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Abstract— In this paper we present an approach to the
nonlinear model reduction based on representing the nonlin-
ear system with a piecewise-linear system and then reducing
each of the pieces with a Krylov projection. However, rather
than approximating the individual components as piecewise-
linear and then composing hundreds of components to make
a system with exponentially many different linear regions,
we instead generate a small set of linearizations about the
state trajectory which is the response to a ‘training input’.
Computational results and performance data are presented
for a nonlinear circuit and a micromachined fixed-fixed beam
example. These examples demonstrate that the macromod-
els obtained with the proposed reduction algorithm are sig-
nificantly more accurate than models obtained with linear
or the recently developed quadratic reduction techniques.
Finally, it is shown that the proposed technique is computa-
tionally inexpensive, and that the models can be constructed
‘on-the-fly’, to accelerate simulation of the system response.

I. INTRODUCTION

Integrated circuit fabrication facilities are now offer-
ing digital system designers the ability to integrate ana-
log circuitry and micromachined devices, but such mixed-
technology microsystems are extremely difficult to design
because of the limited verification and optimization tools
available. In particular, there are no generally effective
techniques for automatically generating reduced-order sys-
tem-level models from detailed simulation of the analog and
micromachined blocks. Research over the past decade on
automatic model-reduction has lead to enormous progress
in strategies for linear problems, such as the electrical prob-
lems associated with interconnect and packaging, but these
techniques have been difficult to extend to the nonlin-
ear problems associated with analog circuits and micro-
machined devices.

In this paper we present an approach to the nonlinear
model reduction based on representing the nonlinear sys-
tem with a piecewise-linear system and then reducing each
of the pieces with Krylov subspace projection methods.
However, rather than approximating the individual com-
ponents as piecewise-linear and then composing hundreds
of components to make a system with exponentially many
different linear regions, we instead generate a small set of
linearizations about the state trajectory which is the re-
sponse to a ‘training input’. At first glance, such an ap-
proach would seem to work only when all the inputs are
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very close to the training input, but as examples will show,
this is not the case. In fact, the method easily outperforms
recently developed techniques based on quadratic reduc-
tion.

We start in the next section by describing a circuit and a
micromachined device example, to make clear the nonlinear
model reduction problem, and then in Section IIT we de-
scribe the existing nonlinear reduction techniques in a more
abstract setting. In Section IV, we present the trajectory-
based piecewise-linear model order reduction strategy and
an approach for accelerating the needed simulation. Ex-
amples are examined in Section V, and in Section VI we
present our conclusions.

II. EXAMPLES OF NONLINEAR DYNAMIC SYSTEMS

A large class of nonlinear dynamic systems may be de-
scribed using the following state space approach:

) = f(x(t)) + Bu(t)
{ y(t) = OTa(t) @)

where z(t) € RY is a vector of states, f : RY — RV is
a nonlinear vector-valued function, B is an N x M input
matrix, v : R — RM is an input signal, C'is an N x K
output matrix and y : R — R¥X is the output signal.

In this paper we will focus on two distinct examples of
nonlinear systems which may be described by equations (1)
and, due to their highly nonlinear dynamic behavior, illus-
trate well the challenges associated with nonlinear model
order reduction.

The first example, considered by Chen et al. [1], is a
nonlinear circuit shown in Figure 1. The circuit consists of
resistors, capacitors and diodes with a constitutive equa-
tion ig(v) = exp(40v) — 1.1 For simplicity we assume that
all the resistors and capacitors have unit resistance and ca-
pacitance, respectively (r = 1, C = 1). In this case the
input is the current source entering node 1: u(t) = i(t) and
the (single) output is chosen to be the voltage at node 1:
y(t) = vi(t).

