LSIO function. The introductory

77

reset is merely a precaution that guarantees the correct operation of the hardware even

though it is automatically reset when a flow vector is read at the end of every cycle.

START /

LCLK

Figure 4.8 Relative Waveforms for Resetting the MEP Input Controller

Once we are sure that the logic is in the correct state we reset the input controller

of the MEP so that we can start sending it pixels. The way the input controller is reset is

similar to the way the MEP was initialized in figure 4.6. The input controller is reset by

asserting START clocking the MEP using LCLOCK and then unasserting START and

clocking the MEP again with LCLOCK; this is show in figure 4.8.

The third and fifth operations load the MEP. The third operation loads the MEP

with first five hundred and twelve bytes of the search window and the fifth operation loads

the MEP with the second five hundred and twelve bytes of the search window with 256

bytes of the data block. Loading the search window is divided into two steps because the

search window is 4 times as large as the data block. In both loading steps two bytes of the

search window are loaded at a time where only a single byte of the data block is loaded at

a time during the second load step. (See Figure 4.5) Consequently, for each load operation

there is 256 iterations. In each iteration of a load the necessary bytes are latched into the

corresponding 74LS374's and then clocked into the MEP all at once by asserting NEXT

and LCLOCK. The NEXT-LCLOCK waveforms are exactly the same as in figure 4.8 with

NEXT interposed for START. The input controller is reset between the two loads because

the input logic can only go through 256 iterations before it has to be restarted, see figure

4.7

After a complete search window and data block have been loaded into the MEP,

ECLK is asserted which connects the 25Mhz clock to the MEP; this allows the MEP to

compute the flow vector much more quickly than a single microprocessor could.

The last step in the flow vector computation, figure 4.7, is to wait for the result.

The PMM sets the lowest bit of U13 high when it is finished computing and the flow

vector is ready to be read using inportb(RDVECT). Therefore, the system continuously

checks to see if the MEP has finished by reading U13 with inportb(FSHCHK). Once the

MEP is finished the system reads the flow vector with inportb(RDVECT).

It is important to understand the creation of a flow vector in order to understand

how the PMM hardware is used in the generation of the flow field.

4.2.3 Flow Field Calculation

We have all the pieces of software to fill in figure 4.4. The sequence of operations

to generate the flow field is,

grab();
store_data_frame(data_frame);

(Any Loop Structure to Form a Delay for Motion to
Occur.)

grab();
store_search_frame(search_frame);
generate flow_field(search_frame,

data_frame,
hardware_vector_array);

Thus our abstractions for flow field calculation are complete! An abstraction,

however, is only as good as ability to assist understanding and logical thought; if an

abstraction is too ambitious it will render itself useless by hiding to much detail. The

sequence above contains only a few functions each with a distinct character and clear

purpose. The individual instructions each provide a complex function and are easy to use;

they only hide the details about data parsing and loop control. Furthermore, every function

is already a combination of recursive and/or iterative sub-function calls. Thus, in this

situation, combining the flow field sequence into a single function would not yield a better

abstraction, but a less useful one.

Motion Calculation

Figure 4.9 Simplified Subprocesses of Motion Calculation

The equations for calculating motion are thoroughly discussed in chapter one.

Calculating motion, unlike the generation of the flow field, does not require a piece of

hardware external to the main computer; it is performed completely in software.

The bulk of the computations to calculate motion are matrix manipulations of

doubles. The matrix library that is used in the code was found on the Internet; it was

developed by Patrick Ko Shu Pui for educational use only. The format of the matrix

library source code was changed so that it could be more easily incorporated into Borland

C++ 4.51, it is not included in the thesis.

4.3.1 Motion Calculation Functions

The outline of the major components in the motion calculation process are shown

in figure 4.9, which is a combination of figure 1.6 and 4.1. Since the development is

entirely in software we can directly implement every step in the expansion of the motion

calculation of figure 4.9. The implementation is straightforward and we start with solving

for the motion parameters.

m = (AT A) YA'b

Equation 4.1 Least Squares Motion Estimation Equation

80

Equation 1.24 is repeated here as equation 4.1 for convenience. Initially, we can

only solve for the motion parameters if we make assumptions about the values in the depth

map; this is because we directly use the depth map to create the matrix A, in equation 4.1

which is defined in equation 1.19. A conservative depth map assumption is to set all of the

depth values equal to one. Once we have assumed something for our depth map we create

A and b, which is the flow field, and solve for the initial motion; m as defined in equation

1.17 and b as defined in equation 1.20.

The data structure that is used in the matrix library is called a MATRIX. After we

have created our matrices, we must initialize them before calculating for the motion. The

C functions that we use to fillA, b, and our initial depth map are,

fill_b_and_depthmatrix(MATRIX b,
MATRIX depth_map,
unsigned char* hardware_vector_array);

fill_Amatrix(MATRIX A, MATRIX depth_map);
Fillb_and_depth_matrix(params) takes the flow field, which is stored as eight bit

vectors in hardware_vector_array, separates and stores their u and v components in b and

initializes all of the depth values in the depth map.

Fill_A_matrix(MATRIX A, MATRIX depth_map) calculates the elements of A as

defined in equation 1.19; the values of x and y in the element calculation are the actual

locations of the pixels created by the frame grabber on the CCD normalized by the focal

length of the camera lens. The pixel locations are discussed in the calibration section of

chapter five.

After we have our A, b, and the depth map it is a simple matter to compute

motion. Using our matrix library, equation 4.1 is represented as,

m = mat_mul(matinv(mat_tran(A), A)),matmul(mat tran(A), b));

The individual functions are,

mat mul(MATRIX x, MATRIX y);
mat inv(MATRIX x);
mat_tran(MATRIX x);

The mathematical operation of each of these functions is clear, mat_mul(params)

multiplies two matrices, mat_inv(params) inverts a matrix, and mat_tran(params)

transposes a matrix. Altogether these functions make the motion computation a single line

of code.

As indicated in figure 4.9, after every motion iteration we update the depth map

from the motion parameters using,

Z (-U + xW) 2 + (-V + yW) 2

(u - (xyA- (x2 +)B + yC))(-U +xW)+ (v - ((2 +1)A-xyB - xC))(-V + yW)

Equation 4.2 Update Depth Map Equation

Equation 1.25 is repeated here as equation 4.2 for convenience. Again, the

implementation is very direct, we use equation 4.2 to recalculate each depth value using

the new motion parameters. Equation 4.2 is implemented in C almost exactly as it appears

above. All of the capitalized variables in equation 4.2 are components of motion and every

lower case variable is location on the CCD image plane normalized by the camera focal

length. The depth map is updated by an iterative loop that computes equation 4.2 for each

flow vector in the flow field; in our case there are 210 depth values.

As the depth map is updated, the largest absolute error between the new and old

depth values is recorded; this is our depth convergence value and is termed

depth_convergence in the code. The depth convergence is compared with the convergence

tolerance, denoted convergence_tolerance, to determine whether another set of motion

parameters should be calculated. If the depth_convergence value of the current depth map

is less than or equal to the convergence_tolerance value then it is implied that the current

depth map has converged. Once convergence has been achieved it is implied that the

motion parameters derived from the depth map and the values in the depth map accurate

enough to be returned for postprocessing by the user interface.

The entire motion calculation process shown in figure 4.9 is compacted into the

single function,

MATRIX calculate_motion(unsigned char* hardware_vectorarray,
double* depth_map,
double convergence tolerance);

Calculate_motion(params) performs all the necessary memory allocations and

loops to compute the motion parameters and depth map. It returns the motion parameters

in a 6xl matrix of the form in equation 1.17 and updates the depth map pointed to by the

array of doubles, depth_map.

Chapter Summary

This chapter discussed all of the underlying processes developed and implemented

in the prototype machine vision system. A simple two step abstraction of all of the

software is given in figure 4.1. The first task for the software system is to generate a flow

field using the Pattern Matching Module described in figure 4.5. The second task for the

software is to iteratively compute the motion parameters and depth map. The combination

of these two steps is implemented in the following C abstractions:

grab();
store_data_frame(data_frame);

(Any Loop Structure to Form a Delay for Motion to
Occur.)

grab();
store_search_frame(search_frame);
generate_flowfield(search_frame,

data_frame,
hardware_vector_array);

calculate_motion(hardware_vector_array,
depth_map,
convergence_tolerance);

Where each of the functions perform the following:

grab() captures a video image.
store_data_frame(params) and store_search_fram(params) take the currently

captured video image and move it into a usable data structure.
generate_flow_field creates an estimate of the motion field, called a flow field,

from two consecutive video images.
calculate_motion(params) determines three dimensional translation and rotation

from a flow field.

Each function is fundamentally and functionally distinct. Together, all of these

functions are an implementation of the processes used for calculation of depth and motion

in the prototype vision system.

CHAPTER FIVE

CALIBRATION, RESULTS, AND PERFORMANCE

This chapter discusses the major facets of the Vision System calibration,

performance, and results. Naturally, the first section describes how and why the Vision

System is calibrated. The second section provides our first taste of some real results

followed by an analysis of those results. As a consequence of the initial test results, the

chapter takes a momentary detour to discuss the average vector elimination flow field

filter. After the average vector elimination filter is included in the motion parameter

computation the final results are presented. The last section of the chapter tabulates the

speedup of the different components of the Vision System over the duration of this thesis

and discusses how the Vision System might be improved.

5.1 System Calibration

We have the system, the theory, and an understanding of the limitations of both.

Now it is time to make the system reflect a reality; this is accomplished through

calibration. Our understanding provides the lens through which we will calibrate our

equations. A critical test of understanding for a complex system is a clear identification of

units.

