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Abstract

The thermodynamic stability range of coherent Ge quantum dots capped with an
epitaxial Si shell is studied. The critical radius is evaluated as a function of Si
shell thickness and ge nanocrystallite radius by comparing the energy of the system
in the coherent and incoherent state. The system is found to remain coherent up
to a Ge nanocrystallite radius of about 100 A, irrespective of the Si shell thickness.
Nanocrystallites of radii larger than 270 A lose coherency by the generation of perfect
dislocation loops. In nanocrystallites of intermediate radii ( between 100 A and 270
A), the coherency is lost by the introduction of partial dislocation loops enclosing a
stacking fault. As the shell thickness decreases, the critical radius increases.

Further, the kinetics of inter-diffusion of the Ge nanocrystallite with the Si host.
is studied. A multi-body empirical potential model, derived from ab-initio pseudo-
potential calculations, is used to calculate the activation energy for interdiffusion by
the concerted exchange mechanism. The activation energy is found to be dependent
on the atomic environment and the strain due to the nanocrystallite.

Using this model, we find that the activation energy can be calculated accurately
(to within 0.01 eV) by considering only the chemical identity and arrangement of
the atoms in the first and second neighbor shells. Depending on the first neighbor
atomic environment the activation energies could differ by 0.2 to 0.4 eV. The effect of
second neighbor environment on activation energy follows the same trend as the effect
of first neighbors, but is of a smaller magnitude (0.07 eV). The activation energy is
also dependent on the long range chemical identity of the diffusing medium. The
relative effect of these parameters on activation energy has been clearly established.
These effects of atomic environment on activation energy are applicable to any Si-Ge
diffusion by the concerted exchange mechanism.

In the coherent nanocrystallite/host system, in addition to these effects, strain is
found to play an important role. Even for systems with the same atomic environment,
the activation energy is anisotropic with respect to the direction in which the atoms
exchange relative to the radial direction from the center of the nanocrystallite. The
activation energy for a radial exchange is lower than that for a tangential exchange
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by 0.4 eV. This strain induced anisotropy in activation energy decreases to 0.05 eV
as the distance from the interface increases.
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Chapter 1

Introduction

One-dimensionally quantum confined semiconductor thin film ("quantum well") struc-

tures have emerged as important materials systems in today's microelectronic and

optoelectronic technologies. These lattice mismatched thin film heterostructures rely

on the difference in bandgap of the semiconductors to attain quantum confinement.

A critical factor in the technological success of these strained layer epitaxial systems

lies in the ability to grow coherent interfaces without defects, as these defects are

generally detrimental to electrical and optical properties.

Recently, experimental advances in materials processing have permitted the fabri-

cation of three-dimensionally quantum confined semiconductor nanocrystallite ("quan-

tum dot") systems positioned within semiconductor host materials [10, 11, 12]. Nanocrys-

tallites ("quantum dots") are semiconductor crystallites in the 1-10 nm diameter

range consisting of hundreds to thousands of atoms with bulk bonding geometry.

These materials represent the three-dimensionally confined analogs to quantum well

heterostructures. As with quantum wells, lattice coherency at the dot/host interface

holds a key in defining the electronic, optoelectronic, and photonic characteristics

of these heterostructures. Imperfections around the interface can arise from lat-

tice imperfections (misfit dislocations) or from interdiffusion of atoms between the

nanocrystallite and the host.

It is very difficult to experimentally study the nature of the interface. Now, with

the availability of faster computers, it is possible to gain an understanding into the
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stability of the interface between the nanocrystallite and the host. In this thesis, we

study the interface between a Ge nanocrystallite and a Si host.

In Chapter 2, we calculate a lower bound for the critical radius of the Ge nanocrys-

tallite in a Si host. The energy of the system in the coherent state and the incoherent

state is calculated from elasticity theory. The critical radius is calculated by setting

the two energies to be equal. We find that very large nanocrystallites can be grown

coherently without the generation of dislocations.

In Chapter 3, we study the interdiffusion of Ge and Si on the atomic scale by the

concerted exchange mechanism. We develop a multi-body empirical potential model

to calculate the activation energy for interdiffusion. Using this model, we show the

dependence of activation energy on various parameters such as atomic environment

and strain. With this knowledge, it would be possible to simulate the diffusion of the

interface.



Chapter 2

Three-Dimensional Epitaxy :

Thermodynamic Stability Range

of Coherent Germanium

Nanocrystallites in Silicon

2.1 Introduction

Theoretical treatments to describe the epitaxial relationships observed on mismatched

thin film systems ("quantum wells") are well developed. This extensive literature

builds on the pioneering efforts of Frank and van der Merwe [1, 2, 3, 4, 5, 6],and

Jesser and Matthews [7, 8, 9] who predicted that a coherent epilayer of a crystal can

be grown on a substrate of different lattice parameter. A direct result of these efforts

is the community's present understanding of the concept of a "critical thickness" that

defines the maximum size at which the misfitting layer remains coherent with the host

matrix.

As with quantum wells, in quantum dots the lattice coherency at the dot/host

interface holds a key in defining the electronic, optoelectronic, and photonic charac-

teristics of these heterostructures. A theoretical understanding of the morphological

"i*ll~·E"BDRB~Ri~L~xr*g*F1~(·ZQ**~·LX~U-



limits of three-dimensional epitaxy in these systems is needed to accompany the ex-

perimental efforts as the promise of quantum dot materials is further explored. An

appropriate first step is the determination of a "critical radius" that describes the

largest sphere that can be coherently supported in a mismatched system of nanocrys-

tallite and host.

Although nanocrystallite structures have to date not been studied from a point

of view of coherency, the conditions under which a precipitate is coherent with its

matrix has been known by the metallurgical community for many decades. In 1940,

Nabarro [14, 15] determined the elastic strains developed when a precipitate is formed

in an alloy. Nabarro [15], Jesser [16], Brown [17, 18] and others calculated the critical

size of precipitates. Brown [17] considered the interaction of one dislocation with

coherent spherical precipitates and evaluated the critical size from a thermodynamic

point of view.

