
A Multi-Threaded Simulator for the Kinetics of Virus Shell Assembly

by

Russell S. Schwartz

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 10, 1996

Copyright 1996 Russell S. Schwartz. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author

Department of Electrical Engineering and Computer Science
May 10, 1996

Certified by

Assistant

: U "%.

Accepted by_

Bonnie Berger
Professor of Applied Mathematics

Thesis Supervisor

F. R. Morgenthaler
Chairman, Depiartment Committee on Graduate Theses

MASSACHUSSETS INS' iI
OF TECHNOLOGY

JUN 1 11996

LIBRARIES

pi'i .

A Multi-Threaded Simulator for the Kinetics of Virus Shell

Assembly

by

Russell S. Schwartz

Submitted to the Department of Electrical Engineering and Computer Science

on May 10, 1996, in partial fulfillment of the

requirements for the degrees of

Master of Engineering in Electrical Engineering and Computer Science

and

Bachelor of Science in Computer Science and Engineering

Abstract

How icosahedral virus shells form has been a long-standing open question in Virology.
One approach to answering this question, the local rules theory of virus shell assembly,
has provided significant insights. However, prior work with this theory and simula-
tions based on it have been very abstract; they have, therefore, been unable to answer
some important questions. To address this, a graphical simulator providing a more
realistic physical model of viral coat protein interactions has been developed. This
simulator has several features that make it both powerful and easy to use, including
a versatile model of the underlying physical systems, a high-level control language, a
graphical user interface, and a multi-threaded design that allows the use of parallel
architectures. Preliminary work with the simulator suggests that it will be a valuable
tool for understanding icosahedral virus shell assembly.

Thesis Supervisor: Bonnie Berger

Title: Assistant Professor of Applied Mathematics

Acknowledgments

This material is based upon work supported under a National Science Foundation

Graduate Research Fellowship. Any opinions, findings, conclusions or recommenda-

tions expressed in this publication are those of the author and do not necessarily

reflect the views of the National Science Foundation.

I am especially indebted to my thesis supervisor, Bonnie Berger, for her guidance

and support throughout this project, for giving me the freedom to pursue it, and for

being patient and understanding when various setbacks came up. I would also like to

thank Peter Prevelige for his suggestions on the design of the project and for helping

me keep it connected to the real world. I am likewise grateful to Peter Shor for his

advice on solving some difficult problems. Thanks also go to Bobby Blumofe for

getting me started with Cilk and patiently answering my questions. Finally, I would

like to acknowledge my family for their continuing support and encouragement.

Contents

1 Introduction

2 Background and Motivation

2.1 Icosahedral Virus Shell Assembly .

2.2 Local Rules .

2.3 Empirical Support for Local Rules .

2.4 Prior Simulation Work

2.5 Conclusions and Motivation

3 Design Requirements

3.1 Functionality .

3.2 Perform ance .

3.3 Other Constraints .

4 Implementation

4.1 The Physical Model

4.1.1 Coat Proteins

4.1.2 Binding Interactions . . .

4.1.3 The Environment

4.2 The User Interface

4.2.1 The Command Interpreter

4.2.2 The Graphical Interface

4.2.3 The Graphics Display

4.2.4 The Controller

25

25

26

30

33

34

34

35

39

41

: : : : :

.................

.................

4.2.5 The Alternate Controller......

4.2.6 Data Files

4.3 The Serial/Parallel Interface

4.4 Major Algorithms and Numerical Methods

4.4.1 Approximation of the ODE

4.4.2 Advancing Time

4.4.3 Temperature/Brownian Motion . .

5 Evaluation

5.1 Functionality

5.2 Perform ance

5.3 Other Constraints

6 Applications

6.1 Undirected Assembly .

6.2 Modeling with the Alternate Controller

7 Discussion

7.1 Conclusions

7.2 Future Work .

7.2.1 Potential Improvements to the Simulator

7.2.2 Other Applications

A Specifications for the Control Language

A.1 General Features

A.2 Hooks to the Graphical Interface

A.3 Primitive Routines and Special Forms

A.3.1 Special Forms

A.3.2 General Operations

A.3.3 Graphics Routines

A.3.4 Communication Routines

A.3.5 Vector Routines

. 42

. 43

. 47

. 48

... 48

.. 50

. 55

67

. 67

. 69

. 69

... 70

75

... 75

S 77

S 81

S 82

.. 83

... 86

S 87

.. 89

List of Figures

2-1 T=1 Local Rule 13

2-2 T=1 Lattice .

T=1 Shell

T=7 Local Rules

T=7 Shell

Alternate T=7 Local Rules .

Polyoma Virus Rules

Single Node

Complex Node

Variable Nodes

Complex Node with Variable

Bond Forces

Sample Controller Code

Graphical User Interface

Sample Workspace

Rules File

Save File

Control File

Domain Decomposition . . .

.....

Region

.....

. . °. ..

. ..° ° ..

.° . °. ..

Poor Decompositions

4-14 Pseudo-code for Advancing Time

5-1 Performance Tests

. 13

2-3

2-4

2-5

2-6

2-7

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13 . . .

6-1 Undirected Assembly 64

6-2 Simulated Shells 66

Chapter 1

Introduction

This thesis paper describes the development of a simulator for studying virus shell

assembly. The simulator is meant to provide realistic data, in both numerical and

graphical formats, on the assembly of certain kinds of virus shells; to this end, it

incorporates physically reasonable models of some of the kinetic and thermodynamic

processes involved in virus shell assembly. The thesis is part of an ongoing project,

led by Prof. Bonnie Berger, to study the mathematical basis of virus shell assembly.

Although the thesis project is the development of the simulator itself, the thesis

paper presents some additional material in order to aid in understanding the project.

Because of the interdisciplinary nature of the work, it is helpful to provide some back-

ground on the problem. The paper describes the design constraints on the simulator

as a means of showing the motivation behind many of the features. In addition, it

shows two sample applications. These give a general demonstration of the capabilities

of the simulator, rather than an exhaustive overview of its functionality.

The thesis is organized into seven chapters. Chapter 1 contains a general statement

of the problem and this overview. Chapter 2 describes in more detail the problem

the thesis addresses, prior work done in the area, and how the thesis project fits into

the overall research effort. Chapter 3 discusses constraints on the design of the sim-

ulator. Chapter 4 examines how the simulator works in detail, describing both the

functionality of the simulator and the underlying mechanisms by which it works, and

explaining the important design decisions. Chapter 5 evaluates how well the simula-

tor meets its design goals in practice. Chapter 6 describes two example applications.

Finally, Chapter 7 draws some conclusions about the project and outlines some po-

tential future work involving the simulator. Appendix A provides specifications for

the simulator's control language.

Chapter 2

Background and Motivation

This chapter describes the problem of virus shell assembly and how it motivates

the construction of a new simulator. Section 2.1 describes some major issues in

understanding icosahedral virus shell assembly. Section 2.2 discusses the local rules

theory of virus shell assembly. Section 2.3 describes some of the empirical support

for local rules. Section 2.4 describes prior simulation work on this project. Section

2.5 draws some conclusions about the prior work and describes how it motivates the

thesis project.

2.1 Icosahedral Virus Shell Assembly

Determining how viruses grow in a cell is a crucial problem to understanding their life-

cycle and how it might be disrupted. In its most basic form, a virus consists of genetic

material surrounded by a protein coat, although there are often other components.

A critical problem in understanding virus growth is finding how the protein coats, or

shells, of viruses form. Viral coats are typically made of several hundred copies of a

single protein that assemble into a closed shell around the genetic material. These

coat proteins are often capable of self-assembling into a completed shell, although

sometimes additional proteins, called scaffolding proteins, or interactions with the

genetic material are required[12, 6]. The process by which self-assembly occurs is not

fully understood. There have been attempts to explain the process, some of which

appear quite successful for helical viruses, which are characterized by long, cylindrical

coats. However, these theories have been less successful in explaining icosahedral

viruses, those whose shells exhibit icosahedral symmetry.

Icosahedral viruses are an important subclass of viruses including many animal,

plant, and bacterial viruses, as well as almost all human viruses[11]. Human diseases

caused by icosahedral viruses include the common cold, chicken pox, polio, herpes,

and yellow fever[22]. Icosahedral viruses are defined by two-fold, three-fold, and

five-fold symmetries between the protein subunits in the shell. The result is a shell

consisting of twenty identical faces, each three-way symmetric. Icosahedral viruses

have traditionally been described in terms of capsomers, i.e. hexagons and pentagons

of coat proteins which are called hexamers and pentamers, respectively. Different

sizes of shells are classified according to triangulation, or T, numbers by the relative

positions of the hexamers and pentamers. A complete virus shell of T number n

contains 60n coat proteins. Although these coat proteins are often all chemically

identical, they can occupy geometrically different binding environments when the T

number is greater than one. This fact has been the source of much of the difficulty

in understanding icosahedral virus shell assembly.

The traditional explanation for virus shell assembly is the quasi-equivalence the-

ory of Caspar and Klug[7]. According to this theory, coat proteins occupy a single

basic shape, but have a limited amount of elasticity which allows them to be deformed

slightly from that shape as a result of their overall placement in the shell. Caspar and

Klug hypothesized that this elasticity allows the proteins to occupy non-equivalent

but similar, or "quasi-equivalent," binding environments. Based on this hypothesis,

Caspar and Klug determined that the different binding environments would be suf-

ficiently similar to fit the quasi-equivalence theory only if proteins occur in certain

patterns of pentameric and hexameric binding environments. From this restriction,

they concluded that only T numbers of the form p2 +pq+ q2, for non-negative integers

p and q, should be possible. Caspar and Klug hypothesized that in the self-assembly

of virus shells, coat proteins first assemble into hexamers and pentamers; these then

come together to form a complete shell.

2.2 Local Rules

Another explanation for how icosahedral virus shells form is the local rules theory of

Berger et al.[3]. The local rules theory proposed that coat proteins do not require

any high-level knowledge of their position in a completed shell, only local knowledge

about their neighbors in the shell. Under the local rules theory, a given coat protein

can take on distinct shapes, or conformations. These conformations follow sets of

local rules, where a local rule specifies the conformations of the neighbors of a given

protein and their relative positions in the shell. A set of local rules can uniquely

define the geometry of a given icosahedral shell.

The simplest icosahedral shell, a T=1 shell, requires only a single local rule. This

rule is shown in Figure 2-1. The partial circles specify that a coat protein has three

neighbors, all of conformation 1. The angles between the three neighbors, going

around the protein, are 1200, 1080, and 1200, as specified in the rule. These do not

add up to 3600 because they do not lie in a plane. Attaching several nodes obeying

these rules gives the partial lattice shown in Figure 2-2, which is composed of regularly

spaced hexagons and pentagons. A computer simulation repeatedly applying the T=1

rule produces the closed shell shown in Figure 2-3.

A more interesting example of local rules is the T=7 shell. A set of rules for this

shell is shown in Figure 2-4. Because this set of rules has seven distinct conformations,

proteins must know not only the relative positions of their neighbors, but also their

conformations. Computer simulations repeatedly applying this set of rules produce

the closed T=7 shell shown in Figure 2-5.

Although there is evidence for the correctness of local rules, there is some reason to

believe that the previous set of local rules may not be correct for at least some actual

T=7 viruses. Berger et al.[3, 2] proposed an alternative system of rules for the T=7

shell that appears more consistent with the biological data. These alternative rules

use only four distinct conformations, by hypothesizing that hexamers exhibit 1800

symmetry and therefore require only three conformations. This set of rules, however,

allows for more than one rule per conformation. This creates an ambiguity in the

1200' 120

1 108 1

Figure 2-1: A Local Rule for a T=1 Virus Shell

Figure 2-2: A Partial Lattice of a T=1 Virus Shell

assembly process, which is resolved by disallowing a particular configuration of nodes

and adding the additional constraint that assembly must begin on a pentameric node,

that is a node of type 1. This alternate set of rules is shown in Figure 2-6. Following

this set of rules, with the specified constraints, uniquely defines a shell geometrically

identical to the previous T=7 shell, but containing only four conformations.

2.3 Empirical Support for Local Rules

There is considerable empirical support for the local rules. Rossmann[21] noted that

elastic deformations cannot account for structural changes in coat proteins observed

experimentally, suggesting that coat proteins do shift between distinct conforma-

tions. Other evidence has supported this idea of conformational shifting[13, 15, 18].

While the existence of such conformations is problematic for quasi-equivalence, it

is completely compatible with local rules. The local rules theory can also explain

some viruses that do not fit into patterns predicted by quasi-equivalence. For ex-

ample, Figure 2-7 provides a set of local rules for the binding pattern of polyoma

virus, which does not conform to the lattice patterns considered viable under quasi-

Figure 2-3: A Simulated T=I Virus Shell

27 1

1201 1 130' 1090 2 1100 129'n3 122*

1 08 1 7 139' 3 2 107' 4

6 109 2

Figure 2-4: Local Rules for a T=7 Virus Shell

equivalence[19, 1].

Empirical support for local rules is particularly strong for the alternate T=7 rules

described above. The hypothesized symmetry of hexamers is visible in micrographs

of the T=7 bacteriophage P22[18, 23]. Further, the rules suggest a relationship be-

tween T=4 and T=7 shells; this relationship does exist in nature. For example, the

bacteriophage P2 has a satellite phage P4 that constructs its shell from P2's coat

protein. However, while P2 is a T=7 virus, P4 is a T=4 virus[8]. Earnshaw and

King[9] further found that P22, when grown in the absence of a scaffolding protein,

occasionally produces T=4 shells. Katsura et al.[14] found that a mutation in the

coat protein of the T=7 phage lambda could produce functional T=4 shells. Based

on the alternative rules, Berger and Shor predicted possible locations of scaffolding

protein for T=4 and T=7 shells that are consistent with data since found for P4[16]

and P22[23].

2.4 Prior Simulation Work

Previous work on this project involved the development of an earlier simulator for

local rules[17]. This simulator represented coat proteins abstractly as spherical masses

Figure 2-5: A Simulated T=7 Virus Shell

__ _____

2

124' 124'

I lros' 1

122' 120'3

2 1142 4

4

120' 123'4

3d 114'` 2

113' 113'
2

T 132 3

122' 120*

2 114 4

The configuration

113 113'2

47 132' 3

1200n4 123'

3 114' 2

is not allowed.

Figure 2-6: Alternate Local Rules for a T=7 Virus Shell

2 65 3
C

93' 1 93'

1 108S 1

X3 57* 1

117 2) 877'

6 , 83

1 58 2
C 0

2 107' 4

C C06115S 6 133

5 115' 2

Figure 2-7: Local Rules for Polyoma Virus

connected by springs. With this simulator, a user could define a set of rules, such as

those described above, which could generate a shell. The simulator would begin with

a single protein and add new proteins one at a time, relaxing the stresses in the shell

after each addition until the energy of the inter-protein bonds dropped below a fixed

tolerance.