5.1.1 Scale Factors

All of the equations discussed in chapter one provide us with six motion

parameters. The six motion parameters are U, V, W, A, B, C. The translations, U, V, W

are in the units of the principle distance and defined along the X, Y, Z coordinates. In our

case the units of the principle distance will be meters. The rotations, A, B, C are the right

hand rotations around X, Y, Z in radians respectively. The equations actually give us

rotations in radians, but we need external information to handle the translations. The

iterative calculation of the six parameters has a whole plane of solutions differing by a

relative scale factor; the scale factor can be applied to either the depth map and hence the

85

motion parameters or the motion parameters directly. The need for a scale factor can

easily be seen when one imagines that if the external world were twice as big, and our

movement through it were twice as fast, we would generate the same motion field; the

relationship between the size of the external world and our velocity is our plane of

solutions. The Vision System itself needs knowledge of either a depth to a point within its

depth map or an actual value of a motion parameter in order to make the calculated

translations useful The known depth value would allow us to correctly rescale the whole

depth map and then generate real translation parameters. A known real world translational

value would be directly compared to its generated counterpart to find a scale factor for the

other two translational components. The translational scale factor should be constantly

recalculated and applied for every motion parameter generation; this is external updating

calibration. In a real application it was proposed that an optical encoder be used to

measure displacement from which the translation along one of the three axes could be

inferred; in all of the calculations here the details of the depth map and its scale factor are

suppressed in favor to the simpler method of measuring an actual displacement along an

axis. The rotations, however, get their values from parameters that are embedded in the

actual equations; these are permanent calibrations assuming that we know the principle

distance and the pixel spacing.

Image Plane

A Pixel

Imaginary
Arc

pal
ice
natelv

Figure 5.1 Angular Resolution

86

ngth)

S
s=r9 €es 9=-

= pixel wtidth = pixel width
angular resolution = =

principal distance = focal length

Equation 5.1 Angular Resolution

The rotations are based upon the apparent horizontal and vertical width of an

image pixel (See Figure 5.1). The horizontal and vertical angular resolutions of the system

are the horizontal and vertical pixel width divided by the principal distance which is

approximately camera lens focal length (See Equation 5.1); this assumes that the

horizontal and vertical pixel width is sufficiently small compared to the focal length. The

beautiful part of this is that as long as we determine the pixel size correctly, rotations

should thereafter remain calibrated; the pixel size, however is not an easy quantity to

measure and will be referred to as a "virtual" pixel to imply its mysteriousness.

5.1.2 Determining The Virtual Pixels

We can call the parameter we need to measure a "virtual" pixel because it is the

result of a series of different conversions. It is easiest to explain the virtual pixel by

following the flow of the image data. First, a CCD is charged by impinging light which is

serially shifted out, low pass filtered, and forced into an ugly analog video standard at the

camera's internal clock rate. Second, a frame grabber samples the analog video signal at a

its internal clock rate and drops it into memory. A key conceptual point is that the

definition of a virtual pixel is heavily dependent upon the hardware used to generate it. In

our system the camera has a moderate resolution of 768 pixels horizontally by 494 pixels

vertically. The frame grabber, however, generates its own number, which is less than the

actual image resolution, of both horizontal and vertical pixels from the video signal.

Further, in able to process the images faster we use the frame grabber on low resolution

which further reduces both the number of horizontal and vertical pixels that make up a

grabbed image. Thus the real size of the virtual pixels is a complicated issue. It is obvious

that we have a choice between spending an indeterminate amount of time measuring lots

87

of signals or examining the flow field output and relating it to the objects within its view.

The second option was used because the empirical result is all the we need. If we were

attempting to create or modify the interface between the camera and frame grabber we

would need to verify and catalog all of the signals.

Image

Object Covering
Field of View

Not To Scale

Figure 5.2 Pixel Rate Calibration

scale[meters / pixel]*x = B BC
= - e> scale[meters / pixel] =

C A Ax

Equation 5.2 Pixel Scale Factor

Relating the flow field to the objects within its view was done in two ways. The

first way is using the rate of change of an object captured by the flow field. The way this

works is shown in Figure 5.2. We encompass the entire field of view of the camera with a

high contrast object at a known distance, A, from the camera or surface. Once the object

is in place and the distance has been measured an image is grabbed, the object is moved a

known distance, B, and a second image is grabbed. After the flow field is generated we

can calculate Equation 5.2 to determine the number of meters per pixel. Figure 5.2

describes the actual motion and distances use to calculate the horizontal and vertical pixel

widths. A note should be made that the lens that was used has a very small thickness

parameter such that the simple diagram in Figure 5.2 suffices; the thin lens approximation,

however, is not always true -the input node and output node of a lens do not have to

coincide.

Object at a known
distance from the

camera.

Video Camera
Monitor

on

top of object

Figure 5.3 Pixel Fill Calibration

The second way to calibrate the horizontal and vertical width of a virtual pixel is

essentially the same as the pixel rate calibration and we will use the same variables as

shown in Figure 5.2. First, position an object at a known distance, B, in Figure 5.2.

Second, physically measure some part of an object, C, in the camera's view, and then

overwrite the camera image pixel by pixel until the measured area is filled in, x, (See

Figure 5.3). Now you can use Equation 5.2 to calculate for the scale factor.

Unsurprisingly, both methods yielded the exact same results. The horizontal and

vertical scale factors are,

Horizontal Scale Factor = 62.5 pm per pixel

Vertical Scale Factor = 50.0 ýpm per pixel

The surprising part of this measurement is that we would expect the vertical scale factor is

so large; this value is approximately 5 times the height of a real pixel in the camera!

The horizontal and vertical pixel width are the only calibration coefficients other

than the external translation value that we need to correct and calculate our six motion

parameters and the associated depth map.

5.2 Initial Results

Each trial in the initial results is based upon sets of data from three sources. The

first source is the actual controlled motion that has been incurred for the trial. The second

89

source of data is the results that we get from moving the camera through the "motion"

given by the motion parameter entries and letting the prototype try to calculate the correct

results. The last source of data is the simulation data. The only difference between the

simulation and the prototype is where the flow field information comes from. In the

prototype the flow field is generated by dedicated hardware, in the simulation the flow

field is computed using the Longuet Higgins, and Pradzny equations (Equations 1.14). All

of the trials have been with the camera examining a flat surface with a high contrast about

one meter away from the lens. All of the translation entries were scaled using an

empirically derived scale factor.

INITIAL MOTION PARAMETER RESULTS

Trial # System U[cm] V[cm] W[cm] A[rad] B[rad] C[rad]

1 motion 0 0 0 0 -0.026 0
prototype 0.163 0.343 -0.971 0.009 0.021 0.005
simulation 0 0 0 0 -0.026 0

2 motion 0 0 0 0 0.026 0
prototype 1.23 0.2 0.257 -0.005 -0.018 -0.007
simulation 0 0 0 0 0.026 0

3 motion 0 0 0 0 0 0
prototype 0.029 0.057 0 0 0 0
simulation 0 0 0 0 0 0

4 motion 2 0 0 0 0 0
prototype -0.086 1.267 -0.029 -0.013 -0.028 -0.005
simulation 1.911 0 0.229 0 0.017 0

5 motion 0 0 2 0 0 0
prototype 0.286 0.886 -0.857 -0.009 0.002 -0.002
simulation 0 0.171 1.911 0 0 0

6 motion 0 2 0 0 0 0
prototype -0.343 1.514 0.571 -0.008 0.009 -0.016
simulation 0 1.911 0.229 0 0 0

Table 5.1 Initial Motion Parameter Calculations

Table 5.1 displays the Vision System data for six different test trials. It should be

noted that the simulation was an essential development in order to debug the motion

calculation code.

5.2.1 Initial Results Analysis

Although it is refreshing to examine actual test data, after a cursory glance at the

data in Table 5.1 it is obvious that the prototype is not operating properly while the

simulation is doing well. The prototype translations are almost always wrong and appear

to be in the opposite directions. The rotations are much more sensitive than the

translations but we can again observe that the magnitudes of the results are in the wrong

direction. A portion of the prototype error is, of course, because of positional errors

during testing but this does not explain why the directions are inverted. The simulation,

however, gives good repeatable estimates of the motion parameters.

As explained earlier the only difference between the simulation and the actual

prototype is where we get the flow field. In the prototype the flow field is created by

physical camera motion. In the simulation the flow field is created using the Longuet,

Higgins, and Pradzny equations to a fair degree of resolution.

The prototype problem is twofold. First, it is a resolution problem. The prototype

generates flow fields with 256 different flow vectors where the simulation can create flow

vectors to a few decimal places. The lack of quality in the flow field is due to the integer

measuring ability of the matching algorithm [12]. Although the issue of flow vector

resolution and pixel interpolation is applicable here it was determined through extensive

testing that poor flow field quality was the major source of coarse error and resolution

was left as a system refinement.

Poor flow field quality is when a flow vector is either pointed incorrectly or has the

wrong magnitude. Figure 4.3 shows a flow field that has flow field errors. Every flow field

generated by the Pattern Matching Module typically has a few incorrect flow vectors. The

incorrect flow vectors are dependent on the environment and the pattern matching

algorithm. The only way to reduce the incorrect flow vectors is to perform flow vector

filtering or change the hardware. Flow vector filtering compares each flow vector to its

neighbors in order to determine if it is incorrect. One flow vector filtering technique is

average vector elimination which is discussed next.

5.3 Average Vector Elimination Filter

Most flow fields that are generated have erroneous flow vectors which result in

incorrect computations for the motion parameters (See Figure 5.4). The goal of applying a

filter to the flow field before the motion parameters are calculated is to eliminate flow

vectors that are not representative of the overall flow and would affect the computation.

The idea of using the average vector elimination filter is to increase the accuracy of

the motion parameter computation.

Erroneous
Flow Vector

Figure 5.4 Flow Field with an Error

The filter that was implemented in this thesis is a average vector elimination filter.

Each flow vector has a vertical and horizontal component, u & v respectively as defined in

Figure 1.7 and Equation 1.16. The components of each flow vector are compared to the

component average of its neighboring flow vectors. Typically there is usually four

neighboring flow vectors above, below, left, and right of the flow vector under

examination; however, the flow vectors around the perimeter of the motion field are

compared to as many neighbors as there are available. If the absolute difference between a

flow vector's component and the average for that component is not within a tolerance,

called pixel tolerance since the flow vector components are measured in terms of pixels,

the flow vectors is neutralized, that is set to zero. Although the nulling of a flow vector

adds another constraint to the least squares computation, for the purposes of this thesis it

92

t /"

/I 1I \",,1
I

is a suitable approximation; it is comforting to know that theoretically we only need 7 flow

vectors to generate a unique solution of the motion equations. The pseudocode for the

local averaging filter is simple and follows,

_(Ui,j+l + Ui+lj + Ui-l,j + Ui,j+)
U=

- (vij+l + Vi+ 1 j + vi-j Vij+

4

if (•uaff I> pixel tolerance)orJv dff 1> pixel tolerance))

u=0 & v=0

The average vector elimination algorithm is implemented in the single C function,

void local_averaging_filter(char *vectcomps, double
pixel_tolerance);

5.4 Final Results

The meaning of the entries in the following table are the same as in Table 5.1.