The other example is a micromachined fixed-fixed beam
structure shown in Figure 2. Following Huang et al. [8], the
dynamic behavior of this coupled electro-mechanical-fluid
system can be modeled with 1D Euler’s beam equation and
2D Reynolds’ squeeze film damping equation given below:

4, 2, w 2,
% % = Felec + /0 (p - pa)dy - paa? (2)

1In the linear model, considered later on, we assume that ig(v) =
40v and in the quadratic model — i4(v) = 40v + 800v2.
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Fig. 1. The nonlinear circuit example.
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Fig. 2. Micromachined fixed-fixed beam (following Huang et al. [8]).
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where z, y and 2z are as shown in Figure 2, E is Young’s
modulus, I is the moment of inertia of the beam, S is
the stress coefficient, p is the density, p, is the ambient
pressure, p is the air viscosity, K is the Knudsen number,
w is the width of the beam in y direction, u = u(z,t) is
the height of the beam above the substrate, and p(z,y,t)
is the pressure distribution in the fluid below the beam.
The electrostatic force is approximated assuming nearly
parallel plates and is given by Fiee = —602’5;’2,
the applied voltage.

Spatial discretization of equations (2) and (3) using a
standard finite-difference scheme (cf. [17]) leads to a large
nonlinear dynamic system in form (1). In this case the
state vector x consists of heights of the beam above the
substrate (u) computed at the discrete grid points, their
time derivatives, and the values of pressure below the beam.
In this case we select our output y(t) as the deflection of the
center of the beam from the equilibrium point (y(¢) = r(t)
— cf. Figure 2).

where v is

III. MoDEL ORDER REDUCTION FOR NONLINEAR
SYSTEMS

Suppose the initial dynamic system (1) is of order N,
i.e. is described by IV states. The main goal of model order
reduction techniques is to generate a model of this system
with ¢ states (where ¢ <« N), while preserving accurately
the input/output behavior of the original system. Virtually
all the numerical model order reduction strategies are based
on the concept of projecting the states of the initial system
onto a suitably selected reduced order state space. This

may also be viewed as performing a change of variables:
z=Vz (4)

where z is a g-th order projection of the state z (of order N)
in the reduced order space and V is an N x ¢ orthonormal
matrix representing a transformation from the original to
the reduced state space. In other words, columns of V
define an orthonormal basis which spans the reduced order
state space.

Substituting (4) in (1) and multiplying the first of the
resulting equations by V7 yields:

&) — yT {(Va(t)) + VT Bu(t)
{ ol = V200 ' ¥

There are two key issues concerning representation (5)
of the initial dynamic system (1). The first one is selecting
a reduced basis V', such that system (5) provides good ap-
proximation of the initial system (1). For the linear case
(i.e. if f(-) is a linear transformation), there are a num-
ber of methods for determining V. They include: selecting
vectors from orthogonalized time-series data [8], comput-
ing singular vectors of the underlying differential equation
Hankel operator [6] or examining Krylov subspaces [1], [2],
[4], [7], [10], [11], [12], [15], [17]. The approach based on us-
ing time-series data extends directly to the nonlinear cases,
and the Hankel operator and Krylov subspace based strate-
gies can be extended to the nonlinear case using lineariza-
tion (Taylor’s expansions) of the nonlinear system function

The other key issue in applying formulation (5) for
reduced order modeling is finding a representation of
VT f(V-) which allows low-cost storage and fast evaluation.
Suppose, N = 100,000 and ¢ = 10. If no approximations
are made to the nonlinear function f(-), then computing
VT f(Vz) requires O(100,000) operations and is too costly.
The simplest approximation for f(-), which allows O(q)
(not O(N)) storage and evaluation of VT f(V-) is based
on Taylor’s expansion around the initial state (equilibrium
point) zg:

£(&) = f(z0) + Aoz — 29) + 5 Wolz — 20) © (& — 7o)

where ® is the Kronecker product, and Ay and Wj are,
respectively, the Jacobian and the Hessian of f(-) evaluated
at the initial state z¢. This approach leads to the following
reduced order models proposed in [1], [2], [11] and [17]. For
the linear case, the reduced order model (5) becomes:

20 = VT f(0) + Aorz + VT Bu(?)
{ fh=cve ©

where Ao, = VTAGV is a ¢ x ¢ matrix. The quadratic
reduced order model is given by [11]%:

{ &0 — YT f(20) + Aorz + 2 Wor (2 @ 2) + VT Bu(t)
y(t) = CTV (t)
(7)

2An alternative formulation of the quadratic reduced order model
is presented in [1]. Both formulations give almost identical results.