This earlier simulator was applied to several tasks. In addition to creating the

simulated T=1 and T=7 shells shown earlier, it produced shells of a variety of different

sizes and configurations. It also demonstrated the versatility of the local rules; for

example, it could generate the non-quasi-equivalent polyoma virus shell described

in Section 2.3. The simulator could further demonstrate the robustness of the local

rules by testing the tolerance of rules to random perturbations. Another important

application of this simulator was to study shell malformations. Berger et al.[3] found

that replacing a single pentamer with a hexamer at the start of shell growth would

produce a spiraling malformation, similar to malformations observed in nature. The

simulator was also used to explore deliberately inducing malformations. Introducing

a "poisoned subunit," which attaches to a shell but does not follow the local rules,

into a simulation resulted in a shell malformation, suggesting a strategy for interfering

with shell growth in practice. Finally, there has been limited work with the earlier

simulator in modeling alternate rule sets such as the four conformation T=7 rules

described in Section 2.2.

Despite this simulator's successes, there were limitations to what it could do. The

simulator could model local rules but could not provide information on how they might

be physically implemented, such as how important the shape of a subunit is, how

subunits bind to each other, or how strong inter-subunit binding interactions must be.

The simulator could not provide some potentially important quantitative data, such as

that concerning reaction rates and pathways. Such information could be significant in

finding likely avenues for attacking shell growth. Moreover, while the simulator could

suggest strategies for disrupting shell growth, it could not provide specifics; it could

indicate that poisoned subunits might be successful in attacking a shell, but could not

say what physical properties such a subunit would need, or what concentration would

be required in a cell in order to reliably inhibit shell growth. These are important

questions in evaluating the biological feasibility of such techniques. The simulator

also could not adequately model the ability of proteins to detach after attaching to

a shell, or the effect of different models of binding kinetics on the order of assembly.

Finally, it could not realistically model conformational switching, which appears to be

crucial to understanding and simulating shell growth; this is particularly problematic

in modeling alternate rule sets, for which conformational switching is proposed to

occur after a protein has attached to the shell. It may be difficult or impossible to

obtain any of this data experimentally.

2.5 Conclusions and Motivation

The aforementioned limitations could seriously impede the progress of the broader

research effort. Previous work on the project has depended heavily on simulation

results, both as a verification of concept and as a substitute for difficult to obtain

experimental data. It is likely that simulation results could be similarly valuable in

continuing work. This suggests that it would be useful to find some way to simulate

a broader range of phenomena.

One possible approach to this problem would be to attempt to extend the earlier

simulator. This has in fact been done several times, to allow some work with alternate

rules and to allow minimal modeling of kinetics. However, the required data is largely

incompatible with the physical model used by the prior simulator. That simulator,

because of its emphasis on energy relaxation rather than advancing quantifiable time,

would require substantial modifications before it would be suitable for this application.

Furthermore, it cannot easily be extended to handle free-floating proteins, which is

necessary for a valid model of kinetics. Therefore, the prior simulator is not suitable

as a base for beginning such work.

It thus appears that a new simulator, capable of addressing the limitations de-

scribed above, is required. Such a simulator would have to adopt a substantially less

abstract model of shell assembly than the prior simulator. It would require more

realistic models of quantifiable time, coat proteins, and the kinetics of their interac-

tions. The new simulator could then be used as a supplement to the earlier simulator

to address quantitative questions that are not easily examined in the laboratory and

cannot be handled by the prior simulator alone.

Chapter 3

Design Requirements

A necessary step in constructing and evaluating a new simulator is deciding what

characteristics it must have in order to fulfill its purpose in the broader project. This

chapter discusses the design requirements necessary to allow the simulator to perform

its intended tasks. Section 3.1 describes the functionality required of the program.

Section 3.2 examines performance constraints. Finally, Section 3.3 discusses some

additional constraints that must be placed on the simulator design.

3.1 Functionality

In order to meet the needs of the project, the new simulator requires a more realistic

model of time and space than the prior simulator used. Rather than modeling a

single forming shell, the simulator should focus on a "soup" of free-floating particles

capable of interacting with each other. Rather than allowing proteins to add one

at a time without regard for the interval between additions and with the order of

additions assumed, proteins should be free to assemble in any order and at any rate.

This freedom is essential to gathering quantitative data on the assembly process.

Energy relaxation, used in the previous simulator after each subunit addition, is

not meaningful when using free-floating particles; the new simulator must therefore

maintain a quantitative model of elapsed time.

Also important in gathering quantitative data is a more realistic model of reaction

kinetics as it relates to binding interactions. The simulator should support a model

of binding that allows for bonds to form and break probabilistically, where the term

"bond" is used loosely hereafter to refer to the binding interactions between two sub-

units. Furthermore, the probabilities of these events should be based on a physically

valid model of kinetics, adjustable according to user-supplied binding energies. This

would allow a user to test the effects of different thermodynamic models on assembly

rates and pathways, and allow easy integration of laboratory results into the simulator

model.

Another important consideration is a more physically reasonable model of coat

proteins. It should be possible to design simulated proteins with different shapes

and bond configurations. Furthermore, physical properties of proteins, such as mass

and size, should be user-definable using physically realistic values. This should allow

experimentation with physical implementations of local rules and testing of how mod-

ifying different physical properties affects shell assembly. The simulator should also

support conformational switching. This means that it should allow subunits to change

shape or bond configuration probabilistically during a simulation. As with binding,

the probabilities should be configurable by users and tied to a realistic model of ki-

netics. This would likewise aid users in testing the effects of different thermodynamic

models on a simulation.

The simulator must also be configurable to a range of demands. In part, this means

that many of the parameters that would be reasonably expected to vary between

simulations, such as types of particles or temperature of the solution, should be

configurable without modifying the code. It also means that the simulator should be

adaptable to changes in what a user might require of it. There is a trade-off involved

here; trying to anticipate every possible use would result in a simulator that is large,

slow, and prone to bugs. However, the simulator should have sufficient versatility that

another simulator will not be required to investigate questions that can reasonably

be anticipated in the broader research effort.

The final design constraint is that the simulator be reasonably easy to use. It is

meant to be a tool not just for computer professionals, but also for biologists who

may be less experienced with the use of computers. Less experienced users should be

able to run a simulation, modify simple parameters, and examine the results without

much specialized knowledge of the simulator. As with configurability, there is some

trade-off involved here, as ease of use must be weighed against versatility. Therefore,

it is acceptable to make less frequent or more specialized operations require more

knowledge, provided the most common and important options are easily accessible.

3.2 Performance

Another important design consideration is how quickly the code will run. Although

there is no hard upper limit on how long the code can take to solve realistic problems,

in order for the simulator to be practical it must be possible to generate a virus shell in

a reasonable time. The run-time of similar molecular dynamics simulators is generally

measured in tens of hours. Since a virus shell typically contains several hundred

protein subunits, it should be possible to simulate on the order of one thousand

subunits for enough simulated time to grow a shell on a similar time scale.

Furthermore, this performance must not come at the expense of too much accu-

racy. In simulation problems there is often a trade-off between the amount of work

required and the precision of the solutions generated. In order to generate reliable

data, it is necessary that the simulator use work-efficient numerical methods, allow-

ing sufficient accuracy without compromising performance. The meaning of accuracy

in this context must be precisely specified, as roundoff errors make it impossible to

determine particle positions and trajectories to any fixed degree of accuracy over an

arbitrary length of time. In this case, there are two kinds of accuracy required. The

first is a local accuracy, meaning that over a short time, a particle should follow the

path predicted by Newtonian dynamics given its starting state and the forces acting

on it. Thus, for example, particles will not pass through each other, and those bonded

together will tend to stay close together spatially. The second kind of accuracy is a

long-term statistical accuracy. This means that particles should, even over arbitrar-

ily long times, consistently adhere to the rules of statistical thermodynamics, by, for

example, conserving energy.

Finally, certain potential bottlenecks should be avoided in order to make the sim-

ulator usable. The simulator is meant to be interactive, and therefore the graphics

cannot be a major bottleneck. Otherwise, accessing the simulator would become

frustrating for users. Furthermore, shared resources, particularly memory and net-

work bandwidth, must not be overly taxed, or else the simulator could slow down

intolerably in high-use environments or could become a nuisance to users of other

programs.

3.3 Other Constraints

One additional constraint required to make the project both useful and feasible is that

it must be possible to run the simulator on available hardware. At the present time,

the main hardware available for the project is a variety of Unix workstations. This

indicates that the simulator should be accessible through such machines. However,

particular workstations or types of workstations are often unavailable, suggesting

that the simulator should be portable to different Unix platforms. In addition, a

Connection Machine CM-5 parallel computer is available. While it is reasonable to

take advantage of this resource, the simulator should also be usable without access

to the CM-5.

A final constraint is that the scope of the project should be sufficiently limited

that it is possible to develop a working simulator in about a year. This is necessary

because the simulator is one component of an active research project, and the project

as a whole cannot be delayed on account of it. This development time must consist

not only of coding, but of all other phases of software construction. This includes any

necessary research into the underlying physics and mathematics, the design and plan-

ning of the simulator, coding, testing and debugging, and documenting the project.

There should additionally be some margin for error, as it is impossible to precisely

predict the time required for these steps.

Chapter 4

Implementation

This chapter describes the design of the simulator in detail, explaining how specific

aspects of the design are meant to fulfill the design goals. From the user's point of

view, the simulator represents a way of interacting with a mathematical model of the

relevant physical systems. The distinction here between the mathematical model and

user interactions with it is not just an abstraction; the code is split into two parts

corresponding to this abstraction. The first of these is the numerical simulator itself,

a multi-threaded program designed for use on a parallel supercomputer. The second

part is a user interface meant to be run on a workstation. The remainder of this

chapter describes these two parts and how they interact. Section 4.1 describes the

physical model the simulator uses. Section 4.2 discusses the interface through which

the user interacts with the underlying model. Section 4.3 describes the connection

between the serial and parallel portions of the code. Section 4.4 examines the major

algorithms and numerical methods employed by the numerical simulator.

4.1 The Physical Model

In order to implement a physical simulator, it is necessary to abstract the relevant

physics sufficiently to represent them on a computer and mathematically model them.

This section describes the abstractions employed by the simulator for this purpose.

Section 4.1.1 examines how viral coat proteins are modeled and discusses what con-

figurable parameters are available to users. Section 4.1.2 describes the mathematical

representation of the binding interactions between coat proteins. Section 4.1.3 dis-

cusses the representation of the environment in which virus shells assemble.

4.1.1 Coat Proteins

The simulator models the interactions of individual particles, also referred to as nodes,

which represent single viral coat proteins. A node has a characteristic size, shape,

mass, and bond configuration. Optionally, a node can undergo conformational shifts,

allowing it to alter these properties probabilistically. In order to support these char-

acteristics, the simulator uses three different types of nodes: single, complex, and

variable. These three node types allow a representation of coat proteins that more

accurately reflects their true structure than was possible with the prior simulator.

A single node is the basic unit of node construction. It consists of a sphere with a

specified mass, radius, and configuration of edges projecting from its center. Figure

4-1 shows an example of a single node possessing four edges. In defining a single node,

a user specifies its mass, radius, the end points of its edges relative to the center of the

node, the types of these edges, and "up" vectors for each of the edges, which control

how they attach to other edges. The edge parameters are explained in Section 4.1.2.

A coat protein can be modeled by a single node, or can be constructed from separate

single nodes by using the other two types of nodes.

Complex nodes are built from nodes of other types. A complex node is defined by

a set of node types, each having a specified offset and rotation within the complex.

These sub-nodes are physically modeled as if they were rigidly connected to each

other, causing the entire complex to behave as one solid particle. It is not, however,

necessary for the sub-nodes to be in contact with each other, although for physically

reasonable particles they generally will be. Figure 4-2 shows an example of a complex

node. This node is made up of three single nodes, each of which has a distinct relative

position, radius, and bond configuration.

Variable nodes are used to implement conformational shifting. They are defined

by a set of other node types, each with a characteristic energy. A variable node shifts

Figure 4-1: A Single Node

Figure 4-2: A Complex Node

Figure 4-3: Variable Nodes at Consecutive Timesteps

between these types probabilistically, with the probability of shifting to different types

determined thermodynamically by their relative energies and the simulation temper-

ature. The probability of a particle with m states occupying a particular state i is

given by the following formula:

pE,M, e-4
where Ek is the energy of state k, T is the absolute temperature, and R is a constant

of proportionality. The energy of the current state is modified by adding to it the

energies of any bonds currently formed, as those bonds must be broken if the confor-

mation changes. Figure 4-3 shows a group of variable nodes at consecutive timesteps.

In these images, all nodes are of the same type, but shift between two conformations.

One important note is that complex and variable types can be defined in terms

of each other. This means that the conformational states of a variable node may be

complex nodes or that one subsection of a complex node may be a variable node,

allowing a subunit to have a stable region and one or more regions that are capable

of conformational switching. Figure 4-4 demonstrates a complex node with a variable

region at consecutive timesteps. In this figure, the left sub-node is fixed, but the

right shifts between two states. The capacity to define variable and complex nodes in

terms of one another also allows one unit of a complex node to be a smaller complex

node, or one state of a variable node to be a variable node; while the ability to give

~______ ~_·_1__1~~_1_·___;

Figure 4-4: A Complex Node Containing a Variable Region

a complex node a complex sub-node or a variable node a variable conformation does

not add functionality to the simulator, it can be convenient in defining node types.

In the simulation, all nodes have a full six degrees of freedom. This means that

the state of a node, excluding conformation and edge states, consists of twelve real

values: three defining translation from the origin, three defining a rotation, three

defining velocity, and three defining angular velocity. These values are influenced

by two principle types of forces acting on the nodes. The first of these are bond

forces, which are described in Section 4.1.2. Second are collision forces, exerted either

by collisions with other nodes or by collisions with the boundaries of the simulation

region, which are treated as elastic walls. Collisions occur whenever the spheres

representing two single nodes overlap, or one sphere is partially outside the edge of

the simulation. The direction of such a force is on the vector along which colliding

objects have their greatest overlap. For colliding nodes, this is always the vector

between the centers of the two colliding single nodes, while for wall collisions it is

perpendicular to the plane of the wall. For wall collisions, the magnitude of the force

is given by:
1-0

min{CmLrS, 12Cm}

where C is a constant, currently set at fifty kdalton-nm/Cpsec2 , m is the mass of the

node, o is the overlap between the node and the wall, and r is the radius of the node.

For collisions between two nodes with vector d between them, the magnitude of the

force on each is given by:

min{C (r + r2) 2
1

- (+r2)Iid1 2C}

where C is defined as for wall collisions and rl and r2 are the radii of the two nodes.

The exact formulas were derived experimentally to give physically reasonable behavior

while allowing quick convergence of the numerical methods. While these are strictly

translational forces, they can apply a torque to a complex node if the single node

being affected is not at the center of mass of the complex.

The three node types allow the simulator to meet several of the design criteria.

By using six degrees of freedom, the simulator can support the more realistic model of

space and time required. Users can control sizes, masses, and bond configurations of

nodes through the single node parameters. Complex nodes allow modeling of different

node shapes, while variable nodes provide the necessary support for conformational

switching. The recursive design offers a model of nodes that is both versatile and easy

to use. Finally, representing nodes as unions of spheres allows for efficient processing

by simplifying calculations of collisions, as it is only necessary to measure the distance

between the centers of two spheres to determine if they are overlapping.