We present here the first effort to describe the critical limits of epitaxy for three

dimensionally confined nanocrystallites in a crystalline host. Building simultaneously

on the principles of the quantum well strained layer epitaxy and on the understanding

of coherent precipitates in alloys, we have calculated the critical radius of a semicon-

ductor of different lattice parameter. We choose as our representative system the

epitaxial positioning of Ge nanocrystallites in a crystalline Si host.

2.2 Thermodynamic Considerations

The lattice parameter of bulk Ge is approximately 4% larger than that of Si. When

a thick Si shell is grown epitaxially on a Ge nanocrystallite of bulk lattice parameter,

the lattice misfit causes coherency strains to develop in the system. As the radius

of the nanocrystallite increases, the stress increases and reaches a stage where the

misfit strain can no longer be accommodated coherently. At this point coherency is

lost by the formation of defects (i.e., dislocations) and the system transforms to an

incoherent state.

The coherent-to-incoherent transformation becomes thermodynamically favorable



if the total energy of the system after transformation is less than the total energy

before transformation, i.e., EIncoherent <• ECoherent. However, this is not the only

requirement for this transformation to take place as the nucleation kinetics of the

defect may play an important role. In planar epitaxy it is found that dislocation-

free interfaces can be grown upto a film thicknesses 5 to 10 times larger than the

critical thickness predicted by Matthews [19, 20] and Van der Merwe [1, 6]. This

metastability in the system has been explained by the slow kinetics of the system and

or the insensitivity of the experimental techniques used [21]. The thermodynamic

critical radius which is determined in this thesis. can therefore be seen as the minimal

radius at which Si capped Ge particles can be kept coherent.

At the critical radius, the energy of the system in the coherent state and incoherent

state are equal. In the coherent state, the energy of the system is the elastic strain

energy caused by the misfit,

ECoherent = EElastic (2.1)

In the incoherent state the stress field of the defect interacts with the stress field of

the misfitting nanocrystallite and relieves part of the misfit strain, thereby releasing a

part of the elastic strain energy, leaving a residual elastic energy. In addition, energy

is required to create the defect. Therefore, the energy of the system in the incoherent

state is,

EIncoherent = EResidual Elastic + EDefect (2.2)

In calculating these energy contributions, we assume that both nanocrystallite

and shell materials are elastically isotropic and that the laws of continuum mechanics

are applicable to the nanocrystallite/shell systems.
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Silicon

Germanium

Figure 2-1: Schematic diagram: Ge nanocrystallite capped with Si shell

2.2.1 Coherent State

Elastic Strain Energy

We assume that the spherical Ge nanocrystallite is epitaxially capped with a concen-

tric Si shell having the same orientation as the nanocrystallite. A schematic diagram

of the system is shown in Fig. 2-1. The inner region, 0 < r < a, is the Ge nanocrys-

tallite and the outer region a < r < b is the Si shell. We consider a range of Si shell

thicknesses, t = (b - a) ranging from 0 to infinity, and evaluate the critical radius as

a function of Ge nanocrystallite radius and Si shell thickness.

The total elastic strain energy is the elastic strain energy stored both in the

germanium nanocrystallite and the Si shell, which can be computed from the stress

and strain fields.

The system possesses spherical symmetry and the displacements and fields are

only a function of the radial coordinate r. The misfitting Ge nanocrystallite produces

a tensile stress on the interface, while the outer surface of the Si shell is traction free.

The stress and strain fields inside the spherical germanium nanocrystallite are

purely hydrostatic. The hydrostatic stress component is the interface pressure, p,

between the Ge nanocrystallite and the Si shell.



Ge Ge G = (2.3)

For a stress free outer boundary this interface pressure is given by [221

21 - , (1 - c)

where, Esi is the Young's modulus of Si, vsi is the Poison's ratio of Si,

c =' is the volume fraction of the nanocrystallite

m = Esi (l-2vsi) (1--1Ge) is the elastic mismatch parameter and(1-vsi) Esi EGe
=( 3KG,+4 sk) as ) is the constrained strain for a spherical geometry as

defined by Eshelby [23] and Nabarro [14] , KGe is the Bulk modulus of Ge and 1si

the shear modulus of Si. The constrained strain is calculated assuming that the lattice

parameter of the nanocrystallite is the same as in bulk.

The stress and strain fields in the silicon shell vary according to the distance from

the center of the nanocrystallite [24].

cpb
rrsi = (1- c) - (2.5)

S= (1- c) 1 + b (2.6)

The radial and tangential components of the strain fields (for a 50 A A Ge nanocrys-

tallite with a 950 A thick Si shell) are shown in Figs. 2-2 and 2-3 respectively.

For the system considered, the elastic strain energy is.

1 (3art G e) 4 ( 3 ) +1fa Si Si si s\) (41rr2dr) (2.7)EElastic = (3rrGerGr ( 3 a e +- 2sbes+) 47r2dr) (27)

where the first term is due to the Ge nanocrystallite and the second term is due

to the Si shell. Upon substitution of the relevant terms it simplifies to,
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EEasti = ( 32 [- 2 Ge 1 - 2si 1 1 (28)Ealtic 3 2) + + (2.8)
1 + Ge Ge 1 + VSsiSi (1 - c) 2)si (1 - c)

2.2.2 Incoherent State

The interface between the Ge nanocrystallite and the Si shell can become incoherent

when the introduction of interfacial defects lowers the energy of the system.

Defect Energy

Our predictions of critical radius of the Ge nanocrystallite will depend on our judicious

choice of the possible incoherency defects. We consider both strain relief by a perfect

dislocation loop and by a stacking fault bounded by a partial dislocation loop. It is

reasonable to assume that a dislocation loop is preferred over a set of dislocations

that terminate at the surface.