where Wy, = VIWy(V ® V) is a ¢ x ¢ matrix. In the
above formulations, due to the fact that the reduced ma-
trices are typically dense and must be represented explic-
itly, the cost of computing V? f(Vz) term and the cost
of storing the reduced matrices Ag, (Ao, and Wy, in the
quadratic case) are O(g?) (in the linear case) and O(¢®) (in
the quadratic case). Therefore, although the method based
on Taylor’s expansions may be extended to higher orders
of nonlinearities [11], this approach is limited in practice
to cubic expansions, due to exponentially growing mem-
ory and computational costs. For instance, if we consider
quartic expansion of order ¢ = 10, then the memory stor-
age requirement exceeds ¢°> = 100,000 elements, and the
computational cost is O(g®). In most cases it becomes in-
efficient to use so computationally expensive reduced order
models.

IV. PIECEWISE-LINEAR MODEL ORDER REDUCTION

As described in the previous section, reduced order mod-
els based on Taylor series expansion become prohibitively
expensive when the order of included nonlinearity becomes
large. On the other hand, a simple linearized reduced or-
der model (6), although computationally inexpensive, may
be applied only to weakly nonlinear systems and is usually
valid for a very limited range of inputs [17]. This leads us
to proposing an approach towards model order reduction
based on quasi-piecewise-linear approximations of nonlin-
ear systems. The idea is to represent a system as a combi-
nation of linear models, generated at different linearization
points in the state space (i.e. different states of the initial
nonlinear system). The key issue in this approach is that
we will be considering multiple linearizations around suit-
ably selected states of the system, instead on relying on a
single expansion around the initial state.

A. Piecewise-linear representation

Let us assume we have generated s linearized models of
the nonlinear system (1), with expansions around states

LOyeoesLlg—1-+

dx

p (z;) + A;j(x — x;) + Bu

where x( is the initial state of the system and A; are the
Jacobians of f(-) evaluated at states z;. We now consider
a weighted combination of the above models:

s—1 s—1
i=0 i=0

where w;(x) are weights depending on state . (We assume
that, for all z, E‘:;Ol w;(x) = 1.) The choice of weights is
discussed later on in this section. Assuming we have al-
ready generated a ¢-th order basis V' (cf. (4)) we may con-
sider the following reduced order representation of system
(8):

{ & = (A -w(z)"z+7-w(z)" + B

= C.z 9)

where B, = V'B, C, = C"V, A, =
and Air = VTA»L'V, v = [’}’g .. -'stl] =

[AOTA].T' .. A(s—l)r]

[VT(f(zo) — Aomo), -, VI (f(@s1) — As—1m5-1)]

and [zg,21,...,25_1] are representations of linearization
points zg,...,xs—1 in the reduced basis:

[Zo, Zlyeeoy 25_1] = [VTIL'(), VT.CEl, ey VTJUS_l]
Finally, w(z) = [wo(z)...ws_1(2)] is a vector of weights

(norm |jw(2)|| =1 for all 2). At this point we need to find
a procedure for computing the weights w;, given current
state z and the linearization points z;. We assume that
weights w; for the reduced models A,; are computed based
on the information about the distances ||z — z;|| of the
linearization points from the current state z. We require
that the ‘dominant’ model A;, is the one corresponding to
the linearization point z; which is the closest to the current
state of the system.

The following procedure of computing w; ensures that
the above requirement is satisfied:

1. For i =0,...,(s — 1) compute: d; = ||z — 2i||2-
(Alternatively we may take d; = ||Cy(z — 2;)||2-)

2. Compute m =min{d; : i =0,...,(s—1)}.

3. Fori=0,...,(s— 1) compute w; = (exp(d;)/m))~25.
4. Normalize w;.

One may note that, in the above procedure, the distribu-
tion of weights changes rather ‘sharply’ as the current state
z evolves in the state space, i.e. once e.g. z; becomes the
point closest to z, then weight w; almost immediately be-
comes 1. This provides a rationale for referring to model (9)
as a piecewise-linear reduced order model of nonlinear sys-
tem (1). Clearly, the procedure presented above provides
only an example. Nevertheless, as shown in the following
sections, it may be effectively used in practice.