4.1.2 Binding Interactions

Binding interactions are modeled with edges, which can connect nodes by forming

bonds to other edges. An edge type is defined by four general properties: its strength,

its energies, its tolerances, and the other edges to which it can bind. Furthermore,

specific instantiations of an edge type are included as part of a single node description

and have two additional properties: the position of the end of the edge relative to the

center of the single node, and an "up" vector, whose use is described below.

Whether or not two unbound edges will bind to each other is determined by three

tests. First, one must be listed as an acceptable match for the other in the list of edge

types to which the other can bind. Second, they must be within the allowed tolerances

of each other. Tolerances specify a maximal distance between the ends of the two

edges and a maximal angular difference between the directions of the two edges.

If both of these tests are passed, then the bond will have a probability of forming

determined by the energies of the edges. The probability of a bond forming is given in

terms of a reaction energy e as 1+e where T is the absolute temperature and R

is a constant of proportionality. Once formed, the bond has a probability of breaking

given by a second energy ed as N--, with R and T defined as above. Setting
+e- RT

e, = ed gives a simple approximation to realistic kinetics in which the long term

probability of a bond being formed will be what statistical thermodynamics predicts.

Using different values for er and ed provides a more complicated but realistic model

incorporating the idea of an activation energy.

Once edges of two nodes are bound to each other, the forces they exert on each

other are modeled by three springs. Those springs' constants, representing the

strength of the bond, are defined by the edge type. This model is based on that

used by Muir[17], in the original simulator for this project. The first spring produces

a translational force, Tt. The direction of the force is the vector between the ends of

the two bonded edges, and its magnitude is determined by the product of the first

spring constant, kt, and the distance between the ends of the edges. For nodes nl

and n2 with edge ends gl and ' 2, this gives the following equation for the force on nl:

Tt = kt(-4 - e-).

The second spring constant, k,, is used to determine a torque, 0,, exerted around

a bond, and ensures that nodes are rotationally positioned correctly relative to each

other. Two bonds are ideally rotationally positioned when their up vectors are par-

allel. For up vectors i1 and U2̂ and edge direction dl, this torque is given by:

or = kr[(Cx U2). l]d1 .

The final spring constant, ks, determines a "straightening" torque, O,, that forces

two bonded edges towards being anti-parallel to each other. For edge directions di

and d2, this torque is given by:

0, = kb,0.5 + 0.5(dl -d2) d2xdl
lld2 xd2J

These three forces are illustrated in Figure 4-5. This figure shows the same pair

of nodes from three views. Figure 4-5a shows how AT forces the endpoints of the

edges together. Figure 4-5b shows a view of the nodes along the line connecting their

centers. It demonstrates how 0, rotates the nodes around their bonded edges so their

up vectors will be parallel. Figure 4-5c shows the direction of 0, on each node in

straightening the bond.

This model of binding helps to meet the design goals in several ways. It pro-

a.

Figure 4-5: Bond Forces Acting Between Two Nodes

&.

vides a realistic model of the kinetics of binding. It further gives users considerable

latitude for varying relevant parameters. It is also easy to understand and use in

practice. Finally, the computational cost of processing it is small enough to allow

high performance.

4.1.3 The Environment

The environment in which particles move around provides a model for the solution

in which virus shells assemble. This environment has several user-definable proper-

ties. Two of these describe physical properties of the solution: temperature, which

influences thermodynamic probabilities and the kinetic energies of the particles, and

damping, which represents the viscosity of the solution. The effect of temperature on

conformational switching is described in Section 4.1.1, on bonding in Section 4.1.2,

and on kinetic energies in Section 4.3.3. Damping applies a force to each particle op-

posite the direction of its velocity and a torque opposite the direction of its rotation.

The exact magnitude of these forces should ideally depend on the surface area of the

particle in the direction of its velocity. However, this would be expensive to calculate,

so it is approximated as the two-thirds power of mass, giving the following formulas

for damping force, Fd, and damping torque, Td:

Fd = -dM2/3v

Td = -dO 2/ 3a

where M is the mass of the node, O is its moment of inertia, v' is its velocity, a' is

angular velocity, and d is the damping constant.

In addition to these physical properties are three other configurable parameters.

The first of these, the timestep, defines the basic time division needed for a discrete ap-

proximation to the problem. Bonds and conformations are updated probabilistically

at the beginning of each timestep, and the timestep serves as the base subdivision for

the numerical methods, described in Section 4.3.1. The second parameter, tolerance,

provides a measure of desired accuracy. The numerical methods use an adaptive

step-size based on the user-specified timestep to achieve the specified accuracy on

each step. The final parameter, e, is used in controlling small round-off errors and

represents a value considered to be approximately zero. In must be user-specified

based on the magnitudes of the other parameters.

This model of the environment helps to meet some design requirements. Having

several parameters gives the user a means of configuring the simulator for a variety of

different problems. However, there are few enough parameters that it is easy to use.

Furthermore, user control of the timestep and tolerance allows for faster processing,

as the simulator need not do more work than the user requires.

4.2 The User Interface

The user interface is the set of systems through which the user sends commands to

the numerical simulator and receives back information from it. This section describes

the major systems involved and explains how they meet the design goals. Section

4.2.1 covers the command interpreter, which provides the underlying control for the

user interface. Section 4.2.2 describes the graphical interface. Section 4.2.3 discusses

the graphics display. Section 4.2.4 examines the controller, a set of routines control-

ling many aspects of the simulator's behavior. Section 4.2.5 discusses an alternate

controller. Section 4.2.6 describes the different kinds of data files used by the program.

4.2.1 The Command Interpreter

The underlying mechanism for all user interactions with the numerical simulator is a

command interpreter running a Lisp-like simulator control language. This language

supports many standard Lisp abstractions, including variables, lists and arrays, and

procedure definitions. It also provides links to the graphics, numerical aspects of the

simulator, and file I/O, as well as primitive support for many common operations.

Figure 4-6 provides an example of code written in the control language, illustrating

the general syntax. This sample code defines a procedure fib, for calculating Fibonacci

numbers, and a procedure fibarray, which takes a parameter n and returns an array

filled with the first n Fibonacci numbers. It also defines an auxiliary procedure used

by fib_array. This example shows only a few of the features of the control language.

(define fib (procedure (n)
(if (<= n 1)

1
(+ (fib (- n 1)) (fib (- n 2))))))

(define fibarrayaux (procedure (tmp n max)
(if (>= n max)

tmp

(setarray (fibarrayaux tmp (+ n 1) max) n (fib n)))))

(define fibarray (procedure (max)
(if (<= max 0)

(make.error "Index out of bounds in fibarray")
(fibarray_aux (make_array max) 0 max))))

Figure 4-6: A Sample of Code in the Simulator Control Language

Detailed specifications of the language are included in Appendix A.

Providing a fully programmable control language for the simulator allows users

considerable latitude for controlling the behavior of a simulation where that latitude

is required. In addition, by writing many of the control structures in the control

language, it is possible to allow significant reconfiguration of the program at run-

time by allowing users to load replacement control structures. This is an important

consideration for a program which is meant to be distributed to people who are not

experienced programmers and must accomplish a wide variety of tasks, some not even

considered at the time the code was developed. The versatility of this becomes more

apparent in the discussions of the alternate controller in Section 4.2.5 and data files in

Section 4.2.6. Furthermore, the use of a Lisp-like language allows for efficient parsing

and promotes ease of use through a simple syntax.

4.2.2 The Graphical Interface

Normal user interactions are not directly through the control language, but through

a graphical user interface that serves as a front end to the command interpreter. The

main window of the graphical user interface is shown in Figure 4-7. This interface

Figure 4-7: The Graphical User Interface

consists of a feedback box and fourteen buttons used for controlling simulations. This

section explains the functions of the different components of the graphical interface.

The feedback box, which displays the words "Stepped forward" in the figure, is

used to display the results of several of the commands. It can indicate when errors

have been encountered, for instance because a rule definition was badly formatted.

It also provides the outputs of user queries on nodes. Finally, it can signal that a

command has finished executing, as "Stepped forward" does in Figure 4-7.

The four buttons beneath the feedback box control the graphics display. The

"zoom in" and "zoom out" buttons increase and decrease the magnification of the

graphics display. The "rotate" button allows the user to rotate the display by a

specified angle around one of the three coordinate axes. Finally, the "recenter" button

is used to reposition the focal point of the graphics display by having the user specify

its new x, y, and z coordinates.

The "add" and "delete" buttons control the number of nodes in a simulation.

The "add" button allows the user two options. The first is to add a new node with

a specific type, position, orientation, velocity, and rotational velocity. This is useful

when attempting to control fine details of a simulation, for example by testing the

effect of bombarding one particle with another of known velocity and orientation. The

second option is to add a specified number of nodes to the simulation with random

positions and velocities. The latter is more useful when using a large number of nodes

to model a solution of particles. The "delete" button is used to remove particles from

the simulation and also has two options. With the first option, delete is given the

index of an individual node and deletes that particular node. This is generally useful

BI

1 11 I-ý-C
mmn~u~ W IIIIII i I I millHIAM I f-l7-1r1t puePi

in simulations of a small number of particles. The other option, useful for larger

simulations, deletes all particles within a rectangular region in the workspace.

The "load" and "save" buttons control access to files. The "save" button writes

out the contents of the current simulation, including workspace parameters, defined

node and edge types, the states of all nodes present, what conformations they are in,

and how they are bound to each other. It prompts the user for the name of a file into

which this data is saved. The "load" button reads in a data file by prompting the

user for the name of the file then passing it to the interpreter. The types of files that

can be loaded and how they are processed is described in more detail in the Section

4.2.6.

The "set" button tests and sets the values of several user-definable simulation

parameters. Some of these, i.e. temperature, damping, timestep, tolerance, and e,

were described Section 4.1.3. Of the others, the first, steps_per-update, controls the

number of timesteps the numerical methods take each time they are prompted by the

user. This allows the user to limit the number of times the graphics are updated when

they are not immediately needed. Another, updates_per.run, instructs the simulator

to run for a specific number of steps without further user interaction. Finally, there

are two parameters, host and port, that specify how the controller should locate a

server machine, which can optionally be used to perform the numerical computations.

The meaning of this is further explained in Section 4.3.

The "query" button asks the simulator for information on the positions and veloc-

ities of nodes. It functions similarly to the "delete" button, allowing a user to specify

either a particular particle or a rectangular region. If a single particle is specified,

then data for that particle is printed in the feedback box. In the case of a region,

average values for that region are printed.

The "direct" button provides a direct link to the command interpreter. This

button produces a window that allows the user to type commands directly to the

interpreter and prints their results. This is useful when the user requires greater

functionality than the graphical interface provides, but does not want to create and

load a data file.

The "step" button advances the simulator in time. In normal operations, pressing

the "step" button causes three actions to be undertaken. First, the numerical model

advances in time according to the parameters the user has set. Next, the command

interpreter updates its local data set based on the results of advancing the time.

Finally, the interpreter updates the graphics display in accordance with the new

data. These three actions may be repeated one or more times, depending on the

simulation parameters.

The "restart" button reinitializes the simulator data and establishes a new con-

nection to a server. It erases all existing nodes and all node and edge types. It also

sets many simulation parameters back to their default values. Finally, it establishes

a new connection to a server based on the values of the host and port variables. Host

specifies a particular machine to which the interface should connect, while port is the

value of a port on that machine at which the interface looks for a server.

The "quit" button exits the user interface. It breaks off the connection to the

server, if any, and terminates the program. It shuts down only the user interface,

however, not the server machine running the numerical simulator.

One important note is that, since the graphical interface is a front end to the con-

trol language, the effects of its commands can, for the most part, be reprogrammed

at run time. Although reprogramming commands can cause buttons to behave com-

pletely differently than their defaults, this feature is meant to allow commands to be

slightly modified without affecting their basic purpose. The utility of this is described

in more detail in Sections 4.2.4 and 4.2.5.

The use of a graphical user interface as a front end to the command interpreter

is meant primarily to make the program easier to use. The graphical interface allows

faster access and requires much less knowledge of the program to use than a purely

text-based interface would. However, a simple interface must necessarily reduce ver-

satility. For that reason, the user is provided a means of accessing the underlying

command interpreter; this gives the user a high degree of control when necessary,

while still allowing easy access for those users who do not require such control. Fur-

thermore, providing a graphical interface that can be reprogrammed supports the

goal of configurability.

4.2.3 The Graphics Display

The graphics display is the major means by which the user can observe the progress

of a simulation. It provides an easily understood visualization of the simulated nodes

and their relative positions and orientations. Figure 4-8 shows a sample graphics

display of a simulation containing a small number of nodes. Each single node is

drawn as a sphere, with edges represented as cylinders radiating from the centers of

the spheres. Nodes are colored according to their type, with the color, in the case of

complex and variable nodes, set by the type of the complex or variable, rather than

the sub-types that make it up. Therefore, all conformations of a given variable node

have the same color, as do all sub-nodes of a given complex node. The box drawn

around the display shows the position of the walls around the simulation workspace.

Since the graphics are run through the interpreter, they can be modified to display

the workspace differently, although this flexibility is not currently used.

The graphics shown here are produced through the OpenGL[20] rendering package,

but this is not the only option. OpenGL provides a versatile model of graphics,

supporting shading, z-buffering, and a variety of surface and lighting models; all of

this makes the graphical output much easier to understand. However, of the available

machines, only Silicon Graphics Indigos support OpenGL. Therefore, the graphics

can alternately be viewed with Vogle[10], a public-domain package that draws three-

dimensional surfaces as unshaded polygons. This provides a lower quality of output,

but increases portability of the code.

The graphics system helps the simulator to meet several design requirements.

Graphical output is easier to understand than numerical output, making the simulator

easy to use. Furthermore, running graphics through the interpreter allows it to be

configurable. The use of two options for rendering, OpenGL or Vogle, allows the code

to take advantage of available hardware while still having high quality output on

hardware that supports it. Finally, the graphical representation is sufficiently simple

that it should not be a bottleneck.

Figure 4-8: Graphics Display of a Sample Workspace

40

4.2.4 The Controller

The controller determines how to respond to commands issued through the graphical

interface and maintains much of the data on the state of the simulation. The controller

itself is written in the simulator control language and run through the command

interpreter. The controller directs the graphical interface through a series of "hooks,"

procedures activated by use of certain buttons or text commands or other special

conditions. This section describes the major functions of the controller and explains

how it helps to meet the design goals. Descriptions of all hooks and specifications of

their default behaviors are provided in the appendix, in Section A.2.

The most complicated features of the controller concern adding and deleting nodes

and edges. The controller maintains copies of all node and edge types defined on

the numerical simulator. It provides routines that define new types and update the

numerical simulator on their status. It also provides similar routines for adding new

nodes and attaching edges which update the local data and communicate the changes

to the numerical simulator.

The controller is also responsible for updating the graphics display. In order to

draw the display, the controller first queries the numerical simulator to update the

local data. It then clears the graphics buffer and draws all nodes present by placing

one sphere per single node and one cylinder per edge. Finally, it draws the bounding

box and displays the updated buffer.