FINAL MOTION PARAMETER RESULTS

Trial # System U[cm] V[cm] W[cm] A[rad] B[rad] C[rad]
1 motion 0 0 0 0 -0.026 0

prototype 0.943 0..029 0.086 0.001 -0.024 -0.006
simulation 0 0 0 0 -0.026 0

2 motion 0 0 0 0 0.026 0
prototype 0.943 -0.2 0.243 -0.001 0.024 0.01
simulation 0 0 0 0 0.026 0

3 motion 0 0 0 0 0 0
prototype 0 0 0 0 0 0
simulation 0 0 0 0 0 0

4 motion 2 0 0 0 0 0
prototype 2.01 0.171 -0.086 -0.003 -0.013 0.002

simulation 1.911 0 0.229 0 0.017 0
5 motion 0 0 2 0 0 0

prototype 0.029 0.251 1.657 -0.007 0 0.001
simulation 0 0.171 1.911 0 0 0

6 motion 0 2 0 0 0 0
prototype 0.086 2 0.251 -0.007 0.003 0.005
simulation 0 1.911 0.229 0 0 0

Table 5.2 Final Motion Parameter Results

5.4.1 Final Results Analysis

The meaning of the entries in Table 5.2 is the same as Table 5.1, but the data is

very different. The local averaging filter, without any other changes, significantly

improved the motion parameter results. The most obvious improvements are that now all

of the parameter estimates are in the correct direction and all of the estimated parameters

are more accurate.

5.5 System Speedup

Speedup is the amount the execution time of a system or operation has decreased.

The measure of speedup applied to this thesis is Amdahl's law. Amdahl's law captures, in

absolute terms, the most unambiguous meaning of speedup; the law is a ratio of execution

times with and without enhancement,

Execution tirme for entire task without enhancerent
Speedup =

Execution tirme for entire task with enhancenrnt when possible

Equation 5.3 Amdahl's Law [13]

Amdahl's law is the heart of our Speedup analysis.

SPEEDUP IN FLOW FIELD GENERATION

Flow Field 386 25Mhz PC104 Flow Field Speedup

Generation w/o Math Generation

Coprocessor Hardware

Average Execution 2 312 s < 250 ms 2 312 s 1248

Time < 250 ms

Table 5.3 Flow Field Speedup

The largest speedup that we have achieved in the work described in this thesis is

the improvement in the time it takes to create the flow field. Traditionally, this is usually

the data flow bottleneck. The traditional approach is shown clearly in the 312 second flow

field generation time for a 386 processor shown in Table 5.3. The problem is that the flow

field cannot be efficiently calculated with a single sequential processor. At first glance it

might have been thought that the inefficiency is that the 386 does not have a math

coprocessor; this is an incorrect assumption because the flow field hardware is restricted

to generating flow vectors with a magnitude of 256 or less! Our flow field computations

are strictly integer operations and therefore get the full attention of the processor without

the need for messy floating point interrupt handlers. The traditional bottleneck in the flow

field generation is not the speed of an individual processor but that the shear bulk of

information that should be processed by a parallel network of processors.

So our speedup as calculated in Table 5.3 is 1248 or greater; this is a reasonable

speedup when it is considered that the hardware is running at, 25Mhz, 15 Mhz beneath it

potential top speed. Of the 250 millisecond latency it has been estimated that 75% of the

delay is due to the data bus transaction time. In the original concept the Pattern Matching

Module would have a direct link to the frame grabbing system and its own fast memory

for storing and accessing the image data independent of the data bus. In a self contained

frame grabbing and processing system the flow field latency could be reduced to less than

60 milliseconds and with a faster clock approach real time flow field generation. Flow field

resolution can be increased by merely adding another Motion Estimation Processor in the

PMM or by performing pixel interpolation -the possibilities are endless! Since our Vision

95

System was able to create flow fields at an abundant rate the real bottleneck in this Vision

System is in the motion parameter and depth map calculation.

SPEEDUP IN MOTION COMPUTATION

Motion 386 25Mhz PC104 486 66Mhz PC with Speedup

Computation w/o Math Math Coprocessor

Coprocessor

Average Execution = 10s < 0.125 s 10 s
-~> 80

Time (for a single < 0.125 s

iteration of

convergence loop)

Table 5.4 Motion Computation Speedup

It was known from day one of this project that there was going to be a section

dedicated to discussing the computation time of the motion parameters. The only practical

approach to developing code for the motion parameter computation was to make every

new parameter and every associated declaration a floating point number. The approach to

the system was "create an operational system before you create an efficient one." As the

code came together it was possible to eliminate a few of the floating point numbers -but

the code efficiency issues were not deeply probed -that is an area of on going research.

Our development platform is a 386 25Mhz PC104 processor without a math coprocessor;

this means that for every floating point operation a minimum of 25 integer operations have

to be executed. The saving grace is that all of the code and hardware is portable and, when

we obtain a 200Mhz x86 PC104 with a coprocessor it can be plugged in to create a faster

system. Table 5.4 lists the speedup for the motion parameter computation running on a

moderate desktop computer where the speedup is 80 times; the desktop computer with the

specifications listed in Table 5.4 was used because it is comparable to one of the slowest

PC104 computers available with a floating point coprocessor. A key point to remember is

that the motion computation is now the bottleneck. Therefore, for all of our work, we

have the potential speedup of at least a 80 times.

THE MINIMUM OVERALL EXECUTION TIME

Minimum Overall 386 25Mhz PC104 386 25Mhz PC104 486 66Mhz PC with

Execution Time w/o Flow Field with Flow Field Flow Field

Hardware and w/o Hardware but w/o Hardware and Math

Math Coprocessor Math Coprocessor Coprocessor

Flow Field Generation 2 312 s < 250 ms < 250 ms

Motion Parameter = 10s = 10s < 125 ms

Computation (per

iteration)

Total Average > 322 s = 10s < 375 ms

Execution Time (for

flow field generation

and first iteration of

motion parameters.)

Table 5.5 Minimum Overall Time

Table 5.5 indicates that the minimum overall execution time with the Vision

System running on the cheapest adequate processor is 375 milliseconds; this is rapidly

approaching the real time application boundary!

5.6 Chapter Summary

The chapter opens discussing the units of the motion parameters where the

translational components are in the units of meters and the rotational components are in

radians. The need for an external reference to scale either the translational components or

the depth map is explained and the two internal calibration parameters, the horizontal and

97

vertical virtual pixel width, are introduced. The two redundant ways that were used to

determine the virtual pixel widths that are used as calibration parameters are each

explained and the final virtual pixel width values are given:

Horizontal Scale Factor = 62.5 gm per pixel

Vertical Scale Factor = 50.0 pm per pixel

Following the calibration section is the first set of experimental data. The data

indicated that the simulation was functioning well, but that the prototype was not. The

prototype errors were that it gave incorrect directions, that is minus signs, and some of the

parameters had inaccurate magnitudes. The fact that the simulation performed better

clearly indicated that the motion parameter computation algorithm was sound and that the

difference was in something the prototype lacked -flow field quality. Although the motion

parameter algorithm will produce the correct answers given the correct flow field, it has a

very low tolerance to flow field anomalies; this was not an intuitive result since the motion

calculation algorithm is based upon a least squares solution. The prototype flow field

quality was substantially improved by filtering, that is setting to zero, any flow vector that

had an orientation or magnitude that was inconsistent with its neighbors. The nulling of

the flow vectors, however, adds a new constraint to the least squares solution; a filter that

replaces the incorrect flow vector with the correct average values may be a better solution

[14]. The flow field filter that was used is a average vector elimination filter.

The average vector elimination filter calculates the averages of the vertical and

horizontal flow vector components surrounding the vector under examination. If the

components of the flow vector under study are different than the averages by a specified

number of pixels, that is a pixel tolerance, the vector is nulled. The empirical pixel

tolerance used in the local averaging filter was four.

After the average vector elimination filter was incorporated into the motion

calculation algorithm, the motion parameter results improved dramatically. The improved

the flow field quality enough so that not only are the parameter estimates in the correct

directions, but they are very nearly the correct magnitudes. Perhaps now it would be

useful to increase the flow vector resolution.

The last section of the chapter is dedicated to the most tangible result of the

prototype system which is its improvements in speedup. The prototype hardware creates

flow fields 1248 times faster than when the thesis was started. Perhaps what is even more

startling is that with small improvements in equipment the total Vision System latency to

produce motion parameters from camera motion can be reduced to less than 375

milliseconds! It would appear that machine visions system will soon be a practical addition

if not an alternative real time instrument.

100

CHAPTER SIX
CONCLUSION

The main focus of this thesis has been to engineer and prototype an operational

Machine Vision System for Autonomous Applications to serve as a proof of concept

system. Among the requirements placed upon the Vision System, the requirements that it

be physically small, and produce data quickly have been the most challenging and

influential. The work within the thesis is split between digital hardware and software

design.

Figure 6.1 Flow Field Showing Motion Forward and to the Right

The small packaging size of the Vision System is 4.25"H x 5.0"W x 7.0OL, a total

volume of 148.8 cubic inches, and fits directly into the assembly of the Companion wheel

chair robot developed at the Intelligent Unmanned Vehicle Laboratory (IUVC) at the

101

Charles Stark Draper Laboratory in Cambridge Massachusetts. Using commercially

available PC104 computer products and the Pattern Matching Module (PMM) described

within this thesis it was possible to build this tiny Vision System.

The PMM is used to decrease the speed at which flow fields, like the flow field

shown in Figure 6.1, are created and is constructed with a specialized correlator that

contains 30 parallel processors. The PMM is designed to plug onto the PC104 standard

bus and is addressable as a computer card. Traditionally, the computational bottleneck for

many commercial Vision Systems has been the creation of flow fields. The PMM,

however, was able to generate flow fields more quickly than it was able to process them.

Based upon the PMM timing results, it is suggested that a suitable network of computers

in conjunction with a single PMM could produce motion parameter information in real

time. Further, approximately 75% of the delay in the PMM is due to memory bandwidth.