B. Generation of the piecewise-linear model

So far it has not been discussed how to generate the
weighted model given by (8) or, more specifically, how to
select linearization points x;. We may assume that lin-
earization of a nonlinear system, generated at state x; is
valid or accurate for a given state x if this state is ‘close
enough’ to the linearization point z;, i.e. ||z — z;|| < ¢,
which means that z lies within a ball (in an N-dimensional
space) of radius € and centered at x;. Suppose we would
like to cover an N-dimensional state space with such balls.
(Therefore assuring that for any state we will find a valid
linearized model.) Then, assuming e.g. that the state space
is an N-dimensional hypercube: [0;1] x ...[0;1] € RY,
N = 1000 and € = 0.1, the total number of models to be
generated would equal roughly 101090 This is clearly a
totally infeasible approach, due to enormous memory and
computational costs.

Instead of finding linearized models covering the entire
N-dimensional state space we propose to generate a collec-
tion of models along a single, fixed trajectory of the sys-
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Fig. 3. Generation of the linearized models along a trajectory of a
nonlinear system in a 2D state space.

tem.? This means we generate a trajectory by performing a
single simulation of the nonlinear system for a fixed ‘train-
ing’ input. (Details of a fast simulation algorithm are pre-
sented in the following section.) This procedure is depicted
in Figure 3. Given a training input signal u(¢) and initial
state zo we proceed as follows: 1) We generate a linearized
model around the initial state zo (i = 0); 2) We simulate
the behavior of the nonlinear system while ||z — ;|| < 6,
i.e. while the current state z is close enough to the last
linearization point; 3) We generate a new linearized model
around z;11 = x, take 7 := ¢ + 1 and return to step 2). In
this procedure we may fix the maximum number of mod-
els we want to generate. It should be stressed that this
piecewise-linear approach is different from methods pre-
sented e.g. in [3] or [9], where piecewise-linear approxima-
tions of individual elements of the circuit (e.g. diodes or
transistors) are considered and a very large collection of
linear models is used. In our algorithm piecewise-linear
approximation applies to a trajectory of the entire nonlin-
ear system, and therefore the number of linearized models
may be kept small.

As illustrated in Figure 3, the procedure proposed above
allows one to ‘cover with models’ only the part of the state-
space located along the ‘training’ trajectory (curve A). Let
us assume that the reduced order model (5) is composed of
linear models generated along this trajectory. If a certain
system’s trajectory, corresponding to a given input signal
u, lies within the region of the state space covered by these
models, we expect that the constructed piecewise-linear
model (5) will suitably approximate the input/output be-
havior of the initial nonlinear system (cf. curve B).* Tt
should also be stressed at this point that, although the
considered trajectory stays close to the ‘training’ trajec-
tory in the state space, the corresponding input signal can

3The idea of using a collection of linearized models along e.g. an
equilibrium manifold or a given trajectory is also used in design of
gain scheduled controllers for nonlinear systems — cf. [14], [16].

4The additional rationale for this observation is that in typical sit-
uations the dimensions of observable and controllable spaces of a dy-
namic system are much smaller than the dimension of its state space.
(This is expected to be true for the examples of nonlinear SISO dy-
namic systems presented in Section II.)
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Fig. 4. Comparison of system response (micromachined beam exam-
ple) computed with linear, quadratic and piecewise-linear reduced or-
der models (¢ = 40 and ¢ = 41) to the step input voltage u(t) = TH(t)
(H(t) =7 for t > 0 and H(t) = 0 for t < 0). The piecewise-linear
model was generated for the 8-volt step input voltage.

be dynamically very different from the ‘training’ input. In
other words, we may apply the piecewise-linear model for
inputs which are significantly different from the ‘training’
input, provided the corresponding trajectories stay in the
region of the state space covered by the linearized models
(cf. results in Section V). This case is also illustrated in
Figure 4, which shows computational results for the exam-
ple of a micromachined beam (cf. Section II). This figure
presents the system response to a 7-volt step input volt-
age, computed with an 41-th order piecewise-linear reduced
model of the device, generated for with an 8-volt step input
training voltage. (The model was generated using the fast
algorithm proposed in Section IV-C.) One should stress
that, in fact, the input to the system is the squared input
voltage u(t) = v%(t). One may note that the obtained out-
put signal approximates very accurately the output signal
computed with the full nonlinear model of the device (the
curves on the graphs overlap almost perfectly). In this case
the piecewise-linear model provides significantly more ac-
curate results than the linear or quadratic models based on
single expansions around the initial state.