The controller additionally determines how to advance time. The model imple-

mented is very simple. The controller instructs the numerical simulator to advance

the simulation time by a prespecified amount. It then calls the routines described

in the previous paragraph for updating the display. This is repeated a predefined

number of times. This allows the simulator to run for a time without additional user

input.

The controller also processes some user queries. The controller receives data on

individual nodes from the numerical simulator and formats this data into a user-

readable form for display in the user interface window. Additionally, when average

data on a region of the workspace is required, the controller determines which nodes

are in the specified region and averages their data.

Finally, the controller is responsible for saving the state of the simulation to a file

when requested. The simulator uses a series of queries to the numerical simulator to

determine the values of various simulation parameters and writes them into the save

file. It then adds definitions for all node and edge types. Finally, it uses additional

queries to establish the states of the nodes and add them to the save file.

Having a controller written in the simulator control language supports the goal

of versatility. Small modifications to the controller can be made easily and stored

in separate data files. These modifications can then be loaded at run time, allowing

easy reconfiguration of the simulator. Larger modifications are more difficult to write;

however, because of the generality of the control language, they can considerably

extend the capabilities of the controller.

4.2.5 The Alternate Controller

The alternate controller is a partial replacement of the code used by the controller

described in Section 4.2.4. It is useful both in its own right and as an illustration of

the power of the simulator. The alternate controller implements a model of assembly

much like that used by Muir[17], but retaining the more realistic models of reaction

kinetics and time and more versatile model of nodes employed by the new simulator.

In order to accomplish this, it redefines a single hook used by the simulator: the

do.stepforward hook activated by pressing the "step" button. This section briefly

describes shell assembly under the alternate controller.

The alternate controller adds nodes one at a time to the simulation. If no nodes are

present, the simulator begins by adding one node chosen from a list of types specified

by the user. If a node is already present, it instead probabilistically selects one

unbound edge from the available nodes in accordance with the relative energies of the

unbound edges. It then chooses a node type to attach to that edge, inserts it into the

simulation with the correct position and orientation, and forms the bond. Finally, the

alternate controller advances time by a prespecified amount and updates the display.

This is repeated a predefined number of times before the alternate controller returns

control to the user.

The alternate controller is useful for refining node properties before using the

refined nodes in a full simulation. It allows easy detection of mistakes in rules, which

might be difficult to see in a simulation of free-floating particles. It also permits

testing of the stability of a completed shell without having to consider the effects

of stability on the growth process. This allows examination of problems that might

make a model infeasible but cannot easily be tested in a general simulation.

The alternate controller helps to fulfill the design goals in several ways. It simplifies

the process of designing nodes. It also speeds up this process by providing a quick

test to screen out many unusable models without running a full simulation. It further

supports the versatility of the simulator by allowing testing of some kinds of problems

that could not be explored with the default controller. The alternate controller also

demonstrates the configurability of the simulator; it shows that a user can, at run

time, significantly alter the behavior of the simulator by loading one file.

4.2.6 Data Files

Data files are used for three basic purposes in the simulator: as rules files, save files,

and control files. Rules files define a set of node and edge types, set up some sim-

ulation parameters, and often create a set of starting nodes; typically, this is used

to establish the initial state for a simulation. Save files store the state of a simula-

tion in progress, as described in Section 4.2.2. Control files set up control structures

within the command interpreter that might be useful in running a particular simu-

lation; an example of a control file is the alternate controller of Section 4.2.5. This

section describes the different types of data files and discusses some details of their

implementation.

The term rules file can refer to any file loaded preparatory to running a simulation

for setting up the parameters of that simulation. A simple rules file is shown in

Figure 4-9. The first five lines of this file set several of the simulation parameters.

The remainder define some node and edge types. For example, line six creates an

edge type which connects to its own type, has all spring constants ten, both binding

(resize_workspace 100 100 100)

(setconstant "damping" .5)

(setconstant "timestep" 0.25)
(setconstant "tolerance" .5)

(setconstant "temperature" 300)
(add_edge_type (makelist 0) 10 10 10 -5000 -5000 25.0 55)
(add _single.node.type 10 0 3 (quote ()) (quote ()) (quote ()))
(add-single.nodetype 5 0 15

(makelist (makelist 0 10 20) (make-list 10 20 30))

(makelist (makelist 1 0 -1) (makelist 1 -1 0))

(makellist 0 0))
(addcomplexnode_type

(makelist (makellist 0 0 0) (makellist 0 2 0))

(makelist (makelist 1 1 1) (makelist 2 2 2))
(makelist 0 0))

(add_variable node_type (make-list 0.0 0.0) (make-list 1 2))

Figure 4-9: A Sample Rules File

energies -5000, a distance tolerance of twenty-five, and and angle tolerance of fifty-

five. The file then defines two single node types and a complex and a variable node

type in terms of them.

Save files store the state of a simulation at the time it is saved. They are usually

produced by pressing the "save" button. They can be reloaded later to continue the

simulation from that point. A save file therefore must contain all information needed

to define the state of a simulation. A sample save file is shown in Figure 4-10. The

file first sets the simulation parameters and defines data types, as in a rules file. It

next specifies the types, positions, velocities, rotations, and angular velocities of the

nodes in the simulation. After that, it provides the states of the conformations of all

variable nodes. Finally, the file specifies the pairs of bonded edges.

Control files, other than the controller, are not needed for normal operations but

can be useful in tailoring a simulation to a specific task. They supplement or replace

the control structures provided by the controller. A sample control file is shown in

Figure 4-11. This file redefines drawworkspace, one of the hooks to the graphics

routines, and provides two auxiliary procedures it requires. The sample file redefines

(resizeworkspace 100 100 100)

(set updates_perrun 1)
(setconstant "e0" 1)
(setconstant "u0" 1)
(setconstant "g" 1)
(setconstant "timestep" 0.25)
(setconstant "tolerance" 0.5)

(setconstant "temperature" 300)

(setconstant "steps_perupdate" 1)

(setconstant "epsilon" le-08)
(setconstant "damping" 0.5)
(addedge_type (makelist 0) 10 10 10 -5000 -5000 25 55)
(addsinglenode_type 10 0 3 (makelist) (makelist) (makelist))
(add_singlenode_type 5 0 15 (makelist (makelist 0 10 20) (makelist 10 20 30))

(makelist (makelist 1 0 -1) (makelist 1 -1 0)) (makelist 0 0))
(add_complex._node_type (makelist (makelist 0 0 0) (makelist 0 2 0)) (makelist
(makelist 1 1 1) (makelist 2 2 2))(makelist 0 0))
(add_variable.node_type (makelist 0 0) (makelist 1 2))
(add-node 2 (makelist 14.848 32.2073 46.1229) (makelist 15.1462 -0.485406 19.9144)

(makelist -0.0419502 0.751216 -1.81328) (makelist -4.14381 15.6335 -14.6084))
(add-node 3 (makelist -43.086 -41.5043 12.2966) (makelist 30.9144 -3.24541 21.6224)

(makelist -1.04092 0.320605 0.38598) (makelist 1.11564 -2.00581 2.2245))
(add-node 3 (makelist -20.8355 -35.3789 -41.3804) (makelist -1.51766 -2.26039
9.94266) (makelist -0.624382 -0.824785 0.188249) (makelist -9.12478 -9.01502
5.19569))
(set-conformation 0 0)
(setconformation 1 0)
(add_edge 0 2)
(add_edge 1 3)

Figure 4-10: A Sample Save File

(define drawsingle nodenew (procedure (n x y z) (sequence
(define node (getarray the-singles n))
(define type (getarray the.node_types (single_type node)))

(makesphere x y z (single.node_typer type)
(first (getarray the_nodes (singleparent node)))))))

(define draw_workspace_aux-new (procedure (data n) (sequence
(if (>= n 0)

(sequence
(draw _singlenode-new

(get_array (first data) n)
(first (getarray (first (rest data)) n))
(first (rest (getarray (first (rest data)) n)))
(first (rest (rest (get_array (first (rest data)) n)))))

(draw_workspace_aux-new data (- n 1)))))))

(define draw_workspace (procedure () (sequence

(errortrap
(draw_workspace_auxnew

(rest workspacedata)
(- (first workspace_data) 1)))

(draw_box)

(redraw 7))))

Figure 4-11: A Sample Control File

the procedure for drawing the workspace so edges would not be drawn.

It is important to note that the distinction in file types is based only on how and

where they are used, not on what they contain. In fact, all data files are made up

of sequences of commands in the control language. Loading any of them consists of

running them through the command interpreter as if they had been typed in by a

user.

This method of implementing data files supports the design goals by promoting

configurability of the code. The use of a general programming language for rules

files allows users to define complex rule constructs and automate some aspects of rule

specification. Furthermore, because of the generality of the control language, save files

can be easily customized for particular applications. The format of save files also has

the advantage of being easily understood and edited by a user. Finally, supporting

control files allows a simple model for storing and reloading customizations that are

likely to be used more than once.

4.3 The Serial/Parallel Interface

In order to take advantage of the available parallel machine, it was necessary to

develop a way to allow user interactions with the machine. It was decided to develop

the code in two pieces: a user interface running on a workstation and a numerical

processing section running on a server machine. Typically, this server is the CM-5;

however, it could be another machine, including the same machine that is running

the user interface. These two parts of the simulator communicate over a network

connection by means of a series of commands and queries issued by the user interface

and answered by the server.

In order to run a simulation, the interface must establish a connection to a server

machine. The user first specifies a desired machine, which must be running the

numerical simulator. The interface then connects to that machine. User commands

are interpreted by the controller, which issues it own commands and queries to the

server machine as necessary. These either instruct the server to update its internal

data or ask about the status of that data. The controller uses the server's responses

to these queries to update its own local data which is in turn output as a graphics

display or in a user-readable text form.

This particular model is meant to improve performance and make efficient use

of resources. Running the user interface on a local machine has the advantage of

avoiding sending large amounts of graphical data over the network, since rendering

is done locally. It further allows many serial parts of the program to run on a local

machine. These routines are unlikely to benefit from being run on the CM-5 and

could greatly increase memory usage on that machine, where memory is much more

constrained.

4.4 Major Algorithms and Numerical Methods

This section describes the techniques used to perform the most computationally in-

tensive aspects of the simulation. Section 4.4.1 discusses the numerical methods used

to approximate the evolution of a simulation over time. Section 4.4.2 describes the

parallel routines used to calculate the forces on the particles and advance them by

one timestep. Section 4.4.3 examines a technique used by the program to overcome

difficulties in maintaining realistic thermodynamics over time.

4.4.1 Approximation of the ODE

Perhaps the most crucial operation of the simulator is advancing the particles forward

in time. In understanding how to approach this problem, it is helpful to view it as

evaluating a system of differential equations. Specifically, for each degree of freedom

there are two corresponding differential equations: the first defining velocity as the

derivative of displacement, and the second defining acceleration as the derivative

of velocity. Then, calculating the state of the simulation at a future time requires

determining the forces on the particles in order to find the accelerations, and solving

the resulting differential equations. Given this understanding, it is only necessary

to choose an effective numerical method for solving the differential equations. The

particular approach chosen for this project is the Euler method with Richardson

extrapolation.

The basic Euler method is the simplest technique for computing a numerical so-

lution to an ordinary differential equation. In the one variable case, a differential

equation y(t) = f(y, t) can be approximated at a time t + At given the value at time

t, using the following equation:

Yn+1 = Yn + Atf(y, t)

where y, = y(t) and yn+1 is an approximation to y(t + At). This process can be re-

peated starting from a single value to find approximate solutions at many subsequent

times. The Euler method has first order accuracy in time, meaning its error after a

particular amount of time grows linearly with At.

Richardson extrapolation is a technique for improving the accuracy of other ap-

proximation methods. The technique uses approximate values generated at different

step sizes to generate a higher order approximation. It requires that the error, e,

generated by the approximation technique be a function of the step size, At, of the

form:

e(At) = kIAt + k 2 At 2 + k3 At 3 +...

where each ki is a constant. This criterion is approximately true for the Euler method,

provided the function being modeled and its derivatives are continuous. Richard-

son extrapolation uses a linear combination of two approximations with different

timesteps to eliminate the low order error term of the approximation. Two improved

values can then be combined to eliminate the next lower error term, and so on, allow-

ing the approximation to improve exponentially in the number of different step sizes

used. The simulator uses extrapolation to refine the approximation to the positions

and velocities of the nodes.

The Euler method and Richardson extrapolation are combined with an adaptive

timestep method. Using this method, the user-specified timestep provides a base

which is successively halved. Each time it generates an improved approximation,

the simulator calculates new extrapolated values using the extrapolated values from

the previous round. The values for the current round are compared to those of the

previous round and if corresponding values from two consecutive rounds are within a

specified tolerance for all parameters of a given node, then the timestep is fixed for

that node. The result is that the simulator can spend more time on nodes requiring

a lot of optimization than on those requiring very little. Once all nodes have reached

the specified level of accuracy, the simulator stores the final values and is ready for

the next step.

Although this particular method is non-standard, it should be a good choice for

this application. Large systems of differential equations are typically solved through

the fourth order Runge-Kutta method. However, the Runge-Kutta method requires

calculating the forces on each node four times per timestep, versus only once for the

Euler method. For this application, calculating forces is computationally very expen-

sive. Therefore, unless the Euler method requires many more steps than the Runge-

Kutta method, the Runge-Kutta method would be unlikely to be more work-efficient.

For cases requiring only low accuracy, Euler should therefore outperform Runge-

Kutta. Further, when high accuracy is needed, Richardson extrapolation quickly

allows the chosen technique to surpass the fourth order Runge-Kutta method in or-

der of accuracy. There is a potential pitfall, however. Richardson extrapolation fails

to converge when the derivatives of the function being extrapolated are not bounded.

Therefore, the extrapolation may not help in modeling collisions, which create dis-

continuities. Thus, it is difficult to predict how much extrapolation will improve

performance in practice.

4.4.2 Advancing Time

In order to efficiently apply the numerical methods just discussed, it is necessary to

have a fast technique for performing the function evaluations they require. In the

case of a particle simulation, this means computing the forces acting on the particles,

updating their velocities based on these forces, and updating their positions based

on their velocities. This is accomplished through the use of a parallel, thread-based

algorithm for dividing the problem into smaller subproblems that can be handled

independently. This section explains why this technique was adopted and describes

it in detail.

A thread system allows a computation to be represented as a set of small "threads"

of computation whose orders of operation may be only partially specified. Because

the final result of the computation does not depend on the threads being completely

ordered, it is often possible to run them in parallel. The thread-based code for

this simulator was written using Cilk[4], an extension to the C language developed at

MIT's Lab for Computer Science. Cilk employs a work-stealing method for allocating

threads among processors; that is, it allows idle processors in a multi-processor system

to steal threads from busy processors. If a problem is well-partitioned into threads,

this can distribute work fairly evenly over all processors in the system. Exploiting

work-stealing therefore requires an effective method of domain decomposition, i.e. the

splitting of a problem into smaller subproblems.