To determine the dislocation energy we assume, that the energy required to create

the dislocation loop in a finite medium is the same as the energy required to create the

dislocation in an infinite medium. This assumption is valid until the shell thickness

becomes so small that the dislocation interacts with the free surface.

The energy to create a circular dislocation loop in an infinite medium, with Burgers

vector perpendicular to the plane of the loop is calculated by approximating the

true dislocation configuration by piece wise straight configurations. Each segment

of the loop is acted upon by a force caused by the stress originating from all other

parts of the loop, and the work done against all these forces is the work done to

create the dislocation loop. Thus, the interaction energy between all segments of loop

(approximated into a piece wise-straight configuration) can be calculated accurately

as [25]:

Si•lb12  
' (Sarioop

ELoo, = 2-zri toop(4r (1 -2 In Ibl 1) (2.9)

where, a is the dislocation core parameter, rtoop is the radius of the dislocation loop
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.1. ...

and jlb is the burgers vector of the dislocation loop.

Perfect Dislocation loops: We assume the dislocations to be vacancy type pris-

matic dislocation loops with burgers vector (Ibl = < 110 >) perpendicular to the

plane of the loop. The dislocation loop is assumed to be at the interface between

the Ge nanocrystallite and the Si shell. Further, the radius of the dislocation loop is

assumed to be the radius of the Ge nanocrystallite.

As the dislocation loop is created at the interface between the Ge nanocrystallite

and the Si shell, we use the average shear modulus of the interface [26] Iinterf ace
21sioGe in equation 2.9.

(Csi +AGe)

The defect energy in equation 2.2 for this defect is the energy of the dislocation

loop.

Partial dislocations enclosing a stacking fault: An alternate mechanism for

strain relief is assumed to be by a Frank partial dislocation loop with burgers vector

(bl = < 111 >) bounding an intrinsic stacking fault. The energy required to create

this partial loop is given by equation 2.9, and the energy to create the intrinsic stacking

fault is

EStacking Fault 1 rr~oop' (2.10)

where, 7 is the stacking fault energy of Ge. The defect energy in equation 2.2 for this

defect is,

EDefect = ELoop + EStacking Fault (2.11)

Residual Elastic Energy

The stress field of the dislocation relieves part of the strain in the misfitting system.

The energy released by loop formation (interaction energy) is evaluated without using

explicit expressions for the field of the dislocation, following the general procedure

outlined by Eshelby [23].

Einteraction = 7rr2oo0 plbjl (2.12)



where, rloo1 is the radius of the dislocation loop formed at the interface between the

Ge nanocrystallite and the Si shell, p the interface pressure as defined in equation

2.9 and IbI is the Burgers vector of the loop formed. In the case of partial dislocation

enclosing a stacking fault, there is no strain relief by the stacking fault and all the

strain relief is by the partial dislocation.

The contribution of this strain relieving mechanism to the residual elastic energy

of the system can be considered by subtracting the interaction energy from the elastic

energy.

EResidual Elastic = EElastic - Elnteraction (2.13)

2.3 Results and Discussion

In calculating the energies of the states to estimate the critical radius, we use the

following values for the parameters: Isi = 66.6 GPa, Esi = 162.9 GPa, usi = .22,

Ge = 54.6 GPa, EGe = 132.8 GPa, vGe = .21[27], /Ge = 60 mJ/m2[28], a = 4[29].

Fig. 2-4, shows the critical radius of the Ge nanocrystallite as a function of the Si

shell thickness. We find that, for very thick Si shells (> 10001), the Ge-Si interface

remains coherent up to a Ge nanocrystallite radius of 100 A. The critical radius of

the Ge nanocrystallite in a very thick shell is found to be approximately three times

the critical thickness of a Ge film on an infinite Si substrate. This can be explained in

terms of the interface area to volume ratio. For a given volume of Ge nanocrystallite

or film, the interface area between the spherical nanocrystallite and the Si matrix is

less than the interface area between the Ge film and Si substrate. Therefore, the strain

relief provided by introducing dislocations for the Ge nanocrystallite is smaller than

for the Ge film of the equal volume. Hence generating dislocations in a nanocrystallite

becomes less favorable until much larger radii.

For a thinner Si shell, the critical radius of the Ge nanocrystallite increases signif-

icantly as the total strain energy of the system decreases. As the Ge nanocrystallite

radius increases, it becomes energetically less favorable to create partial dislocations

enclosing stacking faults at a Ge nanocrystallite radius of greater than 270 A. There-
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Figure 2-4: Contour of critical radius as a function of Si shell thickness and Ge
nanocrystallite radius

fore, coherency is lost by forming a perfect dislocation loop rather than creating a

partial dislocation loop enclosing a stacking fault.

We now asses the validity of the approximations made in our calculations. At

very small shell thicknesses, the energy required to create the dislocation in a finite

medium is not equal to that in an infinite medium. The effect of the free surface on the

dislocation loop has to be considered in evaluating the energy required to generate the

dislocation. This interaction between the dislocation and the free surface decreases

the energy of the system in the incoherent state, hence the critical radius for systems

with very small shell thickness will be lower than what we have estimated.

The values used for the parameters in these calculations are approximate. We

tested the sensitivity of our results on the value used for the parameters.

In evaluating the energy required to create a dislocation loop (perfect or partial)

we use a dislocation core parameter, a, of 4 [29], which is typical for diamond cubic

Perfect dislocation ----
Partial dislocation enclosing

an intrinsic stacking fault --.

INCOHERENT

.
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___Clf%
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Figure 2-5: Variation of the critical radius of Germanium as a function of the core
radius of the partial dislocations considered (assuming partials and stacking faults
cause the loss of coherency)

materials. However, other values ranging between 1 and 5 have been used in the

literature. Therefore the critical radius is also evaluated as a function of dislocation

core parameter at various shell thicknesses, as shown in Fig.2-5. The critical radius is

found to vary substantially with the core parameter a. The effect of dislocation core

parameter on the critical radius is more pronounced at smaller Si shell thicknesses.