A different situation occurs when the input signal causes
the trajectory to leave the region covered by the lin-
earized models (cf. curves C and D in Figure 3). Then
the piecewise-linear model (5) will most likely not provide
significantly better approximation to the nonlinear system
than a simple linear reduced model (6). This situation
has been illustrated in Figure 5. Due to a significant dif-
ference in scales (amplitudes) between the ‘training’ in-
put (u(t) = 7?) and the testing input (u(t) = 9?) the
piecewise-linear model is no longer able to reproduce ac-
curately the response of the nonlinear system. Now, if we
generate the piecewise-linear model with a 9-volt training
input (cf. Figure 6), then this model is able to reproduce
accurately the nonlinear response. One should note that
in this case the piecewise-linear model is able to accurately
model the dynamics of a highly-nonlinear pull-in effect (the
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Fig. 5. Comparison of system response (micromachined beam ex-

ample) computed with linear, quadratic and piecewise-linear reduced
order models (¢ = 40 and g = 41) to the step input voltage u(t) =9
(t > 0). The piecewise-linear model was generated for the 7-volt step
input voltage.

beam is pulled down to the substrate), which is of particu-
lar importance in applications [8]. One may note {rom the
graph that the linear model is not able to reproduce this
phenomenon, while the quadratic model is unable to repro-
duce the correct dynamics. Still, this example shows that
if the piecewise-linear model is to be used for inputs with
very different scales one should consider more complicated
schemes of generating the linearized models, based e.g. on
multiple training inputs.

One may note that the proposed method of generating
the piecewise-linear model of a nonlinear dynamic system
requires performing simulation of the initial nonlinear sys-
tem (1) which may be very costly, due to the initial size of
the problem. In order to reduce the computational effort we
note that it is unnecessary to compute the ezact trajectory
for the ‘training’ input in order to generate a collection of
linearized models. In fact it suffices to compute an approz-
imate trajectory and obtain only approximate linearization
points. This means we may perform a much faster approx-
imate simulation (performed e.g. in the reduced order state
space) and leads us to the following algorithm.

C. Fust generation of piecewise-linear models

This section presents an approach towards efficient gen-
eration of piecewise-linear reduced order model described
above. The proposed numerical algorithm proceeds in the
two stages: 1) Generation of the reduced basis, used to
represent approximately the state space vectors (z); 2) Ap-
proximate simulation of the nonlinear system response to
the training input, using the reduced basis and piecewise-
linear approximation of nonlinear function f(z) along a
trajectory of the nonlinear dynamic system (1). This ap-
proach shares features with reduced basis methods for solv-
ing parabolic problems [5]. Below these two stages are de-
scribed in more detail.
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C.1 Generation of the reduced basis

The reduced order basis V = [v1,...v,], where v; € RV,
is obtained in the following three steps:
1. We consider the linearization of the dynamic system (1)
around the initial state xo:

{ da(ci(ti) — f(ilfo) + Ao(gj — ;L'()) + Bu(t) (10)

y(t) = CTa(t)

where Ay is the Jacobian of f(z), evaluated at z = zo. We
construct an orthogonal basis V' = {v1,...,v.} in the
[-th order Krylov subspace:

KI(AO_I,AEIB) = span{AalB, .. .,AO_lB},

using the Arnoldi algorithm [17] (or block Arnoldi algo-
rithm [13] if the number of inputs M > 1). This choice of
basis V ensures that [ moments of the transfer function of
the reduced order linearized model match [ moments of the
transfer function for the original linearized model (10) [11].
2. We orthonormalize the initial state vector xo with re-
spect to the columns of V and obtain vector vjpr41. To
this end we may use e.g. the SVD algorithm.

3. We take V as a union of V and vMy1: V = [V;leH].
So, the final size of the reduced basis equals ¢ = IM + 1.
The last two steps ensure that we will be able to repre-
sent exactly the initial state zy in the reduced basis V.
(Note that if the initial state of the system is zero, then
steps 2 and 3 become unnecessary.) Exact representation
of the initial state assures that we may correctly start the
fast approximate simulation of the nonlinear system in the
reduced order space as described in the following section.?