The simulator's domain decomposition separates particles according to spatial

locality. The algorithm begins by looking at the locations of all particles along one

of the coordinate axes and determining the midpoint between the two most distant

particles along this axis. It then separates the particles into two groups around

this midpoint and creates two separate threads, one responsible for each group of

particles. These two threads then recurse on their own groups of particles, splitting

along another coordinate axis. The process repeats, cycling through the axes, until the

number of particles in the thread under consideration drops below a small constant.

At that point, that thread of execution is ready to advance those particles. A sample

two-dimensional domain decomposition using this technique for a small set of particles

is shown in Figure 4-12. This decomposition divides particles first along the x-axis,

then along the y-axis, repeatedly, until they have been separated into boxes of one

particle each. In the actual simulator, subdivision currently stops at boxes of five or

less, but one is used here to make the decomposition easier to understand.

A spatial decomposition is well-suited to this particular problem, as the probability

of two particles exerting forces on each other is closely related to the distance between

them. This is because collisions require particles to be in contact and bonds usually

only exist between particles that are close together. Therefore, splitting up problems

by position reduces the amount of information a thread needs about particles for which

it is not responsible. The particular decomposition chosen also has some advantages.

Another method by which particles could be split spatially is through the use of

oct-trees, which recursively divide the space into identical octants. However, this

method has a bad worst case when particles are clustered, in which considerable work

can be spent without splitting up the particles at all. This is illustrated in the two-

dimensional case in Figure 4-13a. It is expected that particles will cluster in a virus

simulation, so this presents a problem. Another approach which would avoid this

worst case is to split particles at the median, as with a k-d tree, guaranteeing that

the particles will be split into equal or near-equal groups at each step. However, this

presents a different problem when particles cluster, as it can group some particles

Figure 4-12: A Two-Dimensional Domain Decomposition

___I ___l_·~_i j·___i__ _ ~ _ ~~

a. D.

Figure 4-13: Problems Resulting in Poor Decompositions for Quad Trees and K-D
Trees

with others spatially very distant from them. This is illustrated in Figure 4-13b.

The particular approach chosen can also perform poorly, if the density of particles

grows geometrically along one of the axes. However, this seems less likely to occur

in practice than the other worst cases; the chosen method also guarantees that the

space will have to be split at most as many times as there are particles, even if its

worst case occurs.

This decomposition gives rise to a threaded procedure for advancing the simulation

time. Pseudo-code for this procedure is shown in Figure 4-14. If the number of

nodes in a thread is greater than a constant, k, then the code divides the nodes

into left and right subsets as described above. It then spawns two new threads, one

for each subset, allowing the subsets to be handled in parallel. When a processor

receives a thread containing a small enough number of nodes, it then performs the

actual computations for advancing time. First, it computes the forces on the nodes

according to the physical model described in Section 4.1. Second, it updates the

velocities in accordance with these forces. Third, it updates the positions according

to the velocities. Finally, the updated data from the thread must be recombined with

that of all other threads.

I ------· - I -· ^IL

procedure step-forward (nodes)
axis + next(axis)
if (Inodesi > k)

midpoint -ma(axis)+min(axis)midpoint < -
left -- 0
right +- 0
for i -- 1 to Inodesl

if (node[i].axis < midpoint)
left -- left U node[i]

else
right -- right U node[i]

end
end
spawn step-forward (left)
spawn step-forward (right)

else
for i -- 1 to Inodest

forces[i] +- find-forces (nodes[ij)
velocity[i] -- findvelocity (velocity[i],forces [i])
position[i] - find_position (position[i],velocity[i])

end
update_data (position,velocity)

end

Figure 4-14: Pseudo-code for Advancing Time

Throughout this process of splitting up particles, it is necessary to insure that

each thread has all of the information required to calculate the forces on the particles

for which it is responsible. This is accomplished through a bucket-based algorithm.

When nodes are propagated from one thread to another, the algorithm divides the

workspace into small buckets. As the number of buckets can be large, the simulator

saves memory by storing the buckets in a hash table and only allocating those buckets

that are actually used. The simulator places each single node in the bucket containing

its position. It can then determine in constant time which nodes are close to those

being propagated. Data on these close nodes, as well as those bound to the propagated

nodes, is transmitted along with the propagated nodes. This guarantees that each

processor has all data required to make the calculations assigned to it.

A thread-based algorithm should allow the simulator to make effective use of par-

allelism. The work required for individual nodes can vary considerably from one node

to another, depending on how complicated each node is and how it interacts with its

neighbors. Furthermore, the amount of work is hard to predict in advance; this makes

the problem difficult to parallelize directly. However, it is well-addressed by Cilk's

work-stealing system. When a thread requires very little work, the processor respon-

sible for it should be freed to steal work from a more heavily burdened processor. The

parallel run-time should still be linear in the number of nodes, as it requires linear

time to transfer a subproblem to another processor. However, the constants should

be improved. For an N node problem and p processors, if we assume the problem

requires kiN work serially, and that k2N time is needed to send the work to another

processor, the the total run-time in parallel should be approximately kl [E] + k2N.

This should be an improvement if kl >> k2 and N > > p.

4.4.3 Temperature/Brownian Motion

One persistent problem of numerical approximations to differential equations is that

they introduce round-off errors that gradually degrade the quality of the approxima-

tion. For the most part, this is not a problem here, as it is not important that the

path of a simulated particle be exactly what the physical model predicts over a long

period of time. However, these roundoff errors do introduce a serious problem in

maintaining the amount of energy in the simulation. This quantity is important as it

relates to the temperature of the solution; many biological problems are temperature

sensitive, so maintaining a realistic temperature is a necessary feature of a simulation.

In order to maintain simulation temperature in the presence of round-off error, the

simulator relies on an adaptive method for simulating Brownian motion.

In order to explain this method, it is necessary to describe some issues of the rel-

evant physics. One important point is that the temperature of a substance is related

to the average kinetic energy of the particles it contains. Specifically, average kinetic

energy per degree of freedom, < KE >, is given by the formula:

< KE >= kT

where k is Boltzmann's constant and T is the absolute temperature. Therefore, if a

simulated solution is considered to be at a specific temperature, then the particles it

contains should approximate this formula. The second issue to be addressed is Brow-

nian motion. Brownian motion refers to seemingly random movements of particles

in a solution. These movements result from collisions between the particles under

observation and microscopic molecules in the solution.

The simulator applies a model of Brownian motion to the problem of maintaining

the correct average kinetic energy. Under this method, when the forces on a particle

from bonds and collisions are calculated, they are modified by two factors. The first is

the damping factor, described in Section 4.1.3. The second is a component modeling

Brownian motion, which has a random strength and direction. However, while the

damping factor is user-specified, it is necessary for the program to choose the exact

range over which random Brownian motion forces vary in order to insure convergence.

The correct range of the random force is heavily dependent on the parameters of the

simulation, the types of particles in use, and how they are interacting; this makes

it infeasible to determine the range directly. The program handles this by selecting

two multipliers, one for controlling the translational component of Brownian motion

and another for controlling the rotational component, through an adaptive technique

based on the deviation between actual and desired average kinetic energy. At the

beginning of each timestep, these two factors, dscale and rdscale, are modified based

on Boltzmann's constant k, the temperature T, the timestep At, the average trans-

lational kinetic energy Et, and the average rotational kinetic energy E,, according to

the following formulas:

dscale = dscale(k)at

rdscale = rdscale(k)At

The result is that the forces being applied increase when the average kinetic energy

is lower than desired, causing kinetic energies to increase. Conversely, forces de-

crease when average kinetic energies are too high, allowing damping to dominate and

resulting in a gradual decrease in kinetic energy.

This method provides a means of preserving long-term statistical accuracy while

still obtaining short-term accuracy. Because random forces are relatively small and

fluctuate rapidly, they have little effect on the position or velocity of a node over a

short period of time. However, the adaptive system insures that kinetic energies will

approximate statistically expected values. One side effect of this technique is that

it is sometimes necessary to automatically decrease the timestep in order to avoid

averaging out the random forces during the optimization procedure.

Chapter 5

Evaluation

This chapter evaluates how well the implementation meets the stated design require-

ments. It follows the format of Chapter 3, covering how well specific design criteria

have been met. Section 5.1 examines whether the design has the necessary function-

ality. Section 5.2 evaluates the processing speed of the simulator on some typical

problems. Section 5.3 evaluates how well the simulator meets the other constraints

on its design.

5.1 Functionality

The simulator successfully implements the more realistic model of time and space

required. It is capable of modeling free-floating particles in a solution. These particles

can assemble in any order and at any rate. Furthermore, the simulator allows time

to be advanced by a quantifiable amount, rather than to a state of energy relaxation.

The simulator also supports a more realistic kinetic model of binding. Edges

bond probabilistically according to user-specified bonding energies. The probabilities

of bonding are related to a realistic model of binding kinetics. The actual forces

exerted by bonds are less realistic, as they use a fairly simple spring model; however,

they appear adequate for the purposes of the simulator.

The simulator also implements a more physically reasonable model of coat pro-

teins. Users can set the mass and size of a node and can create different shapes

through unions of spheres. Furthermore, nodes support arbitrary bond configura-

tions. The simulator also supports conformational switching of both entire nodes and

particular domains within nodes. One caveat is that specifying shapes as unions of

spheres, while in principle very versatile, in practice requires considerable work when

generating more complicated shapes.

Additionally, the design makes the simulator very versatile. Users have control

over many parameters of the simulation. The use of a high-level simulator control

language allows reconfiguration of many aspects of simulator behavior, as the al-

ternate controller of Section 4.2.5 demonstrates. Many other aspects of the design

capitalize on this, such as the use of generalized programs for data files and the use

of programmable hooks to link the interface to the command interpreter. There are,

however, some areas in which the simulator is not easily configured. Beyond some

specific parameters, the numerical routines cannot be modified by users; therefore

users are limited to a specific representation of proteins and model of the laws of

physics. Furthermore, the serial/parallel interface consists of specific hard-coded rou-

tines, so users cannot extend it to issue new commands to the numerical simulator or

to request data the numerical simulator does not currently provide.

Finally, the simulator generally meets the requirement of ease of use. The graph-

ical interface makes it easy to control most aspects of a simulation. Users can enter

most common commands through a simple point-and-click interface. Furthermore, it

is fairly easy to design nodes and edges. Because parameters are designed to use phys-

ically realistic values, it is generally not difficult to select valid parameters. Finally,

the use of graphical output makes it simple to see and understand how a simulation

is progressing. The only area in which ease of use is not well supported is when

direct access to the simulator control language is required. To some degree, this is a

necessary tradeoff between simplicity and versatility. However, programming in the

control language is more difficult than it might be, since it lacks debugging support

and the syntactic sugar typical of Lisp variants.

Run Times for Four Classes of Problems

102

0
-U

10

E
F=
5
rc

100

In
- 1

100 101 102 103

Number of Nodes

Figure 5-1: Results of Performance Tests on Four Problems

5.2 Performance

Overall, processing speed is sufficient to make the simulator practical, but is less

than desirable. Performance in advancing the simulation in time was measured for a

range of different numbers of nodes and for four different kinds of problem: simple

nodes and low optimization, simple nodes and high optimization, edge intensive, and

complicated nodes. The results of these tests are shown in Figure 5-1. The graph

is a log-log plot of the time required to run ten timesteps for each of the four types

of problem, with 5, 10, 25, 50, 100, 250, and 500 nodes. These were run on a CM-5

using thirty-two processors.

One implication of the graphs is that while the code is exploiting parallelism,

it is not using it very effectively. The slopes of the graphs are only slightly less

x: Edge Intensive

+: High Optimization

o: Low Optimization

* * | * = | I , • | , * , o , I _ , , , , ,

7

than one, suggesting limited use of parallelism. This in part reflects the fact that

not all of the computationally expensive code is parallelized. It may further result

from the use of variable timesteps; this strategy could cause the simulator to spend

a large percentage of its time on a small proportion of the nodes, thereby making it

unable to exploit parallelism well except on very large problems. However, the results

also suggest that the cost of transferring a sub-problem from one processor to another

may be too high, minimizing the benefits of transferring problems. Of the four classes

of problems, all seem to make about the same use of parallelism except for the edge

intensive case, which scales more poorly than the others. This is to be expected, since

edge connections increase the amount of data that must be communicated between

processors.

In an absolute sense, however, the results are sufficient for real simulations. In the

worst case, the time required for ten timesteps was 267.514 seconds, or approximately

26.7514 seconds per timestep. While this is much slower than desirable, it adequate

for running a simulation for a few thousand timesteps in a reasonable time; this is

sufficient for many kinds of simulation problems. Furthermore, the low optimization

test is approximately an order of magnitude faster, and is likely to more accurately

reflect realistic performance. This time is still much higher than ideal, but should be

sufficient for currently planned tests. Furthermore, the high optimization tests, which

reduce errors to one-tenth that in the low optimization tests, have an additional cost

of approximately a factor of two. This suggests that performance need not unduly be

sacrificed to assure accuracy when it is needed.

The simulator does manage to avoid other potential performance problems. Graph-

ics, while slower than ideal for an interactive simulation, are fast enough not to become

a problem, particularly when the user interface runs on an SGI. Furthermore, the se-

rial/parallel interface allows a graphical simulation while keeping network bandwidth

and memory usage on the CM-5 relatively low.

The overall conclusion is that the simulator meets its design goals in this area,

although there is considerable room for improvement. The simulator is fast enough

to run the required tests for reasonable simulations. However, it is much slower than

desirable, which can be expected to delay work with the simulator. Furthermore, this

may make it difficult to apply the simulator to more complicated problems in the

future. Therefore, while its performance is adequate, it should be improved.

5.3 Other Constraints

The simulator makes good use of the available hardware. Because of the serial/parallel

split and the use of Cilk in the numerical simulator, it is able to take advantage of

the available CM-5. However, due to Cilk's portability, it can also run on several

other architectures. Likewise, the interface is portable to different platforms. The

high-quality OpenGL graphics have only been run on an SGI, but, with Vogle's lower-

quality graphics, the user interface can be ported to other Unix workstations. The

interface does, however, use the X window system and Unix network sockets, so it

could not easily be ported to non-Unix machines.

Lastly, the development time of the simulator is within the required limits. While

work is continuing, the simulator is currently functional and is being applied to real

problems in virus shell assembly. Furthermore, a functional simulator has been pro-

duced early enough to allow time for testing and documentation. Therefore, the

scope of the project seems to have been sufficiently limited to allow its completion in

a timely manner, without being simplified so much that it ceased to be useful.

Chapter 6

Applications

Although the central focus of this thesis is the development of the simulator itself,

two sample applications are described. These examples help to demonstrate what

kinds of problem the simulator can answer, provide an indication of its versatility,

and show how it works in practice. Section 6.1 describes the results of attempting a

kinetic model using undirected assembly. Section 6.2 examines a use of the alternate

controller described in Section 4.2.5 as a means to experiment with feasible shapes of

nodes.