In evaluating the energy required to create an intrinsic stacking fault, we use a

Ge stacking fault energy of 60 mJ/m 2. However, there remains some disagreement

in measurements of stacking fault energies in Ge. Intrinsic stacking fault energies

of 30 mJ/m 2 [30] and 60 mJ/m 2 [28] have been reported in literature. The critical

radius is evaluated as a function of stacking fault energy at various shell thicknesses,

as shown in Fig.2-6. The critical radius is found to increase as the stacking fault

energy increases. The effect of stacking fault energy on the critical radius is more

pronounced at smaller Si shell thicknesses.

The interaction energy (energy released by loop formation) can at most be equal

SI I I

Shell Thickness = 70 A -e--
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Figure 2-6: Effect of Stacking fault energy on the critical radius

to the elastic strain energy of the system. In our model, this condition is satisfied

only for Ge nanocrystallites with radii greater than 20 A, limiting the applicability

of this method.

2.4 Conclusions

The system is coherent up to a Ge nanocrystallite radius of about 100 A, irrespective

of the Si shell thickness. Nanocrystallites of radii larger than 270 A lose coherency

by the generation of perfect dislocation loops. For intermediate Ge nanocrystallite

radii (between 100 A and 270 A) . the coherency is lost by the introduction of partial

dislocation loops enclosing a stacking fault. As the shell thickness decreases, the

critical radius increases.

The significant effect of the stacking fault energy and dislocation core parameter

on the critical radius is found to be more significant at smaller shell thicknesses.

indicating the approximate nature of these calculations. Typical nanocrystallite radii
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of experimental interest are of the order of 50 A or less. Therefore, we conclude

that extremely large Ge nanocrystallites capped with Si shells can be grown without

producing dislocations. We view this as an important determination in our efforts to

experimentally grow these structures.
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Chapter 3

Effect of atomic environment and

strain on the activation energy for

inter-diffusion of Ge in Si

3.1 Introduction

Electrical properties of nanocrystallites depend critically on the "perfection" of the

interface between the nanocrystallite and the host. Imperfections around the inter-

face can arise from lattice imperfections (misfit dislocations) or from interdiffusion of

atoms between the nanocrystallite and the host. Coherency loss by the generation of

lattice imperfections has been investigated in Chapter 2. In this chapter, we study

the interdiffusion of atoms between the nanocrystallite and the host.

Interdiffusion is observed experimentally at temperatures above 1000' C, in one-

dimensional Si/Ge quantum well heterostructures [31, 32]. However, unlike quantum

wells, the interface between the nanocrystallite and the host has all crystallographic

planes. This makes interdiffusion more complex to study in quantum dot systems.

From a purely thermodynamical standpoint, at 10000 C, Si and Ge form a contin-

uous solid solution (Fig. 3-1). Therefore, at equilibrium, we would expect the Ge-Si

interface to be completely intermixed. However, the thermodynamic driving force
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Figure 3-1: Si-Ge Phase diagram showing a continuous solid solution at high temper-
atures.

alone will not determine how quickly this equilibrium will be reached and kinetic

factors have to be taken into account.

When interdiffusion occurs, the atoms to be exchanged go from the initial state to

the final state through an activated state. The activated state corresponds to the state

with maximum energy (activation energy) on the minimum energy path for diffusion.

Depending on the thermal energy available, the system may or may not overcome

this activation energy barrier. Therefore, as a first step towards understanding the

interdiffusion path at short times, we computed the activation energy for the inter-

diffusion of Ge and Si in the nanocrystallite/host system. The activation energy

depends on the diffusion mechanism (the exact path to exchange), strain, and the

atomic environment (local and long range). In this thesis, we study the effect of these

parameters on the activation energy.
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Figure 3-2: Vacancy Mechanism: The diffusing atom moves down by one nearest-
neighbor distance on the regular lattice of atoms. This is accomplished by jumping
into the vacancy below it.

There is considerable disagreement on the diffusion mechanism in Si and in Ge.

Therefore, before calculating the activation energy we need to establish the diffusion

mechanism taking place. This will be discussed in the next section.

3.2 Diffusion mechanisms

Self Diffusion in bulk crystalline Silicon and Germanium:

Diffusion may occur through an indirect mechanism (vacancy or interstitialcy

mechanism) or through a direct mechanism (nearest-neighbor exchange, ring, or con-

certed exchange mechanism) [33].

The indirect diffusion mechanism requires intrinsic defects such as vacancies or

interstitials for facilitating the diffusion process.

The Vacancy mechanism involves the diffusion of the diffusing atom into the va-

cancy site and a consequent movement of the vacancy in the opposite direction (Fig. 3-

2). It is argued that this mechanism controls the diffusion in Ge at all temperatures

and in Si at temperatures below 1000' C [33].

The Interstitialcy mechanism involves the diffusion of a self interstitial (Fig. 3-
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Figure 3-3: Interstitialcy mechanism: In (a) the self interstitial has approached thediffusing atom; in (b) the diffusing atom has been temporarily displaced to an inter-stitial site while the original self interstitial has occupied a regular lattice site. In (c)the diffusing atom has re-occupied a regular lattice site by kicking a self atom intoan interstitial site.

3a) into the site of the diffusing atom by displacing it to another interstitial site.
The diffusing atom is temporarily at the interstitial site (Fig. 3-3b) until it displaces
a neighboring atom into another interstitial site and occupies a regular lattice site
(Fig. 3-3c). It is argued that this mechanism controls the self-diffusion in Si above
10000 C [331.

By contrast, the direct mechanisms do not require the generation of any defects
like vacancies or self interstitials. The diffusing atom diffuses in an otherwise perfect
lattice through a direct exchange of two atoms on neighboring sites. This can occur
in a single step as in the direct exchange (Fig. 3-4) and ring mechanisms (Fig. 3-5)
or through a sequence of steps as in the concerted exchange mechanism.