5We presented only the simplest (and the least computationally ex-
pensive) algorithm of generating the reduced basis V. One may easily
extend this scheme to construct a basis which includes e.g. states used
as subsequent linearization points and Krylov subspaces correspond-
ing to these states.



C.2 Fast approximate simulation

The second stage of the proposed MOR algorithm may
be summarized in the following steps:
1. Using basis V construct and save a reduced-order model
of dynamic system (1), linearized around state z;:

dt

y=CTVz

{ dz — VTAZ'VZ + VTf(.'L'z) - VTAZ'.’L‘Z' +VTBu (11)

where 7z is a reduced order approximation of state vector x
(z = Vz). Initially z; = xo, where x is the initial state.
This step requires computation of the Jacobian A; of f(x)
(at £ = ;) in the non-reduced state space.

2. Simulate reduced order linear dynamic system (11),
i.e. compute z(t) for subsequent time steps ¢ = t;, while the
state Vz(¢;) is close enough to the initial state z;, i.e. when:

IV z(t;) = @all/l:l] <o

where « is an appropriately selected constant (cf. the com-
ments below).

3. Change the linearization point from z; to z;41 = V 2(t;)
(i := 1+ 1) and return to Step 1 of the algorithm.

There is an important issue concerning the piecewise-
linear MOR algorithm proposed above. In order to be able
to reproduce nonlinear effects in the behavior of the dy-
namic system, the linearization points should be changed
‘frequently enough’ during the proposed piecewise-linear
simulation. This is determined by the constant parameter
a in the algorithm presented above. The proper choice of
a was found to depend significantly on the amplitude of
the input signal u(¢).

A simple procedure for determining an appropriate value
of a automatically is the following. First, for a given in-
put signal, we perform a reduced order simulation of the
linearized dynamic system, with linearization around the
initial state, to find the final (steady state) vector z7. Al-
though, in most cases, zr will not be the correct steady
state of our nonlinear dynamic system, it will give us infor-
mation about the scale of changes between the initial and
final state:

d = ||z — zo||/[l20]|

(If zg = 0 we may take d = ||zr||.) It is clear that in order
to capture any nonlinear effects one has to select the value
of a such that a < d. In practical situations it is usually
enough to select a@ = d/5 or o = d/10.

D. Fast piecewise-linear simulator

One should also note that the MOR algorithm presented
in Section IV-C.2 may be used as a fast simulator for non-
linear dynamic systems. The simulator (as described in
Section IV-C) has been implemented for the example of
a nonlinear circuit given in Section II. Selected results of
numerical tests are presented below.

Figure 7 shows the output voltage v1(t) for a step in-
put current, computed using full order linear and quadratic
models as well as the proposed piecewise-linear simulator.
The reference result is computed with a simulator using a
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put current ¢(¢t) = H(t —3) (H(t) = 1 for t > 3 and H(t) = 0 for
t < 3). N =1500.

TABLE I
QUALITY OF APPROXIMATION FOR LINEAR, QUADRATIC AND
PROPOSED PIECEWISE-LINEAR MODEL FOR THE STEP INPUT CURRENT.
v = v(t) IS THE COMPUTED OUTPUT VOLTAGE AT NODE 1, ¥,c¢ IS THE
REFERENCE OUTPUT VOLTAGE COMPUTED WITH FULL NONLINEAR
MODEL.

Model et
[vresll2
linear, N = 1500 0.384
quadratic, N = 1500 0.049
piecewise-linear, N = 1500, ¢ = 30 0.003

full nonlinear model. In the simulation the number of time-
steps was 1000 (T' = 10, AT = 0.01), the piecewise-linear
simulator used the reduced basis of order ¢ = 30 (the orig-
inal system size was N = 1500) and the linearization point
changed 20 times (i.e. it used 21 different linear models dur-
ing the simulation). The output voltage obtained with this
method matches very well the reference result (the curves
overlap almost perfectly). Table I shows the relative error
between the voltage v = [v(0), v(AT),...,v(T)] computed
with linear, quadratic and piecewise-linear simulators and
the reference voltage v,.; obtained with the full nonlin-
ear model of the circuit. It is apparent that the proposed
piecewise-linear algorithm gives significantly more accurate
results than the linear or quadratic simulations. Unlike the
two other it is also able to accurately match the steady state
of the system.