6.1 Undirected Assembly

An important function of the simulator is exploring possible kinetic models for imple-

menting local rules. One possible model explored by the simulator is that implicitly

used by the prior simulator: undirected assembly with high binding energies. Undi-

rected assembly means that protein subunits are not predisposed towards assembling

a shell in any particular order; whether or not a particle has already formed a bond

on one edge does not affect its probability of forming a bond on any other edge. High

binding energy means that compatible edges have a high probability of bonding if

they occur in the appropriate relative positions and a low probability of breaking a

bond once it has formed. In order to test the feasibility of this model, the simula-

tor was applied to a set of rules implementing high binding energies and undirected

Figure 6-1: Results of Undirected Assembly at Two Points in Time

assembly.

The simulation attempted to model assembly of a T=1 shell. A T=I provides a

good preliminary test of the model, as it is the simplest shell. This test attempted

to imitate the abstract model of coat proteins used by the prior simulator. The rules

used modeled the shape of a protein subunit with a single sphere. Bonding angles

were chosen to be ideal for the T=1 lattice. The sizes and shapes of the coat proteins

were not, however, chosen to model actual coat proteins. All binding energies were set

at -15 kcal/mol, which provides a very a high probability of forming and maintaining

bonds.

The result of the simulation was that subunits quickly formed small clusters, but

could not easily combine further. Figure 6-la shows the simulation after 40 time-steps.

Several small aggregates are visible, showing that individual particles can combine

without much difficulty. However, very little further progress occurs even after a long

time. Figure 6-1b shows the same simulation after 400 time-steps. While almost all

particles have joined small aggregates, larger ones have not formed. Apparently, once

particles form into small clusters it becomes much more difficult for them to combine

further.

~p~ _ Yi_ I__~_·I_= · _~·I_·~_··(·

These results suggest that the proposed model is not adequate for actual shell

assembly. Given the problems observed, it appears that shell assembly would occur

more efficiently if individual subunits could easily attach to growing shells, but not

to other free-floating subunits. This suggests that it may be necessary to constrain

pathways of growth in order to allow efficient shell assembly.

This application helps to show some of the utility of the simulator. The questions

of if and how assembly is constrained are important to understanding shell growth and

cannot easily be examined experimentally. While theoretical work offers some insight

into the problem, the prior simulator cannot model its relevant features. The new

simulator, because of its more realistic model of kinetics and its ability to simulate

free-floating particles, could provide some additional answers.

6.2 Modeling with the Alternate Controller

A very different application uses the alternate controller described in Section 4.2.5

to experiment with possible shapes for coat proteins. It is not clear how important

the shapes of coat proteins are to assembly, or how they affect it. The simulator

provides one possible means of exploring this question. However, because of the

many parameters involved in developing a good model for a coat protein, it can be

difficult to fine-tune any particular parameter in a general simulation. The alternate

controller offers a way around this, by providing a middle ground between the old

simulator and the full capabilities of the new simulator. With the alternate controller,

nodes can be added one at a time to a growing shell, thereby avoiding delays of waiting

for the shell to assemble, but with orders of assembly determined by binding energies.

By using a shell with high binding constants and well-optimized angles, the alternate

controller can produce a simulation in which it is possible to experiment with feasible

node shapes without interference from other factors.

The use of a correct protein shape may be important in generating valid simulator

results. The earlier simulator used simple spherical masses for all proteins. While

this is adequate for a more abstract model, it is not suitable for understanding the

aI. U.

Figure 6-2: T=1 Shells Produced by Simple and Refined Models

effects of node shape on assembly. For example, the packing of proteins against each

other may be crucial to stabilizing the shell or determining its size.

For this application, simulations were attempted on a T=1 shell. The result of the

first attempt, with a simple model involving a single sphere, is shown in Figure 6-2a.

This model looks similar to that of the previous simulator. Several attempts were

made to refine this into a more realistic, space-filling model. Repeated refinements

resulted in the shell of Figure 6-2b. This shell uses complex nodes, consisting of

seven spheres each, to create approximately triangular coat proteins. These proteins

fill most of the empty space of the surface of the shell. The result is a more rigid

shell, as proteins have less freedom to move around within it.

This application further helps to demonstrate the utility of the new simulator.

It shows the usefulness of the alternate controller in experimenting with node pa-

rameters. This, in turn, demonstrates the value of designing a simulator sufficiently

versatile to support the alternate controller. It also shows that the model of com-

plex nodes implemented does give users considerable latitude for designing simulated

nodes that realistically model actual coat proteins.

Chapter 7

Discussion

This section examines some lessons of developing the simulator and discusses ideas for

the future. Section 7.1 summarizes the information presented and draws some con-

clusions about the project, as well as broader work in the field. Section 7.2 describes

some avenues for future work on the project.

7.1 Conclusions

This paper has described the construction of a simulator for realistically modeling

the reaction kinetics of virus shell assembly. The simulator successfully achieves the

design goals set out for it. It provides physically reasonable models of the relevant

features of coat protein interactions. It achieves this quickly enough to make it useful

without unduly taxing computational resources, and it provides a versatile and easy

to use interface.

The simulator extends the range of phenomena that can be simulated and ques-

tions that can be answered regarding virus shell assembly. It offers physically realistic

models of viral coat proteins, the kinetics of their interactions, and the environment

in which they form. This provides a means of examining aspects of shell assembly

that cannot currently be observed in the laboratory and were beyond the scope of

prior simulation work. It should, therefore, be a valuable tool in future work with

the local rules theory of virus shell assembly.

One lesson of the project regards the role of simulation work in a larger study in

biology. The project shows that computer simulation can provide a means to observe

physical processes that current laboratory techniques cannot analyze. Also, once the

initial effort of constructing a simulator is finished, it can often perform experiments

more easily and less expensively than comparable laboratory work. As algorithms

and hardware improve, simulation is likely to become a more important tool for un-

derstanding biochemistry. However, it is also important to remember the limitations

of simulator work. A computer simulation must rely on assumptions, abstractions,

and approximations. Thus, in interpreting the results of this or any simulator, it may

be difficult to sort out what data accurately reflects the underlying physics and what

is an artifact of the simulator. A simulator is valuable as a verification of concept

for theoretical work, as a tool for determining what avenues of exploration are likely

to be most valuable, or as a means of generating hypotheses about the systems it

simulates. Its output, though, should be regarded as theories to be tested in a lab-

oratory, not as complete results in themselves. Simulators such as the one described

here are potentially crucial tools for future work in biology, as long as their limits are

acknowledged.

Perhaps the most important lesson of experience with this simulator is that there

is a place for mid-level simulators like it that combine realism where it is needed

with abstraction elsewhere. The simulator provides physically reasonable models of

reaction kinetics and thermodynamics and the ability to modify many parameter of

simulated proteins and their environment; other aspects of the simulator, such as

the use of springs to model binding, are more abstract. This combination makes it

possible to gather data that could not be obtained with a more abstract model, such

as the older virus shell simulator, while allowing simulation of problems that would

be computationally infeasible for a lower-level simulator, such as one that models

coat proteins at the atomic level. This suggests that exploring problems at the edge

of what is computationally tractable may create a permanent need for the design

of custom simulators that are capable of realistically modeling what is needed for

a specific application, but abstracting away what is not. It is likely that increasing

computer processing speeds will only amplify this trend, as a greater range of problems

approach the point of being computationally feasible.

7.2 Future Work

Future work with this simulator will fall into two general categories: improvements

to the simulator itself, and additional applications of the simulator. Section 7.2.1

describes some areas in which the simulator might be improved and conjectures what

impact these improvements would have. Section 7.2.2 describes extensions of the

applications already described, other planned applications, and other areas in which

the simulator might be useful.

7.2.1 Potential Improvements to the Simulator

One potentially valuable area for future work would be to explore methods of improv-

ing the performance of the simulator. When high accuracy is required, the simulator

may need to perform a considerable amount of work to converge on a valid solution;

switching to a numerical method that requires less work could therefore greatly im-

prove performance. It is not obvious how this might be accomplished, however, as

there are tradeoffs in all common strategies. It would be worthwhile to examine other

schemes and evaluate how they might affect the performance of the simulator.

Another area in which performance might be improved is through the use of global

memory. Since this project was begun, the developers of Cilk have added support

for a global memory abstraction[5]. There are some areas of the simulator code

that would almost certainly benefit from the use of global memory. These would

include definitions of node and edge types, global parameters such as the timestep

and temperature, and certain information about individual nodes which must be

identical from processor to processor and which is changed only infrequently. In

other areas, the value of global memory is more questionable. It might be worthwhile

as a replacement for explicit data propagation in the procedure for advancing time;

however, this could also decrease performance by causing unnecessary data transfers.

Whether global memory would be a net advantage requires further consideration.

It would also be valuable to explore ways of improving the degree of parallelism

in the program. The performance results in Section 5.2 suggest that the simulator

is not making as efficient use of parallelism as it might. A more nearly optimal

parallelization on the currently available hardware might improve performance by an

order of magnitude or more.

The user interface could also be improved to allow easier use. Currently, most

common aspects of the simulator's use should be easy to learn, as a user generally

only needs to deal with the graphical interface. One exception is in developing rules

for a simulation. The simulator cannot be used without defining the necessary node

and edge types and simulation parameters. However, choosing these and coding

them in a file is not always easy. Remedying this is therefore a potentially important

consideration in future work with the simulator. One possible approach is to create

an external utility to assist in designing nodes and choosing their parameters. Ease

of use could also be improved by making the control language cleaner and adding

syntactic sugar to simplify some common operations.

7.2.2 Other Applications

One planned application is to extend the work described in Section 6.1 on pathways

of assembly. The simulator will be used to explore different orders in which assembly

might proceed. It will also examine kinetic mechanisms by which assembly might be

constrained. It will additionally explore the effects of different assembly models on

the rate of shell growth.

The simulator is also meant to explore other physical properties of coat proteins.

This includes extending the work described in Section 6.2 to explore in more detail

how the shapes of subunits affect shell assembly, particularly for larger shells. Fur-

thermore, the simulator will be used to examine different kinetic models for how coat

proteins might attach to each other. Finally, it will be used to look at the significance

of different models of how and when conformational switching occurs. In particular,

it should be possible to look at complicated rule sets, such as the four conformation

T=7 rules described in Section 2.2.

Beyond these currently anticipated applications, it may be possible to apply the

simulator to problems other than icosahedral virus shell assembly. It may be able

to simulate some non-icosahedral viruses. It could also examine applications of local

rules to other self-assembly systems in nature. Finally, the simulator may provide a

means of exploring possible designs for artificial self-assembly systems.

Bibliography

[1] T. S. Baker, D. L. D. Caspar, and W. T. Murakami. Polyoma virus "hexamer"

tubes consist of paired pentamers. Nature, 303:446-448, 1983.

[2] B. Berger and P. W. Shor. Local rule switching mechanism for viral shell geom-

etry. MIT Laboratory for Computer Science Technical Memo 527, 1995.

[3] B. Berger, P. W. Shor, L. Tucker-Kellog, and J. King. Local rule-based theory

of virus shell assembly. Proc. Natl. Acad. Sci. U.S.A., 91:7732-7736, 1994.

[4] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou.

Cilk: An efficient multithreaded runtime system. In Proceedings of the Fifth

A CM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

1995.

[5] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Randall.

Dag-consistent distributed shared memory. In International Parallel Processing

Symposium, April 1996.

[6] S. Casjens and J. King. Virus assembly. Annu. Rev. Biochem., 44:555-611, 1975.

[7] D. L. D. Caspar and A. Klug. Physical principles in the construction of regular

viruses. Cold Spring Harbor Symp. Quant. Biol., 27:1-24, 1962.

[8] T. Dokland, B. H. Lindqvist, and S. D. Fuller. Image reconstruction from cryo-

electron micrographs reveals the morphopoietic mechanism in the P2-P4 bacte-

riophage system. EMBO J., 11:839-846, 1992.

[9] W. Earnshaw and J. King. Structure of phage P22 coat protein aggregates formed

in the absence of the scaffolding protein. J. Mol. Biol., 126:721-747, 1978.

[10] E. H. Echidna. Vogle 1.3.0. Available from wuarchive.wustl.edu via anony-

mous ftp in directory mirrors/echidna/src, 1993.

[11] B. N. Fields and D. M. Knipe, editors. Fields Virology. Raven Press, New York,

second edition, 1990.

[12] H. Fraenkel-Conrat and R. C. Williams. Reconstitution of active tobacco mosaic

virus from its inactive protein and nucleic acid components. Proc. Natl. Acad.

Sci. U.S.A., 41:690-698, 1955.

[13] S. C. Harrison, A. J. Olson, C. E. Schutt, F. K. Winkler, and G. Bricogne.

Tomato bushy stunt virus at 2.9 A resolution. Nature, 276:368-373, 1978.

[14] I. Katsura. Structure and inherent properties of the bacteriophage lambda and

head shell iv: Small-head mutants. J. Mol. Biol., 171:297-317, 1983.

[15] R. C. Liddington, Y. Yan, J. Moulai, R. Sahli, T. L. Benjamin, and S. C. Har-

rison. Structure of simian virus 40 at 3.8-A resolution. Nature, 354:278-284,

1991.

[16] 0. J. Marvik, T. Dokland, R. H. Nokling, E. Jacobsen, T. Larsen, and B. H.

Lindqvist. The capsid size-determining protein sid forms an external scaffold on

phage P4 procapsids. J. Mol. Biol., 251:59-75, 1995.

[17] D. Muir. Simulated construction of viral protein shells. Bachelor's Thesis. Mas-

sachusetts Institute of Technology, 1994.

[18] B. V. V. Prasad, P. E. Prevelige, Jr., E. Marietta, R. O. Chen, D. Thomas,

J. King, and W. Chiu. Three-dimensional transformation of capsids associated

with genome packing in a bacterial virus. J. Mol. Biol., 202:824-835, 1993.

[19] I. Rayment, T. S. Baker, and D. L. D. Caspar. Polyoma virus capsid structure

at 22.5A resolution. Nature, 295:110-115, 1982.

[20] D. Rogelberg and J. C. Fullagar, editors. OpenGL Reference Manual. Silicon

Graphics, Inc., 1995.

[21] M. G. Rossmann. Constraints on the assembly of spherical virus particles. Vi-

rology, 134:1-13, 1984.

[22] H. G. Schlegel. General Microbiology. Cambridge University Press, 1993.

[23] P. A. Thuman-Commike, B. Greene, J. Jakana, B. V. V. Prasad, J. King, P.

E. Prevelige, Jr., and W. Chiu. Three-dimensional structure of scaffolding-

containing phage P22 procapsids by electron cryo-microscopy. J. Mol. Biol.,

1996. in press.

Appendix A

Specifications for the Control

Language

This appendix describes the simulator control language in detail. Section A.1 exam-

ines some general features of the language. Section A.2 describes how the control

language connects to the graphical interface. Section A.3 presents specifications for

the primitive operations and special forms supported by the control language.

A.1 General Features

The control language is typical in many ways of other Lisp-like languages. The lan-

guage uses dynamic binding. It also employs eager evaluation, with the exception

of the evaluation of certain special forms, described in Section A.3.1. The language

contains seven basic data types, two compound data types, two data types for pro-

cedure abstractions, and two special data types. Deallocation of memory is handled

automatically through a mark and sweep garbage collector.