Interconnecting the frame grabber to the PMM without the need for any bus transactions

would decrease the flow field latency to a fraction of its value. The PMM fulfilled the

goals of the hardware portion of this thesis.

The goals of the software were to produce drivers for the PMM, a graphical user

interface, and operational motion parameter computation code. The software was written

in C and compiled optimizing for speed. The graphical User Interface was written by Ely

Wilson; an example of the graphical User Interface is Figure 6.1. The PMM drivers were

based upon existing C functions and a further optimization could be to write the PMM

driver in a lower level code. It should be noted, however, that currently the PMM and its

associated driver run faster than is necessary. The graphical user interface is an intuitive

visualization of the flow field that displays the flow vectors and uses a red to blue or white

to black color table to describe depth. The motion parameter computation code directly

implements the iterative algorithm and is easily modified. A by-product of the software

development is that simulations of every software and hardware component have been

made. Currently, it is possible to run a complete simulation of the software on independent

platforms that support DOS. The most important aspect of the Vision System software is

that each process and function work.

102

The prototype Vision System can produce data every forty seconds, but with a

slight upgrade it will produce data about every 500 milliseconds. The data that the Vision

System produces is accurate to about 15% of the parameter under test. Overall, there are

still small errors in the motion calculations and the simulated results indicate a reasonable

improvement over the prototype. It is believed that most of the current errors are due to

pixel resolution which can be solved by pixel interpolation. Pixel interpolation will produce

a flow field where each flow vector will contain more significant digits. Using pixel

interpolation can take the place of the currently used average vector elimination filter. Our

camera geometry, however, is also to blame. Although, we measured the virtual pixel size,

the measurement techniques could have been significantly improved using optics tables

and more precise measurement equipment.

The software and hardware in this system are still under active research; this thesis

will help shape future machine vision research by IUVC. One of the richest areas for

future work is in algorithm development. In particular, the pattern matching algorithm

could be enhanced to produce a more accurate flow field, which as we have already

shown, will improve results. Another algorithm that could be improved is the motion

parameter and depth map iteration loop; this loop requires a significant amount of time to

converge and, on occasion, diverges.

The overall Vision System is a proof of the concept; it is small enough to be

suitable for an autonomous application, potentially fast enough to aid in navigation, and,

last but not least, it works!

103

104

APPENDIX A
PATTERN MATCHING MODULE SCHEMATIC

DDi am Do n
wDD 20 0 l De

U 13_

o AF

AAtV3
AS
A

AD
374

a
F OF

ISPW1EN
-- - - U

CLK
374

E
C
A0

---- DIE

CLL374
E0 c
C

LITat i-
It

IIIIII -'

F~T1

,jIj

L~iff
ull U12

374 4 2
H OH V7 A7?n r

DL0R G S AFOF2 VA A A
A21 C YL D Y3 Af

A3V C 1YAD V L,ýE a 0 A

r1 641E2
u k

At Y?
AD 06

Ai ViAd y4

109 Weur

FREIJ, at

CL CLR2
4 PREC2 I L vRE2 I I CLO
J 2 029 111 01I~l
K2 opb I d

- L o LOC A MA -- a y

LSI LCLK
DOI 021 041 DO,
Dll 021 051 0l71

RESETI

74 CLK
FR)* 4 0 L LOAD

D0103001

FC) K 0 I0~IlL-·lOOi I II:PRI 0orPCLFmo I Re

...... FSHIN

105

I\ I
SSWDAI0 t AE G 68

so o •s

swou l
o

o

A •? AD 0

SW0AT 0'AO 0

AGO~ 02 P7

0 PIS

PI

swoAs o1P

swo• j 'I

o o SVV
DIP SWITCHD U

61 Y7

A200

AIDI

SWAD t EN a STR

SWIA9t # AI 08o

SwIAB a' AS, 03 ~o
SWIAO 0'PISF

'A P3
P2

PI

SWIA3

I, Ikl

-I4~44UJI I L

cl
109

CLRTI
1 fm u

III Ill

i2R , a , , 11) ý , r=l; 1 1 1 1 1e*

-K • J- - - -

llllllT

~svI~

DP SMTCH I

LSI NEXT

3 • -Lw'Ll I

L

Lsl L"720 VIDEO ESTiMATION PROCESSOR

P Fr- r p' r FT " Q , ý r r, IT~

'~ ' " '
IIIIIII l,"

~
u

I.

T~-- a
IT -- • 7

It
I

111
SU14

cX I I I I • " 1

SSTEM CLOCIN

. [=--

106

APPENDIX B
COMPLETE LISTING OF SOFTWARE

This code is the main loop that runs on the 386 processor.

#include <stdio.h>
#include <dos.h>
#include <conio.h>
#include <ctype.h>
#include <stdlib.h>
#include <math.h>

/*4/29/96 Anthony N. Lorusso
This is the final code to generate a flow field and calculate
motion from it using Ely Wilson's graphical interface.*/

int main(void){

/* Defines for system specific constants, this is to make the code
adaptable for future arrangements. */

#define VECTOR_NUM 210
#define VEC_COMP_NUM 420

MATRIX depth_map, motion, A, b;
char InputC, Input_c,

vect_comps[420];
unsigned char * dataframe[14],

* search_frame[14];
unsigned char hardware_vector_array[VECTOR_NUM],

filtered_vectorarray[VECTORNUM];
int ExitI,

ValidArrayl;
double convergence_tolerance,

pixel_tolerance;

/*Beginning of code*/
depth_map = mat_creat(VECTOR_NUM, 1, UNDEFINED);
A = mat_creat(VEC_COMP_NUM, 6, UNDEFINED);
b = mat creat(VEC_COMP_NUM, 1, UNDEFINED);

init_matrix(depth_map, VECTOR_NUM, 1, 1.0);
init_frames(data_frame, search_frame);
initialize_LSI();

//Initialize depth map
//Initialize frames
// Initialize LSI board

107

init_grabber();

//Prompt for convergence tolerance
printf("What convergence tolerance do you want?\n");
scanf('"n%lf', &convergence_tolerance);

InitGVects();
Exitl = 0;
ValidArrayI = 0;
while (!ExitI){

InitGVects();
// Indicate ready to get first frame ...
CameraOne();
// Get keystroke
InputC = getch();
// Process keystroke ...
switch (tolower(InputC)) {

case 'q':
ExitI = 1;
break;

case ' ':

// Get first frame
CameraFlashOn();
grab();
CameraFlashOff();
store_data_frame(data_frame);
// Indicate ready for second frame
CameraTwo();

//Initialize frame grabber

// Initialize graphics display

while (getch() != ' ');
// Get second frame
CameraFlashOn();
grab();
CameraFlashOff();
store_searchframe(search_frame);
// This compares the respective data blocks and search windows and
// stores the results in vector_array
generate_flowfield(search_frame, data_frame, hardware_vectorarray);

ValidArrayl = 1;
GraphVects(hardwarevector_array);
vector_arraytocomponents(vect_comps, hardware_vector_array);
pixeltolerance = 4.0; // Empirical flow field tolerance

108

local_averaging_filter(vect_comps, pixel_tolerance);
components tovector_array(vect_comps, filtered_vectorarray);
GraphVects(filtered_vector_array);
ExitGVects();

/* This calculates the six motion parameters.*/
motion = calculate_motion(filtered_vector_array, depth_map,

convergence_tolerance, A, b);
printf("m=:\n");
print_matrix(motion, 6, 1);
printf("Hit any key to continue.\n");
do {Input_c = getcho; }
while((tolower(Input_c) !=' ') && (tolower(Inputc) != 'q')

&& (tolower(Input_c) != 'c'));
break;

case 't':
InputC = getch();
if (InputC >= 'a')

InputC -= 'a' - 10;
else

InputC -= '0';

hardware_vectorarray[0] = InputC * 16;
InputC = getch();
if (InputC >= 'a')

InputC -= 'a' - 10;
else

InputC -= '0';

hardware_vector array[0] += InputC;
GraphVects(hardware_vector_array);
ValidArrayI = 1;
break;

default:
if (ConfigDisp(InputC) && ValidArrayl)

GraphVects(hardware_vector_array);
break;

}

ExitGVects();
return(0);
I

109

This is the file that contains all of the primary functions that are used

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <dos.h>
#include <conio.h>
/*#define DEBUG*/

void datablocktoswindow(unsigned char *swindow, unsigned char *dblock, int xoff, int
yoff){

int x, y;
for(y = 0; y < 16; y++){

for(x = 0; x < 16; x++){
swindow[xoff+x+y*32+yoff*32] = dblock[x+y* 16];
}

I

void randomize_sw(unsigned char *swindow){
#define MAX_RAND = 255;
int x, y;
for(y = 0; y < 32; y++){

for(x = 0; x < 32; x++){
swindow[x+y*32] = rand();
I

I

void print_array(unsigned char *array, int col_limit, int rowlimit){

/* This function prints an arbitrary sized array. */

int x, y, ct = 0;
for(y = 0; y < rowlimit; y++){

for(x = 0; x < col_limit; x++){
printf(" %c", array[ct++]);
I

printf('"\n");

void print_hex_array(unsigned char *array, int col_limit, int row_limit) {

110

/* This function prints an arbitrary sized array. */

int x, y, ct = 0;
for(y = 0; y < row_limit; y-±+){

for(x = 0; x < collimit; x++){
printf(" %Ox", array[ct++]);
}

printf('Nn");

void printjhexunsigned_array(char *array, int col_limit, int row_limit){

/* This function prints an arbitrary sized array. */

int x, y, ct = 0;
for(y = 0; y < row_limit; y++){

for(x = 0; x < col_limit; x++){
printf(" %Ox", array[ct++]);
I

printf('\n");

void printj16_block(unsigned char *dblock) {
int x, y;
for(y = 0; y < 16; y++){

for(x = 0; x < 16; x++){
printf(" %c", dblock[x+y* 16]);

printf('ln");

void print_32_block(unsigned char *swindow){
int x, y, ct = 0;
for(y = 0; y < 32; y++){

for(x = 0; x < 32; x++){
printf(" %c", swindow[ct++]);
p

printf("\n");