Table II compares performance of the full nonlinear sim-
ulator of the considered nonlinear circuit and the proposed
piecewise-linear solver, using reduced basis computations
for three different inputs. In order to assure appropriate
accuracy, in the case of the step input the order of the re-
duced basis applied equaled ¢ = 30 (N = 1500), and for
the sinusoidal input — ¢ = 10 (N = 100). Both algorithms
were implemented in Matlab, therefore the execution times
should be used for comparison only. High performance



TABLE II
COMPARISON OF SIMULATION TIMES FOR THE FULL ORDER NONLINEAR
SIMULATOR AND THE PROPOSED PIECEWISE-LINEAR REDUCED ORDER
SIMULATOR.

Simulation time
[s], piecewise-
linear model

Simulation
time [s], full
nonlinear model

Input,
problem size

i(t) = H(t —3)

(N = 1500) 9573.3 80.8
i(t) = exp(—t)

(N = 1500) 11713.1 110.9
i(t) = sin(27t/10)

(N = 100) 25.4 2.7

implementations would most likely give significantly lower
absolute execution times. The tests were performed in a
Linux workstation with Pentium III Xeon processor. It is
apparent that for either small or large initial problem sizes
the piecewise-linear simulator is significantly faster than
the full nonlinear solver. For N = 1500 a 100-fold acceler-
ation in computation time was achieved.

V. COMPUTATIONAL RESULTS
A. Model verification — transient simulations

This section presents results of computations using
piecewise-linear reduced order models, obtained with the
MOR technique proposed in Section IV-C. Our main goal
is to find out whether this technique does really generate
a model of our system. Let us recall that, in the proposed
MOR algorithm, the model (which basically consists of a
collection of reduced order ¢ x ¢ matrices Ag,, A1, -y
A(s—1)r) is obtained by performing a fast simulation for a
given training input signal. In order to show that we have
indeed generated a model we should verify that it gives
correct outputs for not only for the input it was generated
with, but also for other inputs.

This verification was done experimentally. We consid-
ered our nonlinear circuit for N = 100 and generated a
reduced order piecewise-linear model of order ¢ = 10 using
a step input i(t) = H(t—3). For this example, the lineariza-
tion point changed 4 times, therefore our model consisted
of 5 reduced order matrices Aoy, ..., A4r. The reduced or-
der model was tested for different inputs, including the step
input used to generate it. Three of the results are shown in
Figures 8-10. Figure 8 shows the result for the step input
(the same input as used for model extraction). Figures 9
and 10 show the reduced order simulation time for a cos-
inusoidal input and an exponential input, respectively. In
both cases the output voltages obtained with the piecewise-
linear reduced order model accurately approximate the ref-
erence voltages (the curves overlap almost perfectly). This
indicates that our reduced order system provides a sensible
model for the initial nonlinear circuit.

Figure 11 provides an analogous test for the example
of a micromachined fixed-fixed beam described in Section
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Fig. 8. Comparison of system response (nonlinear circuit example)
computed with linear, quadratic and piecewise-linear reduced order
models (of order ¢ = 10) for the step input current #(t) = H(t — 3)
(H(t)=1for t >3 and H(t) =0 for t < 3).
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Fig. 9. Comparison of system response (nonlinear circuit example)
computed with linear, quadratic and piecewise-linear reduced order
models (of order ¢ = 10) for the input current #(¢t) = (cos(27t/10) +

1)/2.

II. In this case the reduced order model (¢ = 41) was
generated for the step 8-volt training input voltage. (The
model used 9 linearization points.) Then it was tested for
a cosinusoidal input with a 7-volt amplitude. Once again,
the transient obtained with the proposed model matches
very accurately the reference result obtained with the full
nonlinear model of order N = 880.