The general syntax of the control language consists of two basic components:

atoms and procedure evaluations. An atom can be any of the data types described

in the remainder of this section. A procedure application is of the form (operator

[operand]*); here, each term may be an atom or a procedure evaluation. An operand

can evaluate to any value, but the operator must either be a special form or evaluate

to a procedure object, which may be either a primitive procedure or a user-defined

procedure.

The control language contains seven basic data types. Label values consist of

strings of characters and are used to name objects of other types. Numeric values

are used for numbers. They are internally represented by floating point values, but

are used for both integer and floating point arithmetic. Boolean values can be either

true or false. String values consist of null-terminated sequences of characters, and are

specified by enclosing the characters in quotation marks. Bitfield values consist of

sequences of bits. Fileid values are pointers to files that can be used to read or write

strings of data to or from a file.

In addition to these basic types are two compound types: list and array. A list

consists of zero or more values, each joined to the next. Elements of a list can be of

any type, including list, except for the two special types described below. Lists are

usually accessed through two special forms, first and rest, that access the first element

of the list and the remainder of the list, respectively. Lists are generally useful when

creating structures whose size changes, as an additional element can be added to a

list in constant time. Arrays also consist of ordered sets of values, but have fixed sizes

specified when they are created. Elements can be examined or inserted into an array

in constant time. When an array is created, all of its elements are initially inaccessible

and must be explicitly added before they can be accessed without returning an error.

There are also two data types for procedure abstractions: primitive and non-

primitive procedures. Primitive procedures are hard-coded into the interpreter and

cannot be created by users. When the interpreter first starts up, each primitive

procedure is bound to a label, although it is possible to bind the primitive procedures

to other labels or to bind their labels to other values. Although most primitive

procedures were created to add functionality to the language, some were created for

efficiency reasons. Non-primitive procedures are defined by the user or through data

files. They contain a possibly null list of arguments and a body evaluated at run

time, substituting supplied values for the arguments.

Finally, there are two special types: none and error. Values of type none are used

only as place holders in uninitialized arrays, and cannot be accessed by users. Type

error requires a more detailed explanation. When primitive procedures or most special

forms encounter errors, such as improperly formatted argument lists, they returns

values of type error, which have associated with them strings explaining the errors.

Errors are typically propagated up through an expression, so that if one argument

to a procedure is an error, then the value of the procedure application will be the

same error. Error values cannot in general be treated like other data types. It is not

possible to bind a label to an error, or to insert an error into a list or array. However,

users can utilize the error propagation system through two special forms: make_error

and errortrap. Makeerror creates a user-defined error, while errortrap tests if its

argument is an error value and, if so, stops it from propagating. Makeerror and

errortrap are described in more detail in Section A.3.1.

A.2 Hooks to the Graphical Interface

The graphical interface connects to the simulator control language through several

"hooks," procedures in the control language called to activate specific functions.

These hooks control the response to user actions and certain aspects of updating

the display and communicating with the numerical simulator. This section describes

the hooks, the conditions under which they are activated, and their default behaviors.

Seven of the hooks control the graphics display. Procedure zoomin is activated by

pressing the "zoomin" button and procedure zoom_out by pressing the "zoomout"

button on the graphical interface. Procedures rotatex, rotatey, and rotatez, are

activated by the "rotate" button. Each takes one numerical argument supplied by

the user when the "rotate" button is used. Procedure recenter, activated by the "re-

center" button, takes three numerical arguments provided by the user, representing a

point in the workspace. Finally, procedure drawworkspace is activated when a user

calls any of the other graphics commands or updates the simulator time, or when

the graphics window is partially obscured then uncovered. Default specifications for

these procedures are as follows:

zoomin = procedure () returns boolean
effects: zoomin multiplies the distance between the virtual eye point and the
focal point by .8. It returns true.

zoomout = procedure () returns boolean
effects: zoom_out multiplies the distance between the virtual eye point and
the focal point by 1.25. It returns true.

rotatex = procedure (numeric ang) returns boolean
effects: rotatex rotates the eye point counter-clockwise around the X-axis by
ang degrees relative to the focal point. It returns true.

rotatey = procedure (numeric ang) returns boolean
effects: rotatey rotates the eye point counter-clockwise around the Y-axis by
ang degrees relative to the focal point. It returns true.

rotate-z = procedure (numeric ang) returns boolean
effects: rotatez rotates the eye point counter-clockwise around the Z-axis by
ang degrees relative to the focal point. It returns true.

recenter = procedure (numeric x, numeric y, numeric z) returns boolean
effects: recenter sets the focal point to (x,y,z). It returns true.

drawworkspace = procedure () returns boolean
effects: draw_workspace draws all visible nodes and edges in accordance with
the current focal point and eye point. It returns true.

Two hooks are used to handle queries about the status of nodes. Both are called

through the "query" dialog box, activated by pressing the "query" button on the

graphical interface. Procedure process nodequery is activated by choosing to specify

nodes by number in the "query" dialog box, and is passed a numeric value supplied

by the user in the number field of that dialog box. Procedure query-region is called

by specifying nodes by region in the "query" dialog box, and is passed six numeric

values, supplied by the user in the xmin, xmax, ymin, ymax, zmin, and zmax fields

of that dialog box. In each case, the output of the command is displayed in the

feedback window of the graphical interface. Specifications for these two commands

are as follows:

processnodequery = procedure (numeric n) returns string
effects: process_nodequery queries the numerical simulator for the position,
velocity, angular rotation, and angular velocity of node n and returns a string
containing the results in the form:

"Pos: position
Vel: velocity
Ang: angular rotation
AngVel: angular velocity".

queryregion = procedure (numeric xmin, numeric xmax, numeric ymin, numeric
ymax, numeric zmin, numeric zmax) returns string

effects: query_region queries the numerical simulator for the positions, veloc-
ities, angular rotations, and angular velocities of each node with x coordinate
between xmin and xmax, y coordinate between ymin and ymax, and z coordi-
nate between zmin and zmax. It averages all values for each of the four fields
and returns a string containing the results in the form:

"Average values:
Pos: average position
Vel: average velocity
Ang: average angular rotation
AngVel: average angular velocity".

Four more hooks are used for adding and deleting nodes. Procedures addnode and

add_randomnode are activated through the "add" dialog box. If the "random" option

is selected in that box, then addrandomnode is called one or more times, depending

on how many nodes the user has chosen to add, and passed a list of node types which

it uses to randomly select the type of node to add. If the "random" option is not

selected, then addnode is called and passed user-specified position, velocity, angular

rotation, and angular velocity values; in this case, only one node is created, with the

arguments supplying its state. Procedures delete.node and deleteregion are activated

through the "delete" dialog box. If the "by number" option is chosen, then the user

specifies a node index which is passed to deletenode, instructing it to delete the node

with the given index. If the "by region" option is selected, then the user must supply

minimum and maximum X, Y, and Z values, which define a region within which all

nodes are to be deleted. The default specifications for these procedures are as follows:

add_node = procedure (numeric t, list p, list v, list r, list a) returns list
modifies: the-nodes num.nodes, theedges, num.edges, thesingles,
num-singles, num_variables
effects: addnode adds a node with type t, position p, velocity v, angular
rotation r, and angular velocity a. p, v, r, and a are expressed as lists of three
numerical values each. add-node adds the new node to the list of nodes and
its edges and single sub-nodes to the appropriate lists and increments counters
for the number of nodes, edges, singles, and variables. It returns a list of the
node parameters followed by the newly defined node.

addrandomnode = procedure (list n) returns list
modifies: thenodes num.nodes, the_edges, num.edges, the.singles,
num.singles, num_variailes
effects: addrandom-node behaves just as add_node does, except that the
added node has a random type chosen from a list of node types in n, its posi-
tion is randomly chosen within the workspace, its angular rotation is random
and it has a random velocity and angular rotation of magnitude between 0
and 1 in each component.

delete.node = procedure (numeric n) returns numeric

modifies: the-nodes num.nodes, the_edges, num_edges, the.singles,
num-singles, numvariables
effects: deletenode deletes a node from the simulation, removing the node,
its edges, and its singles from the relevant arrays and decrementing the coun-
ters of nodes, edges, singles, and variables. It returns the number of nodes
present prior to the deletion.

deleteregion = procedure (numeric xmin, numeric xmax, numeric ymin, numeric
ymax, numeric zmin, numeric zmax) returns boolean

modifies: thenodes num-nodes, theedges, num_edges, the-singles,
num.singles, numvariables
effects: deleteregion behaves as does deletenode, except that it deletes all
nodes with position (x,y,z) such that xmin<x<xmax, ymin<y!ymax, and
zmin<z<zmax. It returns false.

An additional four hooks are used to define node and edge types. The four hooks

are add_edge_type, add.single.nodetype, add_complex.nodetype, and

add_variable node_type. Their purposes are self-explanatory. These hooks are not

directly accessible through the graphical interface and are generally used within a

rules file to set up the parameters of a simulation. They have the following default

specifications:

addedge_type = procedure (list o, numeric ks, numeric kt, numeric kr, numeric er,
numeric ed, numeric r, numeric a) returns string

modifies: theedgetypes, num_edge_types
effects: add_edge_type creates an edge type capable of connecting to edges
listed in o; with spring constants ks, kt, and kr; energies er and ed; distance
tolerance r; and angle tolerance a. It returns a string signifying that it has
finished.

add-single.node_type = procedure (numeric r, numeric c, numeric m, list poses,
list ups, list edges) returns string

modifies: the_node_types, num-nodetypes
effects: addsingle-node_type creates a single node type with parameters
as specified in the argument list and adds this type to the final position in
thenode_types, incrementing numnode_types. It returns a string signifying
that it has finished.

addcomplexanodetype = procedure (list pos, list ang, list nodes) returns string
modifies: thenode_types, numnode_types
effects: addcomplex-nodetype creates a complex node type with parameters
as specified in the argument list and adds this type to the final position in
thenode_types, incrementing numnode_types. It returns a string signifying
that it has finished.

addvariable node_type = procedure (list energy, list nodes) returns string
modifies: thenode_types, num-node_types
effects: add_variable.node_type creates a variable node type with parameters
as specified in the argument list and adds this type to the final position in
thenodetypes, incrementing num.nodetypes. It returns a string signifying
that it has finished.

There are five additional hooks used for other general tasks of the simulator. Pro-

cedure restart, activated by the "restart" button, reinitializes the simulator data.

Procedure dostepforward, activated by the "step" button, advances the simulator

time. Procedure resizeworkspace sets the dimensions of the current workspace; like

the commands for defining node and edge types, it is not directly accessible from the

graphical interface and is meant to be used in rules files when defining the parameters

of a simulation. Finally, procedure do-save, activated by pressing the "save" button,

saves the state of the current simulation. It is passed a user-supplied file name to use

for the save file. The default specifications of these procedures are as follows:

restart = procedure () returns boolean
modifies: anything
effects: restart sets simulation parameters to their initial values, clears the
display closes the connection to the numerical simulator, if any and attempts
to establish a new connection at the machine and port specified by the global
variables host and port. It returns false.

do_stepforward = procedure () returns string
modifies: workspacedata
effects: do_steplorward instructs the numerical simulator to advance the time
updates_per.run.steps _perupdate steps. dostepforward updates the display
after each stepsper_update steps and leaves updated values of the current
data in the global variable workspace_data. It returns the string "Stepped
forward".

resizeworkspace = procedure (numeric x, numeric y, numeric z) returns boolean
modifies: workspacewidth, workspace_height, workspace_depth, graph-
ics.eye
effects: resizeworkspace sets workspacewidth, workspaceheight and
workspace_depth to x, y, and z respectively. It moves graphicseye, the eye
point of the graphics display, so that the direction from it to the focal point
is unchanged, but the distance is 1.44 times the maximum of x, y, and z. It
returns false.

dosave = procedure (string f) returns fileid
effects: do.save attempts to open a file with name f, write out a save file
capable of reconstructing the current state of the numerical simulator, close
the file, and return its fileid. If it is unable to open a file with the specified
name for writing, it returns an error.

A.3 Primitive Routines and Special Forms

This section provides specifications for the special forms and primitive functions im-

plemented by the simulator. In all specifications, the argument list given represents

a correctly formed argument list. If the argument list is not correctly formed, the

procedure will return an error value regardless of its stated return type. Type "any"

in an argument list means that any type can be passed as an argument, while as a

return value it means that any type could be returned. Section A.3.1 provides spec-

ifications for special forms. Section A.3.2 gives specifications for general primitive

procedures. The remaining three sections provide specifications for three specialized

subsets of the primitive procedures. Section A.3.3 gives specifications for graphics

routines, Section A.3.4 for routines for communicating with the numerical simulator,

and Section A.3.5 for routines for vector math.

A.3.1 Special Forms

Special forms are commands that are not stored as primitive procedures. Therefore,

they cannot be bound to any other labels. Typically, this is done because they alter

the usual rules for evaluating an expression. For instance, in some cases the arguments

to a special form are not evaluated before being passed to it, whereas for primitive

procedures, arguments are always evaluated first. The specifications for the special

forms are as follows:

define = procedure (label 1, any a) returns any
modifies: 1
effects: define binds 1 to a and returns the value of a.

errortrap = procedure (any a) returns list
effects: errortrap returns a list of two items. If a evaluates to an error then the
first item is the boolean true and the second is a's associated string. Otherwise,
the first item is the boolean false and the second is the value of a.

first = procedure (list 1) returns any
effects: first returns the first element of 1, if any, or an error if 1 is empty.

get_array = procedure (array a, numeric n) returns any
effects: If 0<=n< Jal and element n of a, indexed from zero, has been ini-
tialized, getarray returns the value of that element. Otherwise, it returns an
error.

if = procedure (boolean b, any el, any e2) returns any
effects: if evaluates b and returns the value of el if b is true, e2 if b is false.
if does not evaluate whichever of el and e2 is not returned. e2 is optional and
if it is not included and b is false then if returns false.

makearray = procedure (numeric n) returns array
effects: If n>O, make-array returns an empty array of length n. Otherwise,
it returns an error.

makeerror = procedure (string s) returns error
effects: make.error returns an error with associated string s.

makelist = procedure (any al, any a2, ...) returns list
effects: makelist returns a list containing the values of its arguments, in
order.

procedure = procedure (list 1, any a) returns procedure
effects: procedure returns a procedure with variables listed in 1 that evaluates
to the value of a with its arguments substituted for any occurrences of the
variables in 1.

quote = procedure (any a) returns any
effects: quote returns a unevaluated.

rest = procedure (list 1) returns list
effects: rest returns all of 1 except the first element if 1 is not empty. Otherwise,
it returns an error.

sequence = procedure (any al, any a2, ...) returns any
effects: sequence evaluates each argument in order, returning the value of the
last argument.

set = procedure (label 1, any a) returns any
modifies: 1
effects: If 1 is bound to a value, set replaces that value with the value of a
and returns the old value. Otherwise, it returns an error.

setarray = procedure (array a, numeric n, any x) returns array
modifies: a
effects: If O<n< lal, set_array sets element n of a, indexed from zero, to the
value of x and returns the modified array.

set-first = procedure (list 1, any a) returns any
modifies: 1
effects: set-first sets the first element of 1
replaced value.

setrest = procedure (list 11, list 12) returns list
modifies: 11
effects: setrest replaces all of 11 after the
the replaced value.

to the value of a and returns the

first element with 12 and returns

A.3.2 General Operations

This section describes those procedures that allow the command interpreter to func-

tion as a generalized programming language. These include mathematics, logical, file,

and string operations and routines for manipulating the compound data types. They

also include routines for determining the type of a data object and for converting

between types. Their specifications are as follows:

+ = procedure (numeric n1, numeric n2, ...) returns numeric
effects: + returns the sum of all arguments, or zero if the argument list is
empty.