The single step exchange processes occur by the rotation of the two atoms about
their common center of of separation. This involves considerable distortion of the
surrounding structure. Therefore, they are energetically unfavorable compared to the
indirect mechanisms.
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Figure 3-4: Single step direct exchange mechanism of two atoms on neighboring sites.
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Figure 3-6: Concerted exchange mechanism. The Black atom (B) and the White
atom (W) are the atoms to be exchanged. Atoms 1 through 6 are the first neighbor
atoms.

The Concerted Exchange (CE) mechanism - (proposed for the diffusion of substi-

tutional atoms in Si [34]) on the other hand, takes place through a set of intermediate

steps such that, at every step, the distortion and the number of broken bonds are

kept to a minimum. In this process, bonds attached to the atoms to be exchanged are

broken and formed in succession such that at every stage, no more than two bonds

are broken. In Fig. 3-6, the black atom (B) and the white atom (W) are the atoms to

be exchanged, and atoms 1 through 6 are the first neighbor atoms. The grey plane

contains the atoms to be exchanged (B and W)) and a pair of neighboring atoms

(atoms 1 and 2) attached to them. The CE mechanism can be described in terms of

two independent rotations of B and W (Fig. 3-6). The first is a rotation of B and W

by an angle 0 about an axis passing through the center of the bond between them.

perpendicular to the grey plane shown in Fig. 3-6. The second is a rot ation of B and

W by an angle q about the original bond between them (direction shown with dotted

lines in Fig. 3-6).

In the concerted exchange process, the activated state (saddle point) on the unique



(b)

Figure 3-7: In (a) Initial state of the system (b) Activated state of the system : The
Black atom (B) and the White atom (W) are the atoms to be exchanged. Atoms 1
through 6 are the first neighbor atoms. In the activated state two bonds B-3 and
W-4 are broken

low energy path to exchange is clearly defined. In reaching the activated state shown

in Fig. 3-7(b), the atoms to be exchanged were rotated (sense of rotation shown

in Fig. 3-6) such that bonds B-1 (between the black atom and atom 1) and W-2

(between the white atom and atom 2) were first broken. This was followed by a

rotation such that bonds W-1 and B-2 were formed, thereby completing part of the

exchange. This was followed by a rotation such that atoms B-3 and W-4 were broken.

This corresponds to the activated state and can be obtained from the initial state by

a rotation of 0 = 900 and 6 = 30'. In this process, bonds B-5 and W-6 have not been

broken. Therefore we refer to this plane (5-B-W-6) containing atoms 5 and 6 (the

nearest neighbor atoms to B and W) which have not been affected in reaching the

activated state as the unaffected plane. Similarly, the activated state can be reached

by having neighboring atoms 1 and 2 on the unaffected plane (plane 1-B-W-2) or

neighboring atoms 3 and 4 on the unaffected plane (plane 3-B-W-4).

The activation energy for self diffusion of Si predicted by the CE mechanism is

lower than or comparable to the activation energies computed for the vacancy and

interstitialcy mechanisms [34]. Therefore, the concerted exchange mechanism is a
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possible mechanism for self diffusion of Si. It is assumed to be the preferred diffusion

mechanism because it can qualitatively explain the experimental observations [33]

(large entropy for Si self-diffusion, slower diffusivity of Group IV elements in Si than

group V elements, non-Arrhenius nature of diffusion) which cannot be explained by

the vacancy or interstitialcy mechanism.

For the purpose of this study, we assumed that the material is initially free of

defects and that diffusion is by concerted exchange. It must be noted that, in the

presence of vacancies or interstitials in the material, these defect mechanisms may

compete.

To calculate the activation energy it is important to choose an energy model.

Energy models can be based on ab-initio calculations or empirical potentials. Ab-

initio calculations are accurate but very time consuming while energy models based

on empirical potentials are fast but approximate. In this study we used empirical

potentials models to calculate the activation energy.

3.3 Empirical Potentials

There are many published potentials for Si and Ge [35, 36, 37, 38, 39, 40]. These,

empirical potentials best reproduce the properties they have been fitted to and may

not be reliable for reproducing other properties. For example, Pandey computed the

total-energy surface for self-diffusion of Si by the CE mechanism from first principles

[34]. This calculation showed that the activated state corresponded to a saddle point

on the minimum energy path for diffusion. However, as shown by Kaxiras [41], some

potentials like the Tersoff [39, 40] and Dodson [42] potentials predict a local-minimum

in energy corresponding to the activated state configuration.

The Kaxiras-Pandey potential [41] reproduces the energy surface for the concerted

exchange mechanism in Si with high accuracy. However, potentials with similar qual-

ities for Ge and the Si-Ge system are not available. In this study, we developed a

potential that qualitatively describes the activated state and predicts the effect of en-

vironment and strain on the activation energy for diffusion by the concerted exchange



process.

The potential-energy function describing interactions between n particles can be

resolved into one, two, three to n-body contributions:

V(1, ...,n) = Z-VI(i) + V2(i,j) + E V3(i,j, k) + ... (3.1)
i i<j i<j<k

The one-body potential is zero as there are no external forces acting on the system.

We chose the two-body potential as a Lennard-Jones pair potential:

A B
V2(i) 12 6 (3.2)

where A and B are constants and rij is the interatomic distance. We use a cutoff

distance of 2.7 A, which takes into account the interaction between first nearest

neighbor atoms. This potential alone will not stabilize a low coordination structure

like the diamond cubic. Therefore, we also use a harmonic three-body potential that

minimizes the energy of the crystal at the ideal diamond cubic bond angle of 109.470

(consequently stabilizing the diamond cubic structure). For every triad of atoms

about atom i (Fig. 3-8), the three-body potential contributes to the total energy by

an amount given by:

V3(i, j, k) = 0.5 * K(ojik - ) 2 33)

where, K is force constant between two atoms and co the the equilibrium angle about

atom i. We selected cutoffs in the potentials which determine the range of interaction

between atoms as given in Table 3.2.