111

void define_dblock(unsigned char *dblock){
int pixelnum = 0;
int x, y;
for(y = 0; y < 16; y++){

for(x = 0; x < 16; x++){
dblock[x+y* 16] = pixelnum++;
}

}

void initialize_LSI() {
int REST1 = 0x380, WEN = 0x382, ECLK = 0x396;
inportb(REST1);
inportb(ECLK);
inportb(WEN);
inportb(ECLK);
inportb(REST1);

void comparedbtosw(unsigned char *swindow, unsigned char *dblock, unsigned char
*distortion) {

int REST1 = 0x380, FSHCHK = 0x381, DBEN = 0x390,UPSWEN = 0x391,
LOSWEN = 0x392, NEXT = 0x393, START = 0x395, LCLK = 0x397,

ECLK = 0x396;
int i,j,k;
unsigned char value;

inportb(REST1); /* reset output circuitry */
/*inportb(WEN);*/ /* initialize LSI board */
/*inportb(LCLK);*/
inportb(START);
inportb(LCLK);
inportb(START);

value = inportb(FSHCHK);
while(value == 1){

inportb(REST1);
value = inportb(FSHCHK);
}

k-0;
while(k != 2){

j=0;
while(j != 16){

i=0;
while(i != 16){

112

outportb(UPSWEN, swindow[j*32+i+ 16*k]);
outportb(LOSWEN, swindow[j*32+512+i+16*k]);
/*outportb(DBEN, dblockUj*16+i]);*/
#ifdef DEBUG
{
char cont = 'n';
printf("Upper byte (%d) = %d\n", (i+16*k+j*32),

swindowlj*32+i+16*k]);
printf("Lower byte (%d) = %d\n", (i+16*k+j*32+512),

swindow[j*32+512+i+16*k]);
printf("Data byte (%d) = %d\n", (i+j*16), dblock[j*16+i]);
while(cont != 'y'){

printf("Continue? y/n\n");
scanf('"\n%c", &cont);
}

}
#endif
if(k == 1){

outportb(DBEN, dblock[j* 16+i]);
}

inportb(NEXT);
inportb(LCLK);
inportb(NEXT);
inportb(LCLK);
i++;

j++;

k++;
if(k == 1){

inportb(START);
inportb(LCLK);
inportb(START);
inportb(LCLK);
}

inportb(START);
inportb(LCLK);
inportb(START);
inportb(LCLK);
value = 0;
i = 0;
inportb(ECLK);
while(value != 1){

113

//inportb(LCLK);
value = inportb(FSHCHK);
if(i == 2400){

printf("TIMEOUT:\n");
inportb(ECLK);
inportb(REST1);
distortion[0] = Oxff;
}

}
//inportb(LCLK);

inportb(ECLK);
distortion[0] = inportb(REST1);
/*value = inportb(REST1);*/

//for(i = 0; i < 6; ++i){
/*value = inportb(REST1);*/
//printf("%Ox ", inportb(REST1));
//inportb(LCLK);
//}
outportb(DBEN, 1);
//printf('\n");

void clear_db(unsigned char *dblock){
int x,y;
for(y = 0; y < 16; y++){

for(x = 0; x < 16; x++){
dblockl x+y* 16] = 48;
/* note that 48 is ASCII for 0, Borland seems to need this.*/

}

void clear_sw(unsigned char *swindow){
int x,y;
for(y = 0; y < 32; y++){

for(x = 0; x < 32; x++){
swindow[x+y*32] = 48;

/* note that 48 is ASCII for 0, Borland seems to need this.*/
}

}

void emulate_comparedb tosw(unsigned char *swindow, unsigned char *dblock,
unsigned char *e_distortion) {

/* simulates properly working pattern matching hardware */

114

unsigned long int error, min_error, error_sum;
unsigned int min_error_x, min_error_y, i, j, x, y;

min_error_x = 0;
min_errory = 0;
min_error = 600001;
j = 0;
while(j != 16){

i = 0;
while(i != 16){

error = 0;
error_sum = 0;
y = 0;
while(y != 16){

x=O;
while(x != 16){

error = abs(swindow[x + i + y*32 +j*32] - dblock[x
+ y* 16]);

error_sum += error;

++y;

if(min_error >= error_sum){
min_error_x = i;
min_error_y = j;
min_error = error_sum;

if(errorsum >= 655361){
printf("error_sum has exceeded maximum value.\n");
I

}
++j;

if(min_error_x <= 7){
e_distortion[O] = (unsigned char)(min_error_x + 8);

else{
e_distortion[0] = (unsigned char)(min_error_x - 8);
}

if(min_error_y <= 7){
e_distortion[1] = (unsigned char)(min_error_y + 8);

else{

115

e_distortion[1] = (unsigned char)(min_errory - 8);
}

e_distortion[2] = (unsigned char)minerror;
}

void fillfull_sw_buffer(unsigned char *swindow, unsigned char *search_strip,
int col_index, int

row_index){

/* This program is for the first LSI computation at the beginning of each
row, and to be used for every computation that is going to be emulated */
/* Also note that the computation number "comp_num" can be computed by
comp_num = col_index + row_index*32; */

int i,j;
i = 0;
while(i != 32){

j = 0;
while(j != 32){

swindow[j+i*32] =
search_strip[j+i*256+col_index* 16+row_index* 16*256];

j++;

i++;

void fill halfswbuffer(unsigned char *swindow, unsigned char *search_strip,
int colindex, int

row_index){

/* This program is for preparing the search window array for the repetetive
hardware computations in a single row. It loads the next half search window,
512 bytes, into the second half of the search window array. The array can then
be used to load the LSI hardware, and wait for a FSH. */

int ij;
i = 0;
while(i != 32){

j = 0;
while(j != 16) {

116

swindow[16+j+i*32] =
search_strip[16+j+i*256+col_index* 16+row_index* 16*256];

j++;
}

i++;

void fill_dbbuffer(unsigned char *dblock, unsigned char *data_strip,
int col_index, int rowindex){

/* This program is for all computationa using a data block */

int i,j;
i = 0;
while(i != 16)1

j = 0;
while(j != 16){

dblock[j+i* 16] =
datastrip[(j+i*240+col_index* 16+row_index* 16*240)];

j++;

i++;

void half_comparedbtosw(unsigned char *swindow, unsigned char *dblock, unsigned
char *distortion) {

/* This program will load data fot the LSI hardware for computations after
the very first for every row. It will then return all computed values for
computations except the first and last in each row.*/

int REST1 = 0x380, FSHCHK = 0x381, DBEN = Ox390,UPSWEN = 0x391,
LOSWEN = 0x392, NEXT = 0x393, START = 0x395, LCLK = 0x397,

ECLK = 0x396;
int i,j;
unsigned char value;

inportb(REST1); /* Resets output circuitry. */
inportb(START); /* Resets LSI input controller.*/
inportb(LCLK);
inportb(START);

117

inportb(LCLK);

j=0; /* Loads the half search window for the next computation.*/
while(j != 16){

i=O;
while(i != 16){

outportb(UPSWEN, swindow[j*32+i+l6]);
outportb(LOSWEN, swindow[j*32+512+i+16]);
outportb(DBEN, dblock[j* 16+i]);
inportb(NEXT);
inportb(LCLK);
inportb(NEXT);
inportb(LCLK);
i++;
}

j++;

inportb(REST1); /* reset output circuitry */
value = 0;
i = 0;
inportb(ECLK); /* Turns LSI on board clock on.*/
while(value != 1){

++i;
value = inportb(FSHCHK);
if(i== 2400){

printf("TIMEOUT:\n");
inportb(ECLK); /*Turns LSI on board clock off.*/
inportb(REST1);
distortion[O] = Oxff; /* default return value if TIMEOUT*/
}

}
if(value == 1)

inportb(ECLK); /*Turns LSI on board clock off.*/
distortion[0] = inportb(REST1); /*Returns computed value. */
}

void last_compare db_to_sw(unsigned char *distortion){

/* This program will retrieve data from the hardware for LSI
computations at the end of every row. */

int REST1 = 0x380, FSHCHK = 0x381, START = 0x395, LCLK = 0x397, ECLK
= 0x396;

int i;

118

unsigned char value;

inportb(REST1); /* Reset output circuitry. */
inportb(START); /* Starts the final computation. */
inportb(LCLK);
inportb(START);
inportb(LCLK);

value = 0;
i = 0;
inportb(ECLK); /* Turns LSI on board clock on.*/
while(value != 1){

++i;
value = inportb(FSHCHK);
if(i == 2400){

printf("TIMEOUT:\n");
inportb(ECLK); /* Turns LSI on board clock off.*/
inportb(REST1);
distortion[0] = Oxff; /*default return value if TIMEOUT */
}

}
if(value == 1){

inportb(ECLK); /* Turns LSI on board clock off.*/
distortion[0] = inportb(REST1); /*Returns computed value. */

}

unsigned char ordered_to_bitwise(unsigned char *array){
return((array[1] << 4) I array[0]);
I

void bitwisetoordered(unsigned char *array, unsigned char byte){
array[l] = ((byte >> 4) & OxOf);
array[0] = byte & OxOf;
}

void fill_strip(unsigned char *strip, int length, unsigned char fill_value){

/* This function places a given number of specified characters into a strip
for testing purposes. */

int i =0;

119

while(i != length) {
strip[i] = fill_value;
i++;
}

void emulate_comparestrips(unsigned char *search_strip, unsigned char *data_strip,
unsigned char

*dblock, unsigned char *swindow,
unsigned char

*vector_array, int stripnum){

/* This function takes two strips, a data_strip, and a search_strip, and
computes 15 flow vectors from them and stores them in the vector_array */

int i;
unsigned char e_distortion[3];
i = 0;
while(i != 15){

fill_db_buffer(dblock, data_strip, i, 0);
fill_full_sw_buffer(swindow, search_strip, i, 0);
/*printf("This is the emulator data block..n");
print_hex_array(dblock, 16, 16);
printf("this is the emulator search window.\n");
print_hex_array(swindow, 32, 32);
printf("Hit a key to continue.\n");
getcho; */

/* Note that this function will need to be changed to incorporate
the half search window dowload required by the LSI chip.*/

emulate_comparedb-tosw(swindow, dblock, e_distortion);
//printf("Our emulator vector is %Ox\n", orderedto bitwise(e_distortion));
vector_array[i+strip_num*15] = orderedtobitwise(e_distortion);
i++;

void compare_strips(unsigned char *search_strip, unsigned char *data_strip,
unsigned char *dblock, unsigned char