Figures 8-11 also provide a comparison of the pro-
posed piecewise-linear reduced order model with linear and
quadratic reduced models, generated using methods de-
scribed in [1], [11] and [17]. It is apparent from the graphs
that the piecewise-linear reduced order model gives signifi-
cantly more accurate results than the linear and quadratic
reduced order models using Taylor expansions around the
initial state. It should be stressed at this point that all
models (linear, quadratic and piecewise-linear) were of the
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Fig. 10. Comparison of system response (nonlinear circuit example)

computed with linear, quadratic and piecewise-linear reduced order
models (of order ¢ = 10) for the input current i(¢) = exp(—t).
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Fig. 11. Comparison of system response (micromachined beam ex-

ample) computed with linear, quadratic and piecewise-linear reduced
order models (of order ¢ = 40 and ¢ = 41) for the input voltage
u(t) = 7cos(4wt). The piecewise-linear model was generated for the
8-volt step input voltage.

same order and, moreover, applied the same basis V' (ob-
tained with the procedure described in Section IV-C.1).

B. Performance and complexity of the MOR algorithm

Table IIT shows a comparison of performance of the dis-
cussed MOR techniques and the reduced order solvers. All
the algorithms were implemented in Matlab. The tests
were performed in a Linux workstation with Pentium III
Xeon processor. One may note that performance for linear
and piecewise-linear models is comparable. The genera-
tion of the quadratic model is significantly more expen-
sive, due to the costly reduction of the Hessian matrix,
which requires ¢? computations of the matrix-vector prod-
uct W(z ® x), where W is a full order N x N? Hessian
matrix (usually represented implicitly — cf. [1]).

TABLE II1
COMPARISON OF THE TIMES OF GENERATION OF THE REDUCED MODEL
AND REDUCED ORDER SIMULATIONS FOR THE QUADRATIC AND
PIECEWISE-LINEAR MOR TECHNIQUES. THE INITIAL PROBLEM HAD
SIZE N = 1500. THE REDUCED MODEL HAD SIZE ¢ = 30. THE TESTS
WERE RUN FOR THE NONLINEAR CIRCUIT EXAMPLE.

MOR Model generation Simulation
method time [s] time [s]
linear

MOR 44 .8 1.18
quadratic

MOR 2756.5 31.5
piecewise-

linear MOR  80.7 8.0

The memory complexity of the piecewise-linear reduced
order solver is O(sq?), where s is the number of lineariza-
tion points. Consequently, the memory cost is roughly s
times larger than for the linear reduced order simulator
(which is O(g?)). The cost of the quadratic reduced or-
der solver is O(q®) (the reduced order Hessian must be
stored explicitly as a matrix), so if s & ¢, then the memory
requirements for the piecewise-linear solver are approxi-
mately the same as for the quadratic solver. For our ex-
ample (cf. Figures 8-11, s = 5 = ¢/2 or s = 9 < ¢/4), so
in fact the memory used by the piecewise-linear algorithm
equaled roughly only half (or a quarter) of the memory
used by the quadratic solver.

VI. CONCLUSIONS

In this paper we have proposed an efficient numerical
approach towards automatic model order reduction and
simulation of nonlinear systems. The results obtained for
the examples of a nonlinear circuit and a micromachined
beam indicate that this method provides good accuracy for
different applications. The method also proves to be char-
acterized by low computational and memory requirements,
therefore providing a cost-efficient alternative for the non-
linear MOR techniques based on linear and quadratic mod-
els.

Although the algorithm in its current state has proved to
be very effective, a number of its aspects require further in-
vestigation, including the procedure of merging (weighting)
the linearized models or the method of selecting lineariza-
tion points. There are also many possible extensions of the
presented technique, which may include application of mul-
tiple reduced bases (instead of a single basis generated at
the initial state) in the reduced order piecewise-linear sim-
ulators or developing schemes for automatic model gener-
ation with multiple ‘training’ inputs, which may allow one
to extend the validity of the quasi-piecewise-linear reduced
order model to inputs with different scales of amplitudes.

It should be stressed that application of the discussed
piecewise-linear reduced order approach is not limited to
the class of SISO or MIMO dynamic systems found in cir-
cuit or MEMS modeling. The proposed technique may be



easily extended for use in macromodeling of second order
systems arising in e.g. coupled domain problems involving
micromachined electromechanical devices.
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