We fitted the potential to the experimental elastic constants of Si and Ge [43]

and elastic constants of Si-Ge in Zinc Blende structure calculated from first principle

calculations[44]. The potential was also fitted to the equations of state (energy as a

function of volume) obtained from first principle pseudopotential calculations for Si,

Ge, and Si-Ge in the Zinc Blende structure [45]. The resulting parameters for the

two- and three-body potentials are given in Table 3.1 and Table 3.2 respectively.

~----·-
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Figure 3-8: Triad
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atom j
of atoms

Table 3.1: Two-body potential
atom i atomj A (eV A12) B (eV A6) r 12 (A)

Ge Ge 18586.67 193.13 2.7
Si Si 20535.47 264.35 2.7
Si Ge 20030.33 231.69 2.7

Table 3.2: Three-body potential
cutoff

atom i atom j atom k K (eV rad- 2) ,o (deg) r12 () r13 (A) r 23 ()
Ge Ge Ge 2.917 109.47 2.7 2.7 5.0
Si Si Si 2.828 109.47 2.7 2.7 5.0
Ge Si Si 2.924 109.47 2.7 2.7 5.0
Si Ge Ge 2.924 109.47 2.7 2.7 5.0
Si Ge Si 2.876 109.47 2.7 2.7 5.0
Ge Si Ge 2.921 109.47 2.7 2.7 5.0



3.3.1 Validity of potential

To test the applicability of the potentials, we computed the energy for Si self-diffusion

over the concerted exchange path. The calculations were performed with GULP [46]

- a general utility lattice program which performs energy minimizations, transition

state calculations and defect calculations using an empirical potential model. The

energies were calculated for the ideal CE path where the atoms to be exchanged are

at their equilibrium separation. The total-energy along the ideal CE path as predicted

by this potential is compared to the quantum-mechanical Local-Density-Functional

(LDF) calculations of Pandey [34] (Fig. 3-9). In agreement with the LDF calculations,

the energy of the activated state (calculated with our potential) is a maximum. The

total energy shows a large increase at approximately 8 = 600, q = 00 which can be

attributed to the cutoffs used in the potential. The activation energy predicted by the

potential is larger than the LDF result. This is to be expected because the potential

model is an approximation and in obtaining the two and three-body parameters, we

have not fitted the potential to the activation energy. But, this potential is suitable

to study the qualitative effect of configuration and strain on the activation energy.

To assess the validity of the Si and Ge potentials, we computed the activation

energies for self-diffusion in Si and Ge and compared them to the experimental results

[33]. The energies were calculated using the potentials by relaxing 123 atoms around

the exchanged atoms. This was found to be sufficient as relaxing an additional layer

of atoms did not decrease the activation energy of the system by more than 0.005 eV

(Fig. 3-10).

The experimental results on Si self diffusion are less consistent than those on Ge

self-diffusion (Fig. 3-11). The reason for the large discrepancies is not clear since

most of the recent experiments have been performed on extremely pure,dislocation

free single crystal Si. However, as evident from Fig. 3-11, the activation energies

follow the same trend as the corresponding experimental values [33]. The agreement

will be improved if we take into account the effect of long range relaxations. Long

range relaxations result in greater lowering of the activation energy in Ge because of
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Figure 3-9: Total energy of ideal CE path for Si self diffusion as predicted by potentials
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Figure 3-10: Activation energy as a function of number of atoms relaxed.
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Figure 3-11: Activation Energy for self diffusion as predicted by potentials

its lower elastic modulus.

To asses the validity of the Si-Ge potential, we computed the formation energies

of various ordered structures of Si and Ge using our potential and compared them to

the pseudopotential calculation results of Qteish et.al. [47]. As shown in Fig. 3-12,

our potential predicts the correct trend for the formation energies and hence their

relative stabilities. Also, the lattice parameters predicted by our potential are within

0.8% of the lattice parameter predicted by Qteish et.al.. This gives us confidence in

using our potential for predicting the qualitative trends in the activation energy for

Si-Ge interdiffusion.

3.4 Results : Diffusion in bulk Si and Ge

3.4.1 Effect of neighbor atom identity on the activation en-

ergy
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Figure 3-12: Formation energy vs. atomic fraction of Si as predicted by potentials

In this study, first neighbors are defined as all the nearest neighbors of the two

atoms to be exchanged and second neighbors as the nearest neighbors of the first

neighbors and so on. We computed the activation energy for the exchange of a Si-Ge

pair in a pure Si matrix (E.o0). We then computed the activation energy (EAi) for

the same exchange by changing the identity of one neighbor shell (i - first, second,

or third neighbor) at a time from Si atoms to Ge atoms. The difference in activation

energy (EAo-EAi) corresponding to this change in ith neighbor environment is plotted

against the neighbor number in Fig. 3-13. We find that, going from first to second to

third neighbor, the dependence of activation energy on the neighbor identity decreases

(Fig. 3-13). The effect of the identity of third neighbors was found to be 0.01 eV.

Therefore, we conclude that the activation energy can be calculated accurately (to

within 0.01eV) by taking into account th e identity of the first and second neighbors.

3.4.2 First neighbors

We calculated the activation energy for the exchange of a Si-Ge pair in a pure
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Si matrix with various first neighbor environments. We randomly assigned structure

numbers to the 20 possible structures (shown in Fig. 3-15 and Fig. 3-16) with different

first neighbor environments. The activation energy for the various structures was

found to fall into three energy levels as shown in Fig. 3-14.

It was found that an activated state containing an unaffected plane with only

Ge atoms attached to the atoms to be exchanged corresponds to the lowest energy -

Energy Level 3 in Fig. 3-14. We refer to this plane as the Ge-Ge unaffected plane. An

activated state containing no Ge-Ge unaffected plane but an unaffected plane with a

Si atom and a Ge atom attached to the atoms to be exchanged corresponds to Energy

Level 2 shown in Fig. 3-14. We refer to this plane as the Si-Ge unaffected plane. An

activated state containing an unaffected plane with only Si atoms attached to the

atoms to be exchanged corresponds to Energy Level 1 shown in Fig. 3-14. We refer

to this plane as the Si-Si unaffected plane. This occurs when all first neighbor atoms

are Si.