- = procedure
effects:
the first.

* = procedure
effects:
empty.

(numeric n1, numeric n2, ...) returns numeric
- returns the result of subtracting all arguments but the first from
Unlike +, - must have at least one argument.

(numeric n1, numeric n2, ...) returns numeric
* returns the product of all arguments, or 1.0 if the argument list is

/ = procedure (numeric n1, numeric n2, ...) returns numeric
effects: / returns the result of dividing the first argument by all remaining
arguments. Unlike *, / must have at least one argument.

procedure (any al, any a2) returns boolean
effects: = returns true if al and a2 have the same type and are equal, false if
they have the same type and are not equal, and an error if they do not have
the same type. For compound objects, equal means that they point to the
same location in memory. For simple objects, it means that they have the
same value.

> = procedure (any al, any a2) returns boolean
effects: If al and a2 are of different types, > returns an error. If al and a2
are both numeric, it returns true if al>a2, false otherwise. If al and a2 are
both strings or both labels, > returns true if al is lexicographically greater
than a2, false otherwise. For other types, the behavior is undefined.

< = procedure (any al, any a2) returns boolean
effects: If al and a2 are of different types, < returns an error. If al and a2
are both numeric, it returns true if al<a2, false otherwise. If al and a2 are
both strings or both labels, < returns true if al is lexicographically less than
a2, false otherwise. For other types, the behavior is undefined.

acos = procedure (numeric n) returns numeric
effects: acos returns the Arccosine of n radians.

and = procedure (boolean bl, boolean b2) returns boolean
effects: and returns the logical and of bl and b2.

asin = procedure (numeric n) returns numeric
effects: asin returns the Arcsin of n radians.

atan = procedure (numeric n) returns numeric
effects: atan returns the Arctangent of n radians.

atan2 = procedure (numeric nl, numeric n2) returns numeric
effects: atan2 returns the Arctangent of n2/nl radians.

bit2double = procedure (bitmap b) returns numeric
effects: bit2double interprets b as a floating point number and returns the
number.

bit2int = procedure (bitmap b) returns numeric
effects: bit2int interprets b as an integer and returns its value.

closef = procedure (fileid f) returns fileid
effects: closef closes f and returns it.

concat = procedure (list 11, list 12) returns list
modifies: 11
effects: concat concatenates 12 onto the end of 11.

cos = procedure (numeric n) returns numeric
effects: cos returns the cosine of n radians.

debug = procedure (string s) returns string
effects: debug outputs s to the standard output and returns s.

double2bit = procedure (numeric n) returns bitmap
effects: double2bit returns a bitmap containing the floating point representa-
tion of n.

exp = procedure (numeric n) returns numeric
effects: exp returns en .

int2bit = procedure (numeric n) returns bitmap
effects: int2bit returns a bitmap containing the binary value of the integer
part of n.

isarray = procedure (any a) returns boolean
effects: isarray returns true if a is an array, false otherwise.

isboolean = procedure (any a) returns boolean
effects: isboolean returns true if a is a boolean, false otherwise.

isfileid = procedure (any a) returns boolean
effects: isfileid returns true if a is a fileid, false otherwise.

islabel = procedure (any a) returns boolean
effects: islabel returns true if a is a label, false otherwise.

islist = procedure (any a) returns boolean
effects: islist returns true if a is a list, false otherwise.

isnumeric = procedure (any a) returns boolean
effects: isnumeric returns true if a is numeric, false otherwise.

isprocedure = procedure (any a) returns boolean
effects: isprocedure returns true if a is a procedure, false otherwise.

isstring = procedure (any a) returns boolean
effects: isstring returns true if a is a string, false otherwise.

lab2str = procedure (label 1) returns string
effects: lab2str returns the string associated with 1.

length = procedure (list 1) returns numeric
effects: length returns the length of list 1.

log = procedure (numeric n) returns numeric
effects: log returns the natural log of n.

not = procedure (boolean b) returns boolean
effects: not returns the logical negation of b.

num2str = procedure (numeric n) returns string
effects: num2str returns a user-readable string form for n.

open = procedure (string f, string t) returns fileid
effects: open opens a file of name f with type t, where t is the file type string
as defined for the underlying C, and returns the file's id. If open cannot open
the file, it returns an error.

or = procedure (boolean bl, boolean b2) returns boolean
effects: or returns the logical or of bl and b2.

pow = procedure (numeric a, numeric b) returns numeric
effects: pow returns ab

readf = procedure (fileid f, string s) returns string
effects: readf reads in characters from f until it reaches the end of the file
or finds a character in s. It returns a string containing all characters read
including the termination character, if any.

sin = procedure (numeric n) returns numeric
effects: sin returns the sine of n radians.

size = procedure (array a) returns numeric
effects: size returns the number of elements a can contain.

str2lab = procedure (string s) returns label
effects: str2lab returns a label whose associated string is s.

str2num = procedure (string s) returns numeric
effects: If s contains the string representation of a number, str2num returns
the number. Otherwise it returns an error.

strcat = procedure (string sl, string s2, ...) returns string
effects: strcat returns the result of concatenating all of its string arguments.
It must have at least one argument.

strlen = procedure (string s) returns numeric
effects: strlen returns the number of characters in s.

substr = procedure (string s, numeric a, numeric b) returns string
effects: If O<a<b< IsI, substr returns the substring of s with indices a to b,
starting from 0, relative to s. Otherwise, it returns an error.

tan = procedure (numeric n) returns numeric
effects: tan returns the tangent of n radians.

trunc = procedure (numeric n) returns numeric
effects: trunc returns the integer portion of n.

writef = procedure (fileid f, string s) returns string
effects: writef writes s to f, provided f is open for writing, and returns s. If f
is not open for writing, it returns an error.

A.3.3 Graphics Routines

This section describes routines for controlling the graphics window. These routines

are used to draw some simple objects and control how they appear in the window.

The reason some of these routines have the same name as hooks described in Section

A.2 is that default functions are provided for these hooks. These default routines

can, however, be replaced by user-defined routines in order to customize simulator

behavior. The following are specifications for the graphics routines:

initgraphics = procedure (numeric wx, numeric wy, numeric wz, numeric ex, nu-
meric ey, numeric ez, numeric cx, numeric cy, numeric cz, numeric ux, numeric uy,
numeric uz) returns boolean

effects: init.graphics initializes the graphics display with workspace size
(wx,wy,wz), eye point (ex,ey,ez), focal point (cx,cy,cz), and up vector
(ux,uy,uz), then returns true.

makecylinder = procedure (numeric sx, numeric sy, numeric sz, numeric ex, nu-
meric ey, numeric ez, numeric r, numeric c) returns boolean

effects: make.cylinder draws a cylinder with axis from (sx,sy,sz) to (ex,ey,ez),
radius r, and color c and returns true.

makeline = procedure (numeric sx, numeric sy, numeric sz, numeric ex, numeric
ey, numeric ez, numeric c) returns boolean

effects: makeline draws a line from (sx,sy,sz) to (ex,ey,ez) with color c and
returns true.

makesphere = procedure (numerics cx, numerics cy, numerics cz, numerics r, nu-
merics c) returns boolean

effects: make-sphere draws a sphere at center (cx,cy,cz) with radius r and
color c and returns true.

redraw = procedure (numeric c) returns boolean
effects: redraw redraws the screen, setting the graphics to color c, and returns
true.

rotatex = procedure (numeric a) returns boolean
effects: rotatex rotates the graphics counter-clockwise by a degrees around
the X-axis and returns true.

rotatey = procedure (numeric a) returns boolean
effects: rotatey rotates the graphics counter-clockwise by a degrees around
the Y-axis and returns true.

rotate.z = procedure (numeric a) returns boolean
effects: rotatez rotates the graphics counter-clockwise by a degrees around
the Z-axis and returns true.

zoomin = procedure () returns boolean
effects: zoom-in moves the eye point to multiply the distance from the focal
point to the eye point by 0.8 and returns true.

zoomout = procedure () returns boolean
effects: zoomout moves the eye point to multiply the distance from the focal
point to the eye point by 1.25 and returns true.

A.3.4 Communication Routines

This section covers routines used by the command interpreter to communicate with

the numerical simulator. Some of these routines are used to create new nodes and

edges or new types for nodes and edges. Others instruct the numerical simulator to

modify specific parameters. They also include routines to query the numerical simu-

lator about its data. The specifications are as follows:

clearall = procedure () returns boolean
effects: clear_all instructs the numerical simulator to clear all data and return
to a startup state. It returns true.

connect = procedure (string h, numeric p) returns boolean
effects: connect attempts to establish a connection to the host h, checking at
ports from p to p+31. It returns true if it establishes the connection, and an
error if cannot.

disconnect = procedure () returns boolean
effects: disconnect closes the connection, if any, and returns true.

init_workspace = procedure (numeric x, numeric y, numeric z) returns boolean
effects: init_workspace instructs the numerical simulator to set the workspace
size to (x,y,z) and returns true.

make_edge = procedure (numeric ni, numeric n2) returns boolean
effects: makeedge instructs the numerical simulator to attach edge n1 to
edge n2 and returns true.

makeedge_type = procedure (list o, numeric ks, numeric kt, numeric kr, numeric
er, numeric ed, numeric r, numeric a) returns boolean

effects: makeedge_type instructs the numerical simulator to define a new
edge type. o is a list of numeric values specifying the other types to which this
edge can attach. ks, kt, and kr are the three spring constants. er and ed are
binding energies. r and a are the distance and angle tolerances, respectively.
make_edge_type returns true.

make.node = procedure (numeric n, list 11, list 12, list 13, list 14) returns boolean
effects: makenode instructs the numerical simulator to create a node of type
n with position, velocity, angle, and angular velocity given by 11, 12, 13, and
14, respectively, and returns true.

makenode_type = procedure (list 1) returns boolean
effects: make.node_type instructs the numerical simulator to define a new
type of node. The first element of the list is one of "single", "complex", and
'variable", for defining single complex, and variable nodes, respectively. For
single nodes, the remainder ol the ist specifies the radius, a currently unused
numerical parameter, the mass, and lists of the positions, up vectors, and types
of the edges. For complex nodes, the remainder of the list consists of lists of
the offsets, rotations, and types of the sub-nodes. For variable node types, the
remainder of the list is two lists the first listing conformation energies, and
the second listing the corresponding conformations. makemnodetype returns
true.

query_all = procedure () returns list
effects: queryall requests simulator data on the positions of all nodes and
returns it in the form of a list whose first element is an array of the indices
of all single nodes, whose second element is an array of their positions, whose
third element is an array of their orientations, and whose final element is an
array of arrays of the status of their edges, in which an element is -1 if the
corresponding edge is unconnected and the index of the edge to which it is
connected, otherwise.

query_confs = procedure () returns array
effects: queryconfs queries the numerical simulator about the conformation
of each variable node and returns an array of all conformations.

queryconstant = procedure (string s) returns numeric
effects: queryconstant queries the numerical simulator about the value
named by s and returns the result.

query_edges = procedure () returns array
effects: query_edges queries the numerical simulator about which edges are
connected and returns an array in which each element i is -1 if edge i is not
connected to any other edge and is j if edge i is connected to edge j.

querynode = procedure (numeric n) returns array

effects: query node queries the numerical simulator about the position, veloc-
ity, orientation, and angular velocity of node n and returns an array of twelve
numeric values containing that data, in order.

remove-edge = procedure (numeric n) returns boolean
effects: removeedge instructs the numerical simulator to break any bond
containing edge n and returns true.

removenode = procedure (numeric n) returns boolean
effects: remove-node instructs the numerical simulator to remove the node of
index n and returns true.

set_conformation = procedure (numeric n1, numeric n2) returns boolean
effects: set conformation instructs the numerical simulator to set variable
node number n1 to conformation n2 and returns true.

setconstant = procedure (string s, numeric n) returns boolean
effects: setconstant instructs the numerical simulator to set the value named
by s to n and returns true.

step = procedure () returns boolean
effects: step instructs the numerical simulator to advance the time by
stepsper_update-timestep and returns true.

A.3.5 Vector Routines

Although vectors are not a primitive type of the control language, there are several

primitive routines for dealing with them. Vectors are represented by arrays of three

numeric elements. Therefore, any of the vector math operations could be imple-

mented in terms of the primitives already presented. These primitive routines were

created only to improve efficiency; vector operations are very common and are crucial

to good performance of the command interpreter, so hard-coding them can improve

performance substantially. The following are specifications of the primitive vector

operations:

composerotations = procedure (vector rl, vector r2) returns vector
effects: composerotations returns a rotation vector whose effect is equivalent
to rotating by rl followed by rotating by r2. Rotating by a vector is defined
as rotating counter-clockwise around the vector by a number of radians equal
to the length of the vector.

svprod = procedure (numeric n, vector v) returns vector
effects: svprod returns the vector produced by multiplying v term-wise by n.

vadd = procedure (vector v1, vector v2) returns vector
effects: vadd returns the vector sum of v1 and v2.

vcross = procedure (vector v1, vector v2) returns vector
effects: vcross returns the cross product of v1 and v2.

vdot = procedure (vector v1, vector v2) returns numeric

effects: vdot returns the dot product of vi and v2.

vecrot = procedure (vector v, vector r) returns vector
effects: vecrot returns the result of rotating v around r counter-clockwise by
Ilrll radians.

vecx = procedure (vector v) returns numeric
effects: vecx returns the X component of v.

vecy = procedure (vector v) returns numeric
effects: vecy returns the Y component of v.

vecz = procedure (vector v) returns numeric
effects: vecz returns the Z component of v.

vlen = procedure (vector v) returns numeric
effects: vlen returns the length of v.

vnorm = procedure (vector v) returns vector
effects: vnorm returns a vector with the same direction as v and a length of
one.

vrotx = procedure (vector v, numeric a) returns vector
effects: vrotx returns the result of rotating v counter-clockwise by a degrees
around the X axis.

vroty = procedure (vector v, numeric a) returns vector
effects: vroty returns the result of rotating v counter-clockwise by a degrees
around the Y axis.

vrotz = procedure (vector v, numeric a) returns vector
effects: vrotz returns the result of rotating v counter-clockwise by a degrees
around the Z axis.

vsub = procedure (vector vi, vector v2) returns vector
effects: vsub returns the vector difference of vi and v2.

'7 ,