*swindow,
unsigned char *vector_array, int

stripnum){

/* This function takes two strips, a data_strip, and a searchstrip, and

120

computes 15 flow vectors from them and stores them in the vector_array */

int i;
unsigned char e_distortion[3];
i = 0;
while(i != 15){

fill dbbuffer(dblock, datastrip, i, 0);
fill_full_sw_buffer(swindow, search_strip, i, 0);
/*printf("This is the hardware data block.n");
print_hex_array(dblock, 16, 16);
printf("this is the hardware search window.\n");
print_hex_array(swindow, 32, 32);
printf("Hit a key to continue.\n");
getcho; */

/* Note that this function will need to be changed to incorporate
the half search window dowload required by the LSI chip.*/

compare_dbtosw(swindow, dblock, e_distortion);
//printf("Our hardware vector is %Ox\n", e_distortion[0]);
vector_array[i+strip_num* 15] = e_distortion[0];
i++;
)

void clear_datastrip(unsigned char *data_strip){
int x,y;
for(y = 0; y < 16; y++){

for(x = 0; x < 240; x++){
data_strip[(x+y*240)] = 48;
/* note that 48 is ASCII for 0, Borland seems to need this.*/

)
}

void clear_search_strip(unsigned char *search_strip){
int x,y;
for(y = 0; y < 32; y++){

for(x = 0; x < 256; x++){
search_strip[(x+y*256)] = 48;
/* note that 48 is ASCII for 0, Borland seems to need this.*/
}

121

void initframes(unsigned char **data_frame, unsigned char **search_frame){

/* The following are the frame initializations */

int z;
for(z = 0; z < 14; z++){

data_frame[z] = (unsigned char *)malloc(3840*sizeof(unsigned char));
if(dataframe[z] == NULL) {

printf("Cannot allocate data_frame.\n");
exit(l);
}

search_frame[z] = (unsigned char*)malloc(8192*sizeof(unsigned char));
if(searchframe[z] == NULL) {

printf("Cannot allocate search_frame.\n");
exit(l);
}

clear_datastrip(dataframe[z]);
clear_search_strip(search_frame[z]);
}

void init_grabber(void) {

/* The following is the frame grabber initialization */

char *err;

err = init_library();
if(err != NULL) {

puts(err);
exit(l);

}
/* Set user options */

low_res;
set_page(0);
}

void full_compare dbto_sw(unsigned char *swindow, unsigned char *dblock,
unsigned char

*next_half_swindow, unsigned char *nextdblock,
unsigned char

*distortion){

int REST1 = 0x380, FSHCHK = 0x381, DBEN = Ox390,UPSWEN = 0x391,

122

LOSWEN = 0x392, NEXT = 0x393, START = 0x395, LCLK = 0x397,
ECLK = 0x396;

int i,j,k;
unsigned char value;

inportb(REST1); /* Reset output circuitry. */
inportb(START); /* Reset the LSI input controller. */
inportb(LCLK);
inportb(START);
inportb(LCLK);

k=O; /* Load the first computation's data. */
while(k != 2){

j=-0;
while(j != 16){

i=O;
while(i != 16){
outportb(UPSWEN, swindow[j*32+i+16*k]);
outportb(LOSWEN, swindow[j*32+512+i+16*k]);
if(k == 1){

outportb(DBEN, dblock[j* 16+i]);
}

inportb(NEXT);
inportb(LCLK);
inportb(NEXT);
inportb(LCLK);
i++;
}

j++;

k++;
if(k == 1){ /* Reset the input controller. */

inportb(START);
inportb(LCLK);
inportb(START);
inportb(LCLK);
}

inportb(START); /* These lines start the computation, */
inportb(LCLK); /* and they start swapping the input buffers. */
inportb(START);
inportb(LCLK);

/* These lines load the next half search window. */

123

j=0;
while(j != 16){

i=O;
while(i != 16){

outportb(UPSWEN, nexthalfswindow[j*32+i+16]);
outportb(LOSWEN, nexthalfswindow[j*32+512+i+ 16]);
outportb(DBEN, next_dblock[j* 16+i]);
inportb(NEXT);
inportb(LCLK);
inportb(NEXT);
inportb(LCLK);
i++;

j++;

value = 0;
i = 0;
inportb(ECLK); /* This starts the on board LSI clock. */
while(value !- 1){

++i;
value = inportb(FSHCHK);
if(i == 2400){

printf("TIMEOUT:\n");
inportb(ECLK); /* This turns off the on board LSI clock. */
inportb(REST1);
distortion[0] = Oxff; /* default return value if TIMEOUT */
}

inportb(ECLK); /* This turns off the on board LSI clock. */
distortion[0] = inportb(REST1); /* actual return value */

void optimized_compare_strips(unsigned char *search_strip, unsigned char *data_strip,
unsigned char *dblock, unsigned char

*swindow, unsigned char *next_half_swindow,
unsigned char *next_dblock,

unsigned char *vector_array, int strip_num) {

/* This function takes two strips, a data_strip, and a searchstrip, and
computes 15 flow vectors from them and stores them in the vector_array */

int i;
unsigned char e_distortion[3];

124

i = 0;
/*clear_sw(swindow);
clearsw(next_half_swindow);
clear db(dblock);
clearjdb(next-dblock);*/

while(i != 15){
/* These next three functions should be removed! */
if(i == 0)

fill_db_buffer(dblack, data_strip, i, 0);
filldb_buffer(next_dblock, data_strip, (i+l), 0);
fillfull_sw_buffer(swindow, search_strip, i, 0);
fillhalf_sw_buffer(nexthalf_swindow, search_strip, (i+1),0);
full_comparedbtosw(sw indow, dblock, next_half_swindow,

nextdblock, e_distortion);
}

else if(i > 0 && i < 14){
filldb_buffer(next_dblock, data_strip, (i+1), 0);
fillhalf_sw_buffer(next half_swindow, search_strip, (i+1), 0);
half_comparedb tosw(next_half_swindow, next_dblock,

e_distortion);
}

else{
last_compare dbtosw(e_distortion);

vector_array[i+strip_num* 15] = e_distortion[0];
i++;
}

This is the primary file for the user interface. The user interface is a graphical
display that was developed by Ely Wilson. All of the following code is or the
graphical interface.

#include "graphvec.h"
#include <conio.h>
#include <ctype.h>
#include <graphics.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

125

struct
{

int ColorI,
MagnitudeI,
Vectorsl;

} DispConfigT;

int ConfigDisp(char InputC)
{

void MakeScale();
int RetVall;

// Return TRUE if display redraw is necessary
switch (tolower(InputC))
{
case 'c':

DispConfigT.ColorI = !DispConfigT.ColorI;
settextjustify(LEFT_TEXT, CENTER_TEXT);
setcolor(15);
moveto(0, COLOR_COORD);
outtext("C");
if (!DispConfigT.ColorI)

setcolor(14);
outtext("olor");
MakeScale();
RetValI = 0;
break;

case 'm':
DispConfigT.Magnitudel = !DispConfigT.Magnitudel;
settextjustify(LEFT_TEXT, CENTER_TEXT);
setcolor(15);
moveto(0, MAG_COORD);
outtext("M");
if (!DispConfigT.Magnitudel)

setcolor(14);
outtext("agnitude");
RetValI = 1;
break;

case 'v':
DispConfigT.Vectorsl = !DispConfigT.Vectorsl;
settextjustify(LEFTTEXT, CENTER_TEXT);
setcolor(15);
moveto(0, VECT_COORD);

126

outtext("V");
if (!DispConfigT.Vectorsl)

setcolor(14);
outtext("ectors");
RetValI = 1;
break;

default:
RetValI = 0;
break;

}
return(RetVall);
}

void InitGVectso
{

void DrawCamera(int, int),
MakeScale();

int ColorI,
GDriverl,
GModeI,
XCoordl,
YCoordl,
PointsAI[10],
ErrorCode;

// Load driver
GDriverl = VGA;
GModel = VGAHI;
initgraph(&GDriverl, &GModeI, 0);
ErrorCode = graphresult();
printf("initgraph returned %d\n", ErrorCode);

setlinestyle(SOLID_LINE, 0, NORM_WIDTH);

// Set default values
DispConfigT.ColorI = 1;
DispConfigT.Magnitudel = 1;
DispConfigT.Vectorsl = 1;

// Gray
setpalette(14, 14);
setrgbpalette(14, 35, 35, 35);

127

// White
setpalette(15, 15);
setrgbpalette(15, 63, 63, 63);

// Draw camera
DrawCamera(LEFT_MARGIN + REGION_WIDTH * 15.75,

TOP_MARGIN + REGION_HEIGHT * 3);

settextjustify(LEFTTEXT, CENTER_TEXT);
setcolor(15);
outtextxy(0, COLOR_COORD, "Color");
outtextxy(0, MAG_COORD, "Magnitude");
outtextxy(0, VECTCOORD, "Vectors");

MakeScale();

// Draw scale
XCoordl = LEFT_MARGIN + REGION_WIDTH * 15.75;
YCoordl = TOP_MARGIN + REGION_HEIGHT * 14 - 8 * 13;

for (ColorI = 13; ColorI > 0; ColorI--, YCoordl += 8)
{

PointsAI[0] = XCoordl;
PointsAI[1] = YCoordl;
PointsAI[2] = XCoordl + 8;
PointsAI[3] = YCoordl;
PointsAI[4] = XCoordl + 8;
PointsAI[5] = YCoordl + 8;
PointsAI[6] = XCoordl;
PointsAI[7] = YCoordl + 8;
PointsAI[8] = XCoordl;
PointsAI[9] = YCoordl;

setcolor(ColorI);
setfillstyle(SOLID_FILL, ColorI);

fillpoly(5, PointsAI);

return;
}

void MakeScale()
I

int ColorI,

128

RedI;
if (DispConfigT.ColorI)

// Set up color palette
for (ColorI = 1, RedI = 0; ColorI < 14; ColorI++, RedI += 63/13)
{

setpalette(ColorI, ColorI);
setrgbpalette(ColorI, RedI, 0, (63 - RedI) / 1.5);