In reaching the activated state, the unaffected plane could be one of the three

possible planes 1-B-W-2, 3-B-W-4, 5-B-W-6 in Fig. 3-7. The system chooses a plane

with the lowest energy to be the unaffected plane. This is referred to as the "preferred

unaffected plane". Depending on the first neighbor environment this could be a Ge-Ge

or a Si-Ge or a Si-Si unaffected plane.

Consider structures 8 and 9 which have two Si atoms and one Ge atom attached

to each atom to be exchanged (Fig. 3-14). Although they have the same number of

first neighbors of a given chemical identity attached to the atoms to be exchanged, we

find that the activation energies are in different levels. This is because the preferred

unaffected plane is a Si-Ge unaffected plane in structure 8 but the preferred unaffected

plane is a Ge-Ge unaffected plane in structure 9. A similar effect is seen in structures

10 and 12. Therefore, we conclude that the activation energy depends on the detailed

arrangement of the atoms, i.e, the atoms on the preferred unaffected plane.

The other first neighbors (not on the preferred plane) have a much smaller im-

pact on the activation energy. In Fig. 3-18, we plot the activation energy for various

structures with the same preferred unaffected plane (Ge-Ge unaffected plane) but

Ij_•J.. _........I ...
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Figure 3-15: First neighbor environments. The plane containing the atoms to be
exchanged attached to the first neighbors through bonds shown in bold corresponds
to the preferred unaffected plane .
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Figure 3-17: Specific examples for effect of atoms on the preferred unaffected plane
on the activation energy for a Si-Ge exchange.

different chemical identity of the other first neighbor atoms. We find that the acti-

vation energy increases as the number of Ge first neighbors attached to the atoms to

be exchanged increases. However, for a given number of Ge first neighbors, there is

some scatter (0.02eV) in the activation energy which can be attributed to the detailed

arrangements of these atoms.

3.4.3 Second neighbors

We computed the activation energy for the Si-Ge exchange in systems with the
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same first neighbor environment but with different second neighbor environments in

an infinite Si matrix. Consider structures A and B (randomly labeled) that have 6

Si and 12 Ge second neighbor atoms as shown in Fig. 3-19. Structure A has only

Ge second neighbor atoms attached to the atoms on the preferred unaffected plane

and structure B has only Si second neighbor atoms attached to the atoms on the

preferred unaffected plane. We find that a system with Ge atoms attached to the first

neighbor atoms on the preferred unaffected plane (structure A) has a lower energy

than a system with Si atoms attached to the first neighbor atoms on the preferred

unaffected plane (structure B). A similar result is observed in structures C and D

which have 12 Si and 6 Ge second neighbor atoms. Therefore, we conclude that two

structures with the same number of second neighbors of a given chemical identity have

different activation energies depending on the detailed arrangement of the atoms, i.e,

the second neighbor atoms attached to the atoms on the preferred unaffected plane.

We found that in structures with the same chemical identity of second neighbor

atoms attached to the atoms on the preferred unaffected plane, the activation energy

increased with the number of second neighbor Ge atoms (Fig. 3-20). These trends

are similar to the effect of the first neighbors on activation energy but smaller in

magnitude. This is because the second neighbors are further away from the atoms to

be exchanged.

So far we have only considered the effect of local environment on the activation

energy for the exchange of a Si-Ge pair in a pure Si matrix. The next step is to

study the effect of the chemical identity of the matrix (long range environment) on

the activation energy.

3.4.4 Long range environment

We computed the activation energy for the Si-Ge exchange with various first

neighbor environments in a Si matrix and in a Ge matrix. Two conclusions can be

drawn from the results shown in Fig. 3-21). First, the changes in activation energy

due to different first neighbor environments follow the same trend for diffusion in both

a Si lattice and a Ge lattice. For example, there is a decrease in activation energy
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Figure 3-21: Effect of long range atom identity on activation energy. The activation
energy for diffusion in a Ge lattice is lower than the activation energy for diffusion in
a Si lattice.

when going from structure 8 to 9 for diffusion in Si lattice. A similar decrease is

seen for the diffusion in Ge lattice. Also, the activation energies for diffusion in a Ge

lattice are lower than in a Si lattice (Fig. 3-21). This is consistent with experimentally

observed trends in activation energy for the diffusion of Ge dopants in a Si lattice

and diffusion of Si dopants in a Ge lattice [48, 49, 50].

The results obtained so far shown the effect of the first neighbor environment

(the presence of a preferred unaffected plane), the effect of the second neighbor and

long range environment. In addition, the relative effect of these parameters on the

activation energy has been clearly established. In any Si-Ge diffusion by the CE

mechanism, the activation energy depends on the arrangement and chemical identity

of the atomic environment of the atoms to be exchanged. Therefore, these results

are applicable to any Si-Ge diffusion by the CE mechanism. In particular cases, in

addition to these effects, the activation energy may depend on other factors. One

such case is the nanocrystallite/host system where the effect of epitaxial strain has

I I I I I I I I I I I I I I I I I

diffusion in Si lattice ---
diffusion in Ge lattice -+--

/t~t----t- i '-

, ' l---$-.--t'

11111 1 11 1111 111/

..... J



10-2

a,

3o

' - -

Cu -4(D 10ca
4-'-

10-5
1000 2000 3000 4000 5000 6000 7000 8000

Total number of atoms in the system

Figure 3-22: Converged system. Esi(epitaxial) is the contribution to total energy by
the each additional Si atom in the next larger epitaxial system size. Esi(pure) is the
contribution to total energy by a Si atom in a pure Si system

to be accounted for in the activation energy calculations. This particular case will be

discussed in the following section.