}
else

// Set up grayscale palette
for (ColorI = 1, RedI = 0; ColorI < 14; ColorI++, RedI += 63/13)
{

setpalette(ColorI, ColorI);
setrgbpalette(Colorl, Redl/1.2, Redl/1.2, RedI/1.2);

}
return;
I

void ExitGVects()
{

restorecrtmode();
}

void GraphVects(unsigned char VectsAUC[210])
{

void WriteVector(int, int, int, int, int);

int ColI,
RowI,
VectMagI,
XDistI,
YDistI,
PointsAI[10];

// Set initial Y coordinates
PointsAI[1] = TOP_MARGIN;
PointsAI[3] = TOP_MARGIN;
PointsAI[5] = TOP_MARGIN + REGION_WIDTH;
PointsAI[7] = TOP_MARGIN + REGION_WIDTH;
PointsAI[9] = TOP_MARGIN;

// Begin drawing display ...
for (RowI = 0; RowI < 14; RowI++)

129

// Reset X coordinates
PointsAI[O] = LEFT_MARGIN;
PointsAI[2] = LEFT_MARGIN + REGION_WIDTH;
PointsAI[4] = LEFT_MARGIN + REGION_WIDTH;
PointsAI[6] = LEFT_MARGIN;
PointsAI[8] = LEFT_MARGIN;

for (ColIl = 0; Coll < 15; ColIl++)
{

// Get X and Y change
XDistI = (VectsAUC[RowI * 15 + Coll] & OxOF);
if (XDistI > 7)

XDistI -= 16;

YDistI = (VectsAUC[RowI * 15 + Coil] >> 4);
if (YDistI > 7)

YDistI -= 16;

// Calculate vector magnitude
VectMagl = sqrt(pow(XDistl, 2) + pow(YDistI, 2));

// Fill region
setcolor(VectMagI + 1);
setfillstyle(SOLID_FILL, VectMagI + 1);
fillpoly(5, PointsAI);

// Annotate region
WriteVector(PointsAI[O] + REGION_WIDTH/2, PointsAI[1] +

REGION_WIDTH/2,
XDistI, YDistI, VectMagl);

//Increment X coordinates
PointsAI[0] += REGION_WIDTH;
PointsAI[2] += REGION_WIDTH;
PointsAI[4] += REGION_WIDTH;
PointsAI[6] += REGION_WIDTH;
PointsAI[8] += REGION_WIDTH;

// Increment Y coordinates
PointsAI[1] += REGION_HEIGHT;
PointsAI[3] += REGION_HEIGHT;

130

PointsAI[5]
PointsAI[7]
PointsAI[9]

+= REGION_HEIGHT;
+= REGION_HEIGHT;
+= REGION_HEIGHT;

void WriteVector(int XCoordl, int YCoordl, int XDistI, int YDistI, int VectMagI)

char OutStringAC[10];
int XNormI,

YNormI;
double AngleD;
setcolor(15);
if (DispConfigT.VectorsI)

if (VectMagI < 2)
{

putpixel(XCoordl, YCoordl, 15);
circle(XCoordl, YCoordl, 3);

}
else
{

// "Normalize" distances
AngleD = atan2((double)YDistI, (double)XDistI);

XNormI = 8 * cos(AngleD);
YNormI = 8 * sin(AngleD);
if (!DispConfigT.Magnitudel)
{

XDistI = XNormI;
YDistI = YNormI;

// Draw arrow
line(XCoordI + YNormI / 4, YCoordI -

XDistI,
XNormI / 4, XCoordl +

YCoordl + YDistI);
line(XCoordl - YNormI / 4, YCoordl + XNormI / 4, XCoordl +

XDistI,
YCoordl + YDistI);

line(XCoordl, YCoordl, XCoordl - XDistI, YCoordl - YDistI);

else if (DispConfigT.Magnitudel)

131

return;
}

settextjustify(CENTER_TEXT, CENTER_TEXT);
sprintf(OutStringAC, "%d", VectMagl);
outtextxy(XCoordI, YCoordl, OutStringAC);

return;
}

int CameraXI,
CameraYI,
FlashAI[10];

void DrawCamera(int XCoordl,
{

int YCoordl)

int PointsAI[10];
setcolor(15);
setfillstyle(SOLIDFLL, 0);

// Draw camera body
PointsAI[O] = XCoor
PointsAI[1] = YCoor,
PointsAI[2] = XCoor
PointsAI[3] = YCoor
PointsAI[4] = XCoor
PointsAI[5] = YCoor
PointsAI[6] = XCoor
PointsAI[7] = YCoor
PointsAI[8] = PointsA

dI - CAMERA_WIDTH/2;
dIl- CAMERA_HEIGHT/2;
dl + CAMERA_WIDTH/2;
dl
dl
dl
dl
dl

- CAMERA_HEIGHT/2;
+ CAMERA_WIDTH/2;
+ CAMERA_HEIGHT/2;
- CAMERA_WIDTH/2;
+ CAMERA_HEIGHT/2;

PointsAI[9] = PointsAI[1];

fillpoly(5, PointsAI);

// Draw camera lens
fillellipse(XCoordl, YCoordl, CAMERA_HEIGHT /3, CAMERA_HEIGHT / 3);

// Draw flash
FlashAI[0]
FlashAI[1]
FlashAI[2]
FlashAI[3]
FlashAI[4]
FlashAI[5]
FlashAI[6]

= XCoordl + CAMERA_WIDTH/2 - FLASH_WIDTH;
= YCoordl - CAMERA_HEIGHT/2 + 2;
= XCoordl + CAMERA_WIDTH/2 - 2;
= YCoordl - CAMERA_HEIGHT/2 + 2;
= XCoordl + CAMERA_WIDTH/2 - 2;
= YCoordI - CAMERA_HEIGHT/2 + FLASH_HEIGHT;
= XCoordl + CAMERA_WIDTH/2 - FLASH_WIDTH;

132

AI[0];

FlashAI[7] = YCoordl - CAMERA_HEIGHT/2 + FLASH_HEIGHT;
FlashAI[8] = FlashAI[O];
FlashAI[9] = FlashAI[1];

fillpoly(5, FlashAI);

// Record camera location
CameraXI = XCoordl;
CameraYI = YCoordl;
return;

void CameraOneO
{

void CameraNone();
CameraNone();
settextjustify(CENTERTEXT, CENTER_TEXT);
outtextxy(CameraXI, CameraYI, "1");

void CameraTwoo
{

void CameraNone();

CameraNone();
settextjustify(CENTERTEXT, CENTERTEXT);

outtextxy(CameraXI, CameraYI, "2");

void CameraNoneo
{

setcolor(15);
setfillstyle(SOLID_FILL, 0);
fillellipse(CameraXI, CameraYI, CAMERA_HEIGHT / 3, CAMERA_HEIGHT /

3);

void CameraFlashOn()
{

setcolor(15);
setfillstyle(SOLID_FILL, 15);

133

fillpoly(5, FlashAI);
}

void CameraFlashOff()
{

setcolor(15);
setfillstyle(SOLIDFILL, 0);
fillpoly(5, FlashAI);

I

This is the code that calculates motion

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

/* 5/14/96 Anthony N. Lorusso
This file contains all of the necessary functions to calculate the depth
map and six motion parameters from a motion field of 210 flow vectors. */

void fill A matrix(MATRIX A, MATRIX depth_map){

/* A is a 420X6 matrix. This function uses the depth map and fills the
elements of A with the correct values from the Longuet Higgins and
Pradzny equations. This is to solve Am=b.*/

/* environment scale factors in meters*/
#define focallength 8.5e-3
#define x_data_blocklength 1.0e-3
#define y_data_block_length 8.0e-4
#define pixels_per_x 16
#define pixels_per_y 16
#define scalefactor_x 62.5e-6 //6e-5
#define scale_factor_y 50.0e-6 //6e-5

int i, j;
double x, y, x_scaled, yscaled, 2Z

/* if "i" is odd then fill with the second row sequence, otherwise fill
with the first row sequence. */

i = 0;

134

j = 0;

/*Set the x & y values to their initial relative positions on the image
plane. Scaled x & y are used to accurately reflect the placement of the
coordinates with respect to the pixels generated by the frame grabber.
This is so the u & v components will actually be correct proportioinal
to the x & y positions. */

x = -7.0;
y = 6.5;

while(i != 420){
Z = depthmap[j][0];

/* multiplying by the scale factor and dividing by the displacements
accounts for real world displacements*/

y_scaled = (y*y_data_block_length/focal_length);
x_scaled = (x*x_data_blocklength/focal_length);

if(i%2 == 0)
A[i][0] = -(l/Z);
A[i][1] = 0.0;
A[i][2] = (x_scaled/Z);
A[i][3] = (x_scaled*y_scaled);
A[i][4] = -(x_scaled*x_scaled+1);
A[i][5] = y_scaled;
i++;
}

else{
A[i][0] = 0.0;
A[i][1]= -(1/Z);
A[i][2] = (y_scaled/Z);
A[i][3] = (y_scaled*y_scaled+1)
A[i][4] = -(x_scaled*y_scaled);
A[i][5] = -x_scaled;
j++;
x++;
i++;
}

if(x >= 8.0){
x = -7.0;
y--;}

135

}

void vector_array_to_components(char *vect_comps,
unsigned char *vector_array){

/*This function will take a vector_array of 210 vectors created by the
hardware and seperate the vectors into their u&v components, and then store
them in a component array, vect_comps, of 420 components.*/

unsigned char flow_vector[2];
int i, u, v;

i=0;
while(i !=210){

bitwiseto_ordered(flow_vector, vector_array[i]);

u = flow_vector[0]; /* u component, x axis */
if(u > 7){ /* conversion for hardware */

u -= 16;)
v = flow_vector[l]; /* v component, y axis */
if(v > 7){ /* conversion for hardware */

v -= 16;
vect_comps[(i*2)] = u;
vect_comps[(i*2+1)] = -v;
i++;

void components to_vector_array(char *vect_comps, unsigned char *vector_array){

/*This function will take a "vect_comps" matrix of 420 u&v components and recombine
the vector components so that they can be displayed with GraphVectso.*/

unsigned char flow_vector[2];
int i, u, v;

i=0;
while(i != 210){

u = vect_comps[(i*2)];
v = -vect_comps[(i*2+1)];

if(u < 0) /* conversion for hardware */
u += 16;