3.5 Results: Epitaxial system

To study the effect of epitaxial strain on activation energy, we start from an

initially relaxed system which contains a 10 A Ge nanocrystallite (190 atoms) in an

infinite Si host. In choosing the minimum host size, which for practical purposes be

considered to be infinite, we sequentially consider epitaxial structures having the same

number of Ge atoms but increasing number of Si atoms. In particular we considered

systems with 512, 1728, 4096 and 8000 atoms. The energy of the epitaxial systems

increases due to the addition of Si atoms. This increase in energy was averaged over

the number of Si atoms added to the system. The average energy of the additional Si

atom was compared with the energy of a Si atom in pure Si system. This was plotted

I I -I I I I I

I I I I I i I
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Figure 3-23: Converged system: The average lattice parameter of the 8000 atom
epitaxial system is approximately equal to the lattice parameter of pure Si.

against the total number of atoms in the system in (Fig. 3-22). We found that, in the

8000 atom epitaxial system, the difference between the two energies was of the order

of 10-5 eV. Therefore, the epitaxial system containing 8000 atoms was consid ered

to equivalent to a Ge nanocrystallite in an infinite Si host. In addition, the average

lattice parameter of the system was converged to the Si lattice parameter to within

0.005 Ak in the 8000 atom system (Fig. 3-23).

3.5.1 Anisotropy in activation energy at the interface

We computed the activation energy for the exchange of atoms on the interface between

the Ge nanocrystallite and the infinite Si host. The atoms to be exchanged were at

approximate :.he same distance from the center of the nanocrystallite. We chose

atoms that had the same preferred unaffected planes to be the atoms to be exchanged.

We define the exchange angle as the angle at which the Si exchanges with a nearest

neighbor Ge with respect to the radial direction as shown in Fig. 3-24. This direction

I I I I I I II

epitaxial system +
pure Si

I I I I I I II- -III

r! A



Figure 3-24: Exchange angle: The angle at which the Si exchanges with a nearest
neighbor Ge with respect to the radial direction from the center of the nanocrystallite.

uniquely defines the local environment because of the spherical symmetry of the

geometry.

We found that the activation energy is anisotropic and increases almost linearly

with the exchange angle (Fig. 3-25). This indicates that exchanges in the radial

direction are more favorable than exchange in the tangential direction. We attribute

this anisotropy in activation energy to the presence of the Ge nanocrystallite at the

center of the Si host. The coherent epitaxial Ge anorytallite at the center of the

Si host is under compression while the Si host is under tension. The stress fields are

such that the Si atoms are further apart in the tangential direction than in the radial

direction. In reaching the activated state, the atoms to be exchanged rotate by an

angle 0 = 90* in the plane of the atoms to be exchanged and two first neighbors

attached to them and by an angle of k = 300 as explained in Section 2.2. Therefore,

for a radial exchange the atoms to be exchanged rotate to the tangential position in

the activated state. At this position, more space is available for the atoms to relax



5.2

5.1
U>

21 5.0

w
r_
.o 4.9

o

4.8

47
"T.I

0 30 60 90
Exchange angle (degrees)

Figure 3-25: Anisotropy in activation energy: The activation energy for a radial
exchange is lower than the activation energy for a tangential exchange.

and hence this activated state has a lower energy than others. The exchange along

the radial direction lowers the strain more than any other exchange angle and hence

the radial direction has the lowest activation energy.

3.5.2 Effect of strain on anisotropy in activation energy

away from the nanocrystallite host interface

We computed the activation energy for the Si-Ge exchange in the Si matrix at var-

ious distances from the center of the nanocrystallite. The atoms to be exchanged

had the same preferred unaffected plane (Si-Si). We found that the anisotropy in

activation energy decreased on moving away from the interface (Fig. 3-26). This can

be attributed to the decrease in strain (due to the nanocrystallite) on moving away

from the interface.
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the number of Ge first neighbors attached to the atoms to be exchanged. The effect

of second neighbor environment on activation energy showed the same trend as the

first neig hbors, but of a smaller magnitude. The activation energy was also found to

depend on the chemical identity of the diffusing medium (long range environment).

The activation energy for a Si-Ge exchange in a Ge matrix was lower than in a Si

matrix.

We have investigated the effect of atomic environment on activation energy. In

an epitaxial system, in addition to these effects, strain plays an important role. We

find that the activation energy is anisotropic with respect to the exchange angle.

We conclude that diffusion in the radial direction is favored against diffusion in the

tangential direction. Also, on moving away from the Ge-Si interface, we find that the

anisotropy in activation energy decreases as strain decreases.

We have studied the effect of environment and strain on activation energy. The

most important insight this study provides is the relative order in which atoms diffuse

out from the Ge nanocrystallite into the Si host. Given various configurations around

the atoms to be exchanged, we can predict relative order of activation energies. From

a knowledge of this and the effect of strain on activation energy, we can simulate

diffusion in an actual system.
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Figure 3-26: Effect of strain on anisotropy in activation energy away from the
nanocrystallite/host interface

3.6 Conclusions

We have developed an energy model based on multi-body potentials to predict the

effect of various parameters, such as strain and local environment, on activation

energy for diffusion of Ge in Si by the concerted exchange mechanism.

We conclude that in this model the activation energy for interdiffusion in a given

diffusing medium (e.g. Si matrix or Ge matrix) can be calculated accurately (to

within 0.01 eV) by considering the effect of first and second neighbor environments.

Depending on the first neighbor environment, there exists a "preferred unaffected

plane" in reaching the activated state that is chosen based on energetic considerations.

A Ge-Ge unaffected plane is preferred to a Si-Ge unaffected plane to a Si-Si unaffected

plane. Depending on the preferred unaffected plane the activation energy could differ

by 0.2 eV. For a given preferred unaffected plane. the chemical identity of the other

first neighbor atoms (not on the preferred plane) have a much smaller impact (up to

0.07 eV) on the activation energy. The activation energy was found to increase with

a P3 P
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