136

if(v < 0) /* conversion for hardware */
v += 16;

flowvector[0] = (unsigned char) u;
flow_vector[1] = (unsigned char) v;

vectorarray[i] = orderedto bitwise(flow_vector);
i++;

void get filter data(int *filter_data, int vector_num,
char *vect_comps){

/*This function loads the correct data structure with the current vector
information so that this single vector can be filtered.*/

int vector_numup, vector_numdown, vector_num_left, vector_num_right;

/*get information for the flow vector above the one being filtered. */

vector_num_up = vector_num - 15;
if(vector_numup < 0){

filter_data[0] = 0;
filter_data[l] = 0;
}

else{
filter_data[0] = (int)vect_comps[vectornum_up*2];
filter_data[1] = (int)vectcomps[vector_numup*2+1];
I

/*get information for the flow vector below the one being filtered. */

vector_num_down = vector_num + 15;
if(vectornum_down > 209)1

filter_data[2] = 0;
filter data[3] = 0;

else{
filter_data[2] = (int)vect_comps[vector_num_down*2];
filterdata[3] = (int)vect_comps[vector_num_down*2+1];
I

/*get information for the flow vector to the left of the one being filtered. */

vector_num_left = vector_num -1;

137

if((vector_num % 15) == 0){
filterdata[4] = 0;
filter_data[5] = 0;
}

else{
filter_data[4] = (int)vect_comps[vector_numleft*2];
filter_data[5] = (int)vect_comps[vectornum_left*2+1];
I

/*get information for the flow vector to the right of the one being filtered. */

vector_num_right = vector_num +1;
if((vector_num % 14) == 0){

filterdata[6] = 0;
filter_data[7] = 0;

else{
filter_data[6] = (int)vect_comps[vector_num_right*2];
filter_data[7] = (int)vect_comps[vectornum_right*2+1];

void local_averaging_filter(char *vect_comps, double pixel_tolerance){

/*This function applies local averaging to the vector flow field in order to
eliminate erroneous flow vectors.*/

int i,u, v, filter_data[8];
double ave_u, ave_v, abs_diff_u, abs_diff_v;

/*main loop*/

for(i = 0; i < 210; i++){
get_filterdata(filterdata, i, vectscomps);
ave_u = (filter_data[0]+filter data[2]+

filter_data[4]+filter_data[6])/4;
ave_v = (filter_data[1]+filterdata[3]+

filter_data[5]+filter_data[7])/4;
u = (int)vect_comps[i*2];
v = (int)vect_comps[i*2+1];

abs_diff_u = abs(ave_u - u);
abs_diff_v = abs(ave_v - v);

if(abs_diff_u > pixel_tolerance II
abs_diffv > pixel_tolerance){

138

vectcomps[i*2] = 0;
vectcomps[i*2+1] = 0;

void fill b anddepthmatrix(MATRIX b, MATRIX depth_map, unsigned char
*vector_array) {

/* This function will take the vector_array of 210 vectors from the hardware
and seperate the vectors into their u&v components, and then store them in a
component array, b, of 420 components. The component array, however, is also
scaled to reflect the calibration of the system.After the component array has
been generated, the depth map is filled using the components.*/

#define infinite_depth 1000
#define minimum_depth le-6
#define scalefactorx 62.5e-6
#define scalefactor_y 50.0e-6

unsigned char flow_vector[2];
int i;
double u, v/*, vector_magnitude, Z*/;

i-O;
while(i != 210){

bitwiseto_ordered(flow_vector, vector_array[i]);

u = flow_vector[0]; /* u component, x axis */
if(u > 7) /* conversion for hardware */

u -= 16;

v = flow_vector[l]; /* v component, y axis */
if(v > 7) /* conversion for hardware */

v -= 16;

/*multiplying by the scale factor and dividing by the focal length
account for the real world displacements */

b[(i*2)][0] = (u*scale_factorx/focal_length);
b[(i*2+1)][0] = (-v*scale_factor_y/focal_length);

else if(Z > infinite_depth)
depth_map[i][0] = infinite_depth;

139

i++;
}

}

double depthcalculation(double x, double y, double u, double v,
MATRIX m) {

/* This function takes all of the necessary components to compute an new
value for depth, and returns it. */

#define infinite_depth 1000
#define minimum_depth le-6

double U, V, W, A, B, C, Su, Sv, Z;

U = m[0][0];
V = m[1][0];
W = m[2][0];
A = m[3][0];
B = m[41[0];
C = m[5][0];

Su = ((-U)+(x*W));
Sv = ((-V)+(y*W));

/* calculate depth */
Z = ((Su*Su + Sv*Sv)/

(((u-(x*y*A-(x*x+ 1)*B+y*C))*Su)+(v-((y*y+1)*A-(x*y*B)-
(x*C)))*Sv));

if(Z > infinite_depth)
Z = infinite_depth;

if(Z == 0.0)
Z = 0.00000001; //this number seems smaller than most depths.
return(Z);

}

double updatedepth_map(MATRIX depth_map, MATRIX m, MATRIX b)(

/* This function takes the depth map and a new set of motion parameters,
compares each new depth value with the old one, replaces the old depth value,
and returns the largest depth difference (dpeth_convergence). */

#define pixels_per_x 16
#define pixels_per_y 16

140

#define x_data_block_length 1.0e-3 //9.6e-4
#define y_data block_length 8.0e-4 //9.6e-4
#define scalefactorx 62.5e-6 //6e-5
#define scalefactor_y 50.0e-6 //6e-5

double Z, depth_convergence, old_Z, abs_depth_difference,
x, y, x_scaled, y_scaled, u, v;

int i;

x = -7.0;
y = 6.5;
i = 0;
depth_convergence = 0;
while(i != 210){

/*multiplying by the scale factor and dividing by the focal length
account for real world displacements*/

x_scaled = (x*x data_blocklength/focal_length);
y_scaled = (y*y_data block length/focal_length);
old_Z = depth_map[i][0];
u = b[(i*2)][0];
v = b[(i*2+1)][0];
Z = depth_calculation(x_scaled, y_scaled, u, v, m);
abs_depth_difference = fabs(oldZ - Z);
if(abs_depth_difference > depth_convergence) {

depth_convergence = abs_depth_difference;
}

depthmrnap[i][0] = Z;
i++;
x++;
if(x >= 8.0){

x = -7.0;
y--;

}
return(depth_convergence);
}

void print_matrix(MATRIX MATRIX, int row_num, int col_num){

/* This function prints an arbitrary size matrix of doubles. The function
print_array, or print_hex_array, will print an arbitrary size array of
unsigned characters. */

141

int x,y;
for(y = 0; y < row_num; y++){

for(x = 0; x < col_num; x++){
printf(" %lf", MATRIX[y][x]);
}

printf("\n");
}

void init_matrix(MATRIX MATRIX, int row_num, int col_num, double value){

/* This function initializes an arbitrary size matrix of doubles, it fills
every element in the matrix with the double "value." The functions
print_array, or print hex_array, will print an arbitrary size array of
unsigned characters. */

int x,y;
for(y = 0; y < row_num; y++){

for(x = 0; x < col_num; x++){
MATRIX[y][x] = value;

MATRIX calculate_motion(unsigned char *vectorarray, MATRIX depthmap,
double

convergence_tolerance, MATRIX A, MATRIX b){

/* This function calculates the six motion parameters of motion and the
depth map. Currently, it only returns the six parameters of motion. */

/* Defines for system specific constants, this is to make the code
adaptable for future arrangements. */

#define VECTOR_NUM 210
#define VEC_COMP_NUM 420

MATRIX A_trans;
double depth_convergence;

/* create the matrices */
m = mat_creat(6, 1, UNDEFINED);

/* fill matrices */
fill_b_and_depth_matrix(b, depth_map, vectorarray);

142

init_matrix(m, 6, 1, .05);
init_matrix(depth_map, 210, 1, 1);
depth_convergence = update_depth_map(depth_map, m, b);
fill A matrix(A, depth_map);
A_trans = mat_tran(A);

/* complete depth map convergence loop */
while(depth_convergence > convergence_tolerance) {

printf("depth map convergence = %lf\n", depth_convergence);
print_matrix(m, 6, 1);
/* calculate motion */
m = mat_mul(mat_inv(mat_mul(A_trans, A)), mat_mul(A_trans, b));
/* update depth map */
depth_convergence = update_depth_map(depth_map, m, b);
/* make the next A & A_trans matrices */
fill Amatrix(A, depth_map);
A_trans = mat_tran(A);
}

/* return motion parameters */
return(m);
I

The code that performs the matrix functions is not included here. The unmodified
code was written by Patrick KO shu pui and is available on the world wide web for
educational use only.

143

144

REFERENCES

[1] Gilbert Strang, Linear Algebra and its Applications, Harcourt Brace Jovanovich, 1988,
pp. 167

[2] The Chemical Rubber Company, CRC Press, Standard Mathematical Tables, 28th.
Edition, pp. 297.

[3] Berthold Klaus Paul Horn, personal coversation during 3/96

[4] Longuet Higgins H.C., & Pradzny K., "The Interpretation of a Moving Retinal Image",
Image Understanding 1984, Ablex Publishing Corp., 1984, pp. 179-193.

[5] LSI Logic Corporation, L64720 Motion Estimation Processor Data Sheets, pp. 5.

[6] Gilbert Strang, Linear Algebra and its Applications, Harcourt Brace Jovanovich, 1988,
pp. 156

[7] Berthold Klaus Paul Horn, personal coversation during 4/96

[8] Anna Bruss and Berthold Klaus Paul Horn, "Passive Navigation", Computer Vision,
Graphics, and Image Processing, 1983, pp. 18

[9] Jaochim Heel, "Direct Dynamic Motion Vision", Proceedings of the 1990 IEEE
International Conference on Robotics and Automation, IEEE Computer Society Press,
1990, pp. 1142-1147

[10] Stephen William Lynn, personal conversation during 4/94

[11] ImageNation Corporation, Library Reference Manual for the CX100 & CX104,
1995, pp.16

[12] Berthold Klaus Paul Horn, personal coversation during 5/96

[13] Hennessy & Patterson, Computer Architecture a Quantitative Approach, Morgan
Kaufman, 1996, pp. 29

[14] Berthold Klaus Paul Horn, personal coversation during 5/96

